
Chapter 36

Chemical Equilibrium Between Gases
and Statistical Thermodynamics

Abstract The chapter mentions an overview of the study of the chemical equilib-

rium from the standpoint of statistical thermodynamics. This subject is quite

evidently of importance since equilibrium constants between gases (and also

between species in solutions) are expressed in activity or fugacity terms once

they do not exhibit an ideal behavior.

After a brief recall of the equilibrium condition in classical thermodynamics,

several examples of chemical equilibria are examined from the viewpoint of

statistical thermodynamics. Finally, the case of equilibria between imperfect

gases is dealt with. It is in this context that activities and fugacities play an

important part. From the developments of the chapter, it appears that the thermo-

dynamic equilibrium constants are only function of the partition functions of the

species involved in the equilibrium together with the stoichiometry of the reaction.

The described theory is carried out within the framework of the canonical

ensemble.
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In this chapter, we give an overview of the study of the chemical equilibrium from

the standpoint of statistical thermodynamics. This subject is quite evidently of

importance since equilibrium constants between gases (and also between species

in solutions) are expressed in activity or fugacity terms once they do not exhibit an

ideal behavior.

After a brief recall of the equilibrium condition in classical thermodynamics, we

study several examples of chemical equilibria from the viewpoint of statistical

thermodynamics. Finally, we deal with the case of equilibria between imperfect

gases. It is in this case that activities and fugacities play their part.
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36.1 Some Recalls: Chemical Equilibria and Classical
Thermodynamics

Let us recall (viz. Chap. 6) that, for example, for a reaction of the kind:

vAAþ vBB Ð vCC ð36:1Þ

evolving in a closed system at constant pressure and temperature, the equilibrium

condition from the standpoint of classical thermodynamics is given by the follow-

ing expression, which must be satisfied:

vAμA þ vBμB ¼ vCμC ð36:2Þ

where the νi are the stoichiometric coefficients and the μi the chemical potentials,

once the chemical equilibrium is reached. Let us also recall that this condition is

general. Not only does it apply to ideal (or not) gases but also it applies to all types

of chemical equilibria whether they occur between gases or not. It is a consequence

of the second principle of thermodynamics.

36.2 Equilibrium Constants and Molecular Partition
Functions of the Reactants and Products: Case of a
Mixture of Ideal Gases

Let us consider the case of the reaction (36.1) in which the reactants and products A,

B, and C are perfect gases. In order to treat the problem of this equilibrium from the

statistical standpoint, we must relate the chemical potentials appearing in relation

(36.2) to the partition function Q of the whole system and, through it, to the

molecular partition functions q of every reactant and product participating to the

equilibrium (viz. Chap. 26).

The first point we must take into account is that since the gases are perfect, their

behaviors are independent from each other. They are as if they were alone in the

container. This point is very important. Let us anticipate that is following by

asserting that this property differentiates them from imperfect gases. More specif-

ically, in the case of perfect gases, it is not fruitful to introduce the notions of

activity and fugacity in order to express the equilibrium constants.

(At this point of the reasoning, the ability to express the equilibrium constants as

a function of the activities and fugacities under an analogous form as in the case of

equilibria between perfect gases probably constitutes the major practical interest of

the introduction of the notions of activity and of fugacity.)

We know that when the gas (monoatomic, diatomic, or polyatomic) is alone, the
partition function of the system Q can be written (q being the molecular partition

function and N the number of molecules) (viz. Chap. 26):
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Q N;V; Tð Þ ¼ q V; Tð ÞN=N!

Let us also recall that according to the fact the gas is monoatomic or polyatomic,

q may be (or not) a composite function. For a mixture of two perfect gases 1 and

2 (and hence independent), the canonical partition function of the system is given

by the general relation:

Q N1;N2;V; Tð Þ ¼ q1 V; Tð ÞN1=N1!
h i

q2 V; Tð ÞN2=N2!
h i

ð36:3Þ

N1 and N2 are the numbers of moles of 1 and 2. The product of the molecular

partition functions must be considered because each of all the levels of energy of

molecule 2 can be associated with every level of molecule 1, since the gases are

independent. Let us insist on the fact that the partition function Q(N1,N2,V, T ) is
that of the system composed by N1 molecules of 1 and by N2 molecules of 2.

The relation between the chemical potentials of the species participating to the

equilibrium and the system partition function is that very general already seen (viz.

Chap. 26):

μi ¼ �kT ∂lnQ Ni;Nj; T;V
� �

=∂Ni

� �
T,V,Nj

j 6¼ ið Þ ð36:4Þ

The calculation of μ1 and μ2 by starting from (36.3) by taking into account (36.4)

easily leads to the following expressions (after the use of the Stirling’s

approximation):

μ1 ¼ �kTln q1 V;Tð Þ=N1½ � and μ2 ¼ �kTln q2 V; Tð Þ=N2½ � ð36:5Þ

Hence, we deduce that the chemical potential of each of the gas is the same as it

would be alone, provided, of course, that the mixture behaves “ideally.”

Let us apply to the reaction (36.1) the equilibrium condition (36.2) while taking

into account expressions (36.5) permitting the calculation of the different chemical

potentials, taking granted the fact that the canonical partition function of the system

Q(NA,NB,NC,T,V) is then given by the following expression:

Q NA;NB;NC; T;Vð Þ ¼ qA T;Vð ÞNA=NA!
h i

qB T;Vð ÞNB=NB!
h i

x qC T;Vð ÞNC=NC!
h i

We obtain:

NvC
C =NvA

A � NvB
B ¼ qvCC =qvAA qvBB ð36:6Þ

NC, NA, and NB are the numbers of molecules of C, A, and B at equilibrium.

The expression (36.6) can be differently written by introducing the density

numbers ρ of the species. It is an easy task since the number of density is defined
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as being the ratio of a number of molecules of a species and of the volume V of the

system:

ρi ¼ Ni=V

By dividing all the terms of expression (36.6) by V brought to the corresponding

power, we obtain:

ρvCC =ρvAA � ρvBB ¼ qC=Vð ÞvC= qA=Vð ÞvA � qB=Vð ÞvB ð36:7Þ

An important point to highlight is that the molecular partition functions q are equal
to the volume V of the system multiplied by a function which only depends on the

temperature, since they are of the type q¼V • f(T ). We have seen, indeed, (viz.

Chap. 26) that:

q V; Tð Þ ¼ V 2πmkT=h2
� �3=2

perfect gas monoatomic gasð Þ
q V; Tð Þ ¼ V 2π m1 þ m2ð ÞkT=h2� �3=2

perfect diatomic gasð Þ

q V; Tð Þ ¼ V 2π
X
i

mi

 !
=kT=h2

" #3=2
perfect polyatomic gasð Þ

As a result, whatever the gas (monoatomic or polyatomic) is, the right member

of the expression (36.7) only depends on the temperature. Hence, we can write:

ρvCC =ρvAA � ρvBB ¼ K Tð Þ ð36:8Þ

Therefore, the mass action law is confirmed on the bases of statistical

thermodynamics.

36.3 A Simple Example: A Dimerization Equilibrium

As an example, let us consider the following equilibrium of dimerization at constant

volume and temperature:

A Ð 2B

Contrary to the preceding problem in which we wanted to relate the equilibrium

constant value to those of the numbers moles existing at equilibrium, our present

goal, here, is to obtain the numbers of moles of A and B once the equilibrium is

reached, with the constraint that the initial matter must be conserved.
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This constraint is explicited by the equality:

2NA þ NB ¼ N N : constantð Þ

Let No
A and No

B be the number of molecules A and B initially present in a

container of volume V at the temperature T. From the experimental viewpoint,

the obtaining of the equilibrium at constant volume and temperature can be

obtained, for example, by addition of a catalysor, whereas, initially, the mixture

was frozen to the number of moles No
A and No

B such as:

2N o
A þ N o

B ¼ N

The partition function of the system in the initial state Q(No
A,N

o
B,V,T ) is given,

as we have seen it previously, by the expression:

Q N o
A;N

o
B;V; T

� � ¼ qNA∘A =N∘
A! qNB∘B =N∘

B! ð36:9Þ

According to considerations of thermodynamics, we know that the equilibrium

is reached when the Helmholtz energy A ¼ �kTlnQ of the whole system is

minimized, i.e., when the function Q is maximal. Hence, the problem is to search

for the number of moles N�
A maximizing Q, the following constraint:

2N*
A þ N*

B ¼ N

being obligatorily satisfied. It is quite evident that it is not necessary to separately

search for the value N�
B since the mole numbers N�

A and N�
B are related to by the

preceding expression. Hence, to solve the problem, it is sufficient to set up:

∂lnQ=∂NAð ÞN,V,T ¼ 0

It is a “mathematical fact” that the function Q is then maximal. We obtain:

N*2
B =N*

A ¼ q2B=qA

This result is perfectly analogous to that previously obtained. The equilibrium

constant is given by the expression:

K Tð Þ ¼ ρ2B=ρA

Let us highlight the fact that the value of the canonical partition function regarded

in this example Q(NAo,NBo,V, T ) is imposed by the number of moles of species A

and through it by that of B. Recall, indeed (viz. Chap. 21), that the different

energetic states allowed by quantum mechanics are a function of the volume

V and of the number of moles of the system. In the present case, the study is

performed with the number of moles NA
�,NB

�, and N which are certainly arbitrary

but fixed numbers.
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36.4 Chemical Equilibrium Between Imperfect Gases

When one studies the equilibria between imperfect gases, the mass action law, as

we shall see it now, is expressed in terms of activities and, no longer, in terms of

density numbers. In order to study such a case, let us again consider the case of a

dimerization equilibrium:

A Ð 2B

The equilibrium condition remains:

μA ¼ 2μB

or, in terms of absolute activities:

λA ¼ λ2B ð36:10Þ

since the chemical potential of a species is related to its absolute activity through

the relation λ ¼ eμ=kT . We know that when the density numbers are sufficiently

weak, the behavior of the species tends to be ideal and we have seen that (viz. the

above paragraph) the equilibrium constant expresses as a function of them:

K Tð Þ ¼ ρ2B=ρA

with:

K Tð Þ ¼ Q01=Vð Þ2= Q10=Vð Þ

the indices 01 and 10, respectively, being referred to compounds B and A. Symbols

Q10 andQ01, respectively, are related to the canonical partition functions of systems

of only 1 molecule of 1 and of 0 molecule 2 on one hand and of 0 molecule of 1 and

of 1 molecule of 2 on the other.

When the behavior is no longer perfect, the chemical potential must be

expressed as a function of the activity of the species and not as a function of the

density number as before in order to keep its significance of the tendency of the

species to change its thermodynamic state. Finally, the chemical potential when it is
related to the activity of a species, quantifies its tendency to react according to
physical or chemical transformations while taking into account its interactions with
the other species of the medium.

The equilibrium constant is expressed as a function of the activities with the help

of the following reasoning. The equilibrium condition (36.10) expressed as a

function of the absolute activities remains valid. From another standpoint, by

definition of the activity z in statistical thermodynamics:
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λA ¼ VzA=Q10 and λB ¼ VzB=Q01

By applying relation (36.10), we immediately obtain:

z2BV
2=Q2

01 ¼ zAV=Q10

and since the ratios Q/V are only function of temperature:

K Tð Þ ¼ z2B=zA

It can also be written, by taking into account the activity coefficients γB and γA
(viz. the following chapter):

K Tð Þ ¼ ρ2Bγ
2
B=ρAγA

They are given by the expressions (viz. the preceding chapter):

zA ¼ ρA � 2b02ρ
2
A � b11ρBρA þ � � �

As a result:

K Tð Þ ¼ ρ2
B
=ρA

� �
1þ b11 � 4b20ð ÞρB þ � � �½ �

The term in square brackets expresses the deflection with respect to the “ideality.”

Actually, we notice that:

K Tð Þ ¼ ρ2
B
=ρA

� �

when ρB and ρA tend toward zero.

The definition of the formal, or conditional constant K0(T ) used, once the

behaviors are no longer ideal, by the expression:

K0 Tð Þ ¼ ρ2
B
=ρA

� �

differs from the thermodynamic constant K(T ) by the term located between the

square brackets. It varies with ρB and ρA.
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