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Abstract. Indoor scenes tend to be abundant with planar homogeneous
texture, manifesting as regularly repeating scene elements along a plane.
In this work, we propose to exploit such structure to facilitate high-level
scene understanding. By robustly fitting a texture projection model to
optimal dominant frequency estimates in image patches, we arrive at
a projective-invariant method to localize such semantically meaningful
regions in multi-planar scenes. The recovered projective parameters also
allow an affine-ambiguous rectification in real-world images marred with
outliers, room clutter, and photometric severities. Qualitative and quan-
titative results show our method outperforms existing representative
work for both rectification and detection. We then explore the poten-
tial of homogeneous texture for two indoor scene understanding tasks.
In scenes where vanishing points cannot be reliably detected, or the
Manhattan assumption is not satisfied, homogeneous texture detected
by the proposed approach provides alternative cues to obtain an indoor
scene geometric layout. Second, low-level feature descriptors extracted
upon affine rectification of detected texture are found to be not only
class-discriminative but also complementary to features without rectifi-
cation, improving recognition performance on the MIT Indoor67 bench-
mark.

Keywords: Homogeneous texture · Shape from texture · Planar
rectification · Invariant detection · Indoor scene understanding ·
Geometric layout · Scene classification

1 Introduction

Man-made environments abound with varied manifestation of planar homo-
geneous texture, i.e., regularly repeating structure or motifs aligned along
planes. Figure 1 depicts such “texture” from various indoor scenes in the MIT
Indoor67 dataset [1] — repeating objects defining scene content (stacked laun-
dry machines, bookshelves, wine barrels, theater seating, etc.), architectural and
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Fig. 1. Abundantly present and variedly manifested, homogeneous texture in indoor
scenes can serve as useful mid-level features for recognition. Rectification of such texture
can mitigate in-class variation arising out of perspective projection.

structural elements (brickwork, frameworks, repeating beams and columns), car-
pets printed or engraved with uniform patterns, tilings, ceiling fixtures, and even
shadows (provided the light source is sufficiently far away, and the blocking
objects uniformly spaced)! Such ubiquitous textures must have great potential
for favorably influencing high-level scene understanding. Yet, the tools currently
at our disposal are woefully inadequate to the purpose of detecting and analyzing
textured regions “in the wild”, key for realizing the aforementioned potential.
In this paper, we examine the technical challenges in detecting these textured
regions, develop the machinery necessary to overcome these challenges, and then
exploit these textured regions for scene understanding.

Even though invariant texture description and recognition have received regu-
lar attention for decades in computer vision, these low-level vision tasks have not
been actively pursued as a means to solve high-level vision problems. The reasons
are manifold. Firstly, it is difficult to secure a precise definition for texture [2],
its optimal representation often necessitating a variety of different mechanisms
(such as reaction-diffusion model, grey-level co-occurrence, transform methods,
etc.) depending on the circumstances. The same texture can also look signifi-
cantly different at different scales. When we want to detect and analyze textures
in the wild (that is, the textured regions have not been segmented or cropped),
the task is complicated by another order of magnitude. Figure 2 illustrates, using
some MIT Indoor67 images, the challenges involved in localizing such patterns.
The texture of interest is often interleaved with other scene content, and such
outliers can often occupy large spatial extent — e.g. aisles separating seating
sections, beams or arches interfering with repeating columns, visible backdrop
through a colonnade, or music stands cluttering patterned woodwork on a con-
cert stage. Photometric severities may be present, such as reflections blocking
out under-water pool lanes, low image contrast or varying illumination over a
given texture due to insufficient lighting in underground cellars. Finally, tex-
ture projected to the image plane inevitably exhibits perspective distortion.
Existing region extractors [3] only afford affine invariance, detecting low-level
features such as blobs and edges, and cannot localize potentially large patches
depicting meaningful texture. In this regard, our first contribution is the
projective-invariant detection of homogeneous textured planar patches in
real-world images, as well as their affine rectification. In Fig. 2, our approach
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Fig. 2. Detection in the wild: the proposed method can detect and rectify meaningful
planar homogeneous texture in indoor scenes, despite outliers with large spatial sup-
port, photometric severities and significant perspective distortion. Clockwise: concert
hall, train station, wine cellar, swimming pool.

is seen to successfully overcome the aforementioned challenges, commonplace in
real images. We also present quantitative evaluations of our method, outper-
forming existing work on the tasks of detection and rectification.

Our second contribution is to show how detected homogeneous texture,
and their recovered projective parameters, can be used to obtain indoor geo-
metric layouts in multi-planar textured scenes. In doing so, we sidestep the
error-prone, ill-posed computation of vanishing points in order to establish room
orientation, and eschew the simplistic Manhattan or box layout assumption [4].
This also contrasts with existing work [5] that employs machine learning to
localize room faces in space and scale.

As seen in Fig. 1, semantically similar image patches can exhibit signif-
icant viewpoint differences. Since gradient based low-level image descriptors
used in recognition such as SIFT or HOG are not invariant to projective trans-
forms, this can adversely affect classification performance. Our third contribu-
tion is to demonstrate that plane projective rectification can potentially ben-
efit a recognition pipeline by mitigating this geometric in-class variation. We
report improved classification on the MIT Indoor67 [1] benchmark when densely
extracted descriptors from affine-rectified texture are included in the image rep-
resentation, suggesting the feasibility of employing texture cues to achieve rec-
tification in realistic scenes, which, in turn, expectedly improves recognition
performance.

2 Related Work

Textured patch detection and rectification are often performed together
since by rectifying the perspective effect, the repeating patterns or symmetries
are more easily detected. This can be done by exploiting recurring instances of
low-level features [6–12], leveraging on different classes of symmetries detected in
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the images [13,14], or by rank minimization of the intensity matrix [15]. However,
most of these works require restrictive assumptions, e.g. specific symmetries, that
the repeating elements form a lattice, that the symmetry type or the repeating
element is given, etc. These are serious qualifications in the face of the real-life
challenges discussed in the preceding section. Thus, despite the long line of works
cited above, there is a paucity of evidence that these methods can work on real
images collected in the wild, since they have not been demonstrated on images as
rich and complex as say, those found in the benchmark MIT Indoor67, but mainly
on limited textures such as building facades, text, or even just pre-segmented or
cropped patterns. Different from these approaches, we have adopted a frequency
based approach [16] in this paper, as it is capable of describing any generic
homogeneous texture (from portholes in laundry machines to shadows — see
Fig. 1), not necessarily composed of texels that can be sensed by a given feature
detector (lines, blobs, edges, etc.). While the TILT algorithm of [15] also does
not involve feature detection, it is, however, applicable to a very limited class of
texture — that which upon rectification gives a low-rank matrix. Homogeneity,
on the other hand, is a more general assumption.

Shape-From-Texture (SFT). Our work is also related to classical shape-from-
texture (SFT) theory — in particular the class of methods that work with planar
homogeneous texture [16–18]. However, unlike SFT, our goal is not to recover
surface normal, but to perform planar rectification. We therefore re-parameterize
the local change in dominant texture frequency [16,19,20] as a function of the
plane projective homography instead of the surface slant and tilt. The resulting
formulation circumvents the need to define and relate coordinate systems and,
more importantly, does not require knowledge of focal length, hence has wider
applicability. [21] have previously performed SFT without a calibrated camera,
jointly recovering surface normal and focal length, but assume the fronto-parallel
appearance of the texture is known a priori. On the other hand, we only make
the weak assumption of texture homogeneity. Criminsi and Zisserman [22] also
recover vanishing lines from projected homogeneous texture, but their approach
involves a computationally expensive search for the direction of maximum vari-
ance of a similarity measure, seems to be susceptible to such parameters as the
size of image patch to compute the measure over, and has only been demon-
strated on cropped texture exhibiting a grid structure.

Scene Layout. Automatic detection of dominant rectangular planar structure
has been previously presented in limited, simplistic, and non-cluttered man-made
indoor [23] or urban [24] environments. [5] have demonstrated the localization
of primary indoor room faces (walls, ceiling, floor) by employing sophisticated
machine learning, while [25] have detected depth-ordered planes. However, all
these approaches assume the scene is aligned with a triplet of principal directions
defining the coordinate frame (Manhattan layout), and that these directions
can be reliably recovered in a scene. On the other hand, our method detects
homogeneous texture to recover geometric layout in multi-planar indoor scenes
that do not necessarily conform to the above assumptions.
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Indoor Scene Recognition. Since indoor scenes can be well described by
the objects and components they contain, their recognition has often been
approached through the detection of class-discriminative, mid-level visual fea-
tures or parts that preserve semantics and spatial information [1]. Automatic
part learning from images labeled only with the scene category has received
wide attention [26–29]. However, already an ill-posed problem — since both the
appearance models of parts and their instances in given images are unknown —
it is exacerbated by the large viewpoint variation inherent in scenes. Instead, we
employ a generic hand-crafted texture projection model to perform appearance
and projective invariant detection of a wide range of meaningful textured scene
regions.

Finally, our work is fundamentally different from that on invariant texture
description or recognition based on hand-crafted descriptors [30] or by train-
ing classifiers for semantic or material properties of texture [31]. Where that line
of work is focused on recognizing a wide range of generic texture from cropped
images, we aim to detect a specified form of texture in indoor scenes, identify
and address the challenges therein, and to explore how it helps high-level scene
understanding tasks. We also differ from work that aims to learn to predict the
presence or absence of generic material attributes in scenes [32].

3 Main Framework

3.1 Texture Frequency Projection Model

Shape-from-texture relates texture surface coordinates to corresponding camera
coordinates in terms of the slant and tilt of the tangent plane at a point [16,33],
or in terms of the plane gradients or normal [19,21,34]. Surface coordinates
(expressed in camera reference frame) are then projected to the image plane
via scaled orthographic or perspective projection, assuming the camera focal
length is known. Since we are interested in planar rectification, we can relate the
surface and image points via a planar homography. This does not require the
focal length, but the downside, as we shall see shortly, is that the rectification is
only up to an affine ambiguity. Let us represent the projective transform from
the image plane to the textured surface plane as a 3×3 homography H, i.e.,
x′
s = Hxi (see Fig. 3). H can be decomposed to separate the contributions of

the affine part and the projective part [35]:

H = HAHP =

⎛
⎝

a11 a12 a13

a21 a22 a23

0 0 1

⎞
⎠

⎛
⎝

1 0 0
0 1 0
h7 h8 1

⎞
⎠ (1)

That is, the image coordinates xi are first transformed by the “purely” pro-
jective homography (i.e. what is left in the projective group after removing the
affine group) to some intermediate plane coordinates xs = (xs ys)T , followed by
the affine transform HA to obtain the world (fronto-parallel) plane coordinates
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Fig. 3. Assorted hats along the bottom clutter this MIT Indoor67 clothingstore

image (right), yet the texture is correctly affine-rectified by the proposed approach
(center). For illustration, metric rectification (left) was manually performed, removing
any rotation or anisotropic scaling.

x′
s = (x′

s y′
s)

T . Note that the last row of HP is the same as the last row of H.
We consider the role of HA first, which provides the transformation:

x′
s = a11xs + a12ys + a13, y′

s = a21xs + a22ys + a23 (2)

The transpose of the Jacobian of HA, given as:

JT
A =

⎛
⎜⎝

∂x′
s

∂xs

∂y′
s

∂xs

∂x′
s

∂ys

∂y′
s

∂ys

⎞
⎟⎠ =

⎛
⎝

a11 a21

a12 a22

⎞
⎠ (3)

transforms a world plane spatial frequency u′
s = (u′

s v′
s)

T — which is constant
over the entire plane, since we have assumed homogeneity of texture on the
surface — into the frequency us = (us vs)T = JT

Au′
s on our intermediate plane

(c.f., [16]). Clearly, frequency us on the intermediate plane, albeit different from
world plane frequency u′

s, is also constant, i.e., does not vary spatially. In other
words, homogeneous texture upon affine transform remains homogeneous, as
also observed in [22]. A similar analysis for HP , which transforms image points
xi = (xi yi)T into points xs = (xs ys)T on our intermediate plane, gives:

JT
P =

⎛
⎝

∂xs

∂xi

∂ys

∂xi

∂xs

∂yi

∂ys

∂yi

⎞
⎠ =

1
(h7xi + h8yi + 1)2

(
h8yi + 1 −h7yi

−h8xi h7xi + 1

)
(4)

JT
P transforms the intermediate plane constant frequency us = (us vs)T to

image plane variable frequency u(xi) = (ui vi)T = [u(xi) v(xi)]T = JT
Pus.

While the above analysis is applicable to any spatial frequency component, in
Sect. 3.2 we shall obtain a robust instantaneous estimate of the dominant spa-
tial frequency component in a given image patch depicting real-world texture,
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which inevitably contains multiple frequency components. Denote this estimate
as ũ(xi) = (ũi ṽi)′ = [ũ(xi) ṽ(xi)]′. We then arrive at a method to recover HP

by minimizing the following re-projection error ERP (h7, h8, us, vs) over the
projective parameters h7, h8 and the intermediate plane frequency us, vs:

ERP =
∑
xi

∑
yi

(
(h8yi + 1)us − h7yivs

(h7xi + h8yi + 1)2
−ũi)2+(

(h7xi + 1)vs − h8xius

(h7xi + h8yi + 1)2
−ṽi)2 (5)

Optimizing Eq. 5 is a nonlinear least squares problem, and we solve it using
the Levenberg-Marquardt algorithm. Observe that our method allows the recov-
ery of HP and not HA. This is because JT

A maps the fronto-parallel plane fre-
quency u′

s = (u′
s v′

s)
T to a different but still constant frequency us = (us vs)T .

As such, a planar rectification only to within an ambiguous affine transform H−1
A

of the fronto-parallel plane may be obtained.

3.2 Optimal Estimation of Dominant Frequency in Projected
Homogeneous Texture

A Gabor filter h(u;x) with center frequency u = (u, v) can be convolved with
an image f(x) to give its frequency content near u at point x = (x, y):

A(u;x) = |f(x) ∗ h(u;x)| (6)

Since a given texture may exhibit multiple frequencies, which may also be
oriented differently, one must discern the component that can be reliably tracked
over the image, so as to be able to use the projection model developed in
Sect. 3.1. In this regard, Super and Bovik [16] have previously demonstrated esti-
mation of the dominant texture frequency — a distinct peak at any given point,
around which most of the energy is concentrated in a narrow band — employ-
ing a frequency demodulation model (DEMOD) from [20]. Briefly, denote the
horizontal and vertical partial derivatives of Gabor filter h(u;x) by hx(u;x)
and hy(u;x), respectively, and the corresponding amplitude response (Eq. 6) by
B(u;x) and C(u;x), respectively. Then, an unsigned instantaneous estimate
|ũ(x)| of the dominant frequency component may be computed for the filter h
that maximizes the response A(u;x) at each point as:

|ũ(x)| =
B(u;x)

2πA(u;x)
, |ṽ(x)| =

C(u;x)
2πA(u;x)

(7)

The sign at each pixel is defined by the frequency plane quadrant wherefrom
the maximizing Gabor is sampled. Only quadrants I or IV are used, since the
Fourier spectrum is symmetric.

Frequency Drift. For the MIT Indoor67 airport inside image patch shown
in Fig. 4(a), DEMOD [16] provides a rather poor estimate of the dominant fre-
quency, resulting in poor rectification using the model from Sect. 3.1. This is not
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Fig. 4. Affine rectification of texture (a) via the model developed in Sect. 3.1, applied to
non-optimal frequency estimate by DEMOD [16] is prone to drift (b); optimal frequency
estimation via GCO improves performance (c).

surprising given the grim challenges we outlined in Sect. 1. Figure 5 examines the
dominant frequency estimates in detail. Since the given texture does not extend
to the lower left and lower right regions in the image patch, the maximizing
Gabor drifts in both the center frequency (Fig. 5(a)) and orientation (Fig. 5(c))
in these regions (brighter pixels depict numerically larger values). A 1D plot
along the dotted line (Fig. 5(b)) shows the center frequency deviates in these
regions from an otherwise increasing pattern. The orientation plot (Fig. 5(d))
reveals that the Gabors pre-dominantly fire strongly at the horizontal bars in
the image (18◦, 0◦, −18◦ as one moves from left to right). However, in the lower
region, it is the vertical bars (−72◦, 90◦) that define the “dominant” Gabors.
Figures 5(e) and (f), respectively, show the resulting horizontal and vertical esti-
mates obtained via Eqs. 7. Corresponding surface plots are depicted in Figs. 5(f)
and (h), showing large discontinuities. We propose to resolve drift by enforcing
smoothness via the following regularized graph cut problem [36]:

Fig. 5. TOP: Closer look at drift in dominant instantaneous frequency estimate via
DEMOD [16]. BOT: GCO resolves drift in both center radial frequency and orienta-
tion. Right: GCO also resolves quadrant ambiguity, if any.
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E(f) =
∑
p∈P

Dp(fp) +
∑

{p,q}∈N
Vp,q(fp, fq) (8)

where P is the set of sites p to be labeled (pixels), and N is the 8-neighbourhood
system. Our set of labels L is the Gabor filter bank. The unary term is defined
as Dp(fp) = α/A(fp; p), where A(u;x) is as dictated by Eq. 6, α = 1 and fp =
(Ωp, θp) ∈ L gives the filter with center frequency u = (Ωpsinθp, Ωpcosθp)
at x = p. The pairwise term Vp,q(fp, fq) = V (fp, fq) forces the center radial
frequency Ωp and orientation θp to be smooth:

V (fp, fq) = β(Ωp − Ωq)2 + γ{(sinθp − sinθq)2 + (cosθp − cosθq)2} (9)

Demodulation (Eqs. 7) is then performed after solving Eq. 8 for the opti-
mal labeling f. We call this scheme Graph Cut Optimization (GCO), solved via
α-expansion [36]. As seen in Fig. 5(bottom) it yields a smooth, monotonically
increasing frequency and orientation profile, consequently providing an improved
rectification (Fig. 4(c)) compared to the non-optimal case (Fig. 4(b)).

A workaround to drift is to perform a robust parameter estimation via
RANSAC [37]. While this can seemingly handle drift (see Fig. 4(d)), the %out-
liers is significantly higher compared to when GCO is also used in conjunction
with RANSAC (Table 1). Later in Sect. 4.2, we employ the %outliers as a met-
ric to “detect” homogeneous texture, and since GCO renders %outliers a more
adequate measure, it is indispensable if we wish to reliably differentiate between
non-textured surfaces from textured surfaces perturbed by other scene elements.

Table 1. Recovered projective parameters and % outliers for the example texture in
Fig. 4(a) via DEMOD, GCO, DEMOD+RANSAC and GCO+RANSAC

DEMOD GCO DEMOD+RANSAC GCO+RANSAC GT

h7 0.2940 −0.0736 −0.0750 −0.0733 0.0089

h8 −0.2650 −0.4923 −0.5267 −0.4962 −0.6035

% outliers N/A N/A 10.36 % 3.63 % N/A

Quadrant Ambiguity. DEMOD [16] also fails on, e.g., the subway patch
in Fig. 6(o), because it can only measure the frequency orientations modulo-π
(frequency estimates from opposite quadrants have the same magnitude). This
wrapped orientation may result in sharp discontinuity between neighboring fre-
quency estimates. As explained in Fig. 5(top right), the orientation of the rails
increases as one moves from left to right (36◦, 54◦, 72◦), and wraps around back
to −90◦. We extend our set of labels L to include filters sampled at orientations
from all the four quadrants, and rely on the smoothness constraint between
neighboring pixels to resolve the quadrant ambiguity. As seen in Fig. 5(lower
right), the optimal orientations recovered by GCO are those sampled from quad-
rant III and not I, thereby ensuring a smoother transition into quadrant IV with
respect to both the demodulated horizontal and vertical frequency.
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Fig. 6. Affine rectification of homogeneous texture: Given, TILT [15], REM [6],
DEMOD [16] with our model in Sect. 3.1, Proposed (GCO) and Ground Truth.

4 Experiments

4.1 Affine Rectification

The proposed affine rectification is evaluated on N = 30 patches, cropped from
various images in MIT Indoor67, depicting some homogeneous texture under
perspective projection. We compare with TILT (Transform-Invariant Low-rank
Texture) [15] using publicly available code, with REM (Repetition Maximiza-
tion) [6] using their command-line tool, and our implementation of DEMOD
[16] in conjunction with our model from Sect. 3.1, thereby encompassing tech-
niques based on low-rankness, recurring elements and frequency. Following TILT
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and REM, a multi-scale approach is also implemented for the proposed GCO
scheme (see supple. material). We define the mean estimation error as
∑N

i=1

√
(h̃7i − h7i)2 + (h̃8i − h8i)2, where h̃7i, h̃8i are the parameters returned

by an algorithm, and h7, h8 are the ground truth parameters obtained by man-
ual annotation of vanishing points. The various algorithms fare as follows: TILT:
0.496, DEMOD: 0.386, and GCO: 0.186. REM does not return the estimated
parameters, hence its performance is not quantified. Our proposed GCO has
substantially improved upon the pure DEMOD. TILT performs even worse than
DEMOD, but of that, more later.

Figure 6 presents some qualitative results. REM — which has only been
demonstrated for properly cropped, printed patterns in [6] — seems to only
perform in the infrequent cases where it can detect some regular lattice struc-
ture (e.g., k, l), but usually either produces a partial rectification (c, n), or fails
altogether. TILT, in general, also performs well only on a few cases, where the
underlying texture is low-rank (a, b), but breaks down when this assumption is
violated — e.g., port-holes (d), or barrels (e), where the gradients are isotropic
in all directions. On the other hand, our robustified frequency based scheme
(GCO) is seen to handle such texture very well, corroborating our intuition
that homogeneity is a more general assumption than low-rankness. TILT and
REM also seem to fail on cases exhibiting large perspective distortion — e.g.,
the textured ceilings in cases (p, q) — and when illumination changes over the
texture (m, o, r). On the other hand, use of Gabor filters allows our frequency
based scheme to perform remarkably well in these challenging cases. Provided
the scale of texture is small (i.e., texture contains higher frequencies) relative to
the scale of the surface it covers, a frequency based representation is resilient to
slow-varying (low-frequency) photometric changes [16].

4.2 Detection in the Wild

Overlapping patches (80× 80 pixels) are sampled over a multi-scale image pyra-
mid (details in supple. material) to decide if they are textured planar patches or
not. GCO and robust parameter estimation via RANSAC (with outlier threshold
fixed at 0.01) is performed on each patch individually. Our error measure (Eq. 5)
is not affine invariant, so we employ the following heuristic normalization. First,
the dynamic range of the optimal radial frequency (ũi = ũ(xi) =

√
ũi

2 + ṽi
2)

of RANSAC inliers is computed as DR = maxi∈inliers (ũi)−mini∈inliers (ũi). A
normalized residual error is then computed for all pixels (i.e., inliers and outliers)
as E(xi) = {ũ(xi) − JT

P(xi)us}/DR, followed by re-evaluating %outliers (which
serves as the decision score).

A quantitative evaluation is performed on 300 images sampled from the MIT
Indoor67 (with at least 3 from each scene category) that have been manually
annotated with quadrilaterals indicating the homogeneous textured regions, their
plane projective parameters, and their semantic class IDs (left/right wall, ceiling,
floor). We define true positives (TP), false positives (FP) and false negatives
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Fig. 7. Scene layout estimation by homogeneous texture detections, and associated
vanishing lines. Scene with vanishing point clusters (left), box layouts [5] (center),
proposed (right). Left wall = red, right wall = yellow, ceiling = blue, floor = green.
Best viewed in color. (Color figure online)

(FN) as follows.1 For precision [TP/(TP+FP)], TP is the number of candidate
patches whose estimated semantic class (see Sect. 4.3) matches with an annotated
region, with 50 % intersection-over-detection (i.e., at least 50 % of the candidate’s
area should cover the annotation), while FP is the number of candidates that
fail this criterion. For recall [TP/(TP+FN)], TP is the number of annotated
regions that are “fired on” by one or more candidates (with the correct semantic
class), such that its area beyond a certain threshold is covered (we evaluated at
both coverage >= 50% and >= 80%), while FN is the number of our annotated
regions that fail this criterion. Note that for recall, TP + FN = 1367, which is
the total number of annotated regions, similar to object detection [38].

Figure 8 presents precision-recall curves, and recall vs. # proposals curves for
our method, as well as for TILT [15] (using ratio of final to initial rank as a deci-
sion score). One can observe a considerably superior performance by our method,
with an average precision = 0.53, compared to 0.15 by TILT. Both methods
improve in recall with increasing #proposals, but ours is seen to maintain a
larger recall for the same #proposals from the outset. Some qualitative results
are presented in Fig. 2 (and many more in supple. material).

1 Since our detector is not “trained” to produce an exact bounding box, we somewhat
differ in our definitions of these parameters from object detection [38]. Object detec-
tion methodology considers any more than one detection for a given ground truth
as FPs, but all such detections are considered TPs in our scenario.
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4.3 Indoor Scene Geometric Layout Estimation

Hedau et al. [5] have previously demonstrated the estimation of indoor scene
geometric layout by using orthogonal vanishing points [39] to establish room
orientation, and then using machine learning with rich feature sets [40] to local-
ize room faces (i.e., ceiling, walls, floor) in space and scale. Figure 7 identifies
the shortcomings of such an approach, using MIT Indoor67 images. Presence of
more than three dominant planar directions (b, f, g), absence of straight lines in
a certain direction (c), forked layout (d), and non-Manhattan structure (com-
monplace in real-world scenes) (e) are scenarios where such a scheme is apt to
provide incorrect room orientation, while face localization is also prone to error
(a, h) owing to the limitations of a learning based system, such as non-exhaustive
training data.

Our detections and the recovered projective parameters provide an alterna-
tive scheme to estimate indoor geometric layout in textured scenes (Fig. 7), that
requires neither vanishing points nor machine learning. A given detection may
be classified as a vertical/horizontal surface depending on the slope of the van-
ishing line, and as left/right wall or ceiling/floor depending on the position of
this line with respect to the patch center (see top right of Fig. 7 for details).
The top 150 detections (sorted by % of RANSAC outliers) are then subjected to
non-max suppression (NMS) performed across semantic classes (i.e., an incom-
ing detection is not admitted if at least 50 % of its area is already occupied by
any previously admitted and thus higher-ranked patch that is not from the same
class). Of course, the proposed scheme requires the scene faces to be textured.
For e.g., Fig. 7(g) shows a scenario where the non-textured ceiling or walls cannot
be correctly assigned a semantic face category.
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Fig. 8. Precision-recall and recall vs. # proposals. Fig. 9. Sample correct
classifications.

4.4 Indoor Scene Classification

Table 2 quantitatively demonstrates that affine rectification of textured patches
detected (with decision threshold fixed at 50 % RANSAC outliers) via the pro-
posed approach can improve scene classification performance. Best practices for
dense local feature based classification as suggested in [41] are followed (details
in supple. material), using Fisher Encoding with sum pooling [42], Hellinger
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Table 2. L: MIT Indoor67 classification improvement with fisher encoding of dense
descriptors (CENTRIST [44], LBP [45], SIFT [46,47], HOG2× 2 [48,49]) extracted
from affine-rectified texture patches. R: State of the art performance — all (except
SIFT [28]) involve learning-based feature extraction, unlike ours

Representation (Ours) % Accuracy

LBP u2(16,2) 37.10%
LBP u2 Rect(16,2) 40.84%
LBP u2 + LBP u2 Rect 41.28%

CEN 46.44%
CEN Rect 46.30%
CEN + CEN Rect 50.22%

SIFT 59.14%
SIFT Rect 57.98%
SIFT + SIFT Rect 61.00%

HOG 57.69%
HOG Rect 56.65%
HOG + HOG Rect 60.42%

CEN + SIFT + HOG 61.66%
SIFT Rect + HOG Rect 60.88%
CEN + SIFT + HOG + 64.54%
SIFT Rect + HOG Rect

Single Rep.(State of Art) % Accuracy

OPM [50] 51.45%
Mode Seeking [29] 64.03%
SIFT [28] 60.77%
BoP [28] 46.10%
DSFL [51] 52.24%
DeCAF [51] (deep learn.) 58.52%
MOP-CNN [52] (deep learn.) 68.88%

Combined Rep.(State of Art) % Accuracy

BoP + SIFT [28] 63.10%
OMP + SPM [50] 63.48%
Mode Seeking + SIFT [29] 66.87%
ISPR + SIFT [53] 68.5%
SIFT + DeCAF [51] (deep learn.) 70.51%
DSFL + DeCAF [51] (deep learn.) 76.23%

Kernel mapping, one-vs-all linear SVMs [43], and various gradient and threshold-
ing based descriptors. Both regular, as well as rectified representations (wherein
dense descriptors are extracted from affine-rectified patches) are computed, and
then combined via the score fusion scheme of [26].

In general, our rectification based representations, on their own, perform
slightly lower than regular ones since descriptors are extracted only from detected
textured regions, which, more often than not, span the image only in some spatial
regions and at certain scales, and not exhaustively, therein losing some discrim-
inative power. Interestingly, however, LBP, perhaps because it is inherently a
texture descriptor, performs significantly better with rectified, detected texture.
For similar reasons, both representations perform almost the same with CEN-
TRIST — again, a texture descriptor. Finally, our results suggest that features
extracted upon planar rectification are also complementary to regular features,
a finding that is consistent across all the descriptors experimented with. Figure 9
shows some sample images that were mis-classified using a regular representation
(SIFT+HOG), but were correctly classified using (SIFT Rect +HOG Rect). A
notable property among most of them is the presence of large perspective dis-
tortion, as well as high-frequency homogeneous texture.

5 Conclusion

This paper has demonstrated a projective-invariant method to detect homoge-
neous texture, as well as to perform its affine rectification in challenging, real-
world indoor scenes, outperforming existing representative work. Homogeneous
texture is seen to provide cues for indoor geometric layout estimation in scenes
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where vanishing points cannot be reliably computed or the Manhattan assump-
tion is violated. Rectified homogeneous texture also facilitates improved indoor
scene recognition on the MIT Indoor67 benchmark, demonstrating that plane
projective rectification can push performance in a recognition system.
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