
Precomputed Real-Time Texture Synthesis
with Markovian Generative Adversarial

Networks

Chuan Li(B) and Michael Wand(B)

Institut for Informatik, University of Mainz, Mainz, Germany
cl.chuanli@gmail.com, wandm@uni-mainz.de

Abstract. This paper proposes Markovian Generative Adversarial Net-
works (MGANs), a method for training generative networks for efficient
texture synthesis. While deep neural network approaches have recently
demonstrated remarkable results in terms of synthesis quality, they still
come at considerable computational costs (minutes of run-time for low-res
images). Our paper addresses this efficiency issue. Instead of a numerical
deconvolution in previous work, we precompute a feed-forward, strided
convolutional network that captures the feature statistics of Markovian
patches and is able to directly generate outputs of arbitrary dimensions.
Such network can directly decode brown noise to realistic texture, or pho-
tos to artistic paintings. With adversarial training, we obtain quality com-
parable to recent neural texture synthesis methods. As no optimization
is required at generation time, our run-time performance (0.25 M pixel
images at 25 Hz) surpasses previous neural texture synthesizers by a sig-
nificant margin (at least 500 times faster). We apply this idea to texture
synthesis, style transfer, and video stylization.

Keywords: Texture synthesis · Adversarial generative networks

1 Introduction

Image synthesis is a classical problem in computer graphics and vision [5]. The
key challenges are to capture the structure of complex classes of images in a
concise, learnable model, and to find efficient algorithms for learning such models
and synthesizing new image data. Most traditional “texture synthesis” methods
address the complexity constraints using Markov random field (MRF) models
that characterize images by statistics of local patches of pixels.

Recently, generative models based on deep neural networks have shown
exciting new perspectives for image synthesis [7,8]. Deep architectures cap-
ture appearance variations in object classes beyond the abilities of pixel-level
approaches. However, there are still strong limitations of how much structure can

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-46487-9 43) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part III, LNCS 9907, pp. 702–716, 2016.
DOI: 10.1007/978-3-319-46487-9 43

http://dx.doi.org/10.1007/978-3-319-46487-9_43
http://dx.doi.org/10.1007/978-3-319-46487-9_43


Markovian Generative Adversarial Networks 703

be learned from limited training data. This currently leaves us with two main
classes of “deep” generative models: (1) full-image models that generate whole
images [3,8], and (2) Markovian models that also synthesize textures [7,15].

The first class, full-image models, are often designed as specially trained
auto-encoders [12]. Results are impressive but limited to rather small images
(typically around 64× 64 pixels). The second class, the deep Markovian models,
capture the statistics of local patches only and assemble them to high-resolution
images. Consequently, the fidelity of details is good, but additional guidance is
required if non-trivial global structure should be reproduced [1,5,7,9,15]. Our
paper addresses this second approach of deep Markovian texture synthesis.

Previous neural methods of this type [7,15] are built upon a deconvolutional
framework [18,25]. This naturally provides blending of patches and permits
reusing the intricate, emergent multi-level feature representations of large, dis-
criminatively trained neural networks like the VGG network [21], repurposing
them for image synthesis. As a side note, we will later observe that this is actually
crucial for high-quality result (Fig. 10). Gatys et al. [7] pioneer this approach by
modeling patch statistics with a global Gaussian models of the higher-level fea-
ture vectors, and Li and Wand [15] utilize dictionaries of extended local patches
of neural activation, trading-off flexibility for visual realism. Unfortunately, the
run-time costs of the deconvolution approach are very high, requiring iterative
back-propagation in order to estimate a pre-image (pixels) of the feature activa-
tions (higher network layer). In the case of [15], a high-end GPU needs several
minutes to synthesize low-resolution images (such as a 512-by-512 pixels image).

The objective of our paper is therefore to improve the efficiency of deep
Markovian texture synthesis. The key idea is to precompute the inversion of the
network by fitting a strided convolutional network [20] to the inversion process,
which operates purely in a feed-forward fashion. Despite being trained on patches
of a fixed size, the resulting network can generate images of arbitrary dimension,
yielding an efficient texture synthesizer of a specific style1.

We train the convolutional network using adversarial training [20], which per-
mits maintaining image quality similar to the original, expensive optimization
approach. As result, we obtain significant speed-up: Our GPU implementation
computes 512×512 images within 40 ms (on an nVidia TitanX). The key limita-
tion, of course, is to precompute the feed-forward convolutional network for each
texture style. Nonetheless, this is still an attractive trade-off for many potential
applications, for example from the area of artistic image or video stylization.

2 Related Work

Deconvolutional neural networks have been introduced to visualize deep fea-
tures and object classes. Zeiler and Fergus [25] back-project neural activations
to highlight pixels. Mahendran and Vedaldi [17] reconstruct images from the
neural encoding in intermediate layers. Recently, effort are made to improve the

1 See supplementary material and code at: https://github.com/chuanli11/MGANs.

https://github.com/chuanli11/MGANs


704 C. Li and M. Wand

Fig. 1. Motivation: real world data does not always comply with a Gaussian distri-
bution (first), but a complex nonlinear manifold (second). We adversarially learn a
mapping to project contextually related patches to that manifold.

efficiency and accuracy of visualization [19,24]. Mordvintsev et al. have raised
wide attention by showing how deconvolution of class-specific activations can cre-
ate hallucinogenic imagery from discriminative networks [18]. The astonishing
complexity of the obtained visual patterns has immediately spurred hope for new
generative models: Gatys et al. [6,7] drove deconvolution by global covariance
statistics of feature vectors on higher network layers, obtaining unprecedented
results in artistic style transfer. However, enforcing per-feature-vector statistics
permits a mixing of feature patterns that never appear in actual images and limit
plausibility of the learned texture. This can be partially addressed by replacing
point-wise feature statistics by statistics of spatial patches of feature activa-
tions [15]. This permits photo-realistic synthesis in some cases, but also reduces
invariance because the simplistic dictionary of patches introduces rigidity.

Full image methods employ specially trained auto-encoders as generative net-
works [12]. For example, the Generative Adversarial Networks use two networks,
one as the discriminator and other as the generator, to iteratively improve the
model by playing a minimax game [8]. This model is extended to work with a
Laplacian pyramid [3]. Very recently, Radford et al. [20] propose a set of archi-
tectural refinements2 that stabilized the performance of this model, and show
that the generators have vector arithmetic properties. One important strength
of adversarial networks is that it offers perceptual metrics [4] that allows auto-
encoders to be training more efficiently.

In very recent, two concurrent work, Ulyanov et al. [22] and Johnson et al. [10]
propose fast implementations of Gatys et al.’s approach. Both of their methods
employ precomputed decoders trained with a perceptual texture loss and obtain
significant run-time benefits (higher decoder complexity reduces their speed-up
a bit). The main difference in our paper is the use of Li and Wand’s [15] feature-
patch statistics as opposed to learning Gaussian distributions of individual feature
vectors, which provides some benefits in reproducing textures more faithfully.

3 Model

Let us first conceptually motive our method. Statistics based methods [7,22]
match the distributions of source (input photo or noise signal) and target
2 Strided convolution, ReLUs, batch normalization, removing fully connected layers.



Markovian Generative Adversarial Networks 705

Fig. 2. Our model contains a generative network (blue blocks) and a discriminative
network (green blocks). We apply the discriminative training on Markovian neural
patches (purple block as the input of the discriminative network.). (Color figure online)

(texture) with a Gaussian model (Fig. 1, first). However, real world data does
not always comply with a Gaussian distribution. Instead it can follow a com-
plicated non-linear manifold. Adversarial training [8] recognizes such manifold
(Fig. 1, second), and strengthens its generative power with projections (Fig. 1,
third). We apply adversarial training on contextually corresponding Markovian
patches (Fig. 1, fourth), so learning can focus on the mapping between differ-
ent depictions of the same context, rather than the mixture of context and
depictions.

Figure 2 visualizes our pipeline, which extends the patch-based synthesis
algorithm of Li and Wand [15]. We first replace their patch dictionary (nearest-
neighbor search) with a continuous discriminative network D (green blocks) that
learns to distinguish actual feature patches (on VGG 19 layer Relu3 1, purple
block) from inappropriately synthesized ones. A second comparison (pipeline
below D) with a VGG 19 encoding of the same image on the higher, more
abstract layer Relu5 1 can be optionally used for guidance. If we run decon-
volution on the VGG networks (with the gradient from the discriminator and
optionally from the guidance content), we obtain deconvolutional image synthe-
sizer, which we call Markovian Deconvolutional Adversarial Networks (MDANs).

MDANs are very slow. Therefore we aim for an additional generative network
G (blue blocks). It takes a VGG 19 layer Relu4 1 encoding of an image and
decodes it to pixels. During training we do not change the VGG 19 network
(gray blocks), and only optimize D and G. We denote the overall architecture
by Markovian Generative Adversarial Networks (MGANs).

3.1 Markovian Deconvolutional Adversarial Networks (MDANs)

MDANs synthesize textures with a deconvolutional process that is driven by
adversarial training: a discriminative network D (green blocks in Fig. 2) is trained
to distinguish between “neural patches” from the synthesis image and from the
example image. We use regular sampling on layer relu3 1 of VGG 19 output
(purple block). It outputs a classification score s = ±1 for each neural patch,
indicating how “real” the patch is (with s = 1 being real). For each patch sampled



706 C. Li and M. Wand

Fig. 3. Un-guided texture synthesis using MDANs. For each case the first image is
the example texture, and the other two are the synthesis results. Image credits: [23]’s
“Ivy”, flickr user erwin brevis’s “gell”, Katsushika Hokusai’s “The Great Wave off
Kanagawa”, Kandinsky’s “Composition VII”.

from the synthesized image, 1− s is its texture loss to minimize. The deconvolu-
tion process back-propagates this loss to pixels. Like Radford et al. [20] we use
batch normalization and leaky ReLU to improve the training of D.

Formally, we denote the example texture image by xt ∈ R
wt×ht , and the

synthesized image by x ∈ R
w×h. We initialize x with random noise for un-

guided synthesis, or an content image xc ∈ R
w×h for guided synthesis. The

deconvolution iteratively updates x so the following energy is minimized:

x = arg min
x

Et(Φ(x), Φ(xt)) + α1Ec(Φ(x), Φ(xc)) + α2Υ (x) (1)

Here Et denotes the texture loss, in which Φ(x) is x’s feature map output from
layer relu3 1 of VGG 19. We sample patches from Φ(x), and compute Et as the
Hinge loss with their labels fixed to one:

Et(Φ(x), Φ(xt)) =
1
N

N∑

i=1

max(0, 1 − 1 × si) (2)

Here si denotes the classification score of i-th neural patch, and N is the total
number of sampled patches in Φ(x). The discriminative network is trained on
the fly: Its parameters are randomly initialized, and then updated after each
deconvolution, so it becomes increasingly smarter as synthesis results improve.

The additional regularizer Υ (x) in Eq. 1 is a smoothness prior for pixels [17].
It is defined as

∑
i,j((xi,j+1−xi,j)2+(xi+1,j−xi,j)2), where xi,j is the color value

of pixel at i-th row and j-th column. This term penalizes the color difference
between adjacent pixels.

Using Et and Υ (x) can synthesize random textures (Fig. 3). By minimizing an
additional content loss Ec, the network can generate an image that is contextu-
ally related to a guidance image xc (Fig. 4). This content loss is the Mean Squared
Error between two feature maps Φ(x) and Φ(xc). We set the weights with α1 = 1
and α2 = 0.0001, and minimize Eq. 1 using back-propagation with ADAM [11]
(learning rate 0.02, momentum 0.5). Notice each neural patch receives its own



Markovian Generative Adversarial Networks 707

Fig. 4. Guided texture synthesis using MDANs. The reference textures are the same
as in Fig. 3.

output gradient through the back-propagation of D. In order to have a coherent
transition between adjacent patches, we blend their output gradient like texture
optimization [13] did.

3.2 Markovian Generative Adversarial Networks (MGANs)

MDANs require many iterations and a separate run for each output image. We
now train a variational auto-encoder (VAE) that decodes a feature map directly
to pixels. The target examples (textured photos) are obtained from the MDANs.
Our generator G (blue blocks in Fig. 2) takes the layer relu4 1 of VGG 19 as
the input, and decodes a picture through a ordinary convolution followed by
a cascade of fractional-strided convolutions (FS Conv). Although being trained
with fixed size input, the generator naturally extends to arbitrary size images.

As Dosovitskiy and Brox [4] point out, it is crucially important to find a
good metric for training an auto-encoder: Using the Euclidean distance between
the synthesized image and the target image at the pixel level (Fig. 5, pixel VAE)
yields an over-smoothed image. Comparing at the neural encoding level improves
results (Fig. 5, neural VAE), and adversarial training improves the reproduction
of the intended style further (Fig. 5, MGANs).

Our approach is similar to classical Generative Adversarial Networks (GANs)
[8], with the key difference of not operating on full images, but neural patches
from the same image. Doing so utilizes the contextual correspondence between
the patches, and makes learning easier and more effective in contrast to learning
the distribution of a object class [8] or a mapping between contextually irrelevant
data [22]. In additional we also replace the Sigmoid function and the binary cross
entropy criteria from [20] by a max margin criteria (Hinge loss). This avoids the
vanishing gradient problem when learning D. This is more problematic in our
case than in Radfort et al.’s [20] because of less diversity in our training data.
Thus, the Sigmoid function can be easily saturated.

Figure 5 (MGANs) shows the results of a network that is trained to produce
paintings in the style of Picasso’s “Self-portrait 1907”. For training, we randomly
selected 75 faces photos from the CelebA data set [16], and in additional to it
25 non-celebrity photos from the public domain. We resize all photos so that the
maximum dimension is 384 pixels. We augmented the training data by generating
9 copies of each photo with different rotations and scales. We regularly sample



708 C. Li and M. Wand

Fig. 5. Our MGANs learn a mapping from VGG 19 encoding of the input photo to the
stylized example (MDANs). The reference style texture for MDANs is Pablo Picasso’s
“self portrait 1907”. We compare the results of MGANs to Pixel VAE and Neural VAE
in with both training and testing data.

subwindows of 128-by-128 croppings from them for batch processing. In total we
have 24,506 training examples, each is treated as a training image where neural
patches are sampled from its relu3 1 encoding as the input of D.

Figure 5 (top row, MGANs) shows the decoding result of our generative net-
work for a training photo. The bottom row shows the network generalizes well to
test data. Notice the MDANs image for the test image is never used in the train-
ing. Nonetheless, direct decoding with G produces very good approximation of
it. The main difference between MDANs and MGANs is: MDANs preserve the
content of the input photo better and MGANs produce results that are more
stylized. This is because MGANs was trained with many images, hence learned

Fig. 6. Intermediate decoding results during the training of MGANs. The reference
style texture for MDANs is Pablo Picasso’s “self portrait 1907”.



Markovian Generative Adversarial Networks 709

the most frequent features. Another noticeable difference is MDANs create more
natural backgrounds (such as regions with flat color), due to its iterative refine-
ment. Despite such flaws, the MGANs model produces comparable results with
a speed that is 500 times faster.

Figure 6 shows some intermediate results MGANs. It is clear that the decoder
gets better with more training. After 100 batches, the network is able to learn
the overall color, and where the regions of strong contrast are. After 300 batches
the network started to produce textures for brush strokes. After 1000 batches it
learns how to paint eyes. Further training is able to remove some of the ghosting
artifacts in the results. Notice the model generalizes well to testing data (right).

4 Experimental Analysis

We conduct empirical study with some hyper-parameters (layers for classifi-
cation, patch size) and the complexity of the model (number of layers in the
network, number of channels in each layer). While there may not be a universal
optimal design for all textures, our study shed some light on how the model
generally behaves. For fair comparison, the example textures in this study are
fixed to 128-by-128 pixels, and synthesis output are fixed to 256-by-256 pixels.

Visualizing decoder features: We visualize the learned filters of decoder G in
Fig. 7. These features are directly decoded from a one-hot input vector. Individ-
ual patches are similar to, but not very faithfully matching the example textures
(due to the semi-distributed nature of the encoding). Nonetheless, the similarity
seems to be strong enough for synthesizing new images.

Parameters: Here we experiment different input layers for the discriminative
network. To do so we run unguided texture synthesis with discriminator D taking
layer relu2 1, relu3 1, and relu4 1 of VGG 19 as the input. We use patch sizes
of 16, 8 and 4 respectively for the three options, so they have the same receptive
field of 32 image pixels (ignoring padding). The first three results in Fig. 8 shows
the results: Lower layers (relu2 1 ) produce sharper appearances but at the cost
of losing the structure. Higher layer (relu4 1 ) preserves coarse structure better
but at the risk of being too rigid for guided scenarios. Layer relu3 1 offers a
good balance between quality and flexibility. We then show the influence of

Fig. 7. Visualizing the learned features in the generative networks. Image credits: [23]’s
“Ivy”, flickr user erwin brevis’s “gell”, Katsushika Hokusai’s “The Great Wave off
Kanagawa”, and Norman Jaklin.



710 C. Li and M. Wand

Fig. 8. Different layers and patch sizes for training the discriminative network. Input
image credit: “ropenet” from the project link of [14].

patch size: We fix the input layer of D to be relu3 1, and compare patch size of
4 and 16 to with the default setting of 8. The last two results in Fig. 8 shows
that such changes also affect the rigidity of the model: smaller patches increase
the flexibility and larger patches preserve better structure.

Complexity: We now study the influence of (1) the number of layers in the
networks and (2) the number of channels in each layer. We first vary D by
removing the convolutional layer. Doing so reduces the depth of the network
and in consequence the synthesis quality (first column, Fig. 9). Bringing this
convolutional layer back produces smoother synthesis (second column, Fig. 9).
However, quality does not obviously improves with more additional layers (third
column, Fig. 9). Testing D with 4, 64, and 128 channels for the convolutional
layer, we observe that in general less channels leads to worse results (fourth
column, Fig. 9), but there is no significance difference between 64 channels and
128 channels (second column v.s. fifth column). The optimal complexity also

Fig. 9. Different depths for training the discriminative netowrk. The input textures are
“ropenet” from the project link of [14,23]’s “Ivy”, and Pablo Picasso’s “self portrait
1907”.



Markovian Generative Adversarial Networks 711

depends on the actual texture. For example, the ivy texture is rather simple, so
the difference between 4 channels and 64 channels are only marginal.

Next, we fix the discriminative network and vary G. We notice some quality
loss when removing the first convolutional layer from G, or reducing the number
of channels for all layers, and very limited improvement from a more complex
design. However the difference is not very significant. This is likely because of all
these networks are driven by the same D. The reluctance of further improvement
indicates there might be non-trivial information from the deconvolutional process
that can not be approximated by a feed forward process.

Initialization. Usually, networks are initialized with random values. However
we found D has certain generalization ability. Thus, for transferring the same
texture to different images with MDANs, a previously trained network can serve
as initialization. Figure 10 shows initialization with pre-trained discriminative
network (that has already transferred 50 face images) produces good result with
only 50 iterations. In comparison, random initialization does not produce com-
parable quality even after the first 500 iterations. It is useful to initialize G with
an auto-encoder that directly decodes the input feature to the original input
photo. Doing so essentially approximates the process of inverting VGG 19, and
let the whole adversarial network to be trained more stably.

The role of VGG: We also validate the importance of the pre-trained VGG 19
network. As the last two pictures in Fig. 10 show, training a discriminative net-
work from scratch (from pixel to class label [20]) yields significantly worse results.
This has also been observed by Ulyanov et al. [22]. Our explanation is that much

Fig. 10. Different initializations of the discriminative networks. The reference texture
is Pablo Picasso’s “self portrait 1907”.

Fig. 11. Comparisons with previous methods. Results of Ulyanov et al. [22], Gatys
et al. [7] and input images are from [22].



712 C. Li and M. Wand

of the statistical power of VGG 19 stems from building shared feature cascades
for a diverse set of images, thereby approaching human visual perception more
closely than a network trained with a limited example set.

5 Results

We train each model with 100 randomly selected ImageNet images and a single
example texture. We first produce 100 transferred images using MDANs, then
regularly sample 128-by-128 image croppings as training data for MGANs. In
total we have around 16k samples. Each epoch min-batches through all samples
in random order (about 12 min). We train each texture for upto five epochs.

Figure 11 compares our results with other methods. We observe that our
method has a very different character in comparison to global statistics based
models [7,22]: It transfers texture more coherently, such as the hair and the eyes
of Lena was consistently mapped to dark textures. In contrast, the Gaussian
model [7,22] failed to keep such consistency, in particular the eyes in [22]’s result
and the entire face in [7]’s result are not textured. The patch based approach [15]
produces the most coherent synthesis, due to the use of non-parametric sampling.
However, their method requires patch matching so is significantly slower (gen-
erate this 384-by-384 picture in 110 s). Our method and Ulyanov et al. [22] run
at the same level of speed; both bring significantly improvement of speed over
Gatys et al. [7] (500 times faster) and Li and Wand [15] (5000 times faster).

Figure 12 further discuss the difference between the Gaussian based
method [22] and our method3. In general [22] produces more faithful color dis-
tributions in respect to the style image. It also texture the background better
(the starry night), whereas our method suffers due to the suppression from the
VGG network. On the other hand, our method produces more coherent texture
transfer for salient foreground objects, such as the facade in both examples. In
comparison [22] produces either too much or too little textures in such complex
regions.

MGANs can decode noise input into texture (Fig. 13): Perlin noise4 images
are forwarded through VGG 19 to generate feature maps for the decoder. To
our surprise, the model that was trained with ImageNet images is able to decode
such features maps to plausible textures. This shows the generalization ability of
our model. Figure 13 shows our video decoding result. As a feed-forward process
our method is not only faster but also relatively more temporally coherent than
per-frame based deconvolutional methods (Fig. 14).

3 Since Ulyanov et al. [22] and Johnson et al. [10] are very similar approaches, here
we only compare to one of them [22]. The main differences of [10] are: (1) using a
residual architecture instead of concatenating the outputs from different layers; (2)
no additional noise in the decoding process.

4 We need to use “brown” noise with spectrum decaying to the higher frequencies
because flat “white” noise creates an almost flat response in the encoding of the
VGG network. Somer lower-frequency structure is required to trigger the feature
detectors in the discriminative network.



Markovian Generative Adversarial Networks 713

Fig. 12. More comparisons with Texture Networks [22]. Results of [22] and input
images are from [22].

Fig. 13. Generate random textures by decoding from Brown noise.

Last but not the least, we provide details for the time/memory usage of our
method. The time measurement is based on a standard benchmark framework [2]:
Our speed is at the same level as the concurrent work by Ulyanov et al. [22],
who also use a feed-forward approach, perform significantly faster than previous
deconvolution based approaches [7,15]. More precisely, both our method and
Ulyanov et al. [22] are able to decode 512-by-512 images at 25 Hz, while [22] leads
the race by a very small margin. The time cost of both methods scale linearly
with the number of pixels in the image. For example, our method cost 10 ms for
a 256-by-256 image, 40 ms for a 512-by-512 image, and 160 ms for a 1024-by-
1024 image. Both methods show a very significant improvement in speed over
previous deconvolutional methods such as Gatys et al. [7] and Li and Wand [15]:
about 500 times faster than Gatys et al. [7], and 5000 times faster than Li and
Wand [15]. In the meantime our method is also faster than most traditional pixel
based texture synthesizers (which rely on expensive nearest-neighbor searching).
A possible exceptions would be a GPU implementation of “Patch Match” [1],
which could run at comparable speed. However, it provides the quality benefits
(better blending, invariance) of a deep-neural-network method (as established in
previous work [7,15]). Memory-wise, our generative model takes 70 Mb memory
for its parameters(including the VGG network till layer Relu4 1). At runtime,
the required memory to decode a image linearly depends on the image’s size: for a
256-by-256 picture it takes about 600 Mb, and for a 512-by-512 picture it requires
about 2.5 Gb memory. Notice memory usage can be reduced by subdividing the
input photo into blocks and run the decoding in a scanline fashion. However, we
do not further explore the optimization of memory usage in this paper.



714 C. Li and M. Wand

Fig. 14. Decoding a 1080-by-810 video. We achieved the speed of 8 Hz. Input video is
credited to flickr user macro antonio torres.

6 Limitation

Our current method works less well with non-texture data. For example, it failed
to transfer facial features between two difference face photos. This is because
facial features can not be treated as textures, and need semantic understanding
(such as expression, pose, gender etc.). A possible solution is to couple our model
with the learning of object class [20] so the local statistics is better conditioned.
For synthesizing photo-realistic textures, Li and Wand [15] often produces better
results due to its non-parametric sampling that prohibits data distortion. How-
ever, the rigidity of their model restricts its application domain. Our method
works better with deformable textures, and runs significantly faster.

Our model has a very different character compared to Gaussian based mod-
els [7,22]. By capturing a global feature distribution, these other methods are
able to better preserve the global “look and feels” of the example texture. In
contrast, our model may deviate from the example’s global color distribution.

Since our model learns the mapping between different depictions of the same
content, it requires features highly invariant features. For this reason we use the
pre-trained VGG 19 network. This makes our method weaker in dealing with
highly stationary backgrounds (sky, out of focus region etc.) due to their weak
activation from VGG 19. We observed that in general statistics based meth-
ods [7,22] generate better textures for areas that has weak content, and our
method works better for areas that consist of recognizable features. We believe
it is valuable future work to combine the strength of both methods.

Finally, we discuss the noticeable difference between the results of MDANs
and MGANs. The output of MGANs is often more consistent with the example
texture, this shows MGANs’ strength of learning from big data. MGANs has
weakness in flat regions due to the lack of iterative optimization. More sophis-
ticated architectures such as the recurrent neural networks can bring in state
information that may improve the result.

7 Conclusion

The key insight of this paper is that adversarial generative networks can be
applied in a Markovian setting to learn the mapping between different depictions
of the same content. We develop a fully generative model that is trained from
a single texture example and randomly selected images from ImageNet. Once



Markovian Generative Adversarial Networks 715

trained, our model can decode brown noise to realistic texture, or photos into
artworks. We show our model has certain advantages over the statistics based
methods [7,22] in preserving coherent texture for complex image content.

Our method is only one step in the direction of learning generative models
for images. For future work one can study the broader framework in a big-
data scenario to learn not only Markovian models but also include coarse-scale
structure models. This additional invariance to image layout could open up ways
to also use more training data for the Markovian model, thus permitting more
complex decoders with stronger generalization capability over larger classes.

Acknowledgments. This work has been partially supported by the Intel Visual Com-
puting Institute and the Center for Computational Science Mainz. We like to thank
Bertil Schmidt and Christian Hundt for providing additional computational resources;
and Dmitry Ulyanov, Norman Jaklin for sharing results and input images.

References

1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a ran-
domized correspondence algorithm for structural image editing. In: SIGGRAH, pp.
24:1–24:11 (2009)

2. Chintala, S.: Easy benchmarking of all publicly accessible implementations of con-
vnets (2015). https://github.com/soumith/convnet-benchmarks

3. Denton, E.L., Fergus, R., Szlam, A., Chintala, S.: Deep generative image models
using a Laplacian pyramid of adversarial networks. In: NIPS (2015)

4. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics
based on deep networks. CoRR abs/1602.02644 (2016). http://arxiv.org/abs/1602.
02644

5. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In:
SIGGRAPH, pp. 341–346 (2001)

6. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis and the controlled gener-
ation of natural stimuli using convolutional neural networks. In: NIPS, May 2015.
http://arxiv.org/abs/1505.07376

7. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015).
arXiv preprint http://arxiv.org/abs/1508.06576

8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, pp. 2672–2680
(2014)

9. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analo-
gies. In: SIGGRAPH, pp. 327–340 (2001)

10. Johnson, J., Alahi, A., Li, F.F.: Perceptual losses for real-time style transfer and
super-resolution. CoRR abs/1603.08155, March 2016. http://arxiv.org/abs/1603.
08155v1

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114
(2013). http://arxiv.org/abs/1312.6114

13. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-
based synthesis. SIGGRAPH 24(3), 795–802 (2005)

https://github.com/soumith/convnet-benchmarks
http://arxiv.org/abs/1602.02644
http://arxiv.org/abs/1602.02644
http://arxiv.org/abs/1505.07376
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1603.08155v1
http://arxiv.org/abs/1603.08155v1
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114


716 C. Li and M. Wand

14. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image
and video synthesis using graph cuts. ACM Trans. Graph. 22(3), 277–286 (2003)

15. Li, C., Wand, M.: Combining Markov random fields and convolutional neural net-
works for image synthesis. CoRR abs/1601.04589 (2016). http://arxiv.org/abs/
1601.04589

16. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
ICCV (2015)

17. Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them. In: CVPR (2015)

18. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into
neural networks (2015). http://googleresearch.blogspot.com/2015/06/
inceptionism-going-deeper-into-neural.html

19. Nguyen, A.M., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncover-
ing the different types of features learned by each neuron in deep neural networks.
CoRR abs/1602.03616 (2016). http://arxiv.org/abs/1602.03616

20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. CoRR abs/1511.06434 (2015).
http://arxiv.org/abs/1511.06434

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR (2014). http://arxiv.org/abs/1409.1556

22. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: feed-
forward synthesis of textures and stylized images. CoRR abs/1603.03417, March
2016. http://arxiv.org/abs/1603.03417v1

23. Xie, J., Lu, Y., Zhu, S.C., Wu, Y.N.: A theory of generative convnet. CoRR
arXiv:1602.03264 (2016). http://arxiv.org/abs/1602.03264

24. Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T., Lipson, H.: Understanding neural
networks through deep visualization. CoRR abs/1506.06579 (2015). http://arxiv.
org/abs/1506.06579

25. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I.
LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)

http://arxiv.org/abs/1601.04589
http://arxiv.org/abs/1601.04589
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://arxiv.org/abs/1602.03616
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1603.03417v1
http://arxiv.org/abs/1602.03264
http://arxiv.org/abs/1602.03264
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1506.06579

	Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
	1 Introduction
	2 Related Work
	3 Model
	3.1 Markovian Deconvolutional Adversarial Networks (MDANs)
	3.2 Markovian Generative Adversarial Networks (MGANs)

	4 Experimental Analysis
	5 Results
	6 Limitation
	7 Conclusion
	References


