
Chapter 15

Debye–H€uckel Relations and Neighboring
Relations: Calculation of the Activity
Coefficient of an Ion

Abstract The value of the activity of an ion cannot be determined experimentally,

contrary to that of an uncharged species. However, it is accessible through a

calculation, at least in some conditions of concentrations. Hence, this possibility

is of utmost importance from the theoretical standpoint and, also, from the practical

one as well. An example of such an importance is provided by the most commonly

and quasi-universally used scale of pH which is based on the estimation of the

activity of the solvated proton in the studied medium.

The calculation of the activity of ions is performed by applying Debye–Hückel
or a very neighboring relation.

The chapter is focused on the presentation of these relations and on the results

and conclusions to which they lead. (Their setting up is described in another

chapter.) Here are also mentioned the properties of the mean activity coefficients

of electrolytes which, contrary to those of their constitutive ions, can be measured.

They have the great virtue to permit to indirectly verify the Debye–Hückel rela-
tions. However, the using of these relations imposes to know the ionic strength of

the solution. This notion is introduced at the beginning of the chapter but, just

before, the impossibility of the measurement of the activity of an ion is explored.

Keywords Ion activity (determination?) • Ionic strength (influence on the

nonelectrolytes) • General behavior of the activity coefficient of the whole

electrolyte • Guntelberg’s relation • Guggenheim’s relation • Davies’ relation •

Broomley’s relation • Debye–Hückel’s relation • pH scale

The value of the activity of an ion cannot be determined experimentally, contrary to

that of an uncharged species. However, it is accessible through a calculation, at

least in some conditions of concentrations. Hence, this possibility is of utmost

importance from the theoretical standpoint and, also, from the practical one as well.

An example of such an importance is provided by the most commonly and quasi-

universally used scale of pH which is based on the estimation of the activity of the
solvated proton in the studied medium.

The calculation of the activity of ions is performed by applying Debye–Hückel
relations. In this chapter, we not only focus ourselves on their presentation but also

on the results and conclusions to which they lead. Here, we also mention the

properties of the mean activity coefficients of electrolytes which, contrary to
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those of ions, can be measured. They permit to indirectly verify the Debye–Hückel
relations.

Using these relations imposes to know the ionic strength of the solution. We

introduce this notion at the beginning of the chapter. But, just before, we come back

on the notion of impossibility of measurement of the activity of an ion.

15.1 Impossibility of an Experimental Measurement
of the Activity of an Ion

As we have already and briefly said it (viz. Chap. 6) and as we shall specify it

below, activity coefficients quantify the electrostatic interactions between the

chemical species constituting the studied system, notably the interaction ions/

ions. Let us also mention the interaction ions/dipoles, dipoles/dipoles, etc. They

result in a Gibbs energy change of the whole solution under study for a mole of ions

added to it. It is impossible to determine this Gibbs energy change because of the

following two reasons:

– We do not have a chemical species constituted by only one kind of ions at our

disposal. This is for a reason of electroneutrality. A salt is always neutral from

the electrical standpoint. It is also the case of a solution. In brief, an ion is always

accompanied by a counterion to ensure the electroneutrality of the medium.

Hence, it is quite impossible to add an ion into the studied solution and as a result

to determine the change in the chemical potential during this virtual process.

– The second reason is that, if even the previous process was possible, the

corresponding measured change in Gibbs energy would then comprise a supple-

mentary term from electrostatic origin which adds to the search for one

concerning the interactions of the ions, which is only of interest for our purpose.

It would correspond to the work necessary to perform (in the conditions of

reversibility) in order to add a charged particle to an already charged solution.

Hence, in order to measure the activity coefficient of an ion, it should be

necessary to think up a process which would be able not only to add only one

kind of charged ion but also to evolve at a constant electrical charge of the solution.

Hence, all that is possible from the experimental viewpoint consists in adding an

ion and its counterion together. Certainly, while doing that, the studied ion is added

at the constant charge (null) of the solution, but the measured Gibbs energy change

is vitiated by the proper Gibbs energy of addition of the counterion. Actually, here,

one finds the same impossibility as that encountered for the measurement of the

solvation heat of one ion. It is, indeed, impossible to add only one kind of ions

without adding its counterion.

However, the opinion of some authors is that the activity of an ion is potentially

measurable but only when an infinitely weak number of ions would be transferred

into the solution and, that, provided that the net electrical charge of the solution
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would be measured at every moment. For some others (Guggenheim), the very

notion of activity of an ion is devoid of any physical significance.

To sum up, only some mathematical combinations of activities of ions can be

measured (viz. Chap. 12, paragraph 3). Fortunately, if the activity of an ion cannot

be experimentally measured, its value can be approached through calculations, at

least in some conditions.

From the historical viewpoint, it is interesting to know that the physico-chemical literature
is endowed with writings asserting that this determination is possible.

15.2 Ionic Strength

A rapid mention concerning the notion of ionic strength has already been given (viz.

Chap. 12). It has been introduced in 1921 by Lewis and Randall on purely empirical

bases but its introduction into the realm of the study of solutions has been theoret-

ically justified some years later within the framework of Debye–Hückel theory (viz.
Chap. 46).

The ionic strength is a function, the value of which expresses the charge “in

ions” of a solution. It is defined as being the half sum of the terms obtained by

multiplying the molality mj of each ion present in solution by the square of its

relative charge zj that is to say

Im ¼ 1=2
X

j

mj z
2
j ð15:1Þ

where Im is the ionic strength of the solution on the scale of molalities. The index

j indicates that the sum is over all the ions of the solution. It is expressed in mol kg�1.

It can also be defined in terms of molarities:

Ic¼1=2
X

j

cj z
2
j ð15:2Þ

Then, it is expressed in mol L�1. Given the fact that the notion of ionic strength is

only handled in the cases of dilute and very dilute solutions and since, then, the

numerical values of molalities are very close to those of molarities, the numerical

values of the ionic strengths expressed in both unities are very close to each other:

Im � Ic dilute solutionsð Þ

(The symbol μ has also been used formerly in order to symbolize the ionic strength.

It is no longer recommended.)

It is very important to highlight the fact that the “concentration” mj or cj is the
true “concentration” of the ions and not their total “concentration.” As a result of

this point, the calculation of the ionic strength entails to take into account the
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incomplete dissociation of some electrolytes. This is not without setting up some

calculation problems (viz. Chap. 19).

Let us confine ourselves, at the present time, to deduce the following conclusions

relative to the fully dissociated electrolytes from relations (15.1) and (15.2):

– For those of the type 1/1, the ionic strength is equal to its molar concentration.

For example, for a solution c molar of sodium chloride

I ¼ 1=2 Naþ½ �12 þ Cl�½ �12� �

I ¼ cmolL�1

– For the multivalent ones, it is larger than the molar concentration. Its value is

larger all the more the charges of the ions are themselves larger, since there are

changes with the square of these ones. For example, for 1 M solution of

magnesium sulfate

I ¼ 1=2 SO2�
4

� �
22 þ Mg2þ

� �
22

� �

I ¼ 4cmolL�1

In direct relation with the use of all Debye–Hückel relations (viz. under), the
question coming in mind is this: What are the ions which must be into account in

order to calculate the ionic strength of the solution containing the ion under study.

The answer is simple: all.

15.3 Influence of the Ionic Strength on the Activity
of Nonelectrolytes

We know that, in dilute solutions, the activity coefficients of nonelectrolytes are

quasi-equal to 1 and hence their activities are quasi-equal to their concentrations in

numerical values (viz. Chap. 13). Although the principal subject of this chapter is

the solutions of electrolytes, it is interesting, in passing, to study the influence of the

ionic strength on the activity coefficients of the nonelectrolytes. We are concerned,

here, with aqueous solutions.

It is an experimental fact that one finds the following relation:

ln γ=γ0ð Þ ¼ k Im ð15:3Þ

where γ is the activity coefficient of the nonelectrolyte when its solubility ismwhen

it is in presence of some quantity of electrolyte and γ0 its activity coefficient in pure
water in which its solubility is m0. This relation is found by measurements of

solubilities of numerous nonelectrolytes in the presence of electrolytes. Im is the

ionic strength of the solution based on the scale of molalities. Hence, ln γ appears as
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being proportional to the ionic strength of the solution. The relation seems to be

obeyed up to large ionic strengths such as 5 mol kg�1. The value of the propor-

tionality coefficient k depends on the nature of the nonelectrolyte and also of that of
the electrolyte added in order to fix the ionic strength. For the major part of

electrolytes, the k value is located between 0 and 0.1. For an ionic strength such

as Im< 0.1 mol kg�1, the ratio γ/γ0 changes in the range of 1000–1023. This result

justifies the fact that, as a rule, one attributes the value 1 to the activity coefficient of

a nonelectrolyte or of the undissociated part of a weak electrolyte in calculations,

even when they must be refined (viz. Chap. 19).

An interesting point to underline is that the solubilitym of a nonelectrolyte in the

presence of an electrolyte is weaker as that m0 it exhibits in the presence of pure

water. This is a point easy to justify. Let us compare two solutions of the same

nonelectrolyte, one in pure water where its solubility is m0 and its activity coeffi-

cient γ0 and the other in water containing an electrolyte where its solubility is m and

its activity coefficient γ. At saturation, in both solutions, there is equilibrium

between the nonelectrolyte in the solid pure state and itself in solution. Moreover,

its fugacity is the same in the solid state, whatever the solution is and the standard

state in solution (necessary to quantify whether its activity is the same in both

solutions).

Hence, the fugacity in the standard state is the same for both solutions. As a

result, the activity of the nonelectrolyte is the same in both solutions. By introduc-

ing the activity coefficients, we obtain

m0 γ0 ¼ m γ

and

γ ¼ m0=mð Þγ0

Since the ratio γ/γ0 is larger than 1, it is also the case of the ratio m0/m.
The solubility of a nonelectrolyte in water is weakened by the addition of an

electrolyte in the solution. It is the base of the phenomenon called “salting out”

which is one of the processes used to resolve liquid phases into their constituents in

proximate analysis.

It is also interesting to notice that, according to relation (15.3), ln γ is propor-

tional to the ionic strength. This is not the case for the electrolytes as it is evidenced

by the Debye–Hückel relations (viz. under).

15.4 General Behavior of the Mean Ionic Activity
Coefficients of Electrolytes

In Table 15.1, we mention the experimental values of the mean ionic activity

coefficients of several electrolytes in water at 25 �C as a function of their molalities.

(Their methods of determination have been described in Chap. 13.)
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These values clearly show the following points:

– When the molalities are weak, the numerical values of the activity coefficients

decrease all the more quickly as the electrolyte is constituted by the most charged

ions. This result justifies the definition and introduction of the ionic strength. For

example, for a molality of 0.01 mol kg�1, the activity coefficient of lanthanum

chloride is 0.637, whereas for sodium chloride at the same molality, it is 0.904.

The lanthanum chloride activity is aLaCl3¼ 0.637� 0.01¼ 6.37� 10�3. Its value

falls very quickly with respect to its concentration. From the standpoint of its

thermodynamic behavior, the occurrence of interactions from several origins, in

particular due to the interaction ions/ions in the bulk solution (viz. Chap. 6),

decreases its effective presence.
– The mentioned values show that when the molality of the electrolyte is weak, the

activity coefficients of the same kind of electrolytes (from the standpoint of the

charges of the ions constituting them) are quasi-equal.

– When the molality of the electrolyte increases, the values of the mean ionic

activity coefficients begin decreasing, then reach a minimum, and after end up

increasing.

The general behavior of the mean ionic activity coefficient is shown in Fig. 15.1

where it is exemplified by three kinds of electrolytes.

Sometimes, when the concentration of the electrolyte is very large, the mean

ionic activity coefficient may take incredibly large numerical values. For example,

for a molality m¼ 20 mol kg�1 of lithium bromide in water, the value of its activity

coefficient γ� reaches 485!

It is interesting to notice that there exists one concentration (more rigorously:

ionic strength) at which the activity coefficient exhibits the value unity, as if the

solution would be ideal. This particular concentration varies with the nature of the

electrolyte. In aqueous solution at 25 �C, it is located in the range about 3–4mol kg�1.

This phenomenon has a practical application. Some authors take it into account in

order to quickly approach the values of the equilibrium thermodynamic constants.

Let us recall (viz. Chap. 6) that the latter are expressed in terms of activities. By fixing

Table 15.1 Mean ionic activity coefficients in aqueous solutions at 25 �C

Molality 0.001 0.005 0.01 0.05 0.1 0.2 0.5 1.0 2.0

HCl 0.966 0.928 0.905 0.830 0.796 0.767 0.757 0.809 1.009

NaCl 0.966 0.929 0.904 0.823 0.778 0.732 0.679 0.656 0.670

NaBr 0.966 0.934 0.914 0.844 0.800 0.740 0.695 0.686 0.734

KCl 0.965 0.927 0.901 0.815 0.769 0.717 0.650 0.605 0.575

CaCl2 0.888 0.789 0.732 0.584 0.531 0.482 0.457 0.509 0.807

Na2SO4 0.887 0.778 0.714 0.530 0.450 0.360 0.270 0.200 –

ZnSO4 0.734 0.477 0.387 0.202 0.148 0.104 0.063 0.044 0.035

LaCl3 0.853 0.716 0.637 0.417 0.356 0.298 0.303 0.387 0.954

According to S. Glasstone, Thermodynamics for chemists, 11th ed., D. Van-Nostrand, Inc., 1960,
Princeton
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the ionic strength of the solution under study in the above range of molalities, the

different activity coefficients are close to unity and hence the values of equilibrium

constants calculated by handling concentrations may not frankly differ from the

thermodynamic ones. Calculations taking into account the activities, as theymust do

in all scientific rigor, may be indeed tedious (viz. Chap. 19). With such a trick, they

can be, at least in part, avoided.

Let us also notice in passing that all these behaviors in water we have already

mentioned are also recognized in nonaqueous media (ethanol, methanol) and in

hydro-organic ones such as the mixtures ethanol-water and dioxan-water.

The Debye–Hückel theory and the equations resulting from it, at least in part,

account for these results.

15.5 Debye–H€uckel’s Relations

Usually, one distinguishes the limit Debye–Hückel relation (1923) and the extended
Debye–Hückel one and some others which are very close to the previous ones.

15.5.1 The Limit Equation Law

In this chapter, let us confine ourselves to mention that in order to obtain the limit

equation, Debye and Hückel have adopted the hypothesis that ions are electrically

charged points dispersed in a continuous medium, the permittivity of which is

constant and equal to that of the pure solvent. In these conditions, the equation

stemming from it, called the limit Debye–Hückel law, is for a binary electrolyte, the
charges of its ions being z+ and z�:

Fig. 15.1 General behavior

of the mean ionic activity

coefficients as a function of

their molalities and

according to the kind of

electrolyte (symbolism i, j:
imetallic ion charge, j anion
charge)
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�log γ� ¼ A
��zþz�

��√I ð15:4Þ

where I is the ionic strength of the solution expressed in molalities or molarities.

This distinction does not matter given the conditions in which the relation can

legitimately be used (viz. under). A is a constant, the value of which only depending

on the temperature and on the solvent permittivity ε, according to the relations1

A ¼ 1:825106 εTð Þ�3=2

A ¼ 0:509mol�1=2l1=2 water : 25 �Cð Þ

The comparison of the calculated values through the expression (15.4) with those

experimentally found for the mean ionic activity coefficients shows that the limit

law is only verified for ionic strengths lower than 10�3 mol L�1.

The Debye–Hückel theory also provides us with the relation (15.5) which

permits the calculation of the activity coefficient of one ion only of charge z in a

sufficiently dilute solution:

�logγ ¼ Az2√I ð15:5Þ

As it has been already said, the expression (15.5) cannot be directly compared with

an experimental measurement, but it can be indirectly compared (viz. Chap. 46).

However, indirectly, it confirms what has been experimentally found by studying

the behavior of the whole electrolyte (viz. the paragraph 4 above). The activity

coefficient of an ion, cation, or anion only depends on the ionic strength of the

solution. This assertion is exact for the sufficiently diluted solutions. It has been

proposed, once in 1923, by Lewis and Randall.

15.5.2 Extended Debye–H€uckel Relation

The previous Debye–Hückel’s relation (15.4) leads to markedly too weak values of

the activity coefficients for the intermediary concentrations of electrolytes. A

change in the limit equation enhancing the range of its applications is obtained by

adopting the hypothesis that ions are spheres of finite radius, the other hypothesis

prevailing in the setting up of the limit law remaining the same. For a binary

electrolyte, the new Debye–Hückel’s relation, called the extended Debye and

Hückel’s law, is

�log γ� ¼ A
��zþz�

��√I= 1þ Ba√I
� � ð15:6Þ

1Other numerical values (but close to the latter ones) may be found in the literature. The

discrepancy depends on the chosen value of the solvent permittivity (viz. Chap. 46).
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and for only one ion

�log γ ¼ Az2√I= 1þ Ba√I
� � ð15:7Þ

In both expressions, B is a function of the temperature and of the permittivity ε of
the solvent. B has for expression

B ¼ 50:3 εTð Þ�1=2

B ¼ 0:328108 cm�1 mol�1=2 l1=2 water : 25 �Cð Þ

In (15.6) and (15.7), a is an adjustable parameter approximately corresponding to

the effective radius of the hydrated (solvated) ion, measured in Å (10�10 m). The

a parameter is called “ion size parameter” or “minimal approach distance” by the

other ions of the solution of the ion, the activity coefficient of which is considered.

The parameter A of both limit and extended relations is the same. In the case of a

binary electrolyte constituted by monovalent ions, the extended Debye–Hückel’s
relation is

�log γ ¼ Az2√m = 1þ Ba√m
� �

given m¼ I.
As a first rule, we can conceive that the parameter a is related to the radius r of

the ions. By comparing the expressions (15.5) and (15.7), one can notice that it is

the presence of the denominator in (15.7) which differentiates them. This finding

may be correlated to the fact that, when the concentration of the ion (the ionic

strength of the solution) increases, the electronic cloud gets closer to the considered

ion, as it is shown by the Debye–Hückel’s theory itself (viz. Chap. 46). As a result,

the electrical interactions called “long-range interactions” are no longer the only

ones to be efficient. “Short-range interactions” are then added to the previous ones.

One author (Kielland) has compiled the values of the parameter a for 136 inorganic
and organic ions in water. They have not been, of course, directly measured. The

values result from the comparison of mean ionic activity coefficients already

known, adjusted according to an empirical manner in such a way that the activity

coefficient of an electrolyte can be forecasted in a mixture of other electrolytes. A

calculation of the activity of a given ion can, then, be possible (viz. Appendix E). It

is interesting to notice, through the values of the Kielland’s table, that the activity
coefficients do vary few little with the parameter a.

The extended Debye–Hückel is satisfactory for ionic strengths varying up to

0.1 mol L�1.

The calculations of the mean ionic activity coefficients of binary monovalent

electrolytes lead to accurate values at the level of 1 p 100 whereas the use of the

limit equation leads to errors of the order of 10 p 100 in the same conditions.

According to several authors, it seems that the meaning of hydrated radius of the

ion under study given to the parameter a is devoid of any thermodynamic base. In
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addition, inverse calculations of the parameter a as a function of √m by introducing

experimental values of �log γ� show that a is not a constant.

The worst is that for some concentrations, a is endowed with fully aberrant

values. For examples, for molalities of 1.8 mol kg�1 in HCl and 2.5 mol kg�1 in

lithium chloride, the respective values of a are �41.12 nm and �14.19 nm!!

This is the reason why, today, a is only considered as being an adjustable

parameter permitting to obtain the best fit between the experimental values of the

mean activity coefficients and the extended Debye–Hückel relation.
Finally, from another viewpoint, it must be noticed that, for some authors, it

seems that the activity coefficients calculated through the Debye–Hückel relations
are related to the scale of molar fractions, although the ionic strength values used

for their calculations are expressed in molalities or molarities.

15.5.3 Other Relations Permitting the Calculation
of the Mean Activity Coefficient of an Electrolyte

Numerous relations which are more and less related to those of Debye–Hückel have
been proposed. Either they stem from minor modifications of the extended Debye–

Hückel equation or they differ from the extended relation by the presence of

supplementary terms. In connection with this subject, it is interesting to notice

that from the mathematical standpoint, the Debye–Hückel relations (both limit and

extended) cannot, at all, explain the occurrence of minima in the curves �log γ�/I
or �log γ�/c or m, as it can be proved definitively by an elementary calculation of

derivatives.

Let us mention, like other equations, the

– Guntelberg’s relation

By adopting the unique numerical value a¼ 3.0 Å for all the ions, Guntelberg,

starting from the extended Debye–Hückel relation, leads to the expression

�logγ� ¼ A
��zþz�

�� √I= 1þ 1√I
� �� � ð15:8Þ

The factor unity of √I in the denominator is a real stroke of luck since at 25 �C,
B¼ 0.328 whence Ba� 1 with a¼ 3Å. The Guntelberg’s relation seems to give too

weak values γ�, even in the range of ionic strength values less than 0.1 mol L�1.

Another relation very close to that of Guntelberg plays a fundamental part in the

anchoring of the pH scale of the National Bureau of Standards (pH scale of Bates

and Guggenheim).

– Guggenheim’s relation (1935)
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�log γ� ¼ A
��zþ z� �� √I= 1þ √I

� �� �� bI ð15:9Þ

In this relation, there exists the empirical linear term—bI. For ionic strengths larger,

supplementary linear terms may be added to the Guggenheim’s equation, whence
the relations of the kind are derived:

�log γ� ¼ A
��zþ z� �� √I= 1þ √I

� �� �þ bIþ cI2 þ dI3 ð15:10Þ

Quite evidently, the greater the number of terms added, the better the fit between the

calculated and experimental values is. But, then, the latter added terms cI2, dI3, etc.

do possess a statistical weight which is less and less.

A more elaborate form of the Guggenheim’s relation is

log γ� ¼ �A
��zþ z� �� √I= 1þ √I

� �� �þ 2νþν�
�
= νþ þ ν�ð Þ� �

2βmð Þ

Its applies to only one electrolyte. m is the molality of the electrolyte and ν+ and ν�
the charges of the cation and of the anion. β is a parameter specific of each

electrolyte. This relation is exact for an ionic strength up to 0.1 mol l�1 with

univalent, bi-univalent, and uni-bivalent electrolytes. The coefficient β of the linear
term is adjustable according to the nature of the electrolyte. Guggenheim’s equa-
tions are semiempirical relations.

– Davies’ relation (1938)

Davies’ relations are

�log γ� ¼ A
��zþ z� �� √I= 1þ √I

� �� �� 0:2I ð15:11Þ

or

�log γþ ¼ A z2 √I= 1þ √I
� �� �� 0:2 I ð15:12Þ

It has been largely used in order to estimate the activity coefficients of ions “alone”

at ionic strengths relatively large. It seems that for ionic strength of 0.5 mol L�1, the

error made by using it on the estimation of the activity coefficient is lower than 8�/�.
Concerning all these relations comprising one or several linear terms, it is

interesting to notice that the presence of this term may, mathematically, justify

the existence of the minimum of the curves γ�/m.

– Broomley’s relation (1972)

According to this theory, the mean activity coefficient of an electrolyte in a

binary solution is given by the relation

�logγ� ¼ A
��zþz�

�� √I= 1þ √I
� �� �þ B12I

with
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B12 ¼ 0:06þ 0:6 Bð Þ z1z2ð Þ½ �= 1þ 1:5=z1z2ð ÞIð Þ2 þ B

B is the Broomley’s parameter. z1 and z2 are the charges of both ions of the

electrolyte. A is the Debye–Hückel’s constant A (A¼ 0.509). Broomley’s relation
is also a semiempirical relation since it is based, on the one hand, on those of Debye

and Hückel and on the other on arbitrary terms. Some extensions of Broomley’s
relation exist. They permit to study some mixtures of electrolytes.

Let us also mention the theory of Meissner and Kusik (1978), the mainspring of

which is the reduced activity coefficient ΓAC defined by

ΓAC ¼ γ� 1=zþz�ð Þ

The idea behind this relation is that the reduced activity coefficient is mainly

influenced by the interactions between the anions and cations.

Other relations of Debye–Hückel’s kind, but less used than the previous ones,

are also proposed (viz. Chap. 46). Others, which are not of Debye–Hückel’s kind,
are also proposed. The most interesting are those based on the radial distribution

functions (viz. Chap. 47). The theory leading to them stems from considerations of

statistical thermodynamics.
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