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Abstract. Photographs of text documents taken by hand-held cameras
can be easily degraded by camera motion during exposure. In this paper,
we propose a new method for blind deconvolution of document images.
Observing that document images are usually dominated by small-scale
high-order structures, we propose to learn a multi-scale, interleaved cas-
cade of shrinkage fields model, which contains a series of high-order fil-
ters to facilitate joint recovery of blur kernel and latent image. With
extensive experiments, we show that our method produces high quality
results and is highly efficient at the same time, making it a practical
choice for deblurring high resolution text images captured by modern
mobile devices.
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1 Introduction

Taking photographs of text documents (printed articles, receipts, newspapers,
books, etc.) instead of scanning them has become increasingly common due to the
popularity of mobile cameras. However, photos taken by hand-held cameras are
likely to suffer from blur caused by camera shake during exposure. This is crit-
ical for document images, as slight blur can prevent existing optical-character-
recognition (OCR) techniques from extracting correct text from them. Removing
blur and recovering sharp, eligible document images is thus highly desirable. As
in many previous work, we assume a simple image formation model for each
local text region as

y=Kx+n, (1)

where y represents the degraded image, x the sharp latent image, matrix K the

corresponding 2D convolution with blur kernel k, and n white Gaussian noise.
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The goal of the post-processing is to recover x and k from single input y, which
is known as blind deconvolution or blind deblurring. This problem is highly ill-
posed and non-convex. As shown in many previous work, good prior knowledge
of both x and k is crucial for constraining the solution space and robust opti-
mization. Specifically, most previous methods focus on designing effective priors
for x, while k is usually restricted to be smooth.

Recent text image deblurring methods use sparse gradient priors (e.g., total
variation [3], ¢y gradient [5,14]) and text-specific priors (e.g., text classifier [5],
£y intensity [14]) for sharp latent image estimation. These methods can produce
high-quality results in many cases, however their practical adaptation is ham-
pered by several drawbacks. Firstly, their use of sparse gradient priors usually
forces the recovered image to be piece-wise constant. Although these priors are
effective for images with large-font text (i.e., high pixel-per-inch (PPI)), they do
not work well for photographs of common text documents such as printed arti-
cles and newspapers where the font sizes are typically small [10]. Furthermore,
these methods employ iterative sparse optimization techniques that are usually
time-consuming for high resolution images taken by modern cameras (e.g., up to
a few megapixels).
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Fig. 1. Visual comparison between a natural image (left), a large-font text image (mid-
dle) and a common text document image at 150 PPI (right) at various scales.

In this paper, we propose a new algorithm for practical document deblur-
ring that achieves both high quality and high efficiency. In contrast to previ-
ous works relying on low-order filter statistics, our algorithm aims to capture
the domain-specific property of document images by learning a series of scale-
and iteration-wise high-order filters. A motivational example is shown in Fig. 1,
where we compare small patches extracted from a natural image, a large-font
text image and a common text document image. Since most deblurring methods
adopt a multi-scale framework in order to avoid bad local optima, we compare
patches extracted from multiple scales. Evidently, the natural image and large-
font text image both contain long, clear edges at all scales, making the use of
sparse gradient priors effective. In contrast, patches from the document image
with a small font size are mostly composed of small-scale high-order structures,
especially at coarse scales, which makes sparse gradient priors to be inaccurate.
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This observation motivates us to use high-order filter statistics as effective reg-
ularization for deblurring document images. We use a discriminative approach
and learn such regularization terms by training a multi-scale, interleaved cascade
of shrinkage field models [18], which was recently proposed as an effective tool
for image restoration.

Our main contributions include:

— We demonstrate the importance of using high-order filters in text document
image restoration.

— We propose a new algorithm for fast and high-quality deblurring of docu-
ment photographs, suitable for processing high resolution images captured by
modern mobile devices.

— Unlike the recent convolutional-neural-network (CNN) based document
deblurring method [10], our approach is robust to page orientation, font style
and text language, even though such variants are not included at our training.

2 Related Work

Blind Deblurring of Natural Images. Most deblurring methods solve the
non-convex problem by alternately estimating latent image x and blur kernel
k, with an emphasis on designing effective priors on x. Krishnan et al. [11]
introduced a scale-invariant ¢1 /€5 prior, which compensates for the attenuation
of high frequencies in the blurry image. Xu et al. [24] used the ¢y regularizer on
the image gradient. Xiao et al. [22] used a color-channel edge-concurrence prior
to facilitate chromatic kernel recovery. Goldstein and Fattal [8] estimated the
kernel from the power spectrum of the blurred image. Yue et al. [25] improved [§]
by fusing it with sparse gradient prior. Sun et al. [21] imposed patch priors to
recover good partial latent images for kernel estimation. Michaeli and Irani [13]
exploited the recurrence of small image patches across different scales of single
natural images. Anwar et al. [2] learned a class-specific prior of image frequency
spectrum for the restoration of frequencies that cannot be recovered with generic
priors. Zuo et al. [26] learned iteration-wise parameters of the ¢, regularizer on
image gradients. Schelten et al. [16] trained cascaded interleaved regression tree
field (RTF) [19] to post-improve the result of other blind deblurring methods for
natural images.

Another type of methods use explicit nonlinear filters to extract large-scale
image edges from which kernels can be estimated rapidly. Cho and Lee [6]
adopted a combination of shock and bilateral filters to predict sharp edges. Xu
and Jia [23] improved [6] by neglecting edges with small spatial support as they
impede kernel estimation. Schuler et al. [20] learned such nonlinear filters with
a multi-layer convolutional neural network.

Blind Deblurring of Document Images. Most recent methods of text
deblurring use the same sparse gradient assumption developed for natural
images, and augment it with additional text-specific regularization. Chen
et al. [3] and Cho et al. [5] applied explicit text pixel segmentation and enforced
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the text pixels to be dark or have similar colors. Pan et al. [14] used £y-regularized
intensity and gradient priors for text deblurring. As discussed in Sect.1 and as
we will show in our experiments in Sect.4, the use of sparse gradient priors
makes such methods work well for large-font text images, but fail on common
document images that have smaller fonts.

Hradi§ et al. [10] trained a convolutional neural network to directly predict
the sharp patch from a small blurry one, without considering the image forma-
tion model and explicit blur kernel estimation. With a large enough model and
training dataset, this method produces good results on English documents with
severe noise, large defocus blurs or simple motion blur. However, this method
fails on more complicated motion trajectories, and is sensitive to page orienta-
tion, font style and text languages. Furthermore, this method often produces
“hallucinated” characters or words which appears to be sharp and natural in
the output image, but are completely wrong semantically. This undesirable side-
effect severely limits its application range as most users do not expect the text
to be changed in the deblurring process.

Discriminative Learning Methods for Image Restoration. Recently sev-
eral methods were proposed to use trainable random field models for image
restoration (denoising and non-blind deconvolution where the blur kernel is
known a priori). These methods have achieved high-quality results with attrac-
tive run-times [4,18,19]. One representative technique is the shrinkage fields
method [18], which reduces the optimization problem of random field models
into cascaded quadratic minimization problems that can be efficiently solved
in Fourier domain. In this paper, we extend this idea to the more challenging
blind deconvolution problem, and employ the cascaded shrinkage fields model to
capture high-order statistics of text document images.

3 Our Algorithm

The shrinkage fields (SF) model has been recently proposed as an effective and
efficient tool for image restoration [18]. It has been successfully applied to both
image denoising and non-blind image deconvolution, producing state-of-the-art
results while maintaining high computational efficiency. Motivated by this suc-
cess, we adopt the shrinkage field model for the challenging problem of blind
deblurring of document images. In particular, we propose a multi-scale, inter-
leaved cascade of shrinkage fields (CSF) which estimates the unknown blur kernel
while progressively refining the estimation of the latent image. This is also partly
inspired by [16], which proposes an interleaved cascade of regression tree fields
(RTF) to post-improve the results of state-of-the-art natural image deblurring
methods. However, in contrast to [16], our method does not depend on an ini-
tial kernel estimation from an auxiliary method. Instead, we estimate both the
unknown blur kernel and latent sharp image from a single blurry input image.
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3.1 Cascade of Shrinkage Fields (CSF)

The shrinkage field model can be derived from the field of experts (FoE)
model [15]:

' N
argmin D(x,y) + 22:1 pi(Fix), (2)

where D represents the data fidelity given measurement y, matrix F; represents
the corresponding 2D convolution with filter f;, and p; is the penalty on the
filter response. Half-quadratic optimization [7], a popular approach for the opti-
mization of common random field models, introduces auxiliary variables u; for
all filter responses F;x and replaces the energy optimization problem Eq. 2 with
a quadratic relaxation:

N
argmin D(x,y) + Zi_l (ﬁ||le — uZH% + pi(ui)) , (3)
x,u =

which for 8 — oo converges to the original problem in Eq.2. The key insight
of [18] is that the minimizer of the second term w.r.t. u; can be replaced by a
flexible 1D shrinkage function ; of filter response F;x. Different from standard
random fields which are parameterized through potential functions, SF models
the shrinkage functions associated with the potential directly. Given data forma-
tion model as in Eq. 1, this reduces the original optimization problem Eq.2 to
a single quadratic minimization problem in each iteration, which can be solved
efficiently as

FK_y + XN Fyh(Fixi 1)

xt = F~!
FK] 1) F(Keo1) + AN F(FL) - F(FY)

(4)

where t is iteration index, K is the blur kernel matrix, F and F~! indicate
Fourier transform and its inverse, and t; the shrinkage function. The model
parameters O = (ff, !, \!) are trained by loss-minimization, e.g. by minimiz-
ing the ¢y error between estimated images x* and the ground truth. Performing
multiple predictions of Eq. 4 is known as a cascade of shrinkage fields. For more
details on the shrinkage fields model we refer readers to the supplemental mate-
rial and [18].

3.2 Multi-scale Interleaved CSF for Blind Deconvolution

We do not follow the commonly used two-step deblurring procedure where kernel
estimation and final latent image recovery are separated. Instead, we learn an
interleaved CSF that directly produces both the estimated blur kernel and the
predicted latent image. Our interleaved CSF is obtained by stacking multiple SF's
into a cascade that is intermitted by kernel refinement steps. This cascade gener-
ates a sequence of iteratively refined blur kernel and latent image estimates, i.e.
{k'}i=1,. 7 and {x"};—1, 7 respectively. At each stage of the cascade, we employ
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Fig. 2. Algorithm architecture.

a separately trained SF model for sharp image restoration. In addition, we learn
an auxiliary SF model which generates a latent image z* that is used to facili-
tate blur kernel estimation. The reason of including this extra SF model at each
stage is to allow for selecting features that might benefit kernel estimation and
eliminating other features and artifacts. Note that the idea of introducing such a
latent feature image for improving kernel estimation is not new, and is a rather
common practice in recent state-of-the-art blind deconvolution methods [6,23].
Figure 2 depicts a schematic illustration of a single stage of our interleaved CSF
approach.

More specifically, given the input image y, our method recovers k and x
simultaneously by solving the following optimization problem:

N
(. k) = agminly — kx| + 3 pi(Fix) + 7l 3 5
st. k>0, =1

To this end, our proposed interleaved CSF alternates between the following blur
kernel and latent image estimation steps:

Update x'. For sharp image update we train a SF model with parameters
0! = (!, ¢!, AY). Analogously to Eq.4 we obtain the following update for x*
at iteration t:

FK y + XY F gl (Fizt)))
FKL ) FK1) + NN FET) - F(FY

t f’—l

(6)

Update z' and k'. For kernel estimation we first update the latent image z*
from x' by learning a separate SF model. Denoting convolution with filter g!
by matrix G, we have:

(7)

a2t — 71 ,7—'(K;';1y + ’7t 25\21 G§T¢$(G§Xt))
FKL) - FKi) +nt SN, F(GET) - F(GY)

For kernel estimation we employ a simple Thikonov prior. Given the estimated
latent image z' and the blurry input image y, the update for k reads:

|-
<=7 i ] )

where * indicates complex conjugate. The model parameters learned at this
step are denoted as 2! = (g, ¢f, ', 7*). Note that £2¢ are trained to facilitate
the update of both kernel k* and image z.
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t—1 1 t—1

as input, as z
t and

The x! update step in Eq.6 takes z rather than x'~
improves from x!~! w.r.t. removing blur by Eq.7 at iteration ¢t — 1. x
z! is observed to converge as the latent image and kernel are recovered.

Algorithm 1. Blind deblurring at one scale
Input: blurry image y
Output: estimated image x and kernel k.
1: fort=1to 5 do
2:  Update x' by Eq.6.
Update z* by Eq.7.
Update k' by Eq. 8.
k' = max(0,k"), k" = k'/||k*||:.
end for

Algorithm 1 summarizes the proposed approach for blind deblurring of doc-
ument images. Note that there is translation and scaling ambiguity between the
sharp image and blur kernel at blind deconvolution. The estimated kernel is nor-
malized such that all its pixel values sum up to one. In Algorithm 2 for training,
x! is shifted to better align with the ground truth image X, before updating k.
We find that our algorithm usually converges in 5 iterations per scale.

3.3 Learning

Our interleaved CSF has two sets of model parameters at every stage t = 1, .., 5,
one for sharp image restoration, ©' = (ff, 1!, A\!), and the other for blur kernel
estimation, 2! = (g!, ¢!, 7', 7%). All model parameters are learned through loss-
minimization.

Algorithm 2. Learning at one scale

Input: blurry image y; true image X; true kernel k.
Output: model parameters (ff, !, \', g, ¢t nt, ")
1: fort =1to 5 do
2:  Train model parameters: (ff, 4!, A\) to minimize ||x* — %||3 with gradient given
in Eq. 9.
3:  Update x' by Eq.6.
4:  Shift x* to better align with %.
5:  Train model parameters: (g, ¢, n*,7") to minimize ||k’ — k|| + o||z" — X||3 with
gradient given in Eq. 10.
6: Update z‘ by Eq. 7.
7:  Update k* by Eq.8.
8  k'=max(0,k"), k" = k'/||k'||:.
9: end for

Note that in addition to the blurry input image, each model receives also
the previous image and blur kernel predictions as input, which are progressively
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refined at each iteration. This is in contrast to the non-blind deconvolution
setting of [18], where the blur kernel is known and is kept fixed throughout all
stages. Our interleaved CSF model is trained in a greedy fashion, i.e. stage by
stage such that the learned SF models at one stage are able to adapt to the
kernel and latent image estimated at the previous stage.

More specifically, at each stage we update our model parameters by iterating
between the following two steps:

Update x’. To learn the model parameters @', we minimize the /5 error
between the current image estimate and the ground truth image X, i.e.
¢ = ||x! — %||3. Its gradient w.r.t. the model parameters ©! = (ff, !, \Y)
can be readily computed as

ar  oxt ol

et 9Ot xt
The derivatives for specific model parameters are omitted here for brevity,
but can be found in the supplemental material.

Update z' and k. The model parameters 2¢ of the SF models for kernel
estimation at stage t are learned by minimizing the loss function ¢ =
|[k* — k|| + of|z* — %||3, where k denotes the ground truth blur kernel and
« is a coupling constant. This loss accounts for errors in the kernel but also
prevents the latent image used in Eq. (8) to diverge. Its gradient w.r.t. the
model parameters 2¢ = (g!, ¢!, n', 7) reads

9)

ot 9z' ok' o Ok’ ot 9z' ol

00° ~ 962 0zt Ok | 002 Okt | 902" 0
Again, details for the computation of the derivatives w.r.t. to specific model
parameters are included in the supplemental material. We want to point out
that the kernel estimation error ||k? — k||3 is back-propagated to the model
parameters (g!, ¢f, n') in the SF for z'. Hence, the latent image z is tailored
for accurate kernel estimation and predicted such that the refinement in k!
in each iteration is optimal. This differs from related work in [16,26].

(10)

Multi-scale Approach. Our algorithm uses a multi-scale approach to prevent
bad local optima. The kernel widths that are used at different scales are 5, 9,
17, 25 pixels. At each scale s, the blurry image y*, the true latent image X*
and k* are downsampled (and normalized for k*) from their original resolution.
The scale index s is omitted for convenience. At the beginning of each scale
s > 1, the estimated image x is initialized by bicubic upsampling its estimation
at the previous scale, and the blur kernel k is initialized by nearest-neighbor
upsampling, followed by re-normalization. At the coarsest scale s = 1, x is
initialized as y and k is initialized as a delta peak. The coupling constant « in
kernel estimation loss is defined as a = r - 7, where r is the ratio between pixel
numbers in kernel k? and image z! at current scale, 7 is initialized with 1 at the
coarsest scale and at each subsequent scale it is multiplied by a factor of 0.25.
Algorithm 2 summarizes our learning procedure for a single scale of our CSF
model.
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Fig. 3. Learned ﬁlters and shrinkage functions (at 3rd scale, 1st iteration) for updating
x' (Eq.6) and z', k' (Eq 7), respectively. Other parameters learned at this iteration:
)\t =0.5757, n* 00218 7t=0.0018.

Model Complexity. In both the model ©¢ for x! and model £2¢ for (z!, k'), we
choose to use 24 filters f! of size 5 x 5 for trade-off between result quality, model
complexity and time efficiency. As in [18], we initialize the filters with a DCT
filter bank. Each shrinkage function ¢! and ¢! are composed of 51 equidistant-
positioned radial basis functions (RBFs) and are initialized as identity function.
We further enforce central symmetry to the shrinkage functions, so that the
number of trainable RBF's reduces by half to 25. Figure 3 visualizes some learned
models.

Training Datasets. We have found that that our method works well with a
relatively small training dataset without over-fitting. We collected 20 motion
blur kernels from [18], and randomly rotated them to generate 60 different ker-
nels. We collected 60 sharp patches of 250 x 250 pixels cropped from documents
rendered around 175PPI, and rotated each with a random angle between —4
and 4 degrees. We then generated 60 blurry images by convolving each pair of
sharp image and kernel, followed by adding white Gaussian noise and quantizing
to 8 bits. We used the L-BFGS solver [17] in Matlab for training, which took
about 12h on a desktop with an Intel Xeon CPU.

4 Results

In this section we evaluate the proposed algorithm on both synthetic and
real-world images. We compare with Pan et al. [14] and Hradis et al. [10],
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Fig. 4. Comparison on a real image taken from [10]. Row 1-5 from top to bottom show
the blurry image, result of Xu [1], Pan [14], Hradis et al. [10] and our method. Two
cropped regions are shown here, the full resolution results along with more examples
can be found in the supplemental.

the state-of-the-art methods for text image blind deblurring, and the natural
image deblurring software produced by Xu [1], which are based on recently pro-
posed state-of-the-art techniques [23,24]. We used the code and binaries provided
by the authors and tuned the parameters to generate the best possible results.

Real-World Images. In Figs.4 and 5 we show comparisons on real images.
The result images of Xu [1] and Pan [14] contain obvious artifacts due to inef-
fective image priors that lead to inaccurate kernel estimation. Hradis et al. [10]
fails to recover many characters and distorted the font type and illumination.
Our method produces the best results in these cases, and our results are both
visually pleasing and highly legible. The full resolution images and more results
are included in the supplemental material.

Quantitative Comparisons. For quantitative evaluation, we test all methods
on a synthetic dataset and compare results in terms of the peak-signal-to-noise-
ratio (PSNR). We collect 8 sharp document images with 250250 pixels cropped
from documents rendered at 150 PPI (similar PPI as used for training in [10]).
Each image is blurred with 8 kernels at 25x25 collected from [12], followed by
adding 1 % Gaussian noise and 8-bit quantization. In Fig. 6, we show the average
PSNR values of all 8 test images synthesized with the same blur kernel. Our
method outperforms other methods in all cases by 0.5-6.0 dB. Hradis et al. [10]
has close performance to ours on kernel #3, which is close to defocus blur. It
also performs reasonably well on kernel #6 which features a simple motion path,
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Fig. 5. Comparison on a real image taken from [10]. Row 1-4 from top to bottom show
the blurry image, result of Pan [14], Hradi$ et al. [10] and our method. Two cropped
regions are shown, the full resolution results along with more results can be found in
the supplemental.
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Fig. 6. PSNR and OCR comparison on a synthetic test dataset with 8 blur kernels.

but fails on other more challenging kernels. Some results along with the estimated
kernels are shown in Fig. 7 for visual comparison.

An interesting question one may ask is whether improved deblur can directly
lead to better optical-character-recognition (OCR) accuracy. To answer this
question we evaluate OCR accuracy using the software ABBYY FineReader 12.
We collected 8 sharp document images from the OCR test dataset in [10]. Each
document image contains a continuous paragraph. We synthesized 64 blurry
images with the 8 kernels and 1% Gaussian noise similarly as in the PSNR
comparison. We run the OCR software and used the script provided by [10] to
compute the average character error rate for all 8 test images synthesized with
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Fig. 7. Comparison on synthetic images from the PSNR experiments in Fig.6. Note
that the original results of [10] break the illumination of the images. We clamp the
intensity of their results to match the ground truth image before computing the PSNR

values.

Table 1. Run-time comparison (in seconds).

Image size 2562 | 512% | 10247
u [1] (C++) 14.8 | 334 -

Pan [14] (Matlab) 19.6 | 84.3271.9

Hradis et al. [10] (C++) |48.5 [193.7|594.9

Hradis et al. [10] (GPU) 03| 10| 31
Ours (Matlab) 20, 39| 114
Pre-computation (Matlab) | 1.8 | 4.6 15.3

the same kernel'. The results are shown in Fig. 6. They are consistent with the
PSNR results also in Fig. 6. Hradis et al. [10] performs well on kernel #3 and #6
but fails on other challenging kernels, while our method is consistently better
than others. All the test images and results for PSNR and OCR comparisons
are included in the supplemental material.

Run-Time Comparison. Table1 provides a comparison on computational
efficiency, using images blurred by a 17x17 kernel at three different resolu-
tions. The experiments were done on an Intel i7 CPU with 16 GB RAM and
a GeForce GTX TITAN GPU. Assuming the image sensor resolution is a known
priori2, we pre-compute the FFTs of the trained filters f; and g; for maximal
efficiency. We report the timing of our Matlab implementation on CPU. A GPU
implementation should significantly reduce the time as our method only

! We used the script ‘eval.py’ downloaded from the author webpage [10] to compute
the error rate (after a bug was fixed).
2 This is a common assumption especially for batch processing of document images.
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Fig. 8. Comparison on non-English text and severely rotated images. Note that such
non-English text and large rotation were not included in our training dataset.
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Fig. 9. Robustness test on noise level and image PPI (pixel-per-inch).
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Fig.10. Comparison on a real image with large-font text. The reference results are
from [10]. Following [10], the input of (d) Hradi§’ and (e) our method was downsampled
by factor of 3.

requires FFT, 2D convolution and 1D look-up-table (LUT) operations, which
is our future work.

Robustness. In Fig. 8, we show results on non-English text and severely rotated
image. Although both Hradis et al. [10] and our method are only trained on Eng-
lish text data, our method can be applied to non-English text as well. This is a
great benefit of our method as we do not need to train on every different lan-
guage, or increase the model complexity to handle them as [10] would need to do.
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sharp edges from blurred step signals [Osher and Rudin 1990). The
evolution equation of a shock filter is formulated as fu(L)

X..‘un v L -a.BI* +allVL|:. (S5)

I Iy — sign(AL) ||V 1|\ dt. “) i .
' h=AEIEINE, where 8, € (. Dz 0, Dz Dy Dy} denotes the partial deriva-

(c) Ours

(d) Our estimated kernel

(e) Ground truth kernel

Fig. 11. Results on spatially-varying blur kernel. The blurry input is synthesized with
the EFF model [9] to approximate practical pixel-wise variant blur.

Our method is also robust against a significant change of page orientation, which
cannot be handled well by [10].

In Fig.9, we show the results of our method when the noise level and PPI
of the test data differs from the training data. Figure9(a) shows that the per-
formance of our method is fairly steady when the noise level in the test images
is not too much higher than that of the training data, meaning that the models
trained at sparse noise levels are sufficient for practical use. Figure 9(b) shows
that our method works well in a fairly broad range of image PPIs given the
training data are around 175 PPL.

In Fig. 10, we show a comparison on a real image with large-font text. Fol-
lowing [10], the input of Hradi§’ and our method was downsampled by factor
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of 3in order to apply the trained models without re-training. Although such
downsampling breaks the image formation model in Eq. 1, our method can still
generate reasonable result.

Non-uniform Blur. Our method can be easily extended to handle non-uniform
blur by dividing the image into overlapped tiles, deblurring each tile with our
proposed algorithm, and then realigning the resulting tiles to generate the final
estimated image. An example is shown in Fig. 11.

5 Conclusion and Discussion

In this paper we present a new algorithm for fast and high-quality blind decon-
volution of document photographs. Our key idea is to to use high-order filters for
document image regularization, and propose to learn such filters and influences
from training data using multi-scale, interleaved cascade of shrinkage field mod-
els. Extensive experiments demonstrate that our approach not only produces
higher quality results than the state-of-the-art methods, but is also computa-
tional efficient, and robust against noise level, language and page orientation
changes that are not included in the training data.

Our method also has some limitations. It cannot fully recover the details of an
image if it is degraded by large out-of-focus blur. In such case, Hradis et al. [10]
may outperform our method given its excellent synthesis ability. As future work
it would be interesting to combine both approaches. Although we only show
learning our model on document photographs, we believe such a framework can
also be applied to other domain-specific images, which we plan to explore in the
future. The code, dataset and other supplemental material will be available on
the author’s webpage.
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