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Abstract. Action recognition in videos is a challenging task due to the
complexity of the spatio-temporal patterns to model and the difficulty
to acquire and learn on large quantities of video data. Deep learning,
although a breakthrough for image classification and showing promise
for videos, has still not clearly superseded action recognition methods
using hand-crafted features, even when training on massive datasets. In
this paper, we introduce hybrid video classification architectures based on
carefully designed unsupervised representations of hand-crafted spatio-
temporal features classified by supervised deep networks. As we show
in our experiments on five popular benchmarks for action recognition,
our hybrid model combines the best of both worlds: it is data efficient
(trained on 150 to 10000 short clips) and yet improves significantly on
the state of the art, including recent deep models trained on millions of
manually labelled images and videos.

1 Introduction

Classifying human actions in real-world videos is an open research problem with
many applications in multimedia, surveillance, and robotics [1]. Its complexity
arises from the variability of imaging conditions, motion, appearance, context,
and interactions with persons, objects, or the environment over different spatio-
temporal extents. Current state-of-the-art algorithms for action recognition are
based on statistical models learned from manually labeled videos. They belong
to two main categories: models relying on features hand-crafted for action recog-
nition (e.g., [2-10]), or more recent end-to-end deep architectures (e.g., [11-22]).
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These approaches have complementary strengths and weaknesses. Models based
on hand-crafted features are data efficient, as they can easily incorporate struc-
tured prior knowledge (e.g., the importance of motion boundaries along dense
trajectories [2]), but their lack of flexibility may impede their robustness or mod-
eling capacity. Deep models make fewer assumptions and are learned end-to-end
from data (e.g., using 3D-ConvNets [23]), but they rely on hand-crafted architec-
tures and the acquisition of large manually labeled video datasets (e.g., Sports-
1M [12]), a costly and error-prone process that poses optimization, engineering,
and infrastructure challenges.

Although deep learning for videos has recently made significant improve-
ments (e.g., [13,14,23]), models using hand-crafted features are the state of the
art on many standard action recognition benchmarks (e.g., [7,9,10]). These mod-
els are generally based on improved Dense Trajectories (iDT) [3,4] with Fisher
Vector (FV) encoding [24,25]. Recent deep models for action recognition there-
fore combine their predictions with complementary ones from iDT-FV for better
performance [23,26].

In this paper, we study an alternative strategy to combine the best of
both worlds via a single hybrid classification architecture consisting in chaining
sequentially the iDT hand-crafted features, the unsupervised FV representation,
unsupervised or supervised dimensionality reduction, and a supervised deep net-
work (cf. Fig. 1). This family of models was shown by Perronnin and Larlus [27]
to perform on par with the deep convolutional network of Krizhevsky et al. [28]
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Fig. 1. Our hybrid unsupervised and supervised deep multi-layer architecture. Hand-
crafted features are extracted along optical flow trajectories from original and generated
videos. Those features are then normalized using RootSIFT [29], PCA-transformed,
and augmented with their (z,y,t) coordinates, forming our low-level descriptors. The
descriptors for each feature channel are then encoded (¢) as Fisher Vectors, separately
aggregated (X)) into a video-level representation, square-rooted, and f2-normalized.
These representations are then concatenated (U) and renormalized. A dimensionality
reduction layer is learned supervisedly or unsupervisedly. Supervised layers are fol-
lowed by Batch-Normalization (BN) [30], ReLU (RL) non-linearities [31], and Dropout
(DO) [32] during training. The last layer uses sigmoids (multi-label datasets) or softmax
(multi-class datasets) non-linearities to produce action-label estimates.
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for large scale image classification. We adapt this type of architecture differently
for action recognition in videos with particular care for data efficiency.

Our first contribution consists in a careful design of the first unsuper-
vised part of our hybrid architecture, which even with a simple SVM classifier
is already on par with the state of the art. We experimentally observe that
showing sympathy for the details (e.g., spatio-temporal structure, normaliza-
tion) and doing data augmentation by feature stacking (instead of duplicating
training samples) are critical for performance, and that optimal design decisions
generalize across datasets.

Our second contribution consists in a data efficient hybrid architecture
combining unsupervised representation layers with a deep network of multi-
ple fully connected layers. We show that supervised mid-to-end learning of
a dimensionality reduction layer together with non-linear classification layers
yields an excellent compromise between recognition accuracy, model complex-
ity, and transferability of the model across datasets thanks to reduced risks of
overfitting and modern optimization techniques.

The paper is organized as follows. Section 2 reviews the related works in
action recognition. Section 3 presents the details of the first unsupervised part
(based on iDT-FV) of our hybrid model, while Sect.4 does so for the rest of
the architecture and our learning algorithm. In Sect.5 we report experimental
conclusions from parametric studies and comparisons to the state of the art
on five widely used action recognition datasets of different sizes. In particular,
we show that our hybrid architecture improves significantly upon the current
state of the art, including recent combinations of iDT-FV predictions with deep
models trained on millions of images and videos.

2 Related Work

Existing action recognition approaches (cf. [1] for a recent survey) can be orga-
nized into four broad categories based on whether they involve hand-crafted
vs. deep-based video features, and a shallow vs. deep classifier, as summarized in
Table 1.

Table 1. Categorization of related recent action recognition methods

Shallow classifier | Deep classifier
Hand-crafted features | [2-10] [33], our method
Deep-based features | [23,26,34,35] [11-22]

Hand-crafted features, shallow classifier. A significant part of the progress
on action recognition is driven by the development of local hand-crafted spatio-
temporal features encoded as bag-of-words representations classified by “shal-
low” classifiers such as SVMs [2-10]. Most successful approaches use improved
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Dense Trajectories (iDT) [3] to aggregate local appearance and motion descrip-
tors into a video-level representation through the Fisher Vector (FV) encod-
ing [24,25]. Local descriptors such as HOG [36], HOF [37], and MBH [2] are
extracted along dense point trajectories obtained from optical flow fields. There
are several recent improvements to iDT, for instance, using motion compensa-
tion [5,6,38,39] and stacking of FVs to obtain a multi-layer encoding similar to
mid-level representations [40]. To include global spatio-temporal location infor-
mation, Wang et al. [5] compute FVs on a spatio-temporal pyramid (STP) [41]
and use Spatial Fisher Vectors (SFV) [42]. Fernando et al. [10] model the global
temporal evolution over the entire video using ranking machines learned on
time-varying average FVs. Another recent improvement is the Multi-sklp Fea-
ture Stacking (MIFS) technique [7], which stacks features extracted at multiple
frame-skips for better invariance to speed variations. An extensive study of the
different steps of this general iDT pipeline and various feature fusion methods
is provided in [8].

End-to-end learning: deep-based features, deep classifier. The seminal
supervised deep learning approach of Krizhevsky et al. [28] has enabled impres-
sive performance improvements on large scale image classification benchmarks,
such as ImageNet [43], using Convolutional Neural Networks (CNN) [44]. Con-
sequently, several approaches explored deep architectures for action recognition.
While earlier works resorted to unsupervised learning of 3D spatio-temporal fea-
tures [45], supervised end-to-end learning has recently gained popularity [11-22].
Karpathy et al. [12] studied several architectures and fusion schemes to extend
2D CNNs to the time domain. Although trained on the very large Sports-1M
dataset, their 3D networks performed only marginally better than single-frame
models. To overcome the difficulty of learning spatio-temporal features jointly,
the Two-Stream architecture [13] is composed of two CNNs trained indepen-
dently, one for appearance modeling on RGB input, and another for tempo-
ral modeling on stacked optical flow. Sun et al. [14] factorize 3D CNNs into
learning 2D spatial kernels, followed by 1D temporal ones. Alternatively, other
recent works use recurrent neural networks (RNN) in conjunction with CNNs
to encode the temporal evolution of actions [16,17,19]. Overall, due to the dif-
ficulty of training 3D-CNNs and the need for vast amounts of training videos
(e.g., Sports-1M [12]), end-to-end methods report only marginal improvements
over traditional baselines, and our experiments show that the iDT-FV often
outperforms these approaches.

Deep-based features, shallow classifier. Several works [23,26,34,35] explore
the encoding of general-purpose deep-learned features in combination with “shal-
low” classifiers, transferring ideas from the iDT-FV algorithm. Zha et al. [34]
combine CNN features trained on ImageNet [43] with iDT features through a
Kernel SVM. The TDD approach [26] extracts per-frame convolutional feature
maps from two-stream CNN [13] and pools these over spatio-temporal cubes
along extracted trajectories. Similar to [12], C3D [23] learns general-purpose
features using a 3D-CNN, but the final action classifier is a linear SVM. Like
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end-to-end deep models, these methods rely on large datasets to learn generic
useful features, which in practice perform on par or worse than iDT.

Hybrid architectures: hand-crafted features, deep classifier. There is
little work on using unsupervised encodings of hand-crafted local features in
combination with a deep classifier. In early work, Baccouche et al. [33] learn
temporal dynamics of traditional per-frame SIFT-BOW features using a RNN.
The method, coupled with camera motion features, improves on BoW-SVM for
a small set of soccer videos.

Our work lies in this category, as it combines the strengths of iDT-FV
encodings and supervised deep multi-layer non-linear classifiers. Our method
is inspired by the recently proposed hybrid image classification architecture of
Perronnin and Larlus [27], who stack several unsupervised FV-based and super-
vised layers. Their hybrid architecture shows significant improvements over the
standard FV pipeline, closing the gap on [28], which suggests there is still much
to learn about FV-based methods.

Our work investigates this type of hybrid architectures, with several notice-
able differences: (i) FV is on par with the current state of the art for action
recognition, (ii) iDT features contain many different appearance and motion
descriptors, which also results in more diverse and higher-dimensional FV, (iii)
most action recognition training sets are small due to the cost of labeling and
processing videos, so overfitting and data efficiency are major concerns. In this
context, we adopt different techniques from modern hand-crafted and deep mod-
els, and perform a wide architecture and parameter study showing conclusions
regarding many design choices specific to action recognition.

3 Fisher Vectors in Action: From Baseline to State
of the Art

We first recall the iDT approach of Wang and Schmid [3], then describe the
improvements that can be stacked together to transform this strong baseline
into a state-of-the-art method for action recognition. In particular, we propose a
data augmentation by feature stacking method motivated by MIFS [7] and data
augmentation for deep models.

3.1 Improved Dense Trajectories

Local spatio-temporal features. The iDT approach used in many state-
of-the-art action recognition algorithms (e.g., [3-5,7,8,10,40]) consists in first
extracting dense trajectory video features [2] that efficiently capture appearance,
motion, and spatio-temporal statistics. Trajectory shape (Traj) [2], HOG [36],
HOF [37], and MBH [2] descriptors are extracted along trajectories obtained by
median filtering dense optical flow. We extract dense trajectories from videos in
the same way as in [3], applying RootSIFT normalization [29] (¢; normalization
followed by square-rooting) to all descriptors.
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Unsupervised representation learning. Before classification, we combine
the multiple trajectory descriptors in a single video-level representation by accu-
mulating their Fisher Vector encodings (FV) [24,25], which was shown to be
particularly effective for action recognition [5,46]. This high-dimensional repre-
sentation is based on the gradient of a generative model, a Gaussian Mixture
Model (GMM), learned in an unsupervised manner on a large set of trajec-
tory descriptors in our case. We use K = 256 Gaussians as a good compromise
between accuracy and efficiency [3-5]. We randomly sample 256,000 trajectories
from the pool of training videos, irrespectively of their labels, to learn one GMM
per descriptor channel using 10 iterations of EM. Before learning the GMMSs, we
apply PCA to the descriptors, reducing their dimensionality by a factor of two.
After learning the GMMs, we extract FV encodings for all descriptors in each
descriptor channel and combine these encodings into a per-channel, video-level
representation using sum-pooling, i.e. by adding F'Vs together before normaliza-
tion. In addition, we apply further post-processing and normalization steps, as
discussed in the next subsection.

Supervised classification. When using a linear classification model, we use
a linear SVM. As it is standard practice and in order to ensure comparability
with previous works [3,7,26,47], we fix C = 100 unless stated otherwise and
use one-vs-rest for multi-class and multi-label classification. This forms a strong
baseline for action recognition, as shown by previous works [5,26] and confirmed
in our experiments. We will now show how to make this baseline competitive
with recent state-of-the-art methods.

3.2 Bag of Tricks for Bag-of-Words

Incorporating global spatio-temporal structure. Incorporating the spatio-
temporal position of local features can improve the FV representation. We do
not use spatio-temporal pyramids (STP) [41], as they significantly increase both
the dimensionality of the representation and its variance [48]. Instead, we simply
concatenate the PCA-transformed descriptors with their respective (z,y,t) € R3
coordinates, as in [7,48]. We refer to this method as Spatio-Temporal Augmen-
tation (STA). This approach is linked to the Spatial Fisher Vector (SFV) [42],
a compact model related to soft-assign pyramids, in which the descriptor gen-
erative model is extended to explicitly accommodate the (x,y,t) coordinates
of the local descriptors. When the SFV is created using Gaussian spatial mod-
els (¢f. Eq.18 in [42]), the model becomes equivalent to a GMM created from
augmented descriptors (assuming diagonal covariance matrices).

Normalization. We apply signed-square-rooting followed by /5 normalization,
then concatenate all descriptor-specific FVs and reapply this same normaliza-
tion, following [7]. The double normalization re-applies square rooting, and is
thus equivalent to using a smaller power normalization [25], which improves
action recognition performance [49].
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Multi-Skip Feature Stacking (MIFS). MIFS [7] improves the robustness of
FV to videos of different lengths by increasing the pool of features with frame-
skipped versions of the same video. Standard iDT features are extracted from
those frame-skipped versions and stacked together before descriptor encoding,
decreasing the expectation and variance of the condition number [7,50,51] of the
extracted feature matrices. We will now see that the mechanics of this technique
can be expanded to other transformations.

3.3 Data Augmentation by Feature Stacking (DAFS)

Data augmentation is an important part of deep learning [26,52,53], but it is
rarely used with hand-crafted features and shallow classifiers, particularly for
action recognition where duplicating training examples can vastly increase the
computational cost. Common data augmentation techniques for images include
the use of random horizontal flipping [26,52], random cropping [52], and even
automatically determined transformations [54]. For video classification, [9,10]
duplicate the training set by mirroring.

Instead, we propose to generalize MIF'S to arbitrary transformations, an app-
roach we call Data Augmentation by Feature Stacking (DAFS). First, we extract
features from multiple transformations of an input video (frame-skipping, mir-
roring, etc.) that do not change its semantic category. Second, we obtain a large
feature matrix by stacking the obtained spatio-temporal features prior to encod-
ing. Third, we encode the feature matrix, pool the resulted encodings, and apply
the aforementioned normalization steps along this pipeline to obtain a single
augmented video-level representation.

This approach yields a representation that simplifies the learning problem,
as it can improve the condition number of the feature matrix further than just
MIFS thanks to leveraging data augmentation techniques traditionally used for
deep learning. In contrast to data augmentation for deep approaches, however,
we build a single more robust and useful representation instead of duplicating
training examples. Note also that DAF'S is particularly suited to FV-based rep-
resentation of videos as pooling FV from a much larger set of features decreases
one of the sources of variance for FV [55].

4 Hybrid Classification Architecture for Action
Recognition

4.1 System Architecture

Our hybrid action recognition model combining FV with neural networks (cf.
Fig. 1) starts with the previously described steps of our iDT-DAFS-FV pipeline,
which can be seen as a set of unsupervised layers. The next part of our archi-
tecture consists of a set of L fully connected supervised layers, each comprising
a dot-product followed by a non-linearity. Let hg denote the FV output from
the last unsupervised layer in our hybrid architecture, h;_; the input of layer
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je{1,...,L}, hj = g(W;h;_1) its output, with W} the corresponding parameter
matrix to be learned. For intermediate hidden layers we use the Rectified Linear
Unit (ReLU) non-linearity [31] for g. For the final output layer we use differ-
ent non-linearity functions depending on the task. For multi-class classification
over ¢ classes, we use the softmax function g(z;) = exp(z;)/ > s, exp(zy). For
multi-label tasks we consider the sigmoid function g(z;) = 1/(1 + exp(—2;)).

Connecting the last unsupervised layer to the first supervised layer can result
in a much higher number of weights in this section than in all other layers of the
architecture. Since this might be an issue for small datasets due to the higher risk
of overfitting, we study the impact of different ways to learn the weights of this
dimensionality reduction layer: either with unsupervised learning (e.g., using
PCA as in [27]), or by learning a low-dimensional projection end-to-end with
the next layers of the architecture.

4.2 Learning

Unsupervised layers. Our unsupervised layers are learned as described in
Sect. 3.1.

Supervised layers. We use the standard cross-entropy between the network
output ¢ and the ground-truth label vectors y as loss function. For multi-class
classification problems, we minimize the categorical cross-entropy cost function

over all n samples:
Ceat(y, ¥ Z Z yirlog(Jix), (1)

i=1 k=1
whereas for multi-label problems we minimize the binary cross-entropy:

Chin(y Z Z yirlog(Jir) — (1 — yir)log(1 — ix)- (2)

i=1 k=1

Optimization. For parameter optimization we use the recently introduced
Adam algorithm [56]. Since Adam automatically computes individual adaptive
learning rates for the different parameters of our model, this alleviates the need
for fine-tuning of the learning rate with a costly grid-search or similar methods.
Adam uses estimates of the first and second-order moments of the gradients in
the update rule:

gt — Vo f(0i—1)
— where my«— Bi-mi—1+(1—=061)-g¢  (3)
1—6§+E v — B2 v + (1 —f2) - gt

me
975 <—0t71 — Q-

(1-51)

and where f(6) is the function with parameters 6 to be optimized, ¢ is the index
of the current iteration, mg = 0, vg = 0, and 8 and 8% denotes 8; and S35 to the
power of ¢, respectively. We use the default values for its parameters a = 0.001,
B = 0.9, B = 0.999, and ¢ = 10~8 proposed in [56] and implemented in
Keras [57].
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Batch normalization and regularization. During learning, we use batch
normalization (BN) [30] and dropout (DO) [32]. Each BN layer is placed
immediately before the ReLLU non-linearity and parametrized by two vectors
v and ( learned alongside each fully-connected layer. Given a training set
X = {x1,x2,....,x,} of n training samples, the transformation learned by BN
for each input vector x € X is given by:

n
x

- 1 1
BN (z;, ) :’Yﬁ + 83 where pup ﬁ;mi , 0B — ﬁ;(m —ps)? (4)
Together with DO, the operation performed by hidden layer j can now be
expressed as h; = r @ g(BN(W;h;_1;v;,5;)), where r is a vector of Bernoulli-
distributed variables with probability p and ® denotes the element-wise product.
We use the same DO rate p for all layers. The last output layer is not affected
by this modification.

Dimensionality reduction layer. When unsupervised, we fix the weights of
the dimensionality reduction layer from the projection matrices learned by PCA
dimensionality reduction followed by whitening and ¢5 normalization [27]. When
it is supervised, it is treated as the first fully-connected layer, to which we apply
BN and DO as with the rest of the supervised layers.

Bagging. Since our first unsupervised layers can be fixed, we can train ensem-
ble models and average their predictions very efficiently for bagging purposes
[27,58,59] by caching the output of the unsupervised layers and reusing it in the
subsequent models.

5 Experiments

We first describe the datasets used in our experiments, then provide a detailed
analysis of the iDT-FV pipeline and our proposed improvements. Based on our
observations, we then perform an ablative analysis of our proposed hybrid archi-
tecture. Finally, we study the transferability of our hybrid models, and compare
to the state of the art.

5.1 Datasets

We use five publicly available and commonly used datasets for action recognition.
We briefly describe these datasets and their evaluation protocols.

The Hollywood2 [60] dataset contains 1,707 videos extracted from 69 Hol-
lywood movies, distributed over 12 overlapping action classes. As one video can
have multiple class labels, results are reported using the mean average precision
(mAP).

The HMDB-51 [61] dataset contains 6,849 videos distributed over 51 dis-
tinct action categories. Each class contains at least 101 videos and presents a
high intra-class variability. The evaluation protocol is the average accuracy over
three fixed splits [61].
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The UCF-101 [62] dataset contains 13,320 video clips distributed over 101
distinct classes. This is the same dataset used in the THUMOS’13 challenge [63].
The performance is again measured as the average accuracy on three fixed splits.

The Olympics [64] dataset contains 783 videos of athletes performing 16
different sport actions, with 50 sequences per class. Some actions include inter-
actions with objects, such as Throwing, Bowling, and Weightlifting. Following
[3,7], we report mAP over the train/test split released with the dataset.

The High-Five (a.k.a. TVHI) [65] dataset contains 300 videos from 23 differ-
ent TV shows distributed over four different human interactions and a negative
(no-interaction) class. As in [5,6,65,66], we report mAP for the positive classes
(mAP+) using the train/test split provided by the dataset authors.

5.2 Detailed Study of Dense Trajectory Baselines for Action
Recognition

Table 2 reports our results comparing the iDT baseline (Sect. 3.1), its improve-
ments discussed in Sect. 3.2, and our proposed data augmentation strategy
(Sect. 3.3).

Reproducibility. We first note that there are multiple differences in the iDT
pipelines used across the literature. While [3] applies RootSIFT only on HOG,
HOF, and MBH, in [7] this normalization is also applied to the Traj descrip-
tor. While [3] includes Traj in their pipeline, [5] omits it. Additionally, person
bounding boxes are used to ignore human motions when doing camera motion
compensation in [5], but are not publicly available for all datasets. Therefore,
we reimplemented the main baselines and compare our results to the officially
published ones. As shown in Table 2, we successfully reproduce the original iDT
results from [3,47], as well as the MIFS results of [7].

Improvements of iDT. Table2 shows that double-normalization (DN) alone
improves performance over iDT on most datasets without the help of STA.
We show that STA gives comparable results to SEV+STP, as hypothesized in
Sect. 3.2. Given that STA and DN are both beneficial for performance, we com-
bine them with our own method.

Data Augmentation by Feature Stacking (DAFS). Although more sophis-
ticated transformations can be used, we found that combining a limited number
of simple transformations already allows to significantly improve the iDT-based
methods in conjunction with the aforementioned improvements, as shown in the
“DT4+STA+DAFS+DN” line of Table2. In practice, we generate on-the-fly 7
different versions for each video, considering the possible combinations of frame-
skipping up to level 3 and horizontal flipping.

Fine tuned and non-linear SVMs. Attempting to improve our best results,
we also performed experiments both fine-tuning C' and also using a Gaussian
kernel while fine-tuning . However, we found that those two sets of experi-
ments did not lead to significant improvements. As DAFS already brings results
competitive with the current state of the art, we set those results with fixed
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Table 2. Analysis of iDT baselines and several improvements

UCF-101 HMDB-51 Hollywood2 High-Five Olympics

Y%mAcc (s.d.) %mAcc (s.d.) | %mAP %mAP+ (s.d.) | %mAP
iDT [3] 84.8 [47]> P |57.2 64.3 - 91.1
Our reproduction 85.0 (1.32)® ® | 57.0 (0.78) 64.2 67.7 (1.90) 88.6
iDT+SFV+STP [5] 85.7% b 60.1% 66.8% 68.1% b 90.42
Our reproduction 85.4 (1.27)* P | 59.3 (0.80)* | 67.1% 67.8 (3.78)* P | 88.32
iDT+STA+DN [7] 87.3 62.1 67.0 - 89.8
Our reproduction 87.3 (0.96)P 61.7 (0.90) 66.8 70.4 (1.63) 90.7
iDT+STA+MIFS+DN (7] | 89.1 65.1 68.0 - 91.4
Our reproduction 89.2 (1.03)P 65.4 (0.46) 67.1 70.3 (1.84) 91.1
iDT4+DN 86.3 (0.95)P 59.1 (0.45) 65.7 67.5 (2.27) 89.5
iDT+STA 86.0 (1.14) 60.3 (1.32) 66.8 70.4 (1.96) 88.2
iDT+STA+DAFS+DN | 90.6 (0.91)° |67.8 (0.22) |69.1 71.0 (2.46) | 92.8

iDT: Improved Dense Trajectories; SFV: Spatial Fisher Vector; STP: Spatio-Temporal Pyramids; STA:
Spatio-Temporal Augmentation; MIFS: Multi-skIp Feature Stacking; DN: Double-Normalization; DAFS:
Data Augmentation Feature Stacking; *without Trajectory descriptor; bwithout Human Detector.

C' as our current shallow baseline (FV-SVM). We will now incorporate those
techniques in the first unsupervised layers of our hybrid models.

5.3 Analysis of Hybrid Models

In this section, we start from hybrid architectures with unsupervised dimension-
ality reduction learned by PCA. For UCF-101 (the largest dataset) we initialize
W1 with r = 4096 dimensions, whereas for all other datasets we use the number
of dimensions responsible for 99 % of the variance (yielding less dimensions than
training samples).

We study the interactions between four parameters that can influence the
performance of our hybrid models: the output dimension of the intermediate
fully connected layers (width), the number of layers (depth), the dropout rate,
and the mini-batch size of Adam (batch). We systematically evaluate all possible
combinations and rank the architectures by the average relative improvement
w.r.t. the best FV-SVM model. Training all 480 combinations for one split of
UCF-101 can be accomplished in less than two days with a single Tesla K80
GPU. We report the top results in Table3 and visualize all results using the
parallel coordinates plot in Fig. 2. Our observations are as follows.

Table 3. Top-5 best performing hybrid architectures with consistent improvements

Depth | Width | Batch UCF-101 | HMDB-51 | Hollywood2 | High-Five | Olympics | Relative
Y%mAcc Y%mAcc Z%mAP Z%mAP+ Z%mAP improv.

2 4096 | 128 91.6 68.1 72.6 73.1 95.3 2.46 %

2 4096 256 91.6 67.8 72.5 72.9 95.3 2.27%

2 2048 128 91.5 68.0 72.7 72.7 94.8 2.21%

2 2048 256 91.4 67.9 72.7 72.5 95.0 2.18%

2 512 128 91.0 67.4 73.0 72.4 95.3 2.05%

1 - - 91.9 68.5 70.4 71.9 93.5 1.28%

Best FV-SVM (cf. Table2) | 90.6 67.8 69.1 71.0 92.8 0.00 %
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Fig. 2. Parallel coordinates plots showing the impact of multiple parameters. Each line
represents one combination of parameters and color indicates performance of our hybrid
architectures with unsupervised dimensionality reduction. Depth 2 correlates with high-
performing architectures, whereas a small width and a large depth is suboptimal. (Color
figure online)

Unsupervised dimensionality reduction. Performing dimensionality reduc-
tion using the weight matrix from PCA is beneficial for all datasets, and using
this layer alone, achieves 1.28 % average improvement (Table 3, depth 1) upon
our best SVM baseline.

Width. We consider networks with fully connected layers of size 512, 1024,
2048, and 4096. We find that a large width (4096) gives the best results in 4 of
5 datasets.

Depth. We consider hybrid architectures with depth between 1 and 4. Most
well-performing models have depth 2 as shown in Fig. 2, but one layer is enough
for the big datasets.

Dropout rate. We consider dropout rates from 0 to 0.9. We find dropout to be
dependent of both architecture and dataset. A high dropout rate significantly
impairs classification results when combined with a small width and a large
depth.

Mini-batch size. We consider mini-batch sizes of 128, 256, and 512. We find
lower batch sizes to bring best results, with 128 being the more consistent across
all datasets. We observed that large batch sizes were detrimental to networks
with a small width.

Best configuration with unsupervised dimensionality reduction. We
find the following parameters to work the best: small batch sizes, a large width,
moderate depth, and dataset-dependent dropout rates. The most consistent
improvements across datasets are with a network with batch-size 128, width
4096, and depth 2.

Supervised dimensionality reduction. Our previous findings indicate that
the dimensionality reduction layer can have a large influence on the overall
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Table 4. Supervised dimensionality reduction hybrid architecture evaluation

Depth | Width | Batch UCF-101 HMDB-51 Hollywood2 | High-Five Olympics
%mAcc (s.d.) | %mAcc (s.d.) | %mAP %mAP+ (s.d.) | %AmAP

1 1024 128 92.3 (0.77) 69.4 (0.16) 72.5 71.8 (1.37) 95.2

1 512 128 92.3 (0.70) 69.2 (0.09) 72.2 72.2 (1.14) 95.2

2 1024 | 128 91.9 (0.78) 68.8 (0.46) 71.8 72.0 (1.03) 94.8

2 512 128 92.1 (0.68) 69.1 (0.36) 70.8 71.9 (2.22) 94.2

Best unsup. (c¢f. Table3) | 91.9 68.5 73.0 73.1 95.3

classification results. Therefore, we investigate whether a supervised dimension-
ality reduction layer trained mid-to-end with the rest of the architecture could
improve results further. Due to memory limitations imposed by the higher num-
ber of weights to be learned between our 116K-dimensional input FV represen-
tation and the intermediate fully-connected layers, we decrease the maximum
network width to 1024. In spite of this limitation, our results in Table4 show
that much smaller hybrid architectures with supervised dimensionality reduction
improve (on the larger UCF-101 and HMDB-51 datasets) or maintain (on the
other smaller datasets) recognition performance.

Comparison to hybrid models for image recognition. Our experimental
conclusions and optimal model differ from [27], both on unsupervised and super-
vised learning details (e.g., dropout rate, batch size, learning algorithm), and in
the usefulness of a supervised dimensionality reduction layer trained mid-to-end
(not explored in [27]).

5.4 Transferability of Hybrid Models

In this section, we study whether the first layers of our architecture can be trans-
ferred across datasets. As a reference point, we use the first split of UCF-101 to
create a base model and transfer elements from it to other datasets. We chose
UCF-101 for the following reasons: it is the largest dataset, has the largest diver-
sity in number of actions, and contains multiple categories of actions, including
human-object interaction, human-human interaction, body-motion interaction,
and practicing sports.

Unsupervised representation layers. We start by replacing the dataset-
specific GMMs with the GMMs from the base model. Our results in the second
row of Table 5 show that the transferred GMMs give similar performance to the
ones using dataset-specific GMMs. This, therefore, greatly simplifies the task of
learning a new model for a new dataset. We keep the transferred GMMs fixed
in the next experiments.

Unsupervised dimensionality reduction layer. Instead of configuring the
unsupervised dimensionality reduction layer with weights from the PCA learned
on its own dataset, we configure it with the weights learned in UCF-101. Our
results are in the third row of Table 5. This time we observe a different behavior:
for Hollywood2 and HMDB-51, the best models were found without transfer,
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Table 5. Transferability experiments involving unsupervised dimensionality reduction

Representation | Reduction| Supervised | HMDB-51 Hollywood2 | High-Five Olympics
layers layer layers Y%mAcc (s.d.) | %mAP %mAP+ (s.d.) | %mAP
Own Own Own 68.0 (0.65) 72.6 73.1 (1.01) 95.3
UCF Own Own 68.0 (0.40) | 72.4 73.7 (1.76) 94.2
UCF UCF Own 66.5 (0.88) 70.0 76.3 (0.96) 94.0
UCF UCF UCF 66.8 (0.36) 69.7 71.8 (0.12) 96.0

Table 6. Transferability experiments involving supervised dimensionality reduction

Representation | Supervised | HMDB-51 Hollywood2 | High-Five Olympics
layers layers Y%mAcc (s.d.) | %mAP %mAP+ (s.d.) | %mAP
Own Own 69.2 (0.09) | 72.2 72.2 (1.14) 95.2
UCF Own 69.4 (0.16) 72.5 71.8 (1.37) 95.2
UCF UCF 69.6 (0.36) | 72.2 73.2 (1.89) | 96.3

whereas for Olympics it did not have any measurable impact. However, trans-
ferring PCA weights brings significant improvement in High-Five. One of the
reasons for this improvement is the evidently smaller training set size of High-
Five (150 samples) in contrast to other datasets. The fact that the improvement
becomes less visible as the number of samples in each dataset increases (before
eventually degrading performance) indicates there is a threshold below which
transferring starts to be beneficial (around a few hundred training videos).

Supervised layers after unsupervised reduction. We also study the trans-
ferability of further layers in our architecture, after the unsupervised dimen-
sionality reduction transfer. We take the base model learned in the first split
of UCF-101, remove its last classification layer, re-insert a classification layer
with the same number of classes as the target dataset, and fine-tune this new
model in the target dataset, using an order of magnitude lower learning rate.
The results can be seen in the last row of Table 5. The same behavior is observed
for HMDB-51 and Hollywood2. However, we notice a decrease in performance
for High-Five and a performance increase for Olympics. We attribute this to the
presence of many sports-related classes in UCF-101.

Mid-to-end reduction and supervised layers. Finally, we study whether
the architecture with supervised dimensionality reduction layer transfers across
datasets, as we did for the unsupervised layers. We again replace the last classifi-
cation layer from the corresponding model learned on the first split of UCF-101,
and fine-tune the whole architecture on the target dataset. Our results in the
second and third rows of Table 6 show that transferring this architecture brings
improvements for Olympics and HMDB-51, but performs worse than transferring
unsupervised layers only on High-Five.
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5.5 Comparison to the State of the Art

In this section, we compare our best models found previously to the state of the
art.

Best models. For UCF-101, the most effective model leverages its large train-
ing set using supervised dimensionality reduction (¢f. Table4). For HMDB-51
and Olympics, the best models result from transferring the supervised dimen-
sionality reduction models from the related UCF-101 dataset (cf. Table6). Due
to its specificity, the best architecture for Hollywood2 is based on unsupervised
dimensionality reduction learned on its own data (cf. Table3), although there
are similarly-performing end-to-end transferred models (c¢f. Table6). For High-
Five, the best model is obtained by transferring the unsupervised dimensionality
reduction models from UCF-101 (cf. Table5).

Bagging. As it is standard practice [27], we take the best models and per-
form bagging with 8 models initialized with distinct random initializations. This

improves results by around one point on average, and our final results are in
Table 7.

Discussion. In contrast to [27], our models outperform the state of the art,
including methods trained on massive labeled datasets like ImageNet or Sports-
1M, confirming both the excellent performance and the data efficiency of our
approach. Table 8 illustrates some failure cases of our methods. Confusion matri-
ces and precision-recall curves for all datasets are available in the supplementary
material for fine-grained analysis.

Table 7. Comparison against the state of the art in action recognition

Method UCF-101 HMDB-51 Hollywood2 |High-Five Olympics
%mAcc (s.d.) |%mAcc (s.d.) |%mAP %mAP+ (s.d.) |%mAP
HANDCRAFTED [iDT+FV [3] 84.8 [47] 57.2 64.3 - 91.1
RCS [9] - - 73.6 71.1 -
iDT+SFV4STP [5] 86.0 60.1 66.8 69.4 90.4
iDT+MIFS [7] 89.1 65.1 68.0 - 91.4
VideoDarwin [10] - 61.6 69.6 - -
VideoDarwin+HF+iDT [10] |- 63.7 73.7 - -
DEEP-BASED  [2S5-CNN [13]IN 88.0 59.4 - - -
2S-CNN+LSTM [17]IN 88.6 - - - -
Objects+Motion(R*)[67]IN [88.5 61.4 66.4 - -
Comp-LSTM [18]1D 84.3 44.0 - R R
C3D+SVM [23]S1M,ID 85.2 - - - -
FSTCN [14]TN 88.1 59.1 - - -
HYBRID iDT+StackFV [40] - 66.8 - - -
TDD [26]N 90.3 63.2 - R -
TDD+iDT [26]IN 91.5 65.9 - - -
CNN-hid6+iDT [34]S1M 89.6 - - - -
C3D+iDT+SVM [23]51MID g0 4 - - - -
Best from state-of-the-art 91.5 [26] 66.8 [40] 73.7 [10] 71.1 [9] 91.4 [7]
Our best FV+SVM 90.6 (0.91) 67.8 (0.22) 69.1 71.0 (2.46) 92.8
Our best hybrid 92.5 (0.73) |70.4 (0.97) |72.6 76.7 (0.39) 96.7

Methods are organized by category (cf. Table1) and sorted in chronological order in each block. Our hybrid
models improve upon the state of the art, and our handcrafted-shallow FV-SVM improves upon competing end-
to-end architectures relying on external data sources (IN: uses ImageNet, SIM: uses Sports-1M, ID: uses private
internal data).
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Table 8. Top-5 most confused classes for our best FV-SVM and Hybrid models
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6 Conclusion

We investigate hybrid architectures for action recognition, effectively combin-
ing hand-crafted spatio-temporal features, unsupervised representation learning
based on the FV encoding, and deep neural networks. In addition to paying
attention to important details like normalization and spatio-temporal struc-
ture, we integrate data augmentation at the feature level, end-to-end supervised
dimensionality reduction, and modern optimization and regularization tech-
niques. We perform an extensive experimental analysis on a variety of datasets,
showing that our hybrid architecture yields data efficient, transferable models of
small size that yet outperform much more complex deep architectures trained
end-to-end on millions of images and videos. We believe our results open inter-
esting new perspectives to design even more advanced hybrid models, e.g., using
recurrent neural networks, targeting better accuracy, data efficiency, and trans-
ferability.
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