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Abstract. In this work, we introduce a novel Recurrent Attentive-
Refinement (RAR) network for facial landmark detection under uncon-
strained conditions, suffering from challenges like facial occlusions and/or
pose variations. RAR follows the pipeline of cascaded regressions that
refines landmark locations progressively. However, instead of updating
all the landmark locations together, RAR refines the landmark locations
sequentially at each recurrent stage. In this way, more reliable landmark
points are refined earlier and help to infer locations of other challenging
landmarks that may stay with occlusions and/or extreme poses. RAR can
thus effectively control detection errors from those challenging landmarks
and improve overall performance even in presence of heavy occlusions
and/or extreme conditions. To determine the sequence of landmarks,
RAR employs an attentive-refinement mechanism. The attention LSTM
(A-LSTM) and refinement LSTM (R-LSTM) models are introduced in
RAR. At each recurrent stage, A-LSTM implicitly identifies a reliable
landmark as the attention center. Following the sequence of attention
centers, R-LSTM sequentially refines the landmarks near or correlated
with the attention centers and provides ultimate detection results finally.
To further enhance algorithmic robustness, instead of using mean shape
for initialization, RAR adaptively determines the initialization by select-
ing from a pool of shape centers clustered from all training shapes. As
an end-to-end trainable model, RAR demonstrates superior performance
in detecting challenging landmarks in comprehensive experiments and it
also establishes new state-of-the-arts on the 300-W, COFW and AFLW
benchmark datasets.
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1 Introduction

In facial landmark detection, a set of pre-defined key points on a human face are
automatically localized to solve various face analysis problems from face recogni-
tion [1] and face morphing [2,3] to 3D face modelling [4]. Among recent research
efforts to develop more accurate models for localizing facial landmark points
under unconstrained conditions [5-12], cascaded regression based approaches [8—
12] have demonstrated state-of-the-art performance in both efficiency and accu-
racy, even in challenging scenarios.

Cascaded regression methods progressively refine landmark detections
through multiple cascading stages beginning with the extraction of visual fea-
tures from current predicted landmarks that are used to update estimates of the
face shape!, which gives rise to new landmarks that are fed into the next stage
as inputs. In this way, landmark detection is progressively refined until conver-
gence. As the performance of these cascaded regression methods heavily depends
on the quality of the initial locations of landmarks as well as the visual features,
recent efforts have focused on enhancing robustness of detection methods e.g.,
smart restarts [13] and coarse-to-fine searching [12,14].

Input Robust Initializati ion-drit i Results

Fig. 1. Illustration of our proposed Recurrent Attention-Refinement (RAR) network.
Given an input face image, our model first produces a robust initial estimate of the face
shape specified by landmarks. RAR identifies a proper sequence of attention centers
which steer the refinement process and make the result robust to challenging conditions.

Recently, deep learning methods [15-18] have been successfully applied to
learn discriminative features for face analysis and demonstrated good perfor-
mance in detecting landmarks under moderate conditions. However, their per-
formance is still “fragile” under extreme scenarios such as severe occlusion or
large pose variations.

In this work, we propose a novel recurrent neural network-based facial land-
mark detection model, called recurrent Attentive-Refinement network (RAR),
to work under unconstrained conditions. RAR. follows a pipeline similar to cas-
caded regression methods that refines landmark detection results progressively
via multi-stage predictions. However, while existing cascading methods update

! The face shape depicts global spatial configuration of all the landmark points for a
face. Throughout the paper, we use shape to denote the collection of all the land-
marks.
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all landmark locations concurrently and globally, RAR refines landmark loca-
tions in a sequential manner at each recurrent stage as illustrated in Fig. 1.

Given an input face image, to obtain a good initial estimate for landmark
locations, RAR employs a robust initialization strategy that refines a prelimi-
nary landmark detection result by fitting it to a population prior on human face
shapes. Then, at each recurrent stage, RAR adopts a sequential decision making
policy to update the landmark points. Reliable information is collected from ear-
lier landmarks in the sequence which is then used to help detect other challenging
landmarks selected later. To automatically identify the sequence of landmarks
and refine them progressively, RAR employs two LSTM based components — an
attention LSTM (A-LSTM) and a refinement LSTM (R-LSTM) — that work col-
laboratively. At each recurrent stage, A-LSTM selects one landmark point with
highest reliability as an attention center? and R-LSTM refines those landmarks
that are close to the attention center. In this way, reliable information from the
attention center is communicated to other landmarks to better refine their loca-
tions. Landmark points that are occluded or noisy will be selected by A-LSTM
very late, and so their impact is effectively alleviated. Finally, context informa-
tion provided by other landmarks enables the challenging landmarks to be also
detected accurately. Therefore, RAR can provide accurate landmark detection
results even in presence of heavy occlusion or other extreme conditions. This
sequential detection procedure adopted by RAR is similar to the process how
people annotate landmarks of a face image: “easy” landmarks with strong dis-
criminative visual features are usually annotated first and “difficult” landmarks
are annotated later with the reference from earlier annotated landmarks.

The main contributions of this paper can be summarized as follows:

— We propose to reform the regression-based face landmark detection in a
sequential manner which is more robust to extreme face conditions;

— We present a recurrent attentive-refinement network to realize our sequential
formulation which seamlessly incorporates an attention LSTM and a refine-
ment LSTM to perform robust face landmark detection;

— We also develop a robust method to estimate the initial facial shapes which
works well even under very challenging conditions;

— Our framework provides new state-of-the-art performance on 300-W, COFW
and AFLW sets and significantly outperforms all existing methods.

2 Related Work

2.1 Regression Based Face Feature Points Detection

Regression based face landmark detection models [9,12,19,20] directly learn a
mapping function from the feature space to the shape space. To improve accu-
racy, the shape indexed features are often employed [10] and the regression

2 This name is inspired by the process how humans annotate facial landmarks man-
ually: one prefers to annotate the most clear and reliable landmark points first and
then infer the position of other landmark points according to overall face shape.
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process is often implemented in a cascade manner that learns a series of pro-
jection functions to iteratively update the positions. The face shape output at
convergence is then regarded as the landmark detection result. Denote the face
shape represented by L landmarks as the S € R*2, and the regression process
can generally be formulated as

S = Alslm Sy = Alsltnio{stfl + A8} = A}sltn_l»o{st*l + f(@(1,S:-1))}, (1)

where &(I,S;) is the shape indexed feature extractor and f is the regression
function, which is usually modelled through a linear projection process, i.e.,
ASy = f(P(1,5;)) = W P(1,Sy). Here W, is the projection matrix which needs
to be learned as the model parameters. Given a training set {I,,, S}, with
N samples, each of which consists of a face image I,, and an annotated true
face shape S7, the optimal projection matrix can be obtained by minimizing the

following objective function:
N
: * _Q _ Q 2
Hvl[}tnnz::l 1S5 St — Wi®(In, Stn)lla- (2)

To improve the effectiveness of the learned model, some regularizations can be
imposed on the model parameters to avoid over-fitting [12,19] and more complex
non-linear mapping functions have also been employed [21].

2.2 Recurrent Neural Network

Recurrent neural network (RNN) has drawn great interests from researchers in
the field of computer vision recently. Long short term memory (LSTM) [22]
is a typical recurrent neural network which has achieved great success in many
sequential data analysis applications, [23,24]. The computation within an LSTM
can be described as follows:

fee1 = o(Wy - [Cy, he, Py] + by), (3
i1 = o(Wi - [Cy, by, §y) + b;), (4
ot+1 = c(W, - [Cy, he, Py] + by), (5
Cii1 = tanh(We - [he, ] + be), (6

- =

where Cy, hy and @, are the inputs to the LSTM. Ws and bs are model para-
meters. o is the sigmoid activation function. f,i,0 are the forgetting, input and
output gates of a standard LSTM unit [22] which control the contribution of
historical information to current decision. The outputs of an LTSM are

Ciy1 = fi41Ct +it11Cria, (7)
ht+1 = O¢+1 tanh(CtH). (8)

For clarity, we denote the output of LSTM by h¢11 = LSTM(®;) with &, being
the only external signal that is passed into the LSTM.



Robust Facial Landmark Detection 61

3 Recurrent Attentive-Refinement Network
for Landmark Detection

3.1 Overview of RAR Network

We first provide an overview on the framework of our proposed RAR network
in Fig. 2, before introducing each of its components in details. As shown in the
figure, our proposed model first directly predicts the locations of all landmarks
via a convolutional neural network (CNN). We develop a robust initialization
module to alleviate the interference of noisy detection from conv8 and ensures a
good starting face shape for the following regression task.

We then extract shape-indexed features [17] from convolutional layers. After
that, these features along with the initial landmark estimation are fed into the
recurrent attentive-refinement network for progressively updating the landmarks.
At each recurrent step, two LSTM units are employed. The first one is an Atten-
tion LSTM (A-LSTM) that determines which region to be updated first by select-
ing an attention center among existing feature points, according to the current
global features and memory information. Then, starting with the selected atten-
tion center, landmarks around the center will be refined with high priority by
an Refinement LSTM (R-LSTM). Other landmarks can also be fine tuned once
an attention center close to them is selected. Repeating the attentive-refinement
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Fig. 2. The proposed framework for facial landmarks detection. (A) Deep convolutional
neural network is employed to perform softmax regression to the landmark locations.
A robust initialization module is introduced to select a good initial shape for further
refinement. (B) Recurrent attentive-refinement network (RAR) takes shape-indexed
deep features and past information as inputs and recurrently revises the landmark
locations. (C) Within the RAR unit, an attention module generates an attention center
at each step and re-weights regression features to encourage landmarks around the
attention center to be primarily refined.
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process for several times until convergence gives the final landmark detection
results. We now proceed to explain each component in details.

3.2 Robust Initialization

The quality of initial landmark estimation is critical for final performance of
the cascaded regression methods. Most of previous methods use an average face
shape learned from the training set as the initial estimation. This may fail the
regression model when processing faces with large pose and expression variations.

To get a good initial estimation of the face shape, we first design a deep
CNN model inspired by [16,17] to generate detection results of all landmarks.
However, detection of these landmark is often very sensitive to occlusion and it
will contaminate the following shape regression steps. We therefore propose a
more robust face shape initialization based on the detection results.

Intuitively, the initialized face shape should meet the following two consider-
ations: (1) the shape should be like a human face, or in other words, the shape
should satisfy a global configuration constraint on the landmarks; and (2) the
initial shape should not be far away from the one detected by CNN on the raw
face image, which is denoted as S, for ease of illustration. Denote the face shape
vector encoded by L landmark locations as S = [z1,y1;...;21,yr] € REXZ,
Based on the above two criteria, the process of looking for a good initial shape
So can be formulated as

So = argmin ||S — S|, s.t. S € F, (9)
S

where || -|| denotes the adopted distance metric and F is the space of all possible
face shapes.

Searching for the solution within F is not easy, as F itself is difficult to
model. Fortunately, when sufficient training face images with accurate shape
annotations are provided, we can take them as basis to span the space F. For-
mally, given a set of shapes from m training faces, {S1,...,Sn,}, any shape
S € F can be represented as S = >_.", 3;S;. The initial face shape Sy can be

estimated via
m

So = argmin ||S — Sy|, s.t. S = ZciSi. (10)
Shei i=1
In the above formulation, both Sy and S; could be noisy. Some landmarks in Sy
may be corrupted severely due to occlusion and some sample may be wrongly
labelled. We therefore further enhance the above objective by introducing the
ly-induced distance metric and regularization:

So = argmin ||S — Sqllo + Allc/lo, s.t. S = ZCiSi. (11)
S,c=[c;i] i=1

The above function is our final objective for robust face shape initialization.
Finding its global optimum is very time consuming due to the involved ¢y norm.
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Fig. 3. This figure depicts how an attention center steers refinement of landmarks
at different stages. A-LSTM selects a suitable landmark as the attention center at
a recurrent step. Landmarks close (connected with red solid lines) to the attention
center will be to refined significantly. Those landmarks distant (connected with green
dot lines) from the attention center will be slightly refined. (Color figure online)

To ease optimization, we introduce following two simple yet effective heuristics.
First, reduce the size of the problem. When m is large, the problem is extremely
hard to optimize. Therefore, we first apply K-means clustering on the shapes
S1,...,Sm to get K representative shapes {51, ..., Sk} and use these K shapes
as the basis of F. Thus the problem size is reduced from m to K. Secondly, we
adopt a RANSAC flavor method to filter out significant outliers in Sy and sample
some basis to evaluate the objective to find better initial shapes. The obtained
face shape with the best objective value is used as the initial face shape in the
following regression process.

3.3 Attention LSTM for Sequential Attention-Center Selection

Ideally, A-LSTM selects the most reliable landmark point as an attention center
first. Then it proceeds to find less reliable landmarks and finally addresses the
noisy landmarks (e.g., occluded ones or the ones lying in the face regions with
extreme illumination condition). As shown in Fig.3, at each recurrent stage,
A-LSTM selects an attention center. Locations of landmarks close to the atten-
tion center will be primarily updated at the current recurrent step and those far
away from the center are slightly refined. Compared with updating all the land-
mark points simultaneously, treating different landmarks separately in a proper
sequence can effectively alleviate the contamination from noisy landmark points
and reduce the accumulative errors in the recurrent process.

A-LSTM determines which landmark points to be selected for the current
step using a confidence driven strategy. By taking the features of all the landmark
points and history of selections as inputs, A-LSTM estimates the confidence
scores (or reliability) of all the landmark points first. The landmark having the
maximal confidence score at the current step is then selected as the current
attention center, ¢* € {1,..., L}. This process is formally written as

c¢* = argmax A-LSTM (@(It,gt); Wa,c) , (12)
ce{l,...,.L}
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where the operator &(-,-) extracts shape-indexed features according to current
predicted shape S; and A-LSTM outputs L confidence scores for the landmark
points, based on its input feature and parameter W,.

Training of A-LSTM. A-LSTM aims to find a suitable selection sequence of
landmarks such that the following long term attention center selection reward
can be maximized:

o0
Ra= Y 0" "R(Si-1,5), (13)

t=1
where n < 1 is the discount factor and ¢ indexes the recurrent steps. Here
R(S;-1,5:) is the intermediate reward measuring how much improvement
brought by updating the shape estimate from the S;_; to S; and it is defined as

R(Si-1,5) = |TLAS-1 |3 — T AS 3, (14)

with AS; = S* — S’t as the offset of current shape estimate from the ground
truth S*. I, € R” is the distance-based coefficient vector which re-weights each
landmark point in the offset calculation in proportion to their distance from the
attention center landmark S; (recall ¢* is attention center landmark index):

Iy =g, f] with o) = kexp(—|[SE — S¢7II2,/(2D)?),  (15)

where Dy is the inter-ocular distance based on the shape estimate S't and Kk =
1/ Zle 4} is a normalization factor. Here 2D; gives an estimation of the width
of the face bounding box.

Training A-LSTM to maximize the long-term award R, encourages the A-
LSTM to make a sequence of decisions on the landmark selection such that the
selected attention center would have positive impact on the overall landmark
detection in the future. Here for light notations, we hide the sample index n €
{1... N} and this notation is used throughout the entire section.

3.4 R-LSTM for Attention-Center-Driven Shape Refinement

Once A-LSTM selects one attention center landmark, the refinement compo-
nent will focus on refining landmarks around the attention center. We adopt a
second LSTM model to perform refinement, which is called Refinement LSTM
(R-LSTM). R-LSTM will suppress refinement of landmarks far away from the
attention center as their correlation to attention center is small. Thus, at each
recurrent step, only a limited number of landmarks are updated significantly and
the rest are slightly updated. Given the attention center from A-LSTM, we first
extract attention-center aware global feature for current shape S,:

where 7! for | = 1,..., L is the distance-based weighting coefficient for the I-th
landmark whose computation is given in Eq. (15). The ¢! represents a shape-
indexed feature extracted around the [-th landmark from the shape S,. R-LSTM
takes the features and generates offset shape for update.



Robust Facial Landmark Detection 65

Training of R-LSTM. The parameters of R-LSTM are optimized through
minimizing the following loss:

Ll = ||T/(ARS; — ASy)|2,, with ApS, = al,R-LSTM (@(5;)) (17)

where AS; = S} — S, is the offset from the ground truth. R-LSTM predicts an
offset ARS; specifying where the shape should be updated towards. We use a
fixed scaling factor av = 128 to rectify the outputs of R-LSTM, considering the
dimension of images is 256 x 256 and the magnitude of R-LSTM falls in a small
range of (—1,1). Without scaling, R-LSTM only provides negligible shape update
at each step. We observe that the scaling factor can significantly accelerate the
convergence rate for training R-LSTM. In the loss, I} further ensures that RAR
to focus on refining landmarks around the attention center at a certain step.

3.5 Training and Testing Strategies

Considering costs from both attention center selection and refinement, the overall
cost to be optimized for training RAR is

N

T
Z Z _’YtilRa(stfl,na St,n) + £%7n7 (18)
t=1

n=1

where T is a pre-defined number of recurrent steps which also serves as an early-
stop regularization and NN is the number of training samples.

This overall objective function can be optimized in an end-to-end manner by
applying the standard error back propagation method. Filters of the convolu-
tional layers are tuned not only by the softmax regression loss from conv8 when
performing direct landmark prediction but also the overall shape regression loss
in Eq. (18). This ensures the learned features are much more informative for
landmark detection compared with hand-crafted features, e.g. SIFT and HOG.

At the testing stage, a face image is first passed through the CNN for feature
extraction. Landmark locations estimated via conv8 in the CNN, Sy, are then
used to search for a good initial shape Sy as described in Sect. 3.2. After that,
Sy is fed into the RAR and updated recurrently as follows:

Sii1 =S8+ [LARS; (19)
where AgS; and I are the predicted offset and the distance-based weighting

vector as given in Sect. 3.3.

4 Experiments

4.1 Implementation Details

Configuration. Our model is developed with the open source platform
Caffe [25]. All the images including both training and testing ones are cropped



66 S. Xiao et al.

according to provided bounding boxes and scaled to 256 x 256 pixels. Note that
in testing, before evaluation we project the detected landmark locations on the
256 x 256 image back to the images of the original size, in order to avoid the
possible truncation error due to image scaling. We empirically set the number
of recurrent regression stages as T = 15 as we do not observe any substantial
performance enhancement by further increasing the number of recurrent steps.
Our model is trained via standard stochastic gradient descent method with a
momentum of 0.9, a mini-batch of 2 images and a weight decay parameter of
0.0001. The weights of LSTM are randomly initialized with a uniform distrib-
ution of [—0.1,0.1]. Relevant layers in our model are initialized using the pre-
trained VGG-19 model provided in [26]. All experiments are conducted using
one Nvidia Titan-Z GPU. During test, it takes about 250 ms for our model to
process a 256 x 256 face image.

Data Augmentation. Our RAR is trained on 300-W [27] training set which
consists of 3,148 face images. We also generate training samples with occlusions
incurred by natural objects, e.g., sunglasses, medical masks, phones, hands, and
cups, on the original 300-W images to introduce more occluded samples. Training
samples are further augmented by rotation, scaling and mirroring. Note that
in all the baselines we compare with data augmentation is also performed in
different ways. In [9,19], augmentation is performed by introducing bounding
box disturbances and random scaling/rotatoin to the original face images. In [28],
the authors generate occluded face images with synthesized plausible coherent
occlusion patterns to train an occlusion-aware model.

4.2 Benchmark Datasets

We evaluate our model on 300-W [27], Caltech Occluded Face in the Wild
(COFW) [13] and Annotated Facial Landmarks in the Wild (AFLW) [29]. 300-
W is a standard benchmark for facial landmark detection. The COFW consists
of a large number of occluded face images. AFLW is another benchmark which
contains face images with large pose variations and heavy partial occlusion.

300-W, COFW and AFLW are annotated with 68, 29 and 21 landmarks
respectively. To evaluate our model on COFW, we follow the steps mentioned
n [28]. We also evaluate our model for detecting five key landmark points, i.e.
eye centers, mouth corners and nose tip, on the AFLW benchmark. This follows
exactly the same settings as stated in [18]. Common evaluation metric is used,
i.e. mean error normalized by inter-ocular distance [13,19,20].

We compare performance of our model with results from recent publications.
For 300-W and AFLW, cascaded regression-based models ESR [§], SDM [9],
RCPR [13], LBF [19], CFSS [12] showed great performance improvement on the
benchmark over the past years. Deep learning-based methods CFAN [14] and
TCDCN [18] showed slightly better performance as compared to those regression-
based methods. We compare our performance on COFW with recently published
algorithms RCPR, HPM [28], and RPP [30] which are designed to handle occlu-
sion. We further compare our results with those mentioned methods on AFLW.
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4.3 Results

Results on 300-W. We report the landmark detection results of our proposed
model as well as results of current state-of-the-art methods on the 300-W testing
set. The results are listed in Table 1. From the table, one can observe that our
proposed model significantly outperforms the state-of-the-art, TCDCN [18]. Our
model has improved on it for more than 10 % on the full set and 14 % on the com-
mon set. Note that TCDCN pre-trained their facial landmark detection model
on the Multi-Attribute Facial Landmark database (MAFL) [18] which consists
of 19,000 different face images with multiple facial attributes information and
tuned their model on 300-W. On the other hand, our model is trained only on
about 3,148 original face images from 300-W training set. Compared with the
best ever reported regression-based method, i.e. CFSS [12], our model brings
error reduction up to 16.3% and 12.9% on the challenging and common set.

Table 1. Landmark detection results on different subsets of the 300-W dataset.

Methods Helen | LFPW | Common set | Challenging set | Full set
RCPR [13] |5.67 |5.93 6.18 17.26 8.35
SDM [9] - - 5.57 15.40 7.50
CFAN [14] |5.44 |5.53 5.50 - -

LBF [19] |- - 4.95 11.98 6.32
CFSS [12] 4.87 |4.63 4.73 9.98 5.76
TCDCN [18] |- - 4.8 8.6 5.54
RAR 4.30 [ 3.99 4.12 8.35 4.94

Results on COFW. Table 2 shows the results of our model and baselines on the
COFW dataset. It can be seen that our model outperforms all reported results on
this dataset. In particular, one model gives 19.2 % performance improvement over
the state-of-the-art [28]. We also report failure rates of the compared methods on
this dataset in Table 2. One can observe that our model reduces the failure rate
dramatically. For example, compared with the best baseline HPM, our model
reduces the failure rate from 13.24 % to 4.14 %. Small failure rate also indicates
the robustness of our framework to various occlusions from the dataset.

We also visualize some example detection results on COFW in top row of
Fig. 4. From the examples, one can observe that our model can accurately detect
the landmark points even for faces with heavy occlusion. The results clearly
demonstrate the strong robustness of our model to occlusion and other extreme
conditions, benefiting from the built-in attention and sequential selection model.

Results on AFLW. Table 3 shows the results of our model and baselines on
the AFLW dataset. The proposed model outperformed all existing methods for
at least 5% which further verifies our model’s robustness on datasets with large
poses and occlusion.



68 S. Xiao et al.

Table 2. Mean error on COFW

Table 3. Mean error on AFLW

Methods Normalized ME | Failure rate Methods Normalized ME
RCPR [13] |8.50 20.00 % RCPR [13] 11.6

HPM [28] 7.46 13.24% SDM [9] 8.5

RPP [30] 7.52 16.2% CFAN [14] 10.94

TCDCN [18] | 8.05 - TCDCN [18] | 7.6

RAR 6.03 4.14 % RAR 7.23

4.4 Discussion

Attention Selection and Shape Updating. It is interesting to look into how
the proposed A-LSTM selects attention centers at different stages for different
faces. Table 4 visualizes the frequency of different landmarks being selected as
the attention center. From the results, one can observe that at the early recurrent
stages, i.e., S1 to S5, the A-LSTM tends to more often select landmarks from
the face centers with strong discriminative features, e.g., the ones on eyebrow,
mouth and nose tip. Indeed, this policy — localizing central landmarks first —
is essentially useful when the initial shape is not good. Global shape refinement
at early stages can significantly improve the detection performance and selecting
attention centers around the center of a face can help refine all the landmarks. In
contrast, as shown in Table 4, the A-LSTM usually selects landmarks on the face
contour at very late stages such as S11 to S15. This is reasonable as landmarks
on the face contour are difficult to annotate due to their weak discriminative
features and should be inferred with help from other points.

We also perform ablation studies on the effectiveness of attention LSTM and
sequential selection on landmarks. In the experiments, we set the parameter 7/
in Eq. (16) to be 1 for all possible attention centers. By doing so, the impact of
selecting attention center via A-LSTM is actually disabled as the features and
training objectives are independent of the selected center now. Then we train the
“attentionless” model under the same setting as above and its normalized mean
error on 300-W and COFW is 5.02 and 6.11 respectively. The results are worse
than the ones given by the RAR. This verifies the essential role of the attention
center in the landmark prediction process. Sample images from last two columns
of Fig. 4 also indicate that our model can perform better in detecting fine-grained
landmarks. Since the RAR explicitly selects region of interest to refine at each
step, an occluded area can be focused at certain time step and landmarks within
the area will be carefully refined. However, without the attention mechanism,
refinement is performed globally at every step and landmarks heavily occluded
can hardly be explicitly refined.

Approaches for Estimating the Initial Shapes. Recent regression-based
methods usually use mean shape [9,19] or multiple random shapes [8,13] as
an initial estimate of the shapes. However, those methods hardly prevent the



Robust Facial Landmark Detection 69

Table 4. Attention center selection frequency at different stages. Y-axis represents
the mean regional error of all 300-W samples calculated by taking average of weighted
errors by I;. The area of the red circle indicates the frequency of that landmark being
selected as an attention center. Landmarks with top-10 frequencies are shown.
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regressed shape from being trapped at a local optimum if the face pose is large. In
contrast, our model directly estimates the initial shape with a softmax regression
layer (i.e., the Conv8 layer) and selects a good initial shape based on proposed
robust initialization scheme (Sect.3.2). This approach provides a good initial
shape closer to the ground truth compared with conventional shape initializa-
tion methods, which offers a solid foundation for further shape refinement. This
part investigates how the robust initialization strategy contributes to the final
performance. Table5 shows the results of four different initialization strategies
including directly applying regression on the output of the conv8 layer (denoted
as “direct” in the table), using mean shape and random shape as well as our
proposed robust one. We also compare them with the “baseline” results that are
directly output by the conv8 layer, From the results, one can observe the conv8

Fig. 4. Testing results on selected samples from the COFW testing set. Images from
the top row show results of our full model. Images from the bottom row show results of
other models, i.e. mean shape initialization(1,2), random initialization(3,4) and direct
regression(5,6) and “attentionless” model(7,8).
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Table 5. Mean error of RAR with different initial shape estimation approaches.

Dataset | Baseline | Direct | Mean shape | Random shape | Robust
300-W | 6.24 6.66 5.26 5.22 4.94
COFW |30.14 11.52 6.24 6.12 6.03
AFLW | 8.14 8.15 7.36 7.42 7.23

offers very bad estimation on the COFW and this indicates that direct detec-
tion is very sensitive to occlusion. Table 5 also shows directly initializing the face
shape gives the worst performance. This verifies our earlier concern that noisy
landmarks indeed contaminate the training process and hurt the final results.

Images from the bottom row of Fig. 4 visualize the performance differences.
Direct regression can hardly guarantee a normal face shape after recurrent regres-
sion. Outlier landmarks from Sy shows direct impact over the final predicted
shape. Mean shape and random shape initialization methods are more sensitive
to occlusion as compared to the robust initialization method. This is possibly
because too much attention is paid to correcting the initial error and occlusion
is not specifically considered by the A-LSTM’s under this situation (Fig.5).

Comparison with Canonical Regression Methods. Canonical regression
based methods try to optimize the shape regression objective independently at
different stages [9,19]. Lacking information shared across consecutive regression
stages makes those methods easy to be trapped at a bad local optimum. In
contrast, the RAR employs LSTM to memorize all benefiting information from
previous stages for both attention center selection and landmark refinement.
This leads to superior performance of our model as shown in Tables1 to 3.

Fig. 5. RAR shows superior results on samples from 300-W challenge set.

5 Conclusion

In this paper, we developed a facial landmark detection framework which
is shown to be robust to challenging conditions via the developed recurrent
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attentive-refinement network. The framework first directly detects landmarks
using a CNN model. The detected landmarks are then used to initialize a good
starting shape by alleviating the negative impact of noisy landmarks. Deep shape
indexed features are extracted at each regression stage and passed to the A-
LSTM module to select attention center at each stage. R-LSTM module then
refines landmarks close to the center with high priority. This framework was
extensively evaluated on the 300-W, COFW and AFLW datasets and showed
significant performance improvements over the state-of-the-arts.
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