
Pattern Mining Saliency

Yuqiu Kong1, Lijun Wang2, Xiuping Liu1, Huchuan Lu2(B), and Xiang Ruan3

1 Department of Mathematical Sciences,
Dalian University of Technology, Dalian, China

jinghongkyq@mail.dlut.edu.cn, xpliu@dlut.edu.cn
2 Department of Electrical Engineering,

Dalian University of Technology, Dalian, China
wlj@mail.dlut.edu.cn, lhchuan@dlut.edu.cn

3 Tiwaki Corporation, Tiwaki, Japan
ruanxiang@gmail.com

Abstract. This paper presents a new method to promote the perfor-
mance of existing saliency detection algorithms. Prior bottom-up meth-
ods predict saliency maps by combining heuristic saliency cues, which
may be unreliable. To remove error outputs and preserve accurate predic-
tions, we develop a pattern mining based saliency seeds selection method.
Given initial saliency maps, our method can effectively recognize dis-
criminative and representative saliency patterns (features), which are
robust to the noise in initial maps and can more accurately distinguish
foreground from background. According to the mined saliency patterns,
more reliable saliency seeds can be acquired. To further propagate the
saliency labels of saliency seeds to other image regions, an Extended Ran-
dom Walk (ERW) algorithm is proposed. Compared with prior methods,
the proposed ERW regularized by a quadratic Laplacian term ensures
the diffusion of seeds information to more distant areas and allows the
incorporation of external classifiers. The contributions of our method are
complementary to existing methods. Extensive evaluations on four data
sets show that our method can significantly improve accuracy of existing
methods and achieves more superior performance than state-of-the-arts.
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1 Introduction

Saliency detection is a fundamental problem that has found wide applications
in various computer vision tasks, such as object recognition [1], image segmen-
tation [2] and visual tracking [3]. As a pre-processing step, saliency detection
facilitates more sensible assignments of limited processing resource to prominent
regions, thus allows more sophisticated subsequent processing stages. Though
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much research effort has been made [4–9], it is still a very challenging task to
design a saliency model with high performance in real complex scenes.

In their seminal work [10], Itti et al. point out that human visual system is
sensitive to high-contrast regions and propose to detect saliency by measuring
local contrast in multi-scales across different feature channels, including intensity,
color, orientation, etc. Since then, contrast prior is widely studied and adopted
by a variety of saliency models [11–14] from either local or global view. For local
methods [10–12,15], saliency is characterized by regional center-surround con-
trast. Although these methods can highlight salient pixels along object bound-
aries, they often fail in discovering inner regions of salient objects. Due to the lack
of global information, unsatisfactory results are achieved under cluttered scenes.
In contrast, global methods [4,13,14] estimate saliency by considering feature
contrast over the entire image and thus are more capable of locating salient
objects precisely. Since detailed local information is ignored, they have very lim-
ited discriminative power to uniformly capture salient objects from background
with similar appearance.

Instead of computing local contrast or blindly comparing similarity over the
entire image, some saliency methods [6,16,17] propose to explore the boundary
prior, i.e., by regarding image boundaries as background and propagating their
labels to detect salient foreground. These methods are effective in certain scenar-
ios. Though unlike contrast based models, which suffer from failures in detecting
object inner regions or separating foreground from background distractors, these
methods also have their own drawbacks. Firstly, boundary prior is mainly utilized
in a trivial and heuristic manner, such that salient objects appearing at image
boundary will be incorrectly labeled as background. Secondly, most of these
methods mainly rely on low-level handcrafted features, which are incapable for
high-level cognition and understanding, thus insufficient to highlight semantic
objects from complex scenarios. To incorporate high-level concepts, other meth-
ods [11,18–20] explore task-driven strategies, which involve supervised learning
on image data with pixel-wise annotations. However, obtaining massive amount
of manually-labeled data is very expensive and time consuming.

In order to address the above issues of existing methods, we seek an alter-
native approach for saliency detection. Our first contribution is a novel salient
seeds selection method. Saliency maps predicted by combining heuristic saliency
cues can sometimes be very noisy, i.e., the saliency maps shown in Fig. 1(b).
To improve accuracy of these initial saliency maps, we apply a pattern min-
ing algorithm to recognize saliency rules (feature patterns) which are frequently
depicted by foreground regions in the initial saliency map and rarely carried by
background regions. Based on these saliency rules, a sufficient number of reliable
saliency seeds can be effectively detected (See Fig. 1(c)), which can significantly
remove the inaccurate prediction of the initial saliency maps (See Fig. 1(d)).
Our second contribution is an Extended Random Walk (ERW) algorithm which
incorporates quadratic Laplacian term and an external classifier into traditional
approach and achieves significant performance improvement in terms of propa-
gation ability. By exploiting the proposed ERW algorithm, the label information
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(a) (b) (c) (d) (e)

Fig. 1. Intermediate results of the proposed saliency detection algorithm. Brighter
pixels indicate higher saliency values. (a) Original images. (b) Saliency maps generated
by CB [5] which is used as initial maps. (c) Saliency seeds detected by pattern mining
algorithm. (d) The final saliency map via propagating saliency seeds. (e) Ground truth.

of saliency seeds is diffused to more distant areas, which ensures the final saliency
map of our model to be more accurate. Taking saliency maps generated by exist-
ing methods as initial maps, our algorithm is able to promote the precision of
these maps with a considerable margin. Extensive evaluations on four benchmark
data sets demonstrate that the promoted results achieve favorable performance
against state-of-the-art methods.

2 Related Work

Saliency detection can be conducted by either bottom-up computational mod-
els or top-down data driven methods. Most bottom-up methods detect salient
regions by combining heuristic saliency cues, such as contrast prior [11–14] and
boundary prior [6,16,17]. Recently, [8] proposes boundary connectivity to mea-
sure the background probability of regions. Although the heuristic saliency cues
based methods perform well for images with simple scene, they may fail to
capture the true salient regions when the image background is complex or the
appearance between objects and background is similar.

Different from bottom-up methods, top-down approaches [11,19–21] are able
to automatically learn saliency models in a supervised manner from large num-
ber of training samples. While these methods are shown to be more robust in
handling complex scenarios, their generalization abilities heavily rely on training
data. Moreover, the training process is very computational expensive. In con-
trast, [9] learns an unique multi-kernel boosting classifier for each input image
supervised by an initial saliency map. However, the inaccuracy of initial map
will contaminate the saliency labels of training samples and inevitably degrade
the performance of the classifier. Different from the above methods, we employ
a pattern mining algorithm to detect the common feature patterns of salient
regions for each image based on its initial map. The pattern mining algorithm
is more robust to noisy initial maps. As a result, the mined patterns can more
reliably characterize salient regions and facilitate reliable saliency seeds selection.
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Fig. 2. Framework of the proposed algorithm. (a) Input image. (b) Initial maps gener-
ated by other methods. (c) SLIC segmentation results. (d) Sample pool. (e) Transaction
database. (f) Saliency rules. (g) Selected saliency seeds. (h) Final saliency map.

Recently, label propagation based saliency detection methods have attracted
growing interest from the community. The performance of these methods
strongly rely on the quality of the saliency seeds as well as the propagation
ability. Some existing methods [6,16,17,22] heuristically treat image boundary
as background seeds and use different propagation methods to determine the
saliency degree of other image regions. For instance, [17] constructs a graph-
ical model with superpixels as nodes and predicts their saliency according to
the hitting time at the equilibrium state. A geodesic distance is defined in [6]
to measure the similarity of an image region to the image boundary The pro-
posed method also explores the label propagation scheme for saliency detection.
Instead of simply using image boundaries as background seeds, we adopt a pat-
tern mining algorithm to detect more reliable saliency seeds. Compared with
random walk based saliency methods [17,23–25], the ERW algorithm incorpo-
rates a quadratic Laplacian energy term to explicitly enforce both extensiveness
and smoothness of label propagation. In addition, external classifier integrated
in ERW algorithm can enable more accurate label assignment.

3 Pattern Mining Algorithm

Pattern mining algorithm is firstly studied for market basket analysis and
recently applied in computer vision tasks [26,27]. Given the massive customer
transaction database, the aim is to learn the association rules, which indicate
the probability of customers buying certain items based on the items they have
already bought. In this section, we introduce the terminology and basic concept
of pattern mining algorithm.

Frequent itemset. Denote a set of M items as I = {i1, i2, ..., iM}. A transaction
T is a subset of I, namely T ⊆ I. A transaction database D = {T1, T2, ..., TN}
consists of N different transactions. A ⊆ I is called a frequent itemset if A is
frequently occurred as a fraction of transactions T ∈ D. The frequency can be
described by the support value of A:

supp(A) =
|{T |T ∈ D,A ⊆ T}|

N
∈ [0, 1]. (1)
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If supp(A) > tmin, A is a frequent itemset, where tmin is a pre-defined threshold.

Association rule. An association rule A → p describes the situation where
item p presents in transactions which contain itemset A. The support value of a
rule is defined as:

supp(A → p) = supp(A ∪ {p}) =
|{T |T ∈ D,A ∪ {p} ⊆ T}|

|D| (2)

The quality of an association rule A → p can be evaluated by a confidence value:

conf(A → p) =
supp(A → p)

supp(A)
=

|{T |T ∈ D,A ∪ {p} ⊆ T}|
|{T |T ∈ D,A ⊆ T}| . (3)

The association rules with high confidence are regarded as representative rules.

4 Seeds Detection Based on Pattern Mining

In this section, we give details of how to detect sufficient and reliable saliency
seeds using pattern mining algorithm. The outline is illustrated in Fig. 2. Given
an initial map generated by existing method, we first construct a sample pool
(Fig. 2(d)) consisting of both foreground and background regions. A transaction
database (Fig. 2(e)) is then created by collecting feature patterns of all the sam-
ples in the sample pool. To obtain saliency rules (Fig. 2(f)) that can accurately
discriminate foreground from background, we apply an efficient pattern mining
algorithm to the transaction database. Finally, the saliency seeds (Fig. 2(g)) can
be selected according to the acquired saliency rules.

Feature extraction. Given the input image and the corresponding initial
saliency map, we first oversegment the image from three different scales and

Fig. 3. Detailed process of seeds detection.



588 Y. Kong et al.

obtain a set of superpixels S = {s1, s2, ..., sN}, serving as the sample pool. By
thresholding the saliency maps with a threshold t0, the image is segmented into
foreground and background regions. Superpixels within foreground regions are
labeled as positive samples, whereas those within background are labeled as neg-
ative samples. Our method can also take multiple initial saliency maps as input
by labeling sample superpixels according to each initial map, respectively.

We exploit the bag-of-words representation to character each superpixel con-
sidering both global context and local appearance information. Specifically, we
apply K-means algorithm to cluster all the superpixels in the RGB color space
and obtain a set of cluster centriods W which serves as the visual vocabulary,
with each centriod as a visual word. Each superpixel is assigned with the visual
word (i.e. its cluster centroid) indexed by wi ∈ {1, 2, ..., |W |}, where |W | denotes
the total number of visual words. Note that the visual vocabulary contains the
global context information of the input image. We then represent each superpixel
sample si from a local view using the bag-of-words feature which contains three
components: its visual word index wi, the visual word indexes of its K nearest
neighbors, and its class label (either pos or neg).

Mining saliency patterns. Pattern mining theories are explored to identify
discriminative patterns of bag-of-words features that can accurately distinguish
foreground from background. To this end, we regard the set of visual words W
as the overall item set with each visual word as an item. Furthermore, the bag-
of-words feature of each superpixel can be treated as a transaction with K + 2
items, where the first K + 1 items are visual words and the last is the label (pos
or neg). The bag-of-words features of all the superpixel samples in the sample
pool then creat a transaction database. As a result, to identify discriminative
patterns of visual words is then equivalent to find a collection of item sets {A}
that satisfy the following two conditions:

supp(A) > t1, (4)
conf(A → pos) > t2, (5)

where t1 and t2 denote two threshold parameters. Equation 4 indicates that
the item set A is a subset of a certain number of transactions, while Eq. 5
enforces that most of these transactions also contain the item pos, i.e., most
of them are labeled as positive. The item set satisfying the above two conditions
represents saliency patterns of bag-of-words features that separate salient fore-
ground regions from background. Considering both efficiency and effectiveness,
we exploit the Apriori algorithm [28] for saliency pattern mining.

Detecting saliency seeds. Saliency seeds detection is conducted using the
oversegmentation in the first scale (with approximately 300 superpixels). Given
a set of saliency patterns {A} (i.e., the item sets) accquired by the Apriori
algorithm, we select saliency seeds following a straightforward rule. As demon-
strated in Fig. 3, a superpixel is selected as a saliency seed only if a subset of
its bag-of-words feature belongs to the saliency pattern set {A}. As illustrated
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(a) (b) (c) (d) (e)

Fig. 4. Examples of seeds detection results. (a) Original images. (b) Initial maps gen-
erated by method CA [4]. (c) Saliency seeds detected by pattern mining algorithm. (d)
The final saliency map. (e) Ground truth.

in Fig. 4, with accurate saliency patterns, we can select a sufficient number of
reliable saliency seeds with the mined saliency rules. The prediction error of the
initial maps can then be significantly removed.

5 Saliency Propagation

We propose an Extended Random Walk (ERW) algorithm on graphic model
with superpixels as nodes. Given the selected saliency seeds, the final saliency
map of the input image is achieved by propagating the seeds information to other
image regions. Both the reliable saliency seeds and the proposed ERW algorithm
ensure to more accurately render the final saliency map.

Graph construction. The saliency propagation procedure is also conducted
using the oversegmentation of the input image in the first scale. Given the set of
superpixels S = {s1, s2, ..., sN1}, we construct an undirected graph G = (V,E)
with node set V and edge set E, where each node represents a superpixel and is
connected to its 2-ring neighbors [16] with undirected edges. The weight matrix
W ∈ RN1×N1 measures the similarity and adjacency relationship between each
pair of nodes, with each element wij = exp(−‖g(si − g(sj)‖/2σ2), if j ∈ N (i),
and other positions are 0, where g(si) denotes the feature of node si and N (i)
indicates the nodes connected to si. The Laplacian matrix can be computed by
L = D − W , where D = diag(d1, d2, ..., dN1) is degree matrix with di =

∑
j wij .

Extended Random Walk. Let L denote a labeled node set consisting of all
the mined saliency seeds, and f = [f1, f2, ..., fN1 ]

T denote the label vector of all
the nodes, where fi is fixed to 1 if si ∈ L, and fi is initialized to 0 otherwise.
Label propagation aims to infer the labels of all the nodes based on the saliency
seeds. In this work, we propose an Extended Random Walk algorithm for label
propagation by minimizing the following energy function
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arg min
f

1
2

∑

i,j

wij(fi − fj)2+
α

2

N1∑

i=1

(difi −
∑

j∈N (i)

wijfj)2 +
β

2

N1∑

i=1

(fi − yi)2,

s.t. fi = 1, ∀si ∈ L,

(6)

where weight wij measures the similarity of si and sj ; di =
∑

j wij is the degree
of node si; yi denotes the output of an external classifier and adopts the mean
saliency value of node si in initial saliency map; α, β are trade-off parameters.

The first term of Eq. 6 is the traditional random walk formulation which
enforces label consistency of nodes with strong affinity. The second term is the
quadratic Laplacian. To gain more comprehensive interpretation, we minimize
the Laplacian term with respect to f by setting its derivative to zero and obtain
the following solution:

fi =
1
di

∑

j∈N (i)

wijfj +
1
d2i

∑

j∈N (i)

wij

⎛

⎝
∑

h∈N (j)

wjh (fj − fh)

⎞

⎠ . (7)

Apparently, the value of fi is influenced not only by its direct neighbors j ∈ N (i),
but also by its neighbors’ context h ∈ N (j). As a consequence, the seeds informa-
tion can be more extensively propagated to distant nodes than traditional first-
order laplacian diffusion (i.e., the first term of Eq. 6). The third term incorpo-
rates the prior knowledge provided by the initial saliency maps into the random
walk algorithm, and penalizes saliency predictions that significantly differ from
saliency priors. As illustrated in Fig. 5, initialized by the same saliency seed, the
proposed ERW algorithm with strong propagation ability achieves more accurate
predictions than the traditional method in a challenging setting.

To solve the energy function in Eq. 6, we first re-order the label vector as
f = [fTl fTu ]T and the external classifier as y = [yT

l yT
u ]T , where l indicates

the labeled nodes set and u corresponds to unlabeled nodes set. The energy
minimization problem can then be re-written in the following matrix form

f∗ = arg min
f

1
2
fTLf +

α

2
fTL2f +

β

2
(f − y)T (f − y)

s.t. fl = 1,

(8)

)c()b()a(

Fig. 5. (a) Input image and the red pentagram is saliency seeds. (b) Saliency map
detected by random walk algorithm. (c) Saliency map detected by random walk with
quadratic Laplacian term.
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where L =
[

Lll Llu

Lul Luu

]

is Laplacian matrix. By setting the derivative of Eq. 8 to

zero, the final saliency values of unlabeled nodes are computed as

fu = M−1
uu (−Mulfl + βyu), (9)

where M = L + αL2 + βI, and I is identity matrix.

Integration. In this paper, we employ the mean CIELab color feature and the
Local Binary Pattern (LBP) feature to characterize each superpixel. The above
label propagation is independently conducted in the two feature spaces. Color
feature is effective when the salient object depicts a distinct color appearance
against background. In contrast, the texture feature will be more discriminative
when the target object have similar color but different texture compared with
background (See the second example of Fig. 8). Based on these observations, we
integrate these two feature representations by linearly combining two prediction
results to generate the final saliency map,

Sf = λS1 + (1 − λ)S2. (10)

where S1 and S2 are saliency maps computed in two feature spaces and λ is a
weight parameter to balance these two maps. In our experiments, we empirically
set λ = 0.5 to weight these two features.

In this section, we conduct experimental evaluations of the proposed pattern
mining based saliency detection method (named as PM) against state-of-the-art
methods on benchmark data sets. The contributions of different components of
the proposed methods (i.e., seeds selection method and the ERW algorithm) are
also analyzed. More results can be found in supplementary material1.

6 Experiments

6.1 Parameter Setting

In our experiments, we find that the proposed method is insensitive to most of
the parameters. Therefore, all the parameters are empirically set through cross-
validation and fixed through all the data sets. The threshold t0 for constructing
sample pool is set to 0.5. The size of visual vocabulary |W | is set to 300. The bag-
of-words feature for each sample is computed using K = 20 nearest neighbors.
The thresholds t1 and t2 for pattern mining are set to 90% and 20%, respectively.
The parameter σ to compute weight matrix is set to 10. The trade-off parameters
of the ERW algorithm are set as α = 0.5 and β = 0.01, respectively. The
proposed method is implemented in MATLAB, and runs at 4 seconds per image
on a PC with a 3.4 GHz CPU. The source code will be made publicly available
(see Footnote 1).

1 http://ice.dlut.edu.cn/lu/index.html.

http://ice.dlut.edu.cn/lu/index.html
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6.2 Data Sets and Evaluation Metrics

We evaluate the proposed algorithm on four benchmark data sets. The
MSRA-5000 dataset [11] contains 5000 images with complex scenes; The SOD
dataset [29] consists of 300 images; The ECSSD dataset [30] incorporates 1000
images and the Pascal-S dataset [31] is composed of 850 images. The later three
data sets are very challenging, since most images have cluttered background or
more than one salient object.

Precision-Recall curves, F-measure and the mean absolute error (MAE) are
employed to evaluate the performance of each detection model, where F-measure
is the weighted harmonic mean of precision and recall value, and MAE is the
average pixel-wise difference between saliency map and its ground truth.

6.3 Quantitative Analysis

Performance of the proposed framework. We choose 12 existing saliency
detection algorithms as baseline methods, including ITTI [10], GBVS [32],
CA [4], CB [5], LR [33], DSR [7], UFO [34], HS [30], wCO [8], HDCT [19], BL [9]
and RR [25]. Two evaluations are conducted: single model promotion and joint
promotion. For single model promotion, we apply the proposed algorithm to pro-
mote the performance of each baseline method by taking its predicted saliency
map as the initial saliency map. The promoted method is denoted by -PM (e.g.,
CA-PM denotes the promoted model of baseline CA). For joint promotion, we
apply our method to jointly promote a set of baselines (i.e., SET1={CA,CB,LR}
and SET2={DSR,UFO,wCO}), by taking their predicted saliency maps as initial
maps (See Sect. 4).

Figure 6 compares the P-R curves of the baseline models and their promoted
methods on four data sets. Table 1 shows the F-measures and MAE scores, where
the baseline results of different methods are shown in the columns of “BS”, and
the corresponding promoted results are displayed in the columns of “PM”. As
shown in Fig. 6, our method can effectively promote all the baseline results and
achieve state-of-the-art performance regardless of the accuracy of initial maps.
The results further verifies that the proposed method has a strong generalization
ability across a wide range of baseline methods and is very robust to the noisy
prediction of initial maps Especially, initialized by eye fixation results (e.g.,
ITTI/GBVS), the proposed method is capable to promote their performance
with a considerable margin.

In addition, the joint promotion on a set of baselines achieves consistently
higher performances than the corresponding single model promotion in most
data sets. This may be attributed to the fact that more samples can be acquired
for pattern mining in the joint promotion case. However, sometimes labels of
samples from different methods may be inconsistent which causes confusion for
the pattern mining procedure. Thus the final detection results may be affected
by this circumstance.
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Fig. 6. P-R curve of the state-of-the-art algorithms and their promoted results by our
proposed algorithm(PM) on four datasets.

Validation of pattern mining based seeds detection. Saliency seeds plays
a very critical role in our saliency algorithm. To verify the effectiveness of the pro-
posed seeds selection method, we report the mean precision rate of the saliency
seeds selected by our method by taking saliency maps of each baseline method



594 Y. Kong et al.

Fig. 7. Quantitative evaluation of four different propagation strategies on the ECSSD
data set. (a) P-R curve. (b) AUC and F-measure scores.

as initial maps. The precision rate of the selected saliency seeds is computed as
the number of true positive selected seeds over the number of all the saliency
seeds (foreground superpixels). For comparison, we further evaluate the precision
rate of initial maps of each baseline. Specifically, we firstly compute the aver-
age saliency value of each superpixel according to the initial map and select the
superpixels whose saliency values are higher than an adaptive threshold [35] as
saliency seeds. As demonstrated in Table 2, the proposed seeds selection methods
(denoted by PM) can consistently outperform baseline methods (denoted by BS)
in terms of mean precision rate on four data sets, which verifies that our seeds
selection methods can effectively remove noise and preserve accurate prediction
of initial maps. We further demonstrate the effectiveness of our seed selection
strategy over two baseline methods in the supplementary material.

Effectiveness of extended random walk. To analyze the effectiveness of the
proposed ERW based propagation strategy, we evaluate the performance of each
term of the ERW formulation (Eq. 6) on the ECSSD data set by taking saliency
maps of CB [5] as initial maps. The P-R curves are shown in Fig. 7(a). The AUC
and F-measure scores are illustrated in Fig. 7(b). It can be observed that both
the proposed quadratic Laplacian regularization and the incorporated external
classifier can improve the propagation ability over the traditional random walk
algorithm. By combining these two techniques together, the optimal performance
is obtained. More detailed analysis can be found in supplementary material.

6.4 Qualitative Analysis

Figure 8 illustrates some example saliency maps generated by baseline meth-
ods and the corresponding (jointly) promoted results. In the first example, the
appearance between salient object and image background is unconspicuous in
color space. Due to the adopted LBP texture feature, our algorithm can accu-
rately capture the foreground object. The background regions in the second



Pattern Mining Saliency 595

Table 1. F-measures and MAE scores of baseline methods and their promoted methods
on MSRA, SOD, ECSSD and PASCAL-S data sets. The promoted results are marked as
blue if they out-perform their baseline methods. If the jointly promoted results (SET1,
SET2) are higher than the corresponding single promotion, the scores are marked as
red.

Method Metric MSRA SOD ECSSD PASCAL-S

BS PM BS PM BS PM BS PM

ITTI F-measure 0.515 0.779 0.433 0.573 0.428 0.664 0.391 0.568

MAE 0.249 0.151 0.307 0.259 0.290 0.203 0.296 0.234

GBVS F-measure 0.608 0.792 0.508 0.593 0.549 0.684 0.496 0.589

MAE 0.227 0.150 0.292 0.257 0.263 0.203 0.273 0.230

CA F-measure 0.537 0.779 0.447 0.563 0.429 0.653 0.402 0.552

MAE 0.250 0.149 0.313 0.259 0.310 0.210 0.301 0.237

CB F-measure 0.737 0.815 0.490 0.592 0.626 0.711 0.511 0.590

MAE 0.185 0.128 0.294 0.250 0.240 0.185 0.269 0.220

LR F-measure 0.694 0.803 0.484 0.584 0.562 0.695 0.476 0.581

MAE 0.221 0.138 0.308 0.257 0.274 0.195 0.287 0.228

DSR F-measure 0.784 0.814 0.596 0.615 0.690 0.721 0.554 0.590

MAE 0.117 0.123 0.234 0.239 0.171 0.161 0.214 0.218

UFO F-measure 0.775 0.810 0.548 0.594 0.644 0.698 0.549 0.579

MAE 0.146 0.128 0.257 0.248 0.205 0.187 0.232 0.224

HS F-measure 0.767 0.814 0.521 0.600 0.635 0.693 0.528 0.594

MAE 0.162 0.124 0.283 0.247 0.228 0.185 0.264 0.209

wCO F-measure 0.796 0.816 0.598 0.606 0.676 0.698 0.596 0.612

MAE 0.111 0.120 0.245 0.225 0.178 0.161 0.201 0.192

HDCT F-measure 0.773 0.820 0.561 0.594 0.644 0.694 0.532 0.583

MAE 0.144 0.121 0.244 0.243 0.192 0.183 0.232 0.210

BL F-measure 0.784 0.815 0.577 0.601 0.683 0.713 0.571 0.609

MAE 0.169 0.125 0.267 0.246 0.217 0.182 0.249 0.217

RR F-measure 0.807 0.815 0.567 0.590 0.698 0.716 0.587 0.607

MAE 0.126 0.124 0.265 0.255 0.185 0.162 0.231 0.204

SET1 F-measure - 0.811 - 0.598 - 0.708 - 0.597

MAE - 0.136 - 0.237 - 0.179 - 0.206

SET2 F-measure - 0.823 - 0.614 - 0.717 - 0.620

MAE - 0.121 - 0.222 - 0.158 - 0.195

example depict different features which causes failure in the most existing meth-
ods. Our model succeeds to highlight the entire salient object even with inac-
curate initial maps, which attributes to the robustness of our seeds selection
methods against noisy initial maps. When there exists small scale noise in the
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Table 2. Precision rate of saliency seeds on the MSRA, SOD, ECSSD and PASCAL-S
data sets.

ITTI CA CB LR DSR UFO SET1

BS PM BS PM BS PM BS PM BS PM BS PM

MSRA .536 .843 .549 .876 .806 .893 .733 .890 .878 .891 .860 .895 .891

SOD .519 .708 .515 .751 .637 .776 .569 .752 .731 .772 .686 .764 .780

ECSSD .488 .749 .469 .774 .714 .828 .610 .812 .810 .811 .746 .829 .835

PASCAL-S .468 .680 .479 .697 .637 .734 .565 .723 .687 .729 .688 .730 .744

GBVS HS wCO HDCT BL RR SET2

BS PM BS PM BS PM BS PM BS PM BS PM

MSRA .568 .855 .821 .890 .844 .888 .828 .889 .815 .891 .859 .889 .898

SOD .525 .712 .672 .778 .714 .748 .705 .756 .696 .761 .677 .751 .793

ECSSD .525 .767 .723 .816 .750 .809 .751 .806 .734 .815 .775 .804 .832

PASCAL-S .514 .709 .645 .719 .680 .720 .665 .723 0.651 .728 .686 .721 .750

background (such as the third example), most saliency models detect yellow flow-
ers as salient regions, while our algorithm is effective in suppressing the response
of noise regions. In the case that saliency object presents various features as is
shown in the last example (the cattle with dark brown and light brown hair),

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 8. Saliency maps of four examples. Every two rows correspond to one example.
In each example, saliency maps at the first row of (b)-(k) are generated by existed
saliency models and the second row present their promoted results. (l) is the jointly
boosted results generated by SET1 and SET2, respectively. From left to right: (a) input
image and its ground truth (b) CA [4] (c) CB [5] (d) LR [33] (e) DSR [7] (f) UFO [34]
(g) HS [30] (h) wCO [8] (i) HDCT [19] (j) BL [9] (k) RR [25] (l) SET1 and SET2. Our
model is able to highlight foreground uniformly and suppress the response of cluttered
background.
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some initial saliency maps fail to highlight the entire object uniformly. Based
on pattern mining algorithm, our method is able to detect saliency seeds with a
variety of features. Thus all saliency regions can be consistently detected by the
proposed method.

7 Conclusions

In this paper, we propose a novel saliency detection model based on pattern min-
ing algorithm. Given an initial saliency map generated by any existing method,
our method can effectively recognize discriminative and representative saliency
patterns. According to these saliency patterns, sufficient and reliable saliency
seeds are detected. Subsequently, we propose an Extended Random Walk (ERW)
algorithm to further propagate saliency labels of saliency seeds to other image
regions. Compared with prior methods, ERW constrained by a quadratic Lapla-
cian term allows the propagation of saliency seeds to more distant areas and
incorporates external classifiers at the same time. Quantitative and qualitative
experiments on four benchmark data sets demonstrate that our method is able to
improve the performance of existing algorithms and performs favorably against
the state-of-the-arts.
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