
Chapter 35

Activities of Gases in a Mixture of Imperfect
Gases

Abstract The chapter is a simple generalization of a previous one. It is devoted to

the study of a binary mixture. The case is studied with the aid of the grand ensemble

and the activities of each gas are defined as for a sole imperfect one. In their

definition intervene their absolute activities, the volume of the solute and the

canonical partition functions when one molecule of each gas is present without

any molecule of the other.

Relations linking the chemical potential of each gas to its partial pressure

through statistical parameters are also mentioned.

Keywords Statistical gas activities in a mixture of perfect gases • Partial pressure •

Grand ensemble • Configuration integrals • Chemical potentials of the gases

This chapter is a simple generalization of the previous one. We confine ourselves to

the study of a binary mixture.

35.1 Activity of Both Gases

We have seen that, in the case of a fluid constituted by a binary mixture (viz.

Chap. 24), the grand partition function is:

Ξ λ1; λ2;V; Tð Þ ¼
X
N1�0

X
N2�0

QN1N2 V; Tð ÞλN11 λN22

or, with a slightly simplified writing:

Ξ λ1; λ2;V; Tð Þ ¼
X

N1,N2�0

QN1N2 V; Tð ÞλN11 λN22

QN1N2 is the canonical partition function of the system for the number of particles

N1 and N2, and λ1, λ2 the absolute activities:
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λ1 ¼ eμ1=kT λ2 ¼ eμ2=kT

The function Ξ can be also written as:

Ξ λ1; λ2;V; Tð Þ ¼ 1þ
X

N1,N2�1

QN1N2 V; Tð ÞλN11 λN22

(This writing is strictly equivalent to the previous one). By expanding in series with

respect to λ1 and λ2, it becomes:

Ξ ¼ 1þ Q10λ
1
1 þ Q01λ

1
2 þ Q20λ

2
1 þ Q10Q01λ

1
1λ

1
2 þ Q02λ

2
2 þ � � � ð35:1Þ

SymbolsQ10,Q01, respectively, represent the canonical partition functions of the

systems made up by only one molecule 1 and by zero molecule 2 on one hand and

by zero molecule 1 and by one molecule of 2 on the other.

As previously, one defines the activities z1 and z2 of species 1 and 2 by the

expressions:

z1 ¼ Q10λ1=V and z2 ¼ Q01λ2=V ð35:2Þ

As in the case of only one gas, z1 and z2 tend toward ρ1 and ρ2 when the latter

ones tend toward zero. This assertion is justified by the series development in series

of ln Ξ where Ξ is given by expression (35.1).

Let us replace λ1 and λ2 by their expressions in z1 and z2 (35.2), we obtain:

Ξ ¼ 1 þ Q10 V=Q10ð Þ z1 þ Q01 V=Q01ð Þ z2 þ Q20 V=Q10ð Þ2z21
þ Q10Q01 V=Q10ð Þ V=Q01ð Þ z1z2 þ Q02 V=Q01ð Þ2z22 þ � � �

Let us set up the general expression:

QN1N2V
N1þN2 =QN1

10Q
N2
01 ¼ ZN1N2=N1 !N2! ð35:3Þ

The ZN1N2 are the configuration integrals.

We obtain:

Ξ ¼ 1þ Vz1 þ Vz2 þ ½Z20z
2
1 þ Z11z1z2 þ ½ Z02z

2
2 þ � � � ð35:4Þ

It appears the numeral 2 in the denominator of some terms. Its presence results from

the definition of ZN1N2.
For the whole system,

lnΞ ¼ pV=kT
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By expanding in series ln Ξ stemming from (35.4), we obtain:

pV=kT ¼ Vz1 þ Vz2 þ ½ Z20z
2
1 þ Z11z1z2 þ ½ Z02z

2
2 þ � � �� �

� Vz1 þ Vz2 þ ½ Z20z
2
1 þ Z11z1z2 þ ½ Z02z

2
2 þ � � �� �2

=2

and by truncating the development by limiting it to the terms up to the degree two:

pV=kT ¼ Vz1 þ Vz2 þ 1=2Z20 z
2
1 � V2=2

� �
z21 þ Z11=Vð Þ z1z2 � V2z1z2

þ 1=2Z02z
2
2 � V2=2

� �
z22

whence:

p=kT ¼ z1 þ z2 þ Z20=2V � V=2ð Þ z21 þ Z11=V � Vð Þ z1z2
þ Z02=2V � V=2ð Þ z22� � � ð35:5Þ

which can be written after introduction of the intermediary coefficients bij:

p=kT ¼ z1 þ z2 þ b20 Tð Þz21 þ b11 Tð Þz1z2 þ b02 Tð Þ z22 þ � � � ð35:6Þ

This expression is analogous to the relation (34.16) of the preceding chapter. The

comparison of (35.5) and (35.6) permits to express the bij coefficients as a function
of the configuration integrals Zij.

As previously, it is possible to relate the virial coefficients to the configuration

integrals and to the different parameters after derivation.

In this case, the virial equation is:

p=kT ¼ ρ1 þ ρ2 þ B20 Tð Þρ21 þ B11 Tð Þρ1ρ2 þ B02ρ
2
2 þ � � �

The reasoning which leads to this relation is the same as previously. It consists in,

successively, expressing ρ1 and ρ2 as a function of z1 and z2 through the coefficients
bij and bji, then, in expressing z1 and z2 as a function of ρ1 and ρ2 and, finally, in
setting up an expression of p/kT as a function of the found relations and in

comparing it to the virial equation.

The relation:

N1 ¼ λ1 ∂lnΞ=∂λ1ð Þ

remains valid. Given the definition of the activity z1, we obtain:

N1 ¼ V=Q10ð Þz1 ∂lnΞ= V=Q10ð Þ∂z1½ �V,T, z2
N1 ¼ z1 ∂lnΞ=∂z1ð ÞV,T, z2

35.1 Activity of Both Gases 393

http://dx.doi.org/10.1007/978-3-319-46401-5_34


The reasoning leading to the expression (34.23) of the preceding chapter remains

also valid. As a result with ρ1 ¼ N1=V i:e: ¼ ρ1
� �

:

ρ1 ¼ z1 ∂ p=kTð Þ=∂z1½ �T,V, z2

According to (35.5):

∂ p=kTð Þ=∂z1½ �T,V, z2 ¼ 1þ 2 Z20=2V � V=2ð Þz1 þ Z11=V � Vð Þz2 þ � � �
∂ p=kTð Þ=∂z1½ �T,V, z2 ¼ 1þ 2 b20z1 þ b11z2 þ � � �

and

ρ1 ¼ z1 þ 2b20z
2
1 þ b11z1z2 þ � � �

ρ2 ¼ z2 þ 2b02z
2
2 þ b11z1z2 þ � � �

The expressions z1 as a function of ρ1 and z2 as a function of ρ2 are found by putting
down:

z1 ¼ ρ1 þ a10ρ21 þ � � �
z2 ¼ ρ2 þ a01ρ22 þ � � �

By injecting the two latter expressions into the two preceding ones and by identi-

fying the coefficients of the terms in ρ1 and ρ2 of the same degree, we find:

z1 ¼ ρ1 � 2b20ρ21 � b11ρ1ρ2 þ � � �
z2 ¼ ρ2 � 2b02ρ22 � b11ρ1ρ2 þ � � �

These two relations immediately provide us with the expressions of the

corresponding activity coefficients γ1 ¼ z1=ρ1 and γ2 ¼ z2=ρ2.
From another standpoint, by putting back these expressions of z1 and z2 into

(35.6) and by comparing the obtained expression with that of the virial, we obtain

the “statistical” expressions of the coefficients of the latter. Hence, we obtain:

B20 ¼ � b20 B11 ¼ � b11 B02 ¼ � b02

It is significant to notice that the coefficients B20 and B02 are purely and simply the

second order coefficients of the virial expansion of each of the pure gas. However,

the coefficient B11 is new. It depends on the properties of the two different particles

in the same volume V. It is given by the expression:

B11 ¼ � 1=V Z11 � V2
� �

B11 ¼ � Ð1
0

exp �U11 rð Þ=kT � 1½ �4πr2dr

U11 is the intermolecular potential between a molecule of each type.
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In the particular case in which there is a mixture of two gases constituted by

spherical particles (gases without any internal structure), the term ZN1N2 present in
the expression below:

QN1N2 ¼ ZN1N2= N1!N2!Λ
3N1
1 Λ3N2

2

� �

is one of the configuration integrals of the system, defined by the expression:

ZN1N2 ¼
ð
V

exp � UN1N2=kT½ �d N1f gd N2f g

where d{N1} means dr1. . .drN1 and so forth . . .. so that we can write in an

equivalent manner:

ZN1N2 ¼
ð
V

exp �UN1N2=kT½ �d R1f gd R2f g

35.2 Chemical Potentials of Both Components
as a Function of Their Partial Pressure

It is interesting to express the chemical potential of each of the two components of

the mixture. Besides, these expressions will be handled in the case of diluted

solutions (viz. Chap. 38). Let us only reason on the compound 1 (the reasoning is

quite identical for the compound 2). According to relations (35.2), we can write:

ρ1 ¼ Q10λ1=V

since for a very weak density number ρ1 tends toward z1. Hence, we can write:

N1=V ¼ Q10λ1=V

Owing to the perfect gas law (applied at the molecular level), obligatorily satisfied,

once we have admitted the equivalence activity–concentration, we can write:

pV ¼ N1kT

p=kT ¼ Q10λ1=V

where k is the Boltzmann’s constant. From another standpoint, according to the

properties of the grand ensemble (viz. Chap. 24),

λ1 ¼ eμ1=kT
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As a result, after the handling of the last two relations:

V=Q10ð Þ p=kTð Þ ¼ eμ1=kT

μ1 ¼ kTln V= kTQ10ð Þ½ � þ kTlnp1 ð35:7Þ

In the same manner, we would find:

μ2 ¼ kTln V= kTQ01ð Þ½ � þ kTlnp2 ð35:8Þ

The factors kT ln[V/(kTQ10)] or kT ln[V/(kTQ01)] represent the corresponding stan-

dard potentials according to the meaning of classical thermodynamics. These

expressions of standard potentials are only accurate in the eventuality of the species

concentrations being indirectly expressed in terms of pressures. It is significant to

recall that when the latter ones are expressed in terms of density numbers, these

quantities do not exhibit the same value.

Besides, the following reasoning permits to calculate the standard potential of a

species according to the adopted type of “concentration” and that by starting from

another kind of “concentration.”

Let us, for example, reason with compound 2. According to relation (35.8), the

chemical potential μ2 may be written:

μ2 ¼ � kTlnkT þ kT lnV=Q01 þ kTlnp2

From another standpoint, we can explicit the chemical potential as a function of the

activity. Now, let us take the example of compound 1. We know (viz. paragraph 2)

that ρ1¼Q10λ1/V. In very dilute solution, we can assimilate ρ1 and z1, and by

expressing λ1, we obtain:

μ1 ¼ kTln V=Q01 þ kTlnz1

and likewise:

μ2 ¼ kTln V=Q02 þ kTlnz2

In this case, the standard potential becomes:

μ02 zð Þ ¼ kTln V=Q01ð Þ

The chemical potential μ2 being obligatory the same, we can deduce from the

preceding result that:

μ02 pð Þ ¼ μ02 zð Þ � kTlnkT ð35:9Þ
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Besides, this result may be directly found by using the perfect gas law, i.e.:

pV ¼ NkT

p ¼ ρkT

lnp ¼ lnkT þ lnρ

In sufficiently dilute solution z! ρ, whence:

lnp ¼ lnkT þ lnz
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