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Abstract. This paper addresses the problem of discovering business
process models from event logs. Existing approaches to this problem
strike various tradeoffs between accuracy and understandability of the
discovered models. With respect to the second criterion, empirical stud-
ies have shown that block-structured process models are generally more
understandable and less error-prone than unstructured ones. Accord-
ingly, several automated process discovery methods generate block-
structured models by construction. These approaches however intertwine
the concern of producing accurate models with that of ensuring their
structuredness, sometimes sacrificing the former to ensure the latter. In
this paper we propose an alternative approach that separates these two
concerns. Instead of directly discovering a structured process model, we
first apply a well-known heuristic that discovers more accurate but some-
times unstructured (and even unsound) process models, and then trans-
form the resulting model into a structured one. An experimental eval-
uation shows that our “discover and structure” approach outperforms
traditional “discover structured” approaches with respect to a range of
accuracy and complexity measures.
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1 Introduction

Automated process discovery refers to a family of methods that generate a busi-
ness process model from an event log [18]. An event log in this context is a set
of traces, each consisting of a sequence of events observed within one execution
of a process.

Existing automated process discovery methods strike various tradeoffs
between accuracy and understandability [20]. In this setting, accuracy is com-
monly declined into three dimensions: (i) fitness: to what extent the discovered
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model is able to “parse” the traces in the log; (ii) precision: how much behavior
is allowed by the model but not observed in the log; and (iii) generalization: to
what extent is the model able to parse traces that, despite not being present
in the input log, can actually be produced by the process under observation.
Understandability on the other hand is commonly measured via size metrics
(e.g. number of nodes) and structural complexity metrics. The latter quantify
either the amount of branching in a process model or its degree of structured-
ness (the extent to which a model is composed of well-structured single-entry,
single-exit components), which have been empirically shown to be proxies for
understandability [11].

Inspired by the observation that structured process models may be more
understandable than unstructured ones [6], several automated process discovery
methods generate structured models by construction [3,10,12]. These approaches
however intertwine the concern of accuracy with that of structuredness, some-
times sacrificing the former to achieve the latter. This paper obviates this tradeoff
by presenting an automated process discovery method that generates structured
models, yet achieves essentially the same fitness, precision and generalization as
methods that generate unstructured models. The method follows a two-phased
approach. In the first phase, a model is discovered from the log using a heuristic
process discovery method that has been shown to consistently produce accurate,
but potentially unstructured or even unsound models. In the second phase, the
discovered model is transformed into a sound and structured model by apply-
ing two techniques: a technique to maximally block-structure an acyclic process
model and an extended version of a technique for block-structuring flowcharts.

The paper reports on an empirical evaluation based on real-life and synthetic
event logs that puts into evidence the performance of the proposed method relative
to two representative methods that discover structured models by construction.

The rest of the paper is organized as follows. Section 2 introduces existing
automated process discovery methods and methods for structuring process mod-
els. Section 3 presents the proposed method while Sect. 4 reports on the empiri-
cal evaluation. Finally, Sect. 5 summarizes the contributions and outlines future
work directions.

2 Background and Related Work

In this section we review existing automated process discovery methods and asso-
ciated quality dimensions. We also introduce methods for transforming unstruc-
tured process models into structured ones, which we later use as building blocks
for our proposal.

2.1 Automated Process Discovery Algorithms

The bulk of automated process discovery algorithms are not designed to produce
structured process models. This includes for example of the α-algorithm [19],
which may produce unstructured models and sometimes even models with
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disconnected fragments. The Heuristics Miner [21] partially addresses the lim-
itations of the α-algorithm and consistently performs well in terms of accuracy
and simplicity metrics [20]. However, its output may be unstructured and even
unsound, i.e. the produced models may contain deadlocks or gateways that do
not synchronize all their incoming tokens. Fodina1 is a variant of the Heuristics
Miner that partially addresses the latter issue but does not generally produce
structured models.

It has been observed that structured process models are generally more
understandable than unstructured ones [6]. Moreover, structured process models
are sound, provided that the gateways at the entry and exit of each block match.
Given these advantages, several algorithms are designed to produce structured
process models, represented for example as process trees [3,10]. A process tree
is a tree where the each leaf is labelled with an activity and each internal node
is labeled with a control-flow operator: sequence, exclusive choice, non-exclusive
choice, parallelism, or iteration.

The Inductive miner [10] uses a divide-and-conquer approach to discover
process trees. Using the direct follows dependency between event types in the
log, it first creates a directly-follows graph which is used to identify cuts. A
cut represent a specific control-flow dependency along which the log can be
bisected. The identification of cuts is repeated recursively, starting from the
most representative one until no more cuts can be identified. Once all cuts are
identified and the log split into portions, a process tree is generated on top of
each portion of the log. The algorithm then applies filters to remove “dangling”
directly-follows edges so that the result is purely a process tree.

The Evolutionary Tree Miner (ETM) [3] is a genetic algorithm that starts by
generating a population of random process trees. At each iteration, it computes
an overall fitness value for each tree in the population and applies mutations to
a subset thereof. A mutation is a tree change operation that adds or modifies
nodes. The algorithm iterates until a stop criterion is fulfilled, and returns the
tree with highest overall fitness.

Molka et al. [12] proposed another genetic automated process discovery algo-
rithm that produces structured process models. This latter algorithm is similar
in its principles to ETM, differing mainly in the set of change operations used
to produce mutations.

2.2 Quality Dimensions in Automated Process Discovery

The quality of an automatically discovered process model is generally assessed
along four dimensions: recall (a.k.a. fitness), precision, generalization and com-
plexity.

Fitness is the ability of a model to reproduce the behavior contained in a log.
Under trace semantics, a fitness of 1 means that the model can produce every
trace in the log. In this paper, we use the fitness measure proposed in [2], which
measures the degree to which every trace in the log can be aligned with a trace

1 http://www.processmining.be/fodina.

http://www.processmining.be/fodina
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produced by the model. Precision measures the ability of a model to generate
only the behavior found in the log. A score of 1 indicates that any trace produced
by the model is somehow present in the log. In this paper we use the precision
measure defined in [1], which is based on similar principles as the above fitness
measure. Recall and precision can be combined into a single F-score, which is
the harmonic mean of the two measurements

(
2 · Fitness ·Precision

Fitness +Precision

)
.

Generalization measures the ability of a discovered model to produce behav-
ior that is not present in the log but that can be produced by the process under
observation. To measure generalization we use 10-fold cross validation [9]: We
divide the log into 10 parts, discover a model from 9 parts (i.e. we hold-out 1
part), and we measure fitness of the discovered model against the hold-out part.
This is repeated for every possible hold-out part. Generalization is the mean of
the fitness values obtained for each hold-out part. A generalization of 1 means
that the discovered models produce traces in the observed process, even if those
traces are not in the log from which the model was discovered.

Finally, complexity quantifies how difficult it is to understand a model. Sev-
eral complexity metrics have been shown to be (inversely) related to understand-
ability [11], including size (number of nodes); Control-Flow Complexity (CFC)
(the amount of branching caused by gateways in the model) and structuredness
(the percentage of nodes located directly inside a well-structured single-entry
single-exit fragment).

2.3 Structuring Techniques

Polyvyanyy et al. [15,16] propose a technique to transform unstructured process
models into behaviourally equivalent structured ones. The approach starts by
constructing the Refined Process Structure Tree (RPST) [17] of the input process
model. The RPST of a process model is a tree where the nodes are the single-
entry single-exit (SESE) fragments of the model and an edge denotes a con-
tainment relation between SESE fragments. Specifically, the children of a SESE
fragment in the tree are the SESE fragments that it directly contains. Fragments
at the same level of the tree are disjoint.

Each SESE fragment is represented by a set of edges. Depending on how
these edges are related, a SESE fragment can be of one of four types. A trivial
fragment consists of a single edge. A polygon is a sequence of fragments. A bond
is a fragment where all child fragments share two common gateways, one being
the entry node and the other being the exit node of the bond. In other words,
a bond consists of a split gateway with two or more sub-SESE fragments all
converging into a join gateway. Any other fragment is a rigid. A model that
consists only of trivials, polygons and bonds (i.e. no rigids) is fully structured.
Thus the goal of a block-structuring technique is to replace rigid fragments in
the RPST with combinations of trivials, polygons and bonds.

In the structuring technique by Polyvyanyy et al., each rigid fragment is
unfolded and an ordering relation graph is generated. This graph is then parsed
to construct a modular decomposition tree leading to a hierarchy of components
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from which a maximally structured version of the original fragment is derived.
The technique in [16] produces a maximally-structured version of any acyclic
fragment (and thus of any model), but it does not structure rigid fragments that
contain cycles.

The problem of structuring behavioral models has also been studied in
the field of programming, specifically for flowcharts: graphs consisting of tasks
(instructions), exclusive split and exclusive join gateways. Oulsnam [13] iden-
tified six primitive forms of unstructuredness in flowcharts. He observed that
unstructuredness is caused by the presence either of an injection (entry point)
or an ejection (exit point) in one of the branches connecting a split gateway to a
matching join gateway. Later, Oulsnam [14] proposed an approach to structure
these six forms. The approach is based on two rules. The first rule deals with
an injection, and pushes the injection after the join gateway, duplicating every-
thing that was originally between the injection and the join. On the other hand,
when the unstructuredness is caused by an ejection, the ejection is pushed after
the join gateway and an additional conditional block is added to prevent the
execution of unnecessary instructions. These two rules are recursively applied
to the flowchart, starting from the innermost unstructured form, until no more
structuring is possible.

Polyvyanyy’s and Oulsnam’s technique are complementary: while
Polyvyanyy’s technique deals mainly with unstructured acyclic rigids with par-
allelism, Oulsnam’s one deals with rigid fragments without parallelism (exclusive
gateways only). This observation is a centrepiece of the approach presented in the
following section.

3 Approach

The proposed approach to discovering structured process models takes as input
an event log and operates in two phases: (i) discovery & cleaning, and (ii) struc-
turing.

3.1 Discovery and Cleaning

In this phase a process model is discovered from an input log using an existing
process discovery algorithm. Any process discovery algorithm can be used in this
phase. In this paper we use the Heuristics Miner because of its accuracy [20]. In
addition to discovering an initial (unstructured) model, this phase fixes model
correctness issues such as disconnected nodes (structural issues) and deadlocks
(behavioral issues). This is achieved via 3 heuristics. Before presenting them, we
formally define a process model.

Definition 1 (Process model). A process model is a connected graph G =
(i, o, A,G+, Gx, F ), where A is a non-empty set of activities, i is the start event,
o is the end event, G+ is the set of AND-gateways, Gx is the set of XOR-
gateways, and F ⊆ ({i}∪A∪G+ ∪Gx)× ({o}∪A∪G+ ∪Gx) is the set of arcs.
A split gateway is a gateway with one incoming arc and multiple outgoing arcs,
while a join gateway is a gateway with multiple incoming arcs and one outgoing
arc.
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Fig. 1. Examples of application of the three cleaning heuristics.

A process model starts with a unique start event, representing the process
trigger (e.g. “order received”) and concludes with a unique end event, represent-
ing the process outcome (e.g. “order fulfilled”). The model may contain activities,
which capture actions that are performed during the process (e.g. “check order”)
and gateways, which are used for branching (split) and merging (join) purposes.
Gateways can be of type XOR, to model exclusive decisions (XOR-split) and
simple merges (XOR-join), and AND, to model parallelism (AND-split) and
synchronization (AND-join).

The first heuristic (cf. Fig. 1) ensures that a model contains a single start
and a single end event, and that every activity in the model is on a path from
the start to the end. In case of multiple start or end events, these events are
connected via an XOR gateway. In case of activities not on a path from start to
end, the heuristic places the activity in parallel with the rest of the process, in
such a way that the activity can be skipped and repeated any number of times.
The second heuristic ensures that for every bond, the split and the join gateways
are of the same type – both AND or both XOR but not mixed (cf. Fig. 1). In
the case of an acyclic bond (a bond where all paths go from the entry to the
exit gateway), the heuristic matches the exit gateway type with that of entry
gateway type. If the bond is cyclic (there is a path from the exit to the entry
gateway), the heuristic converts all gateways into XORs. The third heuristic
addresses cases of unsoundness related to quasi-bonds. A quasi-bond is a bond
with an injection via a join gateway or an ejection via a split gateway, along a
path connecting the entry and exit gateways of the bond. The heuristic replaces
the entry and exit gateways of the quasi-bond as well as the join (split) causing
the injection (ejection), with XOR gateways.

3.2 Structuring

The second phase of our approach deals with the structuring of the discovered
process model by removing injections and ejections. Before discussing this phase,
we need to formally define the notions of activity path, injection and ejection.
An activity path is a path containing activity nodes only (no gateways), between
two gateways.
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Definition 2 (Activity Path). Given two gateways gentry and gexit and a
sequence of activities S = 〈a1, . . . , an〉, there is a path from gentry to gexit , i.e.
gentry �S gexit iff gentry → a1 → a2 → · · · → an → gexit , where a → b holds
if there is an arc connecting a to b. Using the operator � we define the set of all
paths of a process model as P � {(g1, g2, S) ∈ G × G × A∗ | g1 �S g2}. The set
of incoming paths of a gateway gx is defined as �gx = {(g1, g2, S) ∈ P | gx = g2}.
Similarly the set of outgoing paths is defined as gx � = {(g1, g2, S) ∈ P | gx = g1}.
Definition 3 (Injection). Given four different gateways g1, g2, g3, g4, they
constitute an injection i = (g1, g2, g3, g4) iff ∃(S1, S2, S3) ∈ A∗ × A∗ × A∗ |
g1 �S1 g2 ∧ g2 �S2 g3 ∧ g4 �S3 g2 (see “before” column in Fig. 2).

Definition 4 (Ejection). Given four different gateways g1, g2, g3, g4, they
constitue an ejection e = (g1, g2, g3, g4) iff ∃(S1, S2, S3) ∈ A∗ ×A∗ ×A∗ | g1 �S1

g2 ∧ g2 �S2 g3 ∧ g2 �S3 g4 (see “before” column in Fig. 2)

According to [17], a rigid is homogeneous, if for all injections and ejections
in the rigid, the gateways are of the same type, otherwise it is heterogeneous.

Fig. 2. Structuring of injection and ejection.

Moreover, if an injec-
tion or ejection is part of
a cycle the rigid is cyclic,
otherwise it is acyclic. Now
we have all ingredients
to describe the structur-
ing phase. In this phase,
the RPST of the discov-
ered process model is gen-
erated and all its rigids
identified. Once all rigids
have been identified, the
RPST is traversed bottom-up, and each rigid is structured along the way.

Algorithm 1 shows how the RPST is traversed and each node is structured.
The algorithm uses a bottom-up traversal strategy implemented via a queue.
First, all leaves of the RPST are inserted in the queue. At each step a node
from the queue is removed, and structured if it is a rigid. The structuring is
performed using BPStruct [15] if the rigid is sound and consists only of AND
gateways (sound AND-homogeneous) or a mixture of AND and XOR gateways
(sound heretogeneous) – cf. line 8. Otherwise the structuring is performed using
an extended version of Oulsnam’s algorithm [14] (line 9) as discussed later. Then
the node is marked as visited and if the parent node has not been visited yet, it
is added to the queue (cf. line 11). This is repeated until the queue is empty.

We decided to use two different structuring techniques since BPStruct guar-
antees optimal results when applied on sound AND-homogeneous or hetero-
geneous rigids only, whilst it produces suboptimal results for acyclic XOR-
homogeneous rigids and it fails in case of cyclic XOR-homogeneous or unsound
rigids. The structuring of these types of rigids is achieved instead using an
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Algorithm 1. Structuring flow
input: RPST rpst

Queue Queue := getLeaves(rpst);1

Set Visited := ∅;2

while Queue �= ∅ do3

node := remove(Queue);4

parent := getParent(node);5

if isRigid(node) then6

if isSoundANDHomogeneous(node) OR isSoundHeterogeneous(node)7

then
BPStruct(node);8

else EOStruct(node);9

Visited := Visited ∪ {node};10

if parent /∈ Visited then insert(Queue, parent);11

Algorithm 2. Push-Down
input: Injection i = (g1, g2, g3, g4)
input: Set of all Paths P
input: Set of all Gateways G

if g2
� ⊆ �g3 then1

g′
2 := copy(g2);2

G := G ∪ {g′
2};3

P := P ∪ {(g4, g′
2, S) ∈ G × G × A∗ | ∃(g4, g2, Sx) ∈ (g4

� ∩ �g2)[Sx = S]};4

P := P \ (g4
� ∩ �g2);5

P := P ∪ {(g′
2, g3, S

′) ∈ G × G × A∗ | ∃(g2, g3, S) ∈ (g2
� ∩ �g3)[S′ = copy(S)]};6

if (|g2 � | = 1) AND (| �g2| = 1) then G := G \ {g2};7

if (
∣
∣g′

2
�
∣
∣ = 1) AND (

∣
∣ �g′

2

∣
∣ = 1) then G := G \ {g′

2};8

Algorithm 3. Pull-Up
input: Ejection e = (g1, g2, g3, g4)
input: Set of all Paths P
input: Set of all Gateways G

if �g2 ⊆ g1
� then1

g′
2 := copy(g2);2

G := G ∪ {g′
2};3

P := P ∪ {(g′
2, g4, S) ∈ G × G × A∗ | ∃(g2, g4, Sx) ∈ (g2

� ∩ �g4)[Sx = S]};4

P := P \ (g2
� ∩ �g4);5

P := P ∪ {(g1, g′
2, S

′) ∈ G × G × A∗ | ∃(g1, g2, S) ∈ (g1
� ∩ �g2)[S′ = copy(S)]};6

if (|g2 � | = 1) AND (| �g2| = 1) then G := G \ {g2};7

if (
∣
∣g′

2
�
∣
∣ = 1) AND (

∣
∣ �g′

2

∣
∣ = 1) then G := G \ {g′

2};8

extended version of Oulsnam’s algorithm. Before presenting this latter algo-
rithm, we need to introduce two operators.

The first operator is the push-down operator (see Algorithm 2). Given
an Injection i = (g1, g2, g3, g4), Push-Down(i) can be applied if
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g2 � ⊆ � g3 (see line 1). The operator removes the input injection in four steps:
(i) it creates a copy of g2, namely g′

2; (ii) for each path from g4 to g2, it changes
the end node of the path from g2 to the new gateway g′

2 (lines 4 and 5); (iii) for
each path from g2 to g3, it duplicates the path, setting g′

2 as the starting node
of the path, instead of g2 (line 6); and (iv) it removes any of g2 and g′

2 if it is a
trivial gateway (see Fig. 2).

The second operator is the pull-up operator (see Algorithm 3). Given an
Ejection e = (g1, g2, g3, g4), Pull-Up(e) can be applied if � g2 ⊆ g1 � (see line
1). The operator removes the input ejection in four steps: (i) it creates a copy
of g2, namely g′

2; (ii) for each path from g2 to g4, it changes the starting node of
the path from g2 to the new gateway g′

2 (lines 4 and 5); (iii) for each path from
g1 to g2, it duplicates the path, setting g′

2 as the end node of the path, instead
of g2 (line 6); and (iv) it removes any of g2 and g′

2 if it is a trivial gateway (see
Fig. 2).

While the push-down operator is an adaptation of Oulsnam’s technique [14],
the pull-up operator is a new operator. Despite the pull-up operator preserves
trace equivalence it does not preserve weak bisimulation equivalence, because
it does not preserve the moment of choice (it may pull a choice to an earlier
point). Indeed, referring to Fig. 2, given a generic ejection e = (g1, g2, g3, g4),
the pull-up operator by definition can be applied iff � g2 ⊆ g1 � , this means
g2 can be reached only from g1, and consequentially the only way to reach g4
from g2 is passing through g1. Considering this latter and that by definition the
pull-up operator generates a path S′

24 ∈ g′
2

� ∩ � g4 for each previously existing
path S24 ∈ g2 � ∩ � g4 (step ii), and creates a duplicate path S′

12 ∈ g1 � ∩ � g′
2

for each previously existing path S12 ∈ g1 � ∩ � g2 (step iii), it follows that for
each concatenation of S12 and S24 existing before the pull-up operator, after
the pull-up operator there will exist a concatenation of S′

12 and S′
24 that is its

duplicate. Therefore, the nature of the pull-up operator does not introduce nor
remove executable traces. The only drawback of the pull-up operator is that the
decision to take the path that will lead to g4 is anticipated at g1, whilst before
was at g2 (i.e. earlier point of choice). Due to this tradeoff, we make the use of
the pull-up operator optional as discussed below.

Algorithm 4 (Extended Oulsnam) shows how the two operators are used to
structure a rigid fragment. The inputs of the algorithm are an unstructured rigid
and a boolean value to indicate whether the pull-up operator is to be used. First,
the algorithm detects every injection on top of which the push-down operator
can be applied (see line 2), and if the pull-up is enabled, every ejection on top of
which the pull-up can be applied (line 4). Second, it selects the cheapest injection
and the cheapest ejection (lines 5 and 6). The cheapest injection (ejection) is the
injection (ejection) generating the minimum number of duplicates after a push-
down (pull-up). Third, the cheapest among these two is then chosen (line 8) and
the corresponding operator is applied. The algorithm iterates over these three
steps until no more ejections or injections can be removed, which results in a
fully structured or maximally structured rigid. Selecting the cheapest injection or
ejection at each step does not ensure that the final model will have the minimum
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Algorithm 4. EOStruct (Extended Oulsnam)
input: Rigid r
input: Boolean pullup

do1

Set I := detectInjections(r);2

Set E := ∅;3

if pullup then Set E := detectEjections(r);4

if I �= ∅ then Injection i := cheapestInjection(I);5

if E �= ∅ then Ejection e := cheapestEjection(E);6

if (i not ⊥) OR (e not ⊥) then7

if ((e = ⊥) OR ((i not ⊥) AND (cost(i) ≤ cost(e)))) then8

Push-Down(i);
else Pull-Up(e);9

while I �= ∅ OR E �= ∅ ;10

g1 g2 g3 g4

g5
A

E

C D

F G

B

Input: Step 1

g1 g2

g4

g5

F G

G'

B

D

C

A

E

Step 1.1

g1 g4g5
A

E

C

D

F G

B

F'

G'

G'

Step 1.1.1

rigid2a

g1 g3 g4

g5A

E

C
D

F G

B

F'

Step 1.2

g1 g4g5 g3'
G'A

E

C

B

D

F'

F G

Step 1.2.1

Fig. 3. An example application of the A∗ search tree with our structuring method.

number of duplicates. In order to achieve the latter property, we embed the
Extended Oulsnam algorithm inside an A∗ search [8], where each state in the
search tree is a transformed version of the initial rigid fragment, and the cost
function associated with each state is defined as f(s) = g(s) + h(s) with g(s) =
#duplicates and h(s) = 0. We set function h(s) to zero since it is not possible to
predict how many duplicates are needed in order to structure a rigid.

Figure 3 illustrates an example where a rigid is structured using Algorithm 4
within an A∗ search. In this example, the rigid has two injections, i.e. i1 =
(g1, g2, g3, g5) and i2 = (g2, g3, g4, g5). Assuming i2 is the cheapest of the two
injections (i.e. the size of subprocess G is smaller than the size of subprocess F ),
if we first remove i2 and then i1 (see Step 1.1 and Step 1.1.1) we will have to
duplicate sub-process G twice. This would not happen if we first removed i1 and
then i2 (see Step 1.2 and Step 1.2.1). The use of an A∗ search helps us avoid
these situations since it takes care of exploring the search tree and selecting
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the sequence of removals of injections and ejections, that leads to the minimum
number of duplicated elements.

For unsound rigids, we only apply the push-down operator in order to pre-
serve the moment of choice of the split gateways of the quasi-bonds that will
be turned into bonds when structuring the rigid (not shown in Algorithm 4 for
brevity). After the structuring procedure has been completed, we match the type
of the join gateways of the acyclic bonds with the type of their corresponding
split gateways (e.g. if the split is an AND gateway the join will be turned into an
AND gateway). In case of cyclic bonds, we turn both split and join gateways into
XOR to avoid soundness issues. If multiple bonds share the same join gateway,
this is replaced with a chain of gateways, one for each bond, maintaining the
original bonds hierarchy. Finally, since we disable the use of the pull-up operator
on unsound rigids, we cannot guarantee that these will be fully structured, hence
we cannot guarantee that they will be turned into sound fragments.

Complexity. The complexity of the push-down and pull-up operators is linear
on the number of activity paths to be duplicated when structuring an injection
or ejection, i.e. O(|g2 � ∩ � g3|). This is bounded by O(n2), where n is the number
of nodes in the model. The complexity of the Extended Oulsnam algorithm is
linear on the number of injections and ejections, which is O

((
g
4

))
where g is

the number of gateways, which is bounded by the number of nodes n. Hence,
O

((
n
4

))
+ O(n2) ≈ O(n4). Finally, the complexity of A∗ is O(bq) where b is the

branching factor and q is the depth of the solution. In our case the branching
factor is the number of injections and ejections, and so is the depth of the
solution. Hence the complexity of our method is O(n4n

4

) · O(n4) ≈ O(nn). This
does not include the complexity of the baseline discovery method.

4 Evaluation

We implemented our method as a standalone tool as well as a ProM plugin,
namely the Structured Miner (hereafter SM).2 The tool takes a log in MXML
or XES format (currently it supports Heuristics Miner (HM) and Fodina (FM)
as baseline discovery algorithms), and returns a maximally structured process
model in BPMN format.

Using this tool, we conducted a series of experiments to evaluate the accuracy
of our discovery approach compared to that of methods that structure the model
during discovery. We selected two representative methods: Inductive Miner (IM)
and Evolutionary Tree Miner (ETM), and compared the results with our app-
roach on top of HM and FM. As the results obtained with FM were consistently
similar to those obtained with HM and due to space reasons, this section only
reports the results using HM.

We measured accuracy using the fitness, precision, F-score and generaliza-
tion metrics and model complexity via size, CFC and structuredness as defined
2 Available from http://apromore.org/platform/tools.

http://apromore.org/platform/tools
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in Sect. 2.2. The experiments were done on an Intel dual-core i5-3337U 1.80 Ghz
with 12 GB of RAM running JVM 7 with 8 GB of heap, except for the exper-
iments using ETM, which were done on a 6-core Xeon E5-1650 3.50 Ghz with
128 GB of RAM running JVM 7 with 40 GB of heap, time-bounded to 30 min as
the ETM algorithm is computationally very expensive and can otherwise take
several hours per log.

4.1 Datasets

All Models(619)

SAP R/3(545)

Structured(484)

Unstructured(61)

Sound(21)

P. Unsound(25)

T. Unsound(15)

IBM BIT(54)

Structured(9)

Unstructured(45)

Sound(42)

P. Unsound (2)

T. Unsound (1)

Synthetic(20)

Unstructured(20)

Sound(16)

T. Unsound(4)

Fig. 4. Taxonomy of
models discovered by
HM from the logs (P. =
partially, T. = totally).

We generated three sets of logs using the ProM plu-
gin “Generate Event Log from Petri Net”. This plu-
gin takes as input a process model in PNML format
and generates a distinct log trace for each possible exe-
cution sequence in the model. The first set (591 Petri
nets) was obtained from the SAP R/3 collection, SAP’s
reference model to customize their R/3 ERP product
[4]. The log-generator plugin was only able to parse 545
out of 591 models, running into out-of-memory excep-
tions for the others. The second set (54 Workflow nets3)
was obtained from a collection of sound and unstruc-
tured models extracted from the IBM BIT collection
[6]. The BIT collection is a publicly-available set of
process models in financial services, telecommunication
and other domains, gathered from IBMs consultancy
practice [7]. The third set contains 20 artificial mod-
els, which we created to test our method with more
complex forms of unstructuredness, not observed in the
two real-life collections. These are: (i) rigids contain-
ing AND-gateway bonds, (ii) rigids containing a large
number of XOR gateways (>5); (iii) rigids containing
rigids and (iv) rigids being the root node of the model.
Out of these 619 logs we only selected those for which
HM produced an unstructured model, as our approach does not add value if
the resulting model is already structured. This resulted in 126 logs, of which
61 came from SAP, 45 from IBM and 20 were synthetic. These logs range from
4,111 to 201,758 total events (avg. 49,580) with 3 to 4,235 distinct traces (avg.
137). From the models discovered with HM, we identified 79 sound models, 31
partially unsound models, i.e. models for which there is at least one complete
trace, and 16 totally unsound models, i.e. models whose traces always deadlock.
A taxonomy of the datasets used is shown in Fig. 4.

4.2 Results

Tables 1 and 2 report the average value and standard deviation for each quality
measure across all discovery algorithms, for the models mined from the real-life
3 This collection originally counted 59 models, but we discarded five duplicates.
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Table 1. Quality of models discovered from real-life data.

Log class
(Class
size)

Discovery
method

Accuracy Complexity

Fitness Precision F-score Gen. (10-fold) Size CFC Struct.

Sound
(63)

IM 1.00 ± 0.01 0.69 ± 0.31 0.77 ± 0.26 1.00 ± 0.01 23.8 ± 7.9 11.2 ± 5.0 1.00 ± 0.00

ETM 0.91 ± 0.08 0.93 ± 0.06 0.92 ± 0.06 0.90 ± 0.06 26.4 ± 8.6 8.6 ± 4.3 1.00 ± 0.00

HM 1.00 ± 0.00 0.99 ± 0.05 0.99 ± 0.03 1.00 ± 0.01 25.0 ± 7.7 8.7 ± 4.2 0.50 ± 0.16

SMHM 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 29.7 ± 13.3 10.2 ± 6.5 0.90 ± 0.21

P.
unsound
(27)

IM 0.98 ± 0.03 0.73 ± 0.27 0.80 ± 0.22 0.98 ± 0.03 22.1 ± 5.9 11.6 ± 5.0 1.00 ± 0.00

ETM 0.90 ± 0.09 0.86 ± 0.11 0.87 ± 0.07 0.89 ± 0.06 21.7 ± 7.8 7.5 ± 5.2 1.00 ± 0.00

HM 0.69 ± 0.21 0.85 ± 0.10 0.75 ± 0.16 0.66 ± 0.21 21.9 ± 7.3 9.0 ± 5.1 0.53 ± 0.21

SMHM 0.97 ± 0.04 0.93 ± 0.11 0.95 ± 0.08 0.97 ± 0.04 24.6 ± 10.5 10.0 ± 6.7 0.97 ± 0.15

T.
unsound
(16)

IM 0.99 ± 0.03 0.82 ± 0.21 0.88 ± 0.14 0.99 ± 0.03 24.1 ± 12.0 9.6 ± 6.7 1.00 ± 0.00

ETM 0.90 ± 0.10 0.87 ± 0.09 0.88 ± 0.07 0.89 ± 0.09 25.0 ± 4.2 9.2 ± 0.7 1.00 ± 0.00

HM - - - - 22.3 ± 9.4 7.8 ± 3.6 0.72 ± 0.19

SMHM 0.96 ± 0.06 0.92 ± 0.14 0.93 ± 0.11 0.96 ± 0.06 23.2 ± 10.4 7.7 ± 3.3 1.00 ± 0.00

Table 2. Quality of models discovered from artificial data.

Log class
(Class
size)

Discovery
method

Accuracy Complexity

Fitness Precision F-score Gen. (10-fold) Size CFC Struct.

Sound
(16)

IM 1.00 ± 0.01 0.53 ± 0.31 0.64 ± 0.26 1.00 ± 0.01 18.7 ± 4.5 10.7 ± 3.7 1.00 ± 0.00

ETM 0.89 ± 0.07 0.96 ± 0.05 0.92 ± 0.04 0.89 ± 0.05 22.1 ± 7.7 7.3 ± 3.2 1.00 ± 0.00

HM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 21.6 ± 5.2 8.2 ± 3.1 0.32 ± 0.17

SMHM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 25.1 ± 7.7 9.1 ± 3.5 1.00 ± 0.00

P.
unsound
(4)

IM 1.00 ± 0.00 0.44 ± 0.27 0.56 ± 0.22 1.00 ± 0.00 23.5 ± 10.4 11.5 ± 1.1 1.00 ± 0.00

ETM 0.83 ± 0.12 0.88 ± 0.09 0.84 ± 0.07 0.78 ± 0.15 25.5 ± 1.5 10.0 ± 1.0 1.00 ± 0.00

HM 0.61 ± 0.16 0.84 ± 0.06 0.69 ± 0.14 0.61 ± 0.16 27.8 ± 9.1 8.8 ± 1.5 0.30 ± 0.15

SMHM 0.89 ± 0.13 0.98 ± 0.02 0.93 ± 0.07 0.89 ± 0.13 30.0 ± 12.3 11.0 ± 3.3 1.00 ± 0.00

data, respectively, artificial data. When HM generates sound models its out-
put is already of high quality along fitness, precision and generalization, with a
marginal standard deviation. In this case, our approach only improves the struc-
turedness of the models, at the cost of a minor increase in size and CFC, due to
the duplication introduced by the structuring. IM instead, despite having simi-
larly high values of fitness and generalization, loses in precision with an average
of 0.69 with high standard deviation, meaning that the actual precision may
be much better or worse depending on the specific log used. As expected, these
models are structured by construction, but CFC still remains higher than that
of HM (and its structured variant SM) due to IM’s tendency to generate flower
models (which is also the cause for low precision). Finally, the quality of the
models discovered by ETM ranks in-between that of IM and HM both in terms
of accuracy and complexity, at the price of sensibly longer execution times.
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Method Accuracy Discovered model
IM

fitness: 1.00
precision: 0.20
F-score: 0.33
generaliz.: 1.00

H
M

fitness: 0.60
precision: 0.88
F-score: 0.72
generaliz.: 0.60

SM

fitness: 1.00
precision: 1.00
F-score: 1.00
generaliz.: 1.00

Fig. 5. A model from the SAP R/3 logs, discovered by IM, HM and SM (injections
and gateways causing unsoundness in the HM model are highlighted).

The improvement of our method on top of HM is more evident when the latter
discovers unsound models. Here HM’s accuracy dramatically worsen compared to
IM and ETM. For example, in the case of partially unsound models, on average
fitness is 0.69 for HM vs. 0.98 for IM on real-life data, and 0.61 vs. 1 on artificial
data, while for totally unsound models, fitness and precision for HM cannot even
be measured. Our approach does not only notably increases structuredness (e.g.
0.53 vs. 0.97), but it also repairs the soundness issues and recovers the accuracy
lost by HM, significantly outperforming both IM and ETM in terms of precision
and F-score without compromising fitness and generalization, which get very
close to those obtained by IM, e.g. fitness increases from 0.69 to 0.97, as opposed
to 0.98 for IM, with an F-score of 0.95 instead of 0.80 in the case of partially
unsound models discovered from real-life data. In the case of “sound models”,
ETM strikes a better tradeoff between accuracy and complexity compared to
IM, but again, at the price of long execution times.

To illustrate when our approach outperforms IM, Fig. 5 shows the BPMN
model generated by IM, HM and SM from one of the SAP R/3 logs and the
corresponding quality measures.4 In this example, the precision of the model
produced by IM is low due to the presence of a large “flower-like” structure,
which causes overgeneralization. Precision is higher with HM, though fitness
and generalization suffer from the model being unsound. By structuring and
fixing the behavioral issues of this model, SM improves on all metrics, scoring a
perfect 1 for both F-score and generalization.

The negative effects of overgeneralization brought by IM are higher when the
models used for generating the logs exhibit complex unstructured patterns, such
as those introduced in the artificial data (cf. Table 2). For example, the precision
of IM is 0.53 for sound models (with a high standard deviation), as opposed to

4 The original labels are replaced with letters for the sake of compactness.
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1 with HM. In these cases, SM consistently outperforms IM and ETM, while
significantly improving over HM in terms of structuredness (0.3 vs. 1).

In these experiments we disabled the pull-up operator of our method in order
to ensure weak bisimulation equivalence between the model discovered by HM
and the structured one. As a result, we could not fully structure 15 models from
real-life data, which explains a value of structuredness less than 1 for SM in
Table 1. When we enable the pull-up operator, all the discovered models are
fully structured, at the price of losing weak bisimilarity.

Time performance. Despite having exponential complexity in the worst case
scenario, the time SM took to structure the models used in this evaluation was
well within acceptable bounds, taking on average less than one second per model
(avg = 894 ms, min = 2 ms, max = 109 s, 95 % percentile = 47.65 ms).

4.3 Threats to Validity

A potential threat to internal validity is the use of process model complexity
metrics as proxies for assessing the understandability of the discovered process
models, as opposed to direct human judgement. However, the three chosen com-
plexity metrics (size, CFC and structuredness) have been empirically shown to
be highly correlated with perceived understandability and error-proneness [6,11].
Further, while the process models obtained with our method are affected by the
individual accuracy (fitness, precision and generalization) of the baseline algo-
rithm used (HM or FM), Structured Miner is independent of these algorithms,
and our experiments show that the method significantly improves on structured-
ness while keeping the same levels of accuracy. In addition, the method can often
fix issues related to model correctness.

The evaluation reported above is based on two real-life datasets. This poses a
threat to external validity. It should be noted though that these two datasets col-
lect models from a variety of domains, including finance, sales, accounting, logis-
tics, communication and human resources, and that the resulting logs are rep-
resentative of different characteristics (number of events and number of distinct
traces). Moreover, the use of an additional dataset artificially generated allowed
us to evaluate our method against a large variety of unstructured model topolo-
gies, including some complex ones not observed in the two real-life datasets.

5 Conclusion

We presented a two-phased method to extract a structured process model from
an event log wherein a process model is first extracted without any structural
restriction, and then transformed into a structured one if needed. The experi-
mental results show that this two-phased method leads to higher F-score than
existing methods that discover a structured process model by design. In addi-
tion, the proposed method is more modular, insofar as different discovery and
block-structuring methods can be plugged into it.



328 A. Augusto et al.

In this paper, we used the Heuristics Miner and Fodina for the first phase.
In future work, we will experiment with alternative methods for discovering
(unstructured) process models to explore alternative tradeoffs between model
quality metrics. In the second phase, we employed a structuring method that
preserves weak bisimilarity (if the pull-up operator is disabled). A direction for
future work is to explore the option of partially sacrificing weak bisimilarity
(while still keeping trace equivalence) to obtain models with higher structured-
ness. Another direction for future work is to use process model clone detection
techniques [5] to refactor duplicates introduced by the structuring phase. This
may allow us to strike better tradeoffs between size and structuredness.
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6. Dumas, M., Rosa, M., Mendling, J., Mäesalu, R., Reijers, H.A., Semenenko, N.:
Understanding business process models: the costs and benefits of structuredness.
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