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Abstract. Feasible rendering of massive scenes with hardware capabili-
ties and scene data size concurrently growing has been an active subject
of research in recent decades. While past attempts showed realtime ren-
dering on basic consumer workstations, frame rates can still be too low
for the growing demand in the professional CAD industry and sectors
like entertainment for stable high frame rates. The work described in this
paper focuses on fulfilling this demand in the context of CAD software.
A fast custom application of the Depth Image Based Rendering (DIBR)
technique is used to construct a view synthesis system generating the
required rate using past frames of a classical parallel renderer. Artifacts
associated with this technique are addressed in a cost-effective manner.

1 Introduction

In the past decade great advances have been made in the field of culling and
out-of-core techniques, enabling the interactive display of massive scenes with
acceptable quality [1,9] on standard workstation hardware. Still, view depen-
dent scene complexity combined with insufficient hardware capabilities result in
frequently changing frame rates, often below the acceptable. This creates two
main problems:

– Bad viewing comfort: A stable high frame rate is needed (60 Hz and above)
– Input lag: Ensuring a low user input delay prevents user irritation

Failing to comply with these requirements can have a profound impact on usabil-
ity and productivity, for example motion sickness with virtual reality.

The main target applications for this paper are renderers of professional
CAD. Based on the insufficient image sequence of a slow CAD renderer we gener-
ate a new one at the required frame rate. For this, Depth Image Based Rendering
(DIBR) is adapted as a novel fast GPU application.

The following Sect. 2 briefly summarizes DIBR while the rest of this paper is
organized as follows: Sect. 2.1 gives previous work in the field of DIBR. Section 2.2
describes possible and previously implemented DIBR applications on the GPU.
Following a general description of our system in Sect. 3, the projection method
and its’ GPU implementation is detailed in Sect. 4. Section 5 shows the solu-
tions to reduce artifacts. Finally, an empirical analysis is given in Sect. 6 and
conclusions in Sect. 7.
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2 Depth Image Based Rendering

The first appearance of the DIBR term can be found in the work of C. Fehn [7],
while the previous common designation was 3D image warping [13,18]. It involves
the following pixel transformation:

pt = PtRtTtT
−1
s R−1

s P−1
s ps

pt = MtM
−1
s ps (1)

A pixel ps is transformed from the source image to a target view screen space
position pt by inverting the source view camera’s projection Ps, view rotation Rs

and translation Ts and applying the transformations of the target view’s camera.

Fig. 1. Naive DIBR projections show artifacts: (a) The forward mapping problem and
(b) information gaps (black)

DIBR suffers from a problem known as holes [17,22], of which Fig. 1 shows
two distinctions. The first results due to texture mapping from source to target
space, which is not necessarily surjective, while the second occurs when scene
geometry visible from the target view is occluded in the source view.

2.1 Related Work

One popular field of applications of DIBR has been pseudo stereoscopic image
generation. The work of Fehn included a simplified version of the general 3D warp
by formulating the projection only in x-direction of the screen space [7] and a
gaussian source depth blur to avoid holes. Zhang et al. proposed an asymmetrical
gaussian filter creating fewer distortions in the target image [22], which Horng
et al. improved by additionally rotating the kernel by local depth edge directions
and constricting the filter to hole regions [11].

Since these filling methods proved to be unsuitable for the general projection
case, Ndjiki-Nya et al. [16] and Xi et al. [21] employed a more complex method via
Inpainting combined with a background model, except the approaches were not
real time capable. The latter used a higher quality projection method involving a
forward projection to target space of the source depth buffer, subsequent depth
hole filling and finally a backward projection to sample the color image. This idea
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has also been used by Oh et al. [17] and Zinger et al. [23]. Zinger et al. additionally
accelerated the forward-backward projection by only backprojecting pixels which
needed to be filled in the target depth image.

Image space triangulation for general warping was used by Fu et al., who
constructed a topological ordering of the generated triangles to render without
a z-buffer [8]. Mark et al. proposed an online method for free camera movement,
which renders necessary reference frames from predicted future viewpoints [13].
Ghiletiuc et al. applied a cube map technique in an online variant, continu-
ally creating small cube map meshes based on the last known client camera
on a server and sending them to a mobile client for conventional rendering
[10]. Another mesh rendering variant was proposed by Didyk et al. who use
a multi pass mesh refinement through a geometry shader to create pseudo stereo
images [5].

2.2 GPU-Suitable DIBR

A straightforward way of implementing DIBR on a GPU is point rendering.
Every pixel of the source image is assigned a vertex with a position derived
from the pixel’s texture coordinates and the corresponding depth value, which
is transformed by Eq. (1) in the vertex shader. Chang et al. utilize such a simple
point rendering [2]. This method clearly shows the forward mapping problem,
which may be reduced by employing splatting [20]. However, only quadratic and
circular reconstruction kernels are currently directly hardware-supported, which
either introduces new artifacts, due to inaccurate splatting forms, or decreased
performance, when implementing more complex kernels.

A second GPU-adaptable DIBR method was introduced by Morvan et al. [15],
who separated the projection (1). His first step, a source space homogeneous
translation, is done first line- and then column-wise for easy neighbor interpola-
tion, solving the forward mapping problem. However, this step can have a large
memory footprint and needs to write an arbitrary amount of pixels, requiring
implementation through GPGPU. In contrast, the second step, a perspective
texture mapping, is directly supported by the traditional GPU-pipeline [15].

GPU DIBR projection can also be implemented by using triangle meshes.
The method creating the basis for this paper has been used for example by Mark
et al. [13]. Vertices are placed in the center of each pixel, with each quadruple of
neighboring vertices being connected via two triangles. This avoids holes caused
by forward mapping, but new problems are introduced as the assumption of one
continuous surface over the whole image does not hold in general (see Sect. 5).
The constructed mesh is rendered conventionally as a textured model (the tex-
ture being the source color image). Some publications therefore call these meshes
impostors [4,10].

3 General System Overview

Figure 2 depicts the two parallel independent processes resident on the same
hardware: the classic renderer and the DIBR projector. View camera changes
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Fig. 2. The constructed system

are not directly reflected in the source renderer, but rather evaluated by a predic-
tion algorithm generating the final cameras used for source rendering (Sect. 5.1).
Rendered source frames are buffered for asynchronous retrieval by the DIBR tar-
get renderer, which uses a subset of buffered frames and the current view camera
to synthesize an expected view image for the user. Consequently, the user input
and the frame display are decoupled from the original renderer, ensuring low
input delay and hiding varying frame rates of the source renderer.

4 On-the-Fly Tessellation Reprojection

One critical observation about the triangle mesh method of Mark et al. [13]
is its’ high rendering cost. Given the pixel width m and height n of a source
image, the amount of triangles needed is 2(m − 1)(n − 1). We reduce this cost
by dynamically tessellating the source image space for every DIBR projection.
The higher efficiency of this method is shown in Sect. 6.1.

Contrary to the geometry shader method of Didyk et al. [5] a single pass
tessellation shader is used. It carries more potential for concurrency, as gen-
erated vertices are processed in parallel after fixed-function tessellation, which
is not possible in a geometry shader. Also, the multi-pass transform feedback
has a higher performance and memory access overhead than using hardware-
accelerated single pass tessellation.

4.1 Mesh Layout Considerations

The original mesh structure used by Mark et al. [13] exhibited the problem of
deleting a half-pixel edge at the image’s border and on edges between surfaces
of different depth (see Sect. 6.2 for a comparison). To avoid this problem, every
source pixel is treated as a small surface by placing the vertices on the pixel
edges instead of the center. The starting mesh before tessellation however is a
coarse set of �m×n

t2max
� patches, m× n being the source image resolution and tmax

the tessellation factor used.
As our approach is single pass, a binary decision whether to tessellate a patch

is made. When tessellated, a coarse starting mesh with few large patches could
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Fig. 3. (a) Edge regions of the depth map are (b) queried from the edge mipmap of
a level corresponding to the (c) patch size. (d) Intermediate triangles are (e) quasi
degenerated through vertex positioning. (f) A resulting projection

introduce many unnecessary triangles. Contrarily, many small patches are costly.
We empirically chose a tessellation factor tmax of 16 for our target hardware
(listed in Sect. 6).

Surfaces with largely differing source depth values need to be disjoint in the
generated mesh to avoid artifacts (see Sect. 5). Hardware tessellation however
produces connected triangle grids from patches. For a quasi-separation, further
rows and columns of intermediate triangles are introduced, which are discarded
later, modifying the required tessellation factor to 2tmax − 1.

4.2 Depth Guided Subdivision

For reduced memory bandwidth usage the coarse starting mesh is stored only
as an indexed quad set in GPU memory, while the source image space positions
are generated during vertex processing (vertex shader) from the vertex ids.

To decide on patch subdivision Didyk et al. [5] use a disparity measure triv-
ially calculated from the depth image, as their stereoscopic projection case only
involves camera translation on the local x-axis. Such a measure is however not
trivial to calculate for free camera movement, as the whole pixel region in ques-
tion would need to be fully projected first to evaluate the pixel displacement.

Instead, we create a simple impostor by tessellating regions of high depth
variance. We precalculate an edge image via a thresholded laplace operator on
the depth image and use its’ mipmap level corresponding to the coarse mesh
(�log2 tmax�) to evaluate a present edge in a patch’s image region (see Fig. 3).

Vertex Image space positions after fixed function tessellation are assigned

vij = v00 +
(�0.5 i�

m
,
�0.5 j�

n

)
, (2)

with v00 being the lower left edge vertex of the patch, i, j ∈ [0; 2 tmax − 1] the
vertices’ relative ids in the patch and m,n the width and height of the source
image. This quasi degenerates the intermediate triangles (Fig. 3(e)).
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Algorithm 1. Vertex positioning

function Vertex Position(v00, i, j, m, n, T )

vij ← v00 + ( �0.5 i�
m

, �0.5 j�
n

)
if edge(vij) > 0 then

v′
ij ← vij + ( 0.5−i mod 2

m
, 0.5−j mod 2

n
)

N ← {vij + w|w = (x, y), x ∈ {− 1
2m

, 1
2m

}
, y ∈ {− 1

2n
, 1
2n

}}

N ′ ← {w ∈ N ||depth(w) − depth(v′
ij)| < T

}

dij ←
∑

w∈N′ depth(w)

|N′|
else

dij ← depth(vij)
end if
return (vij , dij)

end function

Vertices not residing on depth edges are assigned linearly interpolated depth
values fetched directly at their image position. For edge vertices this would
create invalid depth values [10] and thus a simple reconstruction similar to [21]
is employed by averaging all neighboring pixel depths that are closer than a
threshold T to the depth of the reference pixel, given by

v′
ij = vij +

(0.5 − i mod 2
m

,
0.5 − j mod 2

n

)
. (3)

The full vertex positioning is summarized in Algorithm 1. Resulting vertices
are transformed using Eq. (1) to finally obtain the desired reprojection.

4.3 Mesh Reduction

To lower the cost of the added intermediary triangles in Sect. 4.1 the global
tessellation amount can be reduced. To exploit present edge mipmaps the amount
of subdivisions and the assumed source image size during vertex positioning is
simply decreased by a power of two, i.e. t′max = � tmax

2i � and (m′, n′) = (�m
2i �, � n

2i �)
and the initial coarse mesh constructed accordingly.

The results of this procedure are exemplified by the reprojections in Fig. 4.
A color bleeding effect can be seen on some object boundaries, which is induced

Source-Data © The Boeing Company - Used with permission Source-Data © The Boeing Company - Used with permission Source-Data © The Boeing Company - Used with permission Source-Data © The Boeing Company - Used with permission

(a) (b) (c) (d)

Fig. 4. Downsampling levels (a) 0, (b) 1, (c) 2, and (d) 1 with artifact suppression
(artifacts in enlarged frames) (Color figure online)
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through a mismatch between the real source pixel depth and the mipmapped
depth of the impostor geometry. This effect can be suppressed by slightly shifting
the texture coordinates away from an edge (see Fig. 4(d)). General image quality
is preserved by still accessing the full resolution source color image.

5 Artifacts

Artifacts typically occurring in mesh based DIBR applications are so called
skins [10] or rubber-sheets [4,13], which are triangles spanning depth edge
regions, creating false surfaces. The projection method of Sect. 4 already removes
them implicitly by discarding the intermediate triangles, creating holes. Addi-
tional holes can occur on edges between patches of different tessellation strength
(the T-Junction problem [5]). Other artifacts are created by dynamic lighting.

5.1 Hole Filling Through Multi-camera Look-Ahead-Rendering

Different methods for hole filling have already been proposed in literature:
Pseudo stereo synthesizers like [7,11,21,22] rely on some form of Inpainting
approach, which are either clearly noticeable when applied to larger hole areas
or too costly for interactive display. Other works use a combination of multiple
sources from either different views (multi-camera composition) [2,3,6] or layered
images from the same view (depth peeling) [14,18].

To avoid increasing time differences between consecutive source frames, we
did not use depth peeling. Rather, a cost-efficient multi-camera composition is
achieved by buffering and projecting a set of past source frames.

For the buffering to be effective, predicted source cameras are used
rather than the current user camera. Mark et al. already experimented with
a similar setup using simulated prediction through random jittering of a known
camera path [13]. The prediction is based on a simple linear extrapolation shown
in Fig. 5, evidently not accurately reflecting a possible non-linear camera path,
but sufficient if the time distance between cameras is small [13].

User camera
Predicted camera

Fig. 5. Linear camera prediction
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5.2 Additional Redundancy

Projecting all buffered source images for one synthetic frame is not cost-efficient,
due to increasingly distant views carrying decreasingly useful information. For
quick selection of a meaningful subset the following distance measure is applied:

dist(cs, ct, rs, rt) =
1 + ‖cs − ct‖2
0.5(rs ◦ rt + 1)

− 1, (4)

the conservative assumption being decreasing image quality with increas-
ing square euclidean distance of source and target camera positions ci (pixel
areas change proportionally) and with increasing divergence of the cameras’
normalized view directions ri (◦ being the dot product).

In addition, the source frames are rendered with a larger field of view (FOV)
compared to the target camera’s, providing interception of holes caused by cam-
era rotation. As a consequence, the source frames need to have a higher resolution
to avoid blur in the projections.

5.3 Avoiding Lighting Artifacts

Time-varying lighting like specularities or from animated lights can also cause
artifacts: Already shaded scene portions from different source images create not-
icable wrong shading in the synthesized image (see Sect. 6.2 for an example).
Deferred shading via G-Buffer rendering [19] was implemented as a remedy.

Algorithm 2. Deferred lighting of a target pixel

function Indirect GBuffer Lighting(pxy, sid, light)
if stencil(pxy) �= sid then

return � pixel unwritten or belonging to different source
else

p′
xy ← target(pxy) � coordinates from DIBR pass

fgbuffer ← source[sid](p′
xy) � source G-Buffer pixel

return apply lighting(fgbuffer, light)
end if

end function

To keep the footprint of the DIBR renderer small we avoid heavy GPU mem-
ory write access by using an indirect approach shown in Algorithm 2: For each
target pixel, only texture coordinates referencing the source G-Buffer and a sten-
cil buffer containing the source’s id are written. Deferred shading then applies
each light for each source excluding unrelated target pixels by early stencil test-
ing against the source id and fetching the required source G-Buffer pixels via
the texture coordinates.
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6 Analysis

The method described previously has been implemented on a Windows 7× 64
platform in C++ and OpenGL, with the executing hardware including an Intel
Core i7-3820 CPU and a NVIDIA GeForce GTX 650 GPU. Two CAD scenes
where used for evaluation: a 777 plane model with approx. 300 million triangles
of The Boeing Company and an 8×8×8 replicated Powerplant model of the Uni-
versity of North Carolina yielding approx. 6.5 billion triangles. 3DInteractive’s
VGR renderer [1] was used as the source renderer.

6.1 Rendering Time

Both renderers were executed simultaneously during scene flythrough. Two
sources were used for each synthesis with a source FOV of 110◦and a target
FOV of 90◦(the source images were approx 1.43× the target image size), with
1× mesh downsampling enabled. Methods described in Sect. 2.2 were also imple-
mented on the GPU for comparison.

Table 1 shows Morvan’s method to be unsuitable for this paper’s target appli-
cation. It cannot leverage part of the GPU’s units, as the GPGPU execution is
confined to the shaders and every pixel is projected individually. The highly tes-
sellated triangle net of Mark et al. also suffers from the latter problem, making
it unsuitable for high resolutions. In contrast, the point rendering fares better
due to a very simple pipeline (no skin detection and removal, no interpolation),
but its’ complexity is also directly influenced by the source pixel count.

Our method leverages more GPU functionality through tessellation and has
a lower overhead in image regions of low depth variance. As a consequence the
frame computation times are lower than all other methods on the test hardware.

Table 1. Flythrough average frame times (in ms), with the results of this paper’s
method marked in bold

Scene Renderer Target resolution

1280 × 720 1366 × 768 1600 × 900 1920 × 1080

777 Morvan et al. 34.2 38.5 53.1 76.6

Point 8.7 10.2 13.4 16.3

Mark et al. 11.8 14.0 19.6 30.2

Proposed 4.5 5.0 6.7 9.3

Source 27.7 33.8 37.8 40.0

Powerplant Morvan et al. 36.5 40.7 55.3 79.0

Point 9.3 11.1 14.1 16.3

Mark et al. 23.1 27.6 43.2 84.2

Proposed 8.2 9.2 11.8 15.5

Source 36.4 41.1 48.6 56.1
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(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 6. Image quality during a camera flight through the (a, b, c) 777 Boeing and
the (d, e, f, g) Powerplant scene. (a, d) Without hole filling, noticable information
gaps occur, while (b, f) being greatly reduced with one additional projection. Contrary
to (e) [13], edge regions are not diminished. Plausible reconstructions are reached in
comparison with the (c, g) ground truth. (h) Artifacts from view-dependent shading
of multiple different sources are (i) removed when using the proposed deferred shading
approach

However, the per-primitive complexity is higher compared to the point rendering
resulting in roughly the same frame times when the whole image shows high
depth variance, which is largely the case for the Powerplant scene.

6.2 Image Quality

As can be seen from Fig. 6(a) and (d), a single DIBR projection does not suf-
fice for an acceptable synthesis, even when using the predictor. In contrast, the
proposed hole filling already shows great improvement when using two projec-
tions. Also, the method does not exhibit the diminished borders of Mark et al.s’
original full triangle mesh technique and thus retains small pixel regions.

Figures 6(h) and (i) show an example of the approach of Sect. 5.3. Artifacts
can be seen when combining view-dependent shading from multiple different
sources, while the deferred shaded approach shows plausible results.
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6.3 Drawbacks and Remaining Problems

A significant downside to the new method is the source buffers’ GPU memory
consumption: Ten buffered G-Buffers (each with a layout of three 8bit RGBA,
one 16bit RGB and one 24bit depth buffer) take around 420 MB at 1920× 1080.
We aim to use compression and material tables in the future.

For acceptable results a minimum source frame rate is required. 15 Hz or
above seemed sufficient to produce little to no remaining holes in the synthetic
images. The results were still acceptable around 5 to 10 Hz, while 5 Hz and below
showed too sparse updates and many information gaps in the perceived scene.

Only static scenes are currently supported. Animated parts need to be ren-
dered separately for correct display. An additional step in the DIBR projection
equation handling the animation transformations could be a solution.

7 Conclusion and Future Work

During the course of this paper it has been shown, that DIBR can be efficiently
implemented via the modern standard GPU pipeline using a novel implementa-
tion by adaptive hardware accelerated tessellation. The system design decoupling
the user input and display from the source renderer proved to be a viable solution
for the high frame rate and responsiveness problems listed in Sect. 1.

Subsequent work will focus on improving the method: The simple predictor
will be replaced by a more sophisticated approach realizing a non linear pre-
diction. Providing more redundancy via depth peeling will be tested, as there
exist efficient one pass techniques [12]. Applying the static mesh downsampling
of Sect. 4.3 dynamically promises further performance.

Other endeavors will include porting the described system to mobile devices.
The main challenge will be the significantly lower graphic capabilities or the lack
of support of required features used in this paper.
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