
Chapter 7

The Fugacity Quantity

Abstract This chapter is devoted to the notion of fugacity. It is developed entirely

under the standpoint of classical thermodynamics. The fugacity quantity has been

introduced in order to describe the behavior of imperfect gases. It permits to express

the molar Gibbs energy of a pure imperfect gas and, also, to express the chemical

potential (the molar partial Gibbs energy) of a gas in a mixture of imperfect gases

with a formalism analogous to that used in the case of perfect gases. For this reason,

it can be said that the chemical potential which is an abstract notion can be, through

the use of the fugacity, expressed in terms of a new function which is more easily

identified with the physical reality than the chemical potential is. The chapter

mentions the definition of the fugacity of a pure gas, the chemical potential of a

perfect or real pure gas in terms of it, the fugacity of liquids and solids, the notion of

fugacity coefficient of a real gas, a coming back to the notion of reference state, and

the changes in fugacity with the temperature and the pressure. It also mentions the

expressions of the chemical potential of a component of a mixture of perfect gases,

the fugacities of real gases in mixtures, and their changes with pressure and

temperature together with their determination. From another viewpoint, the values

of the fugacity of a species present in different phases may assert or not the state of

partition equilibrium.

Fugacity and activity are two intimately linked quantities. This is the reason why

an introductory study of the notion of fugacity is necessary to understand well that

of activity.

Keywords Fugacity • Fugacity coefficient Lewis–Randall’s rule • Molal Gibbs

energy • Molar enthalpy • Molar volume • Partial molal quantities • Perfect gases •

Reference state

The fugacity quantity has been introduced by G.N. Lewis as soon as 1901 in order

to describe the behavior of imperfect gases. More precisely, fugacity permits (as we

shall see it) to express the molar Gibbs energy of an imperfect pure gas and, also, to

express the chemical potential (the molar partial Gibbs energy) of a gas in a mixture

of imperfect gases with a formalism analogous to that used in the case of perfect

gases. For this reason, it can be said that the chemical potential which is an abstract

notion can be, through the use of the fugacity notion, expressed in terms of a new

function which is more easily identified with the physical reality than the chemical
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potential is. We shall see that the chemical activity is also a quantity like the

fugacity function permitting to relate the chemical potential to the physical reality.

From another viewpoint, the values of the fugacity of a species present in

different phases may assert or not the state of partition equilibrium.

Fugacity and activity are two intimately linked quantities. This is the reason why

an introductory study of the notion of fugacity is necessary to understand well that

of activity.

7.1 Definition of the Fugacity of a Pure Gas

Although the fugacity notion has been overall used in the case of systems consti-

tuted by gas mixtures, it is firstly important to begin with by the definition of the

fugacity f of a pure gas. Lewis did that by setting up the expressions

dG ¼ RT d ln f ð7:1Þ

or

Gm ¼ RT ln f þ C Tð Þ ð7:2Þ

C(T ) is the integration constant. It is already important to notice that constant C(T)
depends only on the nature of the substance and temperature (vis Chap. 34). Gm is

the molar Gibbs energy of the gas.

Expression (7.2) is, according to some authors, incorrect from the mathematical

standpoint since the logarithm of a quantity which is dimensioned does not possess

any sense, since the fugacity is a quantity endowed with a dimension!1

On the other hand, relation (7.1) is correct since the ratio df/f is dimensionless.

It is interesting to notice the analogy between relations (7.1) and (7.3) under

dG ¼ RT d lnp ð7:3Þ

which links the molar Gibbs energy of a perfect gas and its pressure p. It results

from the application to the case of perfect gases of the general expression

dGm,T ¼ Vmdp ð7:4Þ

1By virtue of the famous aphorism

ln 3applesð Þ ¼ ln3þ lnapples !

3 and apples are mathematical objects from different nature.
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applicable to every reversible, isothermal transformation, only involving an expan-

sion work. Vm is the molar volume of the substance (vis Chap. 5).

Definitions (7.1) and (7.2) are not sufficient for the determination of absolute

values of the fugacity since they do not specify how the value of the constant C(T)
is fixed at a given temperature. Without any supplementary specification, they only

define the ratio between the fugacities ff and fi of the gas in the final and initial states
defining an isothermal transformation. Given the molar Gibbs energiesGmf andGmi

in both states, the expression of the change in the Gibbs energy ΔG accompanying

it is

ΔG ¼ Gmf � Gmi

ΔG ¼ RT ln f f= f ið Þ

A supplementary specification is necessary. That put forward by Lewis is

universally adopted. It is based on the following reasoning.

Let us again consider the previous transformation and suppose that the gas is

perfect. The notion of fugacity is, by definition, a general one. Hence, it also applies

to perfect gases. In these conditions, one can write

ΔG ¼ RT ln f f=f ið Þ ð7:5Þ

and since the gas is perfect by hypothesis, one can also write

ΔG ¼ RT ln pf=pið Þ ð7:6Þ

pf and pi being the pressures in the final and initial states of the process under study.

Since the Gibbs energy is a state function, it results from the comparison of

expressions (7.5) and (7.6), in which in the case of a perfect gas the fugacity

must be in linear relation with the pressure.

Since no gas is, from the standpoint of the absolute scientific accuracy, perfect

but since, also, the behavior of every gas tends to be ideal when its pressure tends

toward 0, a judicious choice (in order to fix the integration constant) is such that the

value of the fugacity of pure gas goes over that of its pressure when the latter tends

toward 0, that is to say

f=p ! 1 when p ! 0

This is the choice that Lewis has done. Figure 7.1 exemplifies this specification.

The state in which the fugacity is asserted to be equal to the pressure is called the

reference state. Thus, the fugacity of a gas equates its pressure in the reference

state. The fact that the fugacity of every gas is set up to be equal to the value of its

pressure in the reference state permits to evaluate its fugacity at every other

pressure. Hence, the proportionality constant between the fugacity and the pressure

of a gas in the reference state, evoked above, has been fixed to 1 by Lewis.
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An outcome of the previous choice is that the fugacity of a perfect gas equates its

pressure whichever the latter is, on the contrary of a real gas. We have seen, indeed,

that in the case of a perfect gas, the fugacity is proportional to the pressure. By

adopting the convention that the fugacity is equal to the pressure when the latter is

very weak (in the reference state), it is clear that it remains as such in the whole

range of pressures in the case of a perfect gas. In order to convince ourself, it is

sufficient to consider the transformation described by relations (7.5) and (7.6) in

which the initial pressure is very weak. As a result

pi ¼ f i

since

RT ln f f=f ið Þ ¼ RT ln pf=pið Þ

Hence

pf ¼ f f

As a result of what is previously described, it appears that the fugacity must be

endowed with the same unities as the pressure. (Most values of fugacities are still

expressed in atmospheres in the literature for historical reasons.)

Fig. 7.1 Differences between the fugacity and the pressure of a pure gas
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7.2 Chemical Potential of a Perfect or Real Pure Gas
in Terms of Fugacities

1. In the case of a perfect gas, we know (vis Chaps. 3 and 5) that its molar Gibbs

energy (or, equivalently in this case, its chemical potential) is partially defined

by the expression

dG ¼ RT dp=p

After integration, we obtain

Gm ¼ Cteþ RT lnp or

μ ¼ Cteþ RT lnp

where Cte is the integration constant. (These expressions are incorrect from the

mathematical standpoint for the reason given above.)

We know that the correct expression is (vis Chaps. 3 and 5)

μ ¼ μ� þ RTln p=p�ð Þ

in which μ� is the chemical potential in an arbitrarily chosen state of the gas

where it is at the pressure P�. We shall see (vis Chaps. 9 and 10) that this state is

called the standard state. It may be temporarily defined as the state of the gas in

which it exhibits a perfect behavior at pressure p�. Usually, p� ¼ 1 pressure unit

(historically 1 atm).

2. For a real gas, analogous considerations can be carried out:

We have seen just before that

dG ¼ RT d lnf

or for its molar Gibbs energy

μ ¼ μ� þ RT ln f=f �ð Þ ð7:7Þ

μ� is the integration constant. It is the chemical potential of the gas when its

fugacity f is equal to its fugacity f�. f� is its fugacity in the standard state. Hence,
μ� is the chemical potential of the gas in its standard state. It is arbitrarily chosen.

Let us, at this point, anticipate one definition of the chemical activity a (vis

Chap. 9) by already giving the following relation:

a ¼ f=f �

It expresses the chemical activity of a gas when its fugacity is f in the considered
state of chemical potential μ and f� its fugacity in the arbitrary standard state of

chemical potential μ�.
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7.3 Fugacity of Liquids and Solids

The definition of the fugacity applies to liquid and solid states as to the gaseous state

as well. Every substance in principle, indeed, exhibits a finite pressure vapor, even

if in some cases it is exceedingly weak.

When the pure solid (or the liquid) is at the equilibrium with its vapor (at a given

temperature), the molar Gibbs energy (chemical potential of the species) is the same

for both phases. As a result, we can set up by virtue of (7.7)

μ�s þ RT ln f s=f s
�ð Þ ¼ μ�g þ RT ln f g=f g

�
� �

case of a solidð Þ

or

μ�l þ RT ln f l=f l
�ð Þ ¼ μ�g þ RT ln f g=f g

�
� �

case of a liquidð Þ

μ�s, μ�l, and μ�g are the standard chemical potentials of the chemical species in

solid, liquid, and vapor phases. fs, fl, and fg are their fugacity in the same conditions.

Let us recall that the choice of a standard state is arbitrary. Nothing precludes to

choose the same standard state in order to quantify the fugacity of the species in

solid or in liquid phase as that being the standard state in phase vapor. Then, of

course, the fugacities in the standard states for the solid and liquid phases are no

longer fs
� or fl� but fg�. Under these conditions, the equilibrium is expressed by the

two following relations:

μ�g þ RT ln f s=f g
�

� �
¼ μ�g þ RT ln f g=f g

�
� �

μ�g þ RT ln f l=f g
�

� �
¼ μ�g þ RT ln f g=f g

�
� �

As a result, at equilibrium

f s ¼ f g
f l ¼ f g

The fugacity of the pure compound in the solid (or liquid) state is equal to its

fugacity in the vapor state provided that the standard state adopted to quantify the

fugacities is the same for both phases, i.e., that chosen for the vapor phase.

7.4 Fugacity Coefficient of a Real Gas

Figure 7.1 shows that the fugacity may be greater or weaker than the pressure of

the gas.
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One defines the fugacity coefficient ϕB of the gas B by the relation

ϕB ¼ f B=pB

It is sometimes called the activity coefficient of the gas. In the literature, there

exist several values of ϕ permitting to calculate the fugacities of gases in given

experimental conditions, notably of pressure. They are sometimes found with the

help of approximations.

The fugacity coefficient is a pure number. It is dimensionless.

7.5 Coming Back to the Reference State

In order to prepare the future discussion concerning the reference and standard

states (viz. the following chapters), it is important to recall the fact that the

reference state is a real state.
Moreover, we have already mentioned that the reference state is a (real) state in

which its fugacity equals its pressure. Hence, we can deduce that the reference state

may be defined as a real state in which its fugacity coefficient is equal to its unity.

This is the usually adopted definition for the reference state, in any case for gases.

Later, we shall see that the notion of reference state is also linked to the notion of

activity (viz. Chaps. 9, 10, and 11).

Henceforth, we shall annotate every quantity considered at a very weak pressure

(that is to say in the reference state2) by the symbol * located in exponent.

7.6 Changes in Fugacity with the Temperature
and the Pressure

• The fugacity changes with temperature. These changes are accessible. We give

here only the principle of their determination at constant pressure. Let us

consider two states of the gas, the molar Gibbs energy and the fugacities Gm,

f and Gm*, f*. The state to which the quantities Gm*, f* are related to is a state of
very weak pressure in which the behavior of the gas is ideal (it is the state of

reference). The change in the molar Gibbs energy accompanying the path from

one state to the other is

2In thermodynamics, for the definition of the reference state, one sometimes finds that it is the state

attained from the standard state through a change in pressure. We shall not use this definition.
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ΔGm ¼ Gm � Gm
*

ΔGm ¼ RT ln f=f *

or equivalently

R ln f=f *
� � ¼ Gm=T � Gm

*=T

whence after derivation with respect to the temperature at constant pressure

R ∂ln f =∂Tð ÞP � R ∂ln f *=∂T
� �

P
¼ ∂ Gm=Tð Þ=∂T½ �P � ∂ Gm

*=T
� �

=∂T
� �

P

We know that (viz. Chap. 2—Gibbs–Helmholtz relation)

∂ Gm=Tð Þ=∂Tð ÞP ¼ �Hm=T
2

where, in this equation, Hm is the molar enthalpy of the system at the pressure

P and Gm its molar Gibbs energy. In the relation before the latter, the second

term of the left member is null since, in the reference state, the fugacity f* is

equal to the pressure P* and since the derivation is carried out at constant

pressure. Both latter relations immediately lead, after derivation, to

∂ln f=∂Tð ÞP¼ Hm
* � Hm

� �
=RT2 ð7:8Þ

where Hm
* is the molar enthalpy of the gas at null pressure. The difference

(Hm
*�Hm) is the change in the enthalpy accompanying the “compression” of

the gas from the pressure P until the null one at constant temperature. For the

easiness of the calculations, it is a fact that the curves (Hm
*�Hm)/RT

2 as

functions of the temperature are experimentally accessible either by the study

of the diagrams p–V–T of the gases or by using the appropriate state equa-

tions. After this step, the obtention of f is carried out by integration.

• The influence of the pressure on the value of the fugacity of a gas at constant

temperature is expressed by the relation

∂ln f=∂pð ÞT¼Vm=RT

since, by definition of the fugacity, dG¼RTd ln f and since, in a general manner

(viz. Chap. 2),

∂G=∂pð ÞT¼Vm

Let us recall that Vm is the molar volume of the substance whatever the phase

under which it is and whatever its behavior is, perfect or not.
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7.7 Physical Significance of the Fugacity

According to what is previously mentioned, it is evident that the fugacity of a gas is

a kind of a fictitious pressure or of a corrected pressure. Statistical thermodynamics

(Chap. 34) permits to grasp a deeper knowledge of the relation existing between the

fugacity and the pressure.

7.8 Expressions of the Chemical Potential of a Component
of a Mixture of Perfect Gases

Before considering the fugacity notion applied to the case of a mixture of real gases,

case where it exhibits all its importance, it is convenient, at the beginning, to

mention different relations expressing the chemical potential of a component of a

mixture of ideal gases.

Generally speaking, we know that the change in the chemical potential μB of

every component B of a gaseous mixture with pressure, at constant temperature

T and molar fraction y, is given by the relation (vis Chap. 5)

∂μB=∂pð ÞT, y¼VmB ð7:9Þ

where VmB is the partial molar volume of the component B.

In the case of a mixture of perfect gases, the law of perfect gases applies to the

whole mixture. It is written as

V¼ n1þn2þ� � � þ nBþ� � �ð ÞRT=P ð7:10Þ

where n1, n2, . . . are the numbers of moles of species 1,2, . . . in the gaseous mixture,

P the total pressure, and V the total volume of the system. Since, by hypothesis,

each gas of the mixture exhibits a behavior different from that of any other (of the

mixture), the partial pressure of each one pB is given, by definition, by the relation

pBV ¼ nBRT ð7:11Þ

The partial molar volume of the component B being given by the expression

VmB ¼ ∂V=∂nBð ÞT,P,nj

we obtain through derivation of (7.10)

VmB ¼ RT =P

and hence, after using (7.9),
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dμB¼RT dP=Pð ÞT, nj or dμB¼RT d lnPð ÞT, nj

Then, according to (7.10) and (7.11),

pB¼nB RT=Vð Þ and P¼
X

nB RT=Vð Þ

Since nB and n (n total number of moles in the mixture: n¼∑nB) are constant,
the following equality is satisfied:

d lnpB ¼ d lnP

That is,

dμB ¼ RT d lnpB

After integration, we obtain

μB ¼ μB
* þ RT lnpB ð7:12Þ

μB
* is the integration constant. Its value depends only on the nature of the gas and

on the temperature as it is justified by statistical thermodynamics (viz. Chap. 34). It

is clear that μB
* is the chemical potential of the gas B, at the given temperature,

when its partial pressure is equal to unity. Let us also recall that in order to obtain

this result, the underlying hypothesis was that the mixture should behave ideally.

Hence, the chemical potential of every constituent of an ideal mixture of gases is

determined by its partial pressure.

There exist other expressions of the chemical potential μB equivalent to the

previous one.

Let us notice that relation (7.12) may be considered as being not satisfactory

since the logarithm of a dimensioned quantity is under consideration. However, it

can be written according to the following one which is perfectly correct:

μB ¼ μBRT þ ln pB=1ð Þ

where 1 is a quantity which is endowed with the same dimension as that adopted for

pB. Therefore, 1 is the unity of pressure.

Let us also notice the chemical potential μB of a constituent of an ideal mixture

of gases, as every other compound in every system may be expressed under

different manners according to the used concentration scales and also according

to the retained standard states. (We shall again consider this subject, but then at

greater length, when we shall discuss the expressions of the chemical potentials

with respect to the adopted standard states in order to define the different kinds of

activities in solutions—viz. Chap. 11.)

Let us confine ourselves to mention that by introducing the molar fraction

yB¼ (nB/n) of B in the gaseous mixture, the expression of its chemical potential is

60 7 The Fugacity Quantity

http://dx.doi.org/10.1007/978-3-319-46401-5_34
http://dx.doi.org/10.1007/978-3-319-46401-5_11


μB ¼ μyB
* þ RT lnyB ð7:13Þ

where

μyB
* ¼ μB

* þ RT lnP

We notice that, this time, the integration constant μyB
* depends not only on the

nature of B and on the temperature, but also on the total pressure P. The reasoning
leading to this expression is based on the fact that the chemical potential of a

component in a given thermodynamic state is an invariant quantity, whatever the

expression of its quantity of matter is.

7.9 Fugacities and Mixtures of Real Gases

7.9.1 Expressions of the Chemical Potential
of the Components

The above considerations taking into account the partial pressures are no longer

correct once we are facing mixtures of real gases. Again, in this case, introducing

the fugacity notion simplifies the problem. In an analogous manner as that followed

in the case of a pure real gas, one partially defines the fugacity of the constituent B

in the mixture, at a given constant temperature, by the relation

dμB ¼ RT d ln f B ð7:14Þ

that is to say, after integration, by

μB ¼ μB
* þ RT ln f B ð7:15Þ

μB
* depends on the nature of the gas and on the temperature of the system.

The chemical potential of the gas B is also given by the expression

μB ¼ μB
� þ RT ln f B=f B

� ð7:16Þ

where μB� is the standard potential of B and fB, fB
� the fugacities of B in the state of

the system and in the chosen standard state. The reference state to which is linked

the standard state μB� (which has been just evoked) is the same as that which is

retained for a gas alone or in the case of an ideal mixture since, as it has been

demonstrated above, the behavior of each gas tends to be perfect when the total

pressure tends to be null. Hence, μB� is the standard chemical potential of B, alone,

at the same temperature as that of the system. In these conditions, we shall see (viz.

Chap. 10) that the chemical potentials in the standard and reference states are equal.
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One of the advantages that presents the introduction of the fugacity lies in the

fact that the chemical potential of a component of a mixture of real gases may be

expressed by the relation (7.15) which is formally analogous to that expressing the

chemical potential of a component of a mixture of perfect gases. Such expressions

enlighten the significance of the chemical potential since the significance of a

corrected pressure is by far closer to a physical reality than is a chemical potential

which is essentially an abstract mathematical notion.

7.9.2 Change of the Fugacity of One Component of a
Gaseous Mixture with the Pressure

The change of the fugacity of the constituent of a gaseous mixture with the pressure

is obtained from the following relation:

∂ln f B=∂Pð ÞT, y¼VB =RT ð7:17Þ

whereVB is the partial molal volume of the constituent (viz. Chap. 4). This relation

immediately follows from (7.9) and (7.15) after derivation with respect to P at

constant temperature and pressure and by taking into account the fact that in these

conditions μB
* is a constant. Before proceeding to the integration, let us subtract the

term RT d ln pB from both members of the expression (7.17). We obtain

RT d ln f B=pBð Þ ¼ VB dP� RTd lnpB

But

pB ¼ yBP

The molar fraction yB being a constant, since we are searching for the fugacity

change with the pressure at constant temperature and composition, the preceding

relation becomes

RT d ln f B=pBð Þ ¼ VB � RT=P
� �

dP

The change of the fugacity fB with the total pressure is obtained by integration

from P¼ 0 to P¼P0, that is to say

ln f B=pBð Þ ¼
Z P0

0

VB =RT � 1=P
� �

dP

Let us recall that in the reference state, fB
*¼ pB

*. Of course, the integration

entails that we know the partial molal volume as a function of the pressure. As a
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special case, we shall see (viz. the following chapter) that for a mixture of ideal

gases, the molal partial volume of a constituent is equal to its molar volume when it

is pure.

7.9.3 Change in the Fugacity of a Component of a Mixture
of Real Gases with the Temperature

The change in the fugacity of the component with the temperature is given by the

relation

∂ln f B=∂Tð ÞP¼ HB
* � HB

� �
=RT2 ð7:18Þ

whereHB is the partial molal enthalpy of the component in the mixture at the given

pressure and temperature and HB
*is the molar enthalpy of the gas at the same

temperature in the reference state. The relation is obtained as follows. According to

(7.15)

R ln f B¼μB=T � μB
*=T

and according to the general properties of the chemical potential (viz. Chap. 5)

∂ μBTð Þ=∂T½ �P¼� HB =T
2

R ∂ln f B=∂Tð ÞP¼� HB =T
2þHB

*=T2

HB is the partial molar enthalpy of the gas at the pressure P. HB
* is that in the state

of reference, that is to say at a null total pressure. In these conditions the behavior of

the gas is the same as that of a gas which should be alone, at a very weak pressure.

Then its molar partial enthalpy in the reference state equates its molar enthalpy

when it is in pure state, at a very weak pressure HB
*:

HB
* ¼ HB

*

7.10 Determination of the Fugacity of a Gas in a Gaseous
Mixture

The determination of the fugacity of a gas in a gaseous mixture is possible. It is

carried out after obtention of the diagrams: total pressure/volume of the mixture and

subsequent determinations of partial molar volumes. The knowledge of the couples

of experimental data P–V for the mixture permits to determine the molar partial

volumes of the components of the mixture. Then, one carries out the integration by

graphical means. It can also be carried out by approached calculations.
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7.11 Fugacity and Heterogeneous Equilibria

Under some conditions, the values of the fugacities may be a criterion of equilib-

rium between different phases. We give two examples of this possibility here.

From a general standpoint, this criterion applies when one considers a closed

system constituted by two phases (or more). The whole system is closed but the

constituting phases are open systems. In principle, the general equilibrium concerns

three processes: the heat transfer, the changes in the limits of the phases (due to a

mechanical work), and the transfer of matter from one phase into the other. We are

only concerned here by the transfer of matter.

As a first example, let us consider the transfer of the species i from the phase α
(its solution) into the phase β (its vapor) at constant temperature and pressure. A

first criterion of equilibrium is the equality of the chemical potential of i in both

phases (viz. Chap. 5):

μi
α ¼ μi

β equilibriumð Þ

By replacing the chemical potentials by their expressions (7.16), we obtain

μB
�α þ RT ln f B

α=f B
�α ¼ μB

�β þ RT ln f B
β=f B

�β ð7:19Þ

The reasoning is the same as that followed in paragraph 3. Nothing precludes to

adopt the standard state of the vapor as the unique one for both phases. As a result,

we obtain

μB
�β þ RT ln f B

α=f B
�β ¼ μB

�β þ RT ln f B
β=f B

�β

that is to say

f B
α ¼ f B

β

The equality

f B solutionð Þ ¼ f B vapourð Þ

is the condition of this equilibrium (at constant temperature) provided that the

reference states of the species are the same in both phases.

Let us consider, now, the equilibrium, at constant temperature, of a species B

present in two immiscible solvents, as a second example. At the equilibrium, the

expression (7.19) is still verified. Let us suppose, now, that the standard potentials

in both phases μB�
α and μB�

β are equal. The condition of equilibrium is still

f B
α ¼ f B

β
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The common standard potential may be that of the vapor phase which would

simultaneously be in equilibrium with both solutions.

The criterion of equality of fugacities (in some conditions) is easier to handle

than that of the chemical potentials.

7.12 Other Use of the Fugacities

Outside what has been mentioned just previously about the theoretical interests

exhibited by the notion of fugacity, it also exhibits a strong practical one. We

confine ourselves to mention the fact that taking into account the fugacities in order

to study the equilibria between imperfect gases is essential.

A striking example is provided by us with the values of the equilibrium constant

of the reaction of synthesis of ammoniac by starting from dihydrogen and

dinitrogen. The equilibrium constant, determined at 450 �C from measurements

of partial pressures, does not cease to enhance with the total pressure. Its values are,

respectively, 6.59� 10�3 atm under 10 atm and 23.28� 10�3 under 1000 atm. At

600 atm, it is 12.94� 10�3. Taking into account the fugacities instead of partial

pressures, the equilibrium constant remains more and less constant (6.51–7.42� 10
�3 atm). At 1000 atm, it has the value 10.32� 10�3 atm. But, it must be noticed that

this latter is somewhat abnormal. This is probably not due to the failure of the

concept of fugacity but may be rather attributed to the simplifying rule of Lewis and

Randall used to calculate the fugacities. Hence, the last result does not question the

interest of the introduction of the fugacity in this field.

(The Lewis–Randall’s rule consists in setting up that the fugacity fi of the species
in the mixture is equal to the product of its molar fraction yi in the vapor phase by its
fugacity in the pure state at the temperature and total pressure of the system fi. It is
not reliable because it is based on a simplification which may or may not by far be

justified.)

7.13 Fugacity and the Gibbs–Duhem Relation

The Gibbs–Duhem equation can also be expressed in terms of fugacities. It can be

written (viz. Chap. 5) as

∂μ1=∂lnx1ð ÞT,P ¼ ∂μ2=∂lnx2ð ÞT,P ð7:20Þ
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Let us recall the fact that as such it is written above, it applies to a binary solution at

constant temperature and pressure. In order to express it in fugacity terms, it is

sufficient to use the relation (7.14) above. The relation being searched for is

∂f 1=∂lnx1ð ÞT, P¼ ∂f 2=∂lnx2ð ÞT, P ð7:21Þ
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