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Abstract. Dictionary learning has been successfully applied in image
classification. However, many dictionary learning methods that encode
only a single image at a time while training, ignore correlation and other
useful information contained within the entire training set. In this paper,
we propose a new principle that uses the support of the coefficients to
measure the similarity between the pairs of coefficients, instead of using
Euclidian distance directly. More specifically, we proposed a support dis-
crimination dictionary learning method, which finds a dictionary under
which the coefficients of images from the same class have a common
sparse structure while the size of the overlapped signal support of dif-
ferent classes is minimised. In addition, adopting a shared dictionary
in a multi-task learning setting, this method can find the number and
position of associated dictionary atoms for each class automatically by
using structured sparsity on a group of images. The proposed model is
extensively evaluated using various image datasets, and it shows superior
performance to many state-of-the-art dictionary learning methods.

1 Introduction

Sparse representation has been successfully applied to a variety of problems in
image processing and computer vision, e.g., image denoising, image restoration
and image classification. In the framework of sparse representation, an image can
be represented as a linear combination of a few bases selected sparsely from an
over-complete dictionary. The dictionaries can be predefined by the use of some
off-the-shelf basis, such as the Discrete Fourier Transform (DFT) matrix and
the wavelet matrix. However, it has been shown that learning the dictionary
from the training data enables a more sparse representation of the image in
comparison to using a predefined one, which can lead to improved performance in
the reconstruction task. Some typical reconstruction dictionary learning methods
include the Method of optimal direction (MOD) [1], and K-SVD [2].

Sparse representation has also been considered in pattern recognition appli-
cations. For example, it has been used in the Sparse representation classifier
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(SRC) [3], which achieves competitive recognition performance in face recognition.
In contrast to image reconstruction which only concerns the sparse representation
of an image, in pattern recognition, the main goal is to find the correct label for
the query sample, consequently the discriminative capability of the learned dic-
tionary is crucial. A variety of discriminative dictionary learning methods have
recently been proposed, that involve two different strategies.

One strategy is to learn a class-specific dictionary, which discriminates differ-
ent classes of images via a sparse representation residual. Instead of learning a
dictionary shared by all classes, it seeks to learn a sub-dictionary for each class.
Yang et al. [4] first sought to learn a dictionary for each class, and applied it to
image classification. In [5], instead of considering the dictionary atoms individ-
ually at the sparse coding stage, the atoms are selected in groups according to
some priors to guarantee the block sparse structure of each coding coefficient. In
[6], a group-structured dirty model is used to achieve a hierarchical structure of
each coding coefficient via estimating a superposition of two coding coefficients
and regularising them differently. It is worth noting that the multi-task setting is
adopted in [6]. However, the sub-dictionaries in all these methods are disjoint to
each other, and how many and which atoms belong to each class is fixed during
the entire dictionary learning process. In addition, although class-specific setting
of the dictionary works well when the number of training samples in each class
is sufficient, it is not scalable to the problem with a large number of classes.

Another strategy is to learn a dictionary that is shared by all classes. Com-
monly, a classifier based on the coding vectors is learned together with the shared
dictionary by imposing some class-specific constraints on the coding vector.
Rodriguez et al. [7] proposed that samples of the same class should have similar
sparse coding vectors which are achieved by using linear discriminant analysis.
Yang et al. [8] proposed Fisher discrimination dictionary learning (FDDL) where
the Fisher discrimination criterion is imposed on the coding vectors to enhance
class discrimination. Cai et al. proposed support vector guided dictionary learn-
ing methods (SVGDL) [9], which is a generalised model of FDDL, that considers
the squared distances between all pairs of coding vectors. In all these methods,
the similarity between two coding vectors is measured by the Euclidean distance,
which allows two images of different classes to be represented by using the same
set of dictionary atoms. To our knowledge so far, no multi-task setting has been
used in the shared dictionary, since it is difficult to discriminate groups of coeffi-
cients between different classes owing to the lack of prior knowledge concerning
subdictionary structure.

In recent years, it has been shown that adding structural constraints to the
supports of coding vectors can result in improved representation robustness and
better signal interpretation [10–12]. In this paper, the multi-task setting adopts a
shared dictionary, however, instead of learning the dictionary with discrimination
based on the Euclidean distance between the coefficients for different classes, we
consider a different principle: The support of the coding vectors from one
class should be similar, while the support of the coding vectors from
different classes should be dissimilar. Here the support of a coding vector
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denotes the indices of the non-zero elements of the image sparse representation
under some dictionary.

More specifically, we propose a support discrimination dictionary learning
method (SDDL), that finds a dictionary under which the coefficients of images
from the same class have a common sparse structure while the size of the over-
lapped signal support of different classes is minimised. Informed by the mul-
titask learning framework [13], and the multiple measurement vector (MMV)
model [14] in the signal processing field, an effective way to encourage a group
of signals to share the same support is to simultaneously encode those samples.
Based on this idea, we encode multiple images from the same class, requiring
that their coefficient matrix is largely ‘row sparse’, where only a few rows have
non-zero elements. In addition to the similarity of intra-class coding vectors,
the main contribution of our work is that we also design a new discriminative
term to guarantee the dissimilarity of inter-class coding vectors by reducing the
overlapped signal support from different classes. This can be achieved by minimi-
sation of the �0 norm of the Hadamard product between any pair of coefficients
in different classes. An iterative reweighting scheme that produces more focal
estimates is adopted as the optimization progresses.

The SDDL provides the following advantages. Firstly, the previous multi-
task setting based dictionary learning methods all use disjoint sub-dictionaries,
in which how many and which atoms belong to each class is fixed during the
entire dictionary learning process. In contrast, a multi-task setting using a shared
dictionary is adopted in SDDL. Our approach can automatically identify over-
lapped sub-dictionaries for different classes, where the size of each sub-dictionary
is adjusted appropriately during the learning process to suit the training dataset.
Furthermore, our approach is scalable to allow for a large number of classes, while
the previous sub-dictionary based approaches cannot. Secondly, instead of using
the Euclidean distance to measure the similarity and dissimilarity between differ-
ent coefficients, we achieve discrimination via the support. The structural sparse
constraints eases the difficulty in solving the ill-posed inverse problem in compar-
ison to the conventional element-sparse structure [15]. The superior performance
of the proposed approach in comparison to the state-of-art is demonstrated using
both face and object datasets.

The paper is organised as follows. In Sect. 2, we propose the novel support dis-
crimination dictionary learning method for classification, including the optimi-
sation algorithm and the classification scheme. In Sect. 3, extensive experiments
are performed on both face and object datasets to compare the proposed method
with other state-of-art dictionary learning methods. Conclusions are drawn in
Sect. 4.

2 Support Discrimination Dictionary Learning

2.1 Problem Formulation

Assume that x ∈ R
m is a m dimensional image with class label c ∈ {1, 2, ..., C},

where C denotes the number of classes. The training set with n images is
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denoted as X = [x1,x2, ...,xn] = [X1,X2, ...,XC ] ∈ R
m×n, where Xc

includes nc training images of class c. The learned dictionary is denoted by
D = [d1, d2, ..., dK ] ∈ R

m×K(K < n), where dk denotes the kth atom of the
dictionary. A = [A1, A2, ..., AC ] = [a1, a2, ..., an] ∈ R

K×n are the coding
coefficients of X over D. Our dictionary learning problem can be described as

min
D,A

R(X, D, A) + w1g(A) + w2f(A), (1)

where R(X, D, A) denotes the reconstruction residuals for all the images X
with the sparse representation matrix A under the dictionary D, g(A) is a
regulariser to promote intra-class similarity, f(A) is the inter-class discriminative
term based on the coding vectors A, and w1 > 0 and w2 > 0 denote the weights
for the final two terms in (1). In this optimisation problem, we learn a single
dictionary shared among all classes while exploring the discrimination of the
coding vectors.

In a common multi-task learning setting, a group of tasks share certain
aspects of some underlying distribution. Here we assume the intra-class cod-
ing vectors share a similar sparse structure. In our formulation, we use the joint
sparsity regularisation �p/�q norm of a coefficient matrix corresponding to one
class, rather than encoding each training image separately. More specifically, we
set p = 2, q = 0, which means that the intra-class coefficient matrix should be
‘row sparse’, i.e., where each row is either all zero or mostly non-zero, and the
number of non-zero rows is low. In this way, we can find the shared nonzero
supports for each class automatically, rather than predefining their number and
position. However, minimizing the �2/�0 norm is NP hard, so in this paper, we
use �2/�1 norm instead. In this way, we can design a regulariser to promote
intra-class similarity as:

g(A) =
C∑

i=1

‖Ai‖2,1 =
C∑

i=1

K∑

k=1

∥∥∥a(ik)
∥∥∥
2
, (2)

where Ai represents the coefficient matrix for the ith class and a(ik) denotes the
kth row of coefficient matrix Ai.

In general, discrimination for different classes can be assessed by the similar-
ity of the intra-class coding vectors and the dissimilarity of inter-class ones. As
mentioned previously, the similarity of intra-class coding vectors is promoted by
the �2/�1 regulariser. To encourage dissimilarity of the inter-class coding vectors,
we design the following discriminative term:

f(A) =
C∑

i=1

∑

p

∑

q

∥∥ai,p ◦ a/i,q

∥∥
0
, (3)

where ◦ denotes the Hadamard (elementwise) product between two vectors ai,p

and a/i,q, where ai,p and a/i,q are the pth column of Ai and the qth column
of A/i respectively. Ai ∈ R

K×ni represents the coefficient matrix for the ith
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class, while A/i ∈ R
K×(n−ni) denotes a sub-matrix of A ∈ R

K×n without
the columns in Ai. Alternatively, the value of

∥∥ai,p ◦ a/i,q

∥∥
0

is the size of the
overlapped support between the pth image of the ith class and the qth image that
is not in class i. Therefore, f(A) denotes the summation of overlapped supports
between images in different classes. However, minimising f(A) in Eq. (3) is an NP
hard problem. Enlightened by many recent sparse approximation algorithms that
rely on iterative reweighting schemes [16–18] to produce more focal estimates
as optimization progresses, we use the iterative reweighted �2 minimization to
approximate the �0 norm.

We use the vector a�2 to represent the element by element square of vector
a, which equals to a ◦ a. We define the weight term wp,q for a given pair of
coefficient (ai,p,a/i,q) at each iteration as a function of those coefficients from
the previous iteration as

wi,p,q =
1

(a
′
i,p ◦ a

′
/i,q)�2 + ε

(4)

where a
′
i,p and a

′
/i,q are the coefficients from the previous iteration and ε is a

regularization factor that is reduced to zero as the number of iterations increases.
In this case, the descrimination term f(A) can be rewritten as

f(A) =
C∑

i=1

∑

p

∑

q

∥∥ai,p ◦ a/i,q

∥∥
0

=
C∑

i=1

∑

p

∑

q

∑

k

w
(k)
i,p,q · (a(k)

i,p ◦ a
(k)
/i,q)

2

=
C∑

i=1

∑

p

∑

q

∑

k

[w(k)
i,p,q · (a(k)

/i,q)
2] ◦ (a(k)

i,p )2

=
C∑

i=1

∑

p

∑

q

diag([wi,p,q ◦ (a/i,q)�2] · (ai,p)�2 =
C∑

i=1

∑

p

‖Ωi,pai,p‖2F ,

(5)
where k represents the index of the corresponding vector and

Ωi,p = diag(
√∑

q

(
√

wi,p,q ◦ a/i,q)�2). (6)

However, minimising the above f(A) is both time and memory consuming
since we need to calculate a weight vector wi,p,q and thus a distinct weight
matrix Ωi,p for each ai,p. Considering the effect of the �2/�1 regulariser, different
coefficients in the same class should have a similar sparse pattern, hence we use
the average (ã

′
i)

�2 instead of (a
′
i,p)�2 in Eq. (4), where

∀p, (a
′
i,p)�2 ≈ (ã

′
i)

�2 =
∑

p

(a
′
i,p)�2/ni. (7)
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That is, all p images of the class i share the same weight vector wĩ,q as

wĩ,q =
1

(ã
′
i)�2 ◦ (a

′
/i,q)�2 + ε

. (8)

Finally Eq. (5) can be rewritten as:

f(A) =
C∑

i=1

∑

p

‖Ωi,pai,p‖2F =
C∑

i=1

∥∥∥Ω̃iAi

∥∥∥
2

F
, (9)

where

Ω̃i = diag(
√∑

q

(
√

wĩ,q ◦ a/i,q)2). (10)

By substituting the discrimination term given by Eq. (9) into (1), we can
rewrite the dictionary learning problem as

min
D,A

C∑

i=1

‖Xi − DAi‖2F + w1 ‖Ai‖2,1 + w2

∥∥∥Ω̃iAi

∥∥∥
2

F
. (11)

Although the objective function in (11) is not jointly convex to (D,A), it
is convex with respect to D and A when the other is fixed. In the sequel, we
provide an algorithm which alternately optimises D and A.

2.2 Optimisation

Finding the solution of the optimisation problem in (11) involves two sub-
problems, i.e., to update the coding coefficients A with fixed D, and to update
D with fixed coefficients A.

First suppose that D is fixed, and the optimisation problem can be reduced to
a sparse coding problem to calculate A = [A1,A2, ..,AC ] with two constraints.
Here, we compute the coefficients matrix Ai class by class. More specifically, all
Aj(j �= i) are fixed thus Ω̃i is fixed when computing the Ai. In this way, the
objective function can be further reduced to

min
Ai

‖Xi − DAi‖2F + w1 ‖Ai‖2,1 + w2

∥∥∥Ω̃iAi

∥∥∥
2

F
. (12)

We choose the alternating direction method of multipliers (ADMM) as the
optimisation approach because of its simplicity, efficiency and robustness [15,19,
20]. By introducing one auxiliary variable Zi = Ai ∈ R

K×nc , this problem can
be reformulated as

min
Ai,Zi

‖Xi − DAi‖2F + w1 ‖Zi‖2,1 + w2

∥∥∥Ω̃iAi

∥∥∥
2

F
s.t. Ai − Zi = 0. (13)
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Therefore, the augmented Lagrangian function with respect to Ai,Zi can be
formed as

Lu(Ai,Zi) = ‖Xi − DAi‖2F + w1 ‖Zi‖2,1 + w2

∥∥∥Ω̃iAi

∥∥∥
2

F

− ΛT
1 (Zi − Ai) +

u1

2
‖Zi − Ai‖22 ,

(14)

where Λ1 ∈ R
K×m are the Lagrangian multipliers for equality constraints and

u1 > 0 is a penalty parameter. The Augmented Lagrangian function can be
minimised over Ai,Zi by fixing one variable at a time and updating the other
one. The entire procedure is summarised in Algorithm 1. The Shrink function
in Eq. (17) updates Zi by using row-wise shrinkage, which can be represented as

zr = max{‖qr‖2 − w1

u1
, 0} qr

‖qr‖2
, r = 1, ....,K, (15)

where qr = ar + λr
1

u1
and zr,ar,λr

1 represent the rth row of matrix Zi,Ai,Λi

respectively.
Since the above ADMM scheme computes the exact solution for each sub-

problem, its convergence is guaranteed by the existing ADM theory [21,22].
After we obtain the sparse coding, we secondly update dictionary D column by
column with fixed A. When updating di, all the other columns dj , j �= i are
fixed. Now the objective function in Eq. (13) is reduced to

min
D

‖X − DA‖2F , s.t.‖di‖2 = 1. (20)

In general, we require that each column of the dictionary di is a unit vector.
Equation (20) is a quadratic programming problem and it can be solved by using
the K-SVD algorithm, which updates di atom by atom. In practice, the exact
solution by K-SVD can be computationally demanding, especially when the num-
ber of training images is large. As an alternative, in the following experiments,
we use the approximate KSVD to reduce the complexity of this task [23]. The
detailed derivation can be found in Algorithm 5 in [24].

2.3 The Classification Scheme

After obtaining the learned dictionary D, a test sample y can be classified
based on its sparse coefficients over D. We choose a linear classifier both for its
simplicity and for the purpose of fair comparison with other dictionary learning
methods, although we note that better classifier design (e.g. SRC) can potentially
improve the performance further. We design the linear classifier W ∈ R

C×K as
[6,25]:

W T = (AAT + ηI)−1ALT , (21)
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Algorithm 1. Sparse coding using ADMM
Input: Training Data X ∈ R

m×n, learned dictionary D ∈ R
m×K , Number of

classes C, regularisation parameters w1, w2, penalty parameter u1 and
step length γ1.

Initialising A0 = 0, Λ0
1 = 0, Iteration number k = 0 ;

for i = 1 : C do
while until converge do

Set the matrix Ω̃k
i :

Ω̃k
i = diag(

√∑
q

(
√

wk
ĩ,q

◦ ak
/i,q)2) (16)

Fix Ai and update Zi by row-wise shrinkage

Zk+1
i = Shrink(Ak

i +
1

u1
Λk

1,
1

u1
w1) (17)

Fix Zi and update Ai by:

Ak+1
i =arg min

Ai

Lu(Ai , Z
k+1
i )

=(DTD + w2Ω̃i
k
T Ω̃i

k
+ u1I)−1(DTX + u1Z

k+1
i − 1

2
Λk

1) (18)

Update Lagrange multipliers Λ1:

Λk+1
1 = Λk

1 − γ1u1(Z
k+1
i − Ak+1

i ) (19)

Increment k.

Output: Estimated sparse code A

where A ∈ R
K×n is the final rounded coefficients of the training set. The matrix

L ∈ R
C×n contains the label information of the training set. If the training data

xi belongs to the class c, the element Lc,i in vector li is one and all the other
elements in the same columns are zero. The parameter η controls the tradeoff
between the classification accuracy and the smoothness of the classifier.

Next, we can compute the sparse coefficients of the each test sample y using
the following objective function:

min
a

‖y − Da‖2F + w3 ‖a‖1, (22)

where w3 is a constant. Finally we apply the linear classifier W to the sparse
coding of a test sample to get the label vector ly and assigned it to the class
c = arg maxc ly. The overall procedure is summarised in Algorithm 2.
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Algorithm 2. Overall Framework
Input: Training Data X , learned dictionary D, Number of classes C, test

sample y and regularisation parameters w1, w2, w3.
Initialising k = 0 ;
while until converge do

Fix Dk and update Ak+1 by Algorithm 1;

Fix Ak+1 and update Dk+1 by approximate K-SVD in [24];
Increment k.

Use Ak+1 of X to train a linear classifier W
Calculate the sparse coefficient atestfor y by Eq. (22)
Classify the test sample y by c = arg maxc W atest .
Output: Classification result

3 Experimental Validation

In this section, we compare our proposed Support discrimination dictionary
learning (SDDL) method with some other existing Dictionary learning (DL)
based classification approaches. We verify the classification performance on vari-
ous datasets, such as face recognition and object classification. The classification
performance is measured by the percentage of correctly classified test data. The
public datasets used are the Extended-Yale B Face Dataset [26], the AR Face
Dataset [27] and the Caltech 101 object dataset [28]. The benchmark algorithms
for comparison are the Sparse Representation Classification (SRC) [3], K-SVD
[2], Label-Consistent K-SVD (LC-KSVD) [25], Fisher Discrimination Dictionary
Learning (FDDL) [8], Support Vector Guided Dictionary Learning (SVGDL) [9]
and Group-structured Dirty Dictionary Learning method (GDDL) [6]. For all
the competing methods, we tune their parameters for the best performance.

3.1 Parameter Selection

Dictionary Size: In all experiments, the initialised dictionary is randomly
selected from the training data. As shown in [8,25], the larger the size of the
dictionary, the better is the performance it can achieve. The disadvantage of a
large dictionary is that the problem size becomes large, which is computation-
ally demanding. Therefore, the ideal dictionary learning method should achieve
an acceptable level of performance using a relatively small size of dictionary.
Here we use the Caltech 101 object dataset as an example. For each class, we
randomly choose 30 images for training and the rest for testing. The number of
dictionary atoms per class varies from 10 to 30. As shown in Fig. 1, all the DL
methods tested improve performance when the dictionary size becomes larger.
Also, our proposed SDDL method achieves high classification accuracy and con-
sistently outperforms all the other DL-based methods. The basic reason for good
recognition performance, even with only a small size dictionary, is that SDDL
learns a shared dictionary for all classes, while it can automatically identify



384 Y. Liu et al.

10 15 20 25 30
60

65

70

75

80

Dictionary Size per Category

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

SRC
KSVD
LC−KSVD
FDDL
SVGDL
GDDL
SDDL

Fig. 1. Effect of dictionary size on the classification performance of various DL meth-
ods. For the Caltech 101 dataset, the size of training samples per class is fixed to 30.
The dictionary atoms per class is varied from 10 to 30. As can be seen, our proposed
method outperforms the other DL-based methods.

sub-dictionaries for different classes, where the size of each sub-dictionary is
adjusted appropriately during the learning process.

Regularisation Parameters: There are 3 regularisation parameters w1, w2, w3

that need to be tuned, two in the dictionary learning stage and one in the
classifier. In this paper, we employ cross validation to find the regularisation
parameters that give the best result.

Stopping Criterion: The proposed algorithm will stop either if the values of
the objective function in Eq. (11) in adjacent iterations are sufficiently close in
value, or if the maximum number of iterations is reached. In Fig. 2 we show
empirically the value of the objective function as the number of iterations
increases using the AR dataset, where we can see that the SDDL method con-
verges rapidly.

3.2 Factors Affecting Performance

We will now investigate how the performance is affected by different factors in
the proposed method using the face datasets, i.e., the Extended Yale B dataset
and the AR dataset. We will discuss two factors as follows:
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Fig. 2. The convergence curve of objective function on the AR database.
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Fig. 3. An example for 4 test images and their corresponding coefficients. (a) Shows
4 training samples of the 2nd subject in Extended Yale B database; (b) and (c) show
the four coefficients corresponding with two dictionaries, where one is learned with �1
regularisation while the other with �2/�1 regularisation respectively.

Factor 1: Function of the �2/�1 Regularisation Term. As mentioned in
Sect. 2.1, the �2/�1 regularisation term is adopted to make the coefficients from
the same class share a similar sparse structure. In this section, we provide a
visual illustration to see if the �2/�1 regularisation term can be truly helpful in the
representation of the images from the same class. We compare the sparse codings
of the same test samples from two dictionaries, where one is learned with �1
regularisation while the other with �2/�1 regularisation. Figure 3(a) shows 4 test
samples of the 2nd subject in the Extended Yale B database; Figs. 3(b) and (c)
show the four coefficients corresponding with the two dictionaries respectively.
Looking at the coefficients in Fig. 3(b), in which the dictionary is learned with
�1 regularisation, it can be seen that the coding vectors corresponding to the
fourth image are significantly different to the other three coding vectors of the
same class, which is not discriminative, owing to the poor quality of the image.
However, in the Fig. 3(c), the coding vector of the fourth image now look more
similar to the other coding vectors in the class, which has a high probability
of being classified correctly. A benefit of such a multi-task learning framework
is that ‘good quality’ images help constrain the coding vector of ‘poor quality’
ones in the training stage. In this way, even the ‘poor quality’ images contribute
appropriately to the dictionary update.

Factor 2: Function of the Discriminative Term f(A). As described in
Sect. 2.1, the term f(A) is utilised in the objective function to guarantee the
discrimination of coding vectors from different classes. In this section, we illus-
trate both visually and numerically the influence of the discriminative term f(A)
with an example from the AR database, as shown in Figs. 4 and 5.

To clearly show the discrimination of coding vectors between subjects in the
AR database (100 subjects in total), we calculate a symmetric scatter matrix
S ∈ R

100×100, in which each element Sij represent the similarity between sparse
codings Ai, Aj of ith and jth subject (i, j ∈ [1, 100]):
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Sij =
∑

p

∑

q

‖ai,p ◦ aj,q‖1 , (23)

where ai,p and aj,q are the pth column of Ai and the qth column of Aj respec-
tively. Following this, two scatter matrices are calculated based on the sparse
codings of the same test samples from two dictionaries, where one is learned using
the discriminative term while the other is not. Then for both scatter matrices,
we normalise the largest element of each column or row to unity to permit com-
parison and plot them in Fig. 4. Accordingly, the diagonal elements represent
the similarity of intra-class sparse codings while the off-diagonal elements shows
the similarity of the between-subject ones. We see that, the diagonal elements
of both figures are the largest, and that there is obviously more between-subject
similarity in Fig. 4(a) than in 4(b). By summing the elements in the columns of
the scatter matrix to quantify the similarity index for each subject, we then plot
them in Fig. 5. The lower the similarity index, the less overlap there is between
the pairs of coefficients between this subject and the others, i.e., the better is
the discrimination of the coding coefficient. As shown in Fig. 5, the red curve
learned using the discrimination term is lower than the blue one learned without
the discrimination term for all the 100 subjects, which shows that learning the
dictionary with the help with f(A) can decrease the coefficient overlap between
different subjects. These visual and numerical results both show that the dictio-
nary learned with the f(A) term can significantly enhance the discrimination
performance of the coefficients. We use the Extended Yale and AR face data-
bases to illustrate how this term can help to improve classification performance.
With the help with the discrimination term f(A), the recognition rate for the
Extended Yale B is enhanced from 96.20 % to 98.50 %, and the recognition rate
for the AR database is increased from 95.90 % to 98.00 %. The experimental
setting used to obtain these result will be presented fully in Sect. 3.4.
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Fig. 4. Comparison between the scatter matrices calculated based on the sparse cod-
ing of the same test samples from two different dictionaries. In (a), the dictionary is
learned without the discrimination term, and in (b), the dictionary is learned using the
discrimination term.
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Fig. 5. The comparison between the similarity index calculated based on the sparse
coding of the same test samples from two different dictionaries. The red line represents
the similarity index calculated by the dictionary learned using the discrimination term,
while the blue line represents the similarity index without. (Color figure online)

3.3 Object Classification

The Caltech 101 dataset is one of the benchmark datasets used in object clas-
sification. It consists of 9144 images, split between 101 distinct object classes
including animals, vehicles, as well as a background class. The sample from each
class has significant shape variability. In the following experiments, the spatial
pyramid features are used as the input for the classifier, which is the same as
used in [8,9,25]. Following [25], We vary the number of training samples per
class from 10 to 30. The size of the dictionary in SDDL is K = 510, that is the
same as the experimental setting in [9]. The experiments are carried out 10 times
with differently chosen partitions. The average classification accuracy of the pro-
posed method (SDDL) compared with other existing dictionary learning based
methods is shown in Table 1. The regularisation parameters for the Caltech 101
dataset are w1 = 0.2, w2 = 10, w3 = 0.05. The DL-based methods perform bet-
ter than SRC, which shows that better performance can be achieved by learning
a discriminative dictionary. Our proposed method consistently outperforms the
other existing DL based methods, by at least 2.8 % points.

Table 1. Recognition rates (%) for object classification

No. training SRC KSVD LC-KSVD FDDL SVGDL GDDL SDDL

10 58.89 59.80 62.40 63.10 63.10 62.30 66.80

15 63.80 64.20 66.90 66.60 68.80 66.20 71.60

20 67.20 68.70 69.50 69.80 70.00 69.80 73.60

25 68.60 70.20 71.80 72.30 73.50 72.30 76.50

30 70.30 73.40 73.30 73.10 74.10 73.40 76.90
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3.4 Face Classification

The two benchmark face datasets are the Extended Yale B dataset and the
AR dataset. With different illumination conditions and facial expressions, the
Extended Yale B dataset consists of 2414 frontal images of 38 subjects (about
64 images per subject). We randomly select half as the training set and the
rest as the test set for each class. As in the experimental setting in [6,25], we
crop each image to 192 × 168 pixels, and then normalise and project it to a 504
dimension vector using a random Gaussian matrix. The dictionary size of the
Extended Yale B dataset is 570, which corresponds to an average of 15 atoms
per subject. As discussed previously, there is no explicit correspondence between
the dictionary atoms and the labels of the individual at the training stage.

Similarly, the AR face dataset consists of over 4000 images of 126 subjects,
which is more challenging owing to more variation, i.e., different illumination,
expressions and facial occlusion (e.g., sunglasses, scarf). As in the experimental
setting in [6,25], we use the subset of the dataset which contains 2600 images
for 50 male and 50 female subjects. For each subject, we randomly select 20 and
6 images for training and testing respectively. We crop each image to 165 × 120
pixels, and then normalise and project it to a 540 dimension vector using a
Gaussian matrix. The dictionary size of the AR dataset is 500, that corresponds
to an average of 5 atoms per subject. The dictionary is shared by all subjects.

The experiments are carried out 10 times with different chosen partitions.
The average classification accuracy of the proposed method compared with other
existing dictionary learning based methods are shown in the Table 2. The reg-
ularisation parameters for the Extended Yale B dataset are w1 = 0.04, w2 =
2, w3 = 0.005, and for the AR face database are w1 = 0.05, w2 = 3, w3 = 0.005.
We can see that the proposed SDDL method achieves an improvement of at least
1.7 and 2 % points over the next best scheme in terms of classification accuracy
for the Extended Yale B and the AR datasets respectively.

Table 2. Recognition rates (%) for face classification

Method SRC KSVD LC-KSVD FDDL SVGDL GDDL SDDL

Extended Yale 80.54 93.40 94.50 94.92 95.70 96.80 98.50

AR 66.57 86.30 93.70 94.10 96.00 96.00 98.00

4 Conclusion

We incorporate structured sparsity into the dictionary learning process and pro-
pose a support discrimination dictionary learning (SDDL) method for image
classification. In contrast to other methods, we use the sparse structure, i.e., sup-
port, to measure the similarity between the pairs of coefficients, rather than the
Euclidean distance which is widely adopted in many dictionary learning
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approaches for classification. The discrimination capability of the proposed
method is enhanced in two ways. First, a row sparse regulariser is adopted so
that a shared support structure for each class can be learned automatically.
Second, we adopt a discriminative term to make the coefficients from different
classes have minimum support overlap between each other. It can be achieved by
minimisation of the �0 norm of the Hadamard product between any pair of coef-
ficients in different classes. It worth noting that our approach can automatically
identify overlapped sub-dictionaries for different classes, where the size of each
sub-dictionary is adjusted appropriately during the learning process to suit the
training dataset. In this way, this proposed approach is scalable to classification
tasks having a large number of classes. Extensive experimental results on object
recognition and face recognition demonstrate the proposed method can gener-
ate more discriminative sparse coefficients and that it has superior classification
performance to a number of state-of-the-art dictionary learning based methods.
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