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Abstract. Markerless motion capture algorithms require a 3D body
with properly personalized skeleton dimension and/or body shape and
appearance to successfully track a person. Unfortunately, many track-
ing methods consider model personalization a different problem and use
manual or semi-automatic model initialization, which greatly reduces
applicability. In this paper, we propose a fully automatic algorithm that
jointly creates a rigged actor model commonly used for animation – skele-
ton, volumetric shape, appearance, and optionally a body surface – and
estimates the actor’s motion from multi-view video input only. The app-
roach is rigorously designed to work on footage of general outdoor scenes
recorded with very few cameras and without background subtraction.
Our method uses a new image formation model with analytic visibil-
ity and analytically differentiable alignment energy. For reconstruction,
3D body shape is approximated as a Gaussian density field. For pose
and shape estimation, we minimize a new edge-based alignment energy
inspired by volume ray casting in an absorbing medium. We further
propose a new statistical human body model that represents the body
surface, volumetric Gaussian density, and variability in skeleton shape.
Given any multi-view sequence, our method jointly optimizes the pose
and shape parameters of this model fully automatically in a spatiotem-
poral way.

1 Introduction

Markerless full-body motion capture techniques refrain from markers used in
most commercial solutions, and promise to be an important enabling technique
in computer animation and visual effects production, in sports and biomechanics
research, and the growing fields of virtual and augmented reality. While early
markerless methods were confined to indoor use in more controlled scenes and
backgrounds recorded with eight or more cameras [1], recent methods succeed
in general outdoor scenes with much fewer cameras [2,3].
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Fig. 1. Method overview. Pose is estimated from detections in Stage I, actor shape
and pose is refined through contour alignment in Stage II by space-time optimization.
Outputs are the actor skeleton, attached density, mesh and motion.

Before motion capture commences, the 3D body model for tracking needs to
be personalized to the captured human. This includes personalization of the bone
lengths, but often also of biomechanical shape and surface, including appear-
ance. This essential initialization is, unfortunately, neglected by many methods
and solved with an entirely different approach, or with specific and complex
manual or semi-automatic initialization steps. For instance, some methods for
motion capture in studios with controlled backgrounds rely on static full-body
scans [4–6], or personalization on manually segmented initialization poses [7].
Recent outdoor motion capture methods use entirely manual model initializa-
tion [3]. When using depth cameras, automatic model initialization was shown
[8–12], but RGB-D cameras are less accessible and not usable outdoors. Simul-
taneous pose and shape estimation from in-studio multi-view footage with back-
ground subtraction was also shown [13–15], but not on footage of less constrained
setups such as outdoor scenes filmed with very few cameras.

We therefore propose a fully-automatic space-time approach for simultaneous
model initialization and motion capture. Our approach is specifically designed to
solve this problem automatically for multi-view video footage recorded in gen-
eral environments (moving background, no background subtraction) and filmed
with as few as two cameras. Motions can be arbitrary and unchoreographed. It
takes a further step towards making markerless motion capture practical in the
aforementioned application areas, and enables motion capture from third-party
video footage, where dedicated initialization pose images or the shape model
altogether are unavailable. Our approach builds on the following contributions.

First, we introduce a body representation that extends a scene model inspired
by light transport in absorbing transparent media [16]. We represent the volu-
metric body shape by Gaussian density functions attached to a kinematic skele-
ton. We further define a novel 2D contour-based energy that measures contour
alignment with image gradients on the raw RGB images using a new volume
raycasting image formation model. We define contour direction and magnitude
for each image position, which form a ridge at the model outline, see Fig. 1. No
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explicit background segmentation is needed. Importantly, our energy features
analytic derivatives, including fully-differentiable visibility everywhere.

The second contribution is a new data-driven body model that represents
human surface variation, the space of skeleton dimensions, and the space
of volumetric density distributions optimally for reconstruction using a low-
dimensional parameter space.

Finally, we propose a space-time optimization approach that fully automat-
ically computes both the shape and the 3D skeletal pose of the actor using
both contour and ConvNet-based joint detection cues. The final outputs are
(1) a rigged character, as commonly used in animation, comprising a personal-
ized skeleton and attached surface, along with the (optionally colored) volumet-
ric human shape representation, and (2) the joint angles for each video frame.
We tested our method on eleven sequences, indoor and outdoor, showing recon-
structions with fewer cameras and less manual effort compared to the state of
the art.

2 Related Work

Our goal is to fully automatically capture a personalized, rigged surface model,
as used in animation, together with its sequence of skeletal poses from sparse
multi-view video of general scenes where background segmentation is hard. Many
multi-view markerless motion capture approaches consider model initialization
and tracking separate problems [2]. Even in recent methods working outdoors,
shape and skeleton dimensions of the tracked model are either initialized man-
ually prior to tracking [3], or estimated from manually segmented initialization
poses [7]. In controlled studios, static shape [17,18] or dimensions and pose of
simple parametric human models [13,14] can be optimized by matching against
chroma-keyed multi-view image silhouettes. Many multi-view performance cap-
ture methods [19] deform a static full-body shape template obtained with a
full-body scanner [4,5,20,21], or through fitting against the visual hull [22–25]
to match scene motion. Again, all these require controlled in-studio footage, an
off-line scan, or both. Shape estimation of a naked parametric model in single
images using shading and edge cues [26], or monocular pose and shape estimation
from video is also feasible [27–29], but require substantial manual intervention
(joint labeling, feature/pose correction, background subtraction etc.). For multi-
view in-studio setups (3–4 views), where background subtraction works, Bălan
et al. [15] estimate shape and pose of the SCAPE parametric body model. Opti-
mization is independent for each frame and requires initialization by a coarse
cylindrical shape model. Implicit surface representations yield beneficial proper-
ties for pose [30] and surface [31] reconstruction, but do not avoid the dependency
on explicit silhouette input. In contrast to all previously mentioned methods, our
approach requires no manual interaction, succeeds even with only two camera
views, and on scenes recorded outdoors without any background segmentation.

Recently, several methods to capture both shape and pose of a parametric
human body model with depth cameras were proposed [9,11,32]; these special
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cameras are not as easily available and often do not work outdoors. We also
build up on the success of parametric body models for surface representation,
e.g. [29,33–35], but extend these models to represent the space of volumetric
shape models needed for tracking, along with a rigged surface and skeleton.

Our approach is designed to work without explicit background subtraction.
In outdoor settings with moving backgrounds and uncontrolled illumination,
such segmentation is hard, but progress has been made by multi-view segmen-
tation [36–38], joint segmentation and reconstruction [39–42], and also aided by
propagation of a manual initialization [20,43]. However, the obtained segmen-
tations are still noisy, enabling only rather coarse 3D reconstructions [42], and
many methods would not work with only two cameras.

Edge cues have been widely used in human shape and motion estimation
[1,2,44–47], but we provide a new formulation for their use and make edges in
general scenes the primary cue. In contrast, existing shape estimation works use
edges are supplemental information, for example to find self-occluding edges in
silhouette-based methods and to correct rough silhouette borders [26]. Our new
formulation is inspired by the work of Nagel et al., where model contours are
directly matched to image edges for rigid object [48] and human pose tracking [49].
Contour edges on tracked meshes are found by a visibility test, and are convolved
with a Gaussian kernel. This approach forms piecewise-smooth and differentiable
model contours which are optimized to maximize overlap with image gradients.
We advance this idea in several ways: our model is volumetric, analytic visibility is
incorporated in the model and optimization, occlusion changes are differentiable,
the human is represented as a deformable object, allowing for shape estimation,
and contour direction is handled separately from contour magnitude.

Our approach follows the generative analysis-by-synthesis approach: contours
are formed by a 3D volumetric model and image formation is an extension of
the volumetric ray-tracing model proposed by Rhodin et al. [16]. Many dis-
criminative methods for 2D pose estimation were proposed [50–52]; multi-view
extensions were also investigated [46,53,54]. Their goal is different to ours, as
they find single-shot 2D/3D joint locations, but no 3D rigged body shape and no
temporally stable joint angles needed for animation. We thus use a discriminative
detector only for initialization. Our work has links to non-rigid structure-from-
motion that finds sparse 3D point trajectories (e.g. on the body) from single-view
images of a non-rigidly moving scene [55]. Articulation constraints [56] can help
to find the sparse scene structure, but the goal is different from our estimation
of a fully dense, rigged 3D character and stable skeleton motion.

3 Notation and Overview

Input to our algorithm are RGB image sequences Ic,t, recorded with calibrated
cameras c=1, . . . , C and synchronized to within a frame (see list of datasets in
supplemental document). The output of our approach is the configuration of a
virtual actor model K(pt,b,γ) for each frame t=1, . . . , T , comprising the per-
frame joint angles pt, the personalized bone lengths b, as well as the personalized
volumetric Gaussian representation γ, including color, of the actor.
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Fig. 2. Registration process of the body shape model. Skeleton and Gaussians are once
manually placed into the reference mesh, vertex correspondence transfers Gaussian-
and joint-neighborhood weights (green and red respectively), to register reference bones
and Gaussians to all instance meshes. (Color figure online)

In the following, we first explain the basis of our new image formation model,
the Gaussian density scene representation, and our new parametric human shape
model building on it (Sect. 4). Subsequently, we detail our space-time optimiza-
tion approach (Sect. 5) in two stages: (I) using ConvNet-based joint detection
constraints (Sect. 5.1); and (II) using a new ray-casting-based volumetric image
formation model and a new contour-based alignment energy (Sect. 5.2).

4 Volumetric Statistical Body Shape Model

To model the human in 3D for reconstruction, we build on sum-of-Gaussians
representations [7,16] and model the volumetric extent of the actor using a
set of 91 isotropic Gaussian density functions distributed in 3D space. Each
Gaussian Gq is parametrized by its standard deviation σq, mean location μq in
3D, and density cq, which define the Gaussian shape parameters γ ={μq, σq, cq}q.
The combined density field of the Gaussians,

∑
q cqGq, smoothly describes the

volumetric occupancy of the human in 3D space, see Fig. 1. Each Gaussian is
rigidly attached to one of the bones of an articulated skeleton with bone lengths b
and 16 joints, whose pose is parameterized with 43 twist pose parameters, i.e. the
Gaussian position μq is relative to the attached bone. This representation allows
us to formulate a new alignment energy tailored to pose fitting in general scenes,
featuring analytic derivatives and fully-differentiable visibility (Sect. 5).

In their original work, Rhodin et al. [16] create 3D density models for tracked
shapes by a semi-automatic placement of Gaussians in 3D. Since the shape
of humans varies drastically, a different distribution of Gaussians and skele-
ton dimensions is needed for each individual to ensure optimal tracking. In this
paper, we propose a method to automatically find such a skeleton and optimal
attached Gaussian distribution, along with a good body surface. Rather than
optimizing in the combined high-dimensional space of skeleton dimensions, the
number of Gaussians and all their parameters, we build a new specialized, low-
dimensional parametric body model.
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Traditional statistical human body models represent variations in body sur-
face only across individuals, as well as pose-dependent surface deformations using
linear [57,58] or non-linear [28,33] subspaces of the mesh vertex positions. For our
task, we build an enriched statistical body model that parameterizes, in addition
to the body surface, the optimal volumetric Gaussian density distribution γ for
tracking, and the space of skeleton dimensions b, through linear functions γ(s),
b(s) of a low-dimensional shape vector s. To build our model, we use an existing
database of 228 registered scanned meshes of human bodies in neutral pose [59].
We take one of the scans as reference mesh, and place the articulated skeleton
inside. The 91 Gaussians are attached to bones, their position is set to uniformly
fill the mesh volume, and their standard deviation and density is set such that
a density gradient forms at the mesh surface, see Fig. 2 (left). This manual step
has to be done only once to obtain Gaussian parameters γref for the database
reference, and can also be automated by silhouette alignment [16].

The best positions {μq}q and scales {σq}q of Gaussians γi for each remain-
ing database instance mesh i are automatically derived by weighted Procrustes
alignment. Each Gaussian Gq in the reference has a set of neighboring surface
mesh vertices. The set is inferred by weighting vertices proportional to the den-
sity of Gq at their position in the reference mesh, see Fig. 2 (right). For each
Gaussian Gq, vertices are optimally translated, rotated and scaled to align to
the corresponding instance mesh vertices. These similarity transforms are applied
on γref to obtain γi, where scaling multiplies σq and translation shifts μq.

To infer the adapted skeleton dimensions bi for each instance mesh, we follow
a similar strategy: we place Gaussians of standard deviation 10 cm at each joint
in the reference mesh, which are then scaled and repositioned to fit the target
mesh using the same Procrustes strategy as before. This yields properly scaled
bone lengths for each target mesh.

Having estimates of volume γi and bone lengths bi for each database entry i,
we now learn a joint body model. We build a PCA model on the data matrix
[(γ1;b1), (γ2;b2), . . .], where each column vector (γi;bi) is the stack of estimates
for entry i. The mean is the average human shape (γ̄; b̄), and the PCA basis
vectors span the principal shape variations of the database. The PCA coefficients
are the elements of our shape model s, and hence define the volume γ(s) and bone
lengths b(s). Due to the joined model, bone length and Gaussian parameters are
correlated, and optimizing s for bone length during pose estimation (stage I) thus
moves and scales the attached Gaussians accordingly. To reduce dimensionality,
we use only the first 50 coefficients in our experiments.

To infer the actor body surface, we introduce a volumetric skinning app-
roach. The reference surface mesh is deformed in a free-form manner along with
the Gaussian set under new pose and shape parameters. Similar to linear blend
skinning [60], each surface vertex is deformed with the set of 3D transforms of
nearby Gaussians, weighted by the density weights used earlier for Procrustes
alignment. This coupling of body surfaces to volumetric model is as computa-
tionally efficient as using a linear PCA space on mesh vertices [34], while yielding
comparable shape generalization and extrapolation qualities to methods using
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more expensive non-linear reconstruction [33], see supplemental document. Iso-
surface reconstruction using Marching Cubes would also be more costly [30].

5 Pose and Shape Estimation

We formulate the estimation of the time-independent 50 shape parameters s
and the time-dependent 43T pose parameters P= {p1, . . . ,pT } as a combined
space-time optimization problem over all frames Ic,t and camera viewpoints c of
the input sequence of length T :

E(P, s) = Eshape(s)+
∑

t

(
Esmooth(P, s, t)+Epose(pt)+

∑

c

Edata(c,pt, s)
)
. (1)

Our energy uses quadratic prior terms to regularize the solution: Eshape penal-
izes shape parameters that have larger absolute value than any of the database
instances, Esmooth penalizes joint-angle accelerations to favor smooth motions,
and Epose penalizes violation of manually specified anatomical joint-angle limits.
The data term Edata measures the alignment of the projected model to all video
frames. To make the optimization of Eq. 1 succeed in unconstrained scenes with
few cameras, we solve in two subsequent stages. In Stage I (Sect. 5.1), we optimize
for a coarse skeleton estimate and pose set without the volumetric distribution,
but using 2D joint detections as primary constraints. In Stage II (Sect. 5.2), we
refine this initial estimate and optimize for all shape and pose parameters using
our new contour-based alignment energy. Consequently, the data terms used in
the respective stages differ:

Edata(c,pt, s) =

{
Edetection(c,pt, s) for Stage I (Sect. 5.1)
Econtour(c,pt, s) for Stage II (Sect. 5.2).

(2)

The analytic form of all terms as well as the smoothness in all model parameters
allows efficient optimization by gradient descent. In our experiments we apply
the conditioned gradient descent method of Stoll et al. [7].

5.1 Stage I – Initial Estimation

We employ the discriminative ConvNet-based body-part detector by Tompson
et al. [50] to estimate the approximate 2D skeletal joint positions. The detector
is independently applied to each input frame Ic,t, and outputs heat maps of joint
location probability Dc,t,j for each joint j in frame t seen from camera c. Impor-
tantly, the detector discriminates the joints on the left and right side of the body
(see Fig. 1). The detections exhibit noticeable spatial and temporal uncertainty,
but are nonetheless a valuable cue for an initial space-time optimization solve.
The output heat maps are in general multi-modal due to detection ambiguities,
but also in the presence of multiple people, e.g. in the background.

To infer the poses P and an initial guess for the body shape of the subject,
we optimize Eq. 1 with data term Edetection. It measures the overlap of the heat
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maps D with the projected skeleton joints. Each joint in the model skeleton has
an attached joint Gaussian (Sect. 4), and the overlap with the corresponding
heat map is maximized using the visibility model of Rhodin et al. [16]. We use a
hierarchical approach by first optimizing the torso joints, followed by optimizing
the limbs; please see the supplemental document for details. The optimization
is initialized with the average human shape (γ̄, b̄) in T-pose, at the center of
the capture volume. We assume a single person in the capture volume; people
in the background are implicitly ignored, as they are typically not visible from
all cameras and are dominated by the foreground actor.

Please note that bone lengths b(s) and volume γ(s) are determined through
s, hence, Stage I yields a rough estimate of γ. In Stage II, we use more informative
image constraints than pure joint locations to better estimate volumetric extent.

5.2 Stage II – Contour-Based Refinement

The pose P and shape s found in the previous stage are now refined by using a
new density-based contour model in the alignment energy. This model explains
the spatial image gradients formed at the edge of the projected model, between
actor and background, and thus bypasses the need for silhouette extraction,
which is difficult for general scenes. To this end, we extend the ray-casting image
formation model of Rhodin et al. [16], as summarized in the following paragraph,
and subsequently explain how to use it in the contour data term Econtour.

Ray-casting image formation model. Each image pixel spawns a ray that
starts at the camera center o and points in direction n. The visibility of a
particular model Gaussian Gq along the ray (o,n) is defined as

Vq(o,n) =
∫ ∞

0

exp

(

−
∫ s

0

∑

i

Gi(o + tn) dt

)

Gq(o + sn) ds. (3)

This equation models light transport in a heterogeneous translucent medium [61],
i.e. Vq is the fraction of light along the ray that is absorbed by Gaussian Gq. The
original paper [16] describes an analytic approximation to Eq. 3 by sampling the
outer integral.

Different to their work, we apply this ray casting model to infer the visibility
of the background, B(o,n)=1−∑

q Vq(o,n). Assuming that the background is
infinitely distant, B is the fraction of light not absorbed by the Gaussian model:

B(o,n) = exp

(

−
∫ ∞

0

∑

q

Gq(o + tn) dt

)

= exp

(

−
√

2π
∑

q

σ̄q c̄q

)

. (4)

This analytic form is obtained without sampling, but rather it stems from the
Gaussian parametrization: the density along ray (o,n) though 3D Gaussian
Gq is a 1D Gaussian with standard deviation σ̄q = σq and density maximum

c̄q = cq · exp
(
− (µq−o)�(µq−o)−((µq−o)�n)2

2σ2
q

)
, and the integral over the Gaussian
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Fig. 3. Contour refinement to image gradients through per-pixel similarity. Contour
color indicates direction, green and red energy indicate agreement and disagreement
between model and image gradients, respectively. Close-ups highlight the shape opti-
mization: left arm and right leg pose are corrected in Stage II. (Color figure online)

density evaluates to a constant (when the negligible density behind the camera
is ignored). A model visibility example is shown in Fig. 3 left.

To extract the contour of our model, we compute the gradient of the back-
ground visibility ∇B=(∂B

∂u , ∂B
∂v )� with respect to pixel location (u, v):

∇B = B
√

2π
∑

q

c̄q

σ̄q
(μq− o)�n(μq− o)�∇n. (5)

∇B forms a 2D vector field, where the gradient direction points outwards from
the model, and the magnitude forms a ridge at the model contour, see Fig. 3 cen-
ter. In (calibrated pinhole) camera coordinates, the ray direction thus depends
on the 2D pixel location (u, v) by n= (u,v,1)�

‖(u,v,1)‖2
and ∇n=(∂n

∂u , ∂n
∂v )�.

In contrast to Rhodin et al.’s visibility model [16], our model is specific to
background visibility, but more accurate and efficient to evaluate. It does not
require sampling along the ray to obtain a smooth analytic form, has linear com-
plexity in the number of model Gaussians instead of their quadratic complexity,
and improves execution time by an order of magnitude.
Contour energy. To refine the initial pose and shape estimates from Stage I
(Sect. 5.1), we optimize Eq. 1 with a new contour data term Econtour, to estimate
the per-pixel similarity of model and image gradients:

Econtour(c,pt, s) =
∑

(u,v)

Esim(c,pt, s, u, v) + Eflat(c,pt, s, u, v). (6)

In the following, we omit the arguments (c,pt, s, u, v) for better readability.
Esim measures the similarity between the gradient magnitude ‖∇I‖2 in the input
image and the contour magnitude ‖∇B‖2 of our model, and penalizes orientation
misalignment (contours can be in opposite directions in model and image):

Esim = − ‖∇B‖2 ‖∇I‖2 cos
(
2∠(∇B,∇I)

)
. (7)
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Fig. 4. Reconstruction of challenging outdoor sequences with complex motions from
only 3–4 views, showing accurate shape and pose reconstruction.

The term Eflat models contours forming in flat regions with gradient magnitude
smaller than δlow=0.1:

Eflat = ‖∇B‖2 max(0, δlow − ‖∇I‖2). (8)

We compute spatial image gradients ∇I = (∂I
∂u , ∂I

∂v )� using the Sobel operator,
smoothed with a Gaussian (σ = 1.1 px), summed over the RGB channels and
clamped to a maximum of δhigh = 0.2.

Appearance estimation. Our method is versatile: given the shape and pose
estimates from Stage II, we can also estimate a color for each Gaussian. This is
needed by earlier tracking methods that use similar volume models, but color
appearance-based alignment energies [7,16] – we compare against them in our
experiments. Direct back-projection of the image color onto the model suffers
from occasional reconstruction errors in Stages I and II. Instead, we compute the
weighted mean color āq,c over all pixels separately for each Gaussian Gq and view
c, where the contribution of each pixel is weighted by the Gaussian’s visibility
Vq (Eq. 3). Colors āq,c are taken as candidates from which outliers are removed
by iteratively computing the mean color and removing the largest outlier (in
Euclidean distance). In our experiments, removing 50 % of the candidates leads
to consistently clean color estimates, as shown in Figs. 4 and 9.

6 Evaluation

We evaluate our method on 11 sequences of publicly available datasets with
large variety, both indoor and outdoor, and show comparisons to state-of-the-
art methods (see supplementary document for dataset details). The quality of
pose and shape reconstruction is best assessed in the supplemental video, where
we also apply and compare our reconstructions to tracking with the volumetric
Gaussian representations of Rhodin et al. [16] and Stoll et al. [7].
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Fig. 5. Visual comparison of estimated body shapes at the different stages. In each
subfigure (from left to right): mean PCA (γ̄, b̄), Stage I, Stage II and ground-truth
shape, respectively.

Robustness in general scenes. We validate the robustness of our method
on three outdoor sequences. On the Walk dataset [3], people move in the back-
ground, and background and foreground color are very similar. Our method is
nevertheless able to accurately estimate shape and pose across 100 frames from
6 views, see Fig. 1. We also qualitatively compare against the recent the model-
free method of Mustafa et al. [42]. On the Cathedral sequence of Kim et al. [62],
they achieve rough surface reconstruction using 8 cameras without the explicit
need for silhouettes; in contrast, 4 views and 20 frames are sufficient for us to
reconstruct shape and pose of a quick outdoor run, see Fig. 4 (top) and sup-
plementary material. Furthermore, we demonstrate reconstruction of complex
motions on Subject3 during a two-person volleyball play from only 3 views and
100 frames, see Fig. 4 (bottom). The second player was segmented out during
Stage I, but Stage II was executed automatically. Fully automatic model and
pose estimation are even possible from only two views as we demonstrate on the
Marker sequence [3], see Fig. 6.

Shape estimation accuracy. To assess the accuracy of the estimated actor
models, we tested our method on a variety of subjects performing general motions
such as walking, kicking and gymnastics. Evaluation of estimated shape is per-
formed in two ways: (1) the estimated body shape is compared against ground-
truth measurements, and (2) the 3D mesh derived from Stage II is projected
from the captured camera viewpoints to compute the overlap with a manually
segmented foreground. We introduce two datasets Subject1 and Subject2, in

Table 1. Quantitative evaluation of estimated shapes in different stages and compari-
son to Guan et al.’s results [26]. We use three body measures (chest, waist and hips, as
shown on the right) to evaluate predicted body shapes against the ground truth (GT)
captured using a laser scan.
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c0t0 c0t10 c0t20 c0t30 c0t40 c0t50 c1t0 c1t10 c1t20 c1t30 c1t40 c1t50

Fig. 6. We obtained accurate results even using only two views on the Marker sequence.

addition to Subject3, with pronounced body proportions and ground-truth laser
scans for quantitative evaluation. Please note that shape estimates are constant
across the sequence and can be evaluated at sparse frames, while pose varies and
is separately evaluated per frame in the sequel.

The shape accuracy is evaluated by measurements of chest, waist and hip
circumference. Subject1 and Subject2 are captured indoor and are processed
using 6 cameras and 40 frames uniformly sampled over 200 frames. Subject3 is
an outdoor sequence and only 3 camera views are used, see Fig. 4. All subjects are
reconstructed with high quality in shape, skeleton dimensions and color, despite
inaccurately estimated poses in Stage I for some frames. We only observed little
variation dependent on the performed motions, i.e. a simple walking motion is
sufficient, but bone length estimation degrades if joints are not sufficiently artic-
ulated during performance. All estimates are presented quantitatively in Table 1
and qualitatively in Fig. 5. In addition, we compare against Guan et al. [26] on
their single-camera and single-frame datasets Pose1, Pose2 and Pose3. Stage I
requires multi-view input and was not used; instead, we manually initialized the
pose roughly, as shown in Fig. 8, and body height is normalized to 185 cm [26].
Our reconstructions are within the same error range, demonstrating that Stage II
is well suited even for monocular shape and pose refinement. Our reconstruction
is accurate overall, with a mean error of only 2.3 ± 1.9 cm, measured across all
sequences with known ground truth.

On top of these sparse measurements (chest, waist and hips), we also eval-
uate silhouette overlap for sequences Walk and Box of subject 1 of the publicly
available HumanEva-I dataset [63], using only 3 cameras. We compute how much
the predicted body shape overlaps the actual foreground (precision) and how
much of the foreground is overlapped by the model (recall). Despite the low
number of cameras, low-quality images, and without requiring background sub-
traction, our reconstructions are accurate with 95 % precision and 85 % recall,
and improve slightly on the results of Bălan et al. [15]. Results are presented in
Fig. 7 and Table 2. Note that Stage II significantly improves shape estimation.
The temporal consistency and benefit of the model components are shown in
the supplemental video on multiple frames evenly spread along the HumanEva-I
Box sequence.

Pose estimation accuracy. Pose estimation accuracy is quantitatively evalu-
ated on the public HumanEva-I dataset, where ground-truth data is available, see
Table 3. We tested the method on the designated validation sequences Walk and
Box of subject S1. Reconstruction quality is measured as the average Euclidean
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Fig. 7. Overlap of the estimated shape in Stages I and II for an input frame of Box

(left) and Walk (right) sequences [63]. Note how the white area (correct estimated
shape) significantly increases between Stage I and II, while blue (overestimation) and
red (underestimation) areas decrease. (Color figure online)

Table 2. Quantitative evaluation of Fig. 7. See Sect. 6 for definitions of Precision and
Recall.

Precision Recall

Walk Stage I 87.43 % 87.25 %

Walk Stage II 95.18 % 86.89 %

Box Stage I 93.26 % 81.11 %

Box Stage II 95.42 % 85.28 %

distance of estimated and ground-truth joint locations, frames with ground truth
inaccuracies are excluded by the provided scripts.

Our pose estimation results are on par with state-of-the-art methods with 6–
7 cm average accuracy [3,46,53,54]. In particular, we obtain comparable results
to Elhayek et al. [3], which however requires a separately initialized actor model.
Please note that Amin et al. [53] specifically trained their model on manually
annotated sequences of the same subject in the same room. For best tracking
performance, the ideal joint placement and bone lengths of the virtual skeleton
may deviate from the real human anatomy, and may generally vary for different
tracking approaches. To compensate differences in the skeleton structure, we also
report results where the offset between ground truth and estimated joint loca-
tions is estimated in the first frame and compensated in the remaining frames,
reducing the reconstruction error to 3–5 cm. Datasets without ground-truth data
cannot be quantitatively evaluated; however, our shape overlap evaluation results
suggest that pose estimation is generally accurate. In summary, pose estimation
is reliable, with only occasional failures in Stage I, although the main focus of
our work is on the combination with shape estimation.

Runtime. In our experiments, runtime scaled linearly with the number of cam-
eras and frames. Contour-based shape optimization is efficient: it only takes
3 s per view, totaling 15 min for 50 frames and 6 views on a standard desktop
machine. Skeleton pose estimation is not the main focus of this work and is not
optimized; it takes 10 s per frame and view, totaling 50 min.
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Fig. 8. Monocular reconstruction experiment. Our reconstruction (right) shows high-
quality contour alignment, and improved pose and shape estimates.

Fig. 9. In-studio reconstruction of several subjects. Our estimates are accurate across
diverse body shapes and robust to highly articulated poses.

Table 3. Pose estimation accuracy measured in mm on the HumanEva-I dataset. The
standard deviation is reported in parentheses.

Seq Trained on Our Amin Sigal Belagiannis Elhayek

et al. [53] et al. [46] et al. [54] et al. [3]

S1, Walk general 74.9 (21.9) — 66 68.3 66.5

HumanEva 54.6 (24.2) 54.5 — — —

S2, Box general 59.7 (15.0) — — 62.7 60.0

HumanEva 35.1 (19.0) 47.7 — — —

Limitations and discussion. Even though the body model was learned from
tight clothing scans, our approach handles general apparel well, correctly recon-
structing the overall shape and body dimensions. We demonstrate that even if
not all assumptions are fulfilled, our method produces acceptable results, such
as for the dance performance Skirt of Gall et al. [5] in Fig. 9 (top left) that fea-
tures a skirt. However, our method was not designed to accurately reconstruct
fine wrinkles, facial details, hand articulation, or highly non-rigid clothing.

We demonstrate fully automatic reconstructions from as few as two cameras
and semi-automatic shape estimation using a single image. Fully automatic pose
and shape estimates from a single image remains difficult.
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7 Conclusion

We proposed a fully automatic approach for estimating the shape and pose of a
rigged actor model from general multi-view video input with just a few cameras.
It is the first approach that reasons about contours within sum-of-Gaussians
representations and which transfers their beneficial properties, such as analytic
form and smoothness, and differentiable visibility [16], to the domain of edge-
and silhouette-based shape estimation. This results in an analytic volumetric
contour alignment energy that efficiently and fully automatically optimizes the
pose and shape parameters. Based on a new statistical body model, our approach
reconstructs a personalized kinematic skeleton, a volumetric Gaussian density
representation with appearance modeling, a surface mesh, and the time-varying
poses of an actor. We demonstrated shape estimation and motion capture results
on challenging datasets, indoors and outdoors, captured with very few cameras.
This is an important step towards making motion capture more practical.
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