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Abstract. What is the right supervisory signal to train visual represen-
tations? Current approaches in computer vision use category labels from
datasets such as ImageNet to train ConvNets. However, in case of bio-
logical agents, visual representation learning does not require millions of
semantic labels. We argue that biological agents use physical interactions
with the world to learn visual representations unlike current vision sys-
tems which just use passive observations (images and videos downloaded
from web). For example, babies push objects, poke them, put them in
their mouth and throw them to learn representations. Towards this goal,
we build one of the first systems on a Baxter platform that pushes, pokes,
grasps and observes objects in a tabletop environment. It uses four differ-
ent types of physical interactions to collect more than 130K datapoints,
with each datapoint providing supervision to a shared ConvNet architec-
ture allowing us to learn visual representations. We show the quality of
learned representations by observing neuron activations and performing
nearest neighbor retrieval on this learned representation. Quantitatively,
we evaluate our learned ConvNet on image classification tasks and show
improvements compared to learning without external data. Finally, on
the task of instance retrieval, our network outperforms the ImageNet
network on recall@1 by 3 %.

1 Introduction

Recently most computer vision systems have moved from using hand-designed
features to feature learning paradigm. Much of the visual feature learning is
done in a completely supervised manner using category labels. However, in case
of biological agents, visual learning typically does not require categorical labels
and happens in a “unsupervised” manner1.

Recently there has been a strong push to learn visual representations with-
out using any category labels. Examples include using context from images [1],
different viewpoints from videos [2], ego-motion from videos [3] and generative
models of images and videos [4–7]. However, all these approaches still observe
1 By “unsupervised” we mean no supervision from other agents but supervision can

come from other modalities or from time.
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Fig. 1. Learning ConvNets from Physical Interactions: We propose a framework for
training ConvNet using physical interaction data from robots. We first use a Baxter
robot to grasp, push, poke and observe objects, with each interaction providing a
training datapoint. We collect more than 130K datapoints to train a ConvNet. To the
best of our knowledge, ours is one of the first system which trains visual representation
using physical interactions.

the visual world passively without any physical interaction with the world. On
the other hand, we argue visual learning in humans (or any biological agent)
require physical exploration of the world. Our babies play with objects: They
push them, grasp them, put them in their mouth, throw them etc. and with
every interaction they develop a better visual representation.

In this paper, we break the traditional paradigm of visual learning from
passive observation of data: images and videos on the web. We argue that the
next step in visual learning requires signal/supervision from physical exploration
of our world. We build a physical system (on a Baxter robot) with a parallel jaw
gripper and a tactile skin-sensor which interacts with the world and develops
a representation for visual understanding. Specifically, the robot tries to grasp
objects, push objects, observe haptic data by touching them and also observe
different viewpoints of objects. While there has been significant work in the vision
and robotics community to develop vision algorithms for performing robotic
tasks such as grasping, to the best of our knowledge this is the first effort that
reverses the pipeline and uses robotic tasks for learning visual representations.

We also propose a shared-ConvNet architecture where the first few convolu-
tional layers are shared across different tasks, followed by 1–2 separate convolu-
tional and fully connected layers for each task. Since our architecture is shared,
every interaction creates a data point to train this ConvNet architecture. This
ConvNet architecture then forms the learned visual representation. Our physi-
cal exploration data includes 40,287 grasps, 5,472 pushes, 1372 tactile sensing
observations and 84,430 pairs of different viewpoints of the same object.
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2 Related Work

Our work touches two threads: how do you learn a representation in an unsu-
pervised way, and how do you interact with the world for learning.

2.1 Unsupervised Learning

Unsupervised learning of visual representations is one of the most challenging
problems in computer vision. There are two common approaches to unsuper-
vised learning: generative and discriminative. Early work in generative learning
focused on learning visual representations that (a) can reconstruct images and
(b) are sparse. This idea was extended by Hinton and Salakhutdinov [8] to train
a deep belief network in an unsupervised manner via stacking RBMs. Similar
to this, Bengio et al. [9] investigated stacking of both RBMs and autoencoders.
Recently, there has also been a lot of success in the ability to generate realis-
tic images. Some examples include the generative adversarial network (GAN) [5]
framework and its variant including Laplacian GAN (LAPGAN) [6], DCGAN [7]
and S2-GAN [10].

The discriminative approach to unsupervised learning is training a network
on an auxiliary task where ground-truth is obtained automatically (or via sen-
sors). For example, Doersch et al. [1] presented an approach to train networks
via supervision from context. Other approaches such as [3,11,12] have tried to
use videos and ego-motion to learn the underlying network. In an another work,
[2] tracks patches in the video and uses the patches sampled from a track as
different viewpoints of the same object instance and trains an embedding net-
work. Finally, our approach is also related to other efforts which train deep
networks using supervision from other sensors such as Kinect [13,14] or motion
information such as optical flow [15].

However, all the above approaches still only observe passive data. We believe
that the ability to physically interact with elements of the scene, is a key require-
ment for training visual representations. In fact, this has been supported by
several psychological behavior experiments as well [16].

2.2 Robotic Tasks

We note that most work in this domain has been in using vision to solve a task.
Here, we use these tasks to learn good visual representations. We design our
experiments in which our robot interacts with objects with four different types
of interactions.

Grasping. Grasping is probably the oldest problem in the field of robotics. A
comprehensive literature review of this area can be found in [17,18]. Recently,
data-driven learning-based approaches have started to appear, with initial work
focused on using human annotators [19]. However, in this work we are more
interested in building a self-supervision system [20–24]. For the purpose of this
work we use the dataset provided in [23].
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Pushing. The second task our system explores is the task of pushing objects.
The origins of pushing as a manipulation task can be traced to the task of align-
ing objects to reduce pose uncertainty [25–27] and as a preceding realignment
step before object manipulation [28–30]. The implementation of pushing strate-
gies in the mentioned work requires physics based models to simulate and predict
the actions required to achieve a specific object goal state given an object start
state. However, similar to grasping, in this work we are interested in self-learning
systems which perform push interactions and use the sensor readings from robots
as supervision.

Tactile Sensing. The third task we explore is tactile sensing: that is, a robot
with a skin sensor touches/pokes the objects followed by storing skin sensor
readings. We then try to use the sensor reading to provide supervision to train the
visual representations. Highly sensitive tactile optical sensors have been used for
robot exoskeletal finger feedback control [31]. While there have been approaches
that have attempted to combine tactile sensing with computer vision for object
detection [32], this is the first paper that explores the idea of learning visual
representation from tactile data.

Identity Vision. The final task we use our physical system for is to get multiple
images of the same object from different viewpoints. This is similar to the idea
of active vision [33,34]. However, in most of these approaches the next best view
is chosen after inference [34]. In this work, we sample thousands of such pairs to
provide training examples for learning ConvNets.

Vision and Deep Learning for Robotics. There has been a recent trend to
use deep networks in robotics systems for grasp regression [23,35,36] or learning
policies for a variety of tasks [37–39]. In this paper, we explore the idea of using
robotic tasks to train ConvNets as visual representation. We then explore the
effectiveness of these for tasks such as object classification and retrieval.

3 Approach

We now describe the formulation of the four tasks: planar grasping, planar push-
ing, poking (tactile sensing) and identity vision for different viewpoints of the
objects.

3.1 Planar Grasps

We use the grasp dataset described in our earlier work [23] for our experiments
on the grasping task. Here, the grasp configuration lies in 3 dimensions, (x, y):
position of grasp point on the surface of table and θ: angle of grasp. The training
dataset contains around 37K failed grasp interactions and around 3K successful
grasp interactions as the training set. For testing, around 2.8K failed and 0.2K
successful grasps on novel objects are provided. Some of the positive and negative
grasp examples are shown in Fig. 2.
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Successful grasps Unsuccessful grasps

Fig. 2. Examples of successful (left) and unsuccesful grasps (right). We use a patch
based representation: given an input patch we predict 18-dim vector which represents
whether the center location of the patch is graspable at 0◦, 10◦, . . . 170◦.

Grasp Prediction Formulation: The grasp prediction problem can be for-
mulated as finding a successful grasp configuration (xS , yS , θS) given an image
of an object I. However, as mentioned in [23], this formulation is problematic
due to the presence of multiple grasp locations for each object and that Con-
vNets are significantly better at classification than regression to a structured
output space. Given an image patch, we output an 18-dimensional likelihood
vector where each dimension represent the likelihood of whether the center of
the patch is graspable at 0◦, 10◦, . . . 170◦. Therefore, the grasping problem can
be thought of as 18 binary classification problems. Hence the evaluation criterion
is binary classification i.e. given a patch and executed grasp angle in the test
set, predict whether the object was grasped or not.

3.2 Planar Push

We use a Baxter robot to collect push data as described in Fig. 3. Given an object
placed on the robot’s table and the model of the table, we perform background
subtraction to determine the position of the object. After detecting an object
using image Ibegin, we sample two points on the workspace: the first point is
the start point Xbegin = (xbegin, ybegin, zbegin) from where the robot hand starts
accelerating and gaining velocity. This start point is sampled from a Von Mises
distribution to push the object towards the center of the robot’s workspace.
We also sample another 3D point, Xfinal = (xfinal, yfinal, zfinal). This point
defines the location at which the robot hand stops accelerating. Note that: (a)
zbegin = zfinal since we are dealing with planar pushing; (b) Xfinal and Xbegin

define both the direction and velocity/force with which the object is hit by the
robot. Therefore, in this work, we parametrize push actions with 5 parameters:
(xstart, ystart, xfinal, yfinal, zpushHeight).

An off-the-shelf planner plans and executes the push action Xbegin → Xfinal.
The arm then retracts back, and Ifinal is recorded. We collect 5K push actions
on 70 objects using the above described method. Some of these push actions are
visualized in Fig. 4.
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(b) Push select (c) Plan and execute push action (d) Final sensing(a) Initial sensing

X_begin

Fig. 3. We detect an object and apply planar push. Our push action is parameterized
in terms of two 3D points: Xbegin and Xfinal.

Objects and push action pairs

Initial state Final state Initial state Final state Initial state Final state

Fig. 4. Examples of initial state and final state images taken for the push action. The
arrows demonstrate the direction and magnitude of the push action.

Push Prediction Formulation: For incorporating learning from push, we
build a siamese network (weights shared). One tower of siamese network takes
Ibegin as input and the other tower takes Iend as input. The output features
of the two towers are then combined using fully connected layer to regress to
what action caused this transformation. The push-action is parametrized by
{Xbegin,Xfinal} and mean squared error is used as the regression loss. This
action formulation captures the relevant magnitude as well as the localization
and direction of the push.

3.3 Poking: Tactile Sensing

In this task, the robot pushes the object vertically into the table until the pres-
sure applied on the object exceeds a limit threshold (Fig. 5). A random point is
sampled inside the object as the poke location. This pressure is sensed by robust
tactile sensors attached on the finger of the robot and is continuously recorded.
On reaching the limit threshold, the arm pulls away from the object and repeats
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Fig. 5. The figure shows how the poke data with tactile sensing is collected. The profile
of the tactile graph provides cues about material with which the object is made.

the motion for around 10 times per object. A total of 1K pushes are collected
on 100 diverse objects.

The tactile skin-sensor used in this work increases its electrical resistance
monotonically on the application of pressure. Hence an increase in pressure cor-
relates to an increase in resistance which then correlates to an increase in voltage
drop across the sensor. This voltage drop pdo is sensed via an Arduino and logged
with appropriate time stamps.

During poking, the pressure voltage data stream pdo while pushing into the
object is recorded. Some of this data are visualized in Fig. 6. It can be noted how
soft objects like the plush toy have a more gradual force response than harder
objects like the hardcover book.

Tactile Prediction Formulation: The poke tactile prediction problem is for-
mulated as a regression of the polynomial parametrization P(pdo) of the poke
action. Since a line parametrization works well to describe the poke response
(Fig. 6), we use a linear parametrization making the problem a regression to two

Objects and poke tactile response pairs

Fig. 6. Examples of the data collected by the poking action. On the left we show the
object poked, and on the right we show force profiles as observed by the tactile sensor.
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values (the slope and the intercept). Therefore, given an image of the object our
ConvNet predicts the slope and the intercept of P(pdo).

3.4 Identity Vision: Pose Invariance

Given the grasping and pushing tasks described above, pairs of images in any
one task’s interaction contains images of objects with multiple viewpoints. The
grasping dataset contains around 5 images of the object grasped from multiple
viewpoints in every successful grasp interaction, while the planar push dataset
contains 2 images of the object pushed in every push interaction. Figure 7 shows
some examples of the pair of images of objects in different poses. In total, we
use around 42K positive pairs of images and 42K negative pairs (images from
different interactions).

Fig. 7. Examples of objects in different poses provided to the embedding network.

Pose Invariance Formulation. The pose invariance task is meant to serve as
a supervisory signal to enforce images of objects in the same task interaction to
be closer in fc7 feature space. The problem is formulated as a feature embedding
problem, where, given two images, the distance between the features should be
small if the images are from the same robot interaction and large if the images
are from different robot interactions.

3.5 Network Architecture

We now describe our shared network architecture for the four tasks described
above. The network architecture used is summarized in Fig. 8. The network
exploits the hierarchical sharing of features based on the complexity of the task
to learn a common representation at the root network. Hence our network archi-
tecture can be seen as a root network that learns from every datapoint; this root
network is augmented with specialized task networks emanating from various
levels. This is based on the insight that tasks which require simpler representa-
tions like the push action prediction should be predicted lower in the network
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Fig. 8. Our shared convolutional architecture for four different tasks. (Color figure
online)

than more complex tasks like object embedding. Specifically, push action needs
pose-variance. However, more complex tasks like object embedding require the
learning of pose invariant feature representations, which are usually learnt in the
higher layers.

The tasks we deal with in this work require either one image as input (like
the grasp prediction task and the poke tactile task) or two images (like the push
action prediction task, the action invariance task). We however would like to
learn a single root network for all these tasks. For this purpose the root network
in both the streams share parameters and are updated simultaneously. The gray
blocks in Fig. 8 show the root network which updates its parameters using loss
gradients backpropagated from every task.

Root Network: The root network follows the architecture of layer scheme of
AlexNet [40] and can be seen as the gray network in Fig. 8. The first convolutional
layer (conv1) consists of 96 kernels with kernel size of 11×11. This convolutional
layer and all the succeeding layers use a non linear Rectified Linear Unit (ReLU)
as the transfer function. Local response normalization (LRN) is used and is
followed by a spatial Max-Pooling (MP) of kernel size 3 × 3. This is followed
by the second convolutional layer (conv2) that has 256 kernels of 5 × 5 kernel
size and is followed by a LRN and a MP of 3 × 3. The third convolutional layer
(conv3) has 386 3× 3 kernels which is followed by the fourth convolutional layer
(conv4) with 384 3 × 3 kernels. The fifth convolutional layer (conv5), with 256
3 × 3 kernels, is followed by a MP with a 3 × 3 kernel. The convolutional layers
are followed by two fully connected layers (fc6 and fc7) that have 4096 neurons
each and are each followed by a ReLU. Since some tasks require two images as
input, a clone of the root network is maintained with shared weights.
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Grasp Network: The input to the grasp network (orange blocks in Fig. 8)
emanates from the conv4 output of the root network. This network passes the
input through one convolutional layer (gr conv1) with 256 kernels of 3×3 kernel
size followed by a 3×3 MP. This then passes into a fully connected layer (gr fc1)
with 4096 neurons followed by gr fc2 with 1024 and a final gr fc3 with 18 × 2
neurons.

The error criterion used is the 18-way binary classifier used in [23]. Given a
batch size B, with an input image Ii, the label corresponding to angle θi defined
by li ∈ {0, 1} and the forward pass binary activations Aji on the angle bin j
the loss L is:

L =
B∑

i=1

N=18∑

j=1

δ(j, θi)· softmax(Aji, li) (1)

After an input training image Ii is passed into the root network, the conv4
output is input into the grasp network that generates the classification loss that is
backpropagated all through the chain. The weight update for the grasp network
uses standard RMSprop, however the gradients for the root network are stored
in memory and waits to be aggregated with the gradients from the other tasks.

Push Network: The input to the push network (blue blocks in Fig. 8) emanates
from the conv3 output of the root network. This network consists of one convo-
lutional layer (pu conv1) with 48 kernels of 3 × 3 kernel size, a fully connected
layer (pu fc1) with 1024 neurons and a final fully connected layer (pu fc2) with
5 neurons corresponding to the size of the action prediction. Since the input
for the push task is two images, the outputs from the pu conv1 for both the
images are concatenated to result in a 96 dimensional feature map that is fed
into pu fc1. A mean squared error (MSE) criterion is used as this task’s loss.

Given input images Ibegin and Ifinal, Ibegin is passed in the root network
while Ifinal is passed through the clone of the root network. The conv3 out-
puts from both the networks pass through two copies of pu conv1 which is then
concatenated and passed through the push network to generate MSE regression
loss. The loss is backpropagated through the chain, with the weights in the push
network getting updated in the batch using RMSprop while the gradients in the
root network are stored in memory to be aggregated later. For the weights in
pu conv1, the gradients are accumulated and mean-aggregated before an update.

Poke Network: The input to the poke network (green in Fig. 8) emanates from
the fc6 of the root network. The poke network then passes the input into a fully
connected layer po fc1 with 512 neurons followed by po fc2 with 2 neurons as
the tactile prediction. The MSE criterion is used to provide the regression loss
for this task.

Given an input training image, it is first passed through the root network.
The fc6 output is then fed as an input to the poke network that makes a tactile
prediction. The loss from the MSE criterion is backpropagated through the chain.

Identity Similarity Embedding: Feature embedding is done via a cosine
embedding loss on the fc7 feature output. Given a pair of images, one is passed
through the root network while the other is passed through a clone of the root
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network. The cosine embedding loss on the fc7 feature representations are then
backpropagated through the chain and the gradients for the two copies are accu-
mulated and mean aggregated.

Training Details: We follow a two-step training procedure for the network. In
the first stage, we first initialize the root network (upto conv4) and the grasp
network with Gaussian initialization. We train only the grasp network and the
lower root network for 20K iterations on the grasp data.

In the second stage, we create the full architecture with first conv4 copied
from the grasp learning. Then, batches with size of 128 are prepared for each
of the 4 tasks and are sequentially input into the network. Weights for the
grasp, push and poke networks are updated during their respective backward
propagation cycles, while the gradients for the root and the clone network are
accumulated until one batch for each of the tasks is complete. After one cycle
of the 4 task batches, the accumulated gradients for the root and clone network
are mean aggregated and a weight update step is taken.

4 Results

We now demonstrate the effectiveness of learning visual representations via phys-
ical interactions. First, we analyze the learned network in terms of what it has
learned and how effective the feature space is. Next, we evaluate the learned
representations for tasks like image classification and image retrieval. Finally we
analyze the importance of each task in the learnt representations using a task
ablation analysis.

4.1 Analyzing the ConvNet

As a first experiment, we visualize the maximum activations of neurons in layer 4
and layer 5 of the network. Specifically, we run our learned network on 2500 Ima-
geNet images corresponding to household items and find the images that max-
imally activates different neurons. We show these maximally activated images
along with the receptive fields for some conv5 and conv4 neurons of our root
network in Fig. 9. Notice that conv5 is able to correlate strong shape attributes
like the spherical objects in row 4, the cereal bowls in row 5 and the circular
biscuits in row 3. This is quite intuitive since tasks such as pushing, grasping
etc. are functions of the object shapes.

As a next experiment, we analyze the learned network without fine tuning for
the task of nearest neighbor. We use 25 household objects as query images and
2500 ImageNet images as the training dataset. We use the root network’s conv5
feature space to perform nearest neighbors (See Fig. 10). Again, as expected, the
nearest neighbors seem to be based on shape attributes.

4.2 Classification

For analyzing the effectiveness of our learned visual representation, we would
like to analyze the root network of our learnt robot task model on ImageNet [41]
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Fig. 9. The maximally activating images for the conv5 and conv4 neurons of our root
network is shown here.

Fig. 10. The first column corresponds to query image and rest show the retrieval. Note
how the network learns that cups and bowls are similar (row 5).

categories. However ImageNet image categories are of a wide variety while the
image data the robot sees is mostly of objects on a tabletop setting. Hence
for a more reasonable study we report results on a dataset containing 25 object
synsets: atomizer, ball, biscuit, bomb, bottle, bowl, box, chalk, cup, device, hook,
marker, pen, plush, rod, shaker, sharpener, sponge, spoons, spray, stapler, swat-
ter, tool, toys and vegetable. Since some of these synsets contain very few images,
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100 images from each of these are accumulated to make a 2500 ImageNet house-
hold dataset. We further evaluate classification on the UW RGBD dataset [42],
and the Caltech-256 dataset. Results of classification accuracy on these dataset
can be found in Table 1. We also report the performance of the network trained
only on identity data and an auto-encoder trained on all the data.

Table 1. Classification accuracy on ImageNet Household, UW RGBD and Caltech-256

Household UW RGBD Caltech-256

Root network with random init 0.250 0.468 0.242

Root network trained on robot tasks (ours) 0.354 0.693 0.317

AlexNet trained on ImageNet 0.625 0.820 0.656

Root network trained on identity data 0.315 0.660 0.252

Auto-encoder trained on all robot data 0.296 0.657 0.280

It is noteworthy that our network, finetuned on the ImageNet household 25
class dataset, gives around 35.4 % accuracy which is 10.4 % higher than training
from scratch. This means that our network learns some features from the robot
task training data that helps it perform better on the ImageNet task. This is quite
encouraging since the correlation between robot tasks and semantic classification
tasks have been assumed for decades but never been demonstrated. On the UW
dataset, using leave one-out methodology, we report an accuracy of 69.3 %, which
is about 22.5 % higher than learning from a scratch network. Similarly on the
Caltech-256 dataset, our network has a performance of 31.7 % which is 7.5 %
higher than learning from a scratch network.

Similar to an unsupervised baseline [2], we train a network using 150K rota-
tion and viewpoint data (identity data). Note that we use more datapoints than
our multi task network in the paper. Yet, this performs worse than the network
trained with robot tasks. Similarly, an auto-encoder trained on all the robot data
perform worse than our network.

4.3 Image Retrieval on UW RGBD Dataset

On the RGBD dataset [42] using fc7 features as visual representation, we per-
form and evaluate image retrieval. Our network’s performance on instance level
recall@k with k=1 and using cosine distance is 72 % which is higher than ima-
geNet (69 %) and randomNet (6 %). On category level image retrieval ourNet’s
recall@1 is at 83 % a little lower than imageNet at 85 %. Table 2 shows more
recall@k analysis.

4.4 Task Ablation Analysis

To understand the contribution of each task to classification performance, we
perform ablation analysis where we train our network excluding 1 out of 4 tasks



16 L. Pinto et al.

Table 2. Image retrieval with Recall@k metric

Instance level Category level

k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

Random network 0.062 0.219 0.331 0.475 0.150 0.466 0.652 0.800

Our network 0.720 0.831 0.875 0.909 0.833 0.918 0.946 0.966

AlexNet 0.686 0.857 0.903 0.941 0.854 0.953 0.969 0.982

(Table 3). On all the three datasets, excluding Grasp data leads to the largest
drop of performance which indicates that grasp task may be the most important
among our tasks.

Table 3. Task ablation analysis on classification tasks

Household UW RGB-D Caltech-256

All robot tasks 0.354 0.693 0.317

Except grasp 0.309 0.632 0.263

Except push 0.356 0.710 0.279

Except poke 0.342 0.684 0.289

Except identity 0.324 0.711 0.297

5 Conclusion

We present a method of learning visual representation using only robot inter-
actions with the physical world. By experiencing over 130K physical interaction
data points, our deep network is shown to have learnt a meaningful visual repre-
sentation. We visualize the learned network, perform classification and retrieval
tasks to validate our hypothesis. We note that this is just a small step in starting
to integrate robotics and vision closely together.
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