
Chapter 32

The Chemical Potential and the Radial
Distribution Function: General Formal
Introduction of the Activity
and of the Activity Coefficient

Abstract The chemical potential μ plays a central part in the realms of physics,

chemistry, and even biochemistry. It is related to the activity a of the species that it

characterizes through a mathematical logarithmic relation. The latter can be for-

mally written under only one kind of mathematical expression, whichever the type

of activity is considered.

It is a well-known fact that, while relating the chemical potential of a perfect gas

to molecular parameters to its number density is not endowed with any problem, it

is not the case as soon as there exist interactions between the particles. In this case,

the problem becomes, even, immensely complicated to solve exactly. This chapter

mentions the setting up of general, but approximate, expressions, of the chemical

potential of the components of a system, when such interactions exist. The first one

links a decreasing exponential of the studied chemical potential to the difference of

two other exponentials involving Helmholtz’ energies of the system. It is obtained

within the framework of the canonical ensemble. The second relation is obtained

from the previous one through the using of the pairwise additivity hypothesis. It is

very interesting since it takes the form of the relation expressing the chemical

potential of a perfect gas, but does possess a supplementary term. The latter only

takes into account the mutual interactions of the particles and, hence, must be

related to an activity coefficient. Finally, the chapter also mentions the setting up of

theoretical relations between the chemical potential and the radial distribution

function.

Keywords Radial distribution function • Activity (general formal introduction) •

Activity coefficient • Chemical potential (formal expression when interactions

occur) • Helmholtz energy change • Chemical potential (formal expression within

the framework of the pairwise additivity hypothesis) • Other general expression of

the activity coefficient

The chemical potential μ plays a central part in the realms of physics, chemistry,

and even biochemistry. We also know (viz. Chap. 6) that it is related to the activity a

of the species that it characterizes through a mathematical logarithmic relation. We

also know that the latter can be formally written under only one kind of expression,

whichever the type of activity is considered.
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It is a well-known fact that, while relating the chemical potential of a perfect gas

to molecular parameters to its number density is not endowed with any problem, it

is not the case as soon as there exist interactions between the particles. In this case,

the problem becomes, even, immensely complicated. In this chapter, we give a

general expression of the chemical potential of the components of a system, when

such interactions exist. We also establish theoretical relations between the chemical

potential and the radial distribution function. The latter is experimentally

accessible.

32.1 General Relations

We know with the aid of statistical theory that, in the framework of the canonical

ensemble for instance, the chemical potential μ of a species is given by the relation

(viz. Chap. 23):

μ ¼ �kT ∂lnQ=∂Nð ÞT,V ð32:1Þ

The canonical partition function Q is given by the relation (viz. Chap. 27)

Q N; T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
�h iðþ/

�1
::

ð
exp �βH XN

� �� �
dX

N

dpN ð32:2Þ

with

β ¼ 1=kT

Hamilton’s function H of the system is given by the expression:

H ¼
X

p2i ;X
N

� �þ UN XN
� �

i ¼ 1 . . .N

The occurrence of the symbol X is the mark that, here, we are considering the case

in which the component does possess an internal structure (with the occurrence of

the quantity q 6¼ 1). When this is not the case, the canonical partition function is:

Q N; T;Vð Þ ¼ 1= N!Λ3N
� �� �ðþ/

�1
::

ð
exp �H=kT½ �dRNdpN ð32:3Þ

with

H ¼ H pN;RN
� �

H pN;RN
� �¼ X

p2i =2m
� �þ UN RN

� �
i ¼ 1 . . .N

ð32:4Þ
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32.2 The Case of a Perfect Gas

The gas being perfect, there is by definition the lack of any intermolecular force

between the particles, whence in (32.2)::

UN XN
� � ¼ 0

Then, (32.2) becomes:

Q N; T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
�h iðþ1

�1
::

ð
dXN

or (viz.: Chap. 27):

Q N; T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
� ð

v

dR

ð2π
0

dϕ

ð π

0

sin θdθ

ð2π
0

dψ

� �N

that is to say

Q N; T;Vð Þ ¼ qNVN=Λ3NN! ð32:5Þ

If the particles are simple and spherical (q¼ 1), the canonical partition function

reduces to:

Q N; T;Vð Þ ¼ VN=Λ3NN! ð32:6Þ

Applying relation (32.1) to (32.5) leads to (32.7) after derivation and use of

Stirling’s approximation:

μ ¼ kT ln Λ3q�1
� �þ kTlnρ ð32:7Þ

where ρ¼N/V is the number density (more simpler the density) of the gas (m�3). It

is a kind of “concentration” of the gas. Relation (32.7) can also be written:

μ ¼ μ�g Tð Þ þ kT lnρ ð32:8Þ

μ�g(T ) is, by definition, the standard chemical potential of the particle in the

gaseous state. The factor kTln(Λ3q�1), quite evidently, takes molecular character-

istics of the gas into account.

From the standpoint of the scientific accuracy, it is very satisfying to find the

usual expression of the chemical potential of a gas, again. This is an argument in

favor of the hypothesis constituting a basis of statistical thermodynamics, even if it

is an indirect one.
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Let us notice in passing, without considering this point further, that relations
(32.7) and (32.8) written as they stand, are not fully satisfactory since, in them,
intervene logarithms of dimensional quantities.

(It may seem curious to express the chemical potential of a species in a liquid

phase as a function of its standard chemical potential in the gaseous phase. This

must not be the case because of the fact the choice of that state is purely arbitrary, as

we have already seen that. Moreover, at equilibrium, the chemical potential of the

solute is the same in both phases. Hence, the choice of the standard state does not

matter, but, then, activity values differ according to it).

32.3 A General Formal Expression of the Chemical
Potential When There Exist Interactions Between
the Particles of the System

Let us assume that the particles constituting the system are simple. That is to say,

their configuration is only defined by the vector R (monoatomic particles without

internal structure, q¼ 1).

In the N, T, V ensemble, the chemical potential is defined by the relation (viz.

Chap. 23)

μ ¼ ∂A=∂Nð ÞT,V ð32:9Þ

where A is the Helmholtz energy. We can also write:

μ ¼ A T,V,N þ 1ð Þ � A T;V;Nð Þ ð32:10Þ

or:

μ=kT ¼ A T,V,N þ 1ð Þ � A T;V;Nð Þ½ �=kT

The chemical potential, indeed, is equal to the change in the Helmholtz energy dA
when an infinitesimal amount dn mole of the species M is added, at constant

temperature and pressure, to the system already containing a finite amount of

M itself and of solvent. A “thought” equivalent process is to add 1 molecule M to

a very great amount of this solution. This is true because A is an extensive quantity

(Fig. 32.1).

Obtaining the general formal expression of the chemical potential when there are

interactions between the particles is as follows. According to what is aforemen-

tioned, the change in the Helmholtz energy due to the addition of one particle to the

system (in very great quantity) must be firstly expressed. Starting from (32.9) and

(32.10), we obtain:

356 32 The Chemical Potential and the Radial Distribution Function: General. . .

http://dx.doi.org/10.1007/978-3-319-46401-5_23


exp �μ=kTð Þ ¼ exp � A T,V,N þ 1ð Þ � A T;V;Nð Þ½ � 1=kTð Þf g

Handling the general relation, characteristic of the canonical ensemble (viz.

Chap. 23):

A T;V;Nð Þ ¼ �kTlnQ T;V;Nð Þ

we obtain, according to relation (32.5):

exp �μ=kTð Þ ¼ qNþ1=Λ3 Nþ1ð Þ N þ 1ð Þ!� �ð
v . . .

ð
exp �βUNþ1ð Þ

�dR0 . . . dRN=q
N=Λ3NN!

ð
v . . .

ð
exp �βUNð ÞdR1 . . . dRN

ð32:11Þ

Fig. 32.1 One way to define to define the chemical potential
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In the following sentences, the subscript 0 is the label of the added particle.

The general formal expression of the chemical potential when there exist

interactions between particles is obtained as it follows. According to what is

previously said, we must calculate the Helmholtz energy change when one mole-

cule is added to the system. Starting from relations (32.9) and (32.10), we obtain:

exp �μ=kTð Þ ¼ exp � A T,V,N þ 1ð Þ � A T;V;Nð Þ½ � 1=kTð Þf g

This relation expresses the chemical potential of the species in the conditions of the

canonical ensemble (N, T, V ) for the kind of investigated particle. Quite evidently,

it takes into account the total potential energies UN(R
N) and UN+1(R

N+1) for the

configurations RN and RN+1.

Relation (32.11) is the expression being searched for of the chemical potential. It

is general but formal. It turns out to be of great usefulness for the study of the

concept of activity coefficient. This study is valid for every fluid.

32.4 A General Expression of the Chemical Potential
in the Framework of the “Pairwise Additivity”
Hypothesis

Another expression of the chemical potential can be obtained from relation (32.11)

by using the “pairwise additivity” hypothesis. It consists in setting up the equality:

UNþ1 Ro . . .RNð Þ¼UN R1 . . .RNð Þ
þ
X
j

U Ro;Rj

� �¼UN R1 . . .RNð ÞþB Ro . . .RNð Þ j¼ 1 . . .N

ð32:12Þ

UN(R1. . .RN) is the sum of potential energies, the origins of which are the

interactions between particles 1 to N in configurations R1 to RN.

The term B(Ro. . .RN) is the sum of all the interactions between particle 0 and

others, in the same configurations.

The substitution of (32.12) into (32.11) leads to the expression (32.13):

exp �μ=kTð Þ ¼ q= Λ3 N þ 1ð Þ� � �
ð
v::

ð
dRo . . . dRNexp �βUNð Þ

exp
�� βB RO . . .RNð Þ=

ð
v::

ð
dR1 . . .dRNexp �βUNð Þ

ð32:13Þ

where
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exp �βUNð Þ=
ð
v::

ð
dR1 . . . dRNexp �βUNð Þ ¼ P R1 . . .RNð Þ

P(R1. . .RN) is the basic distribution function or density probability function to

observe the configuration R1. . .RN (viz. Chap. 28).

The relation (32.12) can also be written:

exp �μ=kTð Þ¼ q= Λ3 Nþ1ð Þ� � �
ð
v

ð
dRo . . .dRNP R1 . . .RNð Þexp �βB RO . . .RNð Þ½ �

ð32:14Þ

At this point of the reasoning, we must remark that the term exp(�βB(R0. . .RN)

which quantifies the interactions between the added particle “0” and the other ones

“1 to N” does not depend on the configuration R1 . . .RN [the probability of which is

P(R1. . .RN)] but is on the dependence of the configuration RO. . .RN. However, we

can adopt a system of relative coordinates defined by the general expression:

R0
i ¼ Ri � R0 with i from 1 to Nð Þ

Then, the term B(RO. . .RN) becomes a function of the relative coordinates Ri
0, that

is to say can be symbolized B(R1
0. . .RN

0). Hence, one can write:

exp �μ=kTð Þ¼q= Λ3 Nþ1ð Þ� ��
ð
dRo

ð
...

ð
dR0

1 ...dR
0
NP R0

1 ...R
0
N

� �
exp �β R0

1 ...R
0
N

� �� �
ð32:15Þ

Then, after this transformation, one can take out R0 and integrate over. The

integration gives V.
Given the fact that the integrand is the product of the exponential taking into

account the sum B (of all the interactions between the added particle and those

constituting the initial system) and of the basic distribution P(R
0
N), it appears that

the internal energy of the right-member of relation (32.14) is the average of the

quantity exp[�βB(R
0
1. . .R

0
N)] in the (T, V, N) ensemble. Hence, we obtain:

exp �μ=kTð Þ ¼ q V=Λ3 N þ 1ð Þ� �
exp

� �B=kTð Þ� 	

After the replacement of (N+ 1)/V by N/V since N + 1�N and by introduction of:

ρ ¼ N=V

we obtain:
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exp �μ=kTð Þ ¼ q=Λ3ρ
� �

exp �B=kTð Þh i

When all is done:

μ ¼ kTlnρΛ3=q� kTln exp �B=kTð Þh i ð32:16Þ

or

μ ¼ kTlnΛ3=qþ kTlnρ � kTln exp �B=kTð Þh i ð32:17Þ

It is interesting to notice that the right member of (32.17) is the chemical

potential of every gas, even if the studied fluid here, is a liquid. To be convinced,

it is sufficient to consider its “mathematical structure.” When the behavior of the

fluid is actually ideal, there is no interaction and B¼ 0. Then the relation (32.17)

becomes:

μ ¼ kTlnΛ3=qþ kTlnρ

This expression is identical to that giving the chemical potential of a perfect gas.

μ ¼ μ0g þ kTlnρ ð32:18Þ

According to (32.17), the chemical potential of a real gas can be expressed by the

relation:

μ ¼ μ0g þ kTlnρ � kTln exp �B=kTð Þh i ð32:19Þ

32.5 A General Meaning of the Activity Coefficient

Hence, the last term of the right member (32.19) is the contribution to the value of

the chemical potential of the interactions between molecules. B is actually the

interaction energy of the added particle with all others at the location R1. . .RN of

the system.

When we compare the relation (32.18) with the relation (32.19) below:

μ ¼ μ0g þ kTlnρþ kTln γ ð32:20Þ

where γ is the activity coefficient empirically introduced by Lewis in order to take

into account the interactions between the particles, it appears that:
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γ�1= exp �B=kTð Þh i ð32:21Þ

Relation (32.19) is very important. It is the basis of the affirmation that activity

coefficients take into account the particle interactions in the system. It provides a

general expression of an activity a, in terms of statistical thermodynamics:

a ¼ ρ= exp �B=kTð Þh i

Moreover, by itself, relation (32.21) is a general expression of activity coeffi-

cients. However, these expressions cannot be considered as anything else than an

approach to an activity because they are grounded in an approximation which is the

“pairwise additivity” hypothesis.

32.6 The Chemical Potential and the Radial
Distribution Function

Here, we mention one relation between the chemical potential and the radial

distribution function. (Obtaining it is given in Appendix K). It is:

μ ¼ kTln ρΛ3q�1
� �þ ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR ð32:22Þ

It has been set up by Kirkwood. From a general standpoint, it is based on the

“pairwise additivity” hypothesis applied to the global potential energy. More

precisely, it is founded on the virtual process consisting in coupling a particle

with others bit by bit, all along the addition. It involves the presence of the coupling

parameter ξ which can vary from 0 up to 1. When ξ¼ 0, the added particle is not

coupled to others, but the latter ones are coupled between themselves. When ξ¼ 1,

it is fully coupled with others. For the intermediary values, 0< ξ< 1, the added

particle is only partly coupled with others.

Hence, the term ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR is the work which has to be done

in order the interactions of the particle with the others constituting the system to be

effective. Let us symbolize the particle by A and the work byW(A|A). The left-hand
A figures the particle A which is coupled. The right-hand one figures the kind of

particles with which the previous one is coupled. In the occurrence, it is A itself:

W A


A� � ¼ ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR

Let us, already, notice that this relation is interesting because it directly leads to

another expression of the activity coefficient of a gas. Actually,
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kTln ρΛ3q�1
� � ¼ kTln Λ3q�1

� �þ kTlnρ

By definition, the term kT ln(Λ3q–1) is the standard potential in the gaseous phase:

kTln Λ3q�1
� � ¼ μ�g

Relation (32.21) can also be written:

μ ¼ μ�g þ kTlnρ� ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR

By comparison with the classical expression:

μ ¼ μ�g þ kTlnρþ kTlnγg

where γg is the activity coefficient of the gas.

Hence, the term ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR is an expression of the activity

coefficient.

Relation (32.22) proves to be very interesting for a study of activity coefficients.

32.7 Relation Between the Chemical Potential
and the Function G

We have already introduced the function G (cf. Chap. 31). It involves the radial

distribution function. It is given by the relation:

G ¼
ð1
0

g R
� �� 1

� �
4πR2dR

It results from the theory of grand ensemble.

It is also possible to express the chemical potential μ starting from G with the

help of the relation which we establish below. It involves the isothermal compress-

ibility coefficient of the system. The expression which links both quantities is:

μ ρð Þ ¼
ð
kT dρ= ρþ ρ2G

� �� �þ constant ð32:23Þ

Therefore, once the change inG as a function of the density number ρ is known, one
can conceive that the chemical potential can be obtained, the fact that G is acces-

sible through g(R) being well understood. Evidently, the relation (32.23) is one

integral solution of the expression (32.24):

362 32 The Chemical Potential and the Radial Distribution Function: General. . .

http://dx.doi.org/10.1007/978-3-319-46401-5_31


∂μ=∂ρð ÞT ¼ kT= ρþ ρ2G
� � ð32:24Þ

The way followed to obtain the latter is postponed to the end of this paragraph.

Relation (32.23) can also be equivalently written according to (32.25). Hence, the

integration can be done from it:

μ ρð Þ ¼ kT

ð
dr 1=ρ� G= 1þ ρGð Þ½ � þ constant ð32:25Þ

During the integration, the following mathematical difficulty happens: when

ρ¼ 0, the chemical potential does not exhibit a finite value. The trick used to

overcome it is as follows. Let us consider a solution of very low density

ρ0 (ρ0! 0). In these conditions, the interactions between molecules are negligible.

Then, the chemical potential μ(ρ0) is expressed according to a relation which is of

the same type as that which is encountered with the perfect gases:

μ ρ0ð Þ ¼ kTln ρ0Λ
3q�1

� �
μ ρ0ð Þ ¼ kTln Λ3q�1

� �þ kTlnρ0

The first term of the right member is nothing else than the chemical standard

potential μ�g of the liquid when it is in the gaseous state, as its mathematical

structure shows it. As a result,

μ ρ0ð Þ ¼ μ�g þ kTlnρ0

Hence, one can integrate from the lower limit ρ0 (and not from 0) up the limit ρ,
given the expression:

kT

ð ρ

0

dρ0 1=ρ0 � G= 1þ ρ0Gð Þ½ � ¼ μ�g þ kTlnρ0 þ kT

ð
ρρ
0 1=ρ0 � G= 1þ ρ0Gð Þ½ �dρ0

whence:

μ ρð Þ ¼ μ�g þ kTlnρ� kT

ð ρ

0

G= 1þ ρ0Gð Þ½ �dρ0 ð32:26Þ

A relation between the function G and the activity coefficient must now be found.

Evidently, it can be done through the integration of the latter expression.

According to what is preceding, we know that:
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kTln exp �B=kTð Þh i ¼ kT

ð ρ

o

G= 1þ ρ0Gð Þ½ �dρ0

Hence, we can deduce that the work of coupling of a molecule with all the others

is equal to the necessary work to increase the system density from 0 up to the final

one ρ. Hence, the relation (32.26) permits to find another expression of the activity

coefficients, which is:

lnγ ¼ �
ðρ

o

G= 1þ ρ0Gð Þ½ �dρ0 ð32:27Þ

As a result, thanks to this expression, it is possible to link the activity coefficient

to the radial distribution function g(R) through the function G.
The relation (32.26) will be generalized to systems consisting in fluid mixtures.

This possibility is demonstrated by the Kirkwood–Buff’s theory (viz. Chaps. 42 and

44).

• Obtention de la relation (32.24)

The demonstration is given in Chap. 31. Let us only recall that it involves the
isothermal compressibility coefficient kT and that it involves the following equali-
ties already demonstrated:

∂ρ=∂μð ÞT ¼ ∂ρ=∂pð ÞT ∂p=∂μð ÞT
∂ρ=∂pð ÞT ¼ ρκT

∂p=∂μð ÞT ¼ ρ

∂μ=∂pð ÞT ¼ 1= ρ2κT

kTρκT ¼ 1þ ρG
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