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Abstract. In this paper, we present a novel algorithm for reliable and
fast feature matching. Inspired by recent efforts in optimizing the match-
ing process using geometric and statistical properties, we developed an
approach which constrains the search space by utilizing spatial statis-
tics from a small subset of matched and filtered correspondences. We
call this method Guided Matching based on Statistical Optical Flow
(GMbSOF). To ensure broad applicability, our approach works on high
dimensional descriptors like SIFT but also on binary descriptors like
FREAK. To evaluate our algorithm, we developed a novel method for
determining ground truth matches, including true negatives, using spa-
tial ground truth information of well known datasets. Therefore, we
evaluate not only with precision and recall but also with accuracy and
fall-out. We compare our approach in detail to several relevant state-of-
the-art algorithms using these metrics. Our experiments show that our
method outperforms all other tested solutions in terms of processing time
while retaining a comparable level of matching quality.

Keywords: Image matching · Correspondence analysis · Statistical
optical flow · Guided matching · Ground truth for feature matching

1 Introduction

Many modern real-time computer vision applications, such as visual odometry
for autonomous driving or navigation of unmanned aerial vehicles, require not
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only accurate but also fast detection and tracking of distinctive parts across
several images. A well known approach to tackle this challenge is called feature
matching. A feature is represented by a keypoint and its descriptor, thus, feature
matching consists of keypoint detection (e.g.FAST [1]), descriptor extraction
(e.g. SIFT [2] or FREAK [3]), and correspondence analysis. While similarity of
descriptors is the main measure for correspondence analysis, higher speed as well
as more robustness can be achieved by employing additional information such
as statistical distributions of keypoints, estimated geometry, or even a priori
knowledge about the scene. Impressive results have been achieved in the past
two decades and a summary is given in Sect. 2. However, matching quality and
especially processing speed can still be improved to broaden applicability.

Thus, the first contribution of this work is a novel algorithm for fast and
robust correspondence analysis (Sect. 3). We call it Guided Matching based on
Statistical Optical flow (GMbSOF). The main idea is to constrain the search
space by estimating spatial statistics from a small subset of matched and filtered
correspondences. It significantly speeds up the matching process compared to
state-of-the-art algorithms while maintaining their matching quality.

As a second contribution, we introduce a method to calculate ground truth
data for matching that includes true negatives (Sect. 4.1). This data is gener-
ated from spatial ground truth information, such as optical flow, disparity, or
homographies, provided by publicly available datasets [4–6].

To evaluate our algorithm, we present a detailed comparison with state-of-
the-art matching methods (Sects. 4.2 and 4.3) in terms of quality and processing
time. Using true negatives and true positives, we are able to compute accuracy
ACC = (TP + TN) / (P + N) and fall-out FPR = FP/ (FP + TN) in addition
to precision and recall. These measures are important, as accuracy enables to
quantify the closeness of a matching algorithm’s output to the true solution,
while fall-out is a direct measure on the algorithm’s failure rate in correlation
with non-matchable keypoints (true negatives). Therefore, we present – for the
first time – accuracy and fall-out values for all compared algorithms.

2 Related Work

We focus on two categories of matching approaches most relevant to the pre-
sented work: pure similarity-based techniques and algorithms that additionally
use geometrical or statistical keypoint information. We take efficiency as well as
matching quality into account.

An interesting approach is the randomized KD-tree [7], which is an approxi-
mate nearest neighbor (NN) search algorithm. It works best on SIFT-like descrip-
tors [2] and builds multiple randomized KD-trees which are searched in parallel
in order to speed-up the search process. Higher precision is achieved by the
slower priority search k-means tree [8]. It clusters data points using the full dis-
tance across all dimensions of the descriptors instead of partitioning the data on
one dimension at a time. Another fast matching algorithm is CasHash, recently
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introduced by Cheng et al. [9]. The authors claim that their cascade hashing
strategy accelerates matching tenfold or more compared to KD-tree based algo-
rithms. The speed-up is achieved by a three-layer design (lookup, remapping,
and ranking) which uses an adopted version of the Locality Sensitive Hashing
(LSH) algorithm [10] to generate binary code for hashing.

These algorithms are fast for high dimensional features1, but they are out-
performed by most matching algorithms for binary features. This is because
the Hamming distance is used as cost function (descriptor distance) which can
be calculated very efficiently [11] compared to the standard L2-norm for high
dimensional features. A popular binary feature descriptor is Fast Retina Key-
point (FREAK) [3], which is inspired by the human retina. Alahi et al. [3] pro-
pose a cascade matching strategy for FREAK which allows to eliminate wrong
matches in several steps by comparing only a few bytes of the descriptors (sac-
cadic search). Strecha et al. [12] propose a method called LDAHash to convert
high dimensional descriptors like SIFT to binary features for speed-up. The hier-
archical clustering tree approach of Muja et al. [13] works with binary as well as
high dimensional features by performing a decomposition of the search space to
construct a tree structure.

An attractive geometry-based approach is presented by Shah et al. [14]. It
first extracts 20 % of SIFT-features with the largest scale and matches them
using a KD-tree followed by the ratio test introduced by Lowe [2]. Second, it
estimates the fundamental matrix and searches for corresponding features along
the epipolar lines. Unfortunately, this approach only works for images without
dominant planes.2 Hu et al. [16] use SIFT descriptor similarity in addition to
the distance between matching keypoints to start an iterative voting-scheme
based on the PageRank algorithm [17]. Torki and Elgammal [18] suggest a graph
matching scheme. They embed all features within an Euclidean space where their
locations reflect both, the descriptor similarity and the spatial arrangement.
They match multiple feature sets by solving an Eigen-value problem and achieve
linear complexity compared to the typical quadratic problem complexity of other
graph matching methods.

In addition, several approaches exist that use multiple homographies of small
segmented areas between the images in order to constrain the search space
[19–22]. After similarity based matching followed by a filtering step, homo-
graphies are calculated from scale and orientation of the corresponding SIFT
features. These homographies are further transferred into Hough space where
voting is performed. The resulting homographies are used to filter the matches.
These approaches lead to good precision and recall but the execution takes sev-
eral seconds. An early approach of using multiple homographies was presented
by Jung and Lacroix [23]. This algorithm relies on randomly finding an ini-
tial homography between local groups of their own features. Therefore, cross

1 Note that binary descriptors can also be high dimensional. However, we refer to
descriptors for which their distance is calculated using the L2-norm.

2 This issue could be resolved by utilizing the method of Chum et al. [15] instead of
the 8-point-algorithm.
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correlation on the pixel intensity in addition to a similarity measure on affine
transformation parameters and on the cornerness is used. This initial homog-
raphy further guides the matching process. Features near already established
matches in the first image are chosen. This process is repeated on local groups
of features and the homography is updated. Huo et al. [24] estimate one global
homography to constrain the matching process. They first downsample the image
pairs, match SIFT features, and perform a ratio test. Based on these matches, a
homography is estimated and adopted for image pairs at high resolution, where
guided matching is performed. This technique can be applied on data with single
planar surfaces only.

Geiger et al. [25] developed a matching framework for visual odometry which
uses their own features and descriptors in addition to statistical information from
pre-matched features. In a first pass, only a subset of the features is extracted,
matched, and filtered using cross check and an application of the delaunay tri-
angulation [26]. Next, the features of the first image are assigned to cells of an
equally spaced grid. For each cell the minimum and maximum displacement of
its feature set is calculated. These statistics are further used to constrain the
final search space, which speeds up the matching. It is closely related to our
method because it also uses statistics on the displacement of features to guide
the matching. Mill’s [27] method also uses statistics for filtering SIFT matches.
After matching with a KD-tree, histograms on the change of orientation and
scale of SIFT features are used in combination with Lowe’s ratio test to reject
all matches that do not belong to the three central bins. This hybrid filtering
approach leads to higher precision than with ratio test alone. Unfortunately no
recall was given. Sun et al. [28] incorporate a Gaussian Mixture Model (GMM)
similar to Chui and Rangarajan [29] in the matching process by considering
both, feature similarity and spatial information. They model a point set using
the GMM and assign each GMM component a different weight given by the
feature similarity. Thus, they achieve increased robustness for scenes with high
outlier ratio. Unfortunately, only the number of correct matches instead of pre-
cision, recall, and processing time is given in their paper.

Additionally to the matching algorithms above, we want to highlight impor-
tant post-processing methods. A very interesting approach is called Vector Field
Consensus (VFC) [30,31] and relies on the calculation of an interpolated flow
field based on correspondences generated by any kind of feature matcher. To
achieve this, it assigns a mixture model with the assumption that the noise
is Gaussian for inliers and uniform for outliers. The parameters of the mix-
ture model are estimated using the EM algorithm [32]. Moreover, the method
uses a smoothness criterion on the vector field for stabilization which leads to
higher robustness but also rejects true positives at flow discontinuities originat-
ing from, e.g., borders in the scene. They also suggested a cascade scheme of
their algorithm [33] by applying the algorithm on matched features filtered by
the ratio test in the first place. Second, n nearest neighbors are considered using
the parameters from the previous execution for initialization of VFC. This yields
to a significantly increased number of true positives. Different variants of their
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algorithm also accept various geometric models (e.g. fundamental matrix or
homography) [34] which can be used for filtering. In addition to the impres-
sive results on precision and recall, their implementation only needs a few mil-
liseconds for filtering, which is negligible compared to the processing time of
most matching algorithms. Lin et al. [35] presented a similar filtering approach
that applies the smoothness criterion, e.g., on the likelihood of the motion (called
bilateral motion field) instead of on the motion itself. Thus, enabling motion dis-
continuities at object boundaries. This leads to a decreased rejection of true posi-
tive matches. The estimated bilateral motion field can further be used to robustly
expand the set of matches. In addition to these mentioned post-processing meth-
ods, several RANSAC-based methods exist (e.g. [36–43]) which use various geo-
metric models for filtering the matches.

Many of the mentioned algorithms either suffer from high processing time
([16,19–23,28,29]), rely on geometric assumptions of the environment ([14,24]),
or are limited to specific descriptors and keypoint types ([3,8–10,12,16,19–23,
25,27]). In the following sections, we present a novel approach to overcome these
limitations. We support both, high dimensional and binary descriptors.

3 Guided Matching Based on Statistical Optical Flow

The goal of our algorithm is to significantly reduce the search space for feature
matching. We use displacement information from a subset of feature matches to
accelerate the matching process without relying on any assumptions. This speeds
up the matching process while achieving quality measures comparable to state-
of-the-art algorithms. It consists of four steps, where Fig. 1 illustrates the process.
First, we find the most distinctive features (blue, green, and yellow crosses in

(a) Left image (b) Right image

Fig. 1. Overview of the GMbSOF algorithm (best viewed in color). (a) Feature sub-
sampling (yields to blue, green, and yellow crosses) & initial matches (white arrows).
(b) SOF & guided matching: The remaining keypoints of the left image (red crosses)
are mapped to the right image using SOF (white arrows) where the corresponding right
keypoints are searched within a small search space indicated by the dashed circles. Due
to the large flow differences within the cell containing the blue (moving) car, the search
radius is enlarged compared to the others, where the flow is rather constant. (The color
figure can be found online)
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Fig. 1(a)) in both images by local non-maxima suppression of their responses
(Sect. 3.1). This allows fast similarity based matching (second step, Sect. 3.1) on
only a few features distributed over the whole image. The arrows in Fig. 1(a)
represent the optical flow vectors resulting from these initial matches. Third, we
calculate the SOF for the initial matches and fourth, we use SOF (arrows and
dashed circles in Fig. 1(b)) to guide the matching of all remaining features, which
are shown as red crosses in Fig. 1 (Sects. 3.2 and 3.3). The following sections
explain these steps in detail.

3.1 Feature Selection and Initial Matching

The number of features is reduced by using the responses (e.g. blob strength of
SIFT or corner strength of FAST [1]) of the keypoints. This is effective, but
applying a fixed threshold based on the global response range across the whole
image is not favorable. Depending on the scene, keypoints with high local but low
global response might be deleted, whereas others with a low local but high global
response might be kept. Both cases would decrease the matching quality. To solve
this problem, we use a scheme that finds a proper threshold within a certain
neighborhood by analyzing local response differences. To define a neighborhood,
we divide the image into a regular grid, where the number of cells depends on
the image dimensions. The aim is to keep the number of features within a cell
(depending on the scene) in the same range, independent of the image size.
Next, the maximum response difference Δrj = r̂j − řj is calculated for each cell
j, where r̂j is its maximum and řj its minimum keypoint response. In addition,
Δrj,i = r̂j − rj,i is computed for each keypoint i within a cell. We accept all
keypoints that satisfy Δrj,i ≤ aΔrj with a < 1. If the responses are not equally
distributed within Δrj , a too large number of keypoints would be accepted.
Therefore, we iteratively decrease3 a to lower the effective threshold aΔrj and,
thus, the number of accepted keypoints while keeping the strongest.

Finally, similarity based matching using a hierarchical clustering tree [13]
for binary features or a randomized KD-tree [7] for high dimensional features
followed by a ratio test with a threshold of 0.75 is performed on this subset.

3.2 Statistical Optical Flow

SOF is used to guide the matching process, thus, to estimate an initial search
position in the second image and to reduce the search range to a small area.
It consists of statistics about the spatial displacements of the initial matches
and is independently and sparsely estimated for several areas of the image. To
do this, we use another regular grid, based on the spatial distribution of the
initial matches. The cell size z is calculated in a way that the average number
of initial matches in each cell k is large enough for a meaningful statistic4. As
3 Each third of accepted keypoints halves a, which is initialized with a = 0.25.
4 In our experiments, 16 turned out to be a well balanced compromise between runtime

and robustness. Naturally, adapting this number depending on environment, camera
configuration, and feature type, could lead to better results.
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only the average number of matches per cell is used to determine z, some cells
may not contain enough matches. As a result, matches from neighboring cells
are added until the minimum number of matches (uk,l vk,l) ↔

(
u′

k,l v′
k,l

)
is

reached. In the next step, statistics over the magnitudes and angles5 of the flow
vectors from the matches with index l are calculated for each cell k. Therefore,
the flow vectors fk,l = (Δuk,l Δvk,l)

T are calculated with Δuk,l = u′
k,l − uk,l

and Δvk,l = v′
k,l − vk,l. From vectors fk,l the distances dk,l = ‖fk,l‖ and angles

αk,l = ∠ (fk,l) are determined. For all dk,l and αk,l, the mean values d̄k and
ᾱk, in addition to the median values d̃k and α̃k are calculated for every cell k.

The statistics vector qk =
(
d̄k d̃k ᾱk α̃k

)T

of a cell is accepted (or valid) if the
condition

accept� (qk) :

∣∣∣∣∣
d̄k − d̃k

d̄k

∣∣∣∣∣ ≤ b �
∣∣∣∣
ᾱk − α̃k

ᾱk

∣∣∣∣ ≤ b, � ∈ {∨,∧} (1)

holds. For this filtering step, accept∨ (qk) in most cases leads to better results
of SOF than accept∧ (qk). We traced this back to two reasons: First, if some
keypoint positions within a cell underlie small localization errors, this can result
in validation values exceeding the threshold b for either the distance or the angles,
but typically not both. In contrast, the probability of false matches to share the
same angle or the same distance is very low in most cases. The second reason
for accept∨ (qk) are cells with objects at varying depths, which for many camera
configurations mainly result in varying distances but similar angles. If (1) does
not hold, qk is considered invalid and, thus, rejected. During our analysis, a
value of b = 0.3 led to good results. However, it can be improved if b is adapted
in a range of [0.3, 0.75] according to the inlier ratio. As the true inlier ratio is
not known, we estimate an inlier ratio tendency factor ϕe = ne/no given by
the number of matches ne, which survived the ratio test after initial matching,
and the number no of left-frame keypoints after response-filtering. ϕe is linearly
proportional to the true inlier ratio as can be seen in Fig. 2(a). Thus, b is adapted
linearly by b = βS,F ϕe + bS,F

0 in the previously mentioned range where different
parameters are used for binary (βF , bF

0 ) and high dimensional features (βS , bS
0 ).

From the accepted statistic vectors (1) an overall statistic is calculated using the
median values d̃k and α̃k. Their mean d̄d̃ and ᾱα̃ in addition to the standard
deviation σd̃ and σα̃ are used to calculate the threshold values

T d,α
1,2 =

[
d̄d̃ ± cσd̃ ᾱα̃ ± cσα̃

]
(2)

to filter distances dk,l and angles αk,l. For this threshold estimation we set the
parameter c = 4 to exclude far outliers. As in this filtering step some distances
and angles are removed from their cells, the number of values dk,l and αk,l

might be below the minimum number requested for each cell. We compensate

5 For statistics about the angles, we correct them in a way that the angular distances
within the whole set are ≤ π.
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Fig. 2. (a) Varying inlier ratio vs. average inlier ratio tendency factors μS
ϕe

and μF
ϕe

in
addition to their quartiles QS

ϕe
and QF

ϕe
for the entire KITTI flow dataset [4] using SIFT

features (μS
ϕe

, QS
ϕe

) as well as FAST keypoints in conjunction with FREAK descriptors
(μF

ϕe
, QF

ϕe
). (b) Precision after initial matching before and after SOF estimation &

filtering step using the KITTI disparity dataset [4] in conjunction with FAST keypoints
& FREAK descriptors. The true inlier ratio was generated synthetically using our
evaluation framework described in Sect. 4.1. Additional results can be found in the
supplementary material.

this by adding values from neighboring cells. Using these values, vectors qk are
recalculated for each cell and validated using accept∧ (qk) of (1) to be more
restrictive. Next, the standard deviations σd

k and σα
k are calculated from all dk,l

and αk,l for every valid cell k separately. Each σd
k is used to estimate the search

radius
sk = cσd

k (3)

for subsequent guided matching. Since small values for c lead to decreased match-
ing quality and high values to increased processing time, as can be seen in Fig. 3,
we found in c = 3.5 a well-balanced compromise.

Each qk marked as invalid (according to accept∧ (qk)) is replaced by the
most similar vector qks

of all valid neighbors and the overall (over every dk,l and
αk,l) statistic. The search radius sk of such a cell is enlarged utilizing qk of the
invalid cell and qks

. Thus, the standard deviation σd
k is replaced by

σd
k = σd

ks
+ ‖f̃k−f̃ks‖

c where (4)

f̃i =
(
d̃icos (α̃i) d̃isin (α̃i)

)T

, i ∈ {k, ks} . (5)

Subsequently, the search range for invalid cells is calculated with (3) and the
standard deviation σα

k = mσα
ks

with m = min
(
max

(
σα

k /σα
ks

, 1
)
, 1.5

)
.

Next, the statistical optical flow F =
[
f̄1 f̄2 · · · f̄nb

]T with vectors f̄k =(
d̄kcos (ᾱk) d̄ksin (ᾱk)

)T and the total number of cells nb is estimated. Besides,
the initial matches are filtered using (2) with σd

k and σα
k in addition to d̄k and

ᾱk. Thus, we are able to constrain the search space in the second image using
F and s = (s1 s2 · · · snb

)T .
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Fig. 3. Influence of parameter c on the matching quality and runtime performed on the
entire “wall” dataset [5,6] for SIFT features. (a) Mean precision and (b) mean runtime
for matching one feature over various inlier ratios as well as parameter values of c for
estimating the final search range sk.

To reduce border effects between cells, we divide each cell k into a sub-grid
with a size of 5 × 5. Within this sub-grid, the SOF values of the inner 3 × 3
cells remain the same as in the original grid, whereas the outer cells are linearly
interpolated using their neighbors of the original grid. The search radii of the
outer cells are enlarged to cover the entire search space of the surrounding cells.
Finally, F , s, nb, and the cell size z in pixels are replaced by the interpolated
SOF, which is used during the guided matching process.

As shown in Fig. 2(b), the quality of SOF significantly decreases for inlier
ratios below 20 %. Analysis of all tested datasets showed, that this corresponds
to ϕe < 0.2 for high dimensional features and ϕe < 0.08 for binary features.
Thus, we use the inlier tendency factor ϕe to decide whether or not SOF should
be estimated and used. If SOF is not used, slower similarity-based matching is
performed instead of guided matching on the remaining features using a hier-
archical clustering tree [13] for binary features and a randomized KD-tree [7]
for high dimensional features, followed by a ratio test. We apply the VFC algo-
rithm on these results and accept its output only if more than 10 % of the input
matches survive the filtering step. Otherwise, the matches after the ratio test
are accepted without further filtering.

3.3 Guided Matching

After estimation of SOF, the remaining keypoints are matched. We use F to
map left keypoint locations xi = (ui vi)

T to the right image. Then, for each
xi a descriptor-similarity-based ranking of matching right image keypoints x′

i,m

within a certain search radius is done (Algorithm 1). For better readability, the
cell indices k of SOF are replaced by x and y which specify the position of a cell
inside the grid. In addition to the search radii s, we define the minimum search
radius rmin

6.
After matching, we perform a ratio test which obviously can only be per-

formed if two nearest neighbors are available. Thus, if only one corresponding

6 Throughout our evaluations we set rmin = 10, but a higher value should be consid-
ered if there are small non-rigid elements present in the scene for which their initial
correspondences might be filtered out during the SOF estimation.
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Algorithm 1. Guided matching
1: for i ← 1, # of left keypoints do

2: Calculate SOF grid position (x y)T =
(⌊

ui
z

⌋ ⌊
vi
z

⌋)T

3: Get search position x̃′
i = xi + Fx,y

4: KD-tree spatial search radius rkd = max (sx,y, rmin)
5: Search keypoints x′

i,m with
∥
∥x̃′

i − x′
i,m

∥
∥ < rkd

6: for all x′
i,m found do

7: Calculate descriptor similarity
8: Sort keypoints based on similarity in ascending order

keypoint is found, we perform a crosscheck. Finally, if this returns more than
one possible match, we perform the ratio test. Otherwise, the found keypoint
must be within 66 % of its corresponding search radius sx,y to be accepted.

4 Experimental Results

Most authors performing tests on their matching algorithms or comparing differ-
ent approaches only use precision and recall, which are in fact expressive quality
measures. However, in our opinion accuracy and fall-out are evenly important
and should not be neglected. To be able to calculate accuracy and fall-out, the
true negatives have to be known. Thus, we developed a framework (Sect. 4.1)
which is able to generate ground truth matches out of spatial ground truth infor-
mation. This is the only input for our evaluations, no additional image data is
used. We compare the processing time (Sect. 4.2) of 8 different algorithms. Addi-
tionally, we evaluate statistics on accuracy, fall-out, precision, and recall depen-
dent on varying inlier ratios (from 1 % to 100 %) for each dataset-algorithm-
combination (Sect. 4.3 and supplementary material) (additional results can be
found in the supplementary material). For all evaluations, exactly the same para-
meters were used for GMbSOF which were found by performing tests with vary-
ing parameters on all datasets.

We use datasets KITTI flow and disparity [4] as well as all possible image pair
combinations of “bark”, “boat”, “graffity”, and “wall” from Mikolajczyk et al.
[5,6]. All of them provide spatial ground truth which was used for generation
of ground truth matches and, thus, for evaluation of the different methods. As
the datasets provided by KITTI are quite sparse, due to the fact that they were
created using laser range data, a pre-processing step was necessary to allow a
meaningful evaluation. It fills as many invalid ground truth pixels (where no
laser range data was available) as possible using information of the neighboring
pixels. For this, we apply a carefully designed local median filter variant which
preserves discontinuities and avoids filtering artifacts.

We compare our algorithm (GM) to selected state-of-the-art algorithms,
namely CasHash (CH) [9], hierarchical clustering tree (HC) [13], priority search
k-means tree (HK) [8], SparseVFC (VFC) [30,31] in combination with the hier-
archical clustering tree, linear matching (LI) and Locality Sensitive Hashing
(LSH) [44] from the FLANN library [8], as well as the randomized KD-tree
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(RA) [7].7 Even if the method of Geiger et al. [25] and the geometry-aware fea-
ture matching method of Shah et al. [14] are relevant, we had to exclude them
from our evaluations. A comparison with [25] would lead to distorted results due
to necessary adaption in order to use SIFT or FREAK. Geometry-aware feature
matching [14] failed for most disparity image pairs.8

4.1 The Evaluation Framework

In this section, we use designations left and right images also for flow datasets
(left refers to the first image and right to the second). For calculation of ground
truth matches and evaluation of matching results, we first limit the possible
matching keypoints by two proximity constraints: (i) Every keypoint in the left
image can be mapped to a unique position in the right image by employing the
available spacial ground truth. (ii) There must be at least one keypoint within
the close proximity (see below) of the mapped position. If these constraints are
fulfilled, we first treat all right keypoints with a maximal displacement error of
5 % of the upper bound of the spacial ground truth magnitudes as reasonable.
To be more robust, we ignore keypoints corresponding to the upper 20 % of
the distances to the mapped positions. Then, the median distance d̃n and its
median absolute deviation σ̃n are calculated for the remaining 80 %. Distances
larger than d̃n + 3.5σ̃n are rejected. The highest remaining distance equals the
radius td that encircles the most reasonable candidates.

Now we address the core problem of finding unambiguous one-to-one matches
within those most reasonable candidates. A match is considered as unambiguous
and valid if:

1. A keypoint in the left image is within td in the right image,
2. The similarity of their descriptors is below a threshold (160 for 512bit binary

descriptors) and smaller than 1.5 times the similarity of the second best match
within td,

3. 1 and 2 also hold from right to left.

Then, the smallest similarity dmin of all remaining matches within td is computed
and all correspondences that have a similarity exceeding 1.25×dmin are rejected.

True negative matches (missing corresponding keypoint in the left or right
image), which are necessary to calculate accuracy and fall-out, emerge in the
first place from left keypoints for which no reasonable matching candidates are
found. Additional true negatives are found in both images during the reduction
of ambiguity by filtering the matches.

To reach a specific inlier ratio, we first equalize the number of keypoints in
both images by randomly deleting true negatives. Next, we randomly remove

7 In this context, we have to mention that not all of the above algorithms could be
tested on all different keypoint and descriptor types as some algorithms accept only
one specific type.

8 We used the unchanged code provided by the authors.
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Fig. 4. Runtime analysis (see footnote 9) of different matching algorithms (a) on the
KITTI flow dataset [4] using FAST keypoints & FREAK descriptors, (b) on the “wall”
dataset from Mikolajczyk et al. [5,6] using SIFT features. For the allocation of abbre-
viations to their full names please see Sect. 4. Each datapoint stems from a different
image pair. Additional results can be found in the supplementary material.

keypoints (matching or non-matching) alternating from both images until the
desired inlier ratio is reached.

We use the same keypoint type for ground truth generation and matching.
However, for the filtering steps we always use FREAK, because it is fast. There
is no notable difference in terms of quality of the ground truth matches when
using FREAK instead of SIFT descriptors. Only the number of matches changes
slightly. The quality of the resulting matches depends on the spatial ground
truth quality. Ground truth quality deficencies can in most cases be compensated
by the presented keypoint filtering approach. We performed randomized visual
inspection of the ground truth matches for all datasets. There were no false
matches for the KITTI databases and only one for the considered Mikolajczyk
datasets (due to false spatial ground truth at this image location).

4.2 Runtime Analysis

We measure the runtime9 of the above mentioned algorithms for each image pair
of the entire KITTI disparity, flow [4] and the “wall” [5,6] datasets separately.
Then the runtime with respect to the number of input keypoints is analyzed.
For all datasets, an inlier ratio of 75 % was used.10 As can be seen in Fig. 4,
our algorithm (GM) outperforms all tested state-of-the-art algorithms in terms
of runtime. Especially compared to the randomized KD-tree and the CasHash
algorithm (Fig. 4(b)), which are among the fastest matching algorithms for high
dimensional features, our approach is approximately 3.5–4.0 times faster for
around 5000 matches. An even higher improvement is achieved for binary fea-
tures (see Fig. 4(a)).
9 Time measurements were performed using the smallest runtime of 100 runs on an

Intel Xeon E5-2687W 3.1 GHz CPU.
10 For this inlier ratio, the number of keypoints (true positives and true negatives) is

close to its maximum for most datasets which allows a better performance analysis.
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Fig. 5. Varying inlier ratio compared to the average matching time (see footnote 9) per
keypoint (over the whole algorithm) using (a) FAST keypoints & FREAK descriptors
and (b) SIFT features for the KITTI flow dataset from Menze and Geiger [4]. This
evaluation was performed on the entire dataset, keeping the number of left and right
keypoints equal for all inlier ratios and each image pair separately. For comparison, our
algorithm was evaluated with and without switching to a similarity-based matcher for
low inlier ratio tendency factors ϕe.

The spikes of the runtime marked by a dashed black circle in Fig. 4(b) origi-
nate from switching to the fall-back similarity-based matching instead of guided
matching, as the inlier ratio tendency factor ϕe was below its threshold (0.2 for
high dimensional features). The fall-back solution is not triggered by the low
number of features but by the difficulty of the evaluated scene.

The approach is evidently the most scalable with respect to the number of
features, since for a high number of features the processing time only slightly
increases. To investigate the dependency of our algorithm’s processing time on
SOF accuracy, we perform additional runtime evaluations for varying inlier ratios
(see Fig. 5). The runtime remains nearly constant until the inlier ratio decreases
below 20 %–40 %. For inlier ratios below 10 %, the probability of ϕe to fall below
the specified threshold value for switching to a similarity-based matcher raises
quickly. In that case, the runtime is determined by the used similarity-based
matching algorithms.

4.3 Matching Quality Evaluations

To asses the matching quality in comparison to the other algorithms, we evaluate
the common quality measures precision and recall, but also accuracy and fall-
out. The mean values of those quality measures are shown in Fig. 611. In order
to perform a fair comparison with our algorithm, a ratio test was performed on
the results of each matching algorithm.

Comparing our algorithm to the others, we observe a significantly higher
recall, and a slightly higher fall-out. These characteristic differences can consis-
tently be observed for all datasets (examples are shown in Fig. 6(d)–(f)). Both

11 Additional results can be found in the supplementary material.
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Fig. 6. Varying inlier ratio compared to mean (a) accuracy, (b) precision, (d) recall, and
(e) fall-out for the “wall” dataset from Mikolajczyk et al. [5,6] using FAST keypoints
& FREAK descriptors. Moreover, the mean (c) precision and (f) recall are shown for
the KITTI disparity dataset [4] using SIFT features. For abbreviations see Sect. 4.

differences can be traced back to the very small search space during the guided
matching process originating from the estimated SOF. Our solution, in contrast
to other algorithms, is more robust against repetitive or similar patterns as long
as they appear only once within our search radii s and it is possible to find initial
matches sufficiently distributed over the whole image. This yields higher recall.

5 Conclusion

In this paper we presented our novel approach for highly efficient and fast
feature matching, called Guided Matching based on Statistical Optical Flow
(GMbSOF). It estimates the search space using statistics for certain areas of the
image determined by a subset of matched features. Using these, we constrain
the search space which dramatically accelerates the matching process. In most
publications, matching algorithms are only tested using precision and recall,
which are in fact very meaningful. However, in our opinion accuracy and fall-out
are also very important for classification of a matching algorithm. To compute
these quality measures, true negatives are required. Therefore, we developed a
framework to determine true negatives and ground truth matches from datasets
providing spatial ground truth information. A comprehensive comparison with
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relevant state-of-the-art algorithms showed that our method outperforms all of
them in terms of processing time while achieving comparable matching quality.
The limitation of our approach is the reliable detection of very small dynamic
objects, as it is likely that they are filtered out during the calculation of the
statistical optical flow.
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