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Abstract. Recent progress in computer vision has been driven by high-
capacity models trained on large datasets. Unfortunately, creating large
datasets with pixel-level labels has been extremely costly due to the
amount of human effort required. In this paper, we present an app-
roach to rapidly creating pixel-accurate semantic label maps for images
extracted from modern computer games. Although the source code and
the internal operation of commercial games are inaccessible, we show that
associations between image patches can be reconstructed from the com-
munication between the game and the graphics hardware. This enables
rapid propagation of semantic labels within and across images synthe-
sized by the game, with no access to the source code or the content. We
validate the presented approach by producing dense pixel-level semantic
annotations for 25 thousand images synthesized by a photorealistic open-
world computer game. Experiments on semantic segmentation datasets
show that using the acquired data to supplement real-world images sig-
nificantly increases accuracy and that the acquired data enables reducing
the amount of hand-labeled real-world data: models trained with game
data and just 1

3
of the CamVid training set outperform models trained

on the complete CamVid training set.

1 Introduction

Recent progress in computer vision has been driven by high-capacity models
trained on large datasets. Image classification datasets with millions of labeled
images support training deep and highly expressive models [24]. Following their
success in image classification, these models have recently been adapted for
detailed scene understanding tasks such as semantic segmentation [28]. Such
semantic segmentation models are initially trained for image classification, for
which large datasets are available, and then fine-tuned on semantic segmentation
datasets, which have fewer images.

We are therefore interested in creating very large datasets with pixel-accurate
semantic labels. Such datasets may enable the design of more diverse model
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architectures that are not constrained by mandatory pre-training on image clas-
sification. They may also substantially increase the accuracy of semantic seg-
mentation models, which at present appear to be limited by data rather than
capacity. (For example, the top-performing semantic segmentation models on
the PASCAL VOC leaderboard all use additional external sources of pixelwise
labeled data for training.)

Creating large datasets with pixelwise semantic labels is known to be very
challenging due to the amount of human effort required to trace accurate object
boundaries. High-quality semantic labeling was reported to require 60 min per
image for the CamVid dataset [8] and 90 min per image for the Cityscapes
dataset [11]. Due to the substantial manual effort involved in producing pixel-
accurate annotations, semantic segmentation datasets with precise and compre-
hensive label maps are orders of magnitude smaller than image classification
datasets. This has been referred to as the “curse of dataset annotation” [50]: the
more detailed the semantic labeling, the smaller the datasets.

In this work, we explore the use of commercial video games for creating
large-scale pixel-accurate ground truth data for training semantic segmentation
systems. Modern open-world games such as Grand Theft Auto, Watch Dogs, and
Hitman feature extensive and highly realistic worlds. Their realism is not only
in the high fidelity of material appearance and light transport simulation. It is
also in the content of the game worlds: the layout of objects and environments,
the realistic textures, the motion of vehicles and autonomous characters, the
presence of small objects that add detail, and the interaction between the player
and the environment.

The scale, appearance, and behavior of these game worlds are significant
advantages over open-source sandboxes that lack this extensive content. How-
ever, detailed semantic annotation of images from off-the-shelf games is a chal-
lenge because the internal operation and content of the game are largely inacces-
sible. We show that this can be overcome by a technique known as detouring [19].
We inject a wrapper between the game and the operating system, allowing us to
record, modify, and reproduce rendering commands. By hashing distinct render-
ing resources – such as geometry, textures, and shaders – communicated by the
game to the graphics hardware, we generate object signatures that persist across
scenes and across gameplay sessions. This allows us to create pixel-accurate
object labels without tracing boundaries. Crucially, it also enables propagating
object labels across time and across instances that share distinctive resources.

Using the presented approach, we have created pixel-level semantic segmenta-
tion ground truth for 25 thousand images extracted from the game Grand Theft
Auto V. The labeling process was completed in only 49 h. Our labeling speed was
thus roughly three orders of magnitude faster than for other semantic segmenta-
tion datasets with similar annotation density. The pixel-accurate propagation of
label assignments through time and across instances led to a rapid acceleration
of the labeling process: average annotation time per image decreased sharply
during the process because new object labels were propagated across images.
This is in contrast to prior labeling interfaces, in which annotation speed does
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not change significantly during the labeling process, and total labeling costs scale
linearly with dataset size. Annotating the presented dataset with the approach
used for CamVid or Cityscapes [8,11] would have taken at least 12 person-years.
Three of the images we have labeled are shown in Fig. 1.

Fig. 1. Images and ground-truth semantic label maps produced by the presented app-
roach. Left: images extracted from the game Grand Theft Auto V. Right: semantic
label maps. The color coding is defined in Fig. 4. (Color figure online)

To evaluate the utility of using game data for training semantic segmenta-
tion systems, we used label definitions compatible with other datasets for urban
scene understanding [8,11,13,50]. We conducted extensive experiments to evalu-
ate the effectiveness of models trained with the acquired data. The experimental
results show that using the acquired data to supplement the CamVid and KITTI
training sets significantly increases accuracy on the respective datasets. In addi-
tion, the experiments demonstrate that the acquired data can reduce the need
for expensive labeling of real-world images: models trained with game data and
just 1

3 of the CamVid training set outperform models trained on the complete
CamVid training set.
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2 Related Work

Synthetic data has been used for decades to benchmark the performance of
computer vision algorithms. The use of synthetic data has been particularly
significant in evaluating optical flow estimation due to the difficulty of obtain-
ing accurate ground-truth flow measurements for real-world scenes [6,7,18,32].
Most recently, the MPI-Sintel dataset has become a standard benchmark for
optical flow algorithms [9] and has additionally yielded ground-truth data for
depth estimation and bottom-up segmentation. Synthetic scenes have been used
for evaluating the robustness of image features [21] and for benchmarking the
accuracy of visual odometry [16]. Renderings of object models have been used
to analyze the sensitivity of convolutional network features [5]. In contrast to
this line of work, we use synthetic data not for benchmarking but for training a
vision system, and tackle the challenging problem of semantic segmentation.

Rendered depth maps of parametric models have been used prominently
in training leading systems for human pose estimation and hand tracking [41,
42]. 3D object models are also increasingly used for training representations for
object detection and object pose estimation [4,26,30,34,35,44]. Renderings of
3D object models have been used to train shape-from-shading algorithms [37]
and convolutional networks for optical flow estimation [12]. Renderings of entire
synthetic environments have been proposed for training convolutional networks
for stereo disparity and scene flow estimation [31]. Our work is different in two
ways. First, we tackle the problem of semantic segmentation, which involves
both recognition and perceptual grouping [17,23,28,43]. Second, we obtain data
not by rendering 3D object models or stylized environments, but by extracting
photorealistic imagery from a modern open-world computer game with high-
fidelity content.

Computer games – and associated tools such as game engines and level edi-
tors – have been used a number of times in computer vision research. Develop-
ment tools accompanying the game Half Life 2 were used for evaluating visual
surveillance systems [46]. These tools were subsequently used for creating an
environment for training high-performing pedestrian detectors [29,49,51]. And
an open-source driving simulator was used to learn mid-level cues for autonomous
driving [10]. In contrast to these works, we deal with the problem of semantic
image segmentation and demonstrate that data extracted from an unmodified
off-the-shelf computer game with no access to the source code or the content
can be used to substantially improve the performance of semantic segmentation
systems.

Somewhat orthogonal to our work is the use of indoor scene models to train
deep networks for semantic understanding of indoor environments from depth
images [15,33]. These approaches compose synthetic indoor scenes from object
models and synthesize depth maps with associated semantic labels. The training
data synthesized in these works provides depth information but no appearance
cues. The trained models are thus limited to analyzing depth maps. In con-
trast, we show that modern computer games can be used to increase the accu-
racy of state-of-the-art semantic segmentation models on challenging real-world
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benchmarks given regular color images only. Very recent concurrent work [53,54]
demonstrates the heightened interest in using virtual worlds to train algorithms
for scene understanding.

3 Breaking the Curse of Dataset Annotation

Extracting images and metadata from a game is easy if the source code and
content are available [10,14]. Open-source games, however, lack the extensive,
detailed, and realistic content of commercial productions. In this section, we show
that rapid semantic labeling can be performed on images generated by off-the-
shelf games, without access to their source code or content. We then demonstrate
the presented approach by producing pixel-accurate semantic annotations for 25
thousand images from the game Grand Theft Auto V. (The publisher of Grand
Theft Auto V allows non-commercial use of footage from the game as long as
certain conditions are met, such as not distributing spoilers [38].)

3.1 Data Acquisition

A Brief Introduction to Real-Time Rendering. To present our approach
to data acquisition, we first need to review some relevant aspects of the render-
ing pipeline used in modern computer games [2]. Modern real-time rendering
systems are commonly based on deferred shading. Geometric resources are com-
municated to the GPU to create a depth buffer and a normal buffer. Maps
that specify the diffuse and specular components of surface reflectance are com-
municated to create the diffuse and specular buffers. Buffers that collect such
intermediate products of the rendering pipeline are called G-buffers. Illumination
is applied to these G-buffers, rather than to the original scene components [40].
This decoupled processing of geometry, reflectance properties, and illumination
significantly accelerates the rendering process. First, shading does not need to
be performed on elements that are subsequently culled by the geometry pipeline.
Second, shading can be performed much more efficiently on G-buffers than on
an unstructured stream of objects. For these reasons, deferred shading has been
widely adopted in high-performance game engines.

Extracting Information from the Rendering Pipeline. How can this
pipeline be employed in creating ground-truth semantic labels if we don’t have
access to the game’s code or content? The key lies in the game’s communication
with the graphics hardware. This communication is structured. Specifically, the
game communicates resources of different types, including geometric meshes, tex-
ture maps, and shaders. The game then specifies how these resources should be
combined to compose the scene. The content of these resources persists through
time and across gameplay sessions. By tracking the application of resources to
different scene elements, we can establish associations between these scene ele-
ments.

Our basic approach is to intercept the communication between the game
and the graphics hardware. Games communicate with the hardware through
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APIs such as OpenGL, Direct3D, or Vulkan, which are provided via dynam-
ically loaded libraries. To initiate the use of the hardware, a game loads the
library into its application memory. By posing as the graphics library during
this loading process, a wrapper to the library can be injected and all subsequent
communication between the game and the graphics API can be monitored and
modified. This injection method is known as detouring [19] and is commonly
used for patching software binaries and achieving program interoperability. It
is also used by screen-capturing programs and off-the-shelf graphics debugging
tools such as RenderDoc [22] and Intel Graphics Performance Analyzers [20]. To
perform detouring, a wrapper needs to implement all relevant interfaces and for-
ward calls to the original library. We implemented a wrapper for the DirectX 9
API and used RenderDoc for wrapping Direct3D 11. We successfully tested these
two implementations on three different rendering engines used in AAA computer
games. By intercepting all communication with the graphics hardware, we are
able to monitor the creation, modification, and deletion of resources used to
specify the scene and synthesize an image.

We now focus on the application of our approach to the game Grand Theft
Auto V (GTA5), although much of the discussion applies more broadly. To collect
data, we used RenderDoc to record every 40th frame during GTA5 gameplay.
Being a debugger for applications, RenderDoc can be configured to record all
calls of an application to the graphics API with their respective arguments and
allows detailed inspection of the arguments. Since RenderDoc is scriptable and
its source code is available as well, we modified it to automatically transform
recorded data into a format that is suitable for annotation.

Specifically, the wrapper saves all information needed to reproduce a frame.
The frames are then processed in batch after a gameplay session to extract
all information needed for annotation. (This separate processing requires about
30 s per frame.) Annotation of large batches of collected and processed frames is
performed later in an interactive interface that uses the extracted information
to support highly efficient annotation (Fig. 3). In the following paragraphs, we
discuss several challenges that had to be addressed:

1. Identify function calls that are relevant for rendering objects into the set of
G-buffers that we are interested in.

2. Create persistent identities for resources that link their use across frames and
across gameplay sessions.

3. Organize and store resource identities to support rapid annotation in a sep-
arate interactive interface.

Identifying Relevant Function Calls. To identify rendering passes, Render-
Doc groups function calls into common rendering passes based on predefined
heuristics. We found that strictly grouping the calls by the G-buffers that are
assigned as render targets works more reliably. That way, we identify the main
pass that processes the scene geometry and updates the albedo, surface normal,
stencil, and depth buffers as well as the rendering passes that draw the head-up
display on top of the scene image. GTA5 applies post-processing effects such as
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camera distortion to the rendered image before displaying it. To preserve the
association of object information extracted from the main pass with pixels in
the final image and to bypass drawing the head-up display (HUD), we omit the
camera distortion and subsequent HUD passes.

Identifying Resources. To propagate labels across images, we need to reliably
identify resources used to specify different scene elements. When the same mesh
is used in two different frames to specify the shape of a scene element, we want
to reliably recognize that it is the same mesh. During a single gameplay session,
a resource can be recognized by its location in memory or by the ID used by
the application to address this resource. However, the next time the game is
launched, memory locations and IDs associated with resources will be different.
To recognize resources across different gameplay sessions, we instead hash the
associated memory content. We use a non-cryptographic hash function [3] to
create a 128-bit key for the content of the memory occupied by the resource.
This key is stored and is used to identify the resource in different frames. Thus,
for each recorded frame, we create a lookup table to map the volatile resource
IDs to persistent hash keys.

Formatting for Annotation. Although we can now identify and associate
resources that are being used to create different frames, we have not yet asso-
ciated these resources with pixels in the rendered images. We want to associate
each mesh, texture, and shader with their footprint in each rendered image.
One way to do this would be to step through the rendering calls and perform
pixel-level comparisons of the content of each G-buffer before and after each call.
However, this is unreliable and computationally expensive. Instead, we perform
two complete rendering passes instead of one and produce two distinct images.
The first rendering pass produces the color image and the associated buffers as
described above: this is the conventional rendering pass performed by the game.
The second rendering pass is used to encode IDs into pixels, such that after this
pass each pixel stores the resource IDs for the mesh, texture, and shader that
specify the scene element imaged at that pixel. For this second rendering pass,
we replace all the shaders with our own custom shader that encodes the resource
IDs of textures, meshes, and original shaders into colors and writes them into
four render targets. Four render targets with three 8-bit color channels each
provide us with 96 bits per pixel, which we use to store three 32-bit resource
IDs: one for the mesh, one for the texture, one for the shader. In a subsequent
processing stage, we read off these 32-bit IDs, which do not persist across frames,
and map them to the persistent 128-bit hash keys created earlier.

3.2 Semantic Labeling

For each image extracted from the game, the pipeline described in Sect. 3.1
produces a corresponding resource ID map. For each pixel, this ID map identifies
the mesh, texture, and shader that were used by the surface imaged at that
pixel. These IDs are persistent: the same resource is identified by the same ID
in different frames. This is the data used by the annotation process.
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Patch Decomposition. We begin by automatically decomposing each image
into patches of pixels that share a common 〈mesh, texture, shader〉 combination
(henceforth, MTS). Figure 2 shows an image from the game and the resulting
patches. The patches are fine-grained and each object is typically decomposed
into multiple patches. Furthermore, a given patch is likely to be contained within
a single object. A given mesh may contain multiple objects (a building and an
adjacent sidewalk), a texture may be used on objects from different semantic
classes (car and truck), and a shader may likewise be applied on semantically
distinct objects, but an MTS combination is almost always used within a single
object type.

Fig. 2. Illustration of the patches used as atomic units during the annotation process.
Top left: one of the images in our dataset. Top right: patches constructed by grouping
pixels that share a common MTS combination. Different patches are filled with different
colors for illustration. Bottom row: partial magnifications of the top images. (Color
figure online)

The identified patches are thus akin to superpixels [36], but have significant
advantages over superpixels generated by a bottom-up segmentation algorithm.
First, they are associated with the underlying surfaces in the scene, and patches
that depict the same surface in different images are linked. Second, boundaries
of semantic classes in an image coincide with patch boundaries. There is no
need for a human annotator to delineate object boundaries: pixel-accurate label
maps can be created simply by grouping patches. Third, as we shall see next,
the metadata associated with each patch can be used to propagate labels even
across object instances that do not share the same MTS.

Association Rule Mining. So far we have required that two patches share
a complete MTS combination to be linked. However, requiring that the mesh,
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texture, and shader all be identical is sometimes too conservative: there are many
cases in which just one or two resources are sufficient to uniquely identify the
semantic class of a patch. For example, a car mesh is highly unlikely to be used
for anything but a car. Instead of specifying such cases by hand, we discover
them automatically during the labeling process via association rule mining [1].

During the annotation process, statistical regularities in associations between
resources and semantic labels are detected. When sufficient evidence is avail-
able for a clear association between a resource and a semantic class, a rule is
automatically created that labels other patches that use this resource by the
associated class. This further speeds up annotation by propagating labels not
just to observations of the same surface in the scene at different times, but also
across different objects that use a distinctive resource that clearly identifies their
semantic class.

Annotation Process. We use a simple interactive interface that supports label-
ing patches by clicking. The interface is shown in Fig. 3. Labeled areas are tinted
by the color of their semantic class. (The color definitions are shown in Fig. 4.)
The annotator selects a semantic class and then clicks on a patch that has not
yet been labeled. In Fig. 3(left), four patches are unlabeled: part of a sidewalk, a
fire hydrant, and two patches on the building. They are labeled in 14 s to yield
the complete label map shown in Fig. 3(right).

Fig. 3. Annotation interface. Labeled patches are tinted by the color of their semantic
class. The annotator selects a semantic class and applies it to a patch with a single
click. Left: an intermediate state with four patches yet unlabeled. Right: a complete
labeling produced 14 s later. (Color figure online)

Labeling the very first image still takes time due to the granularity of the
patches. However, the annotation tool automatically propagates labels to all
patches that share the same MTS in all images, as well as other patches that
are linked by distinctive resources identified by association rule mining. As the
annotation progresses, more and more patches in all images are pre-labeled. The
annotation time per image decreases during the process: the more images have
been annotated, the faster the labeling of each new image is. Our annotation
tool only presents an image for annotation if more than 3 % of the image area
has not been pre-labeled automatically by propagating labels from other frames.
In this way, only a fraction of the images has to be explicitly handled by the
annotator.
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Labeling each pixel in every image directly would be difficult even with our
single-click interface because distant or heavily occluded objects are often hard
to recognize. The label propagation ensures that even if a patch is left unlabeled
in a given image because it is small or far away, it will likely be labeled even-
tually when the underlying surface is seen more closely and its assigned label is
propagated back.

3.3 Dataset and Analysis

We extracted 24,966 frames from GTA5. Each frame has a resolution of
1914×1052 pixels. The frames were then semantically labeled using the interface
described in Sect. 3.2. The labeling process was completed in 49 h. In this time,
98.3 % of the pixel area of the extracted images was labeled with corresponding
semantic classes. Classes were defined to be compatible with other semantic seg-
mentation datasets for outdoor scenes [8,11,39,50]. The distribution of classes
in our dataset is shown in Fig. 4.
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Fig. 4. Number of annotated pixels per class in our dataset. Note the logarithmic scale.
(Color figure online)

General statistics for the dataset are summarized in Table 1. Our dataset
is roughly two orders of magnitude larger than CamVid [8] and three orders
of magnitude larger than semantic annotations created for the KITTI dataset
[13,39]. The average annotation time for our dataset was 7 s per image: 514
times faster than the per-image annotation time reported for CamVid [8] and
771 times faster than the per-image annotation time for Cityscapes [11].

Label Propagation. The label propagation mechanisms significantly acceler-
ated annotation time. Specific MTS combinations labeled during the process
cover 73 % of the cumulative pixel area in the dataset. Only a fraction of that
area was directly labeled by the annotator; most labels were propagated from
other images. Patches covered by learned association rules account for 43 % of the
dataset. During the annotation process, 2,295 association rules were automati-
cally constructed. The union of the areas covered by labeled MTS combinations
and learned association rules accounts for the 98.3 % annotation density of our
dataset.
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Table 1. Comparison of densely labeled semantic segmentation datasets for outdoor
scenes. We achieve a three order of magnitude speed-up in annotation time, enabling
us to densely label tens of thousands of high-resolution images.

#Pixels Annotation Annotation time Annotation speed

[109] density [%] [sec/image] [pixels/sec]

GTA5 50.15 98.3 7 279,540

Cityscapes (fine) [11] 9.43 97.1 5400 349

Cityscapes (coarse) [11] 26.0 67.5 420 3095

CamVid [8] 0.62 96.2 3,600 246

KITTI [39] 0.07 98.4 N/A N/A

Define the pre-annotated area of an image to be the set of patches that
are pre-labeled before the annotator reaches that image. The patches in the pre-
annotated area are pre-labeled by label propagation across patches that share the
same MTS and via learned association rules. For each image, we can measure the
size of the pre-annotated area relative to the whole frame. This size is 0% if none
of the image area is pre-annotated (e.g., for the very first image processed by the
annotator) and 100% if the entirety of the image area is already annotated by
the time the annotator reaches this image. In a conventional annotation process
used for datasets such as CamVid and Cityscapes, the pre-annotated area is a
constant 0% for all images. The pre-annotated area for images handled during
our labeling process is plotted in Fig. 5. 98.7% of the frames are more than 90%
pre-annotated by the time they are reached by the human annotator.
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100%

Fig. 5. Effect of label propagation. For each frame, the plots show the fraction of image
area that is pre-annotated by the time the human annotator reaches that frame. On
the left, the frames are arranged in the order they are processed; on the right, the
frames are sorted by magnitude of pre-annotated area. Only 333 frames (1.3 % of the
total) are less than 90 % pre-annotated by the time they are reached by the human
annotator.

Diversity of the Collected Data. We also analyze the diversity of the images
extracted from the game world. The effectiveness of label propagation may sug-
gest that the collected images are visually uniform. This is not the case. Figure 6
shows the distribution of the number of frames in which MTS combinations in
the dataset occur. As shown in the figure, 26.5% of the MTS combinations only
occur in a single image in the collected dataset. That is, more than a quarter of
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the MTS combinations observed in the 25 thousand collected images are only
observed in a single image each. The median number of frames in which an MTS
occurs is 4: that is, most of the MTS combinations are only seen in 4 images or
less out of the 25 thousand collected images. This indicates the high degree of
variability in the collected dataset.

1 2 3 4 5 7 10 15 25 50 100 250 1000 5000
0%

10%

20%

30%

Fig. 6. Distribution of the number of frames in which an MTS combination occurs.
26.5 % of the MTS combinations only occur in a single image each and most of the
MTS combinations are only seen in 4 images or less.

In addition, Fig. 7 shows 20 randomly sampled images from our dataset. As
the figure demonstrates, the images in the collected dataset are highly variable
in their content and layout.

Fig. 7. Randomly sampled images from the collected dataset, illustrating its diversity.
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4 Semantic Segmentation

We now evaluate the effectiveness of using the acquired data for training seman-
tic segmentation models. We evaluate on two datasets for semantic segmentation
of outdoor scenes: CamVid [8] and KITTI [13,39]. As our semantic segmenta-
tion model, we use the front-end prediction module of Yu and Koltun [52]. Our
training procedure consists of two stages. In the first stage, we jointly train on
real and synthetic data using mini-batch stochastic gradient descent with mini-
batches of 8 images: 4 real and 4 synthetic. 50 K iterations are performed with
a learning rate of 10−4 and momentum 0.99. The crop size is 628×628 and
the receptive field is 373×373 pixels. In the second stage, we fine-tune for 4 K
iterations on real data only, using the same parameters as in the first stage.

4.1 CamVid Dataset

We begin with experiments on the CamVid dataset. For ease of comparison to
prior work, we adopted the training and test setup of Sturgess et al. [45], which
has become standard for the CamVid dataset. This setup has 11 semantic classes
and a split of the dataset into 367 training, 100 validation, and 233 test images.

The main results are summarized in Table 2. The table shows that using
the synthetic data during training increases the mean IoU by 3.9 % points. In
addition, we used the full set of synthetic images and varied the proportion
of real images in the training set. The results show that when we train on 1

3
of the CamVid training set along with the game data, we surpass the accuracy
achieved when training on the full CamVid training set without game data. This
suggests that the presented approach to acquiring and labeling synthetic data
can significantly reduce the amount of hand-labeled real-world images required
for training semantic segmentation models.

Table 2. Controlled experiments on the CamVid dataset. Training with the full
CamVid training set augmented by the synthetic images increases the mean IoU by
3.9 % points. Synthetic images also allow reducing the amount of labeled real-world
training data by a factor of 3.

Real images 100% - 25 % 33 % 50% 100%

Synthetic images (all) - 100 % � � � �
Mean IoU 65.0 43.6 63.9 65.2 66.5 68.9

Table 3 provides a comparison of our results to prior work on semantic seg-
mentation on the CamVid dataset. Our strongest baseline is the state-of-the-art
system of Kundu et al. [25], which used a bigger ConvNet and analyzed whole
video sequences. By using synthetic data during training, we outperform this
baseline by 2.8 % points, while considering individual frames only.
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Table 3. Comparison to prior work on the CamVid dataset. We outperform the state-
of-the-art system of Kundu et al. by 2.8 % points without utilizing temporal cues.
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SuperParsing [47] 70.4 54.8 83.5 43.3 25.4 83.4 11.6 18.3 5.2 57.4 8.9 42.03

Liu and He [27] 66.8 66.6 90.1 62.9 21.4 85.8 28 17.8 8.3 63.5 8.5 47.2

Tripathi et al. [48] 74.2 67.9 91 66.5 23.6 90.7 26.2 28.5 16.3 71.9 28.2 53.18

Yu and Koltun [52] 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3

Kundu et al. [25] 84 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.1

Our result 84.4 77.5 91.1 84.9 51.3 94.5 59 44.9 29.5 82 58.4 68.9

4.2 KITTI Dataset

We have also performed an evaluation on the KITTI semantic segmentation
dataset. The results are reported in Table 4. We use the split of Ros et al. [39],
which consists of 100 training images and 46 test images. We compare against
several baselines for which the authors have either provided results on this
dataset or released their code. The model trained with game data outperforms
the model trained without game data by 2.6 % points.

Table 4. Results on the KITTI dataset. Training with game data yields a 2.6 % point
improvement over training without game data.
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Ros et al. [39] 71.8 69.5 84.4 51.2 4.2 72.4 1.7 32.4 2.6 45.3 3.2 39.9

Tripathi et al. [48] 75.1 74.0 84.4 61.8 0 75.4 0 1.0 2.2 37.9 0 37.4

Yu and Koltun [52] 84.6 81.1 83 81.4 41.8 92.9 4.6 47.1 35.2 73.1 26.4 59.2

Ours (real only) 84 81 83 80.2 43.2 92.4 1.0 46.0 35.4 74.8 27.9 59

Ours (real+synth) 85.7 80.3 85.2 83.2 40.5 92.7 29.7 42.8 38 75.9 22.6 61.6

5 Discussion

We presented an approach to rapidly producing pixel-accurate semantic label
maps for images synthesized by modern computer games. We have demonstrated
the approach by creating dense pixel-level semantic annotations for 25 thousand
images extracted from a realistic open-world game. Our experiments have shown
that data created with the presented approach can increase the performance of
semantic segmentation models on real-world images and can reduce the need for
expensive conventional labeling.
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There are many extensions that would be interesting. First, the presented
ideas can be extended to produce continuous video streams in which each frame
is densely annotated. Second, the presented approach can be applied to pro-
duce ground-truth data for many dense prediction problems, including optical
flow, scene flow, depth estimation, boundary detection, stereo reconstruction,
intrinsic image decomposition, visual odometry, and more. Third, our ideas can
be extended to produce instance-level – rather than class-level – segmentations.
There are many other exciting opportunities and we believe that modern game
worlds can play a significant role in training artificial vision systems.
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