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Abstract. We tackle the problem of estimating optical flow from a
monocular camera in the context of autonomous driving. We build on
the observation that the scene is typically composed of a static back-
ground, as well as a relatively small number of traffic participants which
move rigidly in 3D. We propose to estimate the traffic participants
using instance-level segmentation. For each traffic participant, we use
the epipolar constraints that govern each independent motion for faster
and more accurate estimation. Our second contribution is a new convo-
lutional net that learns to perform flow matching, and is able to estimate
the uncertainty of its matches. This is a core element of our flow estima-
tion pipeline. We demonstrate the effectiveness of our approach in the
challenging KITTI 2015 flow benchmark, and show that our approach
outperforms published approaches by a large margin.

Keywords: Optical flow · Low-level vision · Deep learning ·
Autonomous driving

1 Introduction

Despite many decades of research, estimating dense optical flow is still an open
problem. Large displacements, texture-less regions, specularities, shadows, and
strong changes in illumination continue to pose difficulties. Furthermore, flow
estimation is computationally very demanding, as the typical range for a pixel’s
potential motion can contain more than 30K possibilities. This poses many prob-
lems for discrete methods, therefore most recent methods rely on continuous
optimization [1,2].

In this paper, we are interested in computing optical flow in the context of
autonomous driving. We argue that strong priors can be exploited in this context
to make estimation more robust (and potentially faster). In particular, we build
on the observation that the scene is typically composed of a static background, as
well as a relatively small number of traffic participants which move rigidly in 3D.
To exploit such intuition, we need to reliably identify the independently moving
objects, and estimate their motion. Past methods typically attempt to segment
the objects based solely on motion. However, this is a chicken and egg problem:
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an accurate motion estimation is necessary for an accurate motion segmentation,
yet the latter also circularly depends upon the former.

In contrast, we propose an alternative approach in this paper which relies
solely on exploiting semantics to identify the potentially moving objects. Note
that semantic segmentation is not sufficient as different vehicles might move very
differently, yet form a single connected component due to occlusion. Instead, we
exploit instance-level segmentation, which provides us with a different segmen-
tation label for each vehicle. Given the instance segmentations, our approach
then formulates the optical flow problem as a set of epipolar flow estimation
problems, one for each moving object. The background is considered as a special
object whose motion is solely due to the ego-car. This contrasts current epipolar
flow approaches [3,4], which assume a static scene wherein only the observer can
move. As shown in our experimental evaluation, this results in much better flow
estimates for moving objects. Since we formulate the problem as a set of epipo-
lar flow problems, the search space is reduced from a 2D area to a 1D search
along the epipolar lines. This has benefits both in terms of the computational
complexity, as well as the robustness of our proposed approach. We refer the
reader to Fig. 1 for an illustration of our approach.

The success of our approach relies on accurate fundamental matrix estima-
tion for each moving object, as well as accurate matching. To facilitate this,
our second contribution is a new convolutional net that learns to perform flow
matching, and is able to estimate the uncertainty of its matches. This allows
us to reject outliers, leading to better estimates for the fundamental matrix of
each moving object. We smooth our predictions using semi-global block match-
ing [5], where each match from the convolutional net is restricted to lie on its
epipolar line. We post-process our flow estimate using left-right consistency to
reject outliers, followed by EpicFlow [1] for the final interpolation. Additionally,
we take advantage of slanted plane methods [4] for background flow estimation
to increase smoothness for texture-less and saturated regions.

We demonstrate the effectiveness of our approach in the challenging KITTI
2015 flow benchmark [6], and show that our approach outperforms all published
approaches by a large margin. In the following, we first review related work,
and discuss our convolutional net for flow estimation. We then present our novel
approach that encodes flow as a collection of rigidly moving objects, follow by
our experimental evaluation.

Fig. 1. Full pipeline of our approach. We take the input image, segment the potentially
moving vehicles from the background, estimate the flow individually for every object
and the background, and combine the flow for the final result.
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2 Related Work

The classical approach for optical flow estimation involves building an energy
model, which typically incorporates image evidence such as gradient consistency
[7,8], warping [9], or matches [1] as unary terms. Additionally, there is a pairwise
term to encourage smoothness. There are various methods for energy minimiza-
tion and embedding of additional priors. This section summarizes several major
categories.

The study of [2] shows that classical approaches to optical flow estimation are
mainly gradient based methods [7,8]. Unfortunately, these are typically unsuit-
able for estimating large displacements (often encountered in traffic scenes) due
to inconsistent image patch appearances. Both coarse-to-fine strategies [10] as
well as inference at the original image resolution are employed [11,12]. EpicFlow
[1] is a global approach that is very often used to interpolate sparse flow fields
taking into account edges [13]. As shown in our experiments, its performance
can be improved even further when augmented with explicit reasoning about
moving objects.

Many approaches formulate flow as inference in a Markov random field
(MRF) [14–18]. Message passing or move making algorithms are typically
employed for inference. One of the most successful optical flow methods in the
context of autonomous driving is DiscreteFlow [17], which reduces the search
space by utilizing only a small number of proposals. These are shared amongst
neighbors to increase matching performance and robustness. An MRF is then
employed to encourage smoothness. After some post processing, the final flow
is interpolated using EpicFlow [1]. [19] segments images using superpixels and
approximates flow of each superpixel as homographies of 3D planes. Unlike our
method, these methods do not exploit the fact that the background is static and
only a few objects move.

Concurrent to our work, [20] also employs semantics to help optical flow. In
particular, they identify three classes of components: static planar background,
rigid moving objects, and elements for which a compact motion model cannot be
defined. A different model is then adapted for each of the three classes to refine
DiscreteFlow [17]. An affine transformation and a smooth deformation is fitted to
moving vehicles, and homographies are fitted to planar backgrounds. In contrast,
we use a stronger 3D epipolar motion constraint for both foreground vehicles and
the entire static background. Our experiments shows that this results in much
better flow estimates.

In a series of papers, Yamaguchi et al. [3,4] exploited epipolar constraints to
reduce the correspondence search space. However, they assume that the scene is
static and only the camera moves, and thus cannot handle independently moving
objects. 3D priors about the physical world have been used to estimate scene
flow. [21] assumes a piecewise planar scene and piece-wise rigid motions. Stereo
and temporal image pairs are used to track these moving planes by propos-
ing their position and orientation. [6] tracks independently moving objects by
clustering super-pixels. However, both [6,21] require two cameras.
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Our approach is also related to multibody flow methods (e.g., [22–24]), which
simultaneously segment, track, and recover structure of 3D scenes with moving
objects. However, [22] requires noiseless correspondences, [23] uses a stereo setup,
and [24] has a simple data term which, unlike our approach, does not exploit
deep learning.

Recent years have seen a rise in the application of deep learning models to
low level vision. In the context of stereo, [25] uses a siamese network to classify
matches between two input patches as either a match or not. Combined with
smoothing, it achieves the best performance on the KITTI stereo benchmark.
Similarly, [26] uses convolutional neural nets (CNNs) to compute the matching
cost at different scales. Different CNN architectures were investigated in [27].
Luo et al. [28] exploited larger context and trained the network to produce
a probability distribution over disparities, resulting in better matching. Deep
learning has also been used for flow estimation [29]. They proposed a convolution-
deconvolution network (i.e., FlowNet) which is trained end-to-end, and achieves
good results in real-time.

3 Deep Learning for Flow Estimation

The goal of optical flow is to estimate a 2D vector encoding the motion between
two consecutive frames for each pixel. The typical assumption is that a local
region (e.g., image patch) around each pixel will look similar in both frames.
Flow algorithms then search for the pixel displacements that produce the best
score. This process is referred to as matching. Traditional approaches adopt
hand-crafted features, such as SIFT [30], DAISY [31], census transform [32] or
image gradients to represent each image patch. These are matched using a simple
similarity score, e.g., via an inner product on the feature space. However, these
features are not very robust. Flow methods based on only matching perform
poorly in practice. To address this, sophisticated smoothing techniques have
been developed [1,3,13,17].

Deep convolutional neural networks have been shown to perform extremely
well in high-level semantic tasks such as classification, semantic segmentation,
and object detection. Recently, they have been successfully trained for stereo
matching [25,28], producing state-of-the-art results in the challenging KITTI
benchmark [33]. Following this trend, in our work we adopt a deep convolution
neural network to learn feature representations that are tailored to the optical
flow estimation problem.

3.1 Network Architecture

Our network takes two consecutive frames as input, and processes them in
two branches of a siamese network to extract features. The two branches are
then combined with a product layer to create a matching score for each pos-
sible displacement. We refer the reader to Fig. 2 for an illustration of our
convolutional net.
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In particular, our network uses 9 convolutional layers, where each convolution
is followed by batch normalization [34] and a rectified non-linear unit (ReLU).
We use 3×3 kernels for each convolution layer. With a stride of one pixel and no
pooling, this gives us a receptive field size of 19×19. The number of filters for each
convolution layer varies. As shown in Fig. 2, we use the following configuration for
our network: 32, 32, 64, 64, 64, 128, 128, 128. Note that although our network
has 9 layers, the number of parameters is only around 620K. Therefore, our
network is much smaller than networks used for high-level vision tasks, such as
AlexNet or VGG which have 60 and 135 millions parameters, respectively. As
our last layer has 128 filters, the dimension of our feature vector for each pixel
is also 128.

3.2 Learning

To train the network, we use small image patches extracted at random from
the set of pixels for which ground truth is available. This strategy is beneficial,
as it provides us with a diverse set of training examples (as nearby pixels are
very correlated). Furthermore, it is more memory efficient. Let I and I ′ be two
images captured by the same camera at two consecutive times. Let (xi, yi) be
the image coordinates of the center of the patch extracted at random from I,
and let (fxi

, fyi
) be the corresponding ground truth flow. We use a patch of size

19 × 19, since this is the size of our total receptive field. Since the magnitude
of (fxi

, fyi
) can be very large, we create a larger image patch in the second

image I ′. Including the whole search range is computationally very expensive,
as this implies computing 30K scores. Instead, we reduce the search space and
construct two training examples per randomly drawn patch, one that searches
in the horizontal direction and another in the vertical direction, both centered
on the ground truth point (x + fxi

, y + fyi
). The horizontal training example is

shown in Fig. 2. Thus, their size is 19× (19+R) and (19+R)× 19, respectively.
Note that this poses no problem as we use a convolutional net. In practice, we
use R = 200. We find the network performance is not very sensitive to this
hype-parameter.

As we do not use any pooling and a stride of one, the siamese network
outputs a single feature vector from the left branch and (1 + R) feature vectors
from the right branch corresponding to all candidate flow locations. Note that
by construction, the ground truth is located in the middle of the patch extracted
in I ′. The matching network on top then computes the corresponding similarity
score for each possible location. We simply ignore the pixels near the border of
the image, and do not use them for training.

We learn the parameters of the model by minimizing cross entropy, where we
use a soft-max over all possible flow locations. We thus optimize:

min
w

N∑

i=1

∑

si

pGT
i (si) log pi(si,w).

where w are the parameters of the network, and N is the total number of training
examples. N is double the number of sample patches, as we generate two training
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Fig. 2. Network Overview: A siamese convolutional net is followed by a product
layer that computes a score for each displacement. During training, for each pixel we
compute a softmax over a horizontal or vertical 1D displacement, and minimize cross-
entropy.

examples for each patch. In practice, we generate 22 million training examples
from the 200 image pairs. Further, si is the ground truth location index for patch
i in the second image. Recall that the second image patch was of size (19 + R)
or (R + 19). Finally, pGT

i is the target distribution, and pi is the predicted
distribution for patch i according to the model (i.e., output of the soft-max).

Note that when training neural nets, pGT is typically assumed to be a delta
function with non-zero probability mass only for the correct hypothesis. Here,
we use a more informative loss, which penalizes depending on the distance to
the ground truth configuration. We thus define

pGT
i (si) =

⎧
⎪⎪⎨

⎪⎪⎩

λ1 if si = sGT
i

λ2 if |si − sGT
i | = 1

λ3 if |si − sGT
i | = 2

0 o.w.

.

This allows the network to be less strict in discriminating patches within 3-pixels
from the ground truth. In practice we choose λ1 = 0.5, λ2 = 0.2 and λ3 = 0.05.

3.3 Inference

In contrast to training where we select small image patches, during inference
we need to evaluate all the pixels for first image frame. Using the same routine
as for learning would result in as many forward passes as the number of pixels
in the image, which is computationally very expensive. Instead, following stereo
approaches [25,28], we can efficiently compute the feature vector for all pixels
with the siamese network using only one forward pass. Similar trick was also
used when training FastRCNN [35], where features for all regions proposal are
computed by one forward pass.
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Optical flow is more challenging than stereo matching because the search
space is approximately 200 times larger, as one has to search over a 2D space.
A standard searching window of size 400 × 200 would require 300 GB space to
store the whole cost volume for a single image, which is prohibitive. Instead,
we propose to use only the first top-K candidates for every location. This also
enables the network to handle better texture-less regions as detailed in the next
section.

We perform post processing to do smoothing, handle texture-less regions as
well as to better deal with occlusion and specularities. Toward this goal, we
first utilize a simple cost aggregation to smooth the matching results, which can
be noisy as the receptive field is only 19 × 19. Cost aggregation is an iterative
process which, for every location i, updates the cost volume ci using the cost

values of neighborhood locations i.e., cti(si) =
∑

j∈N(i) c
t−1
j (si)

N , where N (i) is the
set of neighbor locations of i, cti(si) is the cost volume at location i during the
t-th aggregation iteration, si is the flow configuration id, and c0i (si) is the raw
output from our network. Note that applying cost aggregation multiple times
is equivalent to performing a weighted average over a larger neighborhood. In
practice, we use 4 iterations of cost aggregation and a 5 × 5 window size. Due
to the fact that we only store top-K configurations in our cost volume to reduce
memory usage, neighboring locations have different sets of label ids. Thus we
perform cost aggregation on the union of label sets, and store only the top-
K results after aggregation as final results cTi (si). Note that one can interpret
cTi (si) as a score of the network’s confidence. We thus threshold the cost cTi (si)
to select the most confident matches. The threshold is selected such that on aver-
age 60% of the locations are estimated as confident. This simple thresholding
on the cost aggression allows us to eliminate most specularities and shadows.
In texture-less regions, the sparse top-K predicted matches sets of neighbor-
ing pixels have very little overlap. Combined with cost aggregation, scores of
erroneous matches decrease through the aggregation iterations, thus eliminating
erroneous matches. Another possible solution would be using uncertainty esti-
mation by computing the entropy at each pixel. However, our experiments show
that selecting top-K combined with simple thresholding works much better than
thresholding the entropy. In practice, we used K = 30 as it balances memory
usage and performance.

4 Object-Aware Optical Flow

In this section, we discuss our parameterization of the optical flow problem as
a result of projection of 3D scene flow. In particular, we assume that the world
encountered in autonomous driving scenarios consists of independently moving
rigid objects. The ego-car where the camera is located is a special object, which
is responsible for the optical flow of the static background.

Our approach builds on the observation that if the 3D motion of an object is
rigid, it can be parameterized with a single transformation. This is captured by
the fundamental matrix, which we denote by F ∈ R3×3 with rank(F ) = 2. Let
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I and I ′ be two images captured by a single camera at two consecutive times,
then for any point in a rigidly moving object the following well-known epipolar
constraint holds

p̃′
i

�
F p̃i = 0

where pi = (xi, yi) and p′
i = (x′

i, y
′
i) are the projection of a 3D point pi into the

two images, and p̃ = (x, y, 1) is p in homogeneous coordinates. Further, the line
defined by l′i = Fip̃i is the epipolar line in I ′ corresponding to point p, passing
through both the epipole in I ′ and p′

i.

4.1 Segmenting Traffic Participants

Since only pixels belonging to one independently moving vehicle obey the
same epipolar constraint, it is necessary to obtain a segmentation of the scene
into independently moving objects. This is traditionally done by clustering the
motion estimates. In this paper we take an alternative approach and use seman-
tics to infer the set of potential traffic participants. Towards this goal, we exploit
instance-level segmentation which segments each traffic participant into a differ-
ent component. Note that we aim at an upper bound on the number of moving
objects, as some of the vehicles might be parked.

To compute instance-level segmentations we exploit the approach of [36],
which uses a multi-resolution CNN follow by a fully connected conditional ran-
dom field to create a global labeling of the scene in terms of instances. Since
only labelled training data for cars was available, the method is unable to detect
vans and trucks. This results in high precision but lower recall. To partially
alleviate this shortcoming, we augment the instance segmentation results with
extra segmentations which are computed by performing 3D detection [37] follow
by CAD model fitting. In particular, we simply go over all CAD models and
select the one which best aligns with the 3D box, following the technique in
[38]. Since this process has higher recall but lower precision than the instances
of [36], we only add new segmentation masks if they do not overlap with the
previously computed masks. We refer the reader to Fig. 3 for an example. This
process provides us with a segmentation of the scene in terms of rigidly moving
objects. We now discuss how to estimate flow for each moving object as well as
for the background.

4.2 Foreground Flow Estimation

Ourfirstgoal is toreliablyestimatethe fundamentalmatrixdescribingthemotionof
each moving object. We consider this motion to be the combination of the vehicle’s
motion and the motion of the ego-car, that is to be the 3D motion whose projec-
tion we observe as optical flow. This is a challenging task, as moving objects can be
very small and contain many specularities. We take advantage of the fact that our
convolutional net outputs an uncertainty estimate, and only use the most confident
matches for this task. Inparticular,weuseRANSACwith the 8point algorithm [39]
to estimate the fundamental matrix of each moving object independently. We then
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Fig. 3. Top left: KITTI image. Top right: Instance segmentation masks overlaid on
input image. Bottom left: Car segmentation masks from [36]. Bottom right: Seg-
mentation instances augmented by 3D detection [37] follow by CAD model fitting [38].

choose the hypothesis with smaller median squared error, where error is defined as
the shortest distance between each matching point and its epipolar line.

Following [3], we consider the optical flow up = (ux,uy) at point p to decom-
pose into its rotational and translational components. Thus

upk
= uw(pk) + uv(pk, Zpk

)

where uw(p) is the component of the flow of pixel p due to rotation, and uv(p, Zp)
is the component of the flow from the translation of the object relative to the
camera. Note that the direction Z here is perpendicular to the image plane of I ′.
If the rotation is small, the rotational component can be linearized. We estimate
the linear coefficients using matched point pairs, with the additional constraint
that the point p + uw(p) must lie on the epipolar line in the second image.

Upon application of the aforementioned linear transformation to I, the image
planes of the image patches corresponding to the object are now parallel, and
related to each other only by a relative translation. This reduces the problem to
either an epipolar contraction or epipolar expansion, where matching point pairs
both lie on the same epipolar line. Therefore, the search for a matching point
is reduced to a 1D search along the epipolar line. The flow at a given point is
then parameterized as the disparity along the epipolar line between its rectified
coordinates and its matching point.

To smooth our results, we exploit semi-global block matching (SGM) [5]. In
particular, we parameterized the problem using disparity along the epipolar line
as follows:

E(d) =
∑

pk

C ′(pk, dpk
) +

∑

pk,p
′
k∈N

S(dpk
, dp′

k
)

with C ′(pk, dpk
) being the matching similarity score computed by our convolu-

tional net with local cost aggregation to increase robustness to outliers. Note
that the vz-ratio parameterization of disparity in [3] is unsuitable for foreground
objects, as it relies on a significant relative motion in the z-direction (perpen-
dicular to the image plane). This assumption is often violated by foreground
vehicles, such as those crossing an intersection in front of the static observer. We
use a standard smoothing term
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S(dpk
, dp′

k
) =

⎧
⎨

⎩

λ1 if |dpk
− dp′

k
| = 1

λ2 if |dpk
− dp′

k
| > 1

0 otherwise

with λ2 > λ1 > 0. In practice, λ2 = 256 and λ1 = 32. After SGM, we use
left-right consistency check to filter out outliers. The output is a semi-dense flow
estimate.

Occasionally, the fundamental matrix estimation for an object fails due to
either too few confident matches or too much noise in the matches. In this case,
we directly use the network’s matching to obtain a flow-field. Finally, we use
the edge-aware interpolation of EpicFlow [1] to interpolate the missing pixels
by performing one step of variational smoothing. This produces a fully dense
flow-field for all objects.

4.3 Background Flow Estimation

To estimate the background flow, we mostly follow Yamaguchi et al. [3]. How-
ever, we make two significant changes which greatly improve its performance.
First, we restrict the matches to the areas estimated to be background by our
semantic segmentation. We use RANSAC and the 8-point algorithm with SIFT
to estimate the fundamental matrix. Note that this simple approach is sufficient
as background occupies most of the scene. Similar to the foreground, the flow up

at a point p is considered to be a sum of a rotational and a translational com-
ponent: up = uw(p) + uv(p, Zp). Again, we linearize the rotational component.
To find the matching point p′ for p, we search along the epipolar line l′, and
parameterize the displacement vector as a scalar disparity.

Further, the disparity at point pi can be written as

d(p, Zp) = |p + uw(p) − o′|
vz

Zp

1 − vz

Zp

where vz is the forward (Z) component of the ego-motion, o′ is the epipole and
ωp = vz

Zp
.

We use SGM [5] to smooth the estimation. However, we parameterize the flow
in terms of the vz-ratio instead of directly using disparity as in the case of fore-
ground flow estimation. We perform inference along 4 directions and aggregate
the results. Finally, we post process the result by checking left-right consistency
to remove outliers. This provides us with a semi-dense estimate of flow for the
background pixels.

Unfortunately, no matches are found by the matching pair process in occluded
regions such as portions of road or buildings that disappear from view as the
vehicle moves forward. An additional significant improvement over [3] is a 3D
geometry-inspired extrapolation. Let δp = |p+uw(p)−o′| be the distance between
the point p and o′. For a planar surface in the 3D world, δp is inversely propor-
tional to Zp. Since vz is constant for all points after the linearized rotational flow
component uw(p) is removed, the vz-ratio is also proportional to δp. For each
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point p where the vz-ratio is not estimated, we search along the line segment
joining p to o′ to collect a set of up to 50 vz-ratios at pixels p′, and calculate
their associated δp′ . We take advantage of semantic information to exclude points
belonging to moving foreground vehicles. Using this set, we fit a linear model
which we use to estimate the missing vz-ratio at p.

We employ a slanted plane model similar to MotionSLIC [3] to compute a
dense and smooth background flow field. This assumes that the scene is composed
of small, piece-wise planar regions. In particular, we model the vz-ratios of the
pixels in each superpixel with a plane defined as vz

Zp
= A(x−xc)+B(y−yc)+C.

Here, (A,B,C) are the plane parameters, and (xc, yc) are the coordinates of the
center of the superpixel. We simultaneously reason both about the assignments
of pixels to planes, the plane parameters, and the types of boundaries between
superpixels (i.e., co-planar, hinge, occlusion). Inference is simply performed by
block coordinate descent.

5 Experimental Evaluation

We evaluated our approach on the KITTI Optical Flow 2015 benchmark [33],
which consists of 200 training and 200 testing image pairs. There are a number
of challenges including specularities, moving vehicles, sensor saturation, large
displacements and texture-less regions. The benchmark error metric is the per-
centage of pixels whose error exceeds 3 px or 5 % (whichever is greater) from the
ground truth flow. We refer to (Fl-fg) and (Fl-bg) as the error evaluated only
on the foreground and background pixels respectively, while (Fl-all) denotes the
average error across all pixels. In this section, we first analyze our method’s per-
formance in comparison with the state-of-the-art. Additionally, we explore the
impact of various stages of our pipeline.

We trained our siamese convolutional network for 100k iterations using sto-
chastic gradient descend with Adam [40]. We used a batch size of 128 and an
initial learning rate of 0.01 with a weight decay of 0.0005. We divided the learning
rate by half at iterations 40K, 60K and 80K. Note that since we have 22 million
training examples, the network converges before completing one full epoch. This
shows that 200 images are more than enough to train the network. Training
takes 17 h on an NVIDIA-Titan Black GPU. However, performance improves
only slightly after 70k iterations.

Comparison to the State-of-the-Art: We first present our results1 on
the KITTI Optical Flow 2015 test set, and compare our approach to pub-
lished monocular approaches that exploit a single temporal image pair as
input. As shown in Table 1, our approach significantly outperforms all published
approaches. Our approach is particularly effective on the background, outper-
forming MotionSLIC [3]. Moreover, our method’s foreground performance is very
close to the leading foreground estimation technique DiscreteFlow [17]. As we

1 We exploit the instances of [41] for our submission to the evaluation server.
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will see in our analysis section, our method has a clear potential to exceed Dis-
creteFlow [17] in foreground also. The test set images are fairly correlated, as
many pairs are taken from the same sequence. To provide further analysis, we
also computed results on the training set, where we average results over 5 folds.
For each fold, 160 images are used for training, and the remaining 40 are used for
testing. The same improvements as with the test set can be as seen in Table 2.

Influence of Instance Segmentation: Table 3 shows performance when using
[41] and [36] to create the instance segmentations. We also explore augmenting
them by fitting CAD models with [38] to the 3D detections of [37]. Note that

Table 1. KITTI Flow 2015 Test Set: we compare our results with top scoring
published monocular methods that use a single image pair as input

Method Non occluded px All px

Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

HS [2] 30.49 % 50.59 % 34.13 % 39.90 % 53.59 % 42.18 %

DeepFlow [12] 16.47 % 31.25 % 19.15 % 27.96 % 35.28 % 29.18 %

EpicFlow [1] 15.00 % 29.39 % 17.61 % 25.81 % 33.56 % 27.10 %

MotionSLIC [3] 6.19 % 64.82 % 16.83 % 14.86 % 66.21 % 23.40 %

DiscreteFlow [17] 9.96 % 22.17% 12.18 % 21.53 % 26.68% 22.38 %

SOF [20] 8.11 % 23.28 % 10.86 % 14.63 % 27.73 % 16.81 %

Ours 5.75% 22.28 % 8.75% 8.61 % 26.69 % 11.62%

Table 2. KITTI Flow 2015 Training Set: we compare our results with the state-of-
the-art by averaging performance over 5 different splits of the KITTI training dataset
into training/testing.

Method Non occluded px All px

Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

EpicFlow [1] 16.14 % 28.75 % 18.66 % 27.28 % 31.36 % 28.09 %

MotionSLIC [3] 6.32 % 64.88 % 17.97 % 15.45 % 65.82 % 24.54 %

DiscreteFlow [17] 10.86 % 20.24% 12.71 % 22.80 % 23.32% 22.94 %

Ours 6.21% 21.97 % 9.35% 9.38% 24.79 % 12.14%

Table 3. Flow estimation with various instance segmentation algorithms

Method Non occluded px All px

Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

[41] 6.17 % 25.30 % 9.98 % 9.31% 28.11 % 12.69 %

[36] 6.18 % 24.61 % 9.82 % 9.35 % 27.31 % 12.54 %

[41] augmented with [37] 6.17 % 22.06 % 9.35% 9.31% 25.08 % 12.15 %

[36] augmented with [37] 6.21 % 21.97% 9.35% 9.38 % 24.79% 12.14%
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a combination of segmentation and detection is beneficial. A limiting factor
of our foreground flow estimation performance arises when we missed moving
vehicles when estimating our instances. Using our 5 folds on the training set, we
explore what happens when we have perfect objects masks. Towards this goal, we
first examine the foreground flow estimation performance only on our detected
vehicle masks. The left half of Table 4 shows that within the vehicle masks we
detect, our flow estimation is significantly more accurate than our competitors
in the same regions. Moreover, the right half of the same table shows that the
same is true within the ground truth object masks. Thus, if the instances were
further improved (e.g., by incorporating temporal information when computing
them) our method can be expected to achieve a significant improvement over
the leading competitors. It is thus clear that our current bottleneck is in the
accuracy of the masks.

Table 4. Foreground flow estimation within detected object masks and within ground
truth masks

Method Within detected object masks Within ground truth object masks

Non-occ px error % All px error % Non-occ px error % All px error %

EpicFlow [1] 26.77% 29.93% 28.75% 31.36%

DiscreteFlow [17] 18.76% 22.42% 20.24% 23.32%

Ours 15.91% 19.72% 15.42% 18.62%

Estimating Fundamental Matrix: Having an accurate fundamental matrix is
critical to the success of our method. While the strong epipolar constraint offers
great robustness to outliers, it can also cause many problems if it is wrongly esti-
mated. We now compare different matching algorithms employed to compute the
fundamental matrices, and use the rest of our pipeline to estimate flow. As shown
in Table 5, selecting only confident matches from our network to estimate the
fundamental matrix is significantly better than using the flow field estimations
from other algorithms, including DiscreteFlow.

Table 5. Foreground flow estimation errors when F is estimated from various sources

Source for matches for F estimation Non-occluded px error % All px error %

EpicFlow [1] 25.02 % 27.58 %

DiscreteFlow [17] 23.40 % 26.05 %

Our Matching Network 21.97% 24.79%

Qualitative Analysis: Figure 4 shows qualitative results, where each column
depicts the original image, the network most confident estimates, the 3D detec-
tions of [37], our final instance segmentations, our final flow field and its errors.
Our convolutional net is able to predict accurate results for most regions in the
image. It leaves holes in regions including texture-less areas like the sky, occlusion
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due the motion of car and specularites on windshield. The 3D detector is able to
detect almost all cars, regardless of their orientation and size. Our final object
masks used to label foreground objects are very accurate and contain many cars
of different sizes and appearances. Note that different shades represents distinct
car instances whose fundamental matrices are estimated separately. As shown
in the last two rows, we produce very good overall performance.

Fig. 4. Examples of successful flow estimations. Within each group, from top to bottom:
first frame of input image, confident flow produced by our network, 3D car detection
results, instance segmentation output augmented by 3D car detection, final flow field,
and flow field error.
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Failure Modes: Our technique has several failure modes. If a car is not seg-
mented, the estimation of flow defaults to using the epipolar constraint of the
background. This happens particularly often with trucks and vans, as we do not
have training examples of these types of vehicles to train our segmentation and
detection networks. Figure 5(a) shows an example where a van is not segmented.
By coincidence, its true epipolar lines are almost identical with those calculated
using the background fundamental matrix. As such, its flow estimation is still
mostly correct. If object masks contain too many background pixels (which are
outliers from the perspective of foreground fundamental matrix estimation), our
algorithm can also fail. This is commonly associated with objects identified by
the 3D object detector rather than the instance-segmentation algorithm, as the
3D detection box might be misaligned with the actual vehicle. Moreover, fitting
CAD models to monocular images is not a trivial task. The right-most car in
Fig. 5(b) is such an example. The other failure mode of our approach is wrong
estimation of the fundamental matrix, which can happen when the matches are
very sparse or contain many outliers. Figure 5(c) shows such an example, where
the fundamental matrix of the left-most car is incorrectly estimated due to the
sparseness in confident matching results (showing in the second row).

Fig. 5. Failure cases for our algorithm.

6 Conclusion

We have proposed an approach to monocular flow estimation in the context of
autonomous driving which builds on the observation that the scene is composed
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of a static background as well a relatively small number of traffic participants
(including the ego-car). We have shown how instance-level segmentation and 3D
object detection can be used to segment the different vehicles, and proposed a
new convolutional network that can accurately match patches. Our experiments
showed that we can outperform the state-of-the-art by a large margin in the
challenging KITTI 2015 flow benchmark. In the future, we plan to estimate the
different traffic participants by reasoning temporally when doing instance-level
segmentation.
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Samsung, and NSERC.
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