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Abstract. Convolutional networks trained on large supervised datasets
produce visual features which form the basis for the state-of-the-art in
many computer-vision problems. Further improvements of these visual
features will likely require even larger manually labeled data sets, which
severely limits the pace at which progress can be made. In this paper, we
explore the potential of leveraging massive, weakly-labeled image collec-
tions for learning good visual features. We train convolutional networks
on a dataset of 100 million Flickr photos and comments, and show that
these networks produce features that perform well in a range of vision
problems. We also show that the networks appropriately capture word
similarity and learn correspondences between different languages.

1 Introduction

Recent studies have shown that using visual features extracted from convolu-
tional networks trained on large object recognition datasets [22,33,53,56] can
lead to state-of-the-art results on many vision problems including fine-grained
classification [27,50], object detection [17], and segmentation [47]. The success
of these networks has been largely fueled by the development of large, manually
annotated datasets such as Imagenet [9]. This suggests that to further improve
the quality of visual features, convolutional networks should be trained on even
larger datasets. This begs the question whether fully supervised approaches are
the right way forward to learning better vision models. In particular, the man-
ual annotation of ever larger image datasets is very time-consuming!, which
makes it a non-scalable solution to improving recognition performances. More-
over, manually selecting and annotating images often introduces a strong bias
towards a specific task [48,58]. Another problem of fully supervised approaches
is that they appear rather inefficient compared to how humans learn to recognize
objects: unsupervised and weakly supervised learning plays an important role in
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! For instance, the development of the COCO dataset [36] took more than 20,000
annotator hours spread out over two years.
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human vision [11], as a result of which humans do not need to see thousands of
images of, say, chairs to obtain a good grasp of what a chair looks like.
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Fig. 1. Six randomly picked photos from the YFCC100M dataset and the correspond-
ing comments we used as targets for training.

In this paper, we depart from the fully supervised learning paradigm and ask
the question: can we learn high-quality visual features from scratch without using
any fully supervised data? We perform a series of experiments in which we train
models on a large collection of photos and comments associated with those pho-
tos. This type of data is available in great abundance on photo-sharing websites:
specifically, we use the publicly available YFCC100M dataset that contains 100
million Flickr photos and comments [57]. Figure 1 displays six randomly picked
Flickr photos and corresponding comments. Indeed, many of the comments do
not describe the contents of the photos (that is, the comments are not captions
or descriptions), but the comments do carry weak information on the image con-
tent. Learning visual representations from such weakly supervised data has three
potential advantages: (1) there is a near-infinite amount of weakly supervised
data available?, (2) the training data is not biased towards solving a specific
task, and (3) it is more similar to how humans learn to solve vision.

We present experiments showing that convolutional networks can learn to
identify words that are relevant to a particular image, despite being trained
on the very noisy targets of Fig.1. In particular, our experiments show that
the visual features learned by weakly-supervised models are as good as those
learned by models that were trained on Imagenet, which shows that good visual
representations can be learned without manual supervision. Our experiments also
reveal several benefits of training convolutional networks on datasets such as the
YFCC100M dataset: our models learn word embeddings that capture semantic
information on analogies whilst being grounded in vision. Although they are not
trained for translation, our models can also relate words from different languages
by observing that they tend to be assigned to similar visual inputs.

2 The combined number of photo uploads via various platforms was estimated to be
1.8 billion photos per day in 2014 [39].
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2 Related Work

This study is not the first to explore alternatives to training convolutional net-
works on manually annotated datasets [8,12,51,69]. In particular, Chen and
Gupta [8] propose a curriculum-learning approach that trains convolutional net-
works on “easy” examples retrieved from Google Images, and then finetune
the models on weakly labeled image-hashtag pairs. Their results suggest that
such a two-stage approach outperforms models trained on solely image-hashtag
data. This result is most likely due to the limited size of the dataset that was
used for training (~1.2 million images): our results show substantial perfor-
mance improvements can be obtained by training on much larger image-word
datasets. Izadinia et al. [26] finetune pretrained convolutional networks on a
dataset of Flickr images using a vocabulary of 5,000 words. By contrast, this
study trains convolutional networks from scratch on 100 million images asso-
ciated with 100,000 words. Ni et al. [43] also train convolutional networks on
tens of millions of image-word pairs, but their study does not report recognition
performances. Xiao et al. [64] train convolutional networks on noisy targets, but
they only consider a very restricted domain and their targets are much less noisy.

Several studies have used weakly supervised data in image-recognition
pipelines that use pre-defined visual features. In particular, Li and Fei-Fei [34]
present a model that performs simultaneous dataset construction and incremen-
tal learning of object recognition models. Li et al. [35] learn mid-level repre-
sentations by training a multiple-instance learning SVMs on low-level features
extracted from images from Google Image search. Denton et al. [10] learn embed-
dings of images and hashtags on a large set of Instagram photos and hashtags.
Torresani et al. [59] train weak object classifiers and use the classifier outputs
as additional image features. In contrast to these studies, we backpropagate the
learning signal through the entire vision pipeline, allowing us to learn visual
features.

In contrast to our work, many prior studies also attempt to explicitly discard
low-quality labels by developing algorithms that identify relevant image-hashtag
pairs from a weakly labeled dataset [14,46,62]. These studies solely aim to create
a “clean” dataset and do not explore the training of recognition pipelines on noisy
data. By contrast, we study the training of a full image-recognition pipeline; our
results suggest that “label cleansing” may not be necessary to learn good visual
features if the amount of weakly supervised training data is sufficiently large.

Our work is also related to prior studies on multimodal embedding [54,65]
that explore approaches such as kernel canonical component analysis [18,24],
restricted Boltzmann machines [55], topic models [28], and log-bilinear mod-
els [32]. Some works co-embed images and words [16], whereas others co-embed
images and sentences or n-grams [15,30,61]. Frome et al. [16] show that convo-
lutional networks trained jointly on annotated image data and a large corpus
of unannotated texts can be used for zero-shot learning. Our work differs from
those prior studies in that we train convolutional networks without any manual
supervision.
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3 Weakly Supervised Learning of Convnets

We train our models on the publicly available YFCC100M dataset [57]. The
dataset contains approximately 99.2 million photos with associated titles, hash-
tags, and comments. Our models are publicly available online.

Preprocessing. We preprocessed the text by removing all numbers and punc-
tuation (e.g., the # character for hashtags), removing all accents and special
characters, and lower-casing. We then used the Penn Treebank tokenizer to tok-
enize the titles and captions into words, and used all hashtags and words as
targets for the photos. We remove the 500 most common words (e.g., “the”,
“of”, and “and”) and because the tail of the word distribution is very long [1],
we restrict ourselves to predicting only the K = {1,000; 10, 000; 100,000} most
common words. For these dictionary sizes, the average number of targets per
photo is 3.72, 5.62, and 6.81, respectively. The target for each image is a bag of
all the words in the dictionary associated with that image, ¢.e., a multi-label vec-
tor y € {0,1}¥. The images were preprocessed by rescaling them to 256 x 256
pixels, cropping a central region of 224 x 224 pixels, subtracting the mean pixel
value of each image, and dividing by the standard deviation of its pixel values.

Network architecture. We experimented with two convolutional network
architectures, viz., the AlexNet architecture [33] and the GoogLeNet architec-
ture [56]. The AlexNet architecture is a seven-layer architecture that uses max-
pooling and rectified linear units at each layer; it has between 15M and 415M
parameters depending on the vocabulary size. The GoogLeNet architecture is
a narrower, twelve-layer architecture that has a shallow auxiliary classifier to
help learning. Our GoogLeNet models had between 4M and 404M parameters
depending on vocabulary size. For exact details on both architectures, we refer
the reader to [33] and [56], respectively—our architectures only deviate from the
architectures described there in the size of their final output layer.

Loss functions. We denote the training set by D = {(x,,, ¥»n)}n=1,...5 with the
D-dimensional observation x € R” and the multi-label vector y € {0,1}%. We
parametrize the mapping f(x;#) from observation x € R” to some intermediate
embedding e € RF by a convolutional network with parameters 6; and the
mapping from that embedding e to a label y € {0,1}% by sign(W "e), where
W is an £ x K matrix. The parameters § and W are optimized jointly to
minimize a one-versus-all or multi-class logistic loss. We considered two loss
functions. The one-versus-all logistic loss sums binary classifier losses over all
classes:

0. WiD) = 3030 ok 1050 (W J(ni0) + r—2E Tog(1 oW (1, 0),

where o(z) = 1/(1 + exp(fx)) and Ny, is the number of positive examples for
the class k. The multi-class logistic loss minimizes the negative sum of the log-
probabilities, which are computed using a softmax layer, over all positive labels:

xp(w, f(xn;0))
00, W;D) = o log | Wi S
ZZy S (W S (i 0))
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In preliminary experiments, we also considered a pairwise ranking loss [60,61].
Such losses only update two columns of W per training example (corresponding
to a positive and a negative label). We found that when training convolutional
networks end-to-end, these sparse updates significantly slowed down training,
which is why we did not consider ranking loss further in this study.

Class balancing. The distribution of words in our dataset follows a Zipf dis-
tribution [1]: much of its probability mass is accounted for by a few classes. We
carefully sample training instances to prevent these classes from dominating the
learning, which may lead to poor general-purpose visual features [2]. We follow
Mikolov et al. [40] and sample instances uniformly per class. Specifically, we
select a training example by picking a word uniformly at random and select an
image associated with that word randomly. When using multi-class logistic loss,
all the other words are considered negative for the corresponding image, even
words that are also associated with that image. This procedure potentially leads
to noisier gradients but it works well in practice. (The comments miss relevant
words anyway, so our procedure only slightly exacerbates an existing problem.)

Training. We trained our models with elastic averaging stochastic gradient
descent (EA-SGD; [68]) on batches of size 128. In all experiments, we set the
initial learning rate to 0.1 and after every sweep through a million images (an
“epoch”), we compute the prediction error on a held-out validation set. When
the validation error has increased after an “epoch”, we divide the learning rate
by 2 and continue training; but we use each learning rate for at least 10 epochs.
We stopped training when the learning rate became smaller than 1076,

Large dictionary. Training a network on 100,000 classes is computationally
expensive: a full forward-backward pass through the last linear layer with a
single batch takes roughly 1,600ms (compared to 400 ms for the rest of the
network). This scaling issue commonly occurs in language modeling [7], and can
be addressed using approaches such as importance sampling [4], noise-contrastive
estimation [21,41], and the hierarchical softmax [19,42]. Similar to Jozefowicz
et al. [29], we found importance sampling to be quite effective: we only update
the weights that correspond to classes present in a training batch. This means we
update at most 128 columns of W per batch instead of all 100, 000 columns. This
reduced the training time of our largest models from months to weeks. Whilst
our approximation is consistent for the one-versus-all loss, it is not for the multi-
class logistic loss: in the worst-case scenario, the “approximate” logistic loss can
be arbitrarily far from the true loss. However, we observe that the approximation
works well in practice. We also derived upper and lower bounds on the expected
value of the approximate loss, which show that it is closely related to the true
loss. Denoting sy = exp (W,I f(xn; 9)) and the set of sampled classes by C (with
IC] < K) and leaving out constant terms, a trivial upper bound shows that the
expected approximate loss never overestimates the true loss:

K
E llogz S;| <log Z sk = log Z.
k=1

ceC
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Assuming that Vk :s;, > 13, Markov’s inequality provides a lower bound, too:

1 1 IC|
E llongc >P <C|§SC > KZ> (logK—i—logZ) .

ceC
This bound relates the sample average of s, to its expected value, and is exact
when |C| — K. The lower bound only contains an additive constant log(|C|/K),
which shows that the approximate loss is closely related to the true loss.

4 Experiments

To assess the quality of our weakly-supervised convolutional networks, we per-
formed three sets of experiments: (1) experiments measuring the ability of the
models to predict words given an image, (2) transfer-learning experiments mea-
suring the quality of the visual features learned by our models in a range of
computer-vision tasks, and (3) experiments evaluating the quality of the word
embeddings learned by the networks.

4.1 Experiment 1: Associated Word Prediction

Experimental setup. We measure the ability of our models to predict words
that are associated with an image using the precision@k on a test set of 1 million
YFCC100M images, which we held out until after all our models were trained.
Precision@k is a suitable measure for assessing word prediction performance
because it is robust to the fact that targets are noisy, i.e., that images may have
words assigned to them that do not describe their visual content.

As a baseline, we train L2-
regularized logistic regressors on Table 1. Word prediction precision@10 on
the YFCC100M test data for three dictio-
nary sizes K obtained by: (1) logistic regres-
sors trained on features extracted from con-
. volutional networks that were pretrained on
trained on 224 x 224 crops that Imagenet and (2) convolutional networks
where randomly selected from 256 X (ained end-to-end using multiclass logistic
256 input images. We applied photo- ]ogs. Higher values are better.
metric jittering on the input images
[25], and trained using EA-SGD with Dictionary size K

batches of 128 images. Our pre- 1YP° ‘zlet‘;ork i 1;302[;0‘ 12’ gfo | 10?’6[100
. . . exNet o o d
trained networks perform on par with | Pretrained | 7 ogLeNet || 13.20 | 4.76 154

the state-of-the-art on ImageNet: a [ _~ "~~~ AlexNet || 17.98 [ 6.27 | 256
single AlexNet obtains a top-5 test GooglLeNet || 20.21| 6.47

error of 24.0% on a single crop; our

features produced by convolutional
networks trained on the Imagenet
dataset. The Imagenet models were

3 This assumption can always be satisfied by adding a constant inside the exponentials
of both the numerator and the denominator of the softmax.
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GoogLeNet has top-5 error of 10.7%. The L2 regularization parameter of the
logistic regressor was tuned on a held-out validation set.

Results. Table1 presents the precision@10 of word prediction models trained
using multi-class logistic loss on the YFCC100M dataset, using dictionaries with
K = 1,000, K = 10,000, and K = 100,000 words. The results of this exper-
iment show that end-to-end training of convolutional networks on the YFCC-
100M dataset works substantially better than training a classifier on features
extracted from an Imagenet-pretrained network: end-to-end training leads to a
relative gain of 45 to 110% in precision@10. This suggests that the features
learned by networks on the Imagenet dataset are too tailored to the specific
set of classes in that dataset. The results also show that the relative differences
between GoogleNet and AlexNet are smaller on the YFCC100M than on the
Imagenet dataset, possibly, because GoogLeNet has less capacity than AlexNet.

In preliminary experiments, we also trained models using one-versus-all logis-
tic loss: using a dictionary of K = 1,000 words, such a model achieves a preci-
sion@10 of 16.43 (compared to 17.98 for multiclass logistic loss). We surmise this
is due to the problems one-versus-all logistic loss has in dealing with class imbal-
ance: because the number of negative examples is much higher than the number
of positive examples (for the most frequent class, more than 95.0 % of the data
is negative), the rebalancing weight in front of the positive term is very high,
which leads to spikes in the gradient magnitude that hamper training. We tried
various reweighting schemes to counter this effect, but nevertheless, multi-class
logistic loss consistently outperformed one-versus-all logistic loss.

To investigate the performance of our models as a function of the amount of
training data, we also performed experiments in which we varied the training set

Flickr Word Prediction Pascal VOC
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Fig. 2. Left: Word prediction precision@10 of AlexNets trained on YFCC100M training
sets of different sizes using K = 1,000 and a single crop (in red); and precision@10 of
logistic regressors trained on features from convolutional networks trained on ImageNet
with and without jittering (in blue and black). Right: Mean average precision on the
Pascal VOC 2007 image classification task obtained by logistic regressors trained on
features extracted by an AlexNet trained on YFCC100M (in red) and ImageNet (in
blue and black). (Color figure online)
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vintage abandoned rijksmuseum gig

Fig. 3. Six test images with high scores for different words. The scores were computed
by an AlexNet trained on the YFCC100M dataset using K = 100,000 words.

size. Figure 2 presents the resulting learning curves for the AlexNet architecture
with K = 1,000. The figure shows that there is a clear benefit of training
on larger datasets: the word prediction performance of the networks increases
substantially when the training set is increased beyond 1 million images (which
is roughly the size of Imagenet); for our networks, it only levels out after ~50
million images.

To illustrate the kinds of words for which our models learn good represen-
tations, we show a high-scoring test image for six different words in Fig. 3. To
obtain more insight into the features learned by the models, we applied t-SNE
[37,38] to features extracted from the penultimate layer of an AlexNet trained on
1,000 words. This produces maps in which images with similar visual features
are close together; Fig.4 shows such a map of 20,000 test images. The inset
shows a “sports” cluster that was formed by the visual features; interestingly, it
contains visually very dissimilar sports ranging from baseball to field hockey, ice
hockey and rollerskating. Whilst all sports are grouped together, the individual
sports are still clearly separable: the model can capture this multi-level struc-
ture because the images sometimes occur with the word “sports” and sometimes
with the name of the individual sport itself. A model trained on classification
datasets such as Pascal VOC is unlikely to learn similar structure unless an
explicit target taxonomy is defined (as in the Imagenet dataset) and exploited
via a hierarchical loss. Our results suggest that class taxonomies can be learned
directly from photo comments instead.

4.2 Experiment 2: Transfer Learning

Experimental setup. To assess the quality of the visual features learned by
our models, we performed transfer-learning experiments on seven test datasets
comprising a range of computer-vision tasks: (1) the MIT Indoor dataset [49],
(2) the MIT SUN dataset [63], (3) the Stanford 40 Actions dataset [66], (4)
the Oxford Flowers dataset [44], (5) the Sports dataset [20], (6) the ImageNet
ILSVRC 2014 dataset [52], and (7) the Pascal VOC 2007 dataset [13]. We applied
the same preprocessing on all datasets: we resized the images to 224 x 224 pixels,
subtracted their mean pixel value, and divided by their standard deviation.
Following [50], we compute the output of the penultimate layer for an input
image and use this output as a feature representation for the corresponding
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image. We evaluate features obtained from YFCC100M-trained networks as
well as Imagenet-trained networks, and we also perform experiments where we
combine both features by concatenating them. We train L2-regularized logistic
regressors on the features to predict the classes corresponding to each of the
datasets. For all datasets except the Imagenet and Pascal VOC datasets, we
report classification accuracies on a separate, held-out test set. For Imagenet,
we report classification errors on the validation set. For Pascal VOC, we report
average precisions on the test set as is customary for that dataset. Again, we use
convolutional networks trained on Imagenet as a baseline. Additional details on
the setup of the transfer-learning experiments are in the supplemental material.

Fig. 4. t-SNE map of 20,000 YFCC100M test images based on features extracted from
the last layer of an AlexNet trained with K = 1,000. A full-resolution map is presented
in the supplemental material. The inset shows a cluster of sports.

Results. Table 3 presents the classification accuracies—averaged over 10 runs—
of logistic regressors on six datasets for both fully supervised and weakly super-
vised feature-production networks, as well as for a combination of both networks.
Table 2 presents the average precision on the Pascal VOC 2007 dataset. Our
weakly supervised models were trained on a dictionary of K = 1,000 words. The
results in the tables show that using the AlexNet architecture, weakly supervised
networks learn visual features of similar quality as fully supervised networks.
This is quite remarkable because the networks learned these features without
any strong supervision. Using more complex classifiers and ensembling, the clas-
sification accuracies can be improved substantially: for instance, we obtain an
mAP of 82.01 on the Pascal VOC 2007 dataset using a neural-network classifier
and multiple crops, using the same features (see supplemental material).
Admittedly, weakly supervised networks perform poorly on the flowers
dataset: Imagenet-trained networks produce better features for that dataset,
presumably, because the Imagenet dataset itself focuses strongly on fine-grained
classification. Interestingly, fully supervised networks do learn better features
than weakly supervised networks when a GoogLeNet architecture is used: this
result is in line with the results from Sect. 4.1, which suggest that GooglLeNet
has too little capacity to learn optimal models on the Flickr data. The sub-
stantial performance improvements we observe in experiments in which fea-
tures from both networks are combined suggest that the features learned by
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Table 2. Pascal VOC 2007 dataset: Average precision (AP) per class and mean average
precision (mAP) of classifiers trained on features extracted with networks trained on
the Imagenet and the YFCC100M dataset (using K = 1,000 words). Using more
complex classifiers and multiple crops, we obtain an mAP of 82.01 on the Pascal VOC
dataset (see supplemental material). Higher values are better.

Datasct || Model et [ @8 | @ |5 | A |2 &M sc|b | £ | w|[en|E2] D [0AP
Imagenet AlexNet 75.7 | 61.9 | 66.9 | 66.5 | 29.3 | 56.1 | 73.5 | 68.0 | 47.1 | 40.9 | 57.4 | 60.0 | 74.0 | 63.2 | 86.2 | 38.8 | 57.9 | 45.5 | 75.7 | 51.1 || 59.8
28 GoogLeNet || 91.3 | 84.0 | 88.4 | 87.2 | 42.4 | 79.6 | 87.3 | 85.0 | 59.1 | 66.5 | 69.5 | 83.3 | 86.6 | 82.9 | 88.4 | 57.5 | 75.8 | 64.6 | 89.5 | 73.8 || 77.1

YFCC100M AlexNet 84.0 | 72.2 | 70.2 | 77.0 | 29.5 | 60.8 | 79.3 | 69.5 | 49.2 | 40.5 | 54.0 | 57.1 | 79.2 | 64.6 | 90.2 | 43.0 | 47.5 | 44.1 | 85.0 | 50.7 || 62.4
~ || GoogLeNet || 91.5 | 83.7 | 84.1 | 88.5 | 41.7 | 78.0 | 86.8 | 84.0 | 54.7 | 55.5 | 63.3 | 78.5. | 86.0 | 77.4 | 91.1 | 51.3 | 60.8 | 52.7 | 91.9 | 60.9 || 73.2
AlexNet 82.96|70.32|73.28|76.29 | 32.21 | 61.84| 79.81 | 72.91 | 51.56 | 43.82| 60.77 | 63.32| 78.63 | 67.72 | 90.26 | 45.45| 53.15 | 49.14 | 84.8 | 55.8 || 64.7

Combined GoogLeNet || 94.09|85.03 | 89.71|88.47|49.35 |81.47 | 88.1 | 85.2 |60.51 |68.37| 71.65 | 85.81 | 88.87|85.22 |88.69 | 60.45 | 77.26 | 66.61 |90.71| 74.49 || 79.0

Table 3. Classification accuracies on held-out test data of logistic regressors obtained
on six datasets (MIT Indoor, MIT SUN, Stanford 40 Actions, Oxford Flowers, Sports,
and ImageNet) using feature representations obtained from convolutional networks
trained on the Imagenet and the YFCC100M dataset (using K = 1,000 words and a
single crop). Errors are averaged over 10 runs. Higher values are better.

l Dataset ‘ Model H Indoor ‘ SUN ‘ Action ‘ Flower ‘ Sports ‘ ImNet
Imacenet AlexNet 53.82 |41.40| 51.27 | 80.28 | 86.07 | 53.63
| & GoogLeNet || 64.00 |48.76| 67.10 | 79.05 | 95.91 | 69.89
oo o | AlexNet || 55.82 [42.67| 53.02 | 74.24 | 90.78 | 35.71 |
YOOI GoogLeNet | 55.56 | 44.43| 52.84 | 65.50 | 870 | 35.61 |
Combined AlexNet 58.76 | 47.27| 56.35 | 83.28 | 87.50 =
GoogLeNet || 67.87 |55.04| 69.19 | 83.74 | 95.79 -

both models complement each other. We note that achieving state-of-the-art
results [6,45,50,70] on these datasets requires the development of tailored
pipelines, e.g., using many image transformations and model ensembles, which
is outside the scope of this paper. We also measured the transfer-learning per-
formance as a function of the YFCC100M training set size. The results of these
experiments with the AlexNet architecture and K = 1,000 are presented in
Fig.5 for four of the datasets (Indoor, MIT SUN, Stanford 40 Actions, and
Oxford Flowers) and the Pascal VOC dataset. The results show that good
feature-production networks can be learned from tens of millions of weakly super-
vised images.

4.3 Experiment 3: Assessing Word Embeddings

The weights in the last layer of our networks can be viewed as an embedding
of the words. This word embedding is, however, different from those learned by
language models such as word2vec [40] that learn embeddings based on word
co-occurrence: it is constructed without explicitly modeling words co-occurrence
(recall that during training, we use a single, randomly selected word as target for
an image). This means that structure in the word embedding can only be learned
when the network notices that two words are assigned to images with similar
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visual content. We perform two sets of experiments to assess the quality of the
word embeddings learned by our networks: (1) experiments investigating how
well the word embeddings represent semantic information and (2) experiments
investigating the ability of the embeddings to learn correspondences between
different languages.

Semantic information. We Indoor MIT SUN
evaluate our word embed- =

dings on two datasets that

capture different types of

semantic information: (1) a 3 gt s TR}

syntactic-semantic questions 5 o Fiiagy e Giering)

dataset [40] and (2) the & *% 50 100 o0 50 100
MEN word similarity dataset § Stanford 40 Actions Oxford Flowers

[5]. The syntactic-semantic § % : R
dataset contains 8, 869 seman- E 50

tic and 10,675 syntactic ques- 3 45

tions of the form “A is to 40

B as C is to D”. Following

[40], we predict D by find- 0 50 100 o0 50 100
ing the word embedding vec- size of Flickr training set (in millions) =

tor wp that has the highest

cosine similarity with wp — Fig.5. Average classification accuracy (averaged

wa + we (excluding A, B, over ten runs) of logistic regressors trained on fea-
tures produced by YFCC100M-trained AlexNets
trained on four datasets (in red). For reference, we
. also show the classification accuracy of classifiers
we predict the correct word . .
trained on features from networks trained on Ima-

D. The MEN dataset con- . N e

i ’ geNet without jittering (in black) and with jittering
tziuns 3,000 Word palrs spall- (i plye). Dashed lines indicate the standard devi-
ning 751 unique words—all ation across runs. Higher values are better. (Color
of which appear in the ESP  figure online)

Game image dataset—with

an associated similarity rating. The similarity ratings are averages of ratings
provided by a dozen human annotators. Following [31] and others, we measure
the quality of word embeddings by the Spearman’s rank correlation of the cosine
similarity of the word pairs and the human-provided similarity rating for those
pairs. In all experiments, we excluded word quadruples/pairs that contained
words that are not in our dictionary. We repeated the experiments for three
dictionary sizes. For reference, we also measured the performance of word2vec
models that were trained on all comments in the YFCC100M dataset (using only
the words in the dictionary).

The prediction accuracies of our experiments on the syntactic-semantic
dataset for three dictionary sizes are presented in the lefthand side of Table 4. The
righthand side of Table 4 presents the rank correlations for our word embeddings
on the MEN dataset (for three vocabulary sizes). As before, we only included
word pairs for which both words appeared in the vocabulary. The results of

and C from the search), and
measure the number of times
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these experiments show that our weakly supervised models learned meaningful
semantic structure. For small dictionary sizes, our models even perform on par
with word2vec, even though our models had no access to language like word2vec:
our models were trained only on image-word pairs and, unlike word2vec, do not
explicitly model word co-occurrences. All semantic structure in the word embed-
ding of our weakly supervised convolutional network was learned by observing
that certain words co-occur with particular visual inputs.

Table 4. Lefthand side: Prediction accuracy of predicting D in questions “A is to
B like C is to D” using convolutional-network word embeddings and word2vec on the
syntactic-semantic dataset, using three dictionary sizes. Questions containing words not
in the dictionary were removed. Higher values are better. Righthand side: Spearman’s
rank correlation of cosine similarities between convolutional-network (and word2vec)
word embeddings and human similarity judgements on the MEN dataset. Word pairs
containing words not in the dictionary were removed. Higher values are better.

Model Syntactic-Semantic Dataset MEN dataset
K=1,000|K=10,000| K=100,000 || K=1,000| K=10,000 | K=100,000

AlexNet 67.91 29.29 0.85 73.77 75.73 67.35

GoogLeNet 71.92 24.06 75.72 75.89

word2vec 71.92 61.35 47.24 75.25 77.53 77.91

| AlexNet + word2vec || 7479 | 57.26 | 4435 || 7817 | 7924 | 7 78.57 |

GoogLeNet + word2vec 75.36 56.05 - 78.75 79.11 -

We also made t-SNE maps of the embedding of 10,000 words in Fig. 6. The
insets highlight five “topics”: (1) musical performance, (2) female and male first
names, (3) sunsets, (4) photography, and (5) gardening. These topics were iden-
tified by the model solely based on the fact that the words in the are associated
with images that have a similar visual content: for instance, first names are often
assigned to photos of individuals or small groups of people. Interestingly, the
“sunset” and “gardening” topics show examples of grouping of words from dif-
ferent languages. For instance, “sonne”; “soleil”, “sole” mean “sun” in German,
French, and Italian, respectively; and “garten” and “giardino” are the German
and Italian words for garden. Our model learns multi-lingual word correspon-
dences because the words are assigned to similarly looking images.

Multi-lingual correspondences. To quantitatively investigate the ability of
our models to find correspondences between words from different languages, we
selected pairs of words from an English-French dictionary? for which: (1) both
the English and the French word are in the dictionary and (2) the English and
the French word are different. This produced 309 English-French word pairs for
models trained on K = 10,000 words, and 3,008 English-French word pairs
for models trained on K = 100,000 words. We measured the quality of the
multi-lingual word correspondences in the embeddings by taking a word in one
language and ranking the words in the other language according to their cosine

* http://www-lium.univ-lemans.fr/~schwenk /nnmt-shared-task/.
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Fig. 6. t-SNE map of 10,000 words based on their embeddings as learned by a weakly
supervised convolutional network trained on the YFCC100M dataset. Note that all the
semantic information represented in the word embeddings is the result of observing
that these words are assigned to images with similar visual content (the model did not
observe word co-occurrences during training). A full-resolution version of the map is
provided in the supplemental material.

similarity with the query word. We measure the precision@k of the predicted
word ranking, using both English and French words as query words.

Table 5 presents the results of this experiment: for a non-trivial number of
words, our procedure correctly identified the French translation of an English
word, and vice versa. Finding the English counterpart of a French word is harder
than the other way around, presumably, because there are more English than
French words in the dictionary: this implies that the English word embeddings
are better optimized than the French ones. In Table6, we show the ten most
similar word pairs, measured by the cosine similarity between their word embed-
dings. These word pairs suggest that models trained on YFCC100M find corre-
spondences between words that have clear visual representations, such as “toma-
toes” or “bookshop”. Interestingly, the identified English-French matches appear
to span a broad set of domains, including objects such as “pencils”, locations
such as “mauritania”, and concepts such as “infrared”.

Table 5. Precision@k of identifying the French counterpart of an English word (and
vice-versa) for two dictionary sizes. Chance level (with & = 1) is 0.0032 for K = 10,000
words and 0.00033 for K = 100,000 words. Higher values are better.

’K ‘Query%Responserzl‘k:E)‘k:lO‘

10.000 English — French 33.01 | 50.16 | 55.34

| __ __|French — English _ || 23.95 | 50.16 | 56.63

100, 000 | Enelish = French 12.30| 22.24 | 26.50 |
French — English 10.11 | 18.78 | 23.44
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Table 6. Twelve highest-scoring pairs of words, as measured by the cosine similarity
between the corresponding word embeddings. Correct pairs of words are colored green,
and incorrect pairs are colored red according to the dictionary. The word “oas” is an
abbreviation for the Organization of American States.

‘English‘ French H English ‘ French H English ‘ French ‘

5 Discussion and Future Work

This study demonstrates that convolutional networks can be trained from scratch
without any manual annotation and shows that good vision features can be
learned from weakly supervised data such as Flickr photos and associated com-
ments. Indeed, our models learn visual features that are roughly on par with
those learned from an image collection with over a million manually defined
labels, and achieve competitive results on a variety of datasets. This result paves
the way for interesting new approaches to the training of large computer-vision
models, and over time, may render the manual annotation of large training sets
unnecessary. In this study, we have not focused on beating the state-of-the-
art performance on an individual vision benchmark: obtaining state-of-the-art
results generally requires averaging predictions over many crops and models,
which is not the goal of this paper. In the supplemental material, however, we
do show that it is straightforward to obtain a mAP of 82.01 on the Pascal VOC
2007 classification dataset using the features learned by our models.

The results presented in this paper lead to three main recommendations for
future work in learning models from weakly supervised data. First, our results
suggest that the best-performing models on the Imagenet dataset are not optimal
for weakly supervised learning. We surmise that current models have insufficient
capacity for learning from the complex Flickr dataset. Second, multi-class logistic
loss performs remarkably well in our experiments even though it is not tailored
to multi-label settings. Presumably, our approximate multi-class loss works very
well on large dictionaries because it shares properties with losses known to work
well in that setting [40,60,61]. Third, it is essential to sample data uniformly
per class to learn good visual features [2]. Uniform sampling per class ensures
that frequent classes in the training data do not dominate the learned features,
which makes the features better suited for transfer learning.

In future work, we aim to combine our weakly supervised vision models with
a language model such as word2vec [40] to perform, for instance, visual question
answering [3,67]. We also intend to extend our model to do language modeling,
e.g., by using an LSTM as output [23]. We also intend to further investigate the
ability of our models to learn visual hierarchies, such as the “sports” example of
Sect. 4.2.
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