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Abstract. In the past decade we have seen the emergence of many
efficient algorithms for estimating non-rigid deformations registering a
template to target features. Registration of density functions is particu-
larly popular. In contrast to the success enjoyed by the density function
representation, we have not seen similar success with the signed distance
function representation. Resonant deformable matching (RDM) simulta-
neously estimates a non-rigid deformation and a set of unknown target
normal directions by registering fields comprising signed distance and
probability density information. Resonance occurs as the reconstruction
estimate comes into agreement with the registered template. We per-
form experiments probing two problems: point-set registration and nor-
mal estimation. RDM compares favorably to top tier point registration
and graph algorithms in terms of registration and reconstruction metrics.

1 Introduction

Many problems in computer vision require us to determine correspondences
between similar sets of features. However, we are often faced with scenarios
where it is very difficult to even define what a correspondence between two
objects should be—no natural map, moreover bijection, may exist at all—often
due to mismatched representations. Work focused on determining point corre-
spondences for matching organized features has been abundant, as we highlight
below, but there remains a clear need for handling mismatched representations.
This work provides a solution for the mismatched case where the template con-
sists of oriented points and the target consists of points, under the assumption
that both template and target are drawn from outlines of shapes.

Given a set of point-features, correspondences can be obtained via registra-
tion . In this approach, sparse feature sets are often first converted into scalar
field representations. Then non-rigid matching of the template field with that
of the target yields dense point to point correspondences. For example, point
features can be converted into a probability density function representation
[1–3]. Registration is obtained by deforming the template density onto the target
using regularized spatial deformations [4,5]. Implicit shape representations are
not restricted to probability density functions estimated from sets of features.
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Implicit representations abound in the literature [6–8]. The signed distance func-
tion (SDF) is an example in which the sign encodes interior/exterior properties
with the absolute value encoding the distance to the nearest point in the set of
curves (surfaces) [9–11]. Contrast this with the unsigned distance function which
lacks interior/exterior information. Surprisingly, there is little work on matching
template and target SDFs. We address the technical reasons for this now.

The signed distance bS : R
d → R for an open set S satisfies |∇bS | = 1 :

bS |∂S = 0 with bS continuously differentiable across the set boundary. The first
technical problem we encounter in matching SDFs is the choice of a distance
measure between them. Far away from the shape boundary (in the far field)
SDFs take large values. This renders many standard distances useless, like Lp

or W p. The second problem we encounter is that SDFs are usually not available
in closed form, in sharp contrast to parametric density representations. This
implies that closed form distances between SDFs are elusive. Third, note that
matching is extremely difficult to perform within the space of SDFs. For φ ∈ H
to maintain the properties of SDFs, we see that |

(
∇|φ(x)bS

)
φ′|x| = 1, implying

that φ′|x ∈ O(d) for all x ∈ R
d—restricting H to rigid transformations. The

difficulty of managing this constraint is related to the reinitialization problem in
level-set methods [12–14] where φ is the (instantaneous) motion of an interface
represented by a level set function. The complex wave representation [15] of
shape is a parametric representation with aspects of the signed distance that
avoids these issues. When the target is given as points (from ∂S) the problem
of estimating the target SDF remains. Estimating an SDF from a sparse set
of features is the very difficult problem of curve (or surface) reconstruction
[16–19]. In this paper we use reconstruction in the following sense—consistent
assignment of normal vectors to points. Dense normal estimation provides useful
data for constructing a surface [20,21]. The representation that we use allows us
to construct surfaces via extraction of a zero level-set, as in Figs. 1 and 2.

Our approach integrates registration and reconstruction from a deformable
template viewpoint, hence Resonant Deformable Matching. A complex scalar
field representation is utilized wherein the squared magnitude of the field is
proportional to the probability density whereas the phase of the field is related
to the signed distance (corresponding to implicit curves in 2D and surfaces in
3D). Using a representation with both signed distance and probability infor-
mation allows us to penalize geometric mismatches in a weighted fashion that
preserves the advantages of density fields. During registration, the target signed
distance information is simultaneously estimated along with the spatial deforma-
tion. The advantages of our approach relative to previous work are as follows: (i)
our approach employs both probability density and signed distance information
for improved registration; (ii) we derive a closed form distance between template
and target functions that distinguishes oriented point-sets in the feature space;
(iii) reconstruction of the target is achieved during the matching process, which
can lead to improved registration; (iv) RDM outperforms competing point and
field-based methods on registration and template-based normal estimation.
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2 Previous Work

Field based methods make a specific choice of representation that is consis-
tent among all point-sets and shapes being matched. Kernel Correlation [1] and
gmmreg [2] use Parzen-window densities, employing correlation and L2-distance
objectives respectively. Matching distributions [22] allows singular measures to
be matched. A crossover between the density and distance fields in [23] utilized
distance transforms yielding a density field which is matched by a geodesic dis-
tance. In these works the unifying theme is a field that organizes in terms of
uncertainty. SDFs, which organize in terms of geometry, have also been used for
non-rigid registration in [10] where a variational approach leads to a grid-based
PDE-method that performs distortion on the field. In [24] the signed distance
values in the near-field of curves are viewed as random variables with a Gaussian-
Kernel based probability model, and the mutual information is minimized using
free-form deformations of the domain of the signed distance. Signed-distance reg-
istration techniques also have a natural outgrowth towards segmentation through
shape-prior approaches [25,26] to registering shapes to images.

Point-based methods feature explicit estimation of correspondence, possibly
in a soft or probabilistic fashion. Coherent Point Drift (CPD) [27] and TPS-
RPM [28] are two standard-bearers. TPS-RPM alternates between estimating
the (soft) correspondence and a TPS deformation. CPD uses a similar formu-
lation, but also imposes additional constraints (arising from motion coherence
theory) on the deformation. RPM-LNS [29] imposes symmetric neighborhood
structures to preserve local shape while allowing global deformation.

Graph matching methods have also been employed for point registration [30].
Local and global relations can be encoded in graphs, yielding a powerful struc-
ture for correspondence estimation. While graph matching is a computation-
ally hard problem, algorithms for structured graphs and relaxation techniques
show promise for point matching [31–33]. When a planar shape is available as
a silhouette a cyclic graph emerges and elastic matching can be done quickly
[34]. Manifolds induce Laplace-Beltrami eigenfunctions [35], providing a canon-
ical basis from which to perform matching from a joint coordinate perspective
[36] or a function mapping perspective [37]. These methods all rely on equivalent
organization of source and target. While organization elevates the richness of the
matching techniques available, it also presents a difficulty: these methods require
a level footing between template and target. Estimating a graph or mesh from
points can be very challenging.

Point feature organization can be viewed from many perspectives: compu-
tational geometric methods [17], psychological gestalt principles [38–40], clus-
tering [41,42], and level-set methods [18,19] all organize points in some sense.
Shape representations are typically chosen to engender a desired organizational
aspect of shapes [43]. Through a multi-valued function or a distributional rep-
resentation, different aspects of shapes can be embodied in fields that interact
predictably [7,8,15]. These works provide a spectrum of organizational princi-
ples that can be used to temper the difficulty of the point matching problem. In
this work we obtain a reconstruction while matching, which means that
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no target structure needs to be estimated before matching. Few works touting
simultaneous matching and reconstruction are currently available [44,45].

3 Complex Wave Mixtures and Signed Distance
Functions

In [15], the complex-valued field—or wave representation of shape was intro-
duced. It was used to compress closed curves with PCA (exploiting linearity of
the representation) and classify oriented point-sets using reconstruction error as
a distance metric. Here, we prove interesting properties of this shape represen-
tation for the purposes of curve reconstruction and as a feature function before
proceeding to showcasing simultaneous matching and reconstruction. Consider
a point-set augmented with directional information at each point. That is, let
S = {(ma, νa)}M

a=1, where νa is a normal associated with the point ma. We
may use S to denote the set underlying the oriented point-set S, with each
ma ∈ ∂S and νa pointing in the outward direction from S. We refer to this
as an oriented point-set [15,20]. The complex field we use extends the stan-
dard Gaussian Parzen window density to a square-root of a density by using the
normal information, written (unnormalized) as

ψS(x) =
M∑

a=1

e− ‖x−ma‖2

2σ2 +i
νT

a (x−ma)
λ . (1)

λ controls the frequency of the wave: the lower the value of λ the higher the
spatial frequency. The wave oscillates along the normal near a point feature but
integrates information from different wavefronts in the far field (near and far are
a function of σ, λ). The squared magnitude of ψ(x) encodes probability density
information. Zero level-sets of the phase now carry shape geometry information.

The mixture in (1) has similarities to the Gabor filter or wavelet—well known
to vision researchers and mathematicians [46–48]. This allows us to leverage
the mathematical literature to prove useful properties of this representation,
such as proof of injectivity below which follows a similar argument for a related
Gabor system [48]. Gabor systems are families of time-frequency translates of an
admissible function. The use of Gabor wavelets for function approximation has
been studied in the past [46,47], but the connection linking the phase of a square-
root density estimator to signed distance functions (and static Hamilton-Jacobi
equations [49]) is subtle and less well-known.

In contrast to the unsigned distance function, the signed distance is smooth
across shape boundaries (providing a reconstruction) with the sign of the distance
indicating whether a location is inside or outside the shape. When we fit Parzen
window density estimators to a point-set, we can obtain an approximate unsigned

distance function at every point. The relation G(x) ≈ CRe− R2(x)
2σ2 holds (with CR

being a normalization constant), where the approximate unsigned distance func-
tion R(x) approaches the true distance pointwise as σ decreases toward zero [50].
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(a) (b) (c) (d) (e)

Fig. 1. An example of surface reconstruction by RDM. (a) and (b) are the inputs
to RDM, the points in (a) are the target and the oriented point-set in (b) is the
template. (c) shows the estimated normal vectors from RDM and the true normal
vectors. 99 % of the normal vectors are recovered to within π/4 angular error. (d)
shows the reconstructed surface (the zero level set of the phase of ψ) from the true
normal vectors and (e) the reconstructed surface from RDM. The protrusions from the
ears are due to mis-oriented normals in the high curvature area near the ear lobe.

For oriented point-sets the relation is

ψS(x) ≈ ΨS = e− b2S(x)

2σ2 +i
bS(x)

λ (2)

where bS(x) is the SDF. For a fixed S, the approximation becomes more accurate
as σ, λ → 0. Note that the magnitude is agnostic to the sign of the distance
whereas the phase carries the sign but is modular due to the wrapped nature
of the phase. We refer to this as a modular distance function since phase
unwrapping is required to obtain a global SDF. Note that we do not require or
use phase unwrapping in this paper. Two key advantages to using the modular
distance function in lieu of the signed distance function are: (i) the modulus
decays as we approach the far-field, handling the far-field issue mentioned above,
(ii) Equation (2) allows us to derive distances in closed form.

3.1 Relationship Between Signed Distances and Complex Wave
Mixtures

To solidify the claim made in Eq. (2), first note that ||ΨS ||2 < ∞. |ΨS(x)|2 =
| exp{− b2S(x)

2σ2 + ibS(x)/λ}|2 is dominated by its concave envelope ΨS , which has

||ΨS ||2 ≤ ((2πσ2)d/2+1)πd/2 diam(S)d

Γ ( d
2+1)

, by an application of volumes of revolution.

||ΨS || ≥ (2πσ2)d/2 as d(x, p) > d(x, S) for all p ∈ S.
Then, note that as σ → 0 that 〈exp{− ||x−m||2

2σ2 + ivT (x−m)
λ }, Ψσ,λ〉 → 0 when-

ever m /∈ ∂S. And as λ → 0 destructive interference causes 〈exp{− ||x−m||2
2σ2 +

ivT (x−m)
λ }, Ψσ,λ〉 → 0 by an application of the stationary phase expansion [51].

This means that as σ, λ shrink, the only significant coefficients of the Gabor
Transform of ΨS come from atoms centered on the boundary, oriented in the out-
ward normal direction. More evidence supporting the substitution of the signed
distance by the complex wave mixture is provided in Sect. 4.2.
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3.2 An Embedding Theorem for Complex Wave Mixtures

In some contexts, invariance of representation is desirable [36,37]. For the pur-
poses of deformable matching, however, having a 1−to−1 mapping between the
point features and function representation is a prerequisite for employing dis-
tances as objective functions: if a feature function is not injective, it is possible
that two non-registered point-sets result in the same feature functions, with zero
distance between them. This is precluded in the complex wave representation.
Note that this injectivity was not furnished in [15].

Theorem 1. ψ· is an injective map from finite sets of oriented points to L2.
Any metric on L2 distinguishes oriented point sets under this representation.

Proof. Let A = {(ma, νa)}A
a=1,B = {(qb, ωb)}B

b=1 be distinct oriented point-sets.
We will show that ψA−ψB is not identically zero. Suppose that m1 (a location in
A, with index 1 by reordering) is on the convex hull of K = {ma}A

a=1 ∪ {qb}B
b=1.

Without loss of generality assume m1 = 0. Let C = A ∪ B \ (m1, ν1). Then

ψA − ψB = exp{−||x||2
2σ2

}

⎛

⎝exp{i
νT
1 x

λ
} +

∑

(r,γ)∈C
h(r,γ)(x) exp{xT r

σ2
}

⎞

⎠ (3)

where each h(r,γ) = [−1](r,γ)∈B exp{− ||r||2
2σ2 +iγT (x−r)

λ }. Since m1 is on the convex
hull, there is a ray {κp}κ>0 in the Voronoi cell of m1 (relative to K). So there

is a κ sufficiently large, so that

∣
∣
∣
∣
∣

∑

(r,γ)∈A∪B\{m1,ν1}
h(r,γ)(x) exp{κpT r

σ2 }
∣
∣
∣
∣
∣

< ε/2,

so |ψA(κp) − ψB(κp)|2 > exp{−||κp
σ ||2}(1 − ε) > 0. If an oriented point-set has

multiple oriented points with the same location (but distinct normals at these
oriented points) we can use the injectivity of the Fourier Transform [52] to show
that the sum of trigonometric polynomials (for the duplicated locations) is non-
vanishing. Thus, the above argument holds even in that case. If d is a metric on
L2 it is nonzero on distinct functions, distinguishing oriented point-sets. �


4 Complex Wave Registration and Normal Estimation

In registration, we seek a transformation of the template objects onto the target
objects. We denote the transformation of the positions as {φ(ma)}M

a=1 where
φ ∈ H is an element of the set of non-rigid transformations (assumed to be
from the thin-plate spline family in the experiments). We depart from standard
registration techniques as in our case the transformation of not only the tem-
plate centers {ma}M

a=1, but also the template normals {νa}M
a=1, is carried out

under the action of φ. The appropriate transformation is the Jacobian, φ′, of the
deformation φ. Note that φ′ : Rd → R

d is the derivative of the deformation with
respect to the spatial variable, not the parameters of the deformation. φ acts on
(ma, νa) by

φ · (ma, νa) = (φ(ma), φ′|ma
νa), with (φ′|ma

)i,j =
∂φ(i)

∂xj

∣
∣
∣
∣
ma

, (4)
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and φ · S = {φ · (ma, νa)}N
a=1. We can write the transformed template as

ψφ·S(x) =
M∑

a=1

e− ‖x−φ(ma)‖2

2σ2 ei
(φ′|ma νa)T (x−φ(ma))

λ . (5)

Note that the centers and normals have been transformed via the action of the
non-rigid deformation φ but the location variable x remains intact. This allows
us to define a distance between template and target functions in terms of a
feature-space domain integral, which we will minimize w.r.t. φ. Note that we
actually minimize a regularized version of this distance since large deformations
can bring very different point-sets into register. We discuss the specifics of the
distance below. First, we address the representational mismatch.

4.1 Introducing Normal Variables for the Target

Fig. 2. An example of curve reconstruction
by RDM. Left: The target points are shown in
black ×’s, with the level-sets of the unsigned dis-
tance function shown as contours. Right: After
RDM estimates target normal vectors, the level
sets of the phase of ψT (W ) are shown. Abut-
ting point-sets make this particular reconstruc-
tion problem difficult, because choosing oppo-
site orientations for nearby points goes against
most normal estimation regularizers. See also
Sect. 5.2.

Oriented point-set matching
assumes an additional feature:
normal directions for each point
of the template and the tar-
get. Template normals are esti-
mated offline: a standard app-
roach to estimation involves the
fitting of curves and surfaces to
the template features followed
by a sampling of the curves (or
surfaces) into an oriented point-
set. We assume template curves
(surfaces) do not self-intersect in
order to preserve normal unique-
ness. This leaves the target nor-
mals. To recover a reconstruc-
tion of the surface underlying the
target point-set, we augment the
objective with variables for the
target normals W = {ωi}N

i=1.
This normal estimation component has no counterpart in the density match-
ing literature. Adding these parameters does not increase overfitting of φ, since
the parameterization of φ is independent of the normals. We discuss the effect
of this simultaneous fitting and estimating below.

To summarize, first we assume that we are in possession of an oriented tem-
plate point-set S. This template point-set is deformed onto an un-oriented (and
un-organized) target point-set T via the action of a non-rigid deformation mini-
mizing (8). Since the target point-set is un-organized, we estimate a set of target
normals at each point during the matching process, thereby obtaining an oriented
target point-set denoted T (W ) = {(qi, ωi)}N

i=1. This simultaneous matching and
reconstruction approach is enabled by a closed-form distance measure between
template and target complex wave mixtures.
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4.2 Choosing a Suitable Distance Function

Minimizing D(ψφ·S , ψT (W )) w.r.t. φ and W is a difficult optimization problem
regardless of the choice of D—symmetries and local minima stand in the way.
In the literature, we have seen different choices (geodesic distance on S∞ [23],
Cauchy-Schwarz [3], Kullback-Leibler [53]) as well as different choices for the
Parzen kernel (Gaussian [2], Schrödinger [50]). This cross product space of dis-
tances, kernels and algorithms is an active area of research.

We use the L2 distance. The L2 distance for density function registration was
studied in [2] as a specialization of the density power divergence [54]. It strikes a
balance between robustness to sampling and computability. L2 is robust to small
Gaussian perturbations in the location parameters: Eδ

[
||ψS − ψS+δ||2

]
→ 0 as

var(δ) → 0 by Fubini’s theorem [52]. While behavior under resampling is harder
to examine theoretically, a certain amount of robustness is borne out in Sect. 5.2.
Now, note that if ||ψS − ψT ||2 < ε then ||ψS/CS − ψT /CT ||2 < ε′ (CS , CT are
normalization constants), and so 1 − ε′/2 < |〈ψS/CS , ψT /CT 〉|. Continuing the
line of reasoning in Sect. 3.1, if we pass to the normalized versions of ΨS and ΨT

then we see that the signed distances bS and bT must be approximately aligned
in the near field (of S and T ). Otherwise, destructive interference would cause
cancellations in the product field, decreasing the correlation.

We evaluate the squared L2 distance between the deformed template and tar-
get complex wave mixtures, subsequently minimized w.r.t. the unknown match-
ing and normal parameters. The action of the spatial non-rigid deformation
results in deformed template points and normals. Contrast this to the typical
density matching situation in which only the template points are deformed. The
squared L2 distance between the deformed template ψφ·S and target ψT (W ),
D(ψφ·S , ψT (W )), is given by

∫
RD

|
M∑
a=1

e
− ‖x−φ(ma)‖2

2σ2 +i
φ·νT

a (x−φ(ma))
λ −

N∑
b=1

e
− ‖x−qb‖2

2σ2 +i
ωT

b (x−qb)
λ |2dx (6)

where the target wave mixture has been specified for the oriented point-set
T (W ) = {(qb, ωb)}N

b=1. Note that their cardinalities M and N can differ. When
evaluating the L2 distance, we are required to determine the inner product
between terms which may differ in their location and frequency (with common
scale and frequency parameters σ and λ respectively).

The inner product, denoted I
(q,ω)
(m,ν) = 〈ψ(m,ν), ψ(q, ω)〉, is given by the integral

∫

RD

e
−‖x−m‖2−‖x−q‖2

2σ2 +i
νT (x−m)−ωT (x−q)

λ dx =
e− ‖m−q‖2

4σ2 − σ2‖ν−ω‖2

4λ2 +i
(ν+ω)T (m−q)

2λ

(2πσ2)
D
2

.

(7)

If m = q, then the spatial term goes to 1 and weights the Gaussian corresponding
to the frequency term heavily. If m ≈ q+δω⊥ this weighting is dampened, but we
obtain constructive interference provided the normals ν and ω are aligned. When
the normals are not aligned, we get destructive interference. This can either
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force the normal estimates in line with the template or influence the template
movement, and prevent unnecessary local rotation of the template normals.

The objective function minimized in this work is therefore

E(φ,W ) = D(ψφ·S , ψT (W )) + βL(φ). (8)

In (8), φ and W are the desired spatial deformation and target normal set
respectively. Additionally, β is a regularization parameter and L a suitable spline
regularization (chosen to be the thin plate spline bending energy). Assuming a
set of fixed centers {pb}P

b=1 on the template, the thin plate spline [4] maps the
location x ∈ R

D to the location A(x) +
∑P

b=1 C
T
b K(x − pb) where A is an affine

transformation, K is the thin-plate spline kernel and {Cb}P
b=1 is the set of spline

parameters. The mapping is linear in each Cb and A and therefore so is φ′. The
regularization term in (8) becomes β tr

(
CTKC

)
where C is the P × D matrix

of spline coefficients, and Kij = K(pi − pj) is the Gram matrix of the set of
control points.

We can characterize the asymptotic behavior of our matching objective.
Examining the wave mixture, we see that the wave flattens out as λ → ∞—
eventually approaching 1. This intuitively results in the Gabor tending to the
Gaussian. This is made more precise in the following Proposition, essentially a
consequence of the dominated convergence theorem [52].

Proposition 1. Let {ma, νa}M
a=1, {qb, ωb}N

b=1 be a pair of oriented point-sets. As
λ → ∞ the objective function (6) converges to

∫

RD

|
M∑

a=1

e− ‖x−ma‖2

2σ2 −
N∑

i=1

e− ‖x−φ·qi‖2

2σ2 |2dx. (9)

with φ· acting by restriction to the first coordinate of Eq. (4).

4.3 Gradient Computation and Optimization Details

We derive the gradient for the TPS parameterization discussed above. The
penalty term is easy to differentiate with respect to C:

∂Cβ trCTKC = 2βKC (10)

by differentiating the trace and using the symmetry of K. The derivative of the
inner product with respect to the parameters C is

∂CI
φC·(m,ν)
(q,ω) = ∂φC(m)I

φC·(m,ν)
(q,ω)

∂φC(m)
∂C

+ ∂φC·νI
φC·(m,ν)
(q,ω)

∂ [φC · ν]
∂C

. (11)

Recall that φC acts on the normal ν at point m by φC · ν = φ′
C|mν [55] where

φ′
C|m is the Jacobian at m. Note that now ∂

∂CφC is the derivative w.r.t. the
TPS parameters, not the spatial variable. We use ∂· and ∂

∂· interchangeably. Let
R ∈ R

P×N be given by Rij = K(pi − mj), the kernel matrix pairing template
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and control points. Then ∂
∂C [φC(mj)]a = Rjea (the superscript a indicates the

ath coordinate, ea ∈ R
d the ath basis row vector) with Rj the jth column of R.

Differentiating,

∂[φC(mj)]a

∂C
= Rjea, [

∂I
φC·(m,ν)
(q,ω)

∂φC(m)
]a =

[
−φC(m) − q

2σ2
+ i

φC · ν + ω

2λ

]a

I
φC·(m,ν)
(q,ω) .

(12)

When applying the entire gradient update (through all points), this is simply an
outer product of the derivatives of the inner product and R.

The second term in Eq. (11) is not typically seen in the point matching lit-
erature. We must differentiate φ′

C|mj
ν with respect to C, where ′ denotes dif-

ferentiation with respect to the domain variable. Denote by [R′]k the matrix
of derivatives in the kth coordinate of the kernel function at each point in the
template set. Then

[
φ′
C|mj

νj

]a =
[
[Rj

′]a
T

C
]
νj , and so ∂C

[
φ′
C|mj

νj

]a = ([Rj
′]a)νT

j ,

by treating C as a scalar-valued form acting on ([Rj
′]a, ν). So the second term

in Eq. (11) is

∂I
φC(mj ,νj)

(q,ω)

∂C
= I

φC(mj ,νj)

(q,ω)

D∑

a=1

([
−σ2φC · νj − ω

2λ2
+ i

q − m

2λ

]a

[Rj
′]a

)
νj

T . (13)

The descent direction for the TPS parameters is given by

∇CD = 2
M∑

i=1

M∑

j=1

[
∂φC(mi)I

φC(mi,νi)
(mj ,νj)

∂φC(mi)
∂C

+ ∂φC·νi
I

φC(mi,νi)
(mj ,νj)

∂ [φC · νi]
∂C

]

− 2
M∑

i=1

N∑

j=1

[
∂φC(mi)I

φC(mi,νi)
(qj ,ωj)

∂φC(mi)
∂C

+ ∂φC·νi
I

φC(mi,νi)
(qj ,ωj)

∂ [φC · νi]
∂C

]
.

(14)

To complete the picture, we return to the principal themes of this work—
simultaneous registration and reconstruction. Recall that we began by pointing
out that there was a paucity of literature on non-rigid SDF matching in com-
parison to density matching. We zeroed in on the difficulty of estimating SDFs
as the main reason. Rather than estimate an SDF for the target point-set with
the aid of a deformed template, we chose to estimate target normals as we
deformed the template. To do this, we apply the descent direction for each ωi

in terms of combinations of ∂ωi
I

φC(mi,νi)
(qj ,ωj)

during each round. Further details of
the optimization algorithm are provided below. To obtain the signed distance
from these normals one may use previously developed methods (e.g. [20,21]) or
use the phase of the resulting wave-function directly (see Figs. 1 and 2). The
result is an integrated probability density and SDF approach to simultaneous
deformable template matching and multiple curve (or surface) reconstruction.
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5 Experiments

We compare with the state of the art in density field matching (such as gmmreg,
abbreviated to GMM) [2], generalized function matching (diffeomorphic mea-
sure matching abbreviated DIFF) [22], point-based matching (CPD) [27], and
graph-matching (FGM-U) [32]. While other methods [10,56] are appropriate for
further comparison, handling the asymmetry in representation is not possible in
their current formulation. The corresponding results are indicated by the appro-
priate marker and color combinations (see legend in Fig. 5). We investigate the
performance of RDM on a variety of datasets and conditions, outlined below.

Parameter Configuration: The following parameters are used in the experi-
ments below unless explicitly stated otherwise. In all of the following experiments
the data sets are scaled to [0, 1]2 before matching. We use a common initial
scale parameter (σ = .1 for both GMM and RDM) throughout. Two initializa-
tions with decreasing σ values are used for both GMM and RDM (DIFF uses
2 reinitializations). CPD estimates scaled progressively during matching, so no
reinitialization is performed. For RDM β = .0075 for 2d, for GMM β = .01, for
CPD β = 2, λ = 2 (different parameters). For FGM-U Delaunay triangulation
was used for graph construction, and 101 iterations at 100 scales were executed
for path following. GMM, DIFF, and RDM use MATLAB R©’s function fminunc
(set to use a quasi-newton solver—BFGS iterations) for optimization. Unless
otherwise noted, the error measure is mean Euclidean distance to correspondent.

5.1 Synthetic Normal Recovery, Warps, and Occlusions

This subsection consists of two sets of experiments. First, we compared our
algorithm to a pipeline approach to normal estimation:

1. Register a template point-set to a target by an estimated deformation.
2. Let the deformation act on the normal vectors of the template.
3. Use a nearest-neighbor approach to infer normal vectors onto the correspond-

ing points in the target set.

We used GMM as the matching algorithm. A single curve (a body curve consist-
ing of 80 points) from the multi-curve GatorBait dataset was used. For synthetic
deformation, a diffeomorphism is fit to point perturbations by solving a 3d flow
problem [5]. Therefore relative normal orientations are preserved. The defor-
mation level corresponds to supx∈RD ||φ(x) − x|| (evaluated on the test points).
Results are shown in Fig. 3. In this experiment GMM and RDM only used a
single initialization. This experiment shows that a gain in normal recovery is
obtained by using RDM instead of imposing template structure after matching.

In the second set of experiments, we tested the performance of our algorithm
in the 2d and 3d synthetic settings against 4 other methods: CPD, DIFF, FGM-U,
and GMM. For 2d we used a point-set consisting of 5 curves (see Fig. 2) from the
aforementioned dataset, while for 3d the Stanford bunny and TOSCA datasets
were used. We create the target by randomly perturbing points lying along a grid
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and solving for a TPS with identity affine component. No information about the
target normal vectors is known beforehand. After registration, the mean distance
to the corresponding point, average error, is recorded. For the occlusion trials,
an approximate fixed deformation level is used, .3 in norm for 2d and .15 in 3d.
Robustness to outliers and noise is also studied. For these experiments FGM-U
was run at 50 scales, due to runtime limitations. One can see from Fig. 4 that FGM-
U struggles with nonrigid deformation. A plot showing the percentage of recovered
normal orientations is included as well.
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Fig. 3. Top: the recovered normal vectors for GMM+NN (left) and RDM (right) and
the True normals (both) are attached at the points. Bottom: Average error and the
median angle error between corresponding normal vectors for RDM and GMM+NN.
50 trials per level were performed.

5.2 Non-synthetic Matching Experiments

We perform intra-class matching experiments on the TOSCA [57], FAUST [58],
and Gatorbait datasets. TOSCA and FAUST represent the 3d performance
gauge on real matching experiments. We chose the GatorBait dataset because it
has multiple corresponding parts which many 2d and 3d point-sets and meshes
lack. The same statistic as above—average error to correspondent—is collected
for the sets with known correspondence. We present recall (percentage of correct
correspondences within a threshold) for matching pose 0 to poses 1, 2, 4, and
5 (smaller deformations) of the FAUST training registrations over all 10 sub-
jects and present comparisons with GMM and CPD. For TOSCA we match the
first cat, dog, and gorilla to the remaining poses. We have foregone benchmark
comparisons here because in the large deformation regime extrinsic matching is
prone to local minima, and we restrict the comparisons to relative performance
among other extrinsic matching techniques. We use these datasets as a baseline
for comparison with GMM and CPD.

The GatorBait dataset does not have known correspondences. Furthermore,
it consists of nearly abutting curves (see Fig. 2)—organizing points into their
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Fig. 4. Experimental comparison of RDM, GMM, CPD, DIFF, and FGM. (a) The
GatorBait Dataset is deformed as explained in Sect. 5.1. The left plot shows robust-
ness to moderate deformation levels and the right plot shows robustness to occlusion
(dropping points in a randomly placed disc). (b) The same experiments are carried
out in 3d on the Stanford Bunny. We also report the percentage of normal vectors
recovered to within a cone of π/3 radians. (c) The Fréchet distances (sum over the
parts) between the registered template and the target curves are reported. On the left
the target has added noise of the indicated standard deviation and on the right outliers
are added. (d) Recall graphs for a subset (See Sect. 5.2) of TOSCA and FAUST.

appropriate curve components is made much harder by the existence of neigh-
borhood points on different curves. The Fréchet Distance [59] between corre-
sponding parts in the final registration and the target is recorded. This allows
us to measure how accurately each part of the template is matched to the target.
The first fish species is used as the template and matched to 23 other species.
We also perturb the fish with noise and add outliers as uniformly drawn addi-
tional points. See Fig. 4 for results. For large 3d datasets, DIFF and FGM were
found to be impractical from a runtime perspective (for a runtime comparison
see Fig. 5). For the GatorBait dataset, FGM was not competitive.

5.3 CMU House Dataset

The CMU House dataset consists of a sequence of image frames and keypoints.
The task is to perform point-matching and recover correspondences between
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points. From a correspondence standpoint, FGM-U [32] with Delaunay trian-
gulation (FGM-del) is the state of the art on this dataset. However, FGM is
sensitive to the graph structure—with 2-nearest neighbors FGM’s performance
suffers. Should a large set of correspondences be needed, graph matching becomes
impractical—even the 30 correspondences here represent significant computa-
tional effort for graph matching. RDM would benefit from a denser set of key-
points. To initialize normals for RDM, we extract the gradient of the image I at
each of the keypoints in the frames. This is a departure from the usual consid-
eration of ‘normals’—we sample a vector field (∇I) at discrete points. We have
not dealt with this situation explicitly in the text, but syntactically speaking,
it is valid. It also represents a case where target structure is already (partially)
present—for these experiments we provide RDM the true target normal.
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RDM CPD GMM DIFF FGM−del FGM−2NN

AUC

Algorithm Frame 40 60 80 100

FGM-del 1.00 1.00 1.00 1.00

FGM-2NN 1.00 .867 .800 .500

RDM .931 .871 .857 .833

CPD .888 .819 .731 .681

GMM .862 .795 .738 .671

DIFF .836 .791 .688 .403

Runtimes (in Seconds)

Algorithm Frame 40 60 80 100

FGM-del 8.8 11 17 15

FGM-2NN 4.8 6.7 8.3 10

RDM 5.9 5.1 6.5 5.2

CPD .32 .35 .44 .38

GMM 6.2 7.5 8.8 11

DIFF 12 11 12 15

Fig. 5. Recall graphs and area under the curve for the CMU House. For FGM, triangu-
lation yields excellent matches but nearest-neighbor graphs are poor. All experiments
run on an AMD X2 B22 with 8 Gb of RAM. We report AUC and runtimes in the table.

6 Conclusion and Future Work

Deformable template matching with RDM is done by minimizing the closed form
squared L2 distance between template and target wave mixtures augmented with
a standard regularization on the spatial transformation (done in practice via
standard nonlinear optimization software implementing quasi-Newton methods).
When only the template normals are available at runtime, they can be estimated
for the target set during the registration. This provides normal estimates.

In this work we proved injectivity of the representation, derived the gradi-
ent term for optimization, showed that RDM can outperform standard normal
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transfer by registration, and highlighted the registration accuracy of RDM. We
plan to extend RDM to the case where neither point-set is accurately oriented
and to evaluate the reconstruction accuracy of RDM against other unsupervised
and semi-supervised methods in future work. We are also exploring alternative
deformation models for the oriented point-set transformation setting.
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