
Chapter 23

Thermodynamic Quantities Within
the Framework of the Canonical Ensemble

Abstract The chapter describes the handling of the mathematical relations previ-

ously found within the framework of the canonical ensemble through the partition

function in order to assimilate them to the expressions of classical thermodynamic

functions. Concerning now the introduction of the nonmechanical functions such as

the entropy and the temperature into the realm of statistical thermodynamics, the

strategy consists in comparing the expressions concerning the mechanical quanti-

ties obtained (thanks to the theory of the canonical ensemble) and those stemming

from classical thermodynamics. Therefore, the statistical expressions of internal

energy, entropy, pressure, and chemical potential are obtained. Some of these

functions are calculated with the aid of the characteristic function of the canonical

function which spontaneously introduces itself into the calculations.
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The theoretical handling of some ensembles throws some light, in terms of molec-

ular parameters, on the deep significance of some thermodynamic quantities,

among them, notably, the Gibbs energy from which are following the concepts of

fugacity and of activity.

In this chapter, as a first example, we handle the mathematical relations previ-

ously found within the framework of the canonical ensemble.

In order to introduce the nonmechanical functions such as the entropy and the

temperature into the realm of statistical thermodynamics, the strategy consists in

comparing the expressions concerning the mechanical quantities obtained thanks to

the theory of the canonical ensemble and those stemming from classical

thermodynamics.
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23.1 Association Average Energy E and Internal Energy

According to the expressions (22.6) and (22.7) of the previous chapter

E ¼
X
j

Eje
�βEj=

X
j

e�βEj relation 6 � previous chapterð Þ

Pj ¼ e�βEj=
X
i

e�βEi relation 7 � previous chapterð Þ

we obtain

E ¼
X
j

PjEj

or in differentials

dE ¼
X
j

Ej dPj þ
X
j

Pj dEj ð23:1Þ

The first term of the right member of (23.1) represents the energy change due to the

variation of the probability Pj for a system being in the energy state Ej which does

not vary during the process. This entails that there is no change in the volume of the

system, i.e., there is no work done on the system or performed by it. Hence, this

term represents an energy change of the system without the fact that a work would

be involved. According to the first principle, it follows that the first term of the right

member represents a heat exchange. A consideration of the fundamental postulates

shows that a heat absorption by a system must be associated with the probability

that a system of the ensemble does possess the (authorized) energy Ej. Hence, we

can set up the correspondence:

dq $
X
j

Ej dPj

According to the algebraic formulation of the first principle, the second term of the

right member of (23.1) must be identified to the work done on the system, whence

dw $
X
j

Pj dEj

Finally, we can set up the correspondence:

E $ internal energy
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23.2 Statistical Expression of the Entropy

From relation (23.7) of the preceding chapter

Pj ¼ e�βEj=
X
i

e�βEi relation 7� preceding chapterð Þ

we deduce

Ej ¼ �1=β lnPj þ lnQ
� �

with Q ¼
X
j

e�βEj ð23:2Þ

whence, according to (23.1) and the just preceding considerations,

dE ¼ �1=β
X
j

lnPj þ lnQ
� �

dPj þ
X
j

Pj dEj ð23:3Þ

Moreover, according to the expression of the total differential, we can write

dEj ¼ ∂Ej=∂V
� �

N
dV þ ∂Ej=∂N

� �
V
dN

Since, according to the conditions prevailing to the canonical ensemble, the number

of the particles of the system is constant, dN¼ 0, and

dEj ¼ ∂Ej=∂V
� �

N
dV

Relation (23.3) becomes

dE ¼ �1=β
X
j

lnPj þ lnQ
� �

dPj þ
X
j

Pj ∂Ej=∂V
� �

N
dV

and since dV¼ 0

dE ¼ �1=β
X
j

lnPj þ lnQ
� �

dPj

From another standpointX
j

Pj ¼ 1 whence
X
j

dPj ¼ 0

we obtain

dE ¼ �1=β
X
j

lnPj dPj
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This relation can be transformed into another one, more general. The transforma-

tion is done in the following manner. Already, let us mention that this transforma-

tion leads to the notion of statistical entropy. Let us consider the function Σj Pj ln Pj.

In differential writing, it gives

d
X
j

Pj lnPj

 !
¼
X
j

lnPj dPj þ
X
j

Pj d lnPj

d
X
j

Pj lnPj

 !
¼
X
j

lnPj dPj þ
X
j

Pj dPj=Pj

d
X
j

Pj lnPj

 !
¼
X
j

lnPj dPj since
X
j

dPj ¼ 0

As a result

dE ¼ �1=βd
X
j

Pj lnPj

 !

Let us compare this relation with that purely thermodynamic governing the internal

energy change of a system during a reversible heat exchange, without any produc-

tion of work:

dE ¼ TdS

Let us make the association:

TdS $ �1=βd
X
j

Pj lnPj

 !

whence

dS ¼ �1=βTð Þ d
X
j

Pj lnPj

 !

dS being an exact differential, the ratio 1/βT cannot be anything else than a constant.

It is called Boltzmann’s constant: symbol k. Its unity is the joule by kelvin J K�1.

Let us notice that we again find the fact that the ensemble is isothermal, condition of

the study with the canonical ensemble. Therefore

dS ¼ �k d
X
j

Pj lnPj

 !
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To sum up, by regarding these two first analogies: in a closed, isothermal, system

(ensemble N, V, T):

– The probability for the system to be in the state of energy Ej, entailed by the

composition N and the volume V (condition coming from the principles of

quantum mechanics), is given by the expression

Pj N;V; Tð Þ ¼ e�Ej N;Vð Þ = kT= Q N;V;Tð Þ ð23:4Þ

where Q N;V; Tð Þ ¼
X
j

e�Ej N;Vð Þ=kT is the partition function of the canonical

ensemble. (Let us recall that the symbolism N is general and can mean that there

is only one or several components with a constant number of moles, as well.)

– The entropy is given by the expression

S N;V; Tð Þ ¼ �k
X
j

Pj lnPj ð23:5Þ

where Pj is given by relation (23.4). It clearly appears that entropy is a statistic

quantity.

23.3 The Characteristic Function of the Canonical
Ensemble

As we shall see it, firstly in the case of the canonical ensemble and later in that of

other ensembles, there exists a characteristic function of each ensemble. It is a

function different from the partition function of the same ensemble, even if both are

mathematically related to each other.

The characteristic function appears naturally in thermodynamics, but statistical

thermodynamics permits to relate it, mathematically, to the corresponding partition

function. Once known, the characteristic function permits to calculate all the other

thermodynamic functions. We know, indeed, that to some thermodynamic func-

tions, i.e., the internal energy, the Gibbs and Helmholtz energies, and the enthalpy,

corresponds a set of independent variables for each of them, called their natural

variables (viz. Chap. 4). These sets (defining the system) permit to immediately

calculate all the other quantities of the system. For example, for the Gibbs energy,

they are the pressure, volume, and numbers of moles of every component. They are

the same variables than those which define the corresponding ensembles in statis-

tical thermodynamics.

The characteristic function of the canonical ensemble is obtained as follows. Let

us introduce the expression of Pj into that of entropy (given just above); we obtain,

after having taken into account the relation (23.6) of the preceding chapter and

since
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E ¼
X

j
Eje

�βEj=
X

j
e�βEj

S ¼ E=T þ k ln Q

By assimilating this expression of S to that of purely thermodynamic origin

S ¼ E=T � A=T

where A is the Helmholtz energy, it comes to light the following meaning of the

latter in statistical thermodynamics:

A N;V; Tð Þ $ �kT ln Q N;V; Tð Þ

The function A is the characteristic function of the canonical ensemble defined by

the parameters N, V, and T since, once it is known, it permits, as we shall see, to

calculate the entropy, pressure, internal energy, and chemical potentials of the

components.

23.4 Calculation of the Thermodynamic Functions
by Starting from the Characteristic Function
of the Canonical Ensemble

This kind of calculation is particularly important. It is the one which is practiced,

notably in the statistical part of this book, for the calculation of the changes of the

thermodynamic quantities and for obtaining the energy levels Ej. Analogous cal-

culations, of course, are also performed by starting from partition functions of other

ensembles.

Let us consider the following relation from purely thermodynamic origin by

noticing that it contains the three variables defining the canonical system (T, V, nk,
or N ):

dA ¼ � SdT � p dV þ
X
k

μkdnk

k index of the component the number of moles of which is nkð Þ
ð23:6Þ

and also from the expression of the total differential

dA ¼ ∂A=∂Tð ÞV, nkdT � ∂A=∂Vð ÞT, nkdV þ
X
k

∂A=∂nkð ÞT,V,njdnk ni 6¼ nkð Þ

By replacing A(N, V, T ) by the characteristic function kT lnQ(N, V, T ), by operating
the calculations of partial derivation on the characteristic function and by identify-

ing with the corresponding elements of the relation (23.6), some very interesting

results are obtained. Concerning:
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23.4.1 The Entropy

Since S¼�(∂A/∂T)V, N (dA exact total differential)

S ¼ � �∂kT ln Q N;V; Tð Þ =∂T½ �V,N

As a result

S ¼ kT ∂lnQ=∂Tð ÞV,N þ k ln Q ð23:7Þ

23.4.2 The Pressure

Since p¼�(∂A/∂V)T, N, we obtain

p ¼ kT ∂lnQ=∂Vð ÞT,N ð23:8Þ

23.4.3 The Internal Energy

Since E¼�T2 (∂A/T/∂T )V, N

U ¼ kT2 ∂lnQ =∂Tð ÞV,N ð23:9Þ

23.4.4 The Chemical Potential

Even if the canonical ensemble is a closed system, its component(s) possess(es) a

well-determined chemical potential, of course in the state of the system. It can also

be calculated from the characteristic function. According to relation (23.6), we

immediately obtain

μk ¼ ∂A=∂Nkð ÞT,V,N k 6¼i

μk ¼ �kT ∂lnQ=∂Nkð ÞT,V,N k 6¼i

ð23:10Þ
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23.5 Degenerated Energy States Ej and Energy Levels

For numerous applications or to tackle new problems, it is interesting to group all

the energetic states of the same level Ej. Let Ωi (N, V ) be the number of states of the

energy level Ei (N, V), i.e., in the listing of the possible states Ej, the same value Ei

existsΩi times.Ωi (N, V ) is the degeneracy. As a result, the partition function which
was

Q N;V; Tð Þ ¼
X
j

e�Ej N;Vð Þ=kT

becomes

Q N;V; Tð Þ ¼
X
i

Ωi N;Vð Þe�Ei N;Vð Þ=kT ð23:11Þ

where, this time, the sum is calculated on the energy levels, whereas before it was

calculated on all the states, included those of the same energy.
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