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Abstract. Cardinality constraints and functional dependencies together
can express many semantic properties for applications in which data is
certain. However, modern applications need to process large volumes
of uncertain data. So far, cardinality constraints and functional depen-
dencies have only been studied in isolation over uncertain data. We
investigate the more challenging real-world case in which both types
of constraints co-occur. While more expressive constraints could easily
be defined, they would not enjoy the computational properties we show
to hold for our combined class. Indeed, we characterize the associated
implication problem axiomatically and algorithmically in linear input
time. We also show how to summarize any given set of our constraints
as an Armstrong instance. These instances help data analysts consoli-
date meaningful degrees of certainty by which our constraints hold in
the underlying application domain.
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1 Introduction

Background. Cardinality constraints (CCs) and functional dependencies (FDs)
are fundamental for understanding the structure and semantics of data, and
have a long and fruitful history in conceptual modeling, database theory and
practice. CCs were introduced in the seminal paper by Chen [5], while FDs were
introduced in the seminal paper by Codd [6]. We focus on cardinality constraints
that define an upper bound on the number of objects that have matching values
on a given set of attributes. For example, any project manager should not be
looking after more than three projects at any period of time. An FD expresses
that the values on some attributes uniquely determine the values on some other
attributes. For example, every project has at most one manager. Due to their
ability to express desirable properties of many application domains, CCs and FDs
have been used successfully for core data management tasks, including database
cleaning, design, integration, modeling, querying, and updating.

Motivation. Relational databases were developed for applications with certain
data, including accounting, inventory and payroll. Modern applications, such
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Fig. 1. A possibilistic instance and the scope by which constraints apply to its objects

as information extraction, sensors, and data integration produce large volumes
of uncertain data. While different approaches to uncertainty in data exist, our
running example considers a simple scenario in which a qualitative approach
is applied to the integration of two data sources. The scenario maintains the
levels of confidence associated with objects. Indeed, objects that occur in both
sources are labeled ‘fully possible’, while objects that occur in only one source
are labeled ‘somewhat possible’. The information about the confidence of objects
is clearly useful, but probability distributions are unavailable. Instead, a qualita-
tive approach as founded in possibility theory is appropriate [9,10,35]. Figure 1
shows a possibilistic instance (p-instance) where each object is associated with a
possibility degree (p-degree) from a finite scale: α1 > . . . > αk+1. The top degree
α1 is reserved for objects that are ‘fully possible’, the bottom degree αk+1 for
objects that are ‘impossible’ to occur. Intermediate degrees and their linguistic
interpretations are used as preferred, such as ‘somewhat possible’ (α2).

Interestingly, p-degrees enable us to express CCs and FDs with different
degrees of certainty. For example, to express that it is ‘impossible’ that the same
department and manager are associated with more than three employees we
declare the CC card(Dep, Mgr) ≤ 3 to be ‘fully certain’ by using the label β1,
stipulating that no combination of department and manager can feature in more
than three objects that are at least ‘somewhat possible’. Similarly, to say it is only
‘somewhat possible’ that departments with different managers exist we declare
the FD Dep → Mgr as ‘somewhat certain’ by using the label β2, stipulating that
no department has more than one manager in ‘fully possible’ objects. We will
investigate the combined class of CCs and FDs in this possibilistic data model.

Contributions and impact. Our contributions are as follows. (1) We show
that the combination of CCs and FDs in a possibilistic data model constitutes
a ‘sweet spot’ in terms of expressivity and computational behavior. In partic-
ular, we unify previous work under a more expressive framework that retains
efficient computational properties. Slightly more expressive approaches result
in non-axiomatizability, intractability, or even undecidability. (2) We establish
a finite axiomatization and a linear-time decision algorithm for the associated
implication problem. We illustrate applications from constraint maintenance,
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query optimization, and pivoting to eliminate data redundancy. (3) We estab-
lish an effective construction of Armstrong representations for any given set of
our constraints. Here, we overcome the practical challenge that finite Armstrong
instances do not frequently exist. We thus provide automated support for the
acquisition of the constraints that are meaningful in a given application domain.

Organization. Section 2 discusses related work. Our data model is defined in
Sect. 3. In Sect. 4 we characterize the implication problem axiomatically and
algorithmically. Applications are highlighted in Sect. 5. Section 6 describes how
to compute Armstrong representations. In Sect. 7 we conclude and discuss future
work. Proofs are available in [39].

2 Related Work

FDs are probably the most studied class of constraints, due to their expressivity,
computational behavior, and impact on practice. FDs were introduced in Codd’s
seminal paper [6], and are intrinsically linked to conceptual, logical, and physical
database design [27,44]. Applications on the conceptual level include graphical
reasoning [8] and pivoting [3,17]. CCs are an influential contribution of concep-
tual modeling to database constraints. They featured in Chen’s seminal paper
[5]. Cardinality constraints subsume the class of keys as a special case where the
upper bound on the cardinality is fixed to 1. Keys are fundamental to most data
models [4,11,16,21,22,26,29,30,42,46]. Most languages for conceptual design
(description logics, ER, UML, ORM) come with means for specifying CCs. CCs
have been studied extensively in database design [7,18,25,31,32,38,43].

Probability theory offers a popular quantitative approach to uncertain data
[41]. Research about constraints on probabilistic data is in its infancy [4,40].
Probabilistic FDs, which specify a lower bound on the marginal probability that
FDs exhibit on probabilistic databases, are not finitely axiomatizable.

The results of our article unify various previous works under one, more expres-
sive, framework. In fact, our framework subsumes (1) the sole class of possibilis-
tic CCs [15,28], (2) the sole class of possibilistic FDs [35], and (3) the combined
class of CCs and FDs over relational data (the special case of possibilistic data
with only one degree of confidence, i.e. where k = 1) [18]. While our framework
is strictly more expressive, it retains the good computational properties of pre-
vious work, making it special. Indeed, making our framework more expressive is
likely to result in the loss of good computational behavior. For example, using
numerical dependencies instead of FDs leaves the implication problem not finitely
axiomatizable [14], using multivalued dependencies requires more elaborate pos-
sibilistic data models and the interaction with CCs is not well-understood
[19,20,23,24,33,34,45], using conditional FDs leaves the implication problem
coNP-complete [13], adding inclusion dependencies makes the implication prob-
lem undecidable [37], and adding lower bounds to the upper bounds of our CCs’
results requires us to solve unsolved problems from combinatorial design theory,
even in the special case where k = 1 [18]. Further restrictions on what we addi-
tionally include are always possible, but our focus here is the natural class of
cardinality constraints with upper bounds and functional dependencies.



136 T.K. Roblot and S. Link

Fig. 2. Nested worlds of the p-instance from Fig. 1 and possibilistic constraints

3 Cardinality Constraints and Functional Dependencies

We extend object types that model certain objects in traditional conceptual
modeling to model uncertain objects qualitatively. This allows us to extend CCs
and FDs from their use on certain object types to uncertain object types.

An object type, denoted by O, is a finite non-empty set of attributes. Each
attribute A ∈ O has a domain dom(A) of values. An object o over O is an
element of the Cartesian product

∏
A∈O dom(A). For X ⊆ O we denote by

o(X) the projection of o on X. An instance over O is a set ι of objects over
O. For example we use the object type Work with attributes Emp, Dep, and
Mgr. Objects either belong or do not belong to an instance. For example, we
cannot express that we have less confidence for Employee Nara to work in the
department Tennis under Manager Federer than for the Employee Nishikori.

We model uncertain instances by assigning to each object some degree of
possibility with which the object occurs in an instance. Formally, we have a
possibility scale, or p-scale, that is, a strict linear order S = (S,<) with k + 1
elements. We write S = {α1, . . . , αk+1} to declare that α1 > · · · > αk > αk+1.
The elements αi ∈ S are called possibility degrees, or p-degrees. Here, α1 is
reserved for objects that are ‘fully possible’ while αk+1 is reserved for objects
that are ‘impossible’ to occur in an instance. Humans like to use simple scales in
everyday life to communicate, compare, or rank. Here, the word “simple” means
that items are classified qualitatively rather than quantitatively by putting pre-
cise values on them. Classical instances use two p-degrees, i.e. k = 1.

A possibilistic object type (O,S), or p-object type, consists of an object type
O and a p-scale S. A possibilistic instance, or p-instance, over (O,S) consists
of an instance ι over O, and a function Poss that assigns to each object o ∈ ι
a p-degree Poss(o) ∈ S − {αk+1}. We sometimes omit Poss when denoting a
p-instance. Figure 1 shows a p-instance over (Work,S = {α1, α2, α3}).

P-instances enjoy a possible world semantics. For i = 1, . . . , k let wi consist of
all objects in ι that have p-degree at least αi, that is, wi = {o ∈ ι | Poss(o) ≥ αi}.
Indeed, we have w1 ⊆ w2 ⊆ · · · ⊆ wk. If o /∈ wk, then Poss(o) = αk+1. Every
object that is ‘fully possible’ occurs in every possible world, and is therefore also
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‘fully certain’. Hence, instances are a special case of uncertain instances. Figure 2
shows the possible worlds w1 � w2 of the p-instance of Fig. 1.

As CCs and FDs are fundamental to applications with certain data, their
possibilistic variants serve similar roles for applications with uncertain data. A
cardinality constraint over object type O is an expression card(X) ≤ b where
X ⊆ O, and b is a positive integer. The CC card(X) ≤ b over O is satisfied by
an instance w over O, denoted by |=w card(X) ≤ b, if there are no b + 1 distinct
objects o1, . . . , ob+1 ∈ w with matching values on all the attributes in X. For
example, Fig. 2 shows that card(Dep,Mgr) ≤ 1 is not satisfied by any instance
w1 or w2, and card(Dep,Mgr) ≤ 2 is satisfied by w1, but not by w2. A functional
dependency over object type O is an expression X → Y where X,Y ⊆ O. The
FD X → Y over O is satisfied by an instance w over O, denoted by |=w X → Y ,
if for any two objects o1, o2 ∈ w the following holds: if o1(X) = o2(X), then
o1(Y ) = o2(Y ). For example, Fig. 2 shows that Dep → Mgr is satisfied by w1,
but not by w2, and Emp → Dep is satisfied by w1 and w2.

The p-degrees of objects result in degrees of certainty by which constraints
hold. Since Emp → Dep holds in every possible world, it is fully certain to hold
on ι. As Dep → Mgr and card(Dep,Mgr) ≤ 2 are only violated in a somewhat pos-
sible world w2, they are somewhat certain to hold on ι. Since card(Dep,Mgr) ≤ 1
is violated in the fully possible world w1, it is not certain to hold on ι.

Similar to the scale S of p-degrees αi for objects, we use a scale ST of certainty
degrees, or c-degrees, βj for CCs and FDs. Formally, the correspondence between
p-degrees in S and the c-degrees in ST is defined by the mapping αi �→ βk+2−i

for i = 1, . . . , k+1. Hence, the certainty Cι(σ) by which the CC σ = card(X) ≤ b
or FD σ = X → Y holds on the uncertain instance ι is either the top degree
β1 if σ is satisfied by wk, or the minimum amongst the c-degrees βk+2−i that
correspond to possible worlds wi in which σ is violated, that is,

Cι(σ) =
{

β1 , if |=wk
σ

min{βk+2−i |�|=wi
σ} , otherwise .

We can now define the semantics of possibilistic CCs and FDs. Let (O,S)
denote a p-object type. A possibilistic CC (p-CC) over (O,S) is an expres-
sion (card(X) ≤ b, β) where card(X) ≤ b denotes a CC over O and β ∈ ST . A
p-instance (ι,Poss) over (O,S) satisfies the p-CC (card(X) ≤ b, β) if and only
if Cι(card(X) ≤ b) ≥ β. A possibilistic FD (p-FD) over (O,S) is an expression
(X → Y, β) where X → Y denotes an FD over O and β ∈ ST . A p-instance
(ι,Poss) over (O,S) satisfies the p-FD (X → Y, β) if and only if Cι(X → Y ) ≥ β.

For example, Fig. 2 shows some of the p-CCs and p-FDs that the p-instance ι
from Fig. 1 satisfies. The next example introduces the set Σ of p-CCs and p-FDs
we will use as an example constraint set in the remainder of the article.

Example 1. Let Σ denote the set with the following p-CCs and p-FDs over p-
object type (Work,S = {α1, α2, α3}): (Emp → Dep, β1), (card(Dep,Mgr) ≤
3, β1), (Dep → Mgr, β2), and (card(Mgr) ≤ 2, β2). 	
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4 Computational Problems and Their Solutions

We establish fundamental tools to reason about p-CCs and p-FDs. Their applica-
bility will be illustrated in Sect. 5. First, we define the implication problem and
then address its solution in terms of inference rules and algorithms.

Let Σ ∪ {ϕ} denote a set of p-CCs and p-FDs over (O,S). We say Σ implies
ϕ, denoted by Σ |= ϕ, if every p-instance (ι,Poss) over (O,S) that satisfies
every element of Σ also satisfies ϕ. We use Σ∗ = {ϕ | Σ |= ϕ} to denote
the semantic closure of Σ. The implication problem for p-CCs and p-FDs is to
decide, given any p-object type, and any set Σ ∪ {ϕ} of p-CCs and p-FDs over
the p-object type, whether Σ |= ϕ holds.

Example 2. Let Σ be as in Example 1. Further, let σ denote the CC card(Dep) ≤
2. Then the highest c-degree β such that (σ, β) is implied by Σ is β2. Indeed,
Σ does not imply ϕ = (σ, β1). We can create a p-instance that has 3 different
objects, all of which have matching values for department and manager, but
pairwise different employees, and 2 of those objects have p-degree α1 while the
remaining object has p-degree α2. Then the c-degree of card(Dep) ≤ 2 in ι is
β2, which means that (card(Dep) ≤ 2, β1) is violated. Since the c-degrees of
Emp → Dep, Dep → Mgr, and card(Dep,Mgr) ≤ 3 in ι are β1, and the c-degree
of card(Mgr) ≤ 2 in ι is β2, ι satisfies Σ, but violates ϕ. 	


4.1 Using β-Cuts

Our overarching goal is to extend the combined use of CCs and FDs from cer-
tain to uncertain data, while maintaining their good computational properties.
The core notion for achieving this goal is that of a β-cut for a given set Σ of
p-CCs and p-FDs and c-degree β > βk+1. Informally, the β-cut Σβ of Σ contains
all CCs and FDs σ such that there is some p-CCs or p-FD (σ, β′) in Σ where β′

is at least β. That is, Σβ = {σ | (σ, β′) ∈ Σ and β′ ≥ β} is the β-cut of Σ. The
following theorem shows how the β-cut can be used to reduce the implication
problem for p-CCs and p-FDs to the implication problem of traditional CCs
and FDs. The theorem does not hold for CCs with lower bounds or multivalued
dependencies.

Theorem 1. Let Σ ∪ {(σ, β)} be a set of p-CCs and p-FDs over (O,S) where
β > βk+1. Then Σ |= (σ, β) if and only if Σβ |= σ.

Theorem 1 allows us to apply achievements from CCs and FDs for certain
data to p-CCs and p-FDs. It is a major tool to establish our results.

Example 3. Let Σ be as in Example 1. Then Σβ1 consists of card(Dep,Mgr) ≤ 3
and Emp → Dep, while Σβ2 contains Σβ1 and includes card(Mgr) ≤ 2 and Dep →
Mgr. Using knowledge about the interaction of CCs and FDs from relational data
[18], we conclude that Σβ1 does not imply card(Dep) ≤ 2, but Σβ2 does imply
card(Dep) ≤ 2. Theorem 1 shows then that Σ does not imply (card(Dep) ≤ 2, β1),
but Σ does imply (card(Dep) ≤ 2, β2). In fact, the possible world w1 of the p-
instance ι from Example 2 satisfies Σβ1 , and violates card(Dep) ≤ 2. 	
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Table 1. Finite axiomatization of p-CCs and p-FDs

(XY → X, β1)

(X → Y, β)

(X → XY, β)

(X → Y, β) (Y → Z, β)

(X → Z, β)
(reflexivity) (extension) (transitivity)

(card(O) ≤ 1, β1)

(card(X) ≤ b, β)

(card(X) ≤ b + 1, β)

(X → Y, β) (card(Y ) ≤ b, β)

(card(X) ≤ b, β)
(top) (relax) (pullback)

(card(X) ≤ 1, β)

(X → Y, β) (σ, βk+1)

(σ, β)

(σ, β′)
β′ ≤ β

(key) (bottom) (weakening)

4.2 Axiomatic Characterization

A finite axiomatization allows us to effectively enumerate all implied p-CCs and
p-FDs, that is, to determine the semantic closure Σ∗ = {σ | Σ |= σ} of Σ. A
finite axiomatization facilitates human understanding of the interaction of the
given constraints, and ensures all opportunities for the use of these constraints
in applications can be exploited (Sect. 5). We determine the semantic closure by

applying inference rules of the form
premise

conclusion
. For a set R of inference rules let

Σ �R ϕ denote the inference of ϕ from Σ by R. That is, there is some sequence
σ1, . . . , σn such that σn = ϕ and every σi is an element of Σ or is the conclusion
that results from an application of an inference rule in R to some premises in
{σ1, . . . , σi−1}. Let Σ+

R = {ϕ | Σ �R ϕ} be the syntactic closure of Σ under
inferences by R. R is sound (complete) if for every set Σ over every (O,S) we
have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if

R is both sound and complete. Table 1 shows an axiomatization C for p-CCs
and p-FDs. Here, (O,S) is an arbitrarily given p-object type, X,Y ⊆ O, b is a
positive integer, β, β′ ∈ ST are c-degrees, and σ uniformly denotes either some
CC or FD. In particular, βk+1 denotes the bottom c-degree in ST .

Theorem 2. The set C forms a finite axiomatization for the implication of pos-
sibilistic cardinality constraints and functional dependencies. 	


The application of inference rules in C from Table 1 is illustrated next.

Example 4. Consider Σ from Example 1. Applying pullback to (Dep → Mgr, β2)
and (card(Mgr) ≤ 2, β2) results in (card(Dep) ≤ 2, β2) ∈ Σ+

C . For an inference of
(card(Emp,Mgr) ≤ 1, β1) consider the following steps. Applying reflexivity infers
(Emp,Mgr → Emp, β1). Then we apply transitivity to (Emp,Mgr → Emp, β1)
and (Emp → Dep, β1) to infer (Emp,Mgr → Dep, β1). Next we apply extension
to (Emp,Mgr → Dep, β1) to infer (Emp,Mgr → Emp,Dep,Mgr, β1). The top rule
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infers (card(Emp,Dep,Mgr) ≤ 1, β1). Finally, we apply pullback to (Emp,Mgr →
Emp,Dep,Mgr, β1) and (card(Emp,Dep,Mgr) ≤ 1, β1) to infer (card(Emp,Mgr) ≤
1, β1) ∈ Σ+

C . 	


4.3 Algorithmic Characterization

While C enables us to enumerate all p-CCs and p-FDs that are implied by a set
Σ of p-CCs and p-FDs, in practice it often suffices to decide whether a given p-
CC or p-FD ϕ is implied by Σ. Enumerating all implied constraints and checking
whether ϕ is among them is neither efficient nor makes good use of ϕ. However,
our axiomatization C provides us with the insight to develop efficient algorithms
for deciding the associated implication problem.

First, Theorem 1 tells us that the implication of some p-CC or p-FD (σ, β)
by Σ can be decided by considering the β-cut Σβ . If σ denotes an FD X →
Y , then our axiomatization C tells us that the decision only depends on the
FDs in Σβ and the cardinality constraints card(X) ≤ 1 ∈ Σβ , as the latter
implies the FD X → O ∈ Σ∗

β . For a given set Σ of cardinality constraints
and functional dependencies, let Σ[FD] denote the set of FDs in Σ together
with the FDs X → O for every card(X) ≤ 1 ∈ Σ. The p-FD (X → Y, β) is
therefore implied by Σ if and only if the FD X → Y is implied by Σβ [FD]. The
latter condition is equivalent to Y being a subset of the attribute set closure
X+

Σβ [FD] = {A ∈ X | Σβ [FD] |= X → A}, which can be computed in linear
time in the input set Σβ [FD] [1]. This shows condition (i) in Theorem3 below.
If σ denotes a cardinality constraint card(X) ≤ b, then our axiomatization C
tells us that the decision only depends on the existence of some cardinality
constraint card(Y ) ≤ b′ ∈ Σβ such that Y ⊆ X+

Σβ [FD] and b′ ≤ b. The clause
that b′ ≤ b follows from the relax rule, and the clause that Y ⊆ X+

Σβ [FD] follows
from the pullback rule and the fact that X+

Σβ [FD] is the maximal subset of O

that is functionally determined by X given Σβ [FD]. This shows condition (ii) in
Theorem 3 below.

Theorem 3. Let Σ denote a set of p-CCs and p-FDs over (O,S) with |S| =
k + 1. Then (i) Σ implies (X → Y, β) if and only if Y ⊆ X+

Σβ [FD], and (ii) Σ

implies (card(X) ≤ b, β) if and only if X+
Σβ [FD] = O, or there is some card(Y ) ≤

b′ ∈ Σβ such that Y ⊆ X+
Σβ [FD] and b′ ≤ b.

The worst-case complexity bound in the following result follows from the
well-known fact that the computation of X+

Σ[FD] is linear in the total number
of attribute occurrences in Σ[FD] [1], and this size of Σ[FD] is bounded by
|O| × |Σ| where |S| denotes the number of elements in S.

Corollary 1. An instance Σ |= ϕ of the implication problem for p-CCs and
p-FDs can be decided in time O(|O| × |Σ ∪ {ϕ}|). 	


We illustrate the use of Theorem3 on our running example.
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Example 5. Let Σ be as in Example 1. Then we can use Theorem 3 to decide
whether the p-CC (card(Dep) ≤ 2, β2) is implied by Σ. Indeed, Dep∗

Σβ2 [FD] =
{Dep,Mgr} and card(Mgr) ≤ 2 ∈ Σβ2 . Similarly, Σ implies (card(Emp,Mgr) ≤
1, β1) since {Emp,Mgr}+Σβ1 [FD] = O. 	


5 Applications

We give a series of examples that illustrate core data processing areas on which
our solutions have an impact. These include more efficient update and query
operations, as well as schema decompositions to avoid data redundancy.

Non-redundant Constraint Maintenance. Constraints ensure data
integrity. Whenever database instances are updated, it must be validated that
the updated instance satisfies all the given constraints. Data integrity there-
fore comes at the cost of enforcing it. However, it is redundant to validate any
implied constraints, because every instance that satisfies the remaining con-
straints already satisfies the implied constraints. Unnecessary costs for implied
constraints are removed by computing a non-redundant cover of the given con-
straint set. This is done by successively removing any constraint σ ∈ Σ from Σ
whenever Σ −{σ} implies σ. Having an efficient algorithm to decide implication
means that we also have an efficient algorithm to compute a non-redundant
set of constraints. Note that the time complexity refers to the schema size,
which is negligible in comparison to the size of the instance. Furthermore, the
larger database instances are the more time we save by validating non-redundant
sets of constraints. We will now illustrate these ideas on our running exam-
ple from the introduction. Some of the p-CCs and p-FDs satisfied by the p-
instance in Fig. 1 include: (Emp → Dep, β1), (card(Dep) ≤ 3, β1), (card(Mgr) ≤
3, β1), (card(Emp) ≤ 2, β1), (card(Emp,Dep) ≤ 2, β1), (Emp → Dep, β2),
(Dep → Mgr, β2), (Emp → Mgr, β2), (card(Dep) ≤ 2, β2), (card(Mgr) ≤ 2, β2),
(card(Dep,Mgr) ≤ 2, β2), and (card(Emp, Mgr) ≤ 3, β2). This set is redundant,
and a non-redundant subset that implies all constraints of the given set is shown
in Fig. 2.

Query Optimization. Knowing which constraints hold on a given instance
also assists us with making the evaluation of queries more efficient. Take, for
example, the query

SELECT DISTINCT Emp FROM Work WHERE p-degree=α1;

and assume it is evaluated on the p-instance from Fig. 1. Since the p-instance
satisfies the p-CCs and p-FDs in Fig. 2, and these constraints imply the p-CC
card(Emp ≤ 1, β2), a query optimizer that can reason about our constraints is
able to conclude that the DISTINCT clause in the query above is superfluous.
The elimination of this clause can save considerable evaluation time because the
ordering of tuples and removing of duplicates is an expensive operation. For
another query evaluated on the same p-instance consider
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SELECT Dep, COUNT(Emp) FROM Work WHERE p-degree=α1

GROUP BY Dep HAVING Count(Emp)≤ 3;

which lists the departments together with the number of their ‘certain’ employ-
ees, if that number does not exceed 3. A query optimizer able to determine that
the p-CC (card(Dep) ≤ 3, β2) is implied by the satisfied set of p-CCs and p-FDs,
can remove the HAVING clause from the query without affecting the result.

Removing Data Redundancy by Pivoting. The goal of pivoting is to decom-
pose object schemata at design time in an effort to reduce data redundancy and
optimize constraint validation time during the lifetime of the target database.
We briefly use our running example to illustrate the impact of possibilistic con-
straints on pivoting. For this purpose, consider again the (possible worlds of the)
p-instance in Fig. 2.

Each occurrence of the Mgr -value Federer in world w1 is redundant in the
sense that any update of this occurrence to a different value would result in a
violation of the p-FD (Dep → Mgr, β2). In contrast, the occurrence of Federer in
w2 is not redundant, because the p-FD (Dep → Mgr, β2) only applies to objects
with p-degree α1. In other words, we could decompose the schema Work into
the two schemata {Dep,Mgr,ID1} and {Emp,ID1} for objects with p-degree α1.
For objects with p-degree α2 we could decompose Work into the two schemata
{Emp,Dep,ID2} and {Mgr,ID2}, based on the p-FD (Emp → Dep, β1). That is,
our framework enables us to first apply a horizontal decomposition of the given
database instance into w1 and w2 − w1, and then apply traditional pivoting to
decompose the schemata with respect to the β-cuts Σβ2 and Σβ1 , respectively.
The resulting decomposition of the p-instance from Fig. 1 would look like:

Dep Mgr ID1
Tennis Federer 1
Physics Gauss 2
Maths Gauss 3

Emp ID1
Nishikori 1

Date 1
Sakita 2
Sato 3

Emp Dep ID2
Nara Tennis 1

Musashimaru Sumo 2

Mgr ID2
Federer 1
Hakuho 2
Taiho 2

in which all redundant data value occurrences have been removed. In addition,
the original cardinality constraint (card(Dep,Mgr) ≤ 2, β2) now becomes a cardi-
nality constraint stipulating that each ID1 value in the {Dep,Mgr, ID1} instance
should occur in at least 1 and at most 2 objects of the {Emp, ID1} instance.

6 Armstrong Instances and Representations

We establish computational support for the acquisition of p-CCs and p-FDs that
are meaningful in a given application domain. A major inhibitor to the acquisi-
tion is the mismatch in expertise between business analysts and domain experts.
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The former know database concepts but not the domain, while the latter know
the domain but not database concepts. To facilitate effective communication
between them, Armstrong instances serve as data samples that perfectly repre-
sent the current set of constraint sets. We will sketch how to compute Armstrong
instances for any given set of p-CCs and p-FDs, which analysts and experts can
jointly inspect to consolidate the set of meaningful constraints.

We first restate the original definition of an Armstrong database [12] in our
context. A p-instance ι is said to be Armstrong for a given set Σ of p-CCs and p-
FDs on a given p-object type (O,S) if and only if for all p-CCs and p-FDs ϕ over
(O,S) it is true that ι satisfies ϕ if and only if Σ implies ϕ. As such, Armstrong
p-instances exhibit for each cardinality constraint and functional dependency
the largest c-degree for which it is implied by the given set Σ.

Example 6. The p-instance from Fig. 1 is Armstrong for the set of p-CCs and
p-FDs from Fig. 2. 	


We will now explain how to compute an Armstrong p-instance ι for an arbi-
trarily given set Σ of p-CCs and p-FDs.

For every attribute subset X and every c-degree βi, we compute the smallest
bX,i such that (card(X) ≤ bX,i, βi) is implied by Σ. We start with bX,i = ∞,
and set bX,i = 1, if X+

Σβi
[FD] = O holds. Otherwise, we set bX,i to b whenever

there is some card(Y ) ≤ b ∈ Σβi
such that Y ⊆ X+

Σβi
[FD] and b < bX,i, see

Theorem 3 (ii). Now it suffices to introduce bX,i objects into ι with p-degree
αk+1−i and matching values cA,i on all A ∈ X and unique values on all A /∈ X.
This ensures that all p-CCs implied by Σ are satisfied in ι and all p-CCs not
implied by Σ are violated. Several optimizations reduce the number of objects
in an Armstrong p-instance: If bX,i = 1, no objects need to be introduced in
ι. If Y ⊂ X and bY,i = bX,i, then it suffices to introduce bX,i objects, because
they also violate (card(Y ) ≤ bY,i, βi). For j > i and bX,j ≤ bX,i for which bX,j

objects with (at most) p-degree αk+1−j have already been introduced, it suffices
to introduce further bX,i − bX,j objects of p-degree αk+1−i, again with matching
values cX,j on all A ∈ X and unique values on all A /∈ X.

As an illustration, Fig. 3 shows for all attribute subsets X and c-degrees β1

and β2 the associated cardinalities bX,i for our running example from Example 1.
The bold attribute sets are those that require the insertion of objects into an
Armstrong p-instance for the given Σ.

In general, we still need to ensure that all p-FDs not implied by Σ are
violated. For all A ∈ X and every c-degree βi, we compute all maximal
attribute subsets X such that A /∈ X+

Σβi
[FD], i.e., for all B /∈ (XA) we have

A ∈ (XB)+Σβi
[FD]. These sets are known as the maximal sets for Σβi

[FD] and
can be computed by an algorithm given in [36]. For each set X that is maximal
with respect to Σβi

[FD], we introduce two objects with p-degree αk+1−i and
matching values cA,i on all A ∈ X and unique values on all A /∈ X. Again, some
optimizations reduce the number of objects in the final Armstrong p-instance:
If X is maximal with respect to Σβi

[FD] and Σβj
[FD] and i < j, then it suf-

fices to introduce the two objects with p-degree αk+1−j . Finally, we do not need



144 T.K. Roblot and S. Link

Fig. 3. Attribute sets X with cardinalities bX,i for i = 1, 2 from left to right

to introduce the two objects for the maximal set X, if bY,j objects have previ-
ously been introduced for some j ≥ i where X ⊆ Y and X is only maximal for
attributes A /∈ Y − X with respect to Σβi

[FD].
Continuing with the construction of an Armstrong p-instance for the given

set Σ from Example 1, the following table lists the attribute subsets (only one
maximal set in each case here) that are maximal for the given attributes and
Σβi

[FD].

Emp Dep Mgr

Σβ1 {Dep,Mgr} {Mgr} {Emp,Dep}
Σβ2 {Dep,Mgr} {Mgr} ∅

Indeed, only the set {Mgr} that is maximal for Σβ2 [FD] requires us to insert
two objects. In particular, the maximal set X = {Dep,Mgr} for Σβ2 [FD] is
already covered by the bX,2 = 2 objects introduced previously, see Fig. 3, and
the maximal set ∅ is covered because the p-FD (∅ → Mgr, β2) is already violated
after two objects with different Mgr values have been introduced. Similarly, all
the maximal sets for Σβ1 [FD] have already been covered.

The outlined algorithm ensures that Armstrong p-instances exist for every
given set Σ of p-CCs and p-FDs, and that they are computed in time expo-
nential in input. Since there are cases where the minimum number of required
objects is exponential in the given input, which is known for traditional FDs
[2], no polynomial-time algorithm can exist. However, as our running example
illustrates we still need to deal with the following occurring case, which occurs
frequently in practice. There are attribute subsets X and c-degrees βi such that
bX,i = ∞, that is, there is no finite upper bound b such that (card(X) ≤ b, βi) is
implied by the input Σ. It follows that every Armstrong p-instance is necessarily
infinite, which seems to make our acquisition strategy unfit for its intended pur-
pose. However, we apply the following representation trick that overcomes this
challenge. Instead of introducing bX,i different objects with matching values cA,i
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on all A ∈ X and unique values on all A /∈ X, we introduce one single object
with cA,i on all A ∈ X and ∗ on all A /∈ X, plus its cardinality bX,i in a new
column card. This single object represents the bX,i different objects, in particu-
lar, ∗ for unique values in all columns outside of X. If the objects result from a
maximal set, then the cardinality is simply 2. Representations resulting from this
transformation of (finite or infinite) Armstrong p-instances are called Armstrong
p-representations for Σ. We can show that the optimizations applied in our com-
putation result in representations that are bounded by the size of minimum-sized
Armstrong p-representations (those Armstrong p-representations with the least
number of objects) and the number of given constraints.

Theorem 4. Given an arbitrary set Σ of poss-CCs and poss-FDs over some
given p-object type, the outlined algorithm computes an Armstrong p-represen-
tation ζ for Σ whose size is bounded by that of a minimum-sized Armstrong
p-representation ζmin for Σ and the number of elements in Σ as follows: |ζ| ≤
|ζmin| × (|Σ| + |ζmin|). 	


This construction yields the following Armstrong p-instance for the given set
Σ of p-CCs and p-FDs from Example 1.

Emp Dep Mgr p-degree card

∗ Tennis Federer α1 2

∗ ∗ Gauss α1 2

∗ Tennis Federer α2 1

Musashimaru Sumo ∗ α2 ∞
∗ ∗ Taiho α2 ∞

We list some of the observations we can make by inspecting this Arm-
strong p-instance. First of all, the given constraint set Σ has not captured any
‘fully certain’ finite bounds on the cardinalities by which (Emp,Dep)-objects
or (Mgr)-objects occur. Indeed, the combination (Musashimaru, Sumo) can
occur infinitely many times when ‘somewhat possible’ objects are involved,
and the same applies to (Taiho). In contrast, Σ does guarantee the unique-
ness of any (Emp)-objects that are ‘fully possible’, and a maximum cardinality
of two on any (Dep,Mgr)-objects that are ‘fully possible’. Similarly, any non-
trivial FD Mgr → A is not even ‘somewhat certain’. The FD Dep → Mgr is
‘somewhat certain’, because there are two ‘somewhat possible’ occurrences of
the (Sumo) department, but in combination with different managers. While
the FD Emp → Dep is ‘fully certain’, the FD Emp → Mgr is only ‘some-
what certain’, because there are two ‘somewhat possible’ occurrences of the
employee (Musashimaru), but each occurrence is in combination with different
managers.
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7 Conclusion and Future Work

Cardinality constraints and functional dependencies naturally co-occur in most
aspects of life. Consequently, they have received invested interest from the con-
ceptual modeling community over the last three decades. In contrast to various
previous works, we have studied cardinality constraints and functional dependen-
cies over uncertain data. Uncertainty has been modeled qualitatively by applying
the framework of possibility theory. Our results show that cardinality constraints
and functional dependencies form a ‘sweet spot’ in terms of both expressivity and
good computational behavior, as more expressive classes of constraints behave
poorly. In particular, we have established a finite axiomatization and a linear
time algorithm to decide the implication problem associated with our class, and
illustrated their applicability to conceptual design, update and query efficiency.
We have also established an algorithm that computes for every given set of
our constraints an Armstrong representation. These representations embody the
exact certainty with which any constraint in our class is currently perceived to
hold by data analysts. The analysts can show our Armstrong representations to
domain experts in order to jointly consolidate the actual certainty with which
cardinality constraints and functional dependencies shall hold in a given appli-
cation domain.

Our framework opens up several questions for future investigation, including
a detailed study and performance tests for our applications, the interaction with
yet other constraint classes despite the limits outlined, and empirical evalua-
tions for the usefulness of Armstrong representations. It is further interesting to
investigate possibilistic approaches to more expressive data models, such as SQL
with partial and duplicate information, XML, RDF, or graph databases.
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30. Köhler, H., Link, S., Zhou, X.: Discovering meaningful certain keys from incomplete
and inconsistent relations. IEEE Data Eng. Bull. 39(2), 21–37 (2016)

31. Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-
relationship schemata. Inf. Syst. 15(4), 453–461 (1990)

32. Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality constraints in semantic
data models. Data Knowl. Eng. 11(3), 235–270 (1993)

33. Link, S.: Charting the completeness frontier of inference systems for multivalued
dependencies. Acta Inf. 45(7–8), 565–591 (2008)

34. Link, S.: Characterisations of multivalued dependency implication over undeter-
mined universes. J. Comput. Syst. Sci. 78(4), 1026–1044 (2012)

35. Link, S., Prade, H.: Possibilistic functional dependencies and their relationship to
possibility theory. IEEE Trans. Fuzzy Syst. 24(3), 757–763 (2016)
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