
Chapter 19

General Principles of Calculations Involving
the Activities of Ionic Species in Solution

Abstract The chapter describes some methodologies in order to obtain thermody-

namic equilibrium constants, but in a manner less conventional and certainly more

modern than previously.

The determination of equilibrium constants entails the knowledge of the “at

equilibrium activities” of the species participating in it. There is a difficulty. It is the

following one. If the determination of the activities of the uncharged substances is

possible (but somewhat difficult and lengthy) it is impossible for the ions. As a rule,

this impossibility leads to a problem which may appear as being impossible to

solve.

The methodologies described in this chapter show how the thermodynamic

equilibrium constants involving some ions may be approached by calculations

using the Debye–Hückel relations. But, these calculations, in turn, also suffer as a

rule from a difficulty which is briefly mentioned in this chapter. To use the “Debye–

Hückel” relations, the ionic strength of the solution must be known and its knowl-

edge involves that of the equilibrium constants, one of which, at least, by hypothesis

is unknown! The principle and the followed methodology of these calculations are

described in this chapter with the examples of the determinations of acidic

constants.

Keywords Ion activity (experimental determination) ionic strength •

Debye–Hückel relations use • Concentrations of the different species at

equilibrium • Non-ideality corrections • Informatic calculations • Absorbance

pKa determination

In this chapter, we are continuing to describe some methodologies in order to obtain

thermodynamic equilibrium constants, but in a manner less conventional and

certainly more modern than previously.

We have seen that the determination of equilibrium constants entails the knowl-

edge of the “at equilibrium activities” of the species participating in it. Now, if the

determination of the activities of the uncharged substances is possible but some-

what difficult and lengthy, we also know that it is impossible for the ions. As a rule,

this impossibility leads to a problem fantastically difficult to solve.

The goal of this chapter is to show how the thermodynamic equilibrium

constants involving some ions may be approached by calculations using the
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Debye–Hückel relations. But, these calculations, in turn, as a rule, also suffer from a

difficulty that we first briefly mention. Then, we recall the conditions of ionic

strengths for which corrections of nonideality must be done. Finally, we mention

the principle and the methodology of these calculations.

19.1 Fundamental Difficulty

The fundamental difficulty concerning these calculations lies in the chain of the

following facts:

– The ionic strength of the solution must be known in order to calculate the activity

coefficients of the ions through the Debye–Hückel relations.
– The knowledge of the ionic strength entails that the extent of dissociation of the

electrolytes (which are not obligatorily strong) must be known. The knowledge of

this extent, in turn, entails the prior determination of the equilibrium constants . . .
being searched for!

We shall see how this difficulty may be overcome.

19.2 Nonideality Corrections

For rough calculations, nonideality corrections can be neglected. In these condi-

tions, the found values of the concentrations and those of the obtained equilibrium

constants are only approached. Moreover, they vary with the ionic strength of the

solution.

For ionic strengths of the solution less than 10�2 mol L�1, the calculations are

proved to be relatively simple. They are based on the Debye–Hückel limit equation.

There is no reason to take into account the identity of the ions, i.e., to use the

extended relation.

For ionic strengths ranging in the interval 10�2–10�1 mol L�1, it must be used.

But, then, the nature of the ions must be taken into account by introducing the “ion-

size parameter” a. This complicates the calculations.

Beyond ionic strength forces superior to 10�1 mol L�1, Davies’ relation (which

gives reasonable results up to ionic strengths of the order of 5� 10�1 mol L�1) may

be used.

Roughly, it can be said that the theoretical prediction of the activity coefficients

is very satisfactory up to ionic strengths of 0.1 mol L�1. When only electrolytes 1–1

are involved, the activity coefficients may be then obtained with an accuracy of

3 p 100 by founding ourselves on the limit equation. When an adjustable parameter

such as the so-called ion-size parameter a, is used, the accuracy may amount up to

�1 p 100. For the polycharged ions, an accuracy nearly as good as the preceding
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may be obtained, provided that all the equilibria existing in the solution are taken

into account.

We shall see, immediately under, that the calculations of the activities are often

necessary to perform at every step of the calculation of the equilibrium concentra-

tions and of equilibrium constants, both types of calculations being, indeed, inti-

mately linked.

19.3 Reasoning Allowing the Calculation
of the Concentrations of the Different Species
at Equilibrium

Before beginning the calculations (through the Debye–Hückel equations) of the
activities and those of the equilibrium constants in which some ions intervene, it is

judicious to give the strategy of the calculation of the different species concentra-

tions at equilibrium.

Let us assume, at this moment, that activities are equal to concentrations. The

strategy is based on the fact that the species concentrations at equilibrium must,

obligatorily, obey some mathematical relations. They are, of course, the reflection

of intangible physical laws. It happens that, from an absolute standpoint, they are

systematically in a sufficient number in order that the resultant mathematical

system is systematically determined. These relations are the following:

– The mass balance of the solution

– Its charge balance

– The equilibrium state

Let us take the example intentionally simple of the dissolution of C0 moles of

acetic acid in water to form 1 L of solution. The matter is to calculate the

concentrations of the different species stemming from the ionization of acetic

acid, once the equilibria are reached. The two chemical equilibria are the following:

– The revelation of the acid character of acetic acid:

CH3COOH Ð CH3COO
� þ Hþ

– The ionic product of water:

H2O Ð Hþ þ OH�

The corresponding mathematical equations, which must be obligatorily satisfied,

are the expressions of the equilibria, which we write temporarily (the species

concentrations are figured in square brackets):
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��CH3COO
�����Hþ��=��CH3COOH

�� ¼ Ka ð19:1Þ
��Hþ����OH��� ¼ Kw ð19:2Þ

– The mass law:

CH3COO
�½ � þ CH3COOH½ � ¼ C0 ð19:3Þ

(There is no reason to take into account the water balance because the theory is only

valid in dilute aqueous solutions. Since the “concentration” of water is expressed in

molar fractions—viz. Chap. 17—it can be considered as being constant and equal to

unity.) (Here, the equilibria are written according to the Arrhenius theory, equiv-

alent, in the occurrence, to that of Br€onsted.)

– The charge balance:

Hþ½ � ¼ OH�½ � þ CH3COO
�½ � ð19:4Þ

Hence, for this example, there exist four equations for four unknowns [H+], [OH�],
[CH3COOH], and [CH3COO

�]. The system is mathematically determined. It is

reduced easily into one equation with only one unknown. It is (19.5) of the third

order in |H+| which must be, finally, solved:

Hþ½ �3 þ Ka H
þ½ �2 � Kw þ KaC0ð Þ Hþ½ � � KaKw ¼ 0 ð19:5Þ

Of course, (19.5) depends on the parameters Ka, Kw, and C0 which govern the

system. Once the root [H+] is found, all the other concentrations are immediately

accessible through the handling of the initial relations which are obligatorily

satisfied at equilibrium.

19.4 Taking into Account the Activities

The taking into account of the activities is performed by using the Debye–Hückel
equations since some ions intervene in the equilibrium. Concerning, now, the

uncharged species, one assigns the value unity to their activity coefficients since

the solutions are sufficiently dilute in order that this is legitimate.

Let us recall that the problem we face with is that we must know the ionic

strength of the solution in order to use Debye–Hückel equations, and consequently

we must know the true species concentrations which are, actually, searched for.

Before entering into the problem of the unknown ionic strength, the fact that

some relations are expressed in terms of activities and other ones expressed in terms

of concentrations must be handled simultaneously. For example, in the above case
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of acetic acid, (19.1) and (19.2) are expressed, in principle, in activities, that is to

say according to (the terms located in round brackets are the activities)

Hþð Þ CH3COO
�ð Þ= CH3COOHð Þ ¼ Ka

� and Hþð Þ OH�ð Þ ¼ Kw
�

whereas (19.3) and (19.4) are expressed in concentrations. Let us also recall that the

conditional constants Ka
0 and Kw

0 are given by the expressions

Hþ½ � CH3COO
�½ �= CH3COOH½ � ¼ Ka

0 and Hþ½ � OH�½ � ¼ Kw
0

and that thermodynamic and conditional constants are linked together by the

relations

Ka
� ¼ Ka

0 γCH3COOH=γHþγCH3COO�
� �

and Kw
� ¼ Kw

0=γHþγOH�

According to the retained scale of “concentrations” (molarities or molalities), the

constants should, of course, be symbolized by Ka c
0 or Ka m

0 (viz. Chap. 11).

19.5 Calculations

The calculations of concentrations and of activities of the species are performed in

an iterative way.

Let us suppose that we are interested in the “concentrations” and the activities of

the different species at equilibrium and that we have at our disposal the thermody-

namic equilibrium constants (in the example of acetic acid Ka
� and Kw

�). Equations
(19.1)–(19.4) are not homogeneous. The first two are expressed in activities, and the

latter two in concentrations. Solving the system as it has been done above, that is to

say by not taking into account this inhomogeneity, induces the problem of the

physical significance of the calculated quantities: Are they activities or concentra-

tions? The answer and the whole problem are overcome by adopting the following

iterative process:

• In the first step of iterations, one operates by mixing activities and concentrations,

i.e., one supposes that the equations are homogeneous, i.e., one mixes activities

and concentrations. The system of the initial equations is reduced to a single one,

the unknown of which is |H+| (it is (19.5) in the case of acetic acid). It is solved.

One obtains a first value |H+|1 which has neither the meaning of an activity nor that

of a concentration, since it is obtained from initial equations involving both kinds

of quantities. Nevertheless, from this first value, one calculates the other “pseudo-

concentrations or activities”
��CH3COO

���
1,
��CH3COOH

��
1, and

��OH���
1. Thus, one

calculates a first pseudo-ionic strength I1. (Notice the used symbols with vertical

lines—and not round or square brackets—which mean that the quantities are a

kind of mixture of activity and of concentration.) Once obtained, the value I1 is
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introduced into the judicious equation Debye–Hückel equation (that applies for

the found I1). It permits to calculate a first set of pseudo-activity coefficients

γHþ1, γCH3COO� 1, γOH� 1. The latter ones, in turn, permit to obtain a first set of

the values of the conditional constants Ka
0
1 and Kw

0
1 by using the following

relations (and by setting up γCH3COOH� ¼ 1. This is justified—viz. Chap. 15)—

Ka
0
1 ¼ Ka

�=γCH3COO�γHþ and Kw
0
1 ¼ Kw

�=γHþγOH�

The first iteration is finished. It is important to notice that the constants Ka
0
1 and

Kw
0
1 do not have, yet, the meaning of pure formal constants. But, however, they

approach them and, hence, their meaning begins to deviate from that of thermody-

namic constants, given the manner which has permitted to obtain them.

• The second iteration is then initiated. It is strictly performed just like the first

one, but in the calculations intervene the pseudo-constants Ka
0
1 and Kw

0
1 stem-

ming from the preceding iteration. At the end of the second iteration, we obtain a

new set of pseudo-concentrations |H+|2, . . ., a new pseudo-ionic strength I2, new
pseudo-activity coefficients γH+2, and new formal equilibrium pseudo-constants.

After this second iteration, constants Ka
0
2 and Kw

0
2 do possess the meaning of

formal constants more than did Ka
0
1 and Kw

0
1 obtained at the end of the previous

iteration. It is the same thing concerning the activity coefficients of ionic species

which tend more and more to the coefficients such as they are defined, that is to

say, in such a manner that they transform pure concentrations into pure

activities.

• The further iterations evolve strictly in an analogous manner. The process is

stopped when the pseudo-ionic strength In is equal to the preceding one In�1.

Then, the constants Ka
0
n and Kw

0
n are the true conditional or formal constants.

The equation system is then homogeneous. They are all expressed in terms of

concentrations. At the end of this nnd and definitive loop of iteration, the

concentrations of all the species are found. They are no longer a cross of

concentrations and activities. The problem is solved.

At this point of the operations, one can immediately calculate the activities of the

different species since their concentrations are known and because of the “true ionic

strength” also. It suffices to calculate the activity coefficients through the Debye–

Hückel equations and to multiply them by their concentrations. Besides, the activity

coefficients are known through the calculations performed during the last iteration.

Generally, the convergence of the whole process is fast. The number of iterations

is weak, of the order of 3 or 4.1

This process is general. The difficulty often lies at the level of the obtention of

the suitable root of the single equation stemming from the reduction of the system

of initial equations which must be satisfied. Equations of the fourth order are not

rare in this realm. Abel’s theorem stipulates that there is no general solution to the

1These calculations can be performed on some pocket calculators.
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equations with one unknown of order superior to four. However, several informatic

routines permitting to obtain the root, with the required precision, exist in the

literature.

19.6 Simultaneous Determination of Concentrations,
Activities, and Equilibrium Constants Using
Computers

We finish this chapter by showing, with the help of an example, that the use of

computers may greatly facilitate the handling of activities and the obtaining of

equilibrium constants. The chosen example is that of the determination of the

successive acidity constants Ka1 and Ka2 of the diacid H2A:

H2A Ð HA� þ Hþ Ka1 )
HA� Ð A2� þ Hþ Ka2 )

The analytical instrumental method used is the UV-visible spectrophotometry

since, usually, the diacid H2A and the dibasic A2� forms exhibit spectra clearly

distinct from each other. In this case, of course, the use of the spectrophotometry is

convenient.

19.6.1 Determination for a Monoacid

In introduction, we recall the principle of the determination of the pKa of the

monoacid HA by spectrophotometry UV-visible. It is founded on the relation

pKa ¼ pHþ log HA½ �= A�½ � ð19:6Þ

where [HA] and [A�] are the concentrations of the conjugate forms at a given pH

value. The principle of the method consists in fixing the pH of the solution with the

help of a buffer and to measure both concentrations by spectrophotometry. Then,

relation (19.6) permits to calculate pKa. Let us already remark, however, that

relation (19.6) is not homogeneous since pH is defined as being rather a measure-

ment of the activity of the proton whereas [HA] and [A�] are concentrations, since
the UV-visible spectrophotometry responds to the concentrations.

In order to obtain [HA] and [A�], one uses the Beer-Lambert law which, at a

given fixed wavelength, relates the absorbance A of the solution to the concentra-

tion(s) of the species. For example, at very acid pH, provided that the pKa value is

not too low,
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A ¼ εHAC:1: HA½ � acid pHð Þ

where εHA is the molar extinction coefficient of the form HA, [HA] is its concen-

tration (for example in mol L�1) and l the length of the measurement cell. εHA is a

constant for a given temperature, wavelength, and solvent. Likewise, in a very basic

medium, provided that the pKa value is not too large,

A ¼ εAC:1: A
�½ � basic pHð Þ

At intermediary pH, that is to say in the pH interval where both forms are present,

the total absorbance A of the solution is the sum of the absorbances of both forms

since the two are present and also because of the properties of Beer-Lambert’s law:

A ¼ εHAC:1: HA½ � þ εAC:1: A
�½ � intermediary pHð Þ

From another side of reasoning, since in the solution

HA½ � þ A�½ � ¼ C

and

Ka ¼
��A�����Hþ��=��HA��

by assimilating activities (terms in which the pKa is expressed) and concentrations,

we obtain the two relations:

��HA�� ¼ ��Hþ��= ��Hþ�� þ Ka

� �
and

��A��� ¼ ��A���= ��Hþ�� þ Ka

� � ð19:7Þ

And by handling the relations (19.6) and (19.7), we obtain

pKa ¼ pHþ log A� εAC:lð Þ= εHAC:l � Að Þ ð19:8Þ

εAC.l and εHAC.l are the absorbances of the sole basic and acid forms at the total

concentration C of the whole species. These values are easily determined. It is

sufficient to “work” at the judicious pH. The measurement of the absorbance A at an

intermediary pH immediately gives the pKa value. The problem of the activities is

studied under. In principle, only one measurement is sufficient for the determina-

tion, but several ones are indicated in order to take into account a maximum of

experimental information and, thus, to obtain an optimal precision. In order to

perform the determination, the working wavelength (the “analytical wavelength”)

must be chosen in such a way that the spectra of the pure acid and basic forms differ

as much as possible from each other. This is the “analytical wavelength.”

When neither of both forms HA and A� absorb in the UV-visible domain, of

course, the determination is not possible. However, let us notice that when only one

form does absorb, the determination remains possible.
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19.6.2 Case of the Diacid H2A

The preceding considerations can be generalized, but a supplementary difficulty

may often happen. Both acidities Ka1 and Ka2 may, indeed, overlap. Then, it is

impossible to experimentally determine the molar absorption εHA since the inter-

mediary form HA� cannot exist, alone, contrary to the forms H2A and A2�. HA� is

always accompanied by one of the two other forms H2A or A2�, and even by both.

This is due to the overlapping of the two constants Ka1 and Ka2. Its spectrum in the

pure state is, therefore, inaccessible by an experimental way. However, at the

extreme pH values, H2A and A2� exist, alone, whence the possible registering of

their spectra in the “pure” state remains possible.

The absorbance at a given pHi is the sum of the absorbances of the three present

forms:

A ¼ εH2A H2A½ �i:1þ εHA HA�½ �i:1þ A2�� �
i
:1 ð19:9Þ

The handling of the equations which are obligatorily satisfied

Ka1 ¼
��Hþ��

i

��HA���
i=
��H2A

��
i and Ka2 ¼

��Hþ��
i

��A2���
i=
��HA���

i

and

C ¼ H2A½ �i þ HA�½ �i þ A2�� �
i

leads to the following expressions:

H2A½ �i ¼ 1 Hþ½ �i2C=D; HA�½ �i ¼ Ka1 H
þ½ �iC= D; A2�� �

i
¼ Ka1Ka2=D

n o

ð19:10Þ

with

D ¼ Hþ½ �i2 þ Ka1 H
þ½ �i þ Ka1Ka2 ð19:11Þ

The examination of (19.9)–(19.11) shows that the absorbance at a given pH

depends on the three molar extinction coefficients, on the constants Ka1 and Ka2,

on C, and on |H+|, that is to say on the pH.

19.6.3 Determination of Constants Ka1 and Ka2 Without
Taking into Account the Activities

The two unknowns to determine are both constants Ka1 and Ka2. Their determina-

tion entails that the molar extinction coefficient εHA of the intermediary pure form,
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which is directly inaccessible by an experimental means, must be known. There-

fore, it is the third unknown. On the other hand, the pH is known and, also, the

coefficients εH2A and εA which are, respectively, determined in very acid and very

basic media.

The methodology used to determine the three unknowns is a process of infor-

matic simulation (viz. Chap. 47).

In a first step, it consists in choosing the analytical wavelength and in performing

absorbance measurements at several pHi values. In order to have the best precision,

one must choose a number of pH values by far larger than the number of unknowns.

In a second step, one arbitrarily chooses values of the three unknowns Ka1, Ka2,

and εHA and, thanks to these values, one calculates the total absorbance Acalc for

each retained pHi. The calculation is performed through relation (19.9). Then, for

this set of the three parameters, one calculates the functionU defined by the relation

U ¼
X
i

Ai calc � Ai exp

� �2

where Ai exp is the measured absorbance at the same pHi as that for which Ai calc is

calculated. The function U is the cost function . In the following steps, one modifies

the values of the three parameters according to some order of logical decisions and

one calculates the functionU at each time up to obtaining the set of the values of the

three parameters leading to the value U as weak as possible. In other words, the

process is repeated till the three following conditions are simultaneously satisfied:

∂U=∂Ka1ð ÞKa2,εHA ¼ 0 ∂U=∂Ka2ð ÞKa1,εHA
¼ 0 ∂U=∂εHAð ÞKa1,Ka2

¼ 0

One must also check that, when it is the case, this is not a singular point or a

maximum of the function U. The values of the parameters which minimize the cost

function are those being searched for. The described methodology is a least square

process, in the occurrence of a nonlinear one since the constants Ka1 and Ka2

(contrarily to εHA) do not intervene linearly in the calculation of Ai calc. This is a

general methodology.

The difficulty, that this methodology may encounter, is that the research of the

parameters minimizing the function U may be difficult and lengthy. There exist

several described algorithms permitting to point toward the minimum minimorum,
of the cost function, but none is infallible. There exists no mathematical process

permitting to automatically reach this point.

19.6.4 Taking into Account the Activities

As a rule, one could imagine that one can assimilate activities and concentrations

when the equilibrium constants are determined by UV-visible spectrophotometry. It

is not rare, indeed, to work with concentrations of the order of 10�4 to 5 10�4 mol L�1
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of the compound with UV-visible spectrophotometry. Quite evidently, the working

concentration interval depends on the values of molar extinction coefficients. But

there is a data which must be taken into account: the presence of the buffer which

fixes the pH values to which the determinations are performed. Even, we know that to

be effective, the buffer solutions must be rather concentrated. Let us admit that for the

determination of the pKa value, the concentration 10�4 mol L�1 is satisfactory. That

of the buffer must be of the order of 10�2 mol L�1 in order to be effective. The ionic

strength exhibits about this value, the ions coming from the compound under study

contributing for a negligible amount. As a result, the activity coefficients cannot be

neglected.

In the chosen example, one converts the retained pH values into concentrations

by the following relations:

aHþ ¼ 10�pH and Hþ½ � ¼ aHþ=γH

γH+ is obtained through the Debye–Hückel relations since the ionic strength is

known. In these conditions, the calculations are performed with homogeneous

equations. Therefore, the Ka1 and Ka2 constants are the conditional ones. It is very

easy to go back to the thermodynamic constants, since the ionic strength is known.
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