
Chapter 27

Classical Statistical Mechanics,
Configuration, and Classical Canonical
Partition Function

Abstract To deeply grasp the physical significance of an activity, statistical

thermodynamics must be considered and, in particular, it is the case of the notions

of configuration of a system and of the classical canonical partition function.

Firstly, the chapter presents a definition of the configuration of a system.

Secondly, the chapter is a presentation of the classical canonical partition function

and of some relations stemming from it. It may be viewed as being an extension, in

some definite conditions, of the canonical partition function occurring in quantum

mechanics. All the mathematical terms constituting the function are presented. This

is especially the case of the hamiltonian of the system. In some conditions,

Hamilton’s function is nothing more or less than the energy of the system. It entails

the kinetic energy of the whole particles constituting the system and their mutual

interacting potential energy. A simple example of its handling, concerning perfect

gases, is given at the end of the chapter.

The partition function, indeed, is the most used partition function in the field of

applications of statistical thermodynamics to chemistry. The function will be quasi-

systematically used until the end of the book. It is a physical parameter of first

importance in the grasping of the significance of an activity.

Keywords System • Stirling’s approximation • System configuration • Classical

statistical mechanics • Configurational partition function • Classical and quantum

mechanics • Classical canonical partition function • Hamiltonian

In order to grasp the physical significance of an activity more deeply than before,

we must turn ourselves toward statistical thermodynamics and especially, at the

beginning, toward the notion of partition function, notion which also exists in the

realm of classical statistical mechanics.

In this chapter, we present the classical canonical partition function and we

mention some relations stemming from it. It may be viewed as being an extension

of the canonical partition function occurring in quantum mechanics in some definite

conditions. This is the standpoint we adopt here.

The canonical partition function, indeed, is the most used partition function in

the field of applications of statistical thermodynamics to chemistry. We give an

example of its handling with the case of perfect gases at the end of this chapter.
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27.1 Classical and Quantum Mechanics

In the classical mechanics, we consider that the state of a system is defined, at any

instant, by the values of its coordinates and of its momenta.

In quantum mechanics, the state of the system at any instant is defined by a

probability amplitude permitting to only know the probability of occurrence of

some values of its coordinates and its momenta.

In either case, there are some situations in which the theoretical treatments just

above evoked are not possible. In these cases, one no longer studies a sole system

but a collection (one ensemble) of several systems, each of them duplicating the one

studied. This is the essence of statistical methods.

27.2 Quantum and Classical Mechanics in Statistical
Thermodynamics

It is true that, in some definite conditions, the results following from quantum-

mechanical arguments tend toward those obtained from classical mechanics ones.

This is the case, for instance, when the quantum numbers involved in a process take

high numerical values. Thus, in the quantum-mechanical canonical ensemble

partition function, the terms corresponding to the higher quantum numbers make

more and more important contributions to the sum constituting it as the temperature

increases. Owing to the importance of the canonical partition function for our

purpose, it is of great interest for us to know the classical canonical partition

function.

According to the preceding example, one may prejudge that the quantum-

mechanical canonical function must tend toward the classical one.

Hence, one can infer that the quantum-mechanical canonical partition function

Q T;V;Nð Þ½ �quant ¼
X
i

exp �βEi N;Vð Þ½ � (viz. Chap. 23) must go over asymptoti-

cally into the corresponding classical function in the limit of large quantum

numbers,

Q T;V;Nð Þ quant large quantum numbersð Þ ! Qclass ¼ ?

The principal goal of this chapter is to express the function Qclass.

According to the very foundations of classical mechanics, the energy of a

moving body, for instance, varies continuously. Hence, one may already infer

from this observation that Qclass is a continuous function of energy instead of Qquant

which is a discrete function.
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27.3 Cartesian Coordinates of a Specific Particle
in a System

The locations of the centers of the molecules are often denoted in rectangular

coordinates x, y, z. It is the same as to locate it at the extremity of the vector

R defined by its components x, y, z. Thus, the center of the molecule i is defined by

the vector Ri (Fig. 27.1).

For simple particles such as hard spheres (which do not actually exist although,

however, argon atoms look closely like them), vectors Ri, Rj, . . . are sufficient to

describe one configuration of the system (constituted by the N particles i, j. . .). This
means that, in this case, the sole location of their centers is sufficient to describe the

configuration of the system symbolized by RN. It is symbolically written:

RN ¼ R1,R2,R3, . . .RN

The symbol RN means that the location of the centers of all the particles constitut-
ing the system is known through the knowledge of vectors Ri. They are, of course,

defined by the three components xi, yi, and zi.

27.4 Configuration of a System

More generally, the description of the configuration of a molecule may necessitate

to know both its location and its orientation Xi. This was not the case of the

preceding spherical particles having no internal structure. For a rigid nonspherical

molecule i (such as water for example), its orientation, defined by the parameterΩi,

must also be taken into account. Ωi is given by the relation (viz. Fig. 27.1):

Fig. 27.1 Symbolism used

to describe the

configuration of a molecule
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dΩi ¼ dϕi sin θidθi dψ i

The whole configuration of such a molecule is symbolized by Xi. The vector Xi is

related to vectors Ri and Ωi by:

Xi ¼ RiΩi

The configuration of the system is given by the relation:

XN ¼ X1,X2, . . .XN

and the infinitesimal element of a single molecule i is given by:

dXi ¼ dRidΩi

Vector Xi is a six-dimensional (xi, yi, zi, ϕi, θi, ψ i) vector (the definitions of these six

variables are given in Fig. 27.1). The integration over Ωi takes into account all the

orientations of the molecule. It is represented by the expression:

ð
dΩi ¼

ð2π
0

dϕi

ð π

0

sin θidθi

ð2π
0

dψ i

that is to say:

ð
dΩi ¼ 8π2

and

Xi ¼ 8π2Ri

Remark: For nonrigid molecules, a supplementary parameter describing their inter-

nal rotations may be needed. This is the case, for example, of n-butane. It is not

treated further in this book.

27.5 Spherical Coordinates ϕ, θ, r of a Particle

An infinitesimal element of volume located at the extremity of the vector R is

equally denoted dV, dR or dx dy dz (viz. Fig. 27.1). The change of the cartesian to

the spherical coordinates systems is done by using the expression:
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dRi ¼ dxi dyi dzi ¼ r2 sin θdθdϕdr

where r is the radius of the studied sphere.

27.6 Classical Analogue of the Quantum-Mechanical
Canonical Partition Function

Let Ei be the energy of a molecule i in a system of N simple, “indistinguishable,” in

mutual interactions but for which it is unnecessary to specify their orientations. It is

equal to the sum of its potential and kinetic energies U and Ek.
1 Its potential energy

U depends on its proper coordinates xi, yi, zi but also on those of other molecules in

mutual interactions with it. These interactions, indeed, depend on the

intermolecular distances. The kinetic energy of i depends on the components pxi,
pyi, pzi of its momentum p. Therefore, one can write:

Ei ¼ U xi; yi; zið Þ þ Ek pxi; pyi; pzi
� �

i ¼ 1 . . .N

The whole energy E of the system is equal to the sum of the individual energies Ei.

It is demonstrated that the classical canonical partition function of a N spherical

particles system, without an internal structure, is given by the relation (for an

approach of it, viz. Appendix F and the supplement one):

Q N; T;Vð Þ ¼ �
1=N!h3N

��
ðþ/

�1��

ð
exp �H x1, y1, z1 . . . xNyNzN ; px1, py1, pz1 . . . pxN pyN pzN

� �� �
� =kT � dx1, dy1, dz1 . . . dxN , dyN, dzN . . . dpx1, dpy1, dpz1 . . . dpxN , dpyN , dpzN

ð27:1Þ

H is Hamilton’s function involved in Lagrange’s mechanics. The terms in brackets,

x1, y1, z1. . .xN yN zN; px1, py1, pz1. . .pxN pyN pzN are the variables on which depend H.
It is sufficient for our purpose to know that Hamilton’s function is usually expressed

in terms of generalized coordinates q and p, but in the present case, using cartesian

coordinates and momenta is equivalent to the use of the generalized ones. h is

Planck’s constant h ¼ 6:626� 10�34 J s
� �

and k Boltzmann’s constant

k ¼ 1:38� 10�23 JK�1
� �

. T is the thermodynamic temperature.

For this kind of system, Hamilton’s function is nothing more or less than the

energy of the system, hence:

1We are continuing to symbolize the potential energy, which is an energy of interaction between

molecules, by U. According to IUPAC, U is, usually, the symbol of the internal energy and Ep is

the potential energy.
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H ¼
X
i

1=2mð Þ�p2
x1
þ � � �p2zN þ U x1; . . . ; zNð Þ ð27:2Þ

m is the molecular mass of each particle. In equation (27.1), all the summations are

over the whole coordinates from �1 to +1.

The fact that equation (27.1) contains the factor N! must be noticed. Its presence

is for the same reason as in the analogous quantum-mechanical partition function.

That is to say: particles are “indistinguishable” and the interactions between two of

them must not be taken into account several times. Surprisingly, also, equation

(27.1) contains Planck’s constant h which is a reminiscence of quantum mechanics.

It is introduced as an integration constant in the mathematical developments

devoted to the classical partition function. Its introduction is necessary since,

without it, calculations performed through the classical partition function fail to

provide correct values of the entropy and of other thermodynamic quantities of the

system.

Relation (27.1) is by no means surprising. We can, indeed, notice the similarity:

X
e
�energy=kT ,

ð
...

ð
e�energy =kTdx1 . . . dzN

Let us recall that the sum Σ goes over all the quantum states. Here, one again finds

the pathway between quantum and classical functions and, from a strict mathemat-

ical standpoint, the fact that an integral is a sum of infinitely small quantities over an

infinitely large number of them. Relation (27.1) is not surprising for a second

reason. Quite evidently, Q(N, T, V ) is a continuous function. (This point is some-

what detailed in Appendix F).

Equation (27.1) is often written equivalently as:

Q N; T;Vð Þ ¼ 1=N!h3N
�� �ðþ1

�1��

ð
exp �H=kT½ �dRNdpN ð27:3Þ

with:

H ¼ H pN;RN
� �

and more precisely:

H pN;RN
� � ¼ UN RN

� �þXN
i¼1

p2i =2m
� � ð27:4Þ

where pN andRN recalls the dependence of Hamilton’s function on momenta and on

the configuration.

With more complex molecules, the classical canonical partition function is:

314 27 Classical Statistical Mechanics, Configuration, and Classical Canonical. . .

http://dx.doi.org/10.1007/978-3-319-46401-5_BM1


Q N; T;Vð Þ ¼ qN=8π2
�
NΛ3NN!

�� �ðþ/

�1��

ð
exp �βH XN

� �� �
dXNdpN ð27:5Þ

H ¼
X
i¼1

p2i =2m
� �þ UN XN

� �

and

β ¼ 1=kT

The symbol UN(X
N) means the total potential energy of interaction of the system in

the configuration XN. Note the use of (XN) in place of (RN) (with respect to the

preceding case) in agreement with the working hypothesis.

In the relation (27.5), there exist also some supplementary terms. Let us recall

that Λ is the thermal de Broglie wavelength, q is the molecular partition function of
the species constituting the system. q takes into account the proper partition

functions of translation, electronic, of vibration, of rotation, and nuclear of the

species (viz. Chap. 26). For example, for most monoatomic gases: q¼ 1. (The

product of electronic, nuclear, vibration, and rotation partition functions is called

internal partition function.) The factor 8π2 lying in the denominator is introduced in

order not to count the volume twice in the integration. The integration over dR
amounts, indeed, to obtain the volume in a first time and, in a second one, the

integration over the three angles also leads to the volume (viz. preceding

paragraph):

ð
dΩi ¼ 8π2

27.7 Condition Required for the Applicability
of the Partition Functions (27.1) and (27.3)

Partition functions (27.1) and (27.3) and those deriving from them cannot be used

for all kinds of systems. Their handling is legitimate when the following condition

is satisfied:

Λ3N=V � 1

where Λ is the thermal de Broglie wavelength of the particle defined by:

Λ ¼ h= 2πmkTð Þ1=2
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We see that the condition is satisfied when its density number N/V is small and the

mass of the particle and temperature are large. Both conditions are frequently

satisfied.

27.8 Some Examples of Handling of Classical Partition
Functions: The Case of Perfect Gases

A gas is considered as being perfect when there exist no intermolecular forces

between its particles. The mathematical counterpart of this definition is:

UN XN
� � ¼ 0

whichever the configuration XN is.

When the gas is monoatomic and is not endowed with internal structure, the

classical partition function reduces to:

Q N; T;Vð Þ ¼ 1=N!h3N
�� �ð

�1��

ð
exp �βH pN

� �� �
dRNdpN ð27:6Þ

Since the potential energy does not exist, the expression of H(pN) is:

H pN
� � ¼ X

i¼1

1=2m p2x1 þ � � � þ p2zN
� �

Integrations over dRN and dpN give:

Q T;V;Nð Þ ¼ VN=Λ3NN! ð27:7Þ

since:

– The integration over dRN is immediate, because it is carried out on a cube of

length unity:

ð
dRi ¼

ð1
0

dxi

ð1
0

dyi

ð1
0

dzi

and because there are N particles;

– The integration over the momenta dpN is carried out, firstly, by setting up the

following equality:
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h�3N

ðþ1

�1��

ð
exp �β p2i =2m

� �� �
dpN

¼ h�1

ðþ1

�1
exp

�� βp2=2m

� �
dp

�
3N

The right side of the last equality is justified by the fact that the particles are

identical and by the fact that there are 3N variables of integration (so that dpi ¼ dp3i
and dpi¼ dpj). The remaining integral is easily calculated by starting from the

standard integral value:

ð1
0

exp �ax2
� �

dx ¼ 1=2 π=að Þ1=2

It is very interesting to notice that the equality (27.7) is equivalent to the

following one:

μ ¼ kTlnΛ3 þ kTlnN=V ð27:8Þ

or:

μ ¼ kTlnΛ3 þ kTlnρ

(27.8) is obtained from the equality (27.7) and from the general relationship (viz.

Chap. 23)

μ ¼ �kT ∂lnQ=∂Nð ÞT,V

after use of Stirling’s approximation. Relation (27.8) is already very interesting. It

is sufficient to compare it to the following one (viz. Chap. 6)

μ ¼ μ� þ RTlnx

to be convinced.

• A polyatomic gas may exhibit a perfect behavior, but because it is polyatomic, it

does possess an internal structure. Its molecular partition function q is no longer
equal to 1 as in the monoatomic case. Of course, since by hypothesis, there exist

no mutual interactions between molecules

U XN
� � ¼ 0

The knowledge of the whole coordinates RN is no longer sufficient to describe

the system. The whole ensemble coordinates XN must be used. As a result, the

canonical partition function is:
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Q N;T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
h in oð

v . . .

ð
dXN

The limits of integration are noticed in the following relation (v means that the

integration of R is carried out over a cube of length unity) (see before):

Q N;T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
h in o ð

v

dR

ð2π
0

dϕ

ð π

0

sin θdθ

ð2π
0

dψ

� �N

Finally:

Q N; T;Vð Þ ¼ qNVN=Λ3NN!
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