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Abstract. Multiple Object Tracking still remains a difficult problem
due to appearance variations and occlusions of the targets or detection
failures. Using sophisticated appearance models or performing data asso-
ciation over multiple frames are two common approaches that lead to gain
in performances. Inspired by the success of sparse representations in Sin-
gle Object Tracking, we propose to formulate the multi-frame data asso-
ciation step as an energy minimization problem, designing an energy that
efficiently exploits sparse representations of all detections. Furthermore,
we propose to use a structured sparsity-inducing norm to compute rep-
resentations more suited to the tracking context. We perform extensive
experiments to demonstrate the effectiveness of the proposed formula-
tion, and evaluate our approach on two public authoritative benchmarks
in order to compare it with several state-of-the-art methods.

Keywords: Multiple Object Tracking - Tracking by detection - Multiple
frame data association - Sparse representation - MCMC sampling

1 Introduction

Multiple Object Tracking (MOT) aims to estimate the trajectories of several
targets in a scene. It is still a challenging problem in computer vision and has a
large number of potential applications from video-surveillance to embedded sys-
tems. Thanks to the recent advances in object detection, MOT community has
strongly focused on the tracking-by-detection technique where object detections
are grouped in order to estimate the correct tracks. However, despite this data
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association formulation of the problem, tracking multiple objects remains a chal-
lenging problem due to frequent occlusions and interactions of targets, similar
appearances between targets, pose variations, and object detection failures.

In the literature, the problem is addressed by a large variety of approaches,
from online (or single-scan) techniques [1-4] where only the previous frames are
considered, to offline approaches using past and future frames. Among offline
techniques, global approaches perform the data association over all the frames
simultaneously or by batch [5-15], whereas sliding window (a.k.a. multi-scan,
near-online, or online with delay) methods optimize only a few recent frames at
the same time [16-20].

The large variety of approaches in the literature is justified by the variety of
contexts and applications that encounters the MOT problem. Online approaches
are well-suited for time-critical applications but are more prone to specific errors
such as identity switches. On the other hand, global tracking approaches offer
the advantage of dealing with all the available information at the cost of a
major temporal delay. Finally, sliding window approaches offer an interesting
compromise, having a relative time to understand the situation at the cost of
a slight temporal delay. By delaying the final tracking results by only a few
frames, these methods are able to correct association mistakes occurring inside
the sliding window and generally yield more robust results with fewer identity
switches and fragmented tracks.

Recently, many online or sliding window approaches have gained in perfor-
mances by incorporating more complex appearance models [1,4,17]. These mod-
els, inspired by the recent improvements in Single Object Tracking (SOT), can
be updated online to take into account changes in appearance or pose variations
and help better distinguish targets, for more robust tracking results.

In particular, sparse representation-based models have been employed suc-
cessfully in SOT [21-26]. The main idea is to model the target appearance in a
linear subspace defined by a small number of templates grouped in a dictionary.
Each candidate for the new target location is then represented by a sparse linear
combination of the dictionary elements, the best reconstruction error being used
as the selection criterion. However, only a few recent methods have considered
extending these models for online MOT systems [3,27,28].

We propose two contributions in this paper. The first one consists of improv-
ing multi-frame data association by using sparse representation-based appear-
ance models. To the best of our knowledge, we are the first to combine such
concepts and so their aforementioned advantages. Our second contribution is
to use structured sparse representations, derived from a weighted /. ; norm,
that are more suited in this context. Comparisons with the /; norm and more
basic appearance models without sparse representations support the effective-
ness of this approach. Our method was evaluated on two public benchmarks and
compares well with recent state-of-the-art approaches.
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2 Related Work

2.1 Object Tracking with Sparse Representations

Appearance models based on sparse representations were first proposed by [21]
in a SOT framework before being extended by many other authors [26]. In con-
trast to standard approaches that use a dictionary composed solely by target
views, some approaches tried to handle occlusions by better discriminating the
target from its background. To this end, they considered a dictionary incorpo-
rating boundary elements that mix object and its surrounding background [24].
Others employed a description based on local patches of the target and used
spatial considerations when reconstructing the patches from a candidate loca-
tion [23]. Initially, these tracking methods induced a significant CPU cost until
optimization techniques based on accelerated proximal gradient descent led to
real-time approaches [22].

Due to their success in SOT context, these appearance models have been
recently used in a few MOT frameworks. In [28], such models are used in an
online tracking method based on a particle filter. However, as many specific and
independent models as the number of targets are necessary. In contrast, in [3,27],
a single dictionary is shared by all targets and collaborative representations are
used to better discriminate them. All these MOT approaches are using a two-
frame data association in an online fashion and thus cannot reconsider wrong
associations when further information comes and contradicts them.

In this work, we propose a new approach that improves a standard sliding
window method by exploiting sparse representations of the detections. Our app-
roach is inspired by [3,27,28], but instead of relying on sparse representations
induced by the standard /; norm, we design a sparsity-inducing norm, based on
a weighted /o1 norm, more suited for a multi-frame data association problem.

2.2 Multi-frame Data Association

Offline MOT approaches consider the data association either globally over the
whole sequence [5-15] or over a sliding window dealing with a few frames [16-
20]. In all cases, this leads to formulate a multi-frame data association problem
solved most of the time by an energy minimization procedure.

In some approaches, the multi-frame data association problem has been for-
mulated in a more specific class of problems, like for example minimum cost flow
problems [5-7,12], binary integer programming [14], maximum weighted clique
[13] or independent set [15]. The main advantage of such approaches is that effi-
cient optimization methods designed for these problems can be directly employed
to find the data association solution. However, particular constraints must be
satisfied by the energy formulation which makes it difficult to correctly model
important aspects of the MOT problem like target interactions and dynamics.

On the other hand, some state-of-the-art approaches focused on designing
more complex energies that better model the MOT problem. However, the non-
convex energy formulation puts out of reach any possibility of global minimiza-
tion. It is still possible to get approximate solutions using non-exact optimization
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Fig. 1. Steps followed by the proposed approach. Firstly, sparse representations of the
detections (symbolized by circles) from the last frame are computed. Then, the global
energy FE is optimized by MCMC sampling, yielding a configuration C*. Finally, the
trajectories (symbolized by rectangles) are definitively estimated in the first frame of
the sliding window, following configuration C*.

techniques that do not require a specific energy formulation, as done in Multiple
Hypothesis Tracking [17] using a breadth-first search with branch pruning or in
Markov Chain Monte Carlo Data Association (MCMCDA) with MCMC sam-
pling [20,29]. Despite the non-optimality of the found solution, these methods
can fully exploit the use of more appropriate interaction and dynamic models
and can therefore cope with more difficult tracking issues.

In this work, we formulate a multi-frame data association with an energy
that exploits sparse representations through its appearance model and that can
be minimized efficiently using an MCMCDA approach.

3 System Overview

We propose a MOT system based on a sliding window and tracking-by-detection
mechanisms. At each new frame, we seek for the best association between the
detections over the current sliding window and the already estimated trajectories
beyond this window. This multi-frame data association problem is formulated
as an energy minimization solved by an MCMCDA approach in the vein of [29].
We design an energy function E assigning low values to solutions with tracks
that are both close to the given detections and consistent with some appearance,
motion and interaction models.

In the case of visually distinctive targets, taking into account appearances
can lead to a significant improvement of the tracking performances. To this aim,
we propose an appearance model that considers sparse representations of the
detections in the sliding window. The main concept behind our work is that a
target should be best represented by the detections of its own track rather than
using detections from other targets. Our appearance model is thus formulated to
promote the solutions that are the most consistent with these representations.

Our system performs the following steps (cf. Fig.1). Firstly, sparse repre-
sentations of the detections from a new frame are computed over a dictionary
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that includes all the detections inside a sliding window of At frames and some
from the latterly estimated trajectories. Secondly, the data association problem
is solved using an MCMCDA approach that yields an approximate solution C*.
Thirdly, this solution is used to propagate the trajectories at the first frame
of the sliding window, possibly initializing new ones or terminating some of
them. Finally, the sliding window is shifted by one frame. While the associations
remaining inside the sliding window can still be modified, the ones beyond it are
definitive. Therefore, the proposed method outputs results with a slight delay
limited to At frames.

4 Multi-frame Data Association Formulation

4.1 Notations

We consider a sliding window over the last At frames, { Fy— At4+1, Fi—Aty2, ..., Fi}.
At each frame F} the detector yields a set of n; detections {d},d?, ..., d;'* }. Each
detection d is associated to a specific bounding box x4, with height hy and
width wg, and a detection score s;. The trajectories, definitively fixed beyond
the sliding window and still active, are denoted by 11,75, ..., TN.

The multi-frame data association requires to find a set {7, 7a,...,7ar} of
tracks where each track 7 is composed by the detections and, possibly, the tra-
jectory related to the same target. A feasible solution for the multi-frame data
association is called a configuration. A configuration C is a set of tracks in which
(i) each detection and trajectory is included in at most one track, (ii) each track
includes at most a single trajectory, and (iii) a single detection by frame. Fur-
thermore, two consecutive detections d and d’ linked in a track, spaced by dt
frames, have to satisfy (i) 0t < ot;, (i) dist(va,za) < (1 + 0t) L4544 dy, and
(iil) |hg — ha| < (1+6t) % hi, where dist(xq,zq) is the Euclidean distance
between the two bounding box centers and §t;, d;, h; are fixed parameters.

For each track 7, we denote by x, the set of bounding boxes resulting from
a linear interpolation between the detections in 7. Therefore, z,(t) stands for
the location of the track 7 at time ¢ which is either a bounding box from a
detection in 7 or one resulting from a linear interpolation to fill a gap between
two consecutive detections in 7. We denote respectively by b, and e, the time
of the first and last element in the track 7.

4.2 Proposed Energy
The proposed energy is formulated as a linear combination of four terms:
E(C) = 00,0b(C) + 0.4ppApp(C) + 0ot Mot (C) + O1ne Int(C) . (1)

Each one of these terms handles a specific aspect of the MOT problem while the
0 values allow to ponderate them.
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The objective of the observation model is to keep the tracks close to both
the given detections and the trajectories already estimated outside the sliding
window. To that end, our observation model is written as:

ob(C) = — Z Z[Oéoz) + Bowvsa) — Z Z YOb » (2)

TeC der TeCTeT

where app, Bop and yop are fixed positive parameters. The first term of Eq. 2
rewards the inclusion of detections with a high detection score sy in the tracks
while the second favors the extension of the latterly estimated trajectories.
Our appearance model App(C') uses sparse representations of the detections and
promotes the configurations in which each detection achieves a small residual
error over its own track. More details on this term are given in Sect. 5.

Assuming a constant velocity model, we consider the here below motion
model:

Mot(©) =3 57 s (4 1)+ a0 (1 — 1) — 22, ()] 3. 3)
T7€C t=b,+1

This term favors smooth and constant motion by penalizing the acceleration

over the tracks. A constant velocity model, despite its simplicity, already helps

limit identity switches in the case of occlusions or collisions between targets.
Lastly, our interaction model takes the following form:

min(er; ,ery)

mcy =% 3 S 10U, (a0 @)

T1EC To€C\ {11} t=max(bry ,bry)

This term avoids collisions between estimated targets, using a two bounding box
Intersection-Over-Union (IOU) criterion.

4.3 MCMC Optimization and Trajectory Handling

Inspired by some recent works [20,29] we use an MCMC sampling method based
on the Metropolis-Hastings approach. It finds a good approximate solution of
our energy minimization problem by exploring efficiently the space of possible
configurations. Such an approach estimates the probability distribution:

7(C) = 5 HON, (5)
Z

where Z is a normalization constant, not necessary to compute as only probabil-
ity ratios are considered in the Metropolis-Hastings approach, and where ¢ can
be chosen to make the distribution more or less peaked. In practice, a suited o
makes an appropriate trade-off between the exploration of the search space and
the exploitation of the current state in the Markov Chain, and thus avoids being
kept inside a local minimum/maximum of E /7 respectively.
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Fig. 2. Proposed appearance model with sparse representations. Left: current sliding
window and sparse representations computed for detections in the new frame. Right:
configuration C' considered and related appearance model value App(C).

We use the approach proposed in [29] with minor differences. In our method,
the types of moves are limited to the following ones: birth and death, merge
and split, update and switch. We allow these moves to be done not only forward
in time, as in [29], but also in a backward manner in order to explore more
efficiently the space of configurations.

This method gives an approximate solution C* of the minimization problem
of the energy E. Once this configuration is found, any trajectory T; that belongs
to a track 7 in C'* is extended to the first frame of the sliding window accordingly
to 7 (cf. Fig. 1, Step 3). Any trajectory not included in C* is terminated while
a track 7 at the beginning of the sliding window with no associated trajectory
possibly leads to the creation of a new trajectory. A new trajectory is indeed
created if we are confident enough on the track 7, requiring that 7 includes at
least N, detections with a mean detection score value above s..

5 Sparse Representations Using an [l ; Penalty

5.1 Proposed Appearance Model

We define here the appearance model App(C') that we use in the energy E
described previously (Eq. 1). Our approach model takes benefit from the efficient
sparse representation-based models in SOT [26].

We propose an appearance model which exploits sparse representations of the
detections in the sliding window. Each detection d! is associated to a normalized
feature vector Yai and we use a dictionary D that includes all the feature vectors
of the detections in the current sliding window. The dictionary D also includes
the feature vectors of the NNy, last detections assigned to each trajectory 7T;.
A sparse representation for a given detection d is defined by:

1
vy, = argmin _lya — D3 + A2(a), (6)

where £2(«) is a penalty that promotes solutions « with a few non-zero elements.
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When one needs to perform multiclass classification and assign a label or a
class L* to the vector y4, sparse representations can be used to estimate this
class based on its related residual error:

L* :argminHyd—DLocing, (7)
L

where Dy is the restriction of D to its elements from class L, and af , is the
restriction of «,, to the dimensions related to those elements [30]. In SOT,
a common approach is to classify a candidate location either in a target or
background class [24]. We propose an appearance model for multi-object tracking
based on the same technique. This leads to consider:

App(C) = > > " llya — Dray, |2, (8)

TeC der

where ||ys — Draj ||2 is the residual error of detection d with respect to track 7.
This model promotes the configurations C that achieve the smallest residual
errors for all the detections with respect to the assigned tracks (cf. Fig. 2).

In practice, evaluating the value of App(C) for each state of an MCMC sam-
pling framework is computationally expensive due to the estimation of a signifi-
cant number of residual errors. Instead of using residual errors, some approaches
in classification and SOT, as for example in [23], directly use:

* L /-
L = argznax Z ay (1), 9)
i
where the summation takes into account all coefficients ozﬁ (i) of the vector oz5 ”

In order to speed up the MCMC sampling, we use this same approach and finally
consider as appearance model:

App(C) =D > 1= a,(i)]. (10)

TeC deT i

5.2 Desired Sparsity Structure

In Eq.6, a large number of penalties {2(a) can be employed to favor differ-
ent sparsity structures in the representations. A simple choice is to consider
Q2(a) = ||e|]1, promoting a strict sparsity with an /; norm. More complex spar-
sity structures can be induced, notably by considering groups of dictionary ele-
ments. For example, an [ 2 or [j o norm can easily promote representations
where only a few groups are non-zero with a uniform participation of the ele-
ments inside these groups. These penalties have been used in SOT approaches to
produce sparse representations more suited to efficiently handle multiple features
or to consider jointly all candidate locations.

This leads us to wonder which penalty will be the most appropriate for the
MOT problem. Ideally, all detections should be represented by elements from
their own trajectories. Therefore, a well-suited sparsity structure should promote
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Fig. 3. Sparsity structures induced by different penalties over the sliding window.

a few non-zero elements in each frame, as two detections in a frame F; cannot
be related to the same target. It should as well favor the participation of only
a few elements from trajectories T7,...,Tny as a detection should be related to
a single trajectory at most. Thus, considering for i = [1...At — 1] a group G;
composed of the elements related to frame F;_; and a group G A that includes all
elements from trajectories 17, ..., T, we want to impose a strict sparsity within
each individual group. As a target should be located at each frame, we also want
to promote a uniform participation of these groups. In this way, each detection
should be represented by all the other detections relative to the same target.
Neither the /1 norm nor group norms like the {1 o or 1 o norms induce the
described structure. So we propose to use instead a weighted [, ; defined by:

llal|%, = max willa® ], (11)
i=1..At

where @i is the restriction of « to the elements related to G;. The values w are
positive weights balancing the participation of the groups. We use in practice
WAL = ﬁ and w; = 1 for i < At in order to allow a greater participation of the
elements inside the trajectories in G A;. This norm induces the desired sparsity
structure, as it imposes a strict sparsity inside the groups while favoring that all
the groups are involved in the representation (cf. Fig. 3).

5.3 Computing I, 1-based Sparse Representations
Computing sparse representations induced by a weighted [ ; norm requires to
solve:

1 w
oy = argmin 2 ||y — Dal; + Allaf[,; (12)

This is a convex and non-differentiable problem, which can be efficiently solved
using an accelerated proximal gradient descent (APG or FISTA) algorithm
described by Algorithm 1. This method achieves a global optimization with a
quadratic rate of convergence [31] but relies on a proximal operator defined by:

1 y
proxy|. |z , (u) = arg min §||U —v[|3 4+ AlJvl[% ;- (13)
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input: D, y, w input: D, y, w
k=1, ax—1 = ar =0; A=0, aa=0;
repeat repeat
e = S = S(aa);
B =ak + pr(ok — ak—1); using a4 as a warm start, find
find p by line search [31]; the optimal solution cvaus of
y=p8- pDT(Dﬁ —y); the problem Eq. 12 restricted to
k1 = prozp, e, (7); AUS;
' A=AUS;
k=k -+ 1, . T 1w
until convergence; until [[D7 (Daa —y)llije <A
return og; return au;

Algorithm 1. FISTA optimization Algorithm 2. Active set strategy for
for lo,1-based sparse representation. ls,1-based sparse representation.

When {2 is a norm, its proximal can be derived from a Fuclidean projection on
the unit ball of its dual norm £2* [31]:

proxan(u) = u— Mlg-<1(u/X). (14)

In fact, the dual norm of the /. ; norm is exactly the l; o norm. In the
case of a weighted I 1 norm, the dual norm is also a weighted I o norm (see
supplementary material for detail):

1/w

1 ;
= 20 Sl (15)

i=1..At

llellee,™ = llal

Therefore, Eq. 12 reduces to compute the Euclidean projection on the unit ball
of a weighted [; o norm:

pmx/\||~|\é”o,1(u):u_/\H||.\\i(;§1(u/’\)' (16)

An efficient algorithm for computing Euclidean projections on the unit ball
of the l1 oo norm was proposed in [32] and can be easily extended to handle the
case of weighted /1 o, norms. We use the implementation given on the authors’
website to compute those projections for the proximal operators.

This optimization process can be sped up by using an active set strategy as
explained in [33]. A necessary condition, based on the dual norm, for a repre-
sentation a to be an optimal solution of Eq. 12 is:

T 1/w 1 T
I|ID" (Do — )| >, o 1Pe. (Da = y)llec < A (17)

l,00 ™
i=1..At '
An active set strategy optimizes Eq. 12 on a small set of active variables A, yield-
ing a solution a4, and makes it progressively grow by adding a set of non-active
variables S(a4) until the condition Eq. 17 is satisfied. This process, described in
Algorithm 2, yields a global solution of Eq. 12 [33]. In practice, we set S(a4) to
K non-active variables that have the highest |d] (Da 4 — y)| value with at most
one variable by group to avoid focusing on a single one.
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6 Evaluations and Discussion

6.1 Benchmarks, Metrics, and Parameter Tuning

We use the MOTChallenge benchmarks, 2DMOT2015 and MOT16 [34,35], to
evaluate the performances of the proposed approach. These benchmarks are
composed of training and testing sets [36—41] with public detections, given by
Aggregate Channel Features (ACF) pedestrian detector [42] in the case of the
2DMOT2015 and a Deformable Part Model (DPM) [43] for the MOT16.

The metrics employed by these benchmarks are based on the widely accepted
CLEARMOT metrics [44]. MOT accuracy (MOTA) takes jointly into account
false positives (FP), false negatives (FN) and identity switches (IDS). MOT
precision (MOTP) measures the overlap distance between the found pedestrians’
locations and the ground truth. We also indicate track fragmentations (FM),
false alarms by frame (FAF) and the mostly tracked and mostly lost targets
percentages (MT and ML). Furthermore, we report the IDS ratio (IR), defined
by 22 f”, to measure the IDS more independently from the false negatives (FN).

As our method depends on several parameters, notably in the formulation of
the energy F, manual tuning of these free parameters on the training set is out
of reach. We use a hyper-optimization procedure (see the public implementation
of [45]) to explore efficiently the space of parameters within 1000 runs of our
algorithm. Thus, we automatically find the best set of parameters by optimizing
the MOTA value, which is the main metric used to compare MOT approaches.

6.2 Comparison with /1 Norm and Basic Appearance Models

To validate our approach with I i-based sparse representations, we imple-
ment three variants that only differ by considering different appearance models
App(C). We denote by LINF1 the proposed approach using App(C) defined by
Eq. 10 with l,1-based sparse representations. A first variant, called L1, uses the
model App(C') defined by Eq. 10 with [;-based sparse representations to demon-
strate the effectiveness of the weighted l,1 norm compared to the /; norm.

MOTA
Identity switches

At (frames) At (frames)

Fig.4. MOTA (best higher?) and identity switches (best lower]) of our approach
(LINF1) and other appearance models for different windows of size At frames, evalu-
ated on the 2DMOT2015 training set.
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Two variants without sparse representations are also evaluated to verify that
using appropriate sparse representations effectively increases performances com-
pared to more basic appearance models. These two baselines, denoted by NN
and M EAN, differ from the proposed approach by respectively using the appear-
ance models Appyn(C) and Appyrpan(C) defined by:

Appnn(C) = D> " llya — NN-(ya)ll2, (18)

TeC deT

Apprpan(C) =D > llya — y-ll2, (19)

TeC deT

where NN, (yq) stands for the nearest neighbor of y4 among the features of the
other detections in track 7, and y, stands for the mean of the features of all
detections in 7.

6.3 Comparison Between the Proposed Variants

Our approach and the three variants described previously are compared on the
2DMOT2015 training set, with sliding windows of size At € {5,10,15,20}.
Similarly to [21-24], we do not use any complex features and simply use for
yq color intensity values of the templates resized to 32 x 32. To fairly compare
these variants, we use for each variant and At value the hyper-optimization
procedure discussed previously to find the best set of parameters.

MOTA values and IDS are indicated in Fig. 4. First of all, they show that the
proposed LINF1 variant outperforms the other variants both in terms of MOTA

Table 1. Results of our approach, with windows of At frames, on the 2DMOT2015
training set (best values in bold and red, second best ones underlined in blue).

Method | At/ MOTA | IDS | IR | FM | FAF  MOTP| FP | FN | MT | ML
(G N A A O ) I B L)1 (%)

LINF1 | 5 | 33.6 | 188 4.4 413 0.6 | 72.8 3346 22980 16.5  57.8
10| 342 199 4.5 444 | 0.7 | 72.6 | 3740 | 22330 | 17.8 | 59.7

15| 34.2 [116/2.6]410| 0.7 | 72.7 | 3829 | 22307 | 18.4 | 58.8

20| 34.5 | 129 2.9 385| 0.7 | 72.8 | 3931 | 22073 | 18.0 | 57.1

25| 34.1 | 163 3.3 /470| 1.1 @ 724 | 6200 19942 22.2  50.6

30 33.8 |155)3.3 /446 | 1.0 | 72.6 | 5260 | 20997 | 20.8 | 53.2

35| 33.6 | 141 3.0 446 | 1.0 | 72.7 | 5455 20909 | 20.4 | 51.4

Table 2. Best parameter set for LINF1, with a sliding window of 20 frames, found on
the 2DMOT2015 and MOT16 training set using a hyper-optimisation procedure.

Benchmark | 00p | 0app | Ontot | O1nt | @0b | Bob |YOb| o | A | Ne| sc |8t | di | hy | N
2DMOT2015 | 0.50 | 0.39 | 0.77 | 0.08 | 0.60 | 0.004 | 0.99 |0.14 [3.1| 5 | 29 | 6 |0.28|0.24| 11
MOT16 0.33 | 0.40 | 0.77 | 0.41 | 1.3 0.99 1.3 |0.15|7.7| 5 |0.13| 18 | 0.29 | 0.30 | 18
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and IDS. L1 variant performs poorly in our multi-frame data association context,
especially concerning IDS. When using these representations, each detection is
represented by only a few similar detections. It leads to promote short tracks
of highly similar detections rather than long tracks through the whole sliding
window. The two other appearance models, Appyy and Apprrgan, yvield more
acceptable results. However, they rapidly deteriorate in performance when the
number of frames in the sliding window increases.

The proposed approach, LINF1, is the only one able to leverage a larger slid-
ing window, gaining slightly in MOTA and track fragmentations, and reducing
more significantly the number of IDS (cf. Table1). As it promotes representa-
tions where each frame is involved, even distant ones, the [, ; norm succeeds in
efficiently exploiting the additional information provided by larger sliding win-
dows. The optimal sliding window size is about 20 frames and the performances
deteriorate slightly for larger windows. The search space for the MCMCDA is
rapidly growing with the sliding window size, making the optimization more
difficult, which possibly explains this slight decrease in performances.

6.4 Evaluations on the MOTChallenge Benchmarks

The results of the proposed LINF1 approach on the 2DMOT2015 test dataset
are shown in Table 3 with all the other published methods that use the public
detections given by the benchmark. Following the benchmark policy, we use the
best set of parameters found on the training set, as indicated in Table 2.

In terms of MOTA, our method is superior or comparable to most of recent
approaches. However, our method distinguishes itself by achieving the smallest
number of IDS on the benchmark. This indicates a greater ability in discrim-
inating similar targets, especially compared to methods achieving a similar or
greater false negative number (FN) as increasing this number can naturally lead
to decrease the number of IDS. IDS ratios (IR) can be considered to compare
IDS more independently of the false negative number, and the proposed method
is still the best one in terms of IDS ratios. Our approach is also the first one in
terms of false alarm by frame (FAF') and false positive (FP), and is the second
one in terms of track fragmentations (FM). The proposed method yields very
confident results due to the use of [, 1-based sparse representations. Indeed,
these representations are still sparse over the elements of a same frame and thus
exhibit a high discriminative power to differentiate the targets, leading to a small
number of IDS. Furthermore, inducing a sparsity structure that promotes the
participation of all the frames creates more links between temporally distant ele-
ments and helps handle occlusions or gaps between detections, reducing again
the number of IDS and track fragmentations. Our approach is therefore well-
suited for applications where the precision is a more important concern than the
recall and where maintaining the identities of the targets is a crucial need.

Our method can process the 2DMOT15 benchmark around 7.5 fps using a 8
cores CPU at 2.7 GHz, running near real-time. Some results are shown in Fig. 5,
and entire trajectories are visible on the benchmark website.
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Table 3. Results for LINF1 on the test set of the 2DMOT2015 and MOT16 bench-
marks (accessed on 14/03/2016), compared to other recent state-of-the-art methods
(best values in bold and red, second best ones underlined in blue). Third column:
method type with O standing for online, G for global and S for sliding window.

2DMOT2015 MOTA | IDS | IR | FM | FAF | MOTP | FP FN MT ML
Method |Ref.|T.| %) 1 | L | L | L | L |1 L | L @1 %1
NOMT (16] | S 33.7 442 |1 9.4 | 823 | 1.3 71.9 7762 | 32547 | 12.2 | 44.0

MHT_DAM [17} S 32.4 435 | 9.1 | 826 | 1.6 71.8 9064 | 32060 | 16.0 | 43.8

MDP [ | o 30.3 680 | 14 | 1500 | 1.7 71.3 9717 | 32422 | 13.0 | 38.4
LP_SSVM [5] G 25.2 646 | 16 | 849 | 1.4 71.7 8369 | 36932 5.8 53.0
ELP [6] G 25.0 1396 | 36 | 1804 | 1.3 71.2 7345 | 37344 7.5 43.8
LINF1 - S 24.5 298 8.6 | 744 | 1.0 71.3 5864 | 40207 5.5 64.6
JPDA_m [18} S 23.8 365 | 11 | 869 | 1.1 68.2 6373 | 40084 5.0 58.1
MotiCon 7| G 23.1 1018 | 24 | 1061 | 1.8 70.9 10404 | 35844 4.7 52.0
SegTrack [19] | S 22.5 697 | 19 | 737 | 1.4 71.7 7890 | 39020 5.8 63.9
DCO_X [8] G 19.6 521 | 14 | 819 1.8 71.4 10652 | 38232 5.1 54.9
CEM 9] | G 19.3 813 | 19 | 1023 | 2.5 70.7 14180 | 34591 8.5 46.5
RMOT 2] | O 18.6 684 | 17 | 1282 | 2.2 69.6 12473 | 36835 5.3 53.3
SMOT [10] | G 18.2 1148 | 33 |2132| 1.5 71.2 8780 | 40310 2.8 54.8
ALExTR. [46} S 17.0 1859 | 53 | 1872 | 1.6 71.2 9233 | 39933 3.9 52.4
TBD 11] | G 15.9 1939 | 45 | 1963 | 2.6 70.9 14943 | 34777 6.4 47.9
GSCR 3] | O 15.8 514 | 18 1010 | 1.3 69.4 7597 | 43633 1.8 61.0

TC_ODAL [4] O 15.1 637 | 17 | 1716 | 2.2 70.5 12970 | 38538 3.2 55.8
DP_NMS [12} G 14.5 4537 | 105 | 3090 | 2.3 70.8 13171 | 34814 6.0 40.8

MOT16 MOTA | IDS | IR | FM | FAF | MOTP | FP FN MT ML
Method |Ref[T.| (%)1 | L | L | L | L 1| L | L | 1 | |
LINF1 - S 40.5 | 426 |9.4| 953 | 1.4 74.9 8401 | 99715 | 10.7 | 56.1
DP_NMS [12} G 31.9 969 | 29 | 941 76.4 1343 | 121813 | 4.8 65.2
SMOT [10] | G 29.2 | 3072 75 |4437| 3.0 75.2 | 17929 | 108041 | 4.9 53.3

Venicel #100

Fig. 5. Tracklets inferred by our approach on the 2DMOTZ2015 test set.

The results on the MOT16 benchmark are also reported at the bottom of
Table 3. As this benchmark was recently released, the results from only two other
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tracking approaches are available. Our method outperforms these approaches
with the best MOTA score and the lowest number of IDS.

7 Conclusion

In this paper, we have proposed a new MOT approach by combining a sparse
representation-based appearance model with a sliding window tracking method.
We have designed a weighted [o,; norm in order to induce a sparsity structure
more suited to a MOT problem compared to the usual /; norm. Besides, we
have proposed an efficient optimization to compute the [ 1-based sparse rep-
resentations using accelerated proximal gradient descent techniques. Combining
lo,1-based sparse representations with a sliding window approach results in a
robust tracking method less prone to association errors like identity switches or
track fragmentations due to its ability to efficiently correct previous association
mistakes. Our method was tested on the MOT Challenge benchmarks, comparing
well with the majority of competitors in terms of MOTA and achieving the best
results in terms of identity switches and false alarms.

Several ideas developed in this paper can be extended as future work.
For example, the representations are defined independently for each detection
whereas one could consider computing them jointly with an appropriate penalty.
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