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Abstract. Discrete energy minimization is widely-used in computer
vision and machine learning for problems such as MAP inference in
graphical models. The problem, in general, is notoriously intractable, and
finding the global optimal solution is known to be NP-hard. However, is
it possible to approximate this problem with a reasonable ratio bound on
the solution quality in polynomial time? We show in this paper that the
answer is no. Specifically, we show that general energy minimization, even
in the 2-label pairwise case, and planar energy minimization with three or
more labels are exp-APX-complete. This finding rules out the existence
of any approximation algorithm with a sub-exponential approximation
ratio in the input size for these two problems, including constant factor
approximations. Moreover, we collect and review the computational com-
plexity of several subclass problems and arrange them on a complexity
scale consisting of three major complexity classes – PO, APX, and exp-
APX, corresponding to problems that are solvable, approximable, and
inapproximable in polynomial time. Problems in the first two complexity
classes can serve as alternative tractable formulations to the inapprox-
imable ones. This paper can help vision researchers to select an appropri-
ate model for an application or guide them in designing new algorithms.

Keywords: Energy minimization · Complexity · NP-hard · APX · exp-
APX · NPO · WCSP · Min-sum · MAP MRF · QPBO · Planar graph

1 Introduction

Discrete energy minimization, also known as min-sum labeling [69] or weighted
constraint satisfaction (WCSP)1 [25], is a popular model for many problems in
1 WCSP is a more general problem, considering a bounded plus operation. It is itself

a special case of valued CSP, where the objective takes values in a more general
valuation set.
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computer vision, machine learning, bioinformatics, and natural language process-
ing. In particular, the problem arises in maximum a posteriori (MAP) inference
for Markov (conditional) random fields (MRFs/CRFs) [43]. In the most fre-
quently used pairwise case, the discrete energy minimization problem (simply
“energy minimization” hereafter) is defined as

min
x∈LV

∑

u∈V
fu(xu) +

∑

(u,v)∈E
fuv(xu, xv), (1)

where xu is the label for node u in a graph G = (V, E). When the variables xu

are binary (Boolean): L = B = {0, 1}, the problem can be written as a quadratic
polynomial in x [11] and is known as quadratic pseudo-Boolean optimization
(QPBO) [11].

In computer vision practice, energy minimization has found its place in
semantic segmentation [51], pose estimation [71], scene understanding [57], depth
estimation [44], optical flow estimation [70], image in-painting [59], and image
denoising [8]. For example, tree-structured models have been used to estimate
pictorial structures such as body skeletons or facial landmarks [71], multi-label
Potts models have been used to enforce a smoothing prior for semantic segmen-
tation [51], and general pairwise models have been used for optimal flow esti-
mation [70]. However, it may not be appreciated that the energy minimization
formulations used to model these vision problems have greatly varied degrees
of tractability or computational complexity. For the three examples above, the
first allows efficient exact inference, the second admits a constant factor approx-
imation, and the third has no quality guarantee on the approximation of the
optimum.

The study of complexity of energy minimization is a broad field. Energy
minimization problems are often intractable in practice except for special cases.
While many researchers analyze the time complexity of their algorithms (e.g.,
using big O notation), it is beneficial to delve deeper to address the difficulty
of the underlying problem. The two most commonly known complexity classes
are P (polynomial time) and NP (nondeterministic polynomial time: all decision
problems whose solutions can be verified in polynomial time). However, these
two complexity classes are only defined for decision problems. The analogous
complexity classes for optimization problems are PO (P optimization) and NPO
(NP optimization: all optimization problems whose solution feasibility can be
verified in polynomial time). Optimization problems form a superset of decision
problems, since any decision problem can be cast as an optimization over the set
{yes, no}, i.e., P ⊂ PO and NP ⊂ NPO. The NP-hardness of an optimization
problem means it is at least as hard as (under Turing reduction) the hardest
decision problem in the class NP. If a problem is NP-hard, then it is not in PO
assuming P �= NP.

Although optimal solutions for problems in NPO, but not in PO, are
intractable, it is sometimes possible to guarantee that a good solution (i.e., one
that is worse than the optimal by no more than a given factor) can be found
in polynomial time. These problems can therefore be further classified into class
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Fig. 1. Discrete energy minimization problems aligned on a complexity axis.
Red/boldface indicates new results proven in this paper. This axis defines a partial
ordering, since problems within a complexity class are not ranked. Some problems
discussed in this paper are omitted for simplicity (Color figure online)

APX (constant factor approximation) and class exp-APX (inapproximable) with
increasing complexity (Fig. 1). We can arrange energy minimization problems
on this more detailed complexity scale, originally established in [4], to provide
vision researchers a new viewpoint for complexity classification, with a focus on
NP-hard optimization problems.

In this paper, we make three core contributions, as explained in the next
three paragraphs. First, we prove the inapproximability result of QPBO and
general energy minimization. Second, we show that the same inapproximability
result holds when restricting to planar graphs with three or more labels. In
the proof, we propose a novel micro-graph structure-based reduction that can
be used for algorithmic design as well. Finally, we present a unified framework
and an overview of vision-related special cases where the energy minimization
problem can be solved in polynomial time or approximated with a constant,
logarithmic, or polynomial factor.

Binary and Multi-label Case (Sect. 3). It is known that QPBO (2-label case)
and the general energy minimization problem (multi-label case) are NP-hard [12],
because they generalize such classical NP-hard optimization problems on graphs
as vertex packing (maximum independent set) and the minimum and maximum
cut problems [27]. In this paper, we show a stronger conclusion. We prove that
QPBO as well as general energy minimization are complete (being the hardest
problems) in the class exp-APX. Assuming P �= NP, this implies that a polyno-
mial time method cannot have a guarantee of finding an approximation within a
constant factor of the optimal, and in fact, the only possible factor in polynomial
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time is exponential in the input size. In practice, this means that a solution may
be essentially arbitrarily bad.

Planar Three or More Label Case (Sect. 4). Planar graphs form the under-
lying graph structure for many computer vision and image processing tasks. It
is known that efficient exact algorithms exist for some special cases of planar
2-label energy minimization problems [55]. In this paper, we show that for the
case of three or more labels, planar energy minimization is exp-APX-complete,
which means these problems are as hard as general energy minimization. It is
unknown that whether a constant ratio approximation exists for planar 2-label
problems in general.

Subclass Problems (Sect. 5). Special cases for some energy minimization algo-
rithms relevant to computer vision are known to be tractable. However, detailed
complexity analysis of these algorithms is patchy and spread across numer-
ous papers. In Sect. 5, we classify the complexity of these subclass problems
and illustrate some of their connections. Such an analysis can help computer
vision researchers become acquainted with existing complexity results relevant
to energy minimization and can aid in selecting an appropriate model for an
application or in designing new algorithms.

1.1 Related Work

Much of the work on complexity in computer vision has focused on experimen-
tal or empirical comparison of inference methods, including influential studies
on choosing the best optimization techniques for specific classes of energy min-
imization problems [26,62] and the PASCAL Probabilistic Inference Challenge,
which focused on the more general context of inference in graphical models [1].
In contrast, our work focuses on theoretical computational complexity, rather
than experimental analysis.

On the theoretical side, the NP-hardness of certain energy minimization prob-
lems is well studied. It has been shown that 2-label energy minimization is, in
general, NP-hard, but it can be in PO if it is submodular [30] or outerplanar [55].
For multi-label problems, the NP-hardness was proven by reduction from the
NP-hard multi-way cut problem [13]. These results, however, say nothing about
the complexity of approximating the global optimum for the intractable cases.
The complexity involving approximation has been studied for classical combi-
natorial problems, such as MAX-CUT and MAX-2SAT, which are known to
be APX-complete [46]. QPBO generalizes such problems and is therefore APX-
hard. This leaves a possibility that QPBO may be in APX, i.e., approximable
within a constant factor.

Energy minimization is often used to solve MAP inference for undirected
graphical models. In contrast to scarce results for energy minimization and undi-
rected graphical models, researchers have more extensively studied the compu-
tational complexity of approximating the MAP solution for Bayesian networks,
also known as directed graphical models [42]. Abdelbar and Hedetniemi first
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proved the NP-hardness for approximating the MAP assignment of directed
graphical models in the value of probability, i.e., finding x such that

p(x∗)
p(x)

≤ r(n) (2)

with a constant or polynomial ratio r(n) ≥ 1 is NP-hard and showing that this
problem is poly-APX-hard [2]. The probability approximation ratio is closest to
the energy ratio used in our work, but other approximation measures have also
been studied. Kwisthout showed the NP-hardness for approximating MAPs with
the measure of additive value-, structure-, and rank-approximation [40–42]. He
also investigated the hardness of expectation-approximation of MAP and found
that no randomized algorithm can expectation-approximate MAP in polynomial
time with a bounded margin of error unless NP ⊆ BPP, an assumption that is
highly unlikely to be true [42].

Unfortunately, the complexity results for directed models do not readily
transfer to undirected models and vice versa. In directed and undirected mod-
els, the graphs represent different conditional independence relations, thus the
underlying family of probability distributions encoded by these two models is
distinct, as detailed in Appendix B. However, one can ask similar questions on
the hardness of undirected models in terms of various approximation measures.
In this work, we answer two questions, “How hard is it to approximate the MAP
inference in the ratio of energy (log probability) and the ratio of probability?”
The complexity of structure-, rank-, and expectation-approximation remain open
questions for energy minimization.

2 Definitions and Notation

There are at least two different sets of definitions of what is considered an NP
optimization problem [4,45]. Here, we follow the notation of Ausiello et al. [4]
and restate the definitions needed for us to state and prove our theorems in
Sects. 3 and 4 with our explanation of their relevance to our proofs.

Definition 2.1 (Optimization Problem, [4] Definition 1.16). An optimiza-
tion problem P is characterized by a quadruple (I,S,m, goal) where

1. I is the set of instances of P.
2. S is a function that associates to any input instance x ∈ I the set of feasible

solutions of x.
3. m is the measure function, defined for pairs (x, y) such that x ∈ I and y ∈

S(x). For every such pair (x, y), m(x, y) provides a positive integer.
4. goal ∈ {min,max}.

Notice the assumption that the cost is positive, and, in particular, it cannot be
zero.
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Definition 2.2 (Class NPO, [4] Definition 1.17). An optimization problem
P = (I,S,m, goal) belongs to the class of NP optimization (NPO) problems if
the following hold:

1. The set of instances I is recognizable in polynomial time.
2. There exists a polynomial q such that given an instance x ∈ I, for any

y ∈ S(x), |y| < q(x) and, besides, for any y such that |y| < q(x), it is
decidable in polynomial time whether y ∈ S(x).

3. The measure function m is computable in polynomial time.

Definition 2.3 (Class PO, [4] Definition 1.18). An optimization problem P
belongs to the class of PO if it is in NPO and there exists a polynomial-time
algorithm that, for any instance x ∈ I, returns an optimal solution y ∈ S∗(x),
together with its value m∗(x).

For intractable problems, it may be acceptable to seek an approximate solu-
tion that is sufficiently close to optimal.

Definition 2.4 (Approximation Algorithm [4] Definition 3.1). Given an
optimization problem P = (I,S,m, goal) an algorithm A is an approximation
algorithm for P if, for any given instance x ∈ I, it returns an approximate
solution, that is a feasible solution A(x) ∈ S(x).

Definition 2.5 (Performance Ratio, [4], Definition 3.6). Given an opti-
mization problem P, for any instance x of P and for any feasible solution
y ∈ S(x), the performance ratio, approximation ratio or approximation factor
of y with respect to x is defined as

R(x, y) = max
{m(x, y)

m∗(x)
,

m∗(x)
m(x, y)

}
, (3)

where m∗(x) is the measure of the optimal solution for the instance x.

Since m∗(x) is a positive integer, the performance ratio is well-defined. It is
a rational number in [1,∞). Notice that from this definition, it follows that if
finding a feasible solution, e.g. y ∈ S(x), is an NP-hard decision problem, then
there exists no polynomial-time approximation algorithm for P, irrespective of
the kind of performance evaluation that one could possibly mean.

Definition 2.6 (r(n)-approximation, [4], Definition 8.1). Given an opti-
mization problem P in NPO, an approximation algorithm A for P, and a func-
tion r : N → (1,∞), we say that A is an r(n)-approximate algorithm for P if, for
any instance x of P such that S(x) �= ∅, the performance ratio of the feasible
solution A(x) with respect to x verifies the following inequality:

R(x,A(x)) ≤ r(|x|). (4)

Definition 2.7 (F -APX, rn [4], Definition 8.2). Given a class of functions
F , F -APX is the class of all NPO problems P such that, for some function r ∈ F ,
there exists a polynomial-time r(n)-approximate algorithm for P.
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The class of constant functions for F yields the complexity class APX.
Together with logarithmic, polynomial, and exponential functions applied in
Definition 2.7, the following complexity axis is established:

PO ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ exp-APX ⊆ NPO.

Since the measure m needs to be computable in polynomial time for NPO
problems, the largest measure and thus the largest performance ratio is an expo-
nential function. But exp-APX is not equal to NPO (assuming P �= NP) because
NPO contains problems whose feasible solutions cannot be found in polynomial
time. For an energy minimization problem, any label assignment is a feasible
solution, implying that all energy minimization problems are in exp-APX.

The standard approach for proofs in complexity theory is to perform a reduc-
tion from a known NP-complete problem. Unfortunately, the most common
polynomial-time reductions ignore the quality of the solution in the approxi-
mated case. For example, it is shown that any energy minimization problem can
be reduced to a factor 2 approximable Potts model [48], however the reduction
is not approximation preserving and is unable to show the hardness of general
energy minimization in terms of approximation. Therefore, it is necessary to
use an approximation preserving (AP) reduction to classify NPO problems that
are not in PO, for which only the approximation algorithms are tractable. AP-
preserving reductions preserve the approximation ratio in a linear fashion, and
thus preserve the membership in these complexity classes. Formally,
Definition 2.8 (AP-reduction, [4] Definition 8.3). Let P1 and P2 be two
problems in NPO. P1 is said to be AP-reducible to P2, in symbols P1 ≤AP P2, if
two functions π and σ and a positive constant α exist such that2:
1. For any instance x ∈ I1, π(x) ∈ I2.
2. For any instance x ∈ I1, if S1(x) �= ∅ then S2(π(x)) �= ∅.
3. For any instance x ∈ I1 and for any y ∈ S2(π(x)), σ(x, y) ∈ S1(x).
4. π and σ are computable by algorithms whose running time is polynomial.
5. For any instance x ∈ I1, for any rational r > 1, and for any y ∈ S2(π(x)),

R2(π(x), y) ≤ r implies (5)
R1(x, σ(x, y)) ≤ 1 + α(r − 1). (6)

AP-reduction is the formal definition of the term ‘as hard as’ used in this
paper unless otherwise specified. It defines a partial order among optimization
problems. With respect to this relationship, we can formally define the subclass
containing the hardest problems in a complexity class:
Definition 2.9 (C-hard and C-complete, [4] Definition 8.5). Given a class
C of NPO problems, a problem P is C-hard if, for any P ′ ∈ C, P ′ ≤AP P. A
C-hard problem is C-complete if it belongs to C.

Intuitively, a complexity class C specifies the upper bound on the hardness of
the problems within, C-hard specifies the lower bound, and C-complete exactly
specifies the hardness.
2 The complete definition contains a rational r for the two mappings (π and σ) and

it is omitted here for simplicity.
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3 Inapproximability for the General Case

In this section, we show that QPBO and general energy minimization are inap-
proximable by proving they are exp-APX-complete. As previously mentioned, it
is already known that these problems are NP-hard [12], but it was previously
unknown whether useful approximation guarantees were possible in the general
case. The formal statement of QPBO as an optimization problem is as follows:

Problem 1. QPBO

instance: A pseudo-Boolean function f : B
V → N :

f(x) =
∑

v∈V
fu(xu) +

∑

u,v∈V
fuv(xu, xv), (7)

given by the collection of unary terms fu and pairwise terms fuv.
solution: Assignment of variables x ∈ B

V .
measure: min f(x) > 0.

Theorem 3.1. QPBO is exp-APX-complete.

Proof Sketch. (Full proof in Appendix A).

1. We observe that W3SAT-triv is known to be exp-APX-complete [4]. W3SAT-
triv is a 3-SAT problem with weights on the variables and an artificial, trivial
solution.

2. Each 3-clause in the conjunctive normal form can be represented as a poly-
nomial consisting of three binary variables. Together with representing the
weights with the unary terms, we arrive at a cubic Boolean minimization
problem.

3. We use the method of [24] to transform the cubic Boolean problem into
a quadratic one, with polynomially many additional variables, which is an
instance of QPBO.

4. Together with an inverse mapping σ that we define, the above transformation
defines an AP-reduction from W3SAT-triv to QPBO, i.e. W3SAT-triv ≤AP

QPBO. This proves that QPBO is exp-APX-hard.
5. We observe that all energy minimization problems are in exp-APX and

thereby conclude that QPBO is exp-APX-complete.

This inapproximability result can be generalized to more than two labels.

Corollary 3.2. k-label energy minimization is exp-APX-complete for k ≥ 2.

Proof Sketch. (Full proof in Appendix A). This theorem is proved by showing
QPBO ≤AP k-label energy minimization for k ≥ 2.

We show in Corollary B.1 the inapproximability in energy (log probability)
transfer to probability in Eq. (2) as well.
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Taken together, this theorem and its corollaries form a very strong inap-
proximability result for general energy minimization3. They imply not only NP-
hardness, but also that there is no algorithm that can approximate general energy
minimization with two or more labels with an approximation ratio better than
some exponential function in the input size. In other words, any approximation
algorithm of the general energy minimization problem can perform arbitrarily
badly, and it would be pointless to try to prove a bound on the approxima-
tion ratio for existing approximation algorithms for the general case. While this
conclusion is disappointing, these results serve as a clarification of grounds and
guidance for model selection and algorithm design. Instead of counting on an ora-
cle that solves the energy minimization problem, researchers should put efforts
into selecting the proper formulation, trading off expressiveness for tractability.

4 Inapproximability for the Planar Case

Efficient algorithms for energy minimization have been found for special cases of
2-label planar graphs. Examples include planar 2-label problems without unary
terms and outerplanar 2-label problems (i.e., the graph structure remains pla-
nar after connecting to a common node) [55]. Grid structures over image pixels
naturally give rise to planar graphs in computer vision. Given their frequency of
use in this domain, it is natural to consider the complexity of more general cases
involving planar graphs. Figure 2 visualizes the current state of knowledge of the
complexity of energy minimization problems on planar graphs. In this section,
we prove that for the case of planar graphs with three or more labels, energy
minimization is exp-APX-complete. This result is important because it signifi-
cantly reduces the space of potentially efficient algorithms on planar graphs. The
existence of constant ratio approximation for planar 2-label problems in general
remains an open question4.

Theorem 4.1. Planar 3-label energy minimization is exp-APX-complete.

Proof Sketch. (Full proof in Appendix A).

Planar 2-label
Special Cases

PO

Planar 2-label
The General Case

APX-hard

Planar 3 and More Labels
The General Case

exp-APX-complete (This Paper)

Fig. 2. Complexity for planar energy minimization problems. The “general case”
implies no restrictions on the pairwise interaction type. This paper shows that the
third category of problems is not efficiently approximable

3 These results automatically generalize to higher order cases as they subsume the
pairwise cases discussed here.

4 The planar 2-label problem in general is APX-hard, since it subsumes the APX
problem planar vertex cover [7].
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1. We construct elementary gadgets to reduce any 3-label energy minimization
problem to a planar one with polynomially many auxiliary nodes.

2. Together with an inverse mapping σ that we define, the above construction
defines an AP-reduction, i.e., 3-label energy minimization ≤AP planar 3-label
energy minimization.

3. Since 3-label energy minimization is exp-APX-complete (Corollary 3.2) and
all energy minimization problems are in exp-APX, we thereby conclude that
planar 3-label energy minimization is exp-APX-complete.

Corollary 4.2. Planar k-label energy minimization is exp-APX-complete, for
k ≥ 3.

Proof Sketch. (Full proof in Appendix A). This theorem is proved by showing
planar 3-label energy minimization ≤AP planar k-label energy minimization, for
k ≥ 3.

These theorems show that the restricted case of planar graphs with 3 or more
labels is as hard as general case for energy minimization problems with the same
inapproximable implications discussed in Sect. 3.

The most novel and useful aspect of the proof of Theorem4.1 is the planar
reduction in Step 1. The reduction creates an equivalent planar representation
to any non-planar 3-label graph. That is, the graphs share the same optimal
value. The reduction applies elementary constructions or “gadgets” to uncross
two intersecting edges. This process is repeated until all intersecting edges are
uncrossed. Similar elementary constructions were used to study the complexity
of the linear programming formulation of energy minimization problems [48,49].
Our novel gadgets have three key properties at the same time: (1) they are able
to uncross intersecting edges, (2) they work on non-relaxed problems, i.e., all
indicator variables (or pseudomarginals to be formal) are integral; and (3) they
can be applied repeatedly to build an AP-reduction.

The two gadgets used in our reduction are illustrated in Fig. 3. A 3-label node
can be encoded as a collection of 3 indicator variables with a one-hot constraint.
In the figure, a solid colored circle denotes a 3-label node, and a solid colored
rectangle denotes the equivalent node expressed with indicator variables (white
circles). For example, in Fig. 3, a = 1 corresponds to the blue node taking the
first label value. The pairwise potentials (edges on the left part of the figures)
can be viewed as edge costs between the indicator variables (black lines on the
right), e.g., fuv(3, 2) is placed onto the edge between indicator c and e and is
counted into the overall measure if and only if c = e = 1. In our gadgets, drawn
edges represent zero cost while omitted edges represent positive infinity5. While
the set of feasible solutions remains the same, the gadget encourages certain
labeling relationships, which, if not satisfied, cause the overall measure to be
infinity. Therefore, the encouraged relationships must be satisfied by any optimal
solution. The two gadgets serve different purposes:
5 A very large number will also serve the same purpose, e.g., take the sum of the

absolute value of all energy terms and add 1. Therefore, we are not expanding the
set of allowed energy terms to include ∞.
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f g

a b c

d e

SPLIT UNCROSSCOPY

Fig. 3. Gadgets to represent a 3-label variable as two 2-label variables (Split) and
to copy the values of two diagonal pairs of 2-label variables without edge crossing
(UncrossCopy) (Color figure online)

Split A 3-label node (blue) is split into two 2-label nodes (green). The shaded
circle represents a label with a positive infinite unary cost and thus creates a
simulated 2-label node. The encouraged relationships are

• a = 1 ⇔ d = 1 and f = 1.
• b = 1 ⇔ g = 1.
• c = 1 ⇔ e = 1 and f = 1.

Thus (d, f) encodes a, (d, g) and (e, g) both encode b and (e, f) encodes c.
UncrossCopy The values of two 2-label nodes are encouraged to be the

same as their diagonal counterparts respectively (red to red, green to green)
without crossing with each other. The orange nodes are intermediate nodes that
pass on the values. All types of lines represent the same edge cost, which is 0.
The color differences visualize the verification for each of the 4 possible states of
two 2-label nodes. For example, the cyan lines verify the case where the top-left
(green) node takes the values (1, 0) and the top-right (red) node takes the value
(0, 1). It is clear that the encouraged solution is for the bottom-left (red) node
and the bottom-right (green) node to take the value (0, 1) and (1, 0) respectively.

These two gadgets can be used to uncross the intersecting edges of two pairs
of 3-label nodes (Fig. 4, left). For a crossing edge (xu, xv), first a new 3-label
node xv′ is introduced preserving the same arbitrary interaction (red line) as
before (Fig. 4, middle). Then, the crossing edges (enclosed in the dotted circle)
are uncrossed by applying Split and UncrossCopy four times (Fig. 4, right).

Fig. 4. Planar reduction for 3-label problems
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Without loss of generality, we can assume that no more than two edges inter-
sect at a common point except at their endpoints. This process can be applied
repeatedly at each edge crossing until there are no edge crossings left in the
graph [49].

5 Complexity of Subclass Problems

In this section, we classify some of the special cases of energy minimization
according to our complexity axis (Fig. 1). This classification can be viewed as a
reinterpretation of existing results from the literature into a unified framework.

5.1 Class PO (Global Optimum)

Polynomial time solvability may be achieved by considering two principal restric-
tions: those restricting the structure of the problem, i.e., the graph G, and those
restricting the type of allowed interactions, i.e., functions fuv.

Structure Restrictions. When G is a chain, energy minimization reduces to
finding a shortest path in the trellis graph, which can be solved using a classical
dynamic programming (DP) method known as the Viterbi algorithm [20]. The
same DP principle applies to graphs of bounded treewidth. Fixing all variables in
a separator set decouples the problem into independent optimization problems.
For treewidth 1, the separators are just individual vertices, and the problem is
solved by a variant of DP [47,54]. For larger treewidths, the respective opti-
mization procedure is known as junction tree decomposition [43]. A loop is a
simple example of a treewidth 2 problem. However, for a treewidth k problem,
the time complexity is exponential in k [43]. When G is an outer-planar graph,
the problem can be solved by the method of [55], which reduces it to a planar
Ising model, for which efficient algorithms exist [60].

Interaction Restrictions. Submodularity is a restriction closely related to
problems solvable by minimum cut. A quadratic pseudo-Boolean function f is
submodular iff its quadratic terms are non-positive. It is then known to be equiv-
alent with finding a minimum cut in a corresponding network [21]. Another
way to state this condition for QPBO is ∀(u, v) ∈ E , fuv(0, 1) + fuv(1, 0) ≥
fuv(0, 0) + fuv(1, 1). However, submodularity is more general. It extends to
higher-order and multi-label problems. Submodularity is considered a discrete
analog of convexity. Just as convex functions are relatively easy to optimize,
general submodular function minimization can be solved in strongly polynomial
time [56]. Kolmogorov and Zabin introduced submodularity in computer vision
and showed that binary 2nd order and 3rd order submodular problems can be
always reduced to minimum cut, which is much more efficient than general sub-
modular function minimization [34]. Živný et al. and Ramalingam et al. give
more results on functions reducible to minimum cut [50,68]. For QPBO on an
unrestricted graph structure, the following dichotomy result has been proven by
Cohen et al. [16]: either the problem is submodular and thus in PO or it is
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NP-hard (i.e., submodular problems are the only ones that are tractable in this
case).

For multi-label problems Ishikawa proposed a reduction to minimum cut
for problems with convex interactions, i.e., where fuv(xu, xv) = guv(xu − xv)
and guv is convex and symmetric [23]. It is worth noting that when the unary
terms are convex as well, the problem can be solved even more efficiently [22,31].
The same reduction [23] remains correct for a more general class of submodular
multi-label problems. In modern terminology, component-wise minimum x ∧ y
and component-wise maximum x ∨ y of complete labelings x, y for all nodes are
introduced (x, y ∈ LV). These operations depend on the order of labels and, in
turn, define a lattice on the set of labelings. The function f is called submodular
on the lattice if f(x∨ y)+ f(x∧ y) ≤ f(x)+ f(y) for all x, y [65]. In the pairwise
case, the condition can be simplified to the form of submodularity common in
computer vision [50]: fuv(i, j + 1) + fuv(i + 1, j) ≥ fuv(i, j) + fuv(i + 1, j + 1).
In particular, it is easy to see that a convex fuv satisfies it [23]. Kolmogorov [32]
and Arora et al. [3] proposed maxflow-like algorithms for higher order submodu-
lar energy minimization. Schlesinger proposed an algorithm to find a reordering
in which the problem is submodular if one exists [53]. However, unlike in the
binary case, solvable multi-label problems are more diverse. A variety of prob-
lems are generalizations of submodularity and are in PO, including symmetric
tournament pair, submodularity on arbitrary trees, submodularity on arbitrary
lattices, skew bisubmodularity, and bisubmodularity on arbitrary domains (see
references in [64]). Thapper and Živný [63] and Kolmogorov [33] characterized
these tractable classes and proved a similar dichotomy result: a problem of unre-
stricted structure is either solvable by LP-relaxation (and thus in PO) or it is
NP-hard. It appears that LP relaxation is the most powerful and general solving
technique [72].

Mixed Restrictions. In comparison, results with mixed structure and inter-
action restrictions are rare. One example is a planar Ising model without unary
terms [60]. Since there is a restriction on structure (planarity) and unary terms,
it does not fall into any of the classes described above. Another example is the
restriction to supermodular functions on a bipartite graph, solvable by [53] or
by LP relaxation, but not falling under the characterization [64] because of the
graph restriction.

Algorithmic Applications. The aforementioned tractable formulations in PO
can be used to solve or approximate harder problems. Trees, cycles and planar
problems are used in dual decomposition methods [9,35,36]. Binary submodular
problems are used for finding an optimized crossover of two-candidate multi-label
solutions. An example of this technique, the expansion move algorithm, achieves
a constant approximation ratio for the Potts model [13]. Extended dynamic pro-
gramming can be used to solve restricted segmentation problems [18] and as
move-making subroutine [67]. LP relaxation also provides approximation guar-
antees for many problems [5,15,28,37], placing them in the APX or poly-APX
class.
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5.2 Class APX and Class Log-APX (Bounded Approximation)

Problems that have bounded approximation in polynomial time usually have
certain restriction on the interaction type. The Potts model may be the simplest
and most common way to enforce the smoothness of the labeling. Each pair-
wise interaction depends on whether the neighboring labellings are the same,
i.e. fuv(xu, xv) = cuvδ(xu, xv). Boykov et al. showed a reduction to this problem
from the NP-hard multiway cut [13], also known to be APX-complete [4,17].
They also proved that their constructed alpha-expansion algorithm is a 2-
approximate algorithm. These results prove that the Potts model is in APX but
not in PO. However, their reduction from multiway cut is not an AP-reduction,
as it violates the third condition of AP-reducibility. Therefore, it is still an open
problem whether the Potts model is APX-complete. Boykov et al.also showed
that their algorithm can approximate the more general problem of metric label-
ing [13]. The energy is called metric if, for an arbitrary, finite label space L, the
pairwise interaction satisfies a) fuv(α, β) = 0, b) fuv(α, β) = fuv(β, α) ≥ 0, and
c) fuv(α, β) ≤ fuv(β, γ) + fuv(β, γ), for any labels α, β, γ ∈ L and any uv ∈ E .
Although their approximation algorithm has a bound on the performance ratio,
the bound depends on the ratio of some pairwise terms, a number that can grow
exponentially large. For metric labeling with k labels, Kleinberg et al.proposed
an O(log k log log k)-approximation algorithm. This bound was further improved
to O(log k) by Chekuri et al. [14], making metric labeling a problem in log-APX6.

We have seen that a problem with convex pairwise interactions is in
PO. An interesting variant is its truncated counterpart, i.e., fuv(xu, xv) =
wuv min{d(xu − xv),M}, where wuv is a non-negative weight, d is a convex
symmetric function to define the distance between two labels, and M is the
truncating constant [66]. This problem is NP-hard [66], but Kumar et al. [39]
have proposed an algorithm that yields bounded approximations with a factor
of 2 +

√
2 for linear distance functions and a factor of O(

√
M) for quadratic

distance functions7. This bound is analyzed for more general distance functions
by Kumar [38].

Another APX problem with implicit restrictions on the interaction type is
logic MRF [6]. It is a powerful higher order model able to encode arbitrary
logical relations of Boolean variables. It has energy function f(x) =

∑n
i wiCi,

where each Ci is a disjunctive clause involving a subset of Boolean variables x,
and Ci = 1 if it is satisfied and 0 otherwise. Each clause Ci is assigned a non-
negative weight wi. The goal is to find an assignment of x to maximize f(x).
As disjunctive clauses can be converted into polynomials, this is essentially a
pseudo-Boolean optimization problem. However, this is a special case of general
2-label energy minimization, as its polynomial basis spans a subspace of the
basis of the latter. Bach et al. [6] proved that logic MRF is in APX by showing
that it is a special case of MAX-SAT with non-negative weights.
6 An O(log k)-approximation implies an O(log |x|)-approximation (see CorollaryC.1).
7 In these truncated convex problems, the ratio bound is defined for the pairwise part

of the energy (1). The approximation ratio in accordance to our definition is obtained
assuming the unary terms are non-negative.
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6 Discussion

The algorithmic implications of our inapproximability have been discussed
above. Here, we focus on the discussion of practical implications. The existence
of an approximation guarantee indicates a practically relevant class of problems
where one may expect reasonable performance. In structural learning for exam-
ple, it is acceptable to have a constant factor approximation for the inference
subroutine when efficient exact algorithms are not available. Finley and Joachims
proved that this constant factor approximation guarantee yields a multiplicative
bound on the learning objective, providing a relative guarantee for the quality of
the learned parameters [19]. An optimality guarantee is important, because the
inference subroutine is repeatedly called, and even a single poor approximation,
which returns a not-so-bad worst violator, will lead to the early termination of
the structural learning algorithm.

However, despite having no approximation ratio guarantee, algorithms such
as the extended roof duality algorithm for QPBO [52] are still widely used. This
gap between theory and application applies not only to our results but to all
other complexity results as well. We list several key reasons for the potential
lack of correspondence between theoretical complexity guarantees and practical
performance.

Complexity Results Address the Worst Case Scenario. Our inapprox-
imability result guarantees that for any polynomial time algorithm, there exists
an input instance for which the algorithm will produce a very poor approxima-
tion. However, applications often do not encounter the worst case. Such is the
case with the simplex algorithm, whose worst case complexity is exponential,
yet it is widely used in practice.

Objective Function is Not the Final Evaluation Criterion. In many image
processing tasks, the final evaluation criterion is the number of pixels correctly
labeled. The relation between the energy value and the accuracy is implicit. In
many cases, a local optimum is good enough to produce a high labeling accuracy
and a visually appealing labeling.

Other Forms of Optimality Guarantee or Indicator Exist. Approxima-
tion measures in the distance of solutions or in the expectation of the objective
value are likely to be prohibitive for energy minimization, as they are for Bayesian
networks [40–42]. On the other hand, a family of energy minimization algorithms
has the property of being persistent or partial optimal, meaning a subset of nodes
have consistent labeling with the global optimal one [10,11]. Rather than being
an optimality guarantee, persistency is an optimality indicator. In the worst case,
the set of persistent labelings could be empty, yet the percentage of persistent
labelings over the all the nodes gives us a notion of the algorithm’s performance
on this particular input instance. Persistency is also useful in reducing the size
of the search space [29,58]. Similarly, the per-instance integrality gap of duality
based methods is another form of optimality indicator and can be exponentially
large for problems in general [37,61].



Complexity of Discrete Energy Minimization Problems 849

7 Conclusion

In this paper, we have shown inapproximability results for energy minimiza-
tion in the general case and planar 3-label case. In addition, we present a uni-
fied overview of the complexity of existing energy minimization problems by
arranging them in a fine-grained complexity scale. These altogether set up a
new viewpoint for interpreting and classifying the complexity of optimization
problems for the computer vision community. In the future, it will be interest-
ing to consider the open questions of the complexity of structure-, rank-, and
expectation-approximation for energy minimization.
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