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Abstract. This paper adds depth to motion magnification. With the
rise of cheap RGB+D cameras depth information is readily available. We
make use of depth to make motion magnification robust to occlusion and
large motions. Current approaches require a manual drawn pixel mask
over all frames in the area of interest which is cumbersome and error-
prone. By including depth, we avoid manual annotation and magnify
motions at similar depth levels while ignoring occlusions at distant depth
pixels. To achieve this, we propose an extension to the bilateral filter for
non-Gaussian filters which allows us to treat pixels at very different depth
layers as missing values. As our experiments will show, these missing
values should be ignored, and not inferred with inpainting. We show
results for a medical application (tremors) where we improve current
baselines for motion magnification and motion measurements.
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1 Introduction

Magnifying tiny motions in video [3,4] opened up a wealth of applications. Exam-
ples include: reconstructing speech exclusively from small visual vibrations [5],
detecting a heart-beat either from blood flow [4] or from tiny head motions [6],
magnifying muscle tremors [7], segmenting blood vessels [8] or estimating mate-
rial properties by the way it moves [9]. In this paper we propose to only magnify
motion at selected depth ranges, which makes motion magnification robust to
occlusions and large motions at other depths. Robustness is especially impor-
tant to open up new applications in the medical domain such as tremor assess-
ment [10-12], where the interaction between doctor and patient should not be
disturbed, and prerequisites for video processing should not limit the poses and
exercises dictated by the medical protocol.

Currently though, magnifying tiny motions requires that there are no occlu-
sions or large motions [1,3,4]. A recent solution proposes to manually indicate
the large motions by drawing a binary pixel mask on the frames of interest [2].
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Fig. 1. Comparison of our and baseline magnification approaches when magnifying
small motions in the background (here, body) behind moving occluders (here, trem-
bling hands). (a), (b) For two sequences, the input image, depth map, and depth-
dependent magnification matte of one frame (black/white is zero/full magnification).
(c)—(f) Space-time slices for the red lines in input images. Our approach suppresses
unwanted magnification artifacts from the foreground in the magnified background.
See supplementary material for videos. (Color figure online)

While a mask indicates which pixels should be used, it does not solve how to
ignore the motion filter responses on the edge of the mask. Motion filters have a
certain spatial extent and they ‘leak’ across the mask border. Moreover, manually
drawing such a mask on a moving target is challenging and time-consuming. We
instead exploit depth to automatically define the mask. Furthermore, we prevent
the ‘leaking’ by ignoring motion responses from very different depths whereas
filter responses from close-by depth layers are weighted.

Several techniques are available for weighting filter responses [13—16]. These
techniques allow weighted Gaussian smoothing or interpolation, for example,
on intensity differences resulting in edge-preserving smoothing. However, high-
quality motion magnification [1] depends on the complex steerable pyramid
[17,18] which consists of non-Gaussian filters for which standard weighting of
filter responses [13,14,16] cannot be used. To illustrate, consider a Gaussian
derivative filter. Since it integrates to zero, it will give no response on a constant
valued input image. Intuitively, the response should not change if some parts
of the input are ignored, but reducing some filter weights to zero would now
actually yield non-zero output. In other words, the Gaussian derivative cannot
be treated as a weighted input aggregate. In this paper we therefore develop
filter weighting of non-Gaussian filters, which can ignore input by treating it as
missing values.
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When images have missing values, there are several advanced inpainting tech-
niques [19-23] available to estimate what is lost. It is not clear, however, how
inpainting can be used to infer missing values between multiple depth layers.
We propose a different goal. We do not want to recover what is lost: we want to
ignore what is there.

In the following sections we first discuss related work, then how to ignore
filter responses from different depth layers, and how this allows depth-aware
motion magnification. We experimentally compare against inpainting and show
example applications in the medical domain on hand tremors.

2 Related Work

Motion can be magnified by explicitly tracking feature points with optical
flow [24]. The motion is magnified by re-scaling the moving points and adding
them back to the video. Optical flow is estimated locally between pairs of frames
which is noisy. This noise affects the motion magnification since local motion is
represented by a single unique feature point. In contrast to feature point track-
ing, Eulerian video magnification [4] estimates motion frequency over longer time
periods which is more stable. Thus, the method is well-suited for amplifying tiny
imperceptible motions. Impressive improvements [1] on the stability of linear
motion magnification [4] are made by relying on complex steerable pyramid fil-
ters [17,18]. A significant speedup without perceptual decrease in quality can be
obtained by approximating the complex pyramid with the Riesz pyramid [25].
While extremely successful for clean video sequences, all these methods assume
that there are no occlusions or large motions present. Our method is specifically
designed to deal with such cases.

With some help by the user, occlusion or large motions can be manually
indicated. Examples of user input on video processing include de-animation [26],
blending between face performances [27], video segmentation [28], and video
stabilization [29]. For motion magnification a manual drawn mask can specify
which pixels to magnify and which pixels to ignore [2]. In this paper we extend
this line of reasoning, replacing the manual drawn mask by a weighted mask
obtained from depth to ignore filter responses outside a target depth range.

Incorporating weighted responses in a filter is done with the bilateral fil-
ter [16]. It applies Gaussian blurring to an image, but locally adapts the Gaussian
weights to suppress contributions of neighbourhood pixels with very different
intensity levels. The fast bilateral filter [15] offers a significant speedup by
approximation. This is achieved by transforming the 2D input image into a
3D sparse matrix, where the 3rd z-dimension is given by a pixel’s intensity level.
The speedup comes from allowing standard 3D convolutions to obtain intensity-
weighted responses. In this paper we begin with the fast bilateral filter [15] due
to its speed. However, where the bilateral filter only allows weighted Gaussian
smoothing or interpolation we require non-Gaussian filters: the complex steer-
able pyramid [17,18] as used in high-quality motion magnification [1]. Instead of
weighting values, we adapt the bilateral filter so it can handle missing values.
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Inferring missing values in images by inpainting typically exploits texture
synthesis and pixel consistency [19,30]. Strong step edges can be retained [21] and
image statistics through patch-exemplars can give a good prior on what values to
infer [23]. Inpainting can be done efficiently [20], making it in principle suitable
for video processing. While inpainting could be used to fill in missing values for
very different depth layers, it is not clear how to use inpainting to combine closer
depth layers. In contrast to inpainting we do not wish to infer what should be
present at all depth layers. Our goal is to remove all filter influences from pixels
at different depth layers.

3 Approach

This section starts with the bilateral filter formulation [16], followed by our non-
Gaussian extension. We then apply the developed technique to complex steer-
able pyramids and use these for occlusion-aware Eulerian motion magnification
[1,2,24] and measurement [31]. We note that other image processing tasks could
also benefit from the non-Gaussian bilateral filter (see supplementary material
for examples), and for instance use intensity, optical flow, or color instead of
depth to filter micro-textures, stationaries, surfaces.

3.1 Bilateral Filter

The bilateral filter [16] can be used for depth-aware smoothing. Given input
image I and corresponding depth image F, the bilateral filter computes output
image O. By defining y € N(x) as the local a neighbourhood of 2D image
locations « = (u,v), and using O(x) as a shorthand for O(u,v), the bilateral
filter can be written as a weighted average

1

O(x) = W) > wllz =yl Elz) - E(y)) 1(y) (1)
YyEN (z)
w(ds,dp) = G(ds; 05) x G(dg;0,) (2)

where W(z) =3 n
at x, and G(x;0) = exp (—ﬁ) is the Gaussian kernel. The positive weights
w(dr,dg) approach zero as the spatial distance ds or the depth distance dg
increases. There are two smoothing parameters, the spatial standard deviation
0s, which controls the amount of spatial blurring as is in a normal Gaussian
image filter, and the depth standard deviation o,, which controls how strong
pixels on different depth layers are weighted.

() W(lz—yl, E(z)—E(y)) is the weight normalization term

3.2 Bilateral Filter for Non-Gaussian Kernels

Consider some non-Gaussian kernel F' with negative values, for instance F' is
an oriented band-pass filter used in a steerable pyramid [18], or a Gaussian
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derivative. As with the Gaussian bilateral filter, we would like to apply F to
an input image I, but obtain filter responses representative of the local spatial
neighbourhood with nearby depth values. While the bilateral filter with Gaussian
kernel can be seen as a weighted average, we cannot simply replace the kernel by
F. For instance, the integral of a Gaussian derivative kernel is zero, and would
yield a division by zero in normalization. Also, one cannot ignore part of the
input by reducing corresponding weights to zero, since this introduces unwanted
edge responses as if the input itself partly has zero values; our experiments in
Sect. 4.1 will illustrate this point.

Instead, we propose to reduce the influence of regions in distant depth layers
by smoothly incorporating the spatial image structure at the local depth layer.
Using £ = E(z) to denote the depth at the output location z, the non-Gaussian
bilateral filter with output @ is written as

Q)= Y F(lz—2)0% (2, E(z)) 3)

zeN(z)

1
0" (z,8) = W9 > wllz—yl,& = E@)I(y) (4)

YyEN(z)

with w(ds,dg) again some weight function (which we will define in a moment),
and W (2,£) = 35, c noy w(lz —yl,§ — E(y)). Here the + suffix indicates that a
function operates on 3D space by extending the spatial domain with additional
depth information from FE. Throughout this paper we shall use the + suffix
notation more frequently, and refer to it as an extended representation. Note
that Q(x) is not just a convolution with F' after applying a bilateral filter, since
O™ (x,€) is not only a function of x. But, our formulation does have the regular
bilateral filter, Eq. (1), as special case when F(z) =1 iff = 0 and 0 otherwise.

We reformulate our filter to a 3D representation similar to the fast bilat-
eral filter [15]. This has two benefits: One, as with the standard bilateral filter,
explicit evaluation of Eq.(3) is inefficient, since filter coefficients need to be
reweighted at each spatial location. The 3D representation instead offers a trade
off between quality and speed [15]. Two, this 3D representation explicitly keeps
filter responses at different depths separated, which will be exploited in our
applications to perform depth-aware temporal filtering.

First, an extra dimension r is introduced, representing possible depth values
for F(y) in the domain of all depth values R. We rewrite Eq. (4) as

W*(2,00% (2,6 = 3 S w(la -yl ~ 1o E) I(y)  (5)
reRyeN

where §(r, E(y)) = 1 iff r = E(y) and 0 otherwise. Next, the term 0(r, E(y))
and the 2D input image are used to define equivalent extended representations
(indicated by the + suffix) I for input, and VT to weight the input,

VH(y,r) = d(r, E(y)) (6)
I (y,r) = I(y) (7)
S(r, E(y)I(y) = V*(y,r) It (y,r). (8)
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We see that I (y,r) indeed has 3D coordinates (y,7) = (uy,vy,7), and simi-
larly, V*(y,r) constitutes a 3D binary mask indicating which part of the space
contains valid input. We write out the terms of (5) as

Wt (z,£)0 =Y ) wlz—yl,&—r) Vi@t y.r), (9

reERyeN(z)

=>" > wlz—yl.&—r) V(). (10)

reRyeN(z)

Now we can recognize the nested summation as a 3D convolution over the
extended representations using the weight function w as a 3D kernel, which
is the first step in our non-Gaussian filtering method,

WtOT =we VIt step 1: 3D Gauss convolution (11)
Wht=weVT. (12)

If we would use the bilateral filter weight function (2), the 3D convolution
will expand the local 3D neighbourhood of a target image location into regions
with different depth values. Thereby, increasing depth distances result in less
contribution in the convolved result. However, this kernel also blurs the original
image values, inadvertently removing details from the input before the filter F
is applied in Eq.(3), even at regions with uniform depth that should not be
affected.

Therefore, we consider a weighting function

« ifde:OanddE:O,
w(dr, dp) = {G(dl;as) x G(dg; o) otherwise, (13)
such that as o — oo, the weight of the local image value It (y,r) dominates all
other weights in (9) and (10) when y = z,7 = £, and when V*(y,r) = 1. In
other words, the 3D convolution will not blur the actual input values, and not
affect the filter response F' in uniform depth regions. But the Gaussian weighting
is still used in include valid input from the neighbourhood when V' (y,7) = 0,
i.e. at regions with missing values in the extended representation. In practice
we do not explicitly evaluate (13), but instead produce the result of @ — oo
by applying the normal kernel first to a temporary result @+, and then placing
back the original values to obtain the intended result. The remaining steps to
apply our filter method are therefore,

ot =wtot/w+t step 2: element-wise division (14)
O =VTIT+(1-VT)OT step 3: restore valid original data (15)
QT =F®0" step 4: apply F at all depth layers  (16)
Q(r) = Q" (z,E(x)) step 5: back-project to 2D (17)

The final step, (17), back-projects the extended space to the original 2D image
space, which completes the evaluation of Eq. (3). Following [15], discretizing the
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depth dimensions 7 into D depth layers results in a fast approximation, and
convolutions on the depth layers can be processed in parallel. Additionally, we
downsample the image instead of expanding the spatial Gaussian kernel [15].

3.3 Depth-Aware Video Magnification

For phase-based motion magnification [1], the non-Gaussian complex steerable
pyramid is used. The principle behind this approach is that small temporal
changes in the spatial offset of edges translates to small temporal changes in
the phases of the complex filter responses in the pyramid. Likewise, augmenting
temporal phase variations results in magnifying periodic movements in the video.
With a magnification factor M, phases ¢; of the pyramid components p; at time
t are augmented with respect to the temporally lovv—pass filtered phases ¢ to
obtain magnified pyramid phase ¢; = (14 M) - (¢ — ) + 6.

To exploit the depth information in the complex steerable pyramid, we apply
the non-Gaussian bilateral filtering from Sect. 3.2. Figure 2 illustrates the steps
to construct a bilateral steerable pyramid from an input grey scale and depth
image pair (I, E). First, an extended representation is created following Eq. (11)—
(15). This representation is then used in the pyramid construction by applying
the low-pass and complex band-pass filters of [18] to each of the depth layers, i.e.
Eq. (16). The result is an extended complex steerable pyramid. The bottom row
of Fig. 2 illustrates that when the extended pyramid is back-projected using the
depth map F (Eq. (17)), the resulting pyramid coefficients are depth-aware: filter
responses of fore- and background edges are separated as seen by the disconti-
nuities. In the standard pyramid, strong filter responses from the foreground
(depicting two hands) ‘leak’ into the background, especially at higher pyramid
levels where the filters have larger spatial extent.

Figure 3, depicts our proposed magnification pipeline. The phase augmen-
tation principle is applied to components in all depth layers of the extended
pyramid. However, we adapt the factor per layer with a depth-dependent func-
tion, resulting in a spatially varying magnification matte M(z) = Mpax X
exp (—(E(x) — pa)/(203)), parametrized by (fta, 04, Mmax). In the last process-
ing step, the magnified pyramids are back-projected to 2D frames, and the matte
is used to smoothly blend the magnified results of the discrete depth layers.

The recently proposed method by [2] also considers magnification of subtle
motions that occur in videos with large movements, utilizing an opacity matte to
blend selected regions of a magnified frame into the original unmagnified frame.
For our comparison, we adapted their method to our setting which entails that
(a) instead of using a tool to manually select a binary foreground region, the
opacity matte M is used, (b) we do not perform initial video stabilization as
the camera viewpoint is already static, (c) the motion of matte M itself is not
magnified as we do not wish to magnify the motion of the occluding object, but
rather that of the occluded region. Figure3 also shows the difference between
both approaches. The baseline introduces the depth information at the last step
only. Our approach uses depth from the start to obtain and operate on a depth-
aware representation. Section 4.2 shall empirically compare both approaches.
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(a) initial data and weights (b) after spatial4+depth conv. (¢) normalized

x . I

(e) Bilateral pyramid (back-projected) (f) Standard steerable pyramid

Fig. 2. Constructing a bilateral steerable pyramid on the frame from Fig. 1la with the
steps in Sect. 3.2. (a) the input image and depth map are used to construct a 3D image
representation image I and input weight map V' by discretizing the depth into
multiple layers. (b) step 1: Both representations are filtered in 3D (2D and the image
coordinates 4+ 1D depth coordinate). (c) step 2, 3: The filtered 3D image is normalized
using the filtered weights, and valid input is restored. (d) step 4: the steerable pyramid
is constructed on each discrete depth layer. Here, the result is shown at various levels
in the pyramid of a single orientation band. (e) step 5: The 3D representation can
be back-projected to a normal pyramid using depth map, resulting in an edge-aware
steerable pyramid. Note how the responses of edges in the nearby hand remain within
the foreground region, resulting in hard edges (e.g. see red arrows). (f) In contrast, a
normal steerable pyramid induces soft object edges which ‘leak’ from the foreground
into the surrounding background, especially at the higher pyramid levels (e.g. see red
arrows). (Color figure online)
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Fig. 3. Video magnification pipelines. (Top) baseline approach from [2], which com-
poses a magnified and unmagnified version of each frame. The composition is based on
an opacity matte, based on the depth map. (Bottom) our approach instead uses the
depth map directly in the pyramid construction/deconstruction.

3.4 Motion Measurements with a Bilateral Pyramid

In addition to magnification, another use for complex steerable filters is to mea-
sure subtle periodic motions in the video. In [31], an image is first down scaled
and filtered with B = 2 bands for the u and v direction, i.e. b € {0°,90°}.
Changes in phase can be translated to a local motion estimate (Au, Av), as

u__ o) O ()
V)T T 900 :

Awn(0) = =m0y o 0 (0) o

(18)

In each equation, the first r.h.s. term is the inverse of a spatial derivative, and
the second term is a temporal derivative.

For a depth-aware version, we can use the bands of our bilateral complex
pyramid, using B = 2 bands, and select a particular layer [ for scale. To ensure
that the spatial and temporal derivatives are depth-aware, we compute Eq. (18)
in the extended space ¢-* (u,v,7) and obtain Auj (u,v,r), Av;" (u,v,7). Only
afterwards are these back-projected to 2D motion maps Au; and Awy.

4 Experiments

We first evaluate against inpainting techniques. Then, we introduce a novel
RGB+Depth dataset targeting tremor analysis, which is an important med-
ical application [10,12]. On this dataset we compare our depth-aware motion
magnification against the state-of-the-art [2], and we show the effect of bilateral
filtering on motion measurements in fore- and background.
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4.1 Filtering Near Missing Values

Consider that we wish to convolve filter ' on image I for which we have a binary
mask M whose pixel values should be ignored. This situation corresponds to the
extreme case of the bilateral filter where foreground and background are far
apart such that all weights are either 0 or 1. Our approach of Sect. 3.2 weighs in
neighborhood values in ignored regions before applying F'. Here we compare our
approach to image inpainting techniques that intent to reconstruct the regions.

Let g be a filling technique that replaces the values in the masked region,
Iy v = g(I, M). The filled image can then be filtered with convolutional filter F,
resulting in I ; ym = 1g.1 @ F. Ideally the masked pixels are ignored and do not
have a response at R, i.e. at the region of pixels just outside M but where the
filter still covers masked out pixels. As error measure, we therefore report the
L1 norm over the pixels in R. Let Li(g,I, M, F) be the norm for a particular
technique g on image I and mask M after applying filter F, then error(g) is the
total norm over all tested images, masks and filters, i.e.

Li(g, I, M,F) = > |[IFy ()] error(g) => > La(g, I, M,F).  (19)
TER I M

We evaluate on a public inpainting dataset [22], which contains 17 images of
640 x 480 pixels (all images are converted to grayscale), 4 image masks, and
also provides on each image-mask pair state-of-the-art inpainting results for
Bugeau [19], Herling [20], Total Variation (TV) [21] and Xu [23]. We also com-
pare against replacing the missing region with zeros, or the actual pixel values
(an ideal inpainting algorithm). First, we use the 7 filters used in the construc-
tion of the bilateral pyramid, and tested varying the spatial parameters o, but
found that o5 = 1 performed best on the steerable pyramids features. The results
in Fig. 4a show that our proposed approach results in lower errors than the other
inpainting techniques. As expected, the naive approach of replacing the masked
region with zeros results in strong responses near the mask border, as shown by
the error plots. One of the better results is obtained with TV [21], which in fact
produces quite bland areas. Indeed, even using an ideal inpainting algorithm (i.e.
actual) would introduce more unwarranted filter responses.

To test if these results generalize, we also use 64 filters from the trained VGG
convolutional neural network [32] (normalized by subtracting DC components
divided by norm). Figure 4b shows that similar results were obtained.

4.2 Depth-Aware Motion Magnification and Measurements

The next section describes our novel tremor dataset, and then the experiments on
motion magnification and motion measurement.’ Please see the accompanying
videos in the supplementary material.

! The bilateral pyramid, depth-aware magnification code and dataset (RGB, Depth,
skeleton) can be found at https://github.com/jkooij/depthaware-momag.
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error

ours zeros actual Bugeau Herling TV Xu ours zeros actual Bugeau Herling TV Xu

(a) Pyramid filters [18] (lower is better) (b) 64 ConvNet filters [33] (lower is better)

(g) Bugeau [19] (h) Herling [20] | (i) TV [21] (§) Xu [23]

Fig.4. (a)-(b) Errors for steerable pyramid and ConvNet features when filtering
around a masked region. Insets show visualizations of (some of) these filters (c) one of
the masks, black indicates missing values. (d)—(j) Output examples of filling methods
(includes inpainting results by [22]). Red shows the evaluation region R of Eq. (19)
where the filters will be affected by missing values. (Color figure online)

RGB+D Tremor Dataset. Tremors are manifestations of periodic movements
in the body, and assessing their properties (frequency, amplitude) is critical for
health monitoring [11,12]. Since in practice only few accelerometers can be placed
on the body they are typically placed where the amplitude of the tremor is most
clearly visible, e.g. on the hand and arm. Video based measuring and magni-
fication could help discover more subtle occurrences, visualize where tremors
originate or how they move trough the body, and even make objective tremor
assessment possible without expensive hospital equipment.

We therefore collected a novel dataset with the Microsoft Kinect 2 to study
visual tremor assessment using (1) visualization, and (2) by measuring frequency.
The dataset contains 4 RGB+Depth sequences of subjects with a simulated
tremor in the hand, observed with their arms extended for several seconds. This
is a common task in tremor assessment, intended to induce a postural tremor
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(i.e. a tremor which occurs due to subject trying to actively maintain a certain
pose) [11]. The subjects are movement scientists, experienced in working with
patients of the neurology department at the Leiden University Medical Center.
Using [33], we recorded the high-res RGB video (1920 x 1090, encoded in
H.264, 4:2:0 YUV), low-res depth video (512 x 450, lossless H.264, 0—4 m distance
mapped to 8-bit greyscale), and the Kinect 2’s estimated skeleton data [34],
all at 30fps. Afterwards, the Kinect’s mapping API was used to project the
recorded depth frames to the RGB image space. The alignment of the depth
image with the colour images is not perfect, however: the video and depth camera
have slightly different viewpoints, the recording of the depth video loses some
quality due to the 8-bit greyscale conversion, and quick motions may result in
motion blur in the video that is not observed in the depth. For these reasons, the
depth data is pre-processed by first running a 2D median filter to remove noise,
and then a 2D max filter. This extends the occluding regions and ensure that
foreground in the video is also fully enclosed in the nearby regions of the depth
image. The supplementary material demonstrates how depth noise, temporal
misalignment, and pre-processing affect the magnification results.

Motion Magnification Behind Moving Occluder. On the first three
sequences, each 91 frames (= 3s), we compare our depth-aware video magni-
fication to the the baseline approach from [2], as described in Sect. 3.3. Instead
of specifying specific frequencies to magnify [1], we use the mean phase over
the whole sequence as the low-pass ¢ in order to magnify all periodic motion
variations, and to avoid tuning temporal bandwidth parameters. The spatial
deviation parameter o, = 1, and depth deviation o, = 0.1 m.

Examples of the input image region, corresponding depth map, and the used
magnification matte (which in all cases has been set to magnify the body’s depth
range) can be seen in Fig.la and b. The results of the various magnification
methods are visualized as space-time slices of Fig. 1. Figure 5 shows additional
single frame comparisons. On the third sequence the clothing is very dark. Here
the intensity channel has been enhanced to more clearly show the details in the
body. The figure illustrates that compositing the magnified and original image,
as in the baseline [2], results in notable artifacts in both textured on non-textured
backgrounds. We conclude that the approach in [2], which is designed to magnify
foreground under heavy camera motion, does not properly magnify background
behind non-static occluders. Our approach instead suppresses the artifacts.

Motion Frequency for Overlapping Body Regions. We applied the bilat-
eral motion measurement on the 4th and longer sequence (~ 17s.) to determine
the vertical motion in the hand (foreground) and chest region (background)
surrounding the hand. In each frame, the measured motion is averaged over a
body part mask automatically extracted using the Kinect 2’s built-in skeleton
estimate, resulting in a single temporal signal for each body region. The time
aligned groundtruth data of an accelerometer on the chest demonstrates that
this sequence contains two breathing cycles of about 8.5s., see Fig. 6a. When we
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sequence 2 sequence 1

sequence 3

d
(a) magnified [1] (b) CVPR’15 [2] (c) ours

Fig. 5. Frames from motion magnification results on three sequences (top-to-bottom
Mmax = 10,3,5). The method of [2] blends the standard magnification result [1] with
the original frame using an opacity matte, but this does not prevent unwanted artifacts
of the foreground occurring the magnified background (see red arrows), even though
the (unmagnified) foreground is corrected. Our approach using the bilateral filtered
pyramid does avoids such artifacts. (Color figure online)

apply a low-pass filter to only keep frequencies in the 0-0.2 Hz range, we observe
that without the bilateral filter the measurements in the chest are virtually the
same as those in the hand, see dashed blue lines Figs. 6b and c. With bilateral fil-
tering we obtain the same motion measurements in the foreground, but discover
two periodic cycles in the background (see red lines).

The corresponding video magnification results in Fig. 6d again demonstrate
that the moving foreground ‘leaked’ into the background. Our bilateral pyramid
yields more robust phase-based measurements in such situations.
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Fig. 6. Measuring motion in chest behind moving hand on sequence 4. (a) Accelerom-
eter on chest shows that there are 2 respiration cycles, each taking 9s. (b) Low-passed
velocity measurements on the chest, obtained with standard pyramid [1] (blue), and
our bilateral pyramid (red). Our method measures two full up-down cycles of breath-
ing, while the baseline shows the same motion pattern as measured in the occluding
hand (c). (d) This effect is also observed when using these pyramids for motion mag-
nification: the baseline (middle) contains movement of the hand in the background,
unlike our pyramids (right). (Color figure online)

5 Conclusions

Our work exploits depth to make motion magnification robust against mov-
ing occluders. To construct depth-aware steerable pyramids, the bilateral filter
was adapted to non-Gaussian kernels, such that filter responses can ignore local
image values at distant depth layers. We proposed a simple and efficient fill-
ing technique that is less prone to introducing additional filter responses than
state-of-the-art image inpainting techniques. Depth-aware motion magnification
was demonstrated on a novel RGB+D dataset recorded with Microsoft Kinect
2 for tremor assessment, an important application in the medical domain. On
this dataset with small motions in the background behind large motions in the
foreground, we show improved qualitative motion magnification results with less
visual artifacts compared to a state-of-the-art magnification baseline, which only
exploits depth information as a final processing step. The bilateral pyramid also
resulted in improved phase-based motion measurements.

Future work includes extending the dataset with more subjects, extract more
measures used in medical practice, and investigate application to computation-
ally efficient Riesz pyramids [25]. Our aim is to develop the explored methods
into cheap and objective techniques to discover, monitor and classify tremors
and other movement disorders (e.g. dystonia’s) all over the body. Other uses of
the non-Gaussian bilateral filter are also considered.
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