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Abstract. Parsing articulated objects, e.g. humans and animals, into
semantic parts (e.g. head, body and arms, etc.) from natural images is a
challenging and fundamental problem in computer vision. A big difficulty
is the large variability of scale and location for objects and their corre-
sponding parts. Even limited mistakes in estimating scale and location
will degrade the parsing output and cause errors in boundary details.
To tackle this difficulty, we propose a “Hierarchical Auto-Zoom Net”
(HAZN) for object part parsing which adapts to the local scales of objects
and parts. HAZN is a sequence of two “Auto-Zoom Nets” (AZNs), each
employing fully convolutional networks for two tasks: (1) predict the loca-
tions and scales of object instances (the first AZN) or their parts (the
second AZN); (2) estimate the part scores for predicted object instance or
part regions. Our model can adaptively “zoom” (resize) predicted image
regions into their proper scales to refine the parsing. We conduct exten-
sive experiments over the PASCAL part datasets on humans, horses, and
cows. In all the three categories, our approach significantly outperforms
alternative state-of-the-arts by more than 5% mIOU and is especially
better at segmenting small instances and small parts. In summary, our
strategy of first zooming into objects and then zooming into parts is very
effective. It also enables us to process different regions of the image at
different scales adaptively so that we do not need to waste computational
resources scaling the entire image.
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1 Introduction

When people look at natural images, they often first locate regions that con-
tain objects, and then perform the more detailed task of object parsing, i.e.
decomposing each object instance into its semantic parts. In computer vision,
object parsing plays a key role in the real understanding of objects in images
and helps for many visual tasks, e.g. segmentation [9,30], pose estimation [§],
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Fig. 1. Intuition of Hierarchical Auto-Zoom Net (HAZN). (a) The scale and location of
an object and its parts (the red dashed boxes) can be estimated from the observed field
of view (the black solid box) of a neural network. (b) Part parsing can be more accurate
by using proper object and part scales. At the top row, we show our estimated object
and part scales. In the bottom row, our part parsing results gradually become better
by increasingly utilizing the estimated object and part scales. (Color figure online)

and fine-grained recognition [35]. It also has many industrial applications such
as robotics and image descriptions for the blind.

There has been a growing literature on the related task of object semantic
segmentation due to the availability of benchmarks such as PASCAL VOC [10]
and MS-COCO [20]. There has been work on human parsing, i.e. segmenting
humans into their semantic parts, but this has mainly been studied under con-
strained conditions which pre-suppose known scale, fairly accurate localization,
clear appearances, and/or relatively simple poses [3,8,9,21,34,36]. There are few
works done on parsing animals, like cows and horses, yet these also face similar
restrictions, e.g. roughly known size and location [29,30].

In this paper, we address the task of parsing objects, such as humans and ani-
mals, in “the wild” where there are large variations in scale, location, occlusion,
and pose. This motivates us to work with PASCAL images [10] because these
were chosen for studying multiple visual tasks, do not suffer from dataset design
bias [18], and include large variations of objects, particularly of scale. Parsing
humans in PASCAL is considerably more difficult than in other datasets like
Fashionista [34], which were constructed solely to evaluate human parsing.

Recently, deep learning methods have led to big improvements on object pars-
ing [13,30], with the emergence of fully convolutional nets (FCNs) [23] and the
availability of object part annotations on large-scale datasets, e.g. PASCAL [6].
However, these methods can still make mistakes on small or large scale objects
and, in particular, they have no mechanism to adapt to the size of the object.

In this paper, we present a hierarchical method for object parsing that per-
forms scale estimation and object parsing jointly and is able to adapt its scale
to objects and parts. It is partly motivated by the proposal-free end-to-end
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Fig. 2. Testing framework of HAZN. We address object part parsing by adapting to
the sizes of objects (object-scale AZN) and parts (part-scale AZN). The part scores are
predicted and refined by three FCNs, over three levels of granularity, i.e. image-level,
object-level, and part-level. At each level, the FCN outputs the part score map for the
current level, and estimates the locations and scales for the next level. The details of
parts are gradually discovered and improved along the proposed auto-zoom process
(i.e. location/scale estimation, region zooming, and part score re-estimation).

detection strategies [15,19,26,27], which prove that the scale and location of
a target object, and of its corresponding parts, can be estimated accurately
from the field-of-view (FOV) window by applying a deep net (Fig. 1(a)). We call
our approach “Hierarchical Auto-Zoom Net” (HAZN) which parses the objects
at three levels of granularity, namely image-level, object-level, and part-level,
gradually giving clearer and better parsing results (see Fig.1(b)). The HAZN
sequentially combines two “Auto-Zoom Nets” (AZNs), each of which predicts
the locations and scales for objects (the first AZN) or parts (the second AZN),
properly zooms (resizes) the predicted image regions, and refines the object pars-
ing results for those image regions (see Fig.2). The HAZN uses three FCNs [23]
that share the same structure. The first FCN acts directly on the image to esti-
mate a finite set of possible locations and sizes of objects (e.g. bounding boxes)
with confidence scores, together with a part score map of the image. The part
score map is similar to that proposed by previous deep-learned methods. The
object bounding boxes are scaled to a fixed size by zooming in or zooming out (as
applicable) and the image and part score maps within the boxes are also scaled
by bilinear interpolation for zooming in or downsampling for zooming out. Then
the second FCN is applied to the scaled object bounding boxes to make propos-
als (bounding boxes) for the parts, with confidence values, and to re-estimate the
part scores within the object bounding boxes. This yields improved part scores.
We then apply the third FCN to the scaled part bounding boxes to produce
new estimates of the part scores and to combine all of them (for different object
and part bounding boxes) to output final part scores, which are our parse of
the object. This strategy is modified slightly so that we scale humans differently
depending on whether we have detected a complete human or only the upper
part of a human, which can be determined from the part score map.
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For dealing with scale, the adaptiveness of our approach and the way it
combines scale estimation with parsing give novel computational advantages
over traditional multi-scale methods. Previous methods mainly select a fixed set
of scales and then perform fusion on the outputs of a deep net at different layers.
Computational requirements mean that the number of scales must be small and
it is impractical to use very fine scales due to memory limitations. Our approach
is considerably more flexible because we adaptively estimate scales at different
regions in the image which allows us to search over a large range of scales. In
particular, we can use very fine scales because we will probably only need to do
this within small image regions. For example, our largest zooming ratio is 2.5 (at
part level) on PASCAL while that number is 1.5 if we have to zoom the whole
image. This is a big advantage when trying to detect small parts, such as the
tail of a cow, as is shown by the experiments.

We report extensive experimental results for parsing humans on the chal-
lenging PASCAL-Person-Part dataset [6] and for parsing animals on a horse-
cow dataset [29]. Our approach outperforms previous state-of-the-arts by a large
margin. We are particulary good at detecting small object parts.

2 Background

The study of human part parsing has been largely restricted to constrained
environments, where a human instance in an image is well localized and has a
relatively simple pose like standing or walking [3,8,9,21,33,34,36]. These shape-
based or appearance-based models (with hand-crafted features or bottom-up
segments) are limited when applied to parsing human instances in the wild
because humans in real-world images are often in various poses, scales, and
may be occluded or highly deformed.

Over the past few years, with the powerful deep convolutional neural net-
works (DCNNs) [17] and big data, researchers have made significant performance
improvement for semantic object segmentation in the wild [4,7,22,24, 25,28, 31],
showing that DCNNs can also be applied to segment object parts in the wild.
These deep segmentation models work on the whole image, regarding each
semantic part as a class label. But this strategy suffers from the large scale vari-
ation of objects and parts, and many details can be easily missed. [13] proposed
to sequentially perform object detection, object segmentation and part segmen-
tation, in which the object is first localized by a RCNN [12], then the object (in
the form of a bounding box) is segmented by a FCN [23] to produce an object
mask, and finally part segmentation is performed by partitioning the mask. The
process has two potential drawbacks: (1) it is complex to train all components
of the model; (2) the error from object masks, e.g. local confusion and inac-
curate edges, propagates to the part segments. Our model follows this general
coarse-to-fine strategy, but is more unified (with all three FCNs employing the
same structure) and more importantly, we do not make premature decisions. In
order to better discover object details and use object-level context, [30] employed
a two-stream FCN to jointly infer object and part segmentations for animals,
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where the part stream was performed to discover part-level details and the object
stream was performed to find object-level context. Although this work discovers
object-level context to help part parsing, it only uses a single-scale network for
both object and part score prediction, where small-scale objects might be missed
at the beginning and the scale variation of parts still remains unsolved.

Many studies in computer vision have addressed the scale issue to improve
recognition or segmentation. These include exploiting multiple cues [14], hierar-
chical region grouping [2,11], and applying general or salient object proposals
combined with iterative localization [1,32,37]. However, most of these works
either adopted low-level features or only considered constrained scene layouts,
making it hard to handle wild scene variations and difficult to unify with DCNNs.
Some recent works try to handle the scale issue within a DCNN structure. They
commonly use multi-scale features from intermediate layers, and perform late
fusion on them [4,13,23] in order to achieve scale invariance. Most recently, [5]
proposed a scale attention model, which learns pixel-wise weights for merging the
outputs from three fixed scales. These approaches, though developed on powerful
DCNNE, are all limited by the number of scales they can select and the possibil-
ity that the scales they select may not cover a proper one. Our model avoids the
scale selection error by directly regressing the bounding boxes for objects/parts
and zooming the regions into proper scales. In addition, this mechanism allows
us to explore a broader range of scales, contributing to the discovery of missing
objects and the accuracy of part boundaries.

3 The Model

As shown in Fig. 2, our Hierarchical Auto-Zoom model (HAZN) has three lev-
els of granularity for tackling scale variation in object parsing, i.e. image-level,
object-level, and part-level. At each level, a fully convolutional neural network
(FCN) is used to perform scale/location estimation and part parsing simultane-
ously. The three levels of FCNs are all built on the same network structure, a
modified FCN called DeepLab-LargeFOV [4]. This network structure is one of
the most effective FCNs in segmentation, so we also treat it as our baseline for
final performance comparison.

To handle scale variation in objects and parts, the HAZN concatenates two
Auto-Zoom Nets (AZNs), namely object-scale AZN and part-scale AZN, into a
unified network. The object-scale AZN refines the image-level part score map
with object bounding box proposals while the part-scale AZN further refines
the object-level part score map with part bounding box proposals. Each AZN
employs an auto-zoom process: first estimates the region of interest (ROI), then
properly resizes the predicted regions, and finally refines the part scores within
the resized regions.

3.1 Object-Scale Auto-Zoom Net (AZN)

For the task of object part parsing, we are provided with n training examples
{I;,L;}?_,, where I is the given image and L is the pixel-wise semantic part
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Fig. 3. Object-scale Auto-Zoom Net from a probabilistic view, which predicts ROI
region N (k) at object-scale, and then refines part scores based on the properly zoomed
region N (k). Details are in Sect. 3.1.

labels. Our target is to learn the posterior distribution P(;|I, j) for each pixel j
of an image I, which is approximated by our object-scale AZN (see Fig.3).

We first use the image-level FCN (see Fig.2) to produce the image-level
part score map P, (I;|I, ), which gives comparable performance to our baseline
method (DeepLab-LargeFOV). This is a normal part parsing network that
uses the original image as input and outputs the pixel-wise part score map. Our
object-scale AZN aims to refine this part score map with consideration of object
instance scales. To do so, we add a second component to the image-level FCN|,
performing regression to estimate the size and location of an object bounding
box (or ROI) for each pixel, together with a confidence map indicating the like-
lihood that the box is an object. This component is called a scale estimation
network (SEN), which shares the first few layers with the part parsing network
in the image-level FCN. In math, the SEN corresponds to a probabilistic model
P(b;|1,7), where b; is the estimated bounding box for pixel j, and P(b;]...) is
the confidence score of b;.

After getting {b;|Vj € I}, we threshold the confidence map and perform
non-maximum suppresion to yield a finite set of object ROIs (typically 5-10 per
image, with some overlap): {by|k € I}. Each by, the bounding box estimated from
pixel k, is associated with a confidence score P(by). As shown in Fig. 2, a region
zooming operation is then performed on each by, resizing by to a standard-
sized ROI N (k). Specifically, this zooming operation computes a zooming ratio
for bounding box by, and then enlarges or shrinks the image within by by the
zooming ratio. We will discuss how to compute the zooming ratio in Sect. 4.

Now we have a set of zoomed ROI proposals { N (k)|k € I}, each N (k) asso-
ciated with score P(by). We learn another probabilistic model P(l;|N(k),1, j),
which re-estimates the part label for each pixel j within the zoomed ROI N (k).
This probabilistic model corresponds to the part parsing network in the object-
level FCN (see Fig.2), which takes as input the zoomed object bounding boxes
and outputs the part scores within those object bounding boxes.

The new part scores for the zoomed ROIs need to be merged to produce the
object-level part score map for the whole image. Since there may be multiple
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Fig. 4. Ground truth regression target for training the scale estimation network (SEN)
in the image-level FCN. Details in Sect. 3.3.

ROIs that cover a pixel j, we define the neighbouring region set for pixel j
as Q(j) = {N(k)|j € N(k),k € I}. Under this definition of Q(j), the score
merging process can be expressed as Eq.1, which essentially computes the
weighted sum of part scores for pixel j, from the zoomed ROIs that cover j. For
a pixel that is not covered by any zoomed ROI, we simply use its image-level part
score as the current part score. Formally, the object-level part score P,, (};|I,5),
is computed as,

PLz(lj“:vj) = ZN(k)eQ(j) P(l]|N(k)7I7J)P(N(k)|Iv.7)a
P(N(K)|L,j) = P(br)/> 5. nkye o) (k) (1)

3.2 Hierarchical Auto-Zoom Net (HAZN)

The scale of object parts can also vary considerably even if the scale of the
object is fixed. This leads to a hierarchical strategy with multiple stages, called
the Hierarchical Auto-Zoom Net (HAZN), which applies AZNs to images to find
objects and then on objects to find parts, followed by a part score refinement
stage. As shown in Fig. 2, we add the part-scale AZN to the end of the object-
scale AZN. Specifically, we add a second component (i.e. SEN) to the object-
level FCN, to estimate the size and location of part bounding boxes, together
with confidence maps for every pixel within a zoomed object ROI. Again the
confidence map is thresholded, and non-maximal suppresion is applied, to yield
a finite set of part ROIs (typically 5-30 per image, with some overlap). Each
part ROI is zoomed to a fixed size. Then, we re-estimate the part scores within
each zoomed part ROI using the part parsing network in the part-level FCN.
The part parsing network is the only component of the part-level FCN, which
takes the zoomed part ROI and the zoomed object-level part scores (within the
part ROI) as inputs. After getting the part scores within each zoomed Part ROI,
the score merging process is the same as in the object-scale AZN.

It’s worth mentioning that we can easily extend our HAZN to include more
AZNs at finer scale levels if we focus on smaller object parts such as human eyes.
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3.3 Training and Testing Phases for Object-Scale AZN

We use DeepLab-LargeFOV [4] as the basic network structure for both the
scale estimation network (SEN) and the part parsing network. The two networks,
serving as components of a multi-tasking FCN, share the first three layers.

Training the SEN. The SEN aims to regress the region of interest (ROI) for
each pixel j in the form of a bounding box, b;. Here we borrow the idea of
DenseBox [15] for scale estimation, since it is simple and performs well enough
for our task. In detail, at object level, the ROI of pixel j corresponds to the
object instance box that pixel j belongs to. For training the SEN, two output
label maps are needed as visualized in Fig. 4. The first one is the bounding box
regression map L, which is a four-channel output for each pixel j to represent its
ROIb;: Ly = {dz;,dy;, w;, h;}. Here (dz;, dy;) is the relative position from pixel
J to the center of b;; h; and w; are the height and width of b;. We then re-scale
the outputs by dividing them with 400. The other target output map is a binary
confidence seed map L., in which 1,; € {0,1} is the ROI selection indicator
at pixel j. It indicates the preferred pixels for us to use for ROI prediction,
which helps the algorithm prevent many false positives. In practice, we choose
the central pixels of each object instance as the confidence seeds, which tend
to predict the object bounding boxes more accurately than those pixels at the
boundary of an object instance region.

Given the ground-truth label maps of object part parsing, we can easily
derive the training examples for the SEN: H = {I;, Ly;, L}, where n is the
number of training instances. We minimize the negative log likelihood to learn
the weights W for the SEN, and the loss [sgy is defined in Eq. 2.

1
lsen(HIW) = - Zi(lb(lu Lpi|W) + Ale(Li, Lei [W));
le(LLJW) = =8 > log P(IZ; =1|[LW) — (1= 3) Y log P(I}; = 0T, W);

Gilej=1 §ilej=0

1 *
Iy (I, Loy | W) = ) Zj,l LT (2)
cj e

For the confidence seeds, we employ the balanced cross entropy loss, where
lz; and [.; are the predicted value and ground truth value respectively. The
probability is from a sigmoid function performing on the activation of the last
layer of the CNN at pixel j. § is defined as the proportion of pixels with I.; = 0
in the image, which is used to balance the positive and negative instances. The
loss for bounding box regression is the Euclidean distance over the confidence
seed points, and |ij| is the number of pixels with [.; = 1.

Testing the SEN. The SEN outputs both the confidence score map P(lzj =
1/I, W) and a four-dimensional bounding box 17 for each pixel j. We regard
a pixel j with confidence score higher than 0.5 to be reliable and output its

bounding box b; = 1; ;, associated with confidence score P(b;) = P(I7; = 1|1, W).
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We perform non-maximum suppression (IOU threshold = 0.4) based on the
confidence scores, yielding several candidate bounding boxes {b;|j € I} with
confidence scores P(b;). Each b; is then properly zoomed, becoming N (j).

Training the part parsing. The training of the part parsing network is standard.
For the object-level FCN, the part parsing network is trained based on all the
zoomed image regions (ROIs), with the ground-truth part label maps H, =
{Lp;}*; within the zoomed ROIs. For the image-level FCN, the part parsing
network is trained based on the original training images. We merge the part
parsing network with the SEN, yielding the image-level FCN with loss defined
in Eq. 3. Here, [,,(I,L;,) is the commonly used multinomial logistic regression loss
for classification.

1
lazn (R, Hy[W) = — Zl lp(Li, Lp;) + lspn (HIW); (3)

Testing the part parsing. For testing the object-scale AZN, we first run the
image-level FCN, yielding part score maps at the image level and bounding
boxes for the object level. Then we zoom onto the bounding boxes and parse
these regions based on the object-level FCN, yielding part score maps at the
object level. By merging the part score maps from the two levels, we get better
parsing results for the whole image.

4 Experiments

4.1 Implementation Details

Selection of confidence seeds. To train the scale estimation network (SEN), we
need to select confidence seeds for object instances or parts. For human instances,
we use the human instance masks from the PASCAL-Person-Part Dataset [6] and
select the central 7 x 7 pixels within each instance mask as the confidence seeds.
To get the confidence seeds for human parts, we first compute connected part
segments from the groundtruth part label map, and then also select the central
7 x 7 pixels within each part segment. We present the details of our approach
for humans because the extension to horses and cows is straightforward.

Zooming ratio of ROIs. The SEN networks in the FCNs provide a set of
human/part bounding boxes (ROIs), {b;|j € I}, which are then zoomed to a

proper human/part scale. The zooming ratio of b;, f(bj,ng), is decided based

on the size of b; and the previously computed part label map ng within b;.
We use slightly different strategies to compute the zooming ratio at the human
and part levels. For the part level, we simply resize the bounding box to a fixed
size, i.e. fp(bj) = s¢/max(w;,h;), where s; = 255 is the target size. Here w;
and h; are the width and height of b;. For the human level, we need to consider
the frequently occurred truncation case when only the upper half of a human
instance is visible. In practice, we use the image-level part label map sz within
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the box, and check the existence of legs to decide whether the full body is vis-
ible. If the full body is visible, we use the same strategy as parts. Otherwise,
we change the target size s; to 140, yielding relative smaller region than the full
body visible case. We select the target size based on a validation set. Finally,
we limit all zooming ratio f,(b;) within the range [0.4,2.5] for both human and
part bounding boxes to avoid artifacts from up or down sampling of images.

4.2 Experimental Protocol

Dataset. We conduct experiments on humans part parsing using the PASCAL-
Person-Part dataset annotated by [6]. The dataset contains detailed part anno-
tations for every person, e.g. head, torso, etc. We merge the annotations into
six clases: Head, Torso, Upper/Lower Arms and Upper/Lower Legs (plus one
background class). We only use those images containing humans for training
(1716 images in the training set) and testing (1817 images in the validation set),
the same as [5]. Note that parsing humans in PASCAL is challenging because
it has larger variations in scale and pose than other human parsing datasets.
In addtion, we also perform parsing experiments on the horse-cow dataset [29],
which contains animal instances in a rough bounding box. In this dataset, we
adopt the same experimental setting as in [30].

Training. We train the FCNs using stochastic gradient descent with mini-
batches. Each mini-batch contains 30 images. The initial learning rate is 0.001
(0.01 for the final classifier layer) and is decreased by a factor of 0.1 after every
2000 iterations. We set the momentum to be 0.9 and the weight decay to be
0.0005. The initialization model is a modified VGG-16 network pre-trained on
ImageNet. Fine-tuning our network on all the reported experiments takes about
30h on a NVIDIA Tesla K40 GPU. After training, the average inference time
for one PASCAL image is 1.3 s/image.

Evaluation metric. The object parsing results is evaluated in terms of mean
IOU (mIOU). It is computed as the pixel intersection-over-union (IOU) averaged
across classes [10], which is also adopted recently to evaluate parts [5,30]. In the
supplementary material, we also evaluate the part parsing performance w.r.t.
each object instance in terms of APy, as defined in [13].

Network architecture. We use DeepLab-LargeFOV [4] as building blocks for the
FCNs in our Hierarchical Auto-Zoom Net (HAZN).

4.3 Experimental Results on Parsing Humans in the Wild

Comparison with state-of-the-arts. As shown in Table1, we compare our full
model (HAZN) with four baselines. The first one is DeepLab-LargeFOV [4]. The
second one is DeepLab-LargeFOV-CRF, which adds a post-processing step to
DeepLab-LargeFOV by means of a fully-connected Conditional Random Field
(CRF) [16]. CRFs are commonly used as postprocessing for object semantic
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segmentation to refine boundaries [4]. The third one is Multi-Scale Averaging,
which feeds the DeepLab-LargeFOV model with images resized to three fixed
scales (0.5, 1.0 and 1.5) and then takes the average of the three part score maps
to produce the final parsing result. The fourth one is Multi-Scale Attention [5],
a most recent work which uses a scale attention model to handle the scale vari-
ations in object parsing.

Our HAZN obtains the performance of 57.5 %, which is 5.8 % better than
DeepLab-LargeFOV, and 4.5% better than DeepLab-LargeFOV-CRF. Our
model significantly improves the segmentation accuracy in all parts. Note we
do not use any CRF for post processing. The CRF, though proven effective in
refining boundaries in object segmentation, is not strong enough at recovering
details of human parts as well as correcting the errors made by the DeepLab-
LargeFOV.

The third baseline (Multi-Scale Averaging) enumerates multi-scale features
which is commonly used to handle the scale variations, yet its performance is
poorer than ours, indicating the effectiveness of our Auto-Zoom framework.

Our overall mIOU is 1.15% better than the fourth baseline (Multi-Scale
Attention), but we are much better in terms of detailed parts like upper legs
(around 3% improvement). In addition, we further analyze the scale-invariant
ability in Table2, which both methods aim to improve. We can see that our
model surpasses Multi-Scale Attention in all instance sizes especially at size XS
(9.5%) and size S (5.5 %).

Importance of object and part scale. Table1 also shows the effectiveness of the
two scales in our HAZN. In practice, we remove either the object-scale AZN
or the part-scale AZN from the full HAZN model, yielding two sub-models:
(1) HAZN (no object scale), which only handles the scale variation at part
level; (2) HAZN (no part scale), which only handles the scale variation at
object instance level. Compared with our full model, removing the object-scale
AZN causes 2.8 % mIOU degradation while removing the part-scale AZN results
in 1% mIOU degradation. We can see that the object-scale AZN, which handles
the scale variation at object instance level, contributes a lot to our final parsing
performance. The part-scale AZN further improves the parsing by refining the
detailed part predictions, e.g. bringing around 3 % improvement on lower arms.

Table 1. Part parsing accuracy (%) on PASCAL-Person-Part in terms of mean IOU.

Method head |torso |u-arms |l-arms | u-legs |l-legs |bg Avg.

DeepLab-LargeFOV [4] 78.09 |54.02 |37.29 |36.85 |33.73 |29.61 |92.85 | 51.78
DeepLab-LargeFOV-CRF | 80.13 | 55.56 | 36.43 |38.72 |35.50 |30.82 |93.52 | 52.95
Multi-Scale Averaging 79.89 | 57.40 |40.57 |41.14 |37.66 |34.31 |93.43 | 54.91
Multi-Scale Attention [5] | 81.47|59.06 |44.15 |42.50 |38.28 |35.62 |93.65 | 56.39
HAZN (no object scale) 80.25 | 57.20 |42.24 |42.02 |36.40 |31.96 |93.42 |54.78
HAZN (no part scale) 79.83 |59.72 | 43.84 |40.84 |40.49 |37.23 |93.55 | 56.50
HAZN (full model) 80.76 |60.50 | 45.65 |43.11 | 41.21 | 37.74  93.78 | 57.54
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Part parsing accuracy w.r.t. size of human instance. Since we handle human with
various sizes, it is important to check how our model performs w.r.t. the change
of human size in images. We categorize all the ground truth human instances
into four different sizes according to the bounding box area of each instance s
(the square root of the bounding box area). Then we compute the mIOU within
the bounding box for each of these four scales. The four sizes are defined as
follows: (1) Size XS: s € [0,80], where the human instance is extremely small
in the image; (2) Size S: s, € [80,140]; (3) Size M: s € [140,220]; (4) Size L:
sp € [220,520], which usually corresponds to truncated human instances where
the human’s head or torso covers the majority of the image.

The results are given in Table 2. The baseline DeepLab-LargeFOV performs
badly at size XS or S (usually only the head or the torso can be detected by the
baseline), while our HAZN (full model) surpasses it significantly by 14.6 % for
size XS and by 10.8 % for size S. This shows that HAZN is particularly good for
small objects. For instances in size M and L, our model also significantly improve
the baselines by around 5 %. In general, by using HAZN, we achieve much better
scale invariant property to object size than a generally used FCN type of model.
We also list the results for the other three baselines for reference. In addition,
it is also important to jointly perform the two scale AZNs in a sequence. To
show this, we additionally list the results from our model without object/part
scale AZN in the 5;; and the 6;, row respectively. By jumping over object scale
(HAZN no object scale), the performance becomes significantly worse at size XS,
since the model can barely detect the object parts at the image-level when the
object is too small. If we remove part scale instead (HAZN no part scale), the
performance also dropped in all sizes. This is because using part-scale AZN can
recover the part details much better than only using object scale.

Qualitative results. We qualitatively evaluate our model in Fig.5. The baseline
DeepLab-LargeFOV-CRF produces several errors due to lack of object and part
scale information, e.g. background confusion (1 row), human part confusion
(3r¢ row), important part missing (445, row), etc. Our HAZN (no part scale),
which only contains object-scale AZN, already successfully relieves the confu-

Table 2. Part parsing accuracy w.r.t. size of human instance (%) on PASCAL-Person-
Part in terms of mean IOU.

Method Size XS | Size S | Size M | Size L
DeepLab-LargeFOV [4] | 32.5 44.5 |50.7 50.9
DeepLab-LargeFOV-CRF | 31.5 44.6 |51.5 52.5
Multi-Scale Averaging 33.7 45.9 |52.5 54.7
Multi-Scale Attention [5] | 37.6 49.8 55.1 55.5

HAZN (no object scale) |38.2 51.0 |55.1 53.4

HAZN (no part scale) 45.1 53.1 |55.0 55.0
HAZN (full model) 47.1 | 55.3 56.8 | 56.0
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Image DeepLab-LargeFOV-CRF HAZN (no part scale) HAZN (full model) Ground truth

Fig. 5. Qualitative comparison on the PASCAL-Person-Part dataset. We compare with
DeepLab-LargeFOV-CRF [4] and HAZN (no part scale). Our proposed HAZN models
(the 3,4 and 44, columns) attain better visual parsing results, especially for small scale
human instances and small parts such as legs and arms.

sions for large scale human instances while recovers the parts for small scale
human instances. By further introducing part scale, the part details and bound-
aries are recovered even more satisfactorily.

Failure cases. Figure 6 shows our typical failure modes. Compared with the base-
line DeepLab-LargeFOV-CRF, our models give more reasonable parsing results
with less local confusion, but they still suffer from heavy occlusion and unusual
poses.

Ground truth DeepLab-LargeFOV-CRF HAZN (no part scale) HAZN (full model)

Fig. 6. Failure cases for both the baseline and our models.
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Table 3. Mean IOU (mIOU) over the Horse-Cow dataset. We compare with the seman-
tic part segmentation (SPS) [29], the Hypercolumn (HC™) [13] and the joint part and
object (JPO) results [30]. We also list the performance of DeepLab-LargeFOV (Large-
FOV) [4].

Horse Cow
Method Bkg |head |body |leg tail Avg. |Bkg |head |body |leg tail Avg.
SPS [29] |79.14 |47.64 |69.74 |38.85 |- - 78.00 [40.55 |61.65 |36.32 |- -

HC* [13] |85.71 |57.30 |77.88 |51.93 |37.10 |61.98 |81.86 |55.18 |72.75 [42.03 |11.04 |52.57

JPO [30] |87.34 |60.02 |77.52 |58.35 |51.88|67.02 |85.68 |58.04 |76.04 |51.12 |15.00 |57.18
LargeFOV |87.44 |64.45 |80.70 |54.61 |44.03 |66.25 86.56 |62.76 |78.42 148.83 |19.97 |59.31
HAZN 90.94|70.7584.49|63.91 |51.73 |72.36|90.71|75.18 | 83.33|57.42|29.37|67.20

4.4 Experiments on the Horse-Cow Dataset

Besides humans, we also applied our method to horses and cows presented
n [29]. All the testing procedures are the same as those described above for
humans. We copy the baseline numbers from [30], and give the evaluation results
in Table 3. It shows that our baseline model, the DeepLab-LargeFOV [4], already
achieves competative results with the state-of-the-arts, while our HAZN further
provides a big improvement on both horses and cows. The improvement over
the state-of-the-art method [30] is roughly 5% mIOU. It is most noticeable for
small parts, e.g. the improvement for detecting horse/cow head and cow tails
is more than 10 %. This shows that our auto-zoom strategy can be effectively
generalized to other objects for part parsing.

5 Conclusions

In this paper, we propose the “Hierarachical Auto-Zoom Net” (HAZN) to parse
objects in the wild, yielding per-pixel segmentation of the object parts. It adapt-
ably estimates the scales of objects, and their parts, by a two-stage process of
Auto-Zoom Nets. We show that on the challenging PASCAL dataset, HAZN per-
forms significantly better (by 5% mIOU) than other state-of-the-art methods,
when applied to humans, horses, and cows.

In the future, we would love to extend our HAZN to parse more detailed
parts, such as human hand and human eyes. Also, the idea of our AZN can be
applied to other tasks like pose estimation in the wild, to make further progress.
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