
Chapter 34

A Statistical Expression of the Activity of a
Species: A Relation Between It
and the Corresponding Concentration
in the Case of an Imperfect Gas

Abstract This chapter brings some elements of answer to one of the most signif-

icant questions regarding the notion of activity, i.e., how are, mathematically

related to each other, the value of an activity and that of the corresponding

“concentration” of a species when the latter, no longer, tends toward zero? Recall,

indeed, that G.N. Lewis, when he introduced it, defined the notion of activity by the

following sentence:

a quantity which is “an active density number which bears the same relation to the chemical

potential μ at any density that N/V does as N! 0.”

The results mentioned in this chapter constitute a first mark of the fact that

statistical thermodynamics permits, at least in part, to answer the question. The

content of this chapter shows that the setting up of the expression relating the

activity of a gas to its corresponding concentration stems from a reasoning which, at

the onset, requires the definition of the activity in terms of statistical parameters. It

also shows that the obtained relation involves terms which are related to the virial

coefficients. According to the theory, an activity z of a compound can be identified

to the product of its absolute activity λ and of the second canonical function of the

grand ensemble Q1(N, V, T) (that is to say that corresponding to the presence of

only one particle in the system), product divided by the volume V of the system. The

relation also shows that z exhibits all the properties of Lewis’ activity. It has the

form of a series development of z in density ρ, the coefficients of which can be, in

principle, calculated from the experimental values of the virial relation.
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This chapter brings some elements of answer to one of the most significant

questions regarding the notion of activity, i.e., how are, mathematically related to
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each other, the value of an activity and that of the corresponding “concentration” of

a species when the latter, no longer, tends toward zero?

Let us recall, indeed, that G.N. Lewis, when he introduced it, defined the notion

of activity by the following sentence:

a quantity which is “an active density number which bears the same relation to the chemical

potential μ at any density that N/V does as N! 0.”

The results mentioned in this chapter constitute a first mark of the fact that

statistical thermodynamics permits, at least in part, to answer the question.

We shall see that the obtaining of the expression relating the activity of a gas to

its corresponding concentration stems from a reasoning which, at the onset, requires

the definition of the activity in terms of statistical parameters. We shall also see that

the obtained relation involve terms which are related to the virial coefficients which

can be experimentally obtained.

34.1 The Followed Reasoning

Let us recall the fact that the handling of the activity coefficient (and of that of

fugacity) finds all its interest when there are interactions between the particles

constituting the system. We know indeed (viz. Chap. 32) that, that in the framework

of the “pairwise additivity” hypothesis, the expression of the chemical potential of

the component is:

μ ¼ μ0g þ kTlnρ� kTln exp �B=kTð Þh i

It contains the term �kTln exp �B=kTð Þh i which takes into account the interactions

between the particles.

The reasoning followed in order to obtain the relation being searched for consists

in:

– In a first step, arbitrarily defining a parameter z which exhibits the behavior of

the activity as it has been introduced by Lewis, i.e., that z! ρ when ρ! 0. We

can call this quantity the statistical analog of the activity, symbolized by z.
– In a second one, setting up the mathematical relation activity–concentration

being searched for. It requires the crossing through the configuration integrals

ZN.
– In a third step, then, to set up the relations between the parameters playing a part

in the preceding relations and the virial coefficients applying to the real gases

(for which, actually, there exist interactions between the different particles).

At this point of the reasoning, we justify the calculations and the validity of the

statistical definition adopted for the activity. Then, we demonstrate that one of the

parameters involved in the preceding calculations is actually equal to a configura-

tion integral. Then, we shall perform a brief analysis of the physical meaning of the
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activity of a gas and give a statistical definition of its fugacity. Finally, we shall give

the expression of the virial coefficients as a function of the configuration integrals.

34.2 Introduction of the Activity

Let us consider a mono or polyatomic gas. Let us reason within the framework of

the grand ensemble. We know that the partition function can be written (viz.

Chap. 24):

Ξ λ;V; Tð Þ ¼ epV=kT ð34:1Þ

the term pV/kT representing the thermodynamic function characteristic of the grand

ensemble (viz. Appendix V). We also know that (viz. relation (33.9)—previous

chapter):

Ξ λ;V; Tð Þ ¼ 1þ
X
N�1

QN V; Tð ÞλN ð34:2Þ

where

QN V; Tð Þ ¼ Q N;V; Tð Þ and λ ¼ eμ=kT

QN(V, T ) is the canonical partition function entailing the constant number N of

particles which, with other canonical functions taking into account different num-

bers, enters into the grand canonical partition function. Equation (34.2) is the

expansion in series of Ξ in λ. The parameter λ has already been introduced and is,

in the occurrence, called the absolute activity of the gas (viz. Chap. 24).

According to what is preceding:

pV=kT ¼ ln 1þ
X
N�1

QN V; Tð ÞλN
" #

ð34:3Þ

Let us develop the logarithm in series. By only retaining the first terms, we obtain:

ln 1þ
X
N�1

QNλ
N

" #
¼ Q1λþ Q2λ

2 þ Q3λ
3 þ � � �� �

� Q1λþ Q2λ
2 þ Q3λ

3 þ � � �� �2
=2þ . . . ð34:4Þ

i.e.:
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ln 1þ
X
N�1

QNλ
N

" #
� Q1λ ð34:5Þ

according to the relation:

ln 1þ xð Þ ¼ x� 1=2x2 þ 1=3x3 � 1=4x4 þ � � � �1 < x � 1ð Þ
lnΞ � Q1λ ð34:6Þ

The equivalent expressions (34.5) and (34.6) induce the introduction of the param-

eter z defined by the following expression:

z ¼ Q1λ=V ð34:7Þ

The interest to adopt this definition is to show that, actually:

z ! ρ when ρ ! 0

The property of z to tend toward ρ is only true if all the other terms of the

development are lower than that kept.

As we shall see below, z exhibits the properties of Lewis’ activity. z is called a
statistical analogue of the activity.1 With this choice, according to relation (34.1)

we can write:

PV=kT ¼ Q1λ ð34:8Þ

A beginning of proof of the identity of the Lewis’ activity and of z is provided by
demonstrating that z! ρ when ρ! 0 which, indeed, is the definition of Lewis,

originating in thermodynamics.

The identification of z to the Lewis’ activity firstly entails to set up a relation

between the density number ρ and z. We immediately do that in two steps. In the

first step, we show that z tends toward ρ when the latter tends toward zero. In the

second step, we set up the relation being searched for.

34.3 Analogy of the Behaviors of z and of ρ When ρ Tends
Toward Zero

Since we are reasoning by using the grand ensemble, the density number is given by

the relation:

1Within the framework of statistical thermodynamics, we use the symbol z instead of a in order to

mark the fact than z is introduced by the statistical way.
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ρ ¼ N=V ð34:9Þ

The number of particles cannot be anything else than an average number given the

use of the grand ensemble. We have seen (viz. Chap. 33) that:

N ¼ λ ∂lnΞ=∂λð ÞV,T ð34:10Þ

According to (34.9) and (34.10), the condition:

ρ ! 0

entails that:

N ! 0 and λ ! 0

According to the statistical definition of the activity (adopted above), the relation

(34.7) is evidently satisfied lorsque λ! 0, z! 0. Consequently:

z ! ρ when ρ ! 0

The quantity z ¼ Q1λ=V, from purely statistical origin, exhibits the same behavior

as the Lewis activity, at least when ρ! 0.

34.4 Relation Between the Number of Density
ρ and Activity z

We have seen that, within the framework of the hypothesis of the truncation of the

series development of the grand partition function Ξ as a function of λ, the activity
z tends toward the density number of the gas ρ when the latter tends toward zero. It
is no longer the case when the latter does not tend toward zero.

Now, we set up a more general relation between z and ρ than that constituting the
Lewis’ definition.

Let us replace λ by z into (34.3) through:

λ ¼ zV=Q1

We obtain:

Ξ ¼ 1þ
X
N�1

QNV
N=QN

1

� �
zN ð34:11Þ

Let us introduce the term Z
0
N by the relation:
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Z0
N ¼ N! QN=Q

N
1

� �
VN ð34:12Þ

As we have already mentioned it in Chap. 28 and as we demonstrate it (viz.

paragraph 8), ZN is nothing else than the configuration integral ZN. Expression

(34.11) can be, now, written by already assimilating Z
0
N to ZN. Therefore:

Ξ ¼ 1þ
X
N�1

ZN=N!ð ÞzN ð34:13Þ

Let us take the logarithm of both members of this equality, i.e.:

lnΞ ¼ ln 1þ
X
N�1

ZN=N !ð Þ zN
" #

ð34:14Þ

or, taking into account (34.1):

pV=kT ¼ ln 1þ
X
N�1

ZN=N!ð Þ zN
" #

ð34:15Þ

Let us divide the above equation by V and expand in series the logarithm. We can

easily forecast that we shall obtain one relation of the type:

p=kT ¼ b1z
1 þ b2z

2 þ b3z
3 þ � � � ð34:16Þ

or equivalently:

p=kT ¼
X
j�1

bjz
j ð34:17Þ

Or

pV=kT ¼ V
X
j�1

bjz
j ð34:18Þ

or

lnΞ ¼ V
X
j�1

bjz
j ð34:19Þ

b1, b2, . . .. depend on temperature owing to the fact that we are reasoning within the

framework of the great ensemble.

The simple fact to identify the terms of same degree in z of both members of

relation (34.19), after having expanded in series the logarithm of the kind ln (1 + x)
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of relation (34.15) by using the symbol x ¼
X
N�1

ZN=N!ð Þ zN , permits to immediately

find:

Vb1�Z1 i:e: b1 ¼ 1

Vb2� Z2 � Z2
1

� �
=2

Vb3� Z3 � 3Z1Z2 þ Z2
1

� �
=3!

⋮

ð34:20Þ

Hence, coefficients b1, b2, b3. . . can be expressed as a function of the configuration

integrals. By limiting ourselves to the term of order 3, we obtain:

p=kT ¼ Z1=Vð Þ½ �z1 þ 1=2Vð Þ Z2 � Z2
1

� �� �
z2

þ �
1=6Vð Þ� Z3 � 3Z1Z2 þ 2Z3

1

� �
z3 þ � � � ð34:21Þ

At this point of the reasoning, we notice that the function p/kT, which is a

remnant of the perfect gas law, can be written under a series development as a

function of the statistical analogue z of the activity.
The relation being searched for between ρ, z, and the coefficients bi is found as it

follows. According to (34.10):

N ¼ λ ∂lnΞ=∂λð ÞV,T ð34:22Þ

Since:

λ ¼ V=Q1ð Þz

i.e.:

dλ ¼ V=Q1ð Þdz

As a result:

N ¼ z ∂lnΞ=∂zð ÞV,T

According to (34.1),

N ¼ z ∂ pV=kTð Þ=∂z½ �V,T
N=V ¼ ρ ¼ z ∂ p=kTð Þ=∂z½ �T

ð34:23Þ

and according to (34.17):
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∂ p=kTð Þ=∂z½ �T ¼
X
j�1

jbj Tð Þzj�1

ρ¼
X
j�1

jbj Tð Þzj
ð34:24Þ

The relation (34.24) between the density number ρ and the activity of the com-

ponent z is that which is being searched for. It depends on the configuration

integrals ZN, parameters stemming from statistical thermodynamics through the

coefficients bj.
Another interesting relation is its reciprocal one, i.e., that relating the activity z to

the density number ρ. Let us assume that it is of the following analytical type:

z ¼ a1ρþ a2ρ
2 þ a3ρ

3 þ � � � ð34:25Þ

At once, one can remark that a1 is set up equal to 1 in agreement with what is

preceding. In order to find the other coefficients an, it is sufficient to replace z by its
development (34.25) into its expression (34.24) and to identify the terms of the

same degree in ρ. Hence, by limiting ourselves to the terms of degree 2, we obtain:

ρ¼ b1 ρþ a2ρ2ð Þ þ 2b2 ρþ a2ρ2ð Þ2 þ � � �
ρ¼ b1ρþ b1a2ρ2 þ 2b2 ρ2 þ 2a2ρ3 þ a22ρ

4
� �þ � � �

ρ¼ b1ρþ b1a2 þ 2b2ð Þρ2 þ termsof superiordegrees

We deduce that, since b1¼ 1, the terms of superior degrees must be null, i.e.,

a2 ¼ �2b2

Likewise, we would find:

a3 ¼ �3b3 � 4a2b2

a3 ¼ �3b3 þ 8b22 etc . . .

Such is the relation (34.25) between the activity z and the density number,

whatever the value of the latter is. Its coefficients a1, a2 . . . are accessible by

starting from experimental data. Actually, from the practical standpoint, it is

more interesting than the relation (34.24). The density numbers being, indeed,

data which are immediately at our disposal, it is possible to reach the value of the

activity which is a thermodynamic data very important, as we have already said

it. In principle, the calculation can be done whatever the value of ρ is.
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34.5 Discussion Around the Relation Between the Activity
and the Corresponding Concentration
of the Imperfect Gas

The relation (34.25) is at the core of our purpose. It can also be written:

z ¼ ρ� 2b2ρ
2 þ �3b3 þ 8b22

� �
ρ3 þ � � � ð34:25Þ

with the coefficients b2, b3, . . . which are function of the configuration integrals and
which are related to the virial coefficients (viz. the following paragraph).

We notice that:

– When ρ tends toward zero, z tends toward ρ
– z varies with ρ
– According to the Lewis’ definition of the activity, for every “concentration” ρ,

the chemical potential of the species must obey the relation:

μ ¼ μ0 þ RTlnz

As a result, z appears as being a pseudo-concentration which would confer the

same value to the chemical potential of the species as actually its concentration ρ
does, whatever its value, during an ideal behavior.

Unfortunately, in our current state of calculations, the expression (34.25) cannot

be anything else than a formal one, although as a rule, it permits the calculation of

the activity for every “concentration,” provided the values of the virial coefficients

are known after experimental measurements. The number of the virial coefficients

to know may be huge, owing to the recurrence of the calculation of the coefficients

bi and ai (about 10
20 coefficients!).

34.6 Relations Between the Density Number of the Gas, Its
Activity, and the Virial Coefficients

It is possible to obtain the numerical values of the coefficients bj and an from those

of the virial coefficients which are the experimental ones. Let us, indeed, compare

the virial relation:

p=kT ¼ ρþ B2 Tð Þρ2 þ B3 Tð Þρ3 þ � � �

and

34.6 Relations Between the Density Number of the Gas, Its Activity, and the. . . 383



p=kT ¼ b1z
1 þ b2z

2 þ b3z
3 þ � � � ð34:16Þ

Let us replace the activities z by the development (34.25) into (34.16). We obtain

by writing only until the term of degree 2:

p=kT ¼ b1 ρþ a2ρ
2

� �þ b2 ρþ a2ρ
2

� �2 þ � � �

whence:

p=kT ¼ b1ρþ a2b1 þ b2ð Þρ2 þ � � � ð34:26Þ

By comparing (34.26) and the virial relation and by taking into account the an
expressions as a function of bj previously obtained, we find:

B2 Tð Þ ¼ �b2
B3 Tð Þ ¼ 4b22 � 2b3
⋮

Therefore, the coefficients bj and an (the latter ones through the reciprocal

relation) can be expressed as a function of the virial coefficients.

Moreover, it appears that the coefficients an do not depend on the coefficients bj
when j> n. For example, a2 only depends on b2 and on b1, i.e., only on the

configuration integrals Z1 and Z2. It is the same thing for an and bn which only

depend on the configuration integrals Z1. . .Zn. This point is very important. It means

that these coefficients together with those of the virial, take into account:

• When b2, a2, B2(T ) are concerned, only the interactions between two particles

• When b3, a3, B3(T ) are concerned, only the interactions between three particles

• When bn, an, Bn(T ) are concerned, only those between n particles.

In other words, B2(T ) only depends on the interactions between two

particles, etc.

34.7 Justification of the Preceding Calculations. Validity
of the Statistical Definition of the Activity

The problem, now, is to justify the validity of relation (34.16).

A first point to notice before the justification is the characteristic of the reasoning

followed up to now. It is the embedding and the interdependence of the different

calculations. Consequently, if the legitimacy of expression (34.19) can be demon-

strated, all the inferences stemming from it become legitimate.
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From the pure mathematical standpoint, the difficulty lays in the fact that, at this

point of the reasoning, it is not sure at all that the expansion in series, stemming

from (34.15), can be truncated as it has been done.

The justificatory reasoning given below can be qualified of “upside down

reasoning.” We start from the expression (34.16) set up, postulated as being a priori

perfectly legitimate, and we demonstrate that we come back to expression (34.15).

According to (34.16), we have:

epV=kT ¼ exp V
X
j�1

bjz
j

" #

Because of the properties of the exponential function:

exp V
X
j�1

bjz
j

" #
¼ exp Vb1z

1
� � � exp Vb2z

2
� � � exp Vb3z

3
� �� � � ð34:27Þ

Let us develop in series the exponentials of the right member of this expression

and let us perform the products. Let us explicit the product of the two series

developments (limited to the third degree) of the first two exponentials. This

product is:

exp Vb1z
1ð Þ � exp Vb2z

2ð Þ ¼ �
1þ Vb1ð Þ1z11 þ 1=2! Vb1ð Þ2z12

þ 1=3! Vb1ð Þ3z13 þ � � ��
• 1þ Vb2ð Þ1z21 þ 1=2! Vb2ð Þ2z22 þ 1=3! Vb2ð Þ3z23 þ � � �
h i

(Notice the use of both indices qualifying the activities, the first one permitting

the mark of the coefficient bj, the second being the exponent). The calculation

performed by multiplying the previous product by the series development of the

third exponential exp(Vb3z
3) leads to a series development as a function of z the

coefficients of the increasing powers of which are:

for z1 z2 Vb1=1ð Þ
for z2 z2 ½ Vb1ð Þ2 þ Vb2=1ð Þ
for z3 z3 1=3! Vb1ð Þ3 þ Vb=1ð Þ Vb2=1ð Þ þ Vb3=1ð Þ
⋮

Equalizing the coefficients ZN of equation (34.13) and those of equation (34.27), we
obtain the equalities:
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Vb1=1ð Þ ¼ Z1

½ Vb1ð Þ2 þ Vb2=1ð Þ ¼ 1=2Z2

1=3! Vb1ð Þ3 þ Vb1=1ð Þ Vb2=1ð Þ þ Vb3=1ð Þ ¼ 1=6Z3

In brief, we again find expression (34.13). It is the result that we wanted to

demonstrate.

34.8 Identity of Z
0
N and of the Integral of Configuration

in Classical Statistical Thermodynamics ZN

We have already mentioned in the paragraph 4 that the parameter Z
0
N introduced in

the preceding calculations and defined by the expression:

Z0
N V; Tð Þ ¼ N! QN=Q1

N
� �

VN ð34:12Þ

is identical to the corresponding configuration integral ZN in classical statistical

thermodynamics, defined by the expression (viz. Chap. 28):

Qclass ¼ ZN=N !Λ3N ð34:28Þ

Hence, we must demonstrate that:

Z0
N�ZN

When the gas is very weakly concentrated, it exhibits a perfect behavior. It is

obviously the case when there is only one molecule in the system, to which

corresponds the partition function Q1 by definition. Since the gas behaves ideally,

the following expression is justified (viz. Chap. 26):

Q ¼ 1=N!ð ÞqN

and therefore for N¼ 1:

with:

q ¼ V=Λ3

where q is the molecular partition function of the system—viz. Chap. 27. As a

result:
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Q1 ¼ V=Λ3

Replacing Q1 into (34.12) by the latter expression immediately leads to the identity

being searched for.

34.9 Physical Meaning of the Activity of a Gas

In this paragraph, we briefly comment on the results which we have obtained just

above.

– Let us begin by saying that relations (34.24) and (34.25) show distinctly how the

activity and the density numbers differ from each other. The relation (34.25), for

example, shows that the difference between both is expressed by terms

containing the density number itself at degrees larger than 2. As a result, one

can conceive that the more dense the gas is, the larger the difference between

both quantities may be. This conclusion can also be found when the notion of

activity coefficient is regarded (viz. Chap. 37).

– Let us consider the relation (34.7) defining the activity:

z ¼ Q1λ=V ð34:7Þ

Clearly, the activity takes its roots in classical thermodynamics through the

absolute activity λ. Certainly, the absolute activity is a quantity which is intro-

duced in statistical thermodynamics at the level of the grand ensemble, but its

definition:

λ ¼ eμ=kT

involves the concept of chemical potential of purely thermodynamic origin.

Clearly, we notice that, by its sole definition, the activity of a substance is linked

to its chemical potential.

– Still more significant than the last argument is the occurrence of the canonical

partition function Q1 in the definition of the activity. It is a characteristic of the

system which possesses one particle only in the system V. No interaction with

other particles, of course, can exist. Here, we again find the meaning which was

attributed to an activity by Lewis himself: i.e., to characterize a species as it

would have no interaction with other ones. (In passing let us recall that,

according to the general principles of quantum mechanics, Q1 depends on the

volume V and on the fact that there is one molecule in the system).
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34.10 Definition of the Fugacity

Incidentally, in this paragraph, we are interested in the meaning of the fugacity in

statistical thermodynamics. According to Lewis, the fugacity is defined as being the

quantity which tends toward the pressure p of a gas when the latter tends toward

zero (viz. Chap. 7), i.e.,

lim f
p!0

¼ p

According to relation (34.24), it is evident that:

p=kT ! b1z
1 when p ! 0

Since b1 ¼ 1, and since f ! p when p ! 0, f must be defined by the

expression:

f ¼ kTz f=kT ¼ z ð34:29Þ

i.e.,

f ¼ kT=Vð ÞQ1λ ð34:30Þ

34.11 Virial Coefficients and Configuration Integrals

We have mentioned in the preceding chapter that the virial coefficient of order

2, B2(T ) can be expressed as a function of the configuration integrals Z2 and Z1.

B2 Tð Þ ¼ � 1=2Vð Þ Z2 � Z2
1

� �

It can also be written according to:

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 � V2

� �

where U(r1, r2) is the intermolecular potential energy between the two particles of

the system of coordinates r1 and r2 (x1. . .z2). It can also be written:

B2 Tð Þ ¼ � 1=2ð Þ
ð1

0

exp �U rð Þ=kT � 1½ �4πr2dr

In the latter expression, r is a scalar. It is the distance which separates particles 1 and

2, particle 1 being supposed fixed.
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Let us recall that in this special case, the configuration integral is given by the

following expression:

ZN ¼
ð
V

� � �
ð
exp �UN x1, . . . zNð Þ=kT½ �dr1� � �drN

with dr1 ¼ dx1dy1dz1� � �

• For the calculation of Z1, evidently U x1, . . . zNð Þ ¼ 0, since there is only one

particle. Consequently:

Z1 ¼
Ð
Vdr1

Z1 ¼ V

• Z2 is given by the expression:

Z2 ¼
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2

U(r1, r2) is the intermolecular potential energy between the two particles,

depending on the coordinates r1 and r2 (x1. . ..z2). In order to relate B2(T ) to the

intermolecular potential energy between both particles, we use the equalities,

already demonstrated above, in which the configuration integrals intervene:

B2 Tð Þ ¼ � b2

and

Vb2 ¼ Z2 � Z2
1

whence:

B2 Tð Þ ¼ � 1=2Vð Þ Z2 � Z1
2

� �

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 � V2

� 	

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 þ V=2

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 þ 1=2

Ð
dr1

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 þ 1=2V

Ð
dr1

Ð
dr2

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1v; r2ð Þ=kT � 1½ �dr1dr2

34.11 Virial Coefficients and Configuration Integrals 389



By changing the variables, i.e., by using the variables dr1 and r12¼ r2� r1 (which

is the location of particle 2 with respect to particle 1 regarded as being at the origin),

we obtain:

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r12ð Þ=kT � 1½ �dr12

and adopting the polar coordinates:

dr12 ¼ 4πr2dr

B2 Tð Þ ¼ � 1=2ð Þ
ð1
0

exp �U rð Þ=kT � 1½ � 4πr2dr

or, according to what is preceding:

B2 Tð Þ ¼ �1=2

ð
x12 � 1ð Þdr12

• By supposing the hypothesis of the “pairwise additivity” validated (besides, it is

only at this term that it can be applied for the first time), the configuration

integral Z3 can be written:

Z3 ¼
ððð
V

exp �U r1; r2ð Þ � U r1; r3ð Þ � U r2; r3ð Þ½ �dr1dr2dr3

By adopting a reasoning analogous to the preceding and by using the same

symbolism, we obtain the following relation for B3(T):

B3 Tð Þ ¼ � 1=3Vð Þ
ððð
V

v x12 � 1ð Þ x13 � 1ð Þ x23 � 1ð Þdr1dr2dr3

Analogous expressions would be found for the superior coefficients.
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