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Abstract. We propose a deep Convolutional Neural Networks (CNN)
method for natural image matting. Our method takes results of the closed
form matting, results of the KNN matting and normalized RGB color
images as inputs, and directly learns an end-to-end mapping between the
inputs, and reconstructed alpha mattes. We analyze pros and cons of the
closed form matting, and the KNN matting in terms of local and nonlocal
principle, and show that they are complementary to each other. A major
benefit of our method is that it can “recognize” different local image
structures, and then combine results of local (closed form matting), and
nonlocal (KNN matting) matting effectively to achieve higher quality
alpha mattes than both of its inputs. Extensive experiments demonstrate
that our proposed deep CNN matting produces visually and quantita-
tively high-quality alpha mattes. In addition, our method has achieved
the highest ranking in the public alpha matting evaluation dataset in
terms of the sum of absolute differences, mean squared errors, and gra-
dient errors.
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1 Introduction and Related Work

Image matting aims to extract an alpha matte of foreground given a trimap of
an image. This problem can be expressed as a linear combination of foreground
and background colors as follows [1]:

I=aF+(1-a)B, (1)

where I, F, B, and « denote the observed image (usually in RGB), foreground,
background and mixing coefficients (alpha matte) respectively. Given an input
I, finding F), B, and « simultaneously is a highly ill-posed problem.

Previous works in image matting have shown that, if we make proper assump-
tions, e.g. the color line model, about F and B, we can solve « in a closed form [2].
Local affinity based methods [2,3] analyze statistical correlation among local pix-
els to propagate alpha values from known regions to unknown pixels. When their
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assumptions about local color distribution were violated, unsatisfactory results
can be obtained. Nonlocal affinity based approaches [4-9] and color sampling
based methods [10-14] rely on the nonlocal principle. They try to relax the local
color distribution assumption by searching nonlocal neighbors and color sam-
ples which provide a better description of the image matting equation (Eq. (1)).
Moreover, some works utilize multiple frames such as video [9,15] and camera
arrays [16, 18] to get local and nonlocal information across the images for matting.

Nonlocal methods, however, do not always outperform local methods. This is
because these nonlocal methods were also built on top of some assumptions, e.g.
nonlocal matting Laplacian [6], structure and texture similarity [13], compre-
hensive sampling sets [14], to search for proper nonlocal neighbors. In practice,
alpha mattes from local methods are spatially smoother while alpha mattes from
nonlocal methods can better capture long hair structures. There are also a few
works [19,20] which implicitly deal with a combination of local and nonlocal
principles.

We observe that there is a synergistic effect between local and nonlocal meth-
ods. The question is how these two kinds of methods can be combined effectively
without losing the advantages of both methods. The answer, however, is not
straight forward. An important criterion is that the solution should be able to
adapt well to different image structures without depending too much on para-
meter tuning. Deep learning has recently drawn a lot of attentions in object
recognition [21]. It has demonstrated its strength in feature extraction, classi-
fication [22,23], object detection [24,25] and saliency detection [26,27], as well
as image reconstruction tasks such as image denoising [28], dirt removal [30],
super-resolution [31], and image deblurring [33]. Because of its benefits in per-
formance, and its versatility in various tasks, we are interested in applying deep
learning to the natural image matting problem to bridge the gap between local
and nonlocal methods. In addition, although deep learning has a lot of parame-
ters in its training phase, it is almost parameter-free in its testing phase. Because
the testing phase requires only a single forward pass of the deep architecture,
it is also very efficient in computation especially with the supports of nowadays
GPU implementation [34,35].

We have designed a deep CNN whose inputs are the alpha matte from the
closed form matting, the alpha matte from the KNN matting, and the normal-
ized RGB colors of the corresponding input image. We choose the closed form
matting and the KNN matting as the representative of local and nonlocal meth-
ods because both methods are simple, mathematically solid and with publicly
available source codes from their original authors. Also, both methods have a
few parameters, and their performance is quite stable across wide range of exam-
ples. Our deep CNN is directly learnt from more than a hundred thousand of
sampled image patches whose ground truth alpha mattes were collected from
various sources [36]. We adopt data augmentation to increase variations and the
number of training patches. In addition, we apply clustering using the ground
truth alpha mattes to balance the number of training patches of different image
structures. This is necessary in order to avoid overfitting of training data to
particular type of image structures, e.g. long hairs.
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After our deep CNN model is trained, we can directly apply our trained
model to alpha matte reconstruction at the original resolution of input images.
This is possible because our model utilizes only convolutional layers, and the
convolutional layer do not have the fixed size limitation as opposed to the fully
connected layer [37]. Our proposed deep CNN method can effectively combine
the benefits of local and nonlocal information to reconstruct higher quality alpha
mattes than both of its inputs. Note that this reconstruction is free of parameter,
and the initial alpha mattes were obtained from the default parameters of the
closed form matting and KNN matting. Because of the nonlinear units across the
multiple layers in our deep CNN architecture, our results cannot be reproduced
by a simple linear combination of our inputs. We have also found that different
image structures activate different neurons in our deep CNN, which results in
the best possible alpha mattes reconstruction from our inputs. Finally, we fur-
ther extend our work by combining the inputs from closed form matting, KNN
matting, and comprehensive matting, and a significant performance boost has
achieved.

In summary, this paper offers the following contributions:

1. We introduce a deep CNN model for natural image matting. To our knowl-
edge, this is the first attempt to apply deep learning to the natural image
matting problem.

2. Our deep CNN model can effectively combine alpha mattes of local and non-
local methods to reconstruct higher quality alpha mattes than both of its
inputs. This is because our deep CNN model can “recognize” local image
structures through the activations of different neuron units, and apply appro-
priate reconstruction scheme to adapt different image structures. This whole
process is efficient and parameter-free once our deep CNN model is trained.

3. Our deep CNN method demonstrates outstanding performance in the public
alpha matting evaluation benchmark dataset [36]. Our method has achieved
the highest ranking in terms of the sum of absolute differences, mean squared
errors, and gradient errors.

2 Review of Closed Form and KNN Mattings

Our method takes results from the closed form matting [2] and the KNN mat-
ting [8] as parts of our inputs. In this section, we briefly review these two
methods, and discuss their strength and weakness in the natural image mat-
ting problem.

2.1 Closed Form Matting

The closed form matting assumes that the local color distribution follows a color
line model where colors within a local window can be expressed as a linear
combination of two colors. Based on this assumption, Levin et al. derived the
matting Laplacian and proved that the alpha matte of foreground can be solved
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in a closed form without explicit estimation of foreground and background colors.
Since then, the matting Laplacian has been extensively used as a regularization
term to enhance smoothness of estimated alpha mattes [5,12,13], and other
applications [38,39].

Strength: In the closed form matting, there are only a few parameters: local
window size, €, and \. In practical usages, a user only needs to adjust A which
is the regularization weight to define the strength of smoothness defined by the
matting Laplacian. The value of A can also be fixed for wide range of applications
since the performance of matting Laplacian is quite robust to the values of its
parameters. Its performance is guaranteed when the color line model assumption
is satisfied.

Weakness: Although the color line model is quite general, there are a lot of cases
where the color line model assumption is violated. It happens when background
contains textures or multiple colors in a local region, or when local color distri-
butions of foreground and background are overlapped. In addition, in order to
satisfy the color line model, the local window size needs to be unavoidably small
(e.9. 3x3). A large local window also makes the sparse matting Laplacian matrix
computationally intractable. Consequently, the matting Laplacian contains only
local information. Since alpha mattes are estimated through the propagation by
the matting Laplacian, if the initial definite foreground or definite background
samples provided by a user are far away from the matting regions, the estimated
alpha mattes will still be over smoothed even through the color line model is sat-
isfied. Also, alpha mattes in isolated regions of a trimap can never be correctly
estimated since alpha values are propagated to local neighborhood only. These
weaknesses are illustrated in Figs. 1 and 2.

2.2 KNN Matting

The KNN matting was derived based on the nonlocal principle in matting orig-
inally proposed by the nonlocal matting [6]. Its goal is to resolve the limitations
of matting Laplacian by allowing alpha values to be propagated across nonlocal

Fig. 1. (a) Input image. (b) Trimap. (c¢) Alpha matte from the closed form matting.
(d) Ground truth alpha matte. Because the definite background samples are far away
from object boundaries, the alpha matte in (c) is over smoothed.
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Fig. 2. Limitation of local principle for fine structures (a-¢) and isolated regions (f-i).
(a) Input image. (b) Cropped regions. (c) Double-zoom of the cropped regions. (d)
Alpha mattes from the closed form matting. (e) Ground truth alpha mattes. (Red
box) The alpha matte of the fine structures has disappeared because the definite fore-
ground samples are too far away. The estimated background (1-«r) is over smoothed.
(Yellow box) The estimated foreground o of fine structures is over smoothed. (f) Input
image. (g) Isolated regions within a trimap. (h) Alpha matte from the closed form
matting. (i) Ground truth alpha matte. In this example, background pixels within the
isolated trimap regions are considered as foreground because matting Laplacian cannot
propagate alpha values across nonlocal neighbors. (Color figure online)

neighbors. Similar to the closed form matting, the nonlocal matting also makes
an assumption about the sampled nonlocal neighbors. It assumes that the alpha
value of a pixel can be described by a weighted sum of the alpha values of
the nonlocal pixels that have similar appearance. In the nonlocal matting, the
similar appearance is defined by colors, distance, and texture similarities. The
computation of nonlocal matting, however, is very high due to the comparisons
of nonlocal neighbors. The KNN matting improved the nonlocal matting by con-
sidering only the first K-nearest neighbors in a high dimensional feature space.
It reduces the computation by considering only colors (in the HSV color space)
and location similarity in their feature space. It also introduced a better precon-
ditioning to further speed up computations. Interestingly, the alpha mattes by
the KNN matting outperform the alpha mattes by the nonlocal matting because
nonlocal neighbors at farther distance can be considered owing to the reduction
of computations.

Strength: Similar to the closed form matting, the KNN matting also has a
few parameters, and their parameters can be fixed for wide range of examples.
Because the KNN matting utilizes nonlocal information, it can handle isolated
regions, and better propagate alpha values across fine structures which are usu-
ally over smoothed by the closed form matting at a long distance.

Weakness: A major limitation of nonlocal methods is that it is difficult to define
a universal feature space which can properly evaluate the nonlocal neighbors to
adapt different structures of an image. Considering the KNN matting, it utilizes
the HSV space instead of the RGB space in its feature vectors because the HSV
feature has better quantitative performance in the alpha matting evaluation
dataset [36]. However, it is controversial to conclude that the HSV feature always
outperforms the RGB feature. This is illustrated in Fig.3(a~d). Similarly, it is
controversial to conclude that features that utilize more texture information can
always outperform features that utilize only color information, especially for
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Fig. 3. Limitation of nonlocal principle in terms of feature space (a-d), and comparison
of the closed form matting and KNN matting (e-i). (a, ¢) RGB images. (b, d) HSV
images. The zoom-ins show the corresponding alpha mattes from the KNN matting
with different color space features. The RGB feature produces better result than that
of HSV feature in (a, b), but worse result in (c, d). (e) Input image. (f, g) Alpha
mattes from the closed form matting and the KNN matting, respectively. (h, i) The
corresponding error maps (enhanced for better visualization) of (f, g). (Color figure
online)

the natural image matting problem. Because of the limitation of feature spaces,
nonlocal methods can perform worse than local methods when improper nonlocal
neighbors are considered.

To conclude, we compare the performance of the closed form matting and
the KNN matting in Fig.3(e-i). The closed form matting performs better in
preserving local smoothness which has smaller errors in sharp, and short hair
regions. In contrast, the KNN matting performs better in protecting long hair
regions as shown in the zoom-in regions.

3 Deep CNN Matting

In this section, we first describe our deep CNN architecture. After that, we
provide a deeper analysis to the activation of neurons in our deep CNN model.

3.1 Architecture

The architecture of our deep CNN model is illustrated in Fig.4. Our net-
work directly maps the input patches (27x27x5) to the output alpha matte
(15x15x1) as follows:

a=F,a.,a), (2)

I
image whose intensity is normalized by the magnitude of RGB vector, a. is
the alpha matte from the closed form matting, and «y is the alpha matte from
the KNN matting. The main reason that the normalized RGB is adopted is
to reduce magnitude variations of input signals since the magnitude variations
are better captured in the initial alpha mattes (a. and «y). Similarly, we do
not include the trimap in our input signals because the trimap information has
already implicitly encoded in «,. and «g. Also, strong edges in a trimap can

where F(-) denotes a forward pass of our network, I = is the input



632 D. Cho et al.

1x1 cony Ix1 conv 1x1 conv

| . i i i

Normallzed RGB +a, + 0, Feature Map Feature Map Feature Map Feature Map
(27 x 27 x 5) (19 x 19 x 64) (19 x 19 x 64) (19 x 19 x 64) (19 x 19 x 64)

5x5 conv

Output a Patch
(15x15x 1)

2

Feature Map

Fig. 4. The deep CNN architecture of our method. It consists of 6 convolutional layers.
Except for the last layer, each convolutional layer is followed by a ReLU layer for the
nonlinear mapping operation. The size of the convolutional kernels, and the number of
channels in each layer are illustrated in the figure. In training, the input size is equal to
27x27x5, and the output size is equal to 15x15x1. The FEuclidean loss cost function
is used to evaluate the errors during the training. In testing, the spatial dimension
of inputs and outputs are equal to the resolution of input images (with padding for
input). Our deep CNN method directly outputs the resulting alpha mattes after a
forward pass.

give inaccurate high activation responses which can hinder the accuracy of our
reconstructed alpha mattes. The initial alpha mattes, a. and «y, are obtained
using the default parameters provided in the original source codes of [2,8].

Our deep CNN model can be roughly divided into three stages according to
the size of convolution kernels. In the first stage (F7), the first convolutional layer
is convolved with the 5-channel inputs using 64 9 x 9 kernels which results in 64
response maps'. Mathematically, the response map after the first convolutional
layer and the ReLLU layer is defined as:

fl,n(I_7 O, Oék) = max(O, Wl,n ® [-ZT7 Qc, Olk] + bl,n)a (3)

where W ,, denotes the weight of the n-th filter in the first layer, and by, is
the bias term. We set the bias term equal to zero, and the filter weights, W7 ,,,
are directly learnt from training examples. The first stage serves as structure
analysis which activates response of different neurons according to the weights
of the filters. After this stage, the response maps capture different local image
structures in different output channels.

In the second stage (Fa ~ Fs), it stacks multiple 1x1 convolutional layers
to remap the response maps to enhance or suppress the neuron responses non-
linearly according to cross channel correlation. This process is similar to the
nonlinear coefficient remapping in sparse coding for image superresolution [40]
as discussed in [31]. In [31], only one layer of 1x1 convolutional layer is used for
the remapping. We found that stacking multiple 1x1 convolutional layers can
significantly enhance the performance of our method.

In the last stage (Fg), the alpha mattes are directly reconstructed from the
response maps after the second stage:

a=Fo(Fs(I,ac,ar)) = We @ Fs(I, e, ). (4)

! In CAFFE [34], each response map is a weighted sum of the response map of each
input channel after passing through the 9 x 9 convolution. Thus, the number of
output channels is equal to the number of filters defined in each layer, instead of the
multiplication of the number of filters multiplied with the number of input channels.
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We use kernels with size 5 x 5 for the reconstruction in order to consider spatial
smoothness of the reconstructed alpha mattes.

During the training phase, the reconstructed alpha mattes are compared with
the ground truth alpha mattes using the Euclidean loss cost function. The errors
are back propagated to each layer to update the weights of kernels in each layer.
In the testing phase, only a single forward pass is needed to reconstruct the
resulting alpha mattes. We use zero padded input images, and directly apply
the forward pass at the original image resolution to reconstruct a full resolution
alpha matte directly from its inputs. There is no parameter tuning once the deep
CNN model is learnt.

3.2 Analyses

Internal Response. We analyze the functionality of each stage by plotting the
response maps (F; ~ JFg) at each layer. Figure5 shows the response maps of
two local patches with different local structures. In the top example, the alpha
matte from the KNN matting is more accurate, while in the bottom example, the
alpha matte from the closed form matting is more accurate. As visualized in the
response maps after the first stage, their filter responses are significantly different
from each other. One can interpret that each of the learnt kernels in the first
stage are local classifiers which detect particular type of image structures within
a local window. It can also be interpreted that the learnt kernels compare the
alpha mattes from the closed form matting, and the KNN matting which result
in very different response maps with respect to the original image structures,
and evaluate which alpha mattes are more accurate.

Compared to the response maps in the previous layers, the reconstructed
alpha mattes depends only on a subset of response maps which has been acti-
vated. Because the response maps are content adaptive, the reconstruction of
alpha mattes can choose the best possible weighted combinations (learnt from
training examples) of response maps to reconstruct the alpha mattes which are
also adaptive to local image structures. An interesting observation in this exam-
ple is that the response maps in the nonlinear remapping stage are getting closer

Input Structure analysis 7 Non-linear activation 7 Reconstruction

Fig. 5. Examples of response maps in each layer. Note that different image structures
activate different neuron responses after the structure analysis stage. The non-linear
activations remap the responses maps nonlinearly so that the reconstruction stage can
directly reconstruct resulting alpha mattes from the response maps.
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to reconstructed alpha mattes after each 1x1 convolutional and ReLU layers.
This indicates that stacking multiple 1x1 convolutional and ReLU layers indeed
helps to enhance the performance of our method.

Effect of the Number of Nonlinear Activation Layers. To further ana-
lyze the effects of nonlinear activation layers, we compare the performance of
our CNN architecture by changing the number of nonlinear activation layers.
We compare the performance with one, four, and eight layers of nonlinear acti-
vations. To provide a fair comparison, all architectures were trained from scratch
with the same set of training examples and parameters, e.g. , the same initializa-
tion, learning rate, and number of iterations. Also, the number of channels of each
nonlinear activation layer is fixed to 64. Table. 1 reports the average errors on a
validation set and the processing time of a forward pass. As expected, more non-
linear activations can improve the results but the improvement with eight-layer
architecture is marginal in compare with the results from four-layer architec-
ture. Therefore, we choose the architecture with four-layer nonlinear activations
to reduce running time and to avoid overfitting.

Table 1. Effect of the number of nonlinear activation layers.

[Avg.] Sum of absolute | Mean squared error | Gradient error | Time (sec.)
difference

Single layer | 11.10 0.596 0.842 4.617

Four layers | 10.30 0.563 0.804 5.126

Eight layers | 10.17 0.546 0.792 6.528

Effects of Initial Alpha Mattes. We experiment the effectiveness of our
network with different initial alpha mattes. In particular, without changing
the network architectures, we re-train the network from scratch with different
inputs: RGB+Trimap, RGB+closed form matting, RGB+KNN mat-
ting, RGB+-closed form matting+comprehensive sampling matting,
and RGB+closed form matting+KNN matting+comprehensive sam-
pling matting. The RGB+Trimap is the standard input setting of the image
matting problem.

Figure 6 shows the qualitative comparisons. Without the initial alpha mattes,
the results from RGB+Trimap (Fig.6(g)) are worse than the alpha mattes
from conventional methods. The worse results may be deal to the usage of small
network (with only one layer for structure analysis) or may be deal to the usage
of small patches (27x27) for training. However, using larger network or larger
patches (or entire images) for training would require significantly more training
examples, and longer time to process. Also, the results from the state-of-the-art
deep learning algorithm [41] for image segmentation are still imperfect which is
not suitable for the image matting application. These shortcomings motivate us



Natural Image Matting Using Deep Convolutional Neural Networks 635

. BULEEAEAREALARAR AR
—pndddidddiddE

1O | o Y o o o o o
Laannaiiannng

5.3921 4.4902 4. 4758 37.4287 8.1244 4.0301 1. 6798 5.3922 1.4408

© @ (@ @ M 0 O

Fig. 6. Effect of initial alpha mattes. (a) Input Images. (b) Trimaps. (¢) Ground
truth alpha mattes. (d, e, f) Alpha mattes from the closed form matting [2], KNN
matting [8], comprehensive sampling matting [14], respectively. (g-1) Results from
our CNN model with different inputs. (g) RGB+Trimap. (h) RGB+Closed form. (i)
RGB+KNN. (j) RGB+Closed form+KNN (Our standard setting). (k) RGB+Closed
form+Comprehensive. (1) RGB+Closed form+KNN+Comprehensive. Numbers in the
bottom are average RMSE of this examples.

to utilize alpha mattes from conventional methods, e.g. closed form and KNN
mattings, as an approximate solution for refinement.

Figure 6(h, i) show the results where inputs are from RGB+closed form
matting and RGB+KNN matting. With the alpha mattes from closed form
matting, or KNN matting, the matting results are significantly improved. How-
ever, both results depend too much on the quality of input alpha mattes. Also,
the limitations of local and nonlocal methods remain in their results respectively.
Our results (RGB+-closed form matting+KNN matting) which combine
the alpha mattes from closed form matting and KNN matting are presented in
Fig.6(j). The results from (RGB+closed form matting+KNN matting)
are significantly better than both of its inputs, which favourably combines the
benefits of local and nonlocal methods.

To further analyze the effects of inputs, we have also trained a network which
inputs are from RGB+-closed form matting+comprehensive sampling
matting. The comprehensive matting is chosen because its algorithm combines
both local and nonlocal information, and its performance is better than both
closed form matting and KNN matting. However, the results (Fig.6(k)) from
RGB-+-closed form matting+comprehensive sampling matting are worse
than the results (Fig.6(j)) from RGB+closed form matting+KNN mat-
ting. This may be because the comprehensive sampling matting also consider
local information, which introduces bias to the inputs. Consequently, this combi-
nation cannot fully utilize the nonlocal information, and their results are worse
than our results from RGB+-closed form matting+KNN matting.

Finally, on top of initial alpha mattes from the closed form matting and KNN
matting, we add the alpha mattes from the comprehensive matting. As shown
in Fig.6(1), results from three initial alpha mattes are slightly better than the
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combination of the closed form matting and KNN matting. We submitted the
results from RGB+closed form matting+KNN matting+comprehensive
sampling matting together with the results from RGB+closed form mat-
ting+KNN matting to the evaluation site of alpha matting algorithms. Both
results achieve the highest rank, and the results from three initial trimaps are
better.

4 Experiment

In this section, we first describe our processes to prepare the training data.
Then, we evaluate the performance of our deep CNN matting on the public
alpha matting evaluation dataset [36], as well as some real world examples.
Limitations and a failure case are also discussed. The trained model and testing
codes are released in our website.?

4.1 Training

We collect training dataset from [36]. There are 27 examples which are composed
of a RGB image, trimaps, and a ground truth alpha matte. For each example, we
apply the closed form matting [2] and the KNN [8] matting to obtain their alpha
mattes as part of our inputs: a, and ay. Since our training phase processes on
each 27 x 27 image patches, we can generate a lot of training patches from the 27
examples. We have also increased the number of training data through data aug-
mentation. In particular, using their ground truth alpha mattes, we composite
the foreground onto different background to increase variations and the number
of training examples. We have also exploited different rotation, reflection and
resizing to increase the number of training patches. Using data augmentation,
we can generate more than a hundred thousand of training patches.

While increasing the number of training patches can enhance performance
of our trained deep CNN model, we noticed that data balancing is also very
important when preparing the training data. We want to avoid overfitting of
the training data to a particular type of alpha mattes. To resolve this issue,
we cluster the training patches according to the number of pixels with non-zero
alpha values, and with non-zero alpha gradients. If a patch has many pixels with
non-zero alphas, but has a few pixels with non-zero alpha gradients, the patch
can be considered as a sharp boundary patch. In contrast, if a patch has a few
pixels with non-zero alphas, but has many pixels with non-zero alpha gradients,
the patch can be considered as a long hair patch. Based on this analysis, we
cluster the training patches into 20 groups. When preparing the training data
for the deep learning, we balance the number of sampled patches from each group
in order to avoid the overfitting problem of training data.

After preparing the training data, we train our deep CNN model using the
back propagation. It takes around 2~3 days for 10° number of iterations on

2 https:/ /sites.google.com /site/cnnmatting/.
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a machine with GTX 760 GPU and intel i7 3.4 GHz CPU. We use the method
“xavier” (caffe parameter) to initialize the training weights. The xavier algorithm
automatically determines the scale of initialization based on the number of input
and output neurons. The learning rate, momentum and batch size are set to
107°,0.9 and 128 respectively. In the training phase, we did not pad the image
patches. Therefore, the resolution of output (15 x 15) is smaller than the input
(27 x 27). In testing phase, we zero padded the boundary of input images with
6-pixel width (@ = 6), and directly apply the forward pass at the original
image resolution with zero padded boundary to reconstruct a full resolution
alpha matte. Thus, the resolution of our alpha matte is the same as the resolution
of input image. A forward pass takes around 4 ~ 6 to process an image with a
resolution of 800 x 640 pixels.

4.2 Evaluation

Quantitative Comparisons. Table 2 shows the quantitative comparisons on
the testing dataset in [36]. The ground truths of the testing dataset are unavail-
able to public. The quantitative results are obtained by submitting our result-
ing alpha mattes to the evaluation website as “anonymous_submission” and
“anonymous_submission (modified version)”, and the scores are directly obtained
from the evaluation website. As shown in Table. 2, our results (DCNN (Closed
from + KNN)) and extensions (DCNN (Closed from + KNN + Comprehensive))
have dominated the first two rank in terms of SAD, MSE, and Gradient errors.
Note that all results are obtained using the same network without parameter
tuning. The initial alpha mattes are obtained by using the default parameters of
closed form matting, KNN matting, and comprehensive sampling matting. Also,
we did not separate the training examples nor separately train the network for
small/large /user trimaps. Thus, our trained network is general and is applicable
to different set of inputs.

Qualitative Comparisons. Figure 7 shows the qualitative performance of our
deep CNN matting. We compared our results with results from the state-of-
the-art matting algorithms: closed form matting [2], KNN matting [8], weighted
color and texture matting [13], and comprehensive matting [14]. Our results are
more stable and visually pleasing for various object structures: solid boundary
(elephant), semi transparency (net), overlapped color distribution (pineapple),
and long hair (¢roll). More qualitative comparisons with other methods and the
whole set of our results can be found at www.alphamatting.com.

Additional Results. To further evaluate the performance, we generate syn-
thetic data using the training dataset in [36] by replacing the original back-
grounds with new backgrounds. These new backgrounds are very colorful and
highly textured. The color line model assumption in the closed form matting is
violated, and the local color distribution of foreground and background can be
overlapped in these new examples. We use the small trimap provided by [36] to
generate the matting results. These new examples are not included in our train-
ing dataset. Figure 8 shows the qualitative comparisons on these new synthetic
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Table 2. Quantitative Comparisons in terms of sum of absolute differences, mean
squared errors, and gradient errors. Only the top 10 results are displayed. The whole set
of comparisons can be found in www.alphamatting.com (While we submitted multiple
results (DCNN (Closed from + KNN + Comprehensive) and DCNN (Closed from +
KNN)) for the evaluation, only the first rank results, DCNN (Closed from + KNN +
Comprehensive), are public. Because the second rank results are not included in the
public entries, the relative ranking scores in the public entries are slightly different
from the scores reported in our table). Note that our results dominate the first two
rank in the evaluations. The red, green, and blue highlight the top-3 results.

Sum of Absolute Differences Overall | Small | Large | User Mean Squared Error Overall | Small | Large | User Gradient Error Overal | Small | Large | User
1. DCNN (Closed from + KNN + Comprehensive) [ 28 | 44 | 11 | 3 | | 1. DCNN (Closed from + KNN + Comprehensive) | 4 | 5.1 | 18 | 5 || 1. DCNN (Closed from + KNN + Comprehensive) | 72 | 96 | 58 | 61
2. DONN (Closed from + KNN) 70 | 75 | s |81 2. DCNN (Closed from + KNN ) 55 | a4 | a5 |75 2. DONN (Closed from + KNN ) 74 | 65| 71 |85
3. Cluster-based Sampling Matting 72 | 65 | 89 |61 3. LNSP Mating 92 | 68 | 84 |125 3. KL Divergence Based Sparse Sampling 106 | 03 | 83 |13
4 LNSP Mating 104 |23 | o8 [1a1 99 | o1 | 103 [ 104 4 Anonymous TIP submission 107 | 89 | 85 [14s
5. Anonymous TIP submission [T NTE TR RO 5. Trajectory 02 | 78 | 94 |15 5. LNSP Matiing 09 | 86 | 01| 14
6. Trajectory na |83 | 0s | isa 6 KL-Divergence Based Sparse Sampling 21 s | 0s | o 6. Trajectory 1o | os |
7. KL-Divergence Based Sp [IER NTEN TR NPV 7.com 124 |18 | 123 |93 7. Comprehensive sampling 2 a0 |
8. Comprehensive sampling 33 [ | 15 |se 8. Anonymous TIP submission 13| | e |23 8. Cluster-based Sampling Mating s | 6o | 11| s
9. Ierative Transductive Matting 137 [ ass | s |2 9. Comprehensive sampling 136 | 126 | 134 | 148 9.com 1ar | es | 136 |1
10, SVR Mattng 14 [ 1es | 136 [ 116 10. SVR Mating, 138 | 178 | 123 | s 10. SVR Matting a1 | es | 15 | 106

@ (b) © (d) © ® (©)

Fig. 7. Qualitative comparisons on the public dataset [36]. (a) Input images. (b, c,
d, e) results from the closed form [2], KNN [8], weighted color and texture [13], and
comprehensive [14] mattings. (f) Our results (Closed from 4+ KNN). (g) Our results
(Closed from + KNN + Comprehensive). (Color figure online)
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3.4923 2.8366 5.2090 1.9238 1.4218 1.4689

@) (b) © (d) () ® (©) )

Fig. 8. Qualitative comparisons on synthetic dataset [36]. (a) Input images. (b, c, d, €)
results from the closed form [2], KNN [8], weighted color and texture [13], comprehen-
sive [14] matting. (f) Our results (Closed from + KNN). (g) Our results (Closed
from + KNN 4 Comprehensive). (h) Ground truths. Numbers in the bottom are
average RMSE of this examples.

Fig. 9. Qualitative comparisons on a real world image. (a) Input images. (b) Trimaps
(c, d, e) Results from the closed form [2], KNN [8], and comprehensive [14] mattings.
(f) Our results (Closed from 4+ KNN). (g) Our results (Closed from + KNN +
Comprehensive).

datasets. Compared to results from the other methods, our deep CNN matting
estimates more accurate alpha mattes.

Figure9 shows qualitative comparisons on real world images. The top row
example contains short curly hairs while the bottom example contains long hairs.
In both examples, the closed form matting produces over smoothed alpha mattes
while the KNN matting produces visually unpleasing results as shown in Fig 9(c,
d), respectively. In contrast, as shown in Fig9(f), our deep CNN matting can
combine results from the closed form matting and KNN matting properly to
reconstruct accurate alpha mattes automatically by recognizing local image
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structures. In other words, our proposed method can take advantages of both
local and nonlocal principles depending on the recognized local image structures.

Failure Case. Our deep CNN matting takes the alpha mattes from the closed
form matting, and the alpha mattes from KNN matting as part of the inputs.
It is unavoidable that the quality of our results would depend on the quality
of inputs. When the alpha mattes from both methods fail simultaneously, our
matting results would contain similar artifacts as its inputs. This failure case is
illustrated in Fig. 10 (red box). However, because our deep CNN matting can
recognize structures, even alpha mattes from the both methods contain artifacts,
our method can still produce reasonable alpha mattes better than both of its
inputs ( Fig. 10 (yellow box)) if their artifacts are different from each other.

(@ ) oo

Fig. 10. Failure case (red box). (a) Input image. (b, ¢, d) Results from the closed form
matting [2], KNN matting [8], and our method. (Color figure online)

5 Conclusion

In this paper, we have introduced the deep CNN matting. Our deep CNN matting
takes the advantages of both local and nonlocal methods, and can adaptively
reconstruct high quality alpha mattes from its inputs by recognizing local image
structures. Our method is effective and parameter-free once the deep CNN model
has been trained. Our matting results have achieved the highest rank in the
benchmark dataset [36] in terms of sum of absolute differences, mean squared
errors and gradient errors. To our knowledge, this is also the first attempt to
apply deep learning to the natural image matting problem. We believe that our
method is highly innovative and inspires follow-up works. As a future work, we
are planning to study how to relax the dependency of our results with respect
to the quality of the input alpha mattes.
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