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Abstract. We propose a novel supervised learning technique for sum-
marizing videos by automatically selecting keyframes or key subshots.
Casting the task as a structured prediction problem, our main idea is
to use Long Short-Term Memory (LSTM) to model the variable-range
temporal dependency among video frames, so as to derive both represen-
tative and compact video summaries. The proposed model successfully
accounts for the sequential structure crucial to generating meaningful
video summaries, leading to state-of-the-art results on two benchmark
datasets. In addition to advances in modeling techniques, we introduce
a strategy to address the need for a large amount of annotated data for
training complex learning approaches to summarization. There, our main
idea is to exploit auxiliary annotated video summarization datasets, in
spite of their heterogeneity in visual styles and contents. Specifically, we
show that domain adaptation techniques can improve learning by reduc-
ing the discrepancies in the original datasets’ statistical properties.

Keywords: Video summarization · Long short-term memory

1 Introduction

Video has rapidly become one of the most common sources of visual information.
The amount of video data is daunting — it takes over 82 years to watch all videos
uploaded to YouTube per day! Automatic tools for analyzing and understanding
video contents are thus essential. In particular, automatic video summarization
is a key tool to help human users browse video data. A good video summary
would compactly depict the original video, distilling its important events into
a short watchable synopsis. Video summarization can shorten video in several
ways. In this paper, we focus on the two most common ones: keyframe selection,
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where the system identifies a series of defining frames [1–5] and key subshot
selection, where the system identifies a series of defining subshots, each of which
is a temporally contiguous set of frames spanning a short time interval [6–9].

There has been a steadily growing interest in studying learning techniques for
video summarization. Many approaches are based on unsupervised learning, and
define intuitive criteria to pick frames [1,5,6,9–14] without explicitly optimiz-
ing the evaluation metrics. Recent work has begun to explore supervised learn-
ing techniques [2,15–18]. In contrast to unsupervised ones, supervised methods
directly learn from human-created summaries to capture the underlying frame
selection criterion as well as to output a subset of those frames that is more
aligned with human semantic understanding of the video contents.

Supervised learning for video summarization entails two questions: what type
of learning model to use? and how to acquire enough annotated data for fitting
those models? Abstractly, video summarization is a structured prediction prob-
lem: the input to the summarization algorithm is a sequence of video frames,
and the output is a binary vector indicating whether a frame is to be selected or
not. This type of sequential prediction task is the underpinning of many popu-
lar algorithms for problems in speech recognition, language processing, etc. The
most important aspect of this kind of task is that the decision to select cannot be
made locally and in isolation — the inter-dependency entails making decisions
after considering all data from the original sequence.

For video summarization, the inter-dependency across video frames is com-
plex and highly inhomogeneous. This is not entirely surprising as human viewers
rely on high-level semantic understanding of the video contents (and keep track
of the unfolding of storylines) to decide whether a frame would be valuable to
keep for a summary. For example, in deciding what the keyframes are, tempo-
rally close video frames are often visually similar and thus convey redundant
information such that they should be condensed. However, the converse is not
true. That is, visually similar frames do not have to be temporally close. For
example, consider summarizing the video “leave home in the morning and come
back to lunch at home and leave again and return to home at night.” While the
frames related to the “at home” scene can be visually similar, the semantic flow
of the video dictates none of them should be eliminated. Thus, a summariza-
tion algorithm that relies on examining visual cues only but fails to take into
consideration the high-level semantic understanding about the video over a long-
range temporal span will erroneously eliminate important frames. Essentially, the
nature of making those decisions is largely sequential – any decision including
or excluding frames is dependent on other decisions made on a temporal line.

Modeling variable-range dependencies where both short-range and long-range
relationships intertwine is a long-standing challenging problem in machine learn-
ing. Our work is inspired by the recent success of applying long short-term
memory (LSTM) to structured prediction problems such as speech recognition
[19–21] and image and video captioning [22–26]. LSTM is especially advantageous
in modeling long-range structural dependencies where the influence by the distant
past on the present and the future must be adjusted in a data-dependent manner.
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In the context of video summarization, LSTMs explicitly use its memory cells to
learn the progression of “storylines”, thus to know when to forget or incorporate
the past events to make decisions.

In this paper, we investigate how to apply LSTM and its variants to super-
vised video summarization. We make the following contributions. We propose
vsLSTM, a LSTM-based model for video summarization (Sect. 3.3). Figure 2 illus-
trates the conceptual design of the model. We demonstrate that the sequential
modeling aspect of LSTM is essential; the performance of multi-layer neural net-
works (MLPs) using neighboring frames as features is inferior. We further show
how LSTM’s strength can be enhanced by combining it with the determinantal
point process (DPP), a recently introduced probabilistic model for diverse sub-
set selection [2,27]. The resulting model achieves the best results on two recent
challenging benchmark datasets (Sect. 4). Besides advances in modeling, we also
show how to address the practical challenge of insufficient human-annotated
video summarization examples. We show that model fitting can benefit from
combining video datasets, despite their heterogeneity in both contents and visual
styles. In particular, this benefit can be improved by “domain adaptation” tech-
niques that aim to reduce the discrepancies in statistical characteristics across
the diverse datasets.

The rest of the paper is organized as follows. Section 2 reviews related work
of video summarization, and Sect. 3 describes the proposed LSTM-based model
and its variants. In Sect. 4, we report empirical results. We examine our approach
in several supervised learning settings and contrast it to other existing methods,
and we analyze the impact of domain adaptation for merging summarization
datasets for training (Sect. 4.4). We conclude our paper in Sect. 5.

2 Related Work

Techniques for automatic video summarization fall in two broad categories: unsu-
pervised ones that rely on manually designed criteria to prioritize and select
frames or subshots from videos [1,3,5,6,9–12,14,28–36] and supervised ones that
leverage human-edited summary examples (or frame importance ratings) to learn
how to summarize novel videos [2,15–18]. Recent results by the latter suggest
great promise compared to traditional unupservised methods.

Informative criteria include relevance [10,13,14,31,36], representativeness or
importance [5,6,9–11,33,35], and diversity or coverage [1,12,28,30,34]. Several
recentmethods also exploit auxiliary information such asweb images [10,11,33,35]
or video categories [31] to facilitate the summarization process.

Because they explicitly learn from human-created summaries, supervised
methods are better equipped to align with how humans would summarize the
input video. For example, a prior supervised approach learns to combine mul-
tiple hand-crafted criteria so that the summaries are consistent with ground
truth [15,17]. Alternatively, the determinatal point process (DPP) — a proba-
bilistic model that characterizes how a representative and diverse subset can be
sampled from a ground set — is a valuable tool to model summarization in the
supervised setting [2,16,18].
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None of above work uses LSTMs to model both the short-range and long-
range dependencies in the sequential video frames. The sequential DPP pro-
posed in [2] uses pre-defined temporal structures, so the dependencies are “hard-
wired”. In contrast, LSTMs can model dependencies with a data-dependent
on/off switch, which is extremely powerful for modeling sequential data [20].

LSTMs are used in [37] to model temporal dependencies to identify video
highlights, cast as auto-encoder-based outlier detection. LSTMs are also used
in modeling an observer’s visual attention in analyzing images [38,39], and to
perform natural language video description [23–25]. However, to the best of our
knowledge, our work is the first to explore LSTMs for video summarization. As
our results will demonstrate, their flexibility in capturing sequential structure is
quite promising for the task.

3 Approach

In this section, we describe our methods for summarizing videos. We first for-
mally state the problem and the notations, and briefly review LSTM [40–42],
the building block of our approach. We then introduce our first summarization
model vsLSTM. Then we describe how we can enhance vsLSTM by combining it
with a determinantal point process (DPP) that further takes the summarization
structure (e.g., diversity among selected frames) into consideration.

3.1 Problem Statement

We use x = {x1,x2, · · · ,xt, · · · ,xT } to denote a sequence of frames in a video
to be summarized while xt is the visual features extracted at the t-th frame.

The output of the summarization algorithm can take one of two forms. The
first is selected keyframes [2,3,12,28,29,43], where the summarization result is a
subset of (isolated) frames. The second is interval-based keyshots [15,17,31,35],
where the summary is a set of (short) intervals along the time axis. Instead
of binary information (being selected or not selected), certain datasets provide
frame-level importance scores computed from human annotations [17,35]. Those
scores represent the likelihoods of the frames being selected as a part of summary.
Our models make use of all types of annotations — binary keyframe labels,
binary subshot labels, or frame-level importances — as learning signals.1

Our models use frames as its internal representation. The inputs are frame-
level features x and the (target) outputs are either hard binary indicators or
frame-level importance scores (i.e., softened indicators).

3.2 Long Short-Term Memory (LSTM)

LSTMs are a special kind of recurrent neural network that are adept at modeling
long-range dependencies. At the core of the LSTMs are memory cells c which
1 We describe below and in the Supplementary Material how to convert between the

annotation formats when necessary.
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encode, at every time step, the knowledge of the inputs that have been observed
up to that step. The cells are modulated by nonlinear sigmoidal gates, and
are applied multiplicatively. The gates determine whether the LSTM keeps the
values at the gates (if the gates evaluate to 1) or discard them (if the gates
evaluate to 0).

There are three gates: the input gate (i) controlling whether the LSTM
considers its current input (xt), the forget gate (f) allowing the LSTM to forget
its previous memory (ct), and the output gate (o) deciding how much of the
memory to transfer to the hidden states (ht). Together they enable the LSTM
to learn complex long-term dependencies – in particular, the forget date serves
as a time-varying data-dependent on/off switch to selectively incorporating the
past and present information. See Fig. 1 for a conceptual diagram of a LSTM
unit and its algebraic definitions [21].

Fig. 1. The LSTM unit, redrawn from [21]. The memory cell is modulated jointly by
the input, output and forget gates to control the knowledge transferred at each time
step. � denotes element-wise products.

3.3 vsLSTM for Video Summarization

Our vsLSTM model is illustrated in Fig. 2. There are several differences from the
basic LSTM model. We use bidirectional LSTM layers [44] for modeling better
long-range dependency in both the past and the future directions. Note that the
forward and the backward chains do not directly interact.

We combine the information in those two chains, as well as the visual features,
with a multi-layer perceptron (MLP). The output of this perceptron is a scalar

yt = fI(hforward
t ,hbackward

t ,xt).

To learn the parameters in the LSTM layers and the MLP for fI(·), our
algorithm can use annotations in the forms of either the frame-level importance
scores or the selected keyframes encoded as binary indicator vectors. In the
former case, y is a continuous variable and in the latter case, y is a binary
variable. The parameters are optimized with stochastic gradient descent.
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Fig. 2. Our vsLSTM model for video summarization. The model is composed of two
LSTM (long short-term memory) layers: one layer models video sequences in the for-
ward direction and the other the backward direction. Each LSTM block is a LSTM
unit, shown in Fig. 1. The forward/backward chains model temporal inter-dependencies
between the past and the future. The inputs to the layers are visual features extracted
at frames. The outputs combine the LSTM layers’ hidden states and the visual features
with a multi-layer perceptron, representing the likelihoods of whether the frames should
be included in the summary. As our results will show, modeling sequential structures
as well as the long-range dependencies is essential.

3.4 Enhancing vsLSTM by Modeling Pairwise Repulsiveness

vsLSTM excels at predicting the likelihood that a frame should be included or
how important/relevant a frame is to the summary. We further enhance it with
the ability to model pairwise frame-level “repulsiveness” by stacking it with a
determinantal point process (DPP) (which we discuss in more detail below).
Modeling the repulsiveness aims to increase the diversity in the selected frames
by eliminating redundant frames. The modeling advantage provided in DPP
has been exploited in DPP-based summarization methods [2,16,18]. Note that

Fig. 3. Our dppLSTM model. It combines vsLSTM (Fig. 2) and DPP by modeling both
long-range dependencies and pairwise frame-level repulsiveness explicitly.
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diversity can only be measured “collectively” on a (sub)set of (selected) frames,
not on frames independently or sequentially. The directed sequential nature in
LSTMs is arguably weaker in examining all the fames simultaneously in the
subset to measure diversity, thus is at the risk of having higher recall but lower
precision. On the other hand, DPPs likely yield low recalls but high precisions.
In essence, the two are complementary to each other.

Determinantal point processes (DPP). Given a ground set Z of N items
(e.g., all frames of a video), together with an N × N kernel matrix L that records
the pairwise frame-level similarity, a DPP encodes the probability to sample any
subset from the ground set [2,27]. The probability of a subset z is proportional
to the determinant of the corresponding principal minor of the matrix Lz

P (z ⊂ Z;L) =
det(Lz)

det(L + I)
, (2)

where I is the N × N identity matrix. If two items are identical and appear in
the subset, Lz will have identical rows and columns, leading to zero-valued
determinant. Namely, we will have zero-probability assigned to this subset.
A highly probable subset is one capturing significant diversity (i.e., pairwise
dissimilarity).

dppLSTM. Our dppLSTM model is schematically illustrated in Fig. 3. To exploit
the strength of DPP in explicitly modeling diversity, we use the prediction of
our vsLSTM in defining the L-matrix:

Ltt′ = ytyt′Stt′ = ytyt′φT
t φt′ , (3)

where the similarity between the frames xt and x′
t are modeled with the inner

product of another multi-layer perceptron’s outputs

φt = fS(hforward
t ,hbackward

t ,xt), φt′ = fS(hforward
t′ ,hbackward

t′ ,xt′).

This decomposition is similar in spirit to the quality-diversity (QD) decomposi-
tion proposed in [45]. While [2] also parameterizes Ltt′ with a single MLP, our
model subsumes theirs. Moreover, our empirical results show that using two dif-
ferent sets of MLPs — fI(·) for frame-level importance and fS(·) for similarity
— leads to better performance than using a single MLP to jointly model the
two factors. (They are implemented by one-hidden-layer neural networks with
256 sigmoid hidden units, and sigmoid and linear output units, respectively. See
the Supplementary Material for details.)

Learning. To train a complex model such as dppLSTM, we adopt a stage-wise
optimization routine. We first train the MLP fI(·) and the LSTM layers as in
vsLSTM. Then, we train all the MLPs and the LSTM layers by maximizing the
likelihood of keyframes specified by the DPP model. Denote Z(i) as the collection
of frames of the i-th video and z(i)∗ ⊂ Z(i) as the corresponding target subset
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of keyframes. We learn θ that parameterizes (3) by MLE [27]:

θ∗ = arg maxθ

∑

i

log{P (z(i)∗ ⊂ Z(i);L(i)(θ))}. (4)

Details are in the Supplementary Material. We have found this training proce-
dure is effective in quickly converging to a good local optima.

3.5 Generating Shot-Based Summaries from Our Models

Our vsLSTM predicts frame-level importance scores, i.e., the likelihood that a
frame should be included in the summary. For our dppLSTM, the approximate
MAP inference algorithm [46] outputs a subset of selected frames. Thus, for
dppLSTM we use the procedure described in the Supplementary Material to
convert them into keyshot-based summaries for evaluation.

4 Experimental Results

We first define the experimental setting (datasets, features, metrics). Then we
provide key quantitative results demonstrating our method’s advantages over
existing techniques (Sect. 4.2). Next we analyze more deeply the impact of our
method design (Sect. 4.3) and explore the use of domain adaptation for “homog-
enizing” diverse summarization datasets (Sect. 4.4). Finally, we present example
qualitative results (Sect. 4.5).

4.1 Experimental Setup

Datasets. We evaluate the performance of our models on two video datasets,
SumMe [17] and TVSum [35]. SumMe consists of 25 user videos recording
a variety of events such as holidays and sports. TVSum contains 50 videos
downloaded from YouTube in 10 categories defined in the TRECVid Multimedia
Event Detection (MED). Most of the videos are 1 to 5 min in length.

To combat the need of a large amount of annotated data, we use two other
annotated datasets which are annotated with keyframe-based summarization,
Youtube [28] and Open Video Project (OVP) [28,47]. We process them as
[2] to create a ground-truth set of keyframes (then convert to a ground-truth
sequence of frame-level importance scores) for each video. We use the ground-
truth in importance scores to train vsLSTM and convert the sequence to selected
keyframes to train dppLSTM.

For evaluation, both datasets provide multiple user-annotated summaries for
each video, either in the form of keyshots (SumMe) or frame-level importance
scores (TVSum, convertible to keyshot-based summaries). Such conversions are
documented in the Supplementary Material.

Table 1 summarizes key characteristics of these datasets. We can see that
these four datasets are heterogeneous in both their visual styles and contents.
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Table 1. Key characteristics of datasets used in our empirical studies.

Dataset # of video Description Annotations

SumMe 25 User generated videos of events Interval-based shots

TVSum 50 YouTube videos (10 categories) Frame-level
importance

OVP 50 Documentary videos Selected keyframes
as summarizationYouTube 39 YouTube videos (Sports, News, etc.)

Features. For most experiments, the feature descriptor of each frame is obtained
by extracting the output of the penultimate layer (pool 5) of the GoogLeNet
model [48] (1024-dimensions). We also experiment with the same shallow fea-
tures used in [35] (i.e., color histograms, GIST, HOG, dense SIFT) to provide a
comparison to the deep features.

Evaluation metrics. Following the protocols in [15,17,35], we constrain the
generated keyshot-based summary A to be less than 15 % in duration of the
original video (details in the Supplementary Material). We then compute the
precision (P) and recall (R) against the user summary B for evaluation, according
to the temporal overlap between the two:

P =
overlapped duration of A and B

duration of A
, R =

overlapped duration of A and B

duration of B
,

(5)
as well as their harmonic mean F-score,

F = 2P × R/(P + R) × 100%. (6)

We also follow [15,35] to compute the metrics when there are multiple human-
annotated summaries of a video.

Variants of supervised learning settings. We study several settings for
supervised learning, summarized in Table 2:

• Canonical. This is the standard supervised learning setting where the train-
ing, validation, and testing sets are from the same dataset, though they are
disjoint.

• Augmented. In this setting, for a given dataset, we randomly leave 20 % of it
for testing, and augment the remaining 80 % with the other three datasets to
form an augmented training and validation dataset. Our hypothesis is that,
despite being heterogeneous in styles and contents, the augmented dataset
can be beneficial in improving the performance of our models because of the
increased amount of annotations.

• Transfer. In this setting, for a given dataset, we use the other three datasets
for training and validation and test the learned models on the dataset. We are
interested in investigating if existing datasets can effectively transfer summa-
rization models to new unannotated datasets. If the transfer can be successful,
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then it would be possible to summarize a large number of videos in the wild
where there is virtually no closely corresponding annotation.

4.2 Main Results

Table 3 summarizes the performance of our methods and contrasts to those
attained by prior work. Red-colored numbers indicate that our dppLSTM obtains
the best performance in the corresponding setting. Otherwise the best perfor-
mance is bolded. In the common setting of “Canonical” supervised learning, on
TVSum, both of our two methods outperform the state-of-the-art. However, on
SumMe, our methods underperform the state-of-the-art, likely due to the fewer
annotated training samples in SumMe.

What is particularly interesting is that our methods can be significantly
improved when the amount of annotated data is increased. In particular, in the
case of Transfer learning, even though the three training datasets are signifi-
cantly different from the testing dataset, our methods leverage the annotations
effectively to improve accuracy over the Canonical setting, where the amount of
annotated training data is limited. The best performing setting is Augmented,
where we combine all four datasets together to form one training dataset.

The results suggest that with sufficient annotated data, our model can cap-
ture temporal structures better than prior methods that lack explicit tempo-
ral structures [11,15,17,30,35] as well as those that consider only pre-defined
ones [2,16]. More specifically, bidirectional LSTMs and DPPs help to obtain
diverse results conditioned on the whole video while leveraging the sequential
nature of videos. See the Supplementary Material for further discussions.

4.3 Analysis

Next we analyze more closely several settings of interest.

How important is sequence modeling? Table 4 contrasts the performance
of the LSTM-based method vsLSTM to a multi-layer perceptron based baseline.
In this baseline, we learn a two-hidden-layer MLP that has the same number of
hidden units in each layer as does one of the MLPs of our model.

Table 2. Supervision settings tested

Dataset Settings Training & Validation Testing

SumMe Canonical 80 % SumMe 20% SumMe

Augmented OVP + Youtube + TVSum + 80 % SumMe 20% SumMe

Transfer OVP + Youtube + TVSum SumMe

TVSum Canonical 80 % TVSum 20% TVSum

Augmented OVP + Youtube + SumMe + 80 % TVSum 20% TVSum

Transfer OVP + Youtube + SumMe TVSum
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Table 3. Performance (F-score) of various video summarization methods. Published
results are denoted in bold italic; our implementation is in normal font. Empty boxes
indicate settings inapplicable to the method tested.

Dataset Method Unsupervised Canonical Augmented Transfer

SumMe [30] 26.6

[17] 39.4

[15] 39.7

[16] 40.9 a 41.3 38.5

vsLSTM (ours) 37.6 ± 0.8 41.6 ± 0.5 40.7 ± 0.6

dppLSTM (ours) 38.6 ± 0.8 42.9 ± 0.5 41.8 ± 0.5

TVSum [34] 46.0

[11]b 36.0

[35]b 50.0

vsLSTM (ours) 54.2 ± 0.7 57.9 ± 0.5 56.9 ± 0.5

dppLSTM (ours) 54.7 ± 0.7 59.6 ± 0.4 58.7 ± 0.4
a: build video classifiers using TVSum [35]. b: use auxiliary web images for
learning.

Table 4. Modeling video data with LSTMs is beneficial. The reported numbers are
F-scores by various summarization methods.

Dataset Method Canonical Augmented Transfer

SumMe MLP-Shot 39.8± 0.7 40.7 ± 0.7 39.8 ± 0.6

MLP-Frame 38.2 ± 0.8 41.2 ± 0.8 40.2 ± 0.9

vsLSTM 37.6 ± 0.8 41.6 ± 0.5 40.7 ± 0.6

TVSum MLP-Shot 55.2± 0.5 56.7 ± 0.5 55.5 ± 0.5

MLP-Frame 53.7 ± 0.7 56.1 ± 0.7 55.3 ± 0.6

vsLSTM 54.2 ± 0.7 57.9 ± 0.5 56.9 ± 0.5

Since MLP cannot explicitly capture temporal information, we consider two
variants in the interest of fair comparison to our LSTM-based approach. In the
first variant MLP-Shot, we use the averaged frame features in a shot as the
inputs to the MLP and predict shot-level importance scores. The ground-truth
shot-level importance scores are derived as the average of the corresponding
frame-level importance scores. The predicted shot-level importance scores are
then used to select keyshots and the resulting shot-based summaries are then
compared to user annotations. In the second variant MLP-Frame, we concatenate
all visual features within a K-frame (K = 5 in our experiments) window centered
around each frame to be the inputs for predicting frame-level importance scores.

It is interesting to note that in the Canonical setting, MLP-based approaches
outperform vsLSTM. However, in all other settings where the amount of anno-
tations is increased, our vsLSTM is able to outperform the MLP-based methods
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Table 5. Summarization results (in F-score) by our dppLSTM using shallow and deep
features. Note that [35] reported 50.0% on TVSum using the same shallow features.

Dataset Feature type Canonical Transfer

SumMe deep 38.6 ± 0.8 41.8± 0.5

shallow 38.1 ± 0.9 40.7 ± 0.5

TVSum deep 54.7 ± 0.7 58.7± 0.4

shallow 54.0 ± 0.7 57.9 ± 0.5

Table 6. Results by vsLSTM on different types of annotations in the Canonical setting

Dataset Binary Importance score

SumMe 37.2 ± 0.8 37.6 ± 0.8

TVSum 53.7 ± 0.8 54.2 ± 0.7

noticeably. This confirms the common perception about LSTMs: while they are
powerful, they often demand a larger amount of annotated data in order to
perform well.

Shallow versus deep features? We also study the effect of using alternative
visual features for each frame. Table 5 suggests that deep features are able to
modestly improve performance over the shallow features. Note that our dppLSTM
with shallow features still outperforms [35], which reported results on TVSum
using the same shallow features (i.e., color histograms, GIST, HOG, dense SIFT).

What type of annotation is more effective? There are two common types
of annotations in video summarization datasets: binary indicators of whether a
frame is selected or not and frame-level importance scores on how likely a frame
should be included in the summary. While our models can take either format, we
suspect the frame-level importance scores provide richer information than the
binary indicators as they represent relative goodness among frames..

Table 6 illustrates the performance of our vsLSTM model when using the
two different annotations, in the Canonical setting. Using frame-level importance
scores has a consistent advantage.

However, this does not mean binary annotation/keyframes annotations can-
not be exploited. Our dppLSTM exploits both frame-level importance scores and
binary signals. In particular, dppLSTM first uses frame-level importance scores to
train its LSTM layers and then uses binary indicators to form objective functions
to fine tune (cf. Sect. 3 for the details of this stage-wise training). Consequently,
comparing the results in Tables 3, 4, 5 and 6, we see that dppLSTM improves
further by utilizing both types of annotations.
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4.4 Augmenting the Training Data with Domain Adaptation

While Table 3 clearly indicates the advantage of augmenting the training dataset,
those auxiliary datasets are often different from the target one in contents and
styles. We improve summarization further by borrowing the ideas from visual
domain adaptation for object recognition [49–51]. The main idea is first eliminate
the discrepancies in data distribution before augmenting.

Table 7 shows the effectiveness of this idea. We use a simple domain adap-
tation technique [52] to reduce the data distribution discrepancy among all
four datasets, by transforming the visual features linearly such that the covari-
ance matrices for the four datasets are close to each other. The “homogenized”
datasets, when combined (in both the Transfer and Augmented settings), lead to
an improved summary F-score. The improvements are especially pronounced for
the smaller dataset SumMe.

Table 7. Summarization results by our model in the Transfer and Augmented settings,
optionally with visual features linearly adapted to reduce cross-dataset discrepancies

Dataset Method Transfer Augmented

w/o Adaptation w/ Adaptation w/o Adaptation w/ Adaptation

SumMe vsLSTM 40.7± 0.6 41.3± 0.6 41.6± 0.5 42.1± 0.6

dppLSTM 41.8± 0.5 43.1± 0.6 42.9± 0.5 44.7± 0.5

TVSum vsLSTM 56.9± 0.5 57.0± 0.5 57.9±0.5 58.0± 0.5

dppLSTM 58.7± 0.4 58.9± 0.4 59.6± 0.4 59.7± 0.5

4.5 Qualitative Results

We provide exemplar video summaries in Fig. 4. We illustrate the temporal mod-
eling capability of dppLSTM and contrast with MLP-Shot.

The height of the blue background indicates the ground-truth frame-level
importance scores of the video. The marked red and green intervals are the ones
selected by dppLSTM and MLP-Shot as the summaries, respectively. dppLSTM
can capture temporal dependencies and thus identify the most important part
in the video, i.e. the frame depicting the cleaning of the dog’s ears. MLP-Shot,
however, completely misses selecting such subshots even though those subshots
have much higher ground-truth importance scores than the neighboring frames.
We believe this is because MLP-Shot does not capture the sequential semantic
flow properly and lacks the knowledge that if the neighbor frames are important,
then the frames in the middle could be important too.

It is also very interesting to note that despite the fact that DPP models usu-
ally eliminate similar elements, dppLSTM can still select similar but important
subshots: subshots of two people with dogs before and after cleaning the dog’s
ear are both selected. This highlights dppLSTM’s ability to adaptively model
long-range (distant states) dependencies.
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Fig. 4. Exemplar video summaries by MLP-Shot and dppLSTM, along with the ground-
truth importance (blue background). See texts for details. We index videos as in [35].
(Color figure online)

Fig. 5. A failure case by dppLSTM. See texts for details. We index videos as in [35].

Figure 5 shows a failure case of dppLSTM. This video is an outdoor ego-centric
video and records very diverse contents. In particular, the scenes change among
a sandwich shop, building, food, and the town square. From the summarization
results we see that dppLSTM still selects diverse contents, but fails to capture
the beginning frames — those frames all have high importance scores and are
visually similar but are temporally clustered crowdedly. In this case, dppLSTM is
forced to eliminate some of them, resulting in low recall. On the other hand, MLP-
Shot needs only to predict importance scores without being diverse, which leads
to higher recall and F-scores. Interestingly, MLP-Shot predicts poorly towards
the end of the video, whereas the repulsiveness modeled by dppLSTM gives the
method an edge to select a few frames in the end of the video.

In summary, we expect our approaches to work well on videos whose con-
tents change smoothly (at least within a short interval) such that the temporal
structures can be well captured. For videos with rapid changing and diverse
contents, higher-level semantic cues (e.g., object detection as in [5,9]) could be
complementary and should be incorporated.
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5 Conclusion

Our work explores Long Short-Term Memory to develop novel supervised learn-
ing approaches to automatic video summarization. Our LSTM-based models out-
perform competing methods on two challenging benchmarks. There are several
key contributing factors: the modeling capacity by LSTMs to capture variable-
range inter-dependencies, as well as our idea to complement LSTMs’ strength
with DPP to explicitly model inter-frame repulsiveness to encourage diverse
selected frames. While LSTMs require a large number of annotated samples, we
show how to mediate this demand by exploiting the existence of other anno-
tated video datasets, despite their heterogeneity in style and content. Prelimi-
nary results are very promising, suggesting future research directions of devel-
oping more sophisticated techniques that can bring together a vast number of
available video datasets for video summarization. In particular, it would be very
productive to explore new sequential models that can enhance LSTMs’ capac-
ity in modeling video data, by learning to encode semantic understanding of
video contents and using them to guide summarization and other tasks in visual
analytics.
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