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Abstract. The Lucas & Kanade (LK) algorithm is the method of choice
for efficient dense image and object alignment. The approach is efficient
as it attempts to model the connection between appearance and geo-
metric displacement through a linear relationship that assumes indepen-
dence across pixel coordinates. A drawback of the approach, however, is
its generative nature. Specifically, its performance is tightly coupled with
how well the linear model can synthesize appearance from geometric dis-
placement, even though the alignment task itself is associated with the
inverse problem. In this paper, we present a new approach, referred to
as the Conditional LK algorithm, which: (i) directly learns linear models
that predict geometric displacement as a function of appearance, and
(ii) employs a novel strategy for ensuring that the generative pixel inde-
pendence assumption can still be taken advantage of. We demonstrate
that our approach exhibits superior performance to classical generative
forms of the LK algorithm. Furthermore, we demonstrate its comparable
performance to state-of-the-art methods such as the Supervised Descent
Method with substantially less training examples, as well as the unique
ability to “swap” geometric warp functions without having to retrain
from scratch. Finally, from a theoretical perspective, our approach hints
at possible redundancies that exist in current state-of-the-art methods
for alignment that could be leveraged in vision systems of the future.

Keywords: Image alignment · Lucas & Kanade · Supervised Descent
Method

1 Introduction

The Lucas & Kanade (LK) algorithm [9] has been a popular approach for tackling
dense alignment problems for images and objects. At the heart of the algorithm
is the assumption that an approximate linear relationship exists between pixel
appearance and geometric displacement. Such a relationship is seldom exactly
linear, so a linearization process is typically repeated until convergence. Pixel
intensities are not deterministically differentiable with respect to geometric dis-
placement; instead, the linear relationship must be established stochastically
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through a learning process. One of the most notable properties of the LK algo-
rithm is how efficiently this linear relationship can be estimated. This efficiency
stems from the assumption of independence across pixel coordinates - the para-
meters describing this linear relationship are classically referred to as image
gradients. In practice, these image gradients are estimated through finite dif-
ferencing operations. Numerous extensions and variations upon the LK algo-
rithm have subsequently been explored in literature [3], and recent work has
also demonstrated the utility of the LK framework [1,2,4] using classical dense
descriptors such as dense SIFT [8], HOG [5], and LBP [12].

A drawback to the LK algorithm and its variants, however, is its genera-
tive nature. Specifically, it attempts to synthesize, through a linear model, how
appearance changes as a function of geometric displacement, even though its
end goal is the inverse problem. Recently, Xiong and De la Torre [14–16] pro-
posed a new approach to image alignment known as the Supervised Descent
Method (SDM). SDM shares similar properties with the LK algorithm as it also
attempts to establish the relationship between appearance and geometric dis-
placement using a sequence of linear models. One marked difference, however, is
that SDM directly learns how geometric displacement changes as a function of
appearance. This can be viewed as estimating the conditional likelihood func-
tion p(y|x), where y and x are geometric displacement and appearance respec-
tively. As reported in literature [7] (and also confirmed by our own experiments
in this paper), this can lead to substantially improved performance over classical
LK as the learning algorithm is focused directly on the end goal (i.e. estimating
geometric displacement from appearance).

Although it exhibits many favorable properties, SDM also comes with dis-
advantages. Specifically, due to its non-generative nature, SDM cannot take
advantage of the pixel independence assumption enjoyed through classical LK
(see Sect. 4 for a full treatment on this asymmetric property). Instead, it needs
to model full dependence across all pixels, which requires: (i) a large amount
of training data, and (ii) the requirement of adhoc regularization strategies in
order to avoid a poorly conditioned linear system. Furthermore, SDM does not
utilize prior knowledge of the type of geometric warp function being employed
(e.g. similarity, affine, homography, point distribution model, etc.), which further
simplifies the learning problem in classical LK.

In this paper, we propose a novel approach which, like SDM, attempts to
learn a linear relationship between geometric displacement directly as a function
of appearance. However, unlike SDM, we enforce that the pseudo-inverse of this
linear relationship enjoys the generative independence assumption across pixels
while utilizing prior knowledge of the parametric form of the geometric warp. We
refer to our proposed approach as the Conditional LK algorithm. Experiments
demonstrate that our approach achieves comparable, and in many cases better,
performance to SDM across a myriad of tasks with substantially less training
examples. We also show that our approach does not require any adhoc regular-
ization term, and it exhibits a unique property of being able to “swap” the type
of warp function being modeled (e.g. replace a homography with an affine warp
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function) without the need to retrain. Finally, our approach offers some unique
theoretical insights into the redundancies that exist when attempting to learn
efficient object/image aligners through a conditional paradigm.

Notations. We define our notations throughout the paper as follows: lowercase
boldface symbols (e.g. x) denote vectors, uppercase boldface symbols (e.g. R)
denote matrices, and uppercase calligraphic symbols (e.g. I) denote functions.
We treat images as a function of the warp parameters, and we use the notations
I(x) : R2 → R

K to indicate sampling of the K-channel image representation
at subpixel location x = [x, y]�. Common examples of multi-channel image
representations include descriptors such as dense SIFT, HOG and LBP. We
assume K = 1 when dealing with raw grayscale images.

2 The Lucas & Kanade Algorithm

At its heart, the Lucas & Kanade (LK) algorithm utilizes the assumption that,

I(x + Δx) ≈ I(x) + ∇I(x)Δx. (1)

where I(x) : R2 → R
K is the image function representation and ∇I(x) : R2 →

R
K×2 is the image gradient function at pixel coordinate x = [x, y]. In most

instances, a useful image gradient function ∇I(x) can be efficiently estimated
through finite differencing operations. An alternative strategy is to treat the
problem of gradient estimation as a per-pixel linear regression problem, where
pixel intensities are samples around a neighborhood in order to “learn” the image
gradients [4]. A focus of this paper is to explore this idea further by examining
more sophisticated conditional learning objectives for learning image gradients.

For a given geometric warp function W{x;p} : R2 → R
2 parameterized by

the warp parameters p ∈ R
P , one can thus express the classic LK algorithm as

minimizing the sum of squared differences (SSD) objective,

min
Δp

D∑

d=1

∥∥∥∥I(W{xd;p}) + ∇I(W{xd;p})
∂W(xd;p)

∂p� Δp − T (xd)
∥∥∥∥
2

2

, (2)

which can be viewed as a quasi-Newton update. The parameter p is the ini-
tial warp estimate, Δp is the warp update being estimated, and T is the tem-
plate image we desire to align the source image I against. The pixel coordi-
nates {xd}D

d=1 are taken with respect to the template image’s coordinate frame,
and ∂W(x;p)

∂p� : R2 → R
2×P is the warp Jacobian. After solving Eq. 2, the current

warp estimate has the following additive update,

p ← p + Δp. (3)

As the relationship between appearance and geometric deformation is not solely
linear, Eqs. 2 and 3 must be applied iteratively until convergence is achieved.



796 C.-H. Lin et al.

Inverse Compositional Fitting. The canonical LK formulation presented
in the previous section is sometimes referred to as the forwards additive (FA)
algorithm [3]. A fundamental problem with the forwards additive approach is
that it requires recomputing the image gradient and warp Jacobian in each
iteration, greatly impacting computational efficiency. Baker and Matthews [3]
devised a computationally efficient extension to forwards additive LK, which
they refer to as the inverse compositional (IC) algorithm. The IC-LK algorithm
attempts to iteratively solve the objective

min
Δp

D∑

d=1

∥∥∥∥I(W{xd;p}) − T (xd) − ∇T (xd)
∂W(xd;0)

∂p� Δp
∥∥∥∥
2

2

, (4)

followed by the inverse compositional update

p ← p ◦ (Δp)−1, (5)

where we have abbreviated the notation ◦ to be the composition of warp func-
tions parametrized by p, and (Δp)−1 to be the parameters of the inverse warp
function parametrized by Δp. We can express Eq. 4 in vector form as

min
Δp

‖I(p) − T (0) − WΔp‖22 , (6)

where,

W =

⎡

⎢⎣
∇T (x1) . . . 0

...
. . .

...
0 . . . ∇T (xD)

⎤

⎥⎦

⎡

⎢⎢⎣

∂W(x1;0)
∂p�
...

∂W(xD;0)
∂p�

⎤

⎥⎥⎦

and

I(p) =

⎡

⎢⎣
I(W{x1;p})

...
I(W{xD;p})

⎤

⎥⎦ , T (0) =

⎡

⎢⎣
T (W{x1;0})

...
T (W{xD;0})

⎤

⎥⎦ .

Here, p = 0 is considered the identity warp (i.e. W{x;0} = x). It is easy to
show that the solution to Eq. 6 is given by

Δp = R[I(p) − T (0)], (7)

where R = W†. The superscript † denotes the Moore-Penrose pseudo-inverse
operator. The IC form of the LK algorithm comes with a great advantage: the
gradients ∇T (x) and warp Jacobian ∂W(x;0)

∂p� are evaluated at the identity warp
p = 0, regardless of the iterations and the current state of p. This means that R
remains constant across all iterations, making it advantageous over other variants
in terms of computational complexity. For the rest of this paper, we shall focus
on the IC form of the LK algorithm.
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3 Supervised Descent Method

Despite exhibiting good performance on many image alignment tasks, the LK
algorithm can be problematic to use when there is no specific template image T
to align against. For many applications, one may be given just an ensemble of
M ground-truth images and warps {Im,pm}M

m=1 of the object of interest. If
one has prior knowledge of the distribution of warp displacements to be encoun-
tered, one can synthetically generate N examples to form a much larger set S =
{Δpn, In(pn ◦ Δpn)}N

n=1 to learn from, where N 	 M . In these circum-
stances, a strategy recently put forward known as the Supervised Descent Method
(SDM) [14] has exhibited state-of-the-art performance across a number of align-
ment tasks, most notably facial landmark alignment. The approach attempts to
directly learn a regression matrix that minimizes the following SSD objective,

min
R

∑

n∈S
‖Δpn − R[In(pn ◦ Δpn) − T (0)]‖22 + Ω(R). (8)

The template image T (0) can be learned either with R directly or by taking it
to be 1

N

∑
n∈S I(pn), the average of ground-truth images [15].

Regularization. Ω is a regularization function used to ensure that the solution
to R is unique. To understand the need for this regularization, one can reform
Eq. 8 in matrix form as

min
R

‖Y − RX‖2F + Ω(R), (9)

where

Y =
[
Δp1, . . . ,ΔpN

]
, and

X =
[
I(p1 ◦ Δp1) − T (0), . . . , I(pN ◦ ΔpN ) − T (0)

]
.

Here, ‖·‖F indicates the matrix Frobenius norm. Without the regularization
term Ω(R), the solution to Eq. 9 is R = YX�(XX�)−1. It is understood in
literature that raw pixel representations of natural images stem from certain
frequency spectrums [13] that leads to an auto-covariance matrix XX� which
is poorly conditioned in nearly all circumstances. It has been demonstrated [13]
that this property stems from the fact that image intensities in natural images
are highly correlated in close spatial proximity, but this dependence drops off as
a function of spatial distance.

In our experiments, we have found that XX� is always poorly conditioned
even when utilizing other image representations such as dense SIFT, HOG, and
LBP descriptors. As such, it is clear that some sort of regularization term is
crucial for effective SDM performance. As commonly advocated and practiced,
we employed a weighted Tikhonov penalty term Ω(R) = λ||R||2F , where λ con-
trols the weight of the regularizer. We found this choice to work well in our
experiments.
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Iteration-Specific Regressors. Unlike the IC-LK approach, which employs a
single regressor/template pair {R, T (0)} to be applied iteratively until conver-
gence, SDM learns a set of regressor/template pairs {R(l), T (l)(0)}L

l=1 for each iter-
ation l = 1 : L (sometimes referred to as layers). On the other hand, like the IC-LK
algorithm, these regressors are precomputed in advance and thus are independent
of the current image and warp estimate. As a result, SDM is computationally effi-
cient just like IC-LK. The regressor/template pair {R(l), T (l)(0)} is learned from
the synthetically generated set S(l) within Eq. 8, which we define to be

S(l) = {Δp(l)
n , I(pn ◦ Δp(l)

n )}N
n=1, (10)

where
Δp(l+1) ← R(l)

[
I

(
p ◦ (Δp(l))−1

)
− T (0)

]
. (11)

For the first iteration (l = 1), the warp perturbations are generated from a
pre-determined random distribution; for every subsequent iteration, the warp
perturbations are re-sampled from the same distribution to ensure each itera-
tion’s regressor does not overfit. Once learned, SDM is applied by employing
Eq. 11 in practice.

Inverse Compositional Warps. It should be noted that there is nothing
in the original treatment [14] on SDM that limits it to compositional warps.
In fact, the original work employing facial landmark alignment advocated an
additive update strategy. In this paper, however, we have chosen to employ
inverse compositional warp updates as: (i) we obtained better results for our
experiments with planar warp functions, (ii) we observed almost no difference
in performance for non-planar warp functions such as those involved in face
alignment, and (iii) it is only through the employment of inverse compositional
warps within the LK framework that a firm theoretical motivation for fixed
regressors can be entertained. Furthermore, we have found that keeping a close
mathematical relationship to the IC-LK algorithm is essential for the motivation
of our proposed approach.

4 The Conditional Lucas & Kanade Algorithm

Although enjoying impressive results across a myriad of image alignment tasks,
SDM does have disadvantages when compared to IC-LK. First, it requires large
amounts of synthetically warped image data. Second, it requires the utilization of
an adhoc regularization strategy to ensure good condition of the linear system.
Third, the mathematical properties of the warp function parameters being pre-
dicted is ignored. Finally, it reveals little about the actual degrees of freedom nec-
essary in the set of regressor matrices being learned through the SDM process.



The Conditional Lucas & Kanade Algorithm 799

In this paper, we put forward an alternative strategy for directly learning a
set of iteration-specific regressors,

min
∇T (0)

∑
n∈S

‖Δpn − R[I(pn ◦ Δpn) − T (0)]‖22 (12)

s.t. R =

⎛

⎜⎜⎝

⎡

⎢⎣
∇T (x1) . . . 0

...
. . .

...
0 . . . ∇T (xD)

⎤

⎥⎦

⎡

⎢⎢⎣

∂W(x1;0)
∂p�
...

∂W(xD;0)
∂p�

⎤

⎥⎥⎦

⎞

⎟⎟⎠

†

,

where

∇T (0) =

⎡

⎢⎣
∇T (x1)

...
∇T (xD)

⎤

⎥⎦ .

At first glance, this objective may seem strange, as we are proposing to learn
template “image gradients” ∇T (0) within a conditional objective. As previously
discussed in [4], this idea deviates from the traditional view of what image gra-
dients are - parameters that are derived from heuristic finite differencing oper-
ations. In this paper, we prefer to subscribe to the alternate view that image
gradients are simply weights that can be, and should be, learned from data. The
central motivation for this objective is to enforce the parametric form of the
generative IC-LK form through a conditional objective.

An advantage of the Conditional LK approach is the reduced number
of model parameters. Comparing the model parameters of Conditional LK
(∇T (0) ∈ R

KD×2) against SDM (R ∈ R
P×KD), there is a reduction in the

degrees of freedom needing to be learned for most warp functions where P > 2.
More fundamentally, however, is the employment of the generative pixel indepen-
dence assumption described originally in Eq. 1. This independence assumption
is useful as it ensures that a unique R can be found in Eq. 12 without any extra
penalty terms such as Tikhonov regularization. In fact, we propose that the
sparse matrix structure of image gradients within the psuedo-inverse of R acts
as a much more principled form of regularization than those commonly employed
within the SDM framework.

A further advantage of our approach is that, like the IC-LK framework, it
utilizes prior knowledge of the warp Jacobian function ∂W(x;0)

∂p� during the esti-
mation of the regression matrix R. Our insight here is that the estimation of the
regression matrix R using a conditional learning objective should be simplified
(in terms of the degrees of freedom to learn) if one had prior knowledge of the
deterministic form of the geometric warp function.

A drawback to the approach, in comparison to both the SDM and IC-LK
frameworks, is the non-linear form of the objective in Eq. 12. This requires us to
resort to non-linear optimization methods, which are not as straightforward as
linear regression solutions. However, as we discuss in more detail in the experi-
mental portion of this paper, we demonstrate that a Levenberg-Marquardt opti-
mization strategy obtains good results in nearly all circumstances. Furthermore,
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compared to SDM, we demonstrate good solutions can be obtained with signif-
icantly smaller numbers of training samples.

Iteration-Specific Regressors. As with SDM, we assume we have an ensem-
ble of images and ground-truth warps {Im,pm}M

m=1 from which a much larger
set of synthetic examples can be generated S = {Δpn, In(pn ◦ Δpn)}N

n=1,
where N 	 M . Like SDM, we attempt to learn a set of regressor/template
pairs {R(l), T (l)(0)}L

l=1 for each iteration l = 1 : L. The set S(l) of training
samples is derived from Eqs. 10 and 11 for each iteration. Once learned, the
application of these iteration-specific regressors is identical to SDM.

Pixel Independence Asymmetry. A major advantage of the IC-LK frame-
work is that it assumes generative independence across pixel coordinates (see
Eq. 1). A natural question to ask is: could not one predict geometric displace-
ment (instead of appearance) directly across independent pixel coordinates?

The major drawback to employing such strategy is its ignorance of the well-
known “aperture problem” [10] in computer vision (e.g. the motion of an image
patch containing a sole edge cannot be uniquely determined due to the ambiguity
of motion along the edge). As such, it is impossible to ask any predictor (linear
or otherwise) to determine the geometric displacement of all pixels within an
image while entertaining an independence assumption. The essence of our pro-
posed approach is that it circumvents this issue by enforcing global knowledge
of the template’s appearance across all pixel coordinates, while entertaining the
generative pixel independence assumption that has served the LK algorithm so
well over the last three decades.

x gradients learned with Generative LK

x gradients learned with Conditional LK 

y gradients learned with Generative LK

y gradients learned with Conditional LK

x gradients taken from finite differences y gradients taken from finite differences 

Template image appearance

Fig. 1. Visualization of the learned image gradients for LK from layers 1 (left) to 5
(right).
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Generative LK. For completeness, we will also entertain a generative form of
our objective in Eq. 12, where we instead learn “image gradients” that predict
generative appearance as a function of geometric displacement, formulated as

min
∇T (0)

∑
n∈S

‖I(pn ◦ Δpn) − T (0) − WΔpn‖22 (13)

s.t. W =

⎡

⎢⎣
∇T (x1) . . . 0

...
. . .

...
0 . . . ∇T (xD)

⎤

⎥⎦

⎡

⎢⎢⎣

∂W(x1;0)
∂p�
...

∂W(xD;0)
∂p�

⎤

⎥⎥⎦ .

Unlike our proposed Conditional LK, the objective in Eq. 13 is linear and directly
solvable. Furthermore, due to the generative pixel independence assumption, the
problem can be broken down into D independent sub-problems. The Generative
LK approach is trained in an identical way to SDM and Conditional LK, where
iteration-specific regressors are learned from a set of synthetic examples S =
{Δpn, In(pn ◦ Δpn)}N

n=1.
Figure 1 provides an example of visualizing the gradients learned from the

Conditional LK and Generative LK approaches. It is worthwhile to note that
the Conditional LK gradients get sharper over regression iterations, while it is
not necessarily the case for Generative LK. The rationale for including the Gen-
erative LK form is to highlight the importance of a conditional learning app-
roach, and to therefore justify the added non-linear complexity of the objective
in Eq. 12.

5 Experiments

In this section, we present results for our approach across three diverse tasks:
(i) planar image alignment, (ii) planar template tracking, and (iii) facial model
fitting. We also investigate the utility of our approach across different image
representations such as raw pixel intensities and dense LBP descriptors.

5.1 Planar Image Alignment

Experimental Settings. In this portion of our experiments, we will be uti-
lizing a subsection of the Multi-PIE [6] dataset. For each image, we denote
a 20 × 20 image I(p) with ground-truth warp p rotated, scaled and trans-
lated around hand-labeled locations. For the IC-LK approach, this image is then
employed as the template T (0). For the SDM, Conditional LK and Generative
LK methods, a synthetic set of geometrically perturbed samples S are generated
S = {Δpn, In(pn ◦ Δpn)}N

n=1.
We generate the perturbed samples by adding i.i.d. Gaussian noise of stan-

dard deviation σ to the four corners of the ground-truth bounding box as well
as an additional translational noise from the same distribution, and then finally
fitting the perturbed box to the warp parameters Δp. In our experiments, we
choose σ = 1.2 pixels. Figure 2 shows an example visualization of the training
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procedure as well as the generated samples. For SDM, a Tikhonov regularization
term is added to the training objective as described in Sect. 3, and the penalty
factor λ is chosen by evaluating on a separate validation set; for Conditional
LK, we use Levenberg-Marquardt to optimize the non-linear objective where
the parameters are initialized through the Generative LK solution.

Frequency of Convergence. We compare the alignment performance of the
four types of aligners in our discussion: (i) IC-LK, (ii) SDM, (iii) Generative LK,
and (iv) Conditional LK. We state that convergence is reached when the point
RMSE of the four corners of the bounding box is less than one pixel.

Fig. 2. Visualization of the perturbed samples S = {Δpn, In(pn ◦ Δpn)}N
n=1 used for

training the SDM, Conditional LK, and Generative LK methods. Left: the original
source image, where the red box is the ground truth and the green boxes are perturbed
for training. Right: examples of the synthesized training samples.

Fig. 3. Frequency of convergence comparison between IC-LK, SDM, Generative LK,
and Conditional LK. The vertical dotted line indicates σ that they were trained with.
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Figure 3 shows the frequency of convergence tested with both a 2D affine
and homography warp function. Irrespective of the planar warping function, our
results indicate that Conditional LK has superior convergence properties over
the others. This result holds even when the approach is initialized with a warp
perturbation that is larger than the distribution it was trained under. The align-
ment performance of Conditional LK is consistently better in all circumstances,
although the advantage of the approach is most noticeable when training with
just a few training samples.

Fig. 4. Frequency of convergence comparison between SDM, Generative LK, and Con-
ditional LK in terms of number of samples trained with.

Figure 4 provides another comparison with respect to the amount of training
data learned from. It can be observed that SDM is highly dependent on the
amount of training data available, but it is still not able to generalize as well as
Conditional LK. This is also empirical proof that incorporating principled priors
in Conditional LK is more desirable than adhoc regularizations in SDM.

Convergence Rate. We also provide some analysis on the convergence speed.
To make a fair comparison, we take the average of only those test runs where

Fig. 5. Convergence rate comparison between IC-LK, SDM, Generative LK, and Con-
ditional LK, averaged from the tests (σ = 2.8) where all four converged in the end.
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Fig. 6. Frequency of convergence comparison between IC-LK, SDM, and Conditional
LK trained with 100 examples per layer and tested with swapped warp functions. The
parentheses indicate the type of warp function trained with.

all regressors converged. Figure 5 illustrates the convergence rates of different
regressors learned from different amounts of training data. The improvement of
Conditional LK in convergence speed is clear, especially when little training data
is provided. SDM starts to exhibit faster convergence rate when learned from
over 100 examples per layer; however, Conditional LK still surpasses SDM in
term of the frequency of final convergence.

Swapping Warp Functions. A unique property of Conditional LK in relation
to SDM is its ability to interchange between warp functions after training. Since
we are learning image gradients ∇T (0) for the Conditional LK algorithm, one
can essentially choose which warp Jacobian to be employed before forming the
regressor R. Figure 6 illustrates the effect of Conditional LK learning the gradient
with one type of warp function and swapping it with another during testing. We
see that whichever warp function Conditional LK is learned with, the learned
conditional gradients are also effective on the other and still outperforms IC-LK
and SDM.

It is interesting to note that when we learn the Conditional LK gradients
using either 2D planar similarity warps (P = 4) or homography warps (P = 8),
the performance on 2D planar affine warps (P = 6) is as effective. This outcome
leads to an important insight: it is possible to learn the conditional gradients
with a simple warp function and replace it with a more complex one afterwards;
this can be especially useful when certain types of warp functions (e.g. 3D warp
functions) are harder to come by.

5.2 Planar Tracking with LBP Features

In this section, we show how Conditional LK can be effectively employed with
dense multi-channel LBP descriptors where K = 8. First we analyze the con-
vergence properties of Conditional LK on the dense LBP descriptors, as we did
similarly in the previous section, and then we present an application to robust
planar tracking. A full description of the multi-channel LBP descriptors we used
in our approach can be found in [1].



The Conditional Lucas & Kanade Algorithm 805

Fig. 7. Frequency of convergence comparison between IC-LK, SDM and Conditional
LK with dense binary descriptors. The vertical dotted line indicates σ that they were
trained with.

Fig. 8. Frequency of convergence comparison between SDM and Conditional LK with
dense binary descriptors in terms of number of samples trained with.

Figure 7 provides a comparison of robustness by evaluating the frequency of
convergence with respect to the scale of test warps σ. This suggests that Condi-
tional LK is as effective in the LK framework with multi-channel descriptors: in
addition to increasing alignment robustness (which is already a well-understood
property of descriptor image alignment), Conditional LK is able to improve upon
the sensitivity to initialization with larger warps.

Figure 8 illustrates alignment performance as a function of the number of
samples used in training. We can see the Conditional LK only requires as few
as 20 examples per layer to train a better multi-channel aligner than IC-LK,
whereas SDM needs more than 50 examples per iteration-specific regressor. This
result again speaks to the efficiency of learning with Conditional LK.

Low Frame-Rate Template Tracking. In this experiment, we evaluate the
advantage of our proposed approach for the task of low frame-rate template
tracking. Specifically, we borrow a similar experimental setup to Bit-Planes [1].
LBP-style dense descriptors are ideal for this type of task as their computa-
tion is computationally feasible in real-time across a number of computational
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Fig. 9. Tracking performance using IC-LK and Conditional LK with dense LBP
descriptors for three videos under low frame-rate conditions, with and without lighting
variations.

Fig. 10. Snapshots of tracking results. Blue: IC-LK; yellow: Conditional LK. The sec-
ond image of each row shows where IC-LK fails but Conditional LK still holds. (Color
figure online)

platforms (unlike HOG or dense SIFT). Further computational speedups can be
entertained if we start to skip frames to track.

We compare the performance of Conditional LK with IC-LK and run the
experiments on the videos collected in [1]. We train the Conditional LK tracker
on the first frame with 20 synthetic examples. During tracking, we skip every k
frames to simulate low frame-rate videos. Figure 9 illustrates the percentage of
successfully tracked frames over the number of skipped frames k. It is clear that
the Conditional LK tracker is more stable and tolerant to larger displacements
between frames.

Figure 10 shows some snapshots of the video, including the frames where the
IC-LK tracker starts to fail but the Conditional LK tracker remains. This further
demonstrates that the Conditional LK tracker maintains the same robustness to
brightness variations by entertaining dense descriptors, but meanwhile improves
upon convergence. Enhanced susceptibility to noises both in motion and bright-
ness also suggests possible extensions to a wide variety of tracking applications.
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Fig. 11. (a) An example of facial model fitting. The red shape indicates the initializa-
tion, and the green shape is the final fitting result. (b) Convergence rate comparison
between IC-LK and Conditional LK. (c) Comparison of fitting accuracy. (Color figure
online)

5.3 Facial Model Fitting

In this experiment, we show how Conditional LK is applicable not only to 2D
planar warps like affine or homography, but also to more complex warps that
requires heavier parametrization. Specifically, we investigate the performance
of our approach with a point distribution model (PDM) [11] on the IJAGS
dataset [11], which contains an assortment of videos with hand-labeled facial
landmarks. We utilize a pretrained 2D PDM learned from all labeled data as
the warp Jacobian and compare the Conditional LK approach against IC-LK (it
has been shown that there is an IC formulation to facial model fitting [11]). For
Conditional LK, we learn a series of regressor/template pairs with 5 examples
per layer; for IC-LK, the template image is taken by the mean appearance.

Figure 11 shows the results of fitting accuracy and convergence rate of
subject-specific alignment measured in terms of the point-to-point RMSE of
the facial landmarks; it is clear that Conditional LK outperforms IC-LK in con-
vergence speed and fitting accuracy. This experiment highlights the possibility
of extending our proposed Conditional LK to more sophisticated warps. We
would like to note that it is possible to take advantage of the Conditional LK
warp swapping property to incorporate a 3D PDM as to introduce 3D shape
modelling; this is beyond the scope of discussion of this paper.

6 Conclusion

In this paper, we discuss the advantages and drawbacks of the LK algorithm
in comparison to SDMs. We argue that by enforcing the pixel independence
assumption into a conditional learning strategy we can devise a method that: (i)
utilizes substantially less training examples, (ii) offers a principled strategy for
regularization, and (iii) offers unique properties for adapting and modifying the
warp function after learning. Experimental results demonstrate that the Con-
ditional LK algorithm outperforms both the LK and SDM algorithms in terms
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of convergence. We also demonstrate that Conditional LK can be integrated
with a variety of applications that potentially leads to other exciting avenues for
investigation.
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