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Abstract. Deconvolution is a popular method for visualizing deep con-
volutional neural networks; however, due to their heuristic nature, the
meaning of deconvolutional visualizations is not entirely clear. In this
paper, we introduce a family of reversed networks that generalizes and
relates deconvolution, backpropagation and network saliency. We use
this construction to thoroughly investigate and compare these methods
in terms of quality and meaning of the produced images, and of what
architectural choices are important in determining these properties. We
also show an application of these generalized deconvolutional networks
to weakly-supervised foreground object segmentation.
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1 Introduction

Despite the success of modern Convolutional Neural Networks (CNNs), there is a
limited understanding of how these complex black-box models achieve their per-
formance. Methods such as deconvolutional networks (DeConvNets) have been
proposed to wvisualize image patterns that strongly activate any given neuron
in a CNN [25] and therefore shed some light on the CNN structure. However,
the DeConvNet construction is partially heuristic and so are the corresponding
visualizations. Simonyan et al. [16] noted similarities with their network saliency
method which partially explains DeConvNets, but this interpretation remains
incomplete.

This paper carries a novel and systematic analysis of DeConvNets and closely
related visualization methods such as network saliency. Our first contribution is
to extend DeConvNet to a general method for architecture reversal and visualiza-
tion. In this construction, the reversed layers use selected information extracted
by the forward network, which we call bottleneck information (Sect.2). We
show that backpropagation is a special case of this construction which yields
a reversed architecture, SaliNet, equivalent to the network saliency method
of Simonyan et al. (Sect.2.1). We also show that the only difference between

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-46466-4_8) contains supplementary material, which is available to
authorized users.

© Springer International Publishing AG 2016

B. Leibe et al. (Eds.): ECCV 2016, Part VI, LNCS 9910, pp. 120-135, 2016.
DOI: 10.1007/978-3-319-46466-4_8


http://dx.doi.org/10.1007/978-3-319-46466-4_8
http://dx.doi.org/10.1007/978-3-319-46466-4_8

Salient Deconvolutional Networks 121

Image

DeConvNet

-
L
Z
=
<
w2
)
AF

Fig.1. From top row to bottom: Original image, DeConvNet, SaliNet and our
DeSaliNet visualizations from the fc8 layer in AlexNet (just before the softmax oper-
ation). The maximally active neuron is visualized in each case. DeSaliNet results in
crisper visualizations. They suppress the background while preserving edge informa-
tion. Best viewed on screen.

DeConvNet and SaliNet is a seemingly innocuous change in the reversal of Rec-
tified Linear Units (ReLU; Sect. 2.2). However, this change has a very significant
effect on the results: the SaliNet response is well localized but lacks structure,
whereas the DeConvNet response accurately reproduces the image boundaries
and object shapes, but is less localized (Fig. 1). We also show that the two meth-
ods can be combined in order to simultaneously obtain structure and localization
(DeSaliNet). DeSaliNet is also similar to results recently obtained by [17].

We then move to the important question of whether deconvolutional archi-
tectures are useful for visualizing neurons. Our answer is partially negative, as
we find that the output of reversed architectures is mainly determined by the
bottleneck information rather than by which neuron is selected for visualization
(Sect. 3.3). In the case of SaliNet and DeSaliNet, we confirm that the output is
selective of any recognizable foreground object in the image, but the class of the
selected object cannot be specified by manipulating class-specific neurons.

Having established the dominance of bottleneck information, we draw an
analogy between that and phase information in the Fourier transform (Sect. 3.4)
and show the importance of polarity information in reversed architectures.

Finally, we quantitatively test the ability of SaliNet and DeSaliNet to identify
generic foreground objects in images (Sect.3.5). Combined with GrabCut, we
achieve near state-of-the-art segmentation results on the ImageNet segmentation
task of [4], while using off-the-shelf CNNs pretrained from a largely disjoint subset
of ImageNet and with only image-level supervision.



122 A. Mahendran and A. Vedaldi

“\ U—arch

* noise
switches mask mask

N O T SR e S ST S

Fig. 2. The top row shows a typical CNN obtained by repeating short chains of con-
volution (), max pooling (MP) and ReLU (RU) operators. The middle row shows
a generic “deconvolution” architecture, in which information flows backward to the
image using the convolution transpose *EF operator. Different variants are obtained
by: (i) choosing a different input (U-architecture, feature selector, or noise), (ii) choos-
ing a variant of backward ReLU RU' (1, ReLU, ReLU backpropagation, or hybrid),
and (iii) choosing a variant of backward max pooling MP! (unpool to centre or MP
backpropagation). This schema generalizes DeConvNets [25].

Related Work. DeConvNets were originally proposed as a method for unsu-
pervised feature learning [26,27] and later applied to visualization [25]. There
are several CNN visualizations alternative to DeCovnNets. Some recent ones
such as [24] build on the idea of natural (regularized) pre-images introduced
n [13], which in turn are based on prior contributions that applied pre-images
to representations such as HOG [21], SIFT [22], BoVW [2,7], as well as early
neural networks [6,9,10,12,20,23]. A related line of work [1] is to learn a second
neural network to act as the inverse of the original one. Several authors charac-
terize properties of CNNs and other models by generating images that confuse
them [14,18,19]. Our DeSaliNet architecture is also similar to the work of [17].
Recently, DeConvNets have also been proposed as a tool for semantic image
segmentation; for example,[5,15] interpolate and refine the output of a fully-
convolutional network [11] using a deconvolutional architecture. In this paper,
inspired by [16], we apply reversed architectures for foreground object segmen-
tation, although as a by-product of visualization and in a weakly-supervised
transfer-learning setting rather than as a specialized segmentation method.

2 A Family of Deconvolutional Architectures

Given an image x € X, a deep CNN extracts a feature vector or representation

¢:x—> o opi(x) (1)

using a sequence of L linear and non-linear layers ¢; (Fig. 2.top). Typical layers

include convolution, ReLU, max pooling, and local contrast normalization.
The goal is to associate to ¢ a corresponding architecture ¢! that reverses

in some sense the computations and produces an image as output. While such
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reversed architectures have several uses, here we focus on the problem of visual-
izing deep networks: by looking at the images produced by ¢!, we hope to gain
some insights about the forward network ¢. This method was popularized by the
work of Zeiler and Fergus in [25], where a particular construction called DeCon-
vNet was shown to produce surprisingly crisp renderings of neural activations.
However, given the heuristic nature of some choices in DeConvNets, it is difficult
to precisely characterize the meaning of these results.

In order to explore this point, we consider here a generalization of the DeCon-
vNet construction. To this end, each layer ¢; is associated with a corresponding
layer (;51 that reverses input x and output y (Fig.2 middle row). We also allow
the reverse layer to be influenced by auxiliary information r computed by the for-
ward layer. For instance, in DeConvNet, the reverse max pooling layer requires
the “setting of the pooling switches” computed in the forward pass. Thus a layer
¢; and its reverse ¢, are maps:

forward ¢; : x — (y,r), reversed @) : (§,1) — X. (2)

The * symbol emphasizes that, in the backward direction, the tensors x and y
have the same shape as x and y in the forward pass, but different values.

Since the auxiliary information r is a function of the input r = 7(x), one
can always let r = x without loss of generality; however, the interesting case is
when the auxiliary information is limited and r is an information bottleneck. For
example, the pooling switches r in DeConvNet contain much less information
than the input data x. In Fig. 2 these bottlenecks are denoted by dotted arrows.

The question then is how can we build reverse layers ¢'? Next, we show that
back-propagation provides a general construction for reverse layers, which only
in some cases corresponds to the choice in DeConvNet.

2.1 SaliNet: Network Saliency as a Deconvolutional Architecture

The network saliency method of Simonyan et al. [16] characterizes which pixels
of an image are most responsible for the output of a CNN. Given an image x
and a network ¢(xg), saliency is obtained as the derivative of the (projected)
CNN output S(¢,xg,p) with respect to the image:

50 %0,8) = 5 (b 6(x))|__. Q

0 X=X0

Since the CNN output ¢(x) is in general a vector or tensor, the latter is trans-
formed into a scalar by linear projection onto a constant tensor p before the
derivative is computed. In practice, p is usually a one-hot tensor that selects
an individual neuron in the output. In this case, the value of a pixel in the
saliency map S(¢,Xo,p) answers the question: “how much would the neuron
response (p, ¢(Xo)) change by slightly perturbing the value of that pixel in the
image x¢?7”
Saliency is computed from (1) and (3) using the chain rule:

+ O vec ¢, 0 vec ¢

ec S(¢,%xg,p) = vec X ————= X s X ————— =, 4
v (¢, x0,p) = vec p (’9vecx—Lr 9 vec xJ1 )
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Here the vec operator stacks tensors into vectors and allows us to use a simple
matrix notation for the derivatives.

The Back Propagation (BP) algorithm is the same as computing the prod-
ucts (4) from left to right; this reduces to a chain of derivatives in the form of (3),
one for each layer, where p is replaced with the derivative y obtained from the
layer above. In this manner, BP provides a general way to define a reverse of
any layer ¢;:

BP - 9 .

¢; : x+—y BP-reversed becomes ¢;" :(x,¥)— 6—X<y, ¢i(x)). (5)
We denote the BP-reversed of a layer with the symbol ¢PF. Any CNN toolbox
can compute BP-reversed for any layer as it contains code for back-propagation.
Note also that the BP-reversed layer is a linear map in the argument ¥y, even if
the forward layer is not linear in x. In this manner, one can compute backprop-
agation, and therefore the saliency map S(¢,xo, p) of [16], by using a “deconvo-
lutional” architecture of the type of Fig.2, where layers are reversed using the
BP Eq. (5). We call this architecture SaliNet.

The BP-reversed layer ¢FF takes as input both x and y, whereas from our
discussion above we would like to replace x with a bottleneck r. Formally, using
the definition (2), we rewrite the BP-reversed layer ¢2F (x,y) as qﬁl(y, r) where
r = 7w(x) projects the data x onto the smallest possible bottleneck. Note that this
does not change the meaning of a BP-reversed layer, but it does characterizes
how much auxiliary information it requires. The latter is easy to find in an
abstract sense,! but it is much more instructive to derive it for concrete layer
types, which we do below for common layers.

Affine layers. A fully connected layer ¢g. simply multiplies the data x by a
matrix A and adds a bias b. Given that the data x € RF*WXC is a 3D tensor
of height H and width W and C feature channels, we use the vec operator to
write this in terms of matrices? as ¢ : vec y = A vec x +b. Linear convolution
¢ can conveniently be defined in the same way, by replacing matrix A with a
matrix p(F) constructed by “sliding” a bank of filters F', giving ¢ : vecy =
p(F) vec x + b. Using (5), the BP-reversed layers are obtained by transposing
the respective matrices:

BP . vecx = AT vecy, BP . vec x = p(F)" vec y. (6)

The layer gi)gp is often called deconvolution and gives the name to DeConvNets.

Note that the computation of these layers does not require any information

from the forward pass, so the bottleneck r is empty. This is due to linearity

and explains why in Fig.2 there are no dashed arrows connecting convolutional
layers.

! Let x” ~ x” be equivalent whenever functions ¢2* (x',-) = ¢PF (x”, ) are the same. It

is easy to check that this defines an equivalence relation. Then the smallest possible
bottleneck 7 : x — r € X'/ ~ projects x into its equivalence class.

2 This is slightly more general than usual as it specifies a different bias for each output
dimension instead for each output feature channel.



Salient Deconvolutional Networks 125

Rectified linear Unit (ReLU or RU). ReLU and its BP-reversed layer are
given by

¢ru(x) = max{x,0},  ¢hL(X.¥)=¢hy(F.r)=yOr, r=[x>0, (7)

where max is computed element-wise, ® is the element-wise product, and [x > 0]
is a mask (binary tensor) with a 1 for every positive element of x and 0 otherwise.
Hence the bottleneck information for ReLU is the mask. Note that QSEE (x,¥) is
not the reversal used by DeConvNets [16,25] and this choice changes the output
significantly.

Max Pooling (MP). Let z,. be the element of tensor x at spatial location
u € {2 and feature channel c. MP is obtained by computing the maximum of x,.
over a small spatial neighbourhood v € N(u) C {2 corresponding to wu:

[PMP (X)]ue = MaX Tye = Ty(yle,x),e Where s(ule,x) = argmax xye.  (8)
vEN (u) vEN (u)
Here v = s(ulx, ¢) tells which element x,,. of the input is associated by max to
each element y,. of the output and is informally called a setting of the pooling
switches. A short derivation from (5) shows that the BP-reversed is given by

OB = Blp@Dle = Y ue T=s(lx). (9)

u€s~1(v]e,x)

Hence the bottleneck information for MP is the setting of the pooling switches.

2.2 Deconvolutional Architectures

BP-reversal is only one way of defining reversed layers in a deconvolutional archi-
tecture. Here, we consider three variations. The first variation is whether the
reversed max-pooling layers are the BP-reversed ones ¢1]\3/[F1;, with pooling switches
as bottleneck, or whether they simply unpool to the center of each neighbor-
hood, with empty bottleneck. The second variation is whether the reversed
ReLU units are the BP-reversed ones qﬁgg, with the ReLLU mask as bottleneck,
or whether they are simply replaced with the identity function 1, with empty
bottleneck. The third variation is whether the reversed ReLU units are, as in
DeConvNets, also composed with a second ReLU. We will see that, while this
choice seems arbitrary, it has a very strong impact on the results as it preserves
the polarity of neural activations. Overall, we obtain eight combinations, summa-
rized in Fig. 3, including three notable architectures: DeConvNet, SaliNet, and
the hybrid DeSaliNet. Note that only SaliNet has an immediate interpretation,
which is computing the derivative of the forward network.

Affine layers, max pooling, and ReLLU cover all the layer types needed to
reverse architectures such as VGG-VD, GoogLeNet, Inception and ResNet.?
AlexNet includes local response normalization (LRN) layers, which in DeCon-
vNet are reversed as the identity. As discussed in the supplementary material,
this has little effect on the results.

3 In all cases we deal with the network only till the layer before the softmax.
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3 Experiments

Experiments thoroughly investigate the family of deconvolutional architectures
identified in Sect.2. Section 3.1 tests eight possible network architectures and
identifies DeConvNet, SaliNet, and DeSaliNet as interesting cases for further
exploration. Section 3.2 compares the architectures in terms of clarity of the
generated images. Section 3.3 investigates whether visualizations provide useful
information about neurons, and Sect. 3.4 looks at the effect of the bottleneck
information. Finally, Sect. 3.5 evaluates these techniques on a practical applica-
tion: segmentation of foreground objects.

Several experiments are shown here for a few representative images, but many
more examples are provided in the supplementary material.*

3.1 Overview of Deconvolutional Architectures

The first experiment compares the eight deconvolutional architectures of Fig. 3.
This is done by “reversing” the computations obtained when a network ¢ is
evaluated on an image x¢ (in the example, the “trilobite” image of Fig.1). Here
the forward network y = ¢(xg) is AlexNet [8] truncated at the last max-pooling

MPBP

“ DeSaliNet DeConvNet

centred nails

RU o RUBP

RUBP 1

Fig. 3. Visualizations of VGG-16 using the trilobite image of Fig. 1 using eight decon-
volutional architectures. The architectures are used to visualize the maximally-firing
neuron in the pool5-3 layer and the full output image is shown (localization is mostly
due to the finite support of the neuron). From top to bottom we change the MP! reverse
and ftrom left to right the RUT reverse. Here all methods use the identity as the reverse
LRN".

4 To improve the clarity of visualization images x = ¢T(p) in print, their real valued
ranges are remapped using the expression o(x/(—1og(99)a)) where a is the 0.5%
quantile in vec I.
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layer (pool5). The input p to the reversed network ¢'(p) is the one-hot tensor
selecting the poolb neuron y,. that is maximally excited by x.

We can make the following observations. First, as in [16], SaliNet computes a
fuzzy saliency map. Likewise, matching the results of [25], the result of DeCon-
vNet has structure, in the sense that object edges are recovered.

Second, we compare the left four deconvolutional architectures to the right
ones, which differ by the use of the ReLU units in the backward direction. We
note that adding these units is necessary in order to recover the image edges. In
particular, by modifying SaliNet in this manner, DeSaliNet produces an image
with structure.

Third, using pooling switches (top row) slightly improves the clarity of the
results compared to unpooling to center (bottom row). Even so, we note that the
image structure can still be clearly recognized in the bottom-left image, using
unpooling to center complemented by the hybrid RU o RUPY as reverse ReLU.
In fact, this image is arguably crisper than the DeConvNet result. This suggests
that, perhaps unexpectedly, the ReLU polarity (captured by RU in the backward
direction) is more important that the MP switches. It also shows that the ReLU
masks (captured by RUPY) significantly improve the sharpness of the results.

So far the LRN layers in AlexNet have been reversed using the identity, as in
DeConvNet; however, the original saliency method by [16] uses the BP-reversed
LRNEP In the supplementary material we show that this has a minor impact on
the result, with slightly sharper results for the DeConvNet solution. Therefore,
in the rest of the manuscript, DeConvNet and DeSaliNet use identity, while
SaliNet, in keeping with the original saliency method by [16], uses LRNBY.

3.2 Generated Image Quality

A first striking property of DeSaliNet is the clarity of resulting visualizations
compared to the other architectures (e.g. Figs. 1, 3, 4, 6). While sharper visual-
izations than SaliNet are expected given the results in [16], the gap with DeCon-
vNet is somewhat unexpected and particularly strong for deep layers (e.g. Fig. 1)
and deeper architectures (e.g. Fig. 6). DeConvNet results appear to be less sharp
than the ones shown in [25], which could be due to the fact that they used a
custom version of AlexNet, whereas we visualize off-the-shelf versions of AlexNet
and VGG-VD. Unfortunately, it was not possible to obtain a copy of their custom
AlexNet to verify this hypothesis.

3.3 Meaning and Selectivity of the Deconvolutional Response

Visualizations obtained using reversed architectures such as DeConvNets are
meant to characterize the selectivity of neurons by finding which visual patterns
cause a neuron to fire strongly. However, we will see here that this interpretation
is fragile.

Consider the i-th neuron [¢(x)]; = (e;, ¢(x)) in the output layer of a (trun-
cated) CNN architecture, where e; is an indicator vector. In order to characterize
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pool5 fc8

pool5 fc8 pool5 fc8

Max neuron

Rnd. neuron

Rnd. noise

— DeConvNet — — DeSaliNet — — SaliNet —
Fig. 4. Lack of neuron selectivity. The bottleneck information r is fixed to the one
computed during the forward pass ¢(x) through AlexNet and the output of ¢'(e,r)
is computed by choosing e as: the most active neuron (top row), a second neuron at
random (middle), or as a positive random mixture of all neurons (bottom row). Results
barely differ, particularly for the deeper layers. See Fig. 1 for the original house input
image x. Best viewed on screen.

this neuron, Zeiler and Fergus [25] search a large collection of images to find an
image x* that causes ¢;(x*) to respond strongly. Thus, even before the decon-
volutional network ¢'(e;, r) is applied, the image x* is already representative of
the neuron. The application of ¢! then refines this information by highlighting
which regions in x* are most responsible for this activation.

While this sounds simple, there is a subtle complication. Note in fact that the
deconvolutional architecture ¢'(e;, r) is a function both of the neuron indicator
e; as well as the bottleneck information r extracted from the forward pass of
x* through ¢(x). In the deconvolution process, e; is a direct specification of
the neuron to be visualized. The other parameter, r, can also be considered a
specification of the same neuron, although a fairly indirect one, because it is
extracted from an image x* that happens to excite the neuron strongly. Then
the question is whether the deconvolutional response can be interpreted as a
direct characterization of a neuron or not. This is answered next.

Lack of neuron selectivity. If the output of ¢'(e;, r) is a direct characteriza-
tion of the i-th neuron, we would expect the generated image to meaningfully
change as the input e; to the deconvolutional network changes.

In Fig.4, DeConvNet, DeSaliNet, and SaliNet are used to visualize the
responses of different neurons at the center of the image. The reversed func-
tion ¢'(e,r) is evaluated by keeping r fixed (as obtained from the forward pass
¢(x0)) and by replacing e with either: the indicator vector e* of the neuron
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Fig.5. Effect of finite neuron support. From left to right: Visualization from VGG-
16 pool5_3 using DeSaliNet; the same result after x°! renormalization; visualization
without any bottleneck information as in Fig. 3-bottom right; the same visualization
without bottleneck information but with randomized filter weights for the 5F opera-
tors. The re-normalization reveals that the true receptive field of pool5 is much larger
and that the sides are not discarded but simply weakened in the deconvolution process.

that has the maximal response, a second random neuron €’ that still generates a
non-zero image, and a random non-negative vector e. It can be noted that, par-
ticularly in deeper layers, the response changes very little with different choices
of e.

A clear difference between images from different depths (e.g. pool5 vs fc8 in
Figs.4 and 6) is the extent of the response, which however corresponds to the
neuron support and depends on the architecture and not on the learned network
weights or data. This is further confirmed in Fig. 5 by considering a network with
random weights. There, it is also shown that renormalizing the image intensities
reveals the full neuron support, which is only partially suppressed in the visual-
ization, and in a manner which is architecture-dependent rather than weight or
data dependent.

We conclude that the reversed architectures ¢'(e,r) are mainly dependent
on the bottleneck information r rather than the neuron selector e. Hence, they
provide poor direct characterizations of neurons, particularly of deep ones.

Note that methods such as [13,16,24], which visualize individual neurons by
activation maximization, are not affected by this problem. There are two reasons:
first, they start from random noise, such that the bottleneck information r is
not primed by a carefully-selected reference image xq; secondly, they iteratively
update the bottleneck information, drifting away from the initial value.

Foreground object selectivity. SaliNet is an equivalent implementation of the
network saliency technique of Simonyan et al. [16], which showed that the deepest
class-specific neurons (in fc8) in an architecture such as AlexNet are strongly
selective for the foreground object in an image. However, in the previous section
we have shown the apparently contradictory result that this response depends
very weakly on the choosen class-specific neuron.

To clarify this point, in Figs. 1 and 6 we observe that SaliNet and DeSaliNet
are indeed selective for the foreground object in the image; however, the infor-
mation comes mainly from the bottleneck r and not from which specific neuron is
selected. In other words, SaliNet and DeSaliNet emphasize whatever foreground
object is detected by the network in the forward pass, regardless of which neuron
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—— VGG-VD Pool5_3 VGG-VD FC§ ——
Image DeConvNet  SaliNet DeSaliNet DeConvNet  SaliNet DeSaliNet

Fig. 6. Foreground object selectivity. This figure compares the response of DeConvNet,
SaliNet, and DeSaliNet by visualizing the most active neuron in Pool5_3 and FCS8
of VGG-VD. SaliNet and DeSaliNet tend to emphasize more foreground objects (see
e.g. the faces of people), whereas DeConvNet’s response is nearly uniform. Note that
the apparent spatial selectivity of Pool5_3 is due to the finite support of the neuron
and is content independent. Best viewed on screen.

is specified as input to the reversed architecture. The main difference between
SaliNet and DeSaliNet, as observed before, is that the latter produces a much
more localized and crisp response

Compared to SaliNet and DeSaliNet, DeConvNet fails to produce a clearly
selective signal from these very deep neurons, generating a rather uniform
response. We conclude that saliency, in the sense of foreground object selectivity,
requires not only the max pooling switches (available in all three architectures),
but also the ReLU masks (used only by SaliNet and DeSaliNet).

Informativeness of bottleneck. In order to characterize the amount of infor-
mation contained in the bottleneck, we used the method of [3] to train a network
that acts as the inverse of another. However, while the inverse network of [3]
operates only from the output of the direct model, here we modified it by using
different amounts of bottleneck information as well. The reconstruction error of
these “informed” inverse networks illustrates importance of the bottleneck infor-
mation. We found that inverting with the knowledge of the ReLU rectification
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Fig. 7. Analogy with phase information in Fourier Transform. From left to right: The
original image, the inverse Fourier transform of the Fourier transform of the original
image, the inverse Fourier transform but after randomizing the amplitude of the spec-
trum, DeSaliNet ¢'(p, r) with positive random input (p) and DeConvNet with positive
random input (p). Best viewed on screen.

Table 1. Mean Intersection over Union (IoU) and Mean Per-Pixel (PP) accuracy for
different segmentation methods on the dataset of [4].

Method CNN PP IoU | CNN PP IoU | Method PP ToU
SaliNet AlexNet | 82.82 | 57.07 | VGG-16 | 82.45 | 56.33 | Baseline 78.97 | 46.27
DeSaliNet | AlexNet | 82.31 | 55.57 | VGG-16 | 83.29 | 56.25 | Guillaumin et al. [4] | 84.4 | 57.3
DeConvNet | AlexNet | 75.85 | 48.26 | VGG-16 | 76.52 | 48.16 | Baseline of [4] 73.4 | 24.0

masks and the MP pooling switches has 15 % lower L2 reconstruction error (on
validation images) compared than using pooling switches alone, and 46 % lower
than using the rectification masks alone. Finally, pooling switches alone have
36 % lower L2 error than using only rectification masks.

3.4 Dominance of “phase” Information

If a message emerges from the previous sections, it is that the response of all
reversed architectures ¢f(e,r) is dominated by the bottleneck information r. As
seen in Sect. 2, the bottleneck information comprises (1) the setting of the pooling
switches in the Max Pool units and (2) the setting of the masks in the ReLU
units.

Interestingly, this information does not code for the intensity of the neural
activations, but rather for their spatial location and polarity. We argue that this
information is somewhat similar to phase information in the Fourier transform
and related representations. To explain this analogy, consider the Fourier trans-
form X (wg,wy) = Flx](wg,wy) € C of image x; a well known result is that if
one replaces the modulus of the Fourier transform with a random signal but pre-
serves the phase, then the reconstructed image x = F 1|V (wy, w, )|e?4X @e:w)]
still contains the structure (edges) of x and very little of y is recognizable. In
fact the resulting image, an example of which is shown in Fig. 7, is not dissimilar
from the output of DeConvNet and DeSaliNet.

In the Fourier transform, changing the phase of a spectral component
Aed @ +0) Ty Af amounts to shifting it by —Af/w. Furthermore, negating the
signal is equivalent to a phase shift of 7. In the deconvolutional architectures, the
max pooling switches record the location of filter activations, whereas the ReLUs
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e e

Image DeSaliNet SaliNet DeConvNet Baseline

Fig. 8. Segmentation results (random selection). For each image, the top row shows
the GrabCut segmentation and the bottom row shows the output of the corresponding
deconvolutional network derived from AlexNet
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applied in the backward direction contribute to reconstructing the polarity. More
precisely, in the forward pass the ReLU block computes y = max{0,z}. In the
backward direction, the signal g is propagated towards the input as follows:

Z = max{g,0} (in DeConvNet), & = max{g,0} ® [z > 0] (in DeSaliNet).

(10)
We see that both constructions guarantee that the polarity of the backward
signal Z is the same as the polarity of the forward signal y, which is non-negative.
In fact, DeConvNet guarantees that yz > 0, and DeSaliNet adds the guarantee
that y = 0 = & = 0. The first condition is stronger in term of preserving the
polarity, and as seen in Fig. 3 it is necessary to obtain a clear reconstruction of
the image edges.

3.5 Objectness for Free: Weakly-Supervised Salient Object
Segmentation

In this section we demonstrate that pre-trained CNNs reversed using SaliNet
and DeSaliNet can accurately segment generic foreground objects. To this end,
we consider the benchmark dataset of [4] consisting of 4276 ImageNet images
annotated with the binary mask of the foreground objects. Notably, the object
categories in this benchmarks are partially disjoint from the ones in the ImageNet
ILSVRC data used to pre-train the CNNs: of the 445 synsets present in the
segmentation benchmark data only 215 of them overlap with the 1000 ILSVRC
classes.

In order to perform segmentation, we improve the setup of [16]. Given an
image x, the CNN ¢(x) is evaluated until the last layer before softmax (FC8 in
AlexNet® and VGG-VD), recording the bottleneck information r. Rather than
resizing the image to the standard network input size, the CNN is applied in
a fully convolutional manner [11]. The tensor e* is set to the indicator of the
channel that contains the maximally-activated neuron in FCS8, the L° norm
of each RGB triplet in the output x = ¢'(e*,r) of the reversed architecture
is computed, and the resulting saliency map is used in GrabCut to segment
the object as in [16]. Besides the ILSVRC data used to pre-train the CNN
and 98 segmented images for validating the design choices above, there is no
further training. For segmentation, this is a weakly-supervised setting as no
object bounding boxes or segmentations are used for training.

Table 1 and Fig. 8 compare the three reversed architectures and the method
of [4], which uses a combination of segment transfer from VOC2010 data, label
propagation, bounding box annotations for 60k training images, and class label
annotations for all images. It also compares a simple baseline obtained by assum-
ing as a saliency map a fixed Gaussian blob (Fig.8), similar but much better
than the analogous baseline in [4].

® For DeSaliNet, the LRN layers in AlexNet are reversed using BP-reversal LRN®F
instead of the identity, which was found to be slightly superior in terms of IoU
performance.



134 A. Mahendran and A. Vedaldi

DeSaliNet and SaliNet performed about as well, much better than the base-
line, and nearly as well as the method of [4], despite using weak supervision and
a training set that, for the most part, contains different classes from the test set.
This suggests that CNN learn the appearance of generic objects, which SaliNet
and DeSaliNet can extract efficiently. DeConvNet did not perform better than
the Gaussian baseline confirming its lack of foreground selectivity (Sect.3.3).

Somewhat surprisingly, VGG-VD did not perform better than AlexNet,
nor DeSaliNet better than SaliNet, despite achieving in general much sharper
saliency maps. Qualitatively, it appears that GrabCut prefers a more diffuse
saliency map as opposed to a sharper one that focuses on the object bound-
aries, which may create “holes” in the segmentation. In fact, GrabCut improves
dramatically even the weak Gaussian baseline.

4 Discussion

In this paper we have derived a general construction for reversed “deconvolu-
tional” architectures, showed that BP is an instance of such a construction,
and used this to precisely contrast DeConvNet and network saliency. DeSaliNet
produces convincingly sharper images that network saliency while being more
selective to foreground objects than DeConvNet.

We showed that the sharpness of generated images depends mainly on the
polarization enforced by reversed ReLLU units, followed by the ReL.U unit masks,
and with a secondary contribution from the max pooling switches. Some of these
ideas may be transferable to other applications of deconvolution such as the
U-architecture of [15] for semantic segmentation. We also showed that bottle-
neck information (pooling switches and ReLU masks) dominates the output of
deconvolutional architectures which questions their utility in characterizing indi-
vidual neurons.
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