
Chapter 22

The Canonical Ensemble: Notion
of Distribution

Abstract The goal of statistical thermodynamics is to permit to appreciate the

significance of the thermodynamic functions in terms of molecular parameters.

Firstly, this chapter illustrates this point with the aid of the study of the canonical

ensemble. It deals with the obtaining of the probabilities of the systems constituting

the canonical ensemble to be in some energy states. It provides a description of the

canonical ensemble and describes the followed strategy to calculate the average of

the mechanical properties such as the pressure and energy with the help of the

reasoning based on the fact that the mechanical variables have well-definite values

in a given quantum state. It leads to the notion of distribution of the systems in the

ensemble. It is the set of the numbers of systems found in well-defined energy states

exhibiting the same composition (in one or several compounds) and the same

volume. There can exist several distributions. Calculations, exemplified in the

chapter, permit to obtain the elementary and global probabilities that a system of

the ensemble would be in a definite energetic state. Once the probabilities are

obtained, it becomes possible to calculate the canonical partition function.

Keywords Mechanical properties • Partition function • Quantum state •

Supersystem • Canonical partition function • Distribution • Maximum term

method • Thermodynamic function

The goal of statistical thermodynamics is to permit to appreciate the significance of

the thermodynamic functions in terms of molecular parameters. Firstly, we choose

to illustrate this point with the aid of the study of the canonical ensemble.

Actually, this chapter is necessary to introduce this theory. It deals with the

obtaining of the probabilities of the systems constituting the canonical ensemble to

be in some energy states. Obtaining these probabilities is the first necessary

condition in order to be able, later, to specify the significance of some thermody-

namic quantities.

The problem of the obtention of the probabilities is essentially not different from

that of the determination of the distribution of the systems constituting the ensem-

ble in the different possible energetic states. (To aim at the same goal, later, we shall

consider the handling of other ensembles.)
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22.1 Description of the Canonical Ensemble
(N, V, T Imposed)

The canonical ensemble is constituted by a very large number ℵ (ℵ!1) of

systems replicating the thermodynamic system (under study) which, by definition,

possesses the fixed volume V, the number of molecules N (there can be several

types of molecules, the numbers of which N1, N2 . . . are then constant), and the

temperature T uniform and constant (viz. Fig. 22.1). The partitions between the

different systems are thermal conductors but do not allow the crossing of the

particles through them. The ensemble is placed in a heat bath granting an equal

temperature in the whole systems. The partitions of the systems are not distorting

excluding, hence, no work exchange between them.

If one places an isolating membrane outside the ensemble and the whole device

(ensemble +membrane) located outside the heat bath, the ensemble, now, consti-

tutes an isolated system of volume ℵV and of number of molecules ℵN and with a

total energy Et. This isolated system is called a supersystem.

22.2 Strategy

Let us recall that, finally, the goal is to find the meaning of some quantities of

classical thermodynamics with the help of a reasoning of statistical thermodynam-

ics, the meaning of which being searched for in the conditions which prevail in the

canonical ensemble (constant composition, temperature, volume). According to

what is preceding, the problem is to calculate the average of the mechanical

Fig. 22.1 Canonical ensemble
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properties such as the pressure and the energy with the help of this reasoning. Let us

notice, indeed, that since the thermodynamic system is not isolated (it is in contact

with other systems of the same ensemble), its energy fluctuates.

The process entails to know the value of the quantity under study in each

quantum state and to determine the number of systems of the ensemble exhibiting

this quantum state. The mechanical variables, indeed, have well-definite values in a
given quantum state. Hence, the problem is to determine the fraction of the systems

of the ensemble possessing a given quantum state.

These considerations are equivalent to say that the probability Pj that a system of

the ensemble is in the state of energy Ej must be known. Once known, the values of

the energy E and of the pressure p can be calculated through the following

expressions:

E ¼
X
j

Pj Ej

p ¼
X
j

Pj pj

pj is the pressure in the energetic state Ej; it is defined by the expression

pj ¼ � ∂Ej=∂V
� �

N

�pj dV¼ dEj is the work that has to be done on the system (with a constant number

of species N ) in the energetic state Ej in order to increase its volume by dV. This
expression is found by virtue of the quality of state function of E (viz. Appendix A).

One can write, indeed,

dE ¼ ∂E=∂Vð ÞN,TdV þ ∂E=∂Tð ÞN, VdT

where by hypothesis dT¼ 0 (T imposed).

22.3 The Mathematical Problem

Let us, now, consider one system of the canonical ensemble. It is a system obeying

quantummechanics. Its characteristics depend on the valuesN and Vwhich constitute

the limits entailing the energy quantification (viz. quantum mechanics). As a result,

there exists the collection of the following possible (authorized) energetic states

written by order of increasing energy: E1, E2, . . ., Ej. We must not forget that they

are the energy states of the whole system, that is to say of a great number of particles,

and not the energy states of one species. Let us recall that, for different reasons (some

of which being mathematical ones), it is not possible to calculate the energy states Ej
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from the Schr€odinger’s equation for a very large number of particles. Nevertheless,

for the following reasoning, we suppose that we know them.

22.3.1 The Notion of Distribution

Since all the systems of the canonical ensemble have the same composition

N (in one or several compounds) and the same volume V, everyone does possess

the same quantified levels of energy E1, E2, . . ., Ej. (It is a consequence of the

principles of quantum mechanics.) Let us suppose that we can simultaneously

observe the energetic state of each system and that we are able to count the number

of systems in every energetic state E1, . . ., Ej. Let n1, n2 . . . be the numbers of

systems found in sates E1, E2, . . .. The set of values n1, n2 . . . is a distribution of the
systems. For each distribution, the following relations are obligatorily satisfied:X

j

nj ¼ ℵ

X
j

nj Ej ¼ Et

where Ej is the energy of the considered system within the ensemble for the

considered distribution. Et is the energy of the ensemble (also named supersystem).

(We shall see that it is not necessary to know the values ℵ and Et because they

disappear during the calculations.)

Let us suppose, in order to simplify, that the ensemble possesses four systems

labelized A, B, C, and D and that the possible energy states of each system are E1,

E2, and E3. Let us also suppose that the total energy (of the supersystem) is as

follows:

Et ¼ E1 þ 2E2 þ E3 ð22:1Þ

that is to say n1¼ 1, n2¼ 2, and n3¼ 1. These values (Et, E1, E2, E3, n1, n2, n3)
define the distribution.

22.3.2 The Notion of Sub-distribution

There are several possibilities of attribution of the energies E1, E2, and E3 to the

systems A, B,C, andD in order that the distribution defined by relation (22.1) exists.

They are those mentioned in Table 22.1. We call them “sub-distributions” (personal

terminology).

We notice that there are 12 sub-distributions corresponding to the same distri-

bution, labelized k. This result is no more than the solution of the classical problem

264 22 The Canonical Ensemble: Notion of Distribution



of combinatory analysis which, in this case, can be presented by giving the answer

to the following question: How many (numberΩ) possibilities to group 4 objects by
groups of 2, 1, and 1 do exist? The answer is

Ω ¼ 2þ 1þ 1ð Þ!= 2 !1 !1 !ð Þ ¼ 12

From the general viewpoint, the number Ω of possibilities to group (n1 + n2 + . . .nj)
objects by groups of n1, n2, . . ., nj objects is given by the relation

Ω ¼ n1 þ n2 þ . . . nj
� �

! = n1 ! n2 ! . . . nj !
� � ð22:2Þ

Let us recall that all the sub-distributions have the same energy.

22.3.3 Case of Several Distributions

Wemust bear in mind that there are numerous distributions existing for the same set

of parameters N, V, and T. For the same example as previously, let us suppose that it

is the case for the distribution n1¼ 2, n2¼ 0, and n3¼ 2, that is to say

2E1 þ 0E2 þ 2E3 ¼ Et

where the energy Et is the same as that of the preceding distribution. This new

distribution exists under (2 + 0 + 2) !/(2 !0 !2 !)¼ 6 sub-distributions. Let us also

suppose that only two distributions exist for the same total energy. Since they

possess the same energy Et, according to the second postulate, the sub-distributions

of both distributions are equiprobable, whichever their origin.

What is being searched for is the probability to find a system of the ensemble in

the energy state Ej, that is to say, remaining in the same example as previously, the

Table 22.1 Sub-distributions

corresponding to the

distribution n1¼ 1, n2¼ 2,

and n3¼ 1; N¼ 4, labelized

systems A, B, C, and D

A B C D

E2 E2 E3 E1

E2 E3 E2 E1

E3 E2 E2 E1

E2 E2 E1 E3

E2 E3 E1 E2

E3 E2 E1 E2

E3 E1 E2 E2

E2 E1 E3 E2

E2 E1 E2 E3

E1 E3 E2 E2

E1 E2 E3 E2

E1 E2 E2 E3
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probability to find the system A or B or C or D with the energy E1, E2, or E3. In this

very simple example, the result can be found by a direct numbering by placing in

the same table all the sub-distributions and by performing the numbering.

The direct numbering indicates that each system A, B, C, or D possesses 1/3

chance to possess the quantified energy levels E1, E2, and E3. (The fact that all these

probabilities are all equal (1/3) must not be generalized. It results solely from the

chosen numerical values. It must be considered as a numerical accident

(Table 22.2).)

The direct numbering is not, of course, envisageable in statistical thermodynam-

ics, given the huge number of the existing distributions and sub-distributions.

Fortunately, there exists a useful mathematical relation which generalizes what is

preceding. It results from the following reasoning:

• The elementary probability prob1 (1 because it concerns the first distribution) in

order that one of the systems A, B, C, or D possesses the energy E2 in the first

distribution is 2/4 since n2¼ 2 and since there are four systems. The number of

times that one of the systems in the first distribution is endowed with the energy

E2 is 12� 2/4¼ 6, that is to say by generalizing Ω1 • prob1.

• The elementary probability prob2 in order that one of the systems possesses the

energy E2 in the distribution 2 is 6� 0/4¼ 0, that is to say Ω2 • prob2.

• The total number of possibilities that a system would be in an ordinary state of

energy is this example 12 + 6¼ 18, that is, Ω1 +Ω2. The global probability (and

not elementary) P2 that a system would be in the energetic state E2 is as follows:

Table 22.2 Sub-distributions

of the same total energy

E and, hence, of the same

probability stemming from

two distributions (see text)

A B C D

E2 E2 E3 E1

E2 E3 E2 E1

E3 E2 E2 E1

E2 E2 E1 E3

E2 E3 E1 E2

E3 E2 E1 E2 (1
ère distribution)

E3 E1 E2 E2

E2 E1 E3 E2

E2 E1 E2 E3

E1 E3 E2 E2

E1 E2 E3 E2

E1 E2 E2 E2

E1 E1 E3 E3

E1 E3 E1 E3

E3 E1 E3 E1

E3 E1 E1 E3 (2
ème distribution)

E3 E3 E1 E1

E1 E3 E3 E1
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P2 ¼ 12� 2=4þ 6� 0=4ð Þ = 12þ 6ð Þ ¼ 1= 3

and by generalizing

Pj ¼
X
j

probjΩk

 !�X
k

Ωk ð22:3Þ

where j marks the authorized state of energy of the system. probj is the elementary

probability in order that in the distribution k, the energy be Ej.

• The probability P2 can also be written (in a strictly equivalent manner) as

P2 ¼ 1=4ð Þ 2� 12þ 0� 6ð Þ= 12þ 6ð Þ

where 4 is the number of systems and 2� 12 and 0� 6 are the numbers of times that

the state of energy E2, respectively, appears in the first and second distribution.

The general relation (22.3) can also be written according to

Pj ¼ 1=ℵð Þ
X
k

njΩk

 !�X
k

Ωk ð22:4Þ

This expression is a generalization of the preceding which gave P2.

22.4 Obtention of Pj

22.4.1 Great Number of Distributions: Method
of the Maximal Term

The obtaining of Pj is performed in a mathematical way. It is based on the fact that

there exist numerous possible distributions obeying the constraints of the problem.

The latter ones are

– The number ℵ of systems of the ensemble

– The temperature T
– The different possible energies Ej of every system. (They depend on the total

number of particles N and of the volume V, according to the principles of

quantum mechanics.)

Given the very large number ℵ, one demonstrates that one distribution weighs

much more and even quasi-infinitely more than other ones. Therefore, one can

make the assumption that it entails its repartition of the systems in the ensemble,

and it is done as a function of the energies Ej. The hypothesis is entitled “method of
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the maximal term.” From the mathematical standpoint, it consists in replacing the

logarithm of a sum by the logarithm of the highest term of the sum, when the latter

is constituted of very numerous terms. The expression giving the probability Pj

to find a system of the ensemble in the energetic state Ej is constituted of

very numerous terms. Taking only into account the largest term seems to be

an approximation. It is the case, but it does not lead to any detectable error.

(viz. Appendix A).

By applying the hypothesis, the relation (22.4) reduces to

Pj ¼ n*j =ℵ

where n�j is the number of times that the quanto-energetic state Ej appears in the

most probable distribution. Of course, there are as many n�j to calculate as quanto-

energetic Ej levels do exist.

Hence, the most probable distribution must be found.

22.4.2 Calculations

The calculations are performed by starting from ln Ω rather than from Ω. It is easier
to process in such a manner and it does not change anything concerning the result

since ln x varies as x.
According to the expression (22.2), we obtain

ln Ω ¼ ln n1 þ n2 þ . . . nj
� �

!
� �� ln n1 ! � ln n2 ! � . . . lnnj!

Then, they are performed by using Stirling’s approximation which is written as

ln y ! � y ln y � y

The use of this approximation is all the more justified as y is a large number. This is

the case here. With this approximation, ln Ω becomes

ln Ω ¼ n1 þ n2 þ . . . nj
� �

ln n1 þ n2 þ . . . nj
� � � n1 þ n2 þ . . . nj

� �� n1 lnn1

þ n1 � n2 ln n2 þ n2 . . . . . .� nj ln nj þ nj

The mathematical process coming immediately in mind is to have to successively

vanish the partial derivatives (∂ ln Ω/∂n1), (∂ ln Ω/∂n2) . . . (∂ ln Ω/∂nj) and, from
this process, to extract the values n1, n2, . . ., nj leading to this result. But, there is a

difficulty: the mathematical system is submitted to the following constraints:

n1 þ n2 þ . . . nj ¼ ℵ

n1E1 þ n2E2 þ . . . njEj ¼ Et
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The smartest means permitting this process of maximalization taking into account

these constraints is to use the method of Lagrange’s multipliers (viz. Appendix A)

which, in this case, translates itself into the successive vanishing of the partial

derivatives with respect to n1, n2, . . ., nj of function F, and no longer of function

ln Ω:

F ¼ lnΩ� α n1 þ n2 þ . . . nj
� �� β n1E1 þ n2E2 þ . . . njEj

� �
where α and β are two constants, the physical meaning of which will appear in the

following calculations.

When the calculation of the derivatives is performed, we obtain the following

relations:

n1 ¼ ℵ e�α�βE1

n2 ¼ ℵ e�α�βE2

nj ¼ ℵ e�α�βEj

ð22:5Þ

These relations are very important. We can deduce the following points from them:

– The signification of the constant eα.

Since Σj nj¼ℵ, the addition of relations (22.5) leads to

eα ¼ e�βE1 þ e�βE2 þ . . . e�βEj

– The mean energy E of each system.

Since Et¼ℵ E, X
j

njEj ¼ ℵE

By replacing the nj by their expressions (22.5) and e
�α by the above expression, we

obtain

E ¼
X
j

Eje
�βEj=

X
j

e�βEj ð22:6Þ

It is important to notice that, according to the expression (22.6), the parameter β
appears as being an implicit function of the mean energyEand also, therefore, of the
composition N and of the volume V which govern the quantum levels Ej. It is the

same for α which depends on the same parameters. But, actually, the studied

ensemble is that defined by the macroscopic parameters N, V, and T and not by

N, V, and E. However, as we shall see, E depends on T. Let us anticipate what is

following by mentioning that β is inversely proportional to the absolute
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temperature. More precisely, β¼ 1/kT where k is Boltzmann’s constant and T the

absolute temperature.

– The expression giving the probability Pj to find a system of the ensemble in the

energetic state Ej is constituted of very numerous terms. Taking only into

account the largest term seems to be an approximation. It is the case, but it

does not lead to any detectable error.

It is calculated by applying the general definition of a probability, through the

relation

Pj ¼ nj=ℵ

By replacing nj by its expression (22.5) and by introducing the above expression e
�α,

we find

Pj ¼ e�βEj=
X
i

e�βEi ð22:7Þ

We shall see in the following chapter that these expressions permit to grasp the

meaning at the molecular scale of the great thermodynamic functions.

The expressions (22.6) and (22.7) call for the great importance of the sum Σie
�βEi .

Indeed, it will play a considerable part. In statistical thermodynamics, such a

function is called partition function. As it happens here, it is the partition function

of the canonical ensemble. It is symbolized by Q:

Q ¼
X
i

e�βEi
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