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Abstract. Image priors play a key role in low-level vision tasks. Over
the years, many priors have been proposed, based on a wide variety of
principles. While different priors capture different geometric properties,
there is currently no unified approach to interpreting and comparing
priors of different nature. This limits our ability to analyze failures or
successes of image models in specific settings, and to identify poten-
tial improvements. In this paper, we introduce a simple technique for
visualizing image priors. Our method determines how images should be
deformed so as to best conform to a given image model. The deformed
images constructed this way, highlight the elementary geometric struc-
tures to which the prior resonates. We use our approach to study various
popular image models, and reveal interesting behaviors, which were not
noticed in the past. We confirm our findings through denoising exper-
iments. These validate that the structures we reveal as ‘optimal’ for a
specific prior are indeed better denoised by this prior.

1 Introduction

Image priors play a fundamental role in many low-level vision tasks, such as
denoising, deblurring, super-resolution, inpaiting, and more [1–9]. Over the years,
many priors have been proposed, based on a wide variety of different principles.
These range from priors on derivatives [2,10], wavelet coefficients [11,12], filter
responses [13,14], and small patches [1,15], to nonparametric models that rely
on the tendency of patches to recur within and across scales in natural images
[16–19].

Different priors capture different geometric properties. For example, it is
known that the total variation (TV) regularizer [10] prefers boundaries with
limited curvature [20], whereas the local self-similarity prior [21] prefers straight
edges and sharp corners (structures which look the same at different scales).
However, generally, characterizing the behavior of complex image priors (e.g.,
trained models) is extremely challenging. This limits our ability to interpret
failures or successes in specific settings, as well as to identify possible model
improvements.

In this paper, we present a simple technique for visualizing image priors.
Given an image model, our method determines how images should be deformed
so that they become more plausible under this model. That is, for any input
image, our algorithm produces a geometrically ‘idealized’ version, which better
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(a) Input (b) BM3D (c) Shrinkage Fields (d) Total Variation
(e) Multi-Layer

Perceptron

Fig. 1. Visualizing image priors. Our algorithm determines how images should be
deformed so as to better comply with a given image model (exemplified here on a Brain
Coral image). The deformed images give insight into the elementary geometric features
to which the prior resonates. As can be seen, different image models (BM3D [17],
Shrinkage Fields [22] with pairwise cliques, Total Variation [10], Multi-Layer Perceptron
[4]) have quite different geometric preferences.

conforms to the prior we wish to study. Figure 1 shows several example outputs
of our algorithm. As can be seen, our idealization process nicely highlights the
elementary features to which different priors resonate, and thus gives intuition
into their geometric preferences.

Our approach is rather general and, in particular, can be used to visualize
generative models (e.g., fields of experts [14]), discriminative models (e.g., deep
nets [4]), nonparametric models (e.g., nonlocal means [16]), and any other image
model that has an associated denoising algorithm. In fact, the ‘idealized’ images
produced by our method have a nice interpretation in terms of the associated
denoiser: Their geometry is not altered if we attempt to ‘denoise’ them (treating
them as noisy images). We thus refer to our ‘idealized’ images as Geometric
Eigen-Modes (GEMs) of the prior.

Figure 2 illustrates how GEMs encode geometric preferences of image models.
For example, since the TV prior [10] penalizes for large gradients, a TV-GEM is
a deformed image in which the gradient magnitudes are smaller. Similarly, the
wavelet sparsity prior [11] penalizes for non-zero wavelet coefficients. Therefore,
a wavelet-GEM is a deformed image in which the wavelet coefficients are sparser.
Finally, the internal KSVD model [15] assumes the existence of a dictionary over
which all patches in the image admit a sparse representation. Thus, a KSVD-
GEM is a deformed image for which there exists a dictionary allowing better
sparse representation of the image patches.

We use our approach to study several popular image models and observe vari-
ous interesting phenomena, which, to the best of our knowledge, were not pointed
out in the past. First, unsurprisingly, we find that all modern image priors pre-
fer large structures over small ones. However, the preferred shapes of these large
objects, differ among priors. Specifically, most internal priors (e.g., BM3D [17],
internally-trained KSVD [15], cross-scale patch recurrence [19]) prefer straight
edges and sharp corners. On the other hand, externally trained models (e.g.,
EPLL [1], multi-layer perceptorn [4]), are much less biased towards straight bor-
ders, and their preferred shapes of corners are rather round. But we also find a
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few surprising exceptions to this rule. For example, it turns out that nonlocal
means (NLM) [16], which is an internal model, rather resonates to curved edges,
similarly to external priors. Another interesting exception is the fields of experts
(FoE) prior [14], an externally-trained model which turns out to prefer straight
axis-aligned edges.

Dictionary 
before correction

Dictionary 
after correction

Wavelet coef. 
before correction

Wavelet coef. 
after correction

Gradient magnitude 
before correction

Gradient magnitude 
after correction

(d) Wavelet-GEM (f) TV-GEM(b) KSVD-GEM(a) Input (c) Input (e) Input

Fig. 2. GEMs better conform to the prior. (a) The internal KSVD model [15]
assumes that each patch in the image can be sparsely represented over some dictionary.
(b) A KSVD-GEM is a deformed image in which the diversity between patches is
smaller, so that the sparsity assumption holds better. Namely, for the KSVD-GEM,
there exists a dictionary over which each patch can be sparsely represented with better
accuracy. Note how less atoms are invested in representing the fine details in this
dictionary. (c) The wavelet sparsity prior [11] penalizes the �1 norm of the wavelet
coefficients of the image (we use the Haar wavelet for illustration). (d) A wavelet-GEM
is a deformed image in which the wavelet coefficients have a smaller �1 norm, and are
thus sparser. (e) The TV prior penalizes the �1 norm of the gradient magnitude. (f) A
TV-GEM is a deformed image in which the gradient magnitude is smaller (and so has
a smaller �1 norm).

The behaviors we reveal are often impossible to notice visually in standard
image recovery experiments on natural images (e.g., denoising, deblurring, super-
resolution). However, they turn out to have significant effects on the PSNR in
such tasks. We demonstrate this through several denoising experiments. As we
show, structures predicted by our approach to be most ‘plausible’, can indeed be
recovered from their noisy versions significantly better than other geometric fea-
tures. So, for example, we show how the FoE model indeed performs significantly
better in denoising an axis-aligned square, than in denoising a rotated one.

1.1 Related Work

There are various approaches to interpreting and visualizing image models. How-
ever, most methods are suited only to specific families of priors, and are thus
of limited use when it comes to comparing between models of different nature.
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Moreover, existing visualizations are typically indirect, and hard to associate to
the reaction of the model to real natural images.

Analytic Characterization: Certain models can be characterized analytically.
One example is the TV regularizer [10], which has been shown to preserve convex
shapes as long as the maximal curvature along their boundary is smaller than
their perimeter divided by their area [20]. Another example is sparse represen-
tations over multiscale frames (e.g., wavelets [23], bandlets [24], curvelets [25],
etc.). For instance, contourlets have been shown to provide optimally sparse rep-
resentations for objects that are piecewise smooth and have smooth boundaries
[26] (i.e., functions that are C2 except for discontinuities along C2 curves). How-
ever, general image priors (especially trained models), are extremely difficult to
analyze mathematically.

Patch Based Models: Many parametric models have been used for small
image patches, including independent component analysis (ICA) [27], products
of experts [28], Gaussian mixture models (GMMs) [1], sparse representation over
some dictionary [15], and more. Those models are usually visualized by plotting
the basic elements which comprise them. Namely, the independent components
in ICA, the dictionary atoms in sparse representations, the top eigenvectors of
the Gaussians’ covariances in GMM, etc.

Markov Random Fields: These models use Gibbs distributions over filter
responses [13,14,29–31]. The filters (as well as their potentials) are typically
learned from a collection of training images. Those priors can be visualized
by drawing samples from the learned model using Markov-chain Monte Carlo
(MCMC) simulation [29]. Another common practice is to plot the learnt filters.
However, as discussed in [32], those filters are often nonintuitive and difficult to
interpret. Indeed, as we show in Sect. 3, our visualization reveals certain geomet-
ric preferences of the MRF models [14,22,31], which were not previously pointed
out.

Deep Networks: These architectures are widely used in image classification,
but are also gaining increasing popularity in low-level vision tasks, including in
denoising [4], super-resolution [33], and blind deblurring [34]. Visualizing feature
activities at different layers has been studied mainly in the context of convolu-
tional networks, and was primarily used to interpret models trained for classifica-
tion [35,36]. Features in the first layer typically resemble localized Gabor filters
at various orientations, while deeper layers capture structures with increasing
complexity.

Patch Recurrence: Patch recurrence is known as a dominant property of nat-
ural images. A technique for revealing and modifying variations between repeat-
ing structures in an image was recently presented in [37]. This method determines
how images should be deformed so as to increase the patch repetitions within
them. Although presented in the context of image editing, this method can in
fact be viewed as a special case of our proposed approach, where the prior being
visualized enforces patch-recurrence within the image. Here, we use the same
concept, but to visualize arbitrary image priors.
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In contrast to previous approaches, which visualize filters, atoms, or other
building blocks of the model, our approach rather visualizes the model’s effect
on images. As we illustrate, in many cases this visualization is significantly more
informative.

2 Algorithm

Suppose we are given a probability model p(x) for natural images. To visualize
what geometric properties this model captures, our approach is to determine how
images should be deformed so that they become more likely under this model.
That is, for any input image y, we seek an idealized version x ≈ T {y}, for some
piecewise-smooth deformation T , such that log p(x) is maximal. More specifi-
cally, we define the idealizing deformation T as the solution to the optimization
problem

arg min
x,T

− log p(x)
︸ ︷︷ ︸

log-prior

+ λΦ(T )
︸ ︷︷ ︸

smoothness

+ 1
2σ2 ‖T {y} − x‖2
︸ ︷︷ ︸

fidelity

. (1)

The log-prior term forces the image x to be highly plausible under the prior p(x).
The smoothness term regularizes the deformation T to be piecewise smooth.
Finally, the fidelity term ensures that the deformed (idealized) input image T {y}
is close to x. The parameters σ and λ control the relative weights of the different
terms, and as we show in Sect. 2.2, can be used to control the scales of features
captured by the visualization.

We use nonparametric deformations, so that the transformation T is
defined as

T {y}(ξ, η) = y(ξ + u(ξ, η), η + v(ξ, η)) (2)

for some flow field (u, v). We define the smoothness term to be the robust penalty

Φ(T ) =
∫∫

√

‖∇u(ξ, η)‖2 + ‖∇v(ξ, η)‖2 + ε2 dξdη, (3)

where ∇ = ( ∂
∂ξ , ∂

∂η ) and ε is a small constant. This penalty is commonly used in
the optical flow literature [38] and is known to promote smooth flow fields while
allowing for sharp discontinuities at objects boundaries.

To solve the optimization problem (1), we use alternating minimization.
Namely, we iterate between minimizing the objective w.r.t. the image x while
holding the deformation T fixed, and minimizing the objective w.r.t. T while
holding x fixed.

x-step: The smoothness term in (1) does not depend on x, so that this step
reduces to

arg min
x

1
2σ2 ‖T {y} − x‖2 − log p(x). (4)

This can be interpreted as computing the maximum a-posteriori (MAP) estimate
of x from a “noisy signal” T {y}, assuming additive white Gaussian noise with
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Input: Image y, denoising function Denoise()
Output: Idealizing transformation T , idealized image yGEM

Initialize T 0 to be the identity mapping.
for k = 1, . . . , K do

xk ← Denoise(T k−1{y}) /* tuned for noise level σ */
T k ← OpticalFlow(y, xk) /*with regularization parameter 2λσ2 */

end

T ← T K

yGEM ← T {y}
Algorithm 1. Geometric prior visualization.

Denoising Optical flow Warping Denoising Optical flow Warping

Input Iteration 1 Iteration K GEM

Fig. 3. Schematic illustration of the algorithm. In each iteration, the current cor-
rected image T {y} is “denoised” to obtain an updated image x. Then, the deformation
T is updated to be that which best maps the input y to the new x. This results in a
new corrected image T {y}. The iterations are shown for the FoE model [14]. Photo
courtesy of Mickey Weidenfeld.

variance σ2. Thus, x is obtained by “denoising” the current T {y} using the prior
p(x).

T -step: The log-likelihood term in (1) does not depend on T , so that this step
boils down to solving

arg min
T

‖T {y} − x‖2 + 2λσ2 · Φ(T ). (5)

This corresponds to computing the optical flow between the current image x and
the input image y, where the regularization weight is 2λσ2. To solve this problem
we use the iteratively re-weighted least-squares (IRLS) algorithm proposed in
[39] (using an L2 data-term in place of their L1 term).

Therefore, as summarized in Algorithm 1, our algorithm iterates between
denoising the current deformed image, and warping the input image to match
the denoised result. Intuitively, when the denoiser is applied on the image, it
modifies it to be more plausible according to the prior p(x). This modification
introduces slight deformations, among other effects. The role of the optical flow
stage is to capture only the geometric modifications, which are those we wish to
study. This process is illustrated in Fig. 3.

Note that typical optical flow methods work coarse-to-fine to avoid getting
trapped in local minima (the flow computed in each level is interpolated to
provide an initialization for the next level). In our case, however, this is not
needed because the flow changes very slowly between consecutive iterations of
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Algorithm 1. Thus, in each iteration, we simply use the flow from the previous
iteration as initialization.

2.1 Alternative Interpretation: Geometric Eigen-Modes

Our discussion so far assumed generative models for whole images. However,
many image enhancement algorithms do not explicitly rely on such probabilistic
models. Some methods only model the local statistics of small neighborhoods
(patches), either by learning from an external database [1], or by relying on the
recurrence of patches within the input image itself [16,17]. Other approaches are
discriminative [4], directly learning the desired mapping from input degraded
images to output clean images. In all these cases, there is no explicit definition
of a probability density function p(x) for whole images, so that the optimization
problem (1) is not directly applicable. Nevertheless, note that Algorithm 1 can
be used even in the absence of a probability model p(x), as all it requires is the
availability of a denoising algorithm. To understand what Algorithm1 computes
when the denoising does not correspond to MAP estimation, it is insightful to
examine how the flow T evolves along the iterations.

Collecting the two steps of Algorithm 1 together, we see that the deformation
evolves as T k+1 = OpticalFlow(y, Denoise(T k{y})). Therefore, the algorithm
converges once the transformation T satisfies

T = OpticalFlow(y, Denoise(T {y})). (6)

This implies that after convergence, denoising T {y} does not introduce geomet-
ric deformations anymore. In other words, the output yGEM = T {y} has the
same geometry as its denoised version Denoise(yGEM). To see this, note that
condition (6) states that the image Denoise(yGEM) is related to y by the defor-
mation T . But, recall that the image yGEM itself is also related to y by the
deformation T . This is illustrated in Fig. 4.

From the discussion above we conclude the image yGEM produced by our
algorithm has the property that its geometry is not altered by the denoiser. We
therefore call yGEM a Geometric Eigen-Mode (GEM) of the prior, associated with
image y. Because GEMs are not geometrically modified by the denoiser, the local
geometric structures seen in a GEM are precisely those structures which are best
preserved by the denoiser. This makes GEMs very informative for studying the
geometric preferences of image priors.

2.2 Controlling the Visualization Strength

Recall that the parameters λ and σ control the relative weights of the three
terms in Problem1 (1). To tune the strength of the visualization, we can vary
the weight of the log-prior term, which affects the extent to which the ‘idealized’

1 Strictly speaking, this interpretation is valid only if our denoiser performs MAP
estimation. However, the intuition is the same also for arbitrary denoisers.
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Fig. 4. Denoising a GEM does not change its geometry. The GEM yGEM is
obtained by warping the image y with the ‘idealizing’ flow field T . ‘Denoising’ yGEM,
results in an image with the same geometry as yGEM itself. That is, the optical flow
between Denoise(yGEM) and yGEM is zero, and optical flow between Denoise(yGEM)
and y is equal to T (like the transformation between yGEM itself and y). The results
are shown for the multi-layer perceptron (MLP) model [4].

image complies with the prior. This requires varying σ while keeping the prod-
uct λσ2 fixed. Figure 5 shows BM3D-GEMs with several different strengths. As
we increase the weight of the log-prior term, smaller and smaller features get
deformed so that the prior is better satisfied. This effect is clearly seen in the
small arcs, the mandrill’s pupils, and the delicate textures on the mandrill’s fur.

3 Experiments

We used our algorithm on images from [40,41] and from the Web to study a
variety of popular priors [1,4,10,14–17,22,31]. Some denoising methods work
only on grayscale images. So, for fair comparison, we always determined the
idealizing deformation based on the grayscale version of the input image, and
then used this deformation to warp the color image itself. In all our experiments
we used 50 iterations, σ = 25/50 and λ in the range [0.5 × 10−4, 3 × 10−4] (for
gray values in the range [0, 255]). Some denoisers do not accept σ as input, like
nonlocal means and TV. We tuned those methods’ parameters to perform best
in the task of removing noise of variance σ2 from noisy images.

Figure 6 shows visualization results for BM3D [17], FoE [14], EPLL [1] and
TV [10]. As can be seen, common to all these models is that they prefer large
structures over small ones. Indeed, note how the small yellow spots on the but-
terfly, the small arcs in the colosseum, the small black spots on the Dalmatians,
and the small white spots on the owl, are all removed in the idealization process
(the flow shrinks them until they disappear). The remaining large structures, on
the other hand, are distorted quite differently by each of the models.

BM3D [17] is an internal model, which relies on comparisons between patches
within the image. As can be seen in Fig. 6, BM3D clearly prefers straight edges
connected at sharp corners. Moreover, it favors textures with straight thin
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(a) Input (b) Low log-prior weight (c) Medium log-prior weight (d) High log-prior weight

Fig. 5. Controlling the visualization strength. (a) Input images Arcs and Mandril.
(b)–(d) BM3D-GEMs with varying strengths, obtained by tuning the log-prior weight
in Problem (1). The effect is obtained by increasing σ while decreasing λ so that the
product λσ2 is kept fixed. We used σ = 20, 30, 50 in (b), (c), (d), and λσ2 = 0.128.
As the log-prior weight increases, smaller structures get deformed (e.g., the small arcs
and the mandril’s pupils and fur).

threads (see the owl’s head). This can be attributed to the fact that the patch
repetitions in those structures are strong. In fact, as we show in Fig. 7, straight
edges and sharp corners are also favored by other internal patch-recurrence mod-
els, including internally-trained KSVD [15] and the cross-scale patch recurrence
prior of [19].

The FoE model [14] expresses the probability of natural images in terms
of filter responses. As can be seen in Fig. 6, FoE resonates to straight axis-
aligned edges connected at right-angle corners. This surprising behavior cannot
be predicted by examining the models’ filters, and to the best of our knowledge,
was not reported in the past. Note that FoE is an external model that was trained
on a collection of images [41]. Therefore, an interesting question is whether its
behavior is associated to the statistics of natural images, or rather to some
limitation of the model. A partial answer can be obtained by examining the
visualizations of EPLL [1], another external model which was trained on the
same image collection [41]. As observed in Fig. 6, EPLL also has a preference to
straight edges, but its bias towards horizontal and vertical edges is much weaker
than that of FoE (a small bias can be noticed on the butterfly’s wings, on the
flowers behind the butterfly, and on the Dalmatians’ spots). This suggests that
the excessive tendency of FoE to axis-aligned structures is rather related to a
limitation of the model, as we further discuss below. We also note that, unlike
FoE, the optimal shapes of corners in EPLL are rather round.

Finally, as seen in Fig. 6, the TV prior exhibits a very different behavior. As
opposed to all other priors, which prefer straight edges over curved ones, TV
clearly preserves curved edges as long as their curvature is not too large. This
phenomenon has been studied analytically in [20].
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(a) Input (b) BM3D (c) FoE (d) EPLL (e) TV

Fig. 6. Visualizing popular image priors. (a) Input images Flower, Colosseum,
Dalmatians, and Owl. (b)–(e) Geometric idealization w.r.t. to the BM3D [17], FoE
[14], EPLL [1] and TV [10] priors with σ = 50 and λ = 0.7 × 10−4. Note how different
elementary structures are preferred by each of the models.

Internal Models: We next compare between several internal models, which rely
on the tendency of patches to repeat within and across scales in natural images
[42]. Figure 7 shows visualizations for four such methods: BM3D [17], KSVD
[15] (trained internally on the input image), the cross-scale patch recurrence
model2 of [19], and NLM [16]. As can be seen, the GEMs of all these priors have
increased redundancy: Edges are deformed to be straighter, stripes are deformed
to have constant widths, etc. However, close inspection also reveals interesting
differences between the GEMs. Most notably, the NLM method seems to reduce
the curvature of edges, but does not entirely straightens them. This may be
caused by the fact that it uses a rather localized search window for finding simi-
lar patches (15×15 pixels in this experiment). Another noticeable phenomenon,
is the thin straight threads appearing in the cross-scale patch recurrence visual-
ization. Those structures are locally self-similar (namely, they look the same at
different scales of the image), and are thus preserved by this prior.

External Models: While internal models share a lot in common, external meth-
ods exhibit quite diverse phenomena. Figure 8 shows visualizations for several

2 This model was presented in [19] in the context of blind deblurring. To use for
denoising, we removed the blur-kernel estimation stage and forced the kernel to be
a delta function.
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(a) Input (b) BM3D (c) Internal KSVD
(d) Cross-scale  

patch recurrence
(e) Nonlocal means

Fig. 7. Comparing internal image models. (a) Input images Train and Zebra
(courtesy of Mickey Weidenfeld). (b)–(e) Geometric idealization w.r.t. the BM3D [17],
internal KSVD [15], cross-scale patch recurrence [19], and nonlocal means [16] models
using σ = 25 and λ = 2 × 10−4/3.6 × 10−4 for Train/Zebra.

(a) Input (b) EPLL (c) FoE (d) MLP (e) Shrinkage Fields

Fig. 8. Comparing external image models. (a) Input images Tiger and Mandril.
(b)–(e) Geometric idealization w.r.t. the EPLL [1], FoE [14], multi-layer perceptron
(MLP) [4], and Shrinkage Fields [22] models with σ = 25 and λ = 2 × 10−4.

external models, which were all trained on the same dataset [41]: EPLL [1],
FoE [14], multi-layer perceptron (MLP) [4], and Shrinkage Fields [22] (an MRF-
based model with 7 × 7 filters). As can be seen, all these models seem to prefer
edges with small curvatures. However, apart for FoE, none of them prefers sharp
corners. Moreover, the typical shapes of the optimal low-curvature edges dif-
fer substantially among these methods. An additional variation among external
methods, is that they resonate differently to textures, as can be seen on the
mandril’s fur. In the EPLL GEM, the fur is deformed to look smoother, while
in all other GEMs, the fur is deformed to exhibit straight strokes.

MRF Models: As mentioned above, the FoE model has a surprising preference
to straight axis-aligned edges, significantly more than other external methods
trained on the same dataset. This suggests that the FoE model either has limited
representation power (e.g., due to the use of 5 × 5 filters as opposed to the
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(d) 3x3(a) Input (e) Pairwise (f) 3x3 (g) 7x7(b) 5x5
Shrinkage FieldsFoE (Student-T) FoE (GSM)

(c) Pairwise

Fig. 9. Comparing MRF image models. (a) Input Jaguar image. (b) GEM of the
FoE model with Student-T potentials [14]. (c)–(d) GEMs of FoE model with GSM
potentials [31], (e)–(g) GEMs of the Shrinkage Fields model [22]. In all cases σ = 25
and λ = 2 × 10−4.

8 × 8 patches used in EPLL, or due to the use of Student-T clique potentials),
or the learning procedure has converged to a sub-optimal solution. To study
this question, Fig. 9 compares the FoE model with [31], an MRF model with
Gaussian scale mixture (GSM) clique potentials, and with Shrinkage Fields [22],
a discriminative approach which is roughly based on a cascade of several MRF
models. The Shrinkage Fields architecture allows efficient training with far larger
image crops, than what is practically possible in the FoE model. As can be
seen, when using pairwise cliques (horizontal and vertical derivatives), the GSM
MRF and Shrinkage Fields also tend to prefer axis-aligned edges. However, this
tendency decreases as the filter sizes are increased. With 3 × 3 filters, in both
the GSM MRF and Shrinkage Fields this behavior is already weaker than in the
5 × 5 FoE model. And for Shrinkage Fields with 7 × 7 filters, this phenomenon
does not exist at all. We confirm this observation in denoising experiments below.
While FoE and Shrinkage Fields differ in a variety of aspects (not only the choice
of filter sizes), our experiment suggests that MRF models can achieve a decent
degree of rotation invariance, even with small filters. However, this seems to
require large training sets to achieve without intervention. Note that imposing
rotation invariance on the filters, has been shown to be beneficial in [32].

3.1 Denoising Experiments

The geometric preferences revealed by our visualizations are very hard, if not
impossible, to visually perceive by the naked eye in conventional image recov-
ery experiments on natural images (e.g., denoising, deblurring, super-resolution,
etc.). This raises the question: To what extent do these geometric preferences
affect the recovery error in such tasks? To study this question, we performed
several denoising experiments.

Denoising GEMs: We begin by examining how much easier it is for denoising
methods to remove noise from the GEM of an image, than from the image
itself. Intuitively, since GEMs contain structures that best conform to the prior,
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Fig. 10. Denoising GEMs. We added noise to the GEMs corresponding to various
priors, and then denoised each of them using various denoising methods. For each
denoiser, we report the ratio between the MSE it achieves in denoising the GEM,
and the MSE it achieves in denoising the original image. Each color corresponds to a
different denoiser, and each group of bars corresponds to a different GEM.

denoising a GEM should be an easier task. Denote by yGEM
p the GEM of image

y according to prior p (e.g., p ∈ {‘BM3D’, ‘MLP’, . . . }). We define the error
ratio

rp,q(y) =
MSEq(yGEM

p )
MSEq(y)

, (7)

where MSEq(yGEM
p ) and MSEq(y) denote the mean square errors (MSEs)

attained in recovering the images yGEM
p and y, respectively, from their noisy

versions, based on prior q. An error ratio smaller than 1 indicates that recover-
ing yGEM

p with prior q leads to better MSE than recovering y itself with prior q.
Figure 10 shows the error ratios attained by 9 different denoising methods

(colored bars), on the 9 GEMs of the corresponding priors (groups of bars) for
the tiger image of Fig. 8(a). As can be seen, all the denoisers attain an error ratio
smaller than 1 on the GEMs corresponding to their prior (namely rp,p(y) < 1 for
all p). Moreover, almost all the denoisers attain error ratios smaller than 1 also
on the GEMs corresponding to other priors3. This suggests that the geometric
structures that are optimal for one prior are usually quite good also for other
priors.

This experiment further highlights several interesting behaviors. BM3D and
NLM perform very poorly on the TV-GEM. This illustrates that an image with
low total-variation (the TV-GEM) does not necessarily have strong patch rep-

3 Note that some denoisers perform better on the GEMs of other priors than on their
own GEM. This is because GEMs are not optimized to minimize the MSE in denois-
ing tasks. Their construction also takes into account a penalty on the deformation
smoothness.
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Input GEM
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GEMInput

(b) Total Variation
GEMInput
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Error
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Fig. 11. Pixelwise RMSE. We compare between the pixelwise RMSE (averaged
over 50 noise realizations) attained in denoising an image and its GEM. Results are
shown alongside the deformation field for (a) EPLL [1], (b) Total variation [10] and
(c) FoE [14]. As can be seen, a significant RMSE improvement is achieved in regions
which undergo a large deformation.

etitions (as required by the BM3D and NLM denoisers). Shrinkage Fields with
pairwise cliques and TV perform very similarly on all the GEMS, and quite dif-
ferently from all other methods. This may be associated to the fact that they are
the only priors based on derivatives. Another distinctive group is MLP, Shrink-
age Fields (7×7) and EPLL, which perform similarly on all the GEMs. Common
to these methods, is that they are all based on external models trained on the
same dataset.

Pixelwise MSE: We next visualize which pixels in a GEM contribute the
most to the improved ability to denoise it. Figure 11 shows the pixelwise root-
MSE (RMSE) attained in denoising the Brain Coral image and its GEM (using
the GEM’s prior), averaged over 50 noise realizations. As can be seen, the
largest RMSE improvement occurs at regions which are strongly deformed.
Those regions are precisely the places which did not comply with the model
initially, and were ‘corrected’ in the GEM.

Rotation Invariance: Our visualizations in Figs. 6, 8, and 9, revealed an inter-
esting preference to axis aligned edges for some of the priors (especially FoE).
To verify whether our observations are correct, we plot in Fig. 12 the RMSE
that different methods attain in denoising images of rotated squares. As pre-
dicted by our visualizations, among external models, the FoE prior indeed has
the least degree of rotation invariance, followed by Shrinkage Fields with pair-
wise cliques. The RMSE of these two methods drops significantly as the angle of
the square approaches 0. It can be seen that EPLL also has a slight tendency to
axis-aligned edges, while Shrinkage Fields (7 × 7) is almost entirely indifferent
to the square’s angle. These behaviors align with our conclusions from Figs. 8
and 9. We note, however, that MLP also seems to perform slightly better in
denoising axis-aligned squares, a behavior that we could not clearly see in the
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Fig. 12. Rotation invariance. The RMSE attained by various denoising methods in
the task of removing noise from a noisy square, as a function of the square’s angle.
(a) Methods based on external priors. (b) Methods based on internal priors.

GEM of Fig. 8. The internal models, shown in Fig. 12(b), are almost completely
insensitive to the square’s angle, which aligns with the behaviors we observed
in the GEMs of Fig. 7. The singular behaviors at angles 0 and 45 are related to
the fact that these are the only two angles in which the rotated square does not
involve interpolation artifacts.

4 Conclusions

We presented an algorithm for visualizing the geometric preferences of image
priors. Our method determines how an image should be deformed so as to best
comply with a given image model. Our approach is generic and can be used
to visualize arbitrary priors, providing a useful means to study and compare
between them. Applying our method on several popular image models, we found
various interesting behaviors that are impossible to see using any other visu-
alization technique. Although we demonstrated our approach in the context of
visualizing geometric properties of image models, our framework can be eas-
ily generalized to other types of transformations (e.g., color mappings). This
only requires replacing the optical-flow stage in our algorithm accordingly. Our
visualizations can be used to analyze failures and successes of image models in
specific settings, and may thus help to identify potential model improvements,
which are of great importance in image enhancement tasks.
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