
Isabelle Comyn-Wattiau
Katsumi Tanaka
Il-Yeol Song
Shuichiro Yamamoto
Motoshi Saeki (Eds.)

 123

LN
CS

 9
97

4

35th International Conference, ER 2016
Gifu, Japan, November 14–17, 2016
Proceedings

Conceptual Modeling

Lecture Notes in Computer Science 9974

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Isabelle Comyn-Wattiau • Katsumi Tanaka
Il-Yeol Song • Shuichiro Yamamoto
Motoshi Saeki (Eds.)

Conceptual Modeling
35th International Conference, ER 2016
Gifu, Japan, November 14–17, 2016
Proceedings

123

Editors
Isabelle Comyn-Wattiau
CEDRIC-CNAM and ESSEC Business
School

Cergy-Pontoise
France

Katsumi Tanaka
Kyoto University
Kyoto
Japan

Il-Yeol Song
Drexel University
Philadelphia, PA
USA

Shuichiro Yamamoto
Nagoya University
Nagoya
Japan

Motoshi Saeki
Tokyo Institute of Technology
Tokyo
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46396-4 ISBN 978-3-319-46397-1 (eBook)
DOI 10.1007/978-3-319-46397-1

Library of Congress Control Number: 2015950889

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains a collection of research papers that constitute the technical
program of the 35th International Conference on Conceptual Modeling (ER 2016), held
in Gifu, Japan, during November 14–17, 2016. Chen’s seminal work on the entity
relationship (ER) model coincided with the emergence of conceptual modeling as a
distinct field. One of the unique and valuable dimensions of the ER conference series is
the way it brings researchers and practitioners from around the world to discuss ways to
raise new challenges in conceptual modeling. Also known as the “Entity Relationship”
or “ER” conference, this conference series has been held at an interesting variety of
locations, rotating in successive years between Europe, Asia, and the Americas,
attracting a diverse international community of scholars. Conceptual modeling is a
process aiming at abstracting some aspects of the real world and representing them in
the form of a model that can be used for understanding and communication; conceptual
models typically are used in the development of computer-based information systems.
The technical program for ER 2016 included papers addressing a number of current
and emerging topics in conceptual modeling. In response to the call for papers, we
received 113 abstracts and 89 full papers. The Program Committee provided at least
three reviews for each paper, and on the basis of these reviews we selected 23 full
papers (an acceptance rate of 25.84 %) and 18 short papers (a combined acceptance rate
of 46.60 %). These papers can be grouped into several topical areas, including mod-
eling and executing business processes, semantic annotations, conceptual modeling
guidance, ontologies, business process management and modeling, requirements
engineering, goal modeling, schema mapping, and applications of conceptual model-
ing. We express gratitude to all who helped make ER 2016 a success. It required the
significant efforts of many people to make this conference possible. We thank the 93
Program Committee members along with the numerous external reviewers who
reviewed and discussed the submitted manuscripts. These reviewers represent 26 dif-
ferent countries, which serves to bring a broad set of perspectives to the research arena.
We especially thank the authors who took the time to carefully write up the results of their
research and submit papers for consideration. The quality of these papers is a tribute to the
authors and also to the reviewers who have guided any necessary improvement. Last but
not least, we are greatly indebted to the three keynotes speakers: Prof. Tok Wang Ling of
National University of Singapore, Prof. Oscar Pastor of Polytechnic University of
Valencia, Spain, and Prof. Hideaki Takeda of National Institute of Informatics, Japan for
accepting our invitation to address this conference.

July 2016 Isabelle Comyn-Wattiau
Katsumi Tanaka

Il-Yeol Song
Shuichiro Yamamoto

Motoshi Saeki

Organizing Committee

Honorary Chair

Kiyoshi Agusa Nanzan University, Japan

Conference Co-chairs

Shuichiro Yamamoto Nagoya University, Japan
Motoshi Saeki Tokyo Institute of Technology, Japan

Program Committee Co-chairs

Isabelle Comyn-wattiau CEDRIC-CNAM and ESSEC Business School, France
Katsumi Tanaka Kyoto University, Japan
Il-Yeol Song Drexel University, USA

Workshop Co-chairs

Juan Trujillo University of Alicante, Spain
Sebastian Link University of Auckland, New Zealand

Tutorial Co-chairs

Atsushi Ohnishi Ritsumeikan University, Japan
Panos Vassiliadis University of Ioannia, Greece

Panel Co-chairs

Sudha Ram University of Arizona, USA
Esteban Zimányi Université Libre de Bruxelles, Belgium

Tool Demonstration and Poster Co-chairs

Aditya Ghose University of Wollongong, Australia
Takashi Kobayashi Tokyo Institute of Technology, Japan

PhD Symposium Co-chairs

Tsuneo Ajisaka Wakayama University, Japan
Carson Woo The University of British Columbia, Canada

Symposium on Conceptual Modeling Education
(SCME 2016) Co-chairs

Karen Davis University of Cincinnatti, USA
Xavier Franch Universitat Politècnica de Catalunya, Spain

Treasurer

Takako Nakatani The Open University of Japan, Japan

Local Organizing Co-chairs

Shuji Morisaki Nagoya University, Japan
Atsushi Yoshida Nanzan University, Japan

Liasons to IPSJ

Isamu Hasegawa Square Enix, Japan

Publicity Chair and Web Master

Shinpei Hayashi Tokyo Institute of Technology, Japan

Student Volunteer Co-chairs

Noritoshi Atsumi Kyoto University, Japan
Hiroaki Kuwabara Nanzan University, Japan

Liaison to Steering Committee

Sudha Ram University of Arizona, USA

Advisor

Mikio Aoyama Nanzan University, Japan

Program Committee

Jacky Akoka CNAM and TEM, France
Yuan An Drexel University, USA
Joao Araujo Universidade Nova de Lisboa, Portugal
Zhifeng Bao University of Tasmania, Australia
Ladjel Bellatreche ENSMA, France
Sandro Bimonte IRSTEA, France
Mokrane Bouzeghoub UVSQ/CNRS, France
Shawn Bowers Gonzaga University, USA

VIII Organizing Committee

Stephane Bressan National University of Singapore, Singapore
Stefano Ceri Politecnico di Milano, Italy
Roger Chiang AIS, USA
Dickson K.W. Chiu The University of Hong Kong, SAR China
Byron Choi Hong Kong Baptist University, SAR China
Alfredo Cuzzocrea University of Trieste, Italy
Fabiano Dalpiaz Utrecht University, The Netherlands
Karen Davis University of Cincinnati, USA
Valeria De Antonellis University of Brescia, Italy
Sergio De Cesare Brunel University, UK
José Palazzo M. de Oliveira Federal University of Rio Grande do Sul, Brazil
Lois Delcambre Portland State University, USA
Gill Dobbie University of Auckland, New Zealand
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Xavier Franch Universitat Politècnica de Catalunya, Spain
Avigdor Gal Technion, Israel
Sepideh Ghanavati Luxembourg Institute of Science and Technology,

Luxembourg
Aditya Ghose University of Wollongong, Australia
Paolo Giorgini University of Trento, Italy
Georg Grossmann University of South Australia, Australia
Giancarlo Guizzardi Federal University of Espirito Santo, Brazil
Renata Guizzardi Universidade Federal do Espirito Santo, Brazil
Arantza Illarramendi Basque Country University, Spain
Matthias Jarke RWTH Aachen University, Germany
Manfred Jeusfeld University of Skövde, Sweden
Ivan Jureta University of Namur, Belgium
Dimitris Karagiannis University of Vienna, Austria
Kamalakar Karlapalem CDE, IIIT Hyderabad, India
David Kensche RWTH Aachen University, Germany
Dik Lee Hong Kong University of Science and Technology,

SAR China
Mong Li Lee National University of Singapore, Singapore
Julio Cesar Leite PUC-Rio, Brazil
Guoliang Li Tsinghua University, China
Stephen Liddle Brigham Young University, USA
Tok Wang Ling National University of Singapore, Singapore
Sebastian Link The University of Auckland, New Zealand
Pericles Loucopoulos The University of Manchester, UK
Hui Ma Victoria University of Wellington, New Zealand
Wolfgang Maass Saarland University, Germany
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
Haralambos Mouratidis University of Brighton, UK
John Mylopoulos University of Toronto, Canada
Wilfred Ng Hong Kong University of Science and Technology,

SAR China

Organizing Committee IX

Antoni Olivé Universitat Politècnica de Catalunya, Spain
Andreas L. Opdahl University of Bergen, Norway
Jinsoo Park Seoul National University, Korea
Jeffrey Parsons Memorial University of Newfoundland, Canada
Chris Partridge Brunel University, BORO Solutions, UK
Oscar Pastor Lopez Universitat Politécnica de Valencia, Spain
Barbara Pernici Politecnico di Milano, Italy
Geert Poels Ghent University, Belgium
Henderik Proper Public Research Centre Henri Tudor, Luxembourg
Christoph Quix Fraunhofer FIT, Germany
Jolita Ralyté University of Geneva, Switzerland
Sudha Ram University of Arizona, USA
Iris Reinhartz-Berger University of Haifa, Israel
Stefano Rizzi University of Bologna, Italy
Colette Rolland Université Paris 1 Panthéon-Sorbonne, France
Antonio Ruiz-Cortés University of Seville, Spain
Bernhard Rumpe RWTH Aachen University, Germany
Keun Ho Ryu Chungbuk National University, Korea
Sourav S. Bhowmick Nanyang Technological University, Singapore
Mehrdad Sabetzadeh University of Luxembourg, Luxembourg
Camille Salinesi Université Paris 1 Panthéon-Sorbonne, France
Peretz Shoval Ben-Gurion University, Israel
Pnina Soffer University of Haifa, Israel
Veda Storey Georgia State University, USA
Arnon Sturm Ben-Gurion University, Israel
David Taniar Monash University, Australia
Ernest Teniente Unversitat Politècnica de Catalunya, Spain
James Terwilliger Microsoft Corporation, USA
Bernhard Thalheim Christian Albrechts University Kiel, Germany
Panos Vassiliadis University of Ioannina, Greece
Gerd Wagner Brandenburg University of Technology at Cottbus,

Germany
Barbara Weber University of Innsbruck, Austria
Roel Wieringa University of Twente, The Netherlands
Carson Woo University of British Columbia, Canada
Huayu Wu Institute for Infocomm Research, Singapore
Hwan-Seung Yong Ewha Womans University, Korea
Eric Yu University of Toronto, Canada

X Organizing Committee

Additional Reviewers

Fatma Başak Aydemir
Kamel Barkaoui
Nabila Berkani
Vincent Bertram
Devis Bianchini
Dominik Bork
Andrea Burattin
Brice Chardin
Adela Del Río Ortega

Amador Durán Toro
Christophe Feltus
Jesús García Galán
Mohamad Gharib
Oliver Kautz
Lu Li
Mingzhao Li
Achim Lindt
Garm Lucassen

Diana Marosin
Michele Melchiori
Yassine Ouhammou
Elda Paja
Mattia Salnitri
Arik Senderovich
Nikolaos Tantouris
Marc van Zee
Peng Wang

Organized by

– Special Interest Group on Software Engineering, Information Processing Society of
Japan

– The ER Institute (ER Steering Committee)

In Cooperation with

– The Database Society of Japan
– Special Interest Group on Database Systems, Information Processing Society of

Japan
– Information and Systems Society and Technical Committee on Data Engineering,

The Institute of Electronics, Information and Communication Engineers
– IEEE Computer Society Japan Chapter
– ACM SIGMOD Japan
– Software Engineers Association

Organizing Committee XI

Industrial Sponsors

XII Organizing Committee

Abstracts of the Keynotes

Improving the Correctness of Some Database
Research Using ORA-Semantics

Tok Wang Ling, Zhong Zeng, Mong Li Lee, and Thuy Ngoc Le

National University of Singapore, Singapore, Singapore
{lingtw,zengzh,leeml,ltngoc}@comp.nus.edu.sg

Abstract. We refer to the concepts of object class, relationship type, and attribute
of object class and relationship type in the ER model as ORA-semantics.
Common database models such as the relational model and the XML data model
do not capture these ORA-semantics which leads to many serious problems in
relational and XML database design, data and schema integration, and keyword
query processing in these databases. In this paper, we highlight the limitations
and problems of current database research in these areas, and discuss how ORA-
semantics can be utilized to resolve these problems.

Conceptual Modeling of Life:
Beyond the Homo Sapiens

Oscar Pastor

Centro de I+D en Métodos de Producción de Software (PROS),
Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

opastor@dsic.upv.es

Abstract. Our strong capability of conceptualization makes us, human beings,
different from any other species in our planet. We, as conceptual modelers,
should apply in the right direction such fascinating capability to make it play an
essential role in the design of the world to come. What does it mean that “right
direction” requires a challenging discussion. Halfway between the need of having
a sound philosophical characterization and an effective, practical computer sci-
ence application, conceptual modeling emerges as the ideal discipline needed for
understanding life and improving our life style. This keynote explores this
argument by delimiting the notion and scope of conceptual modeling, and by
introducing and discussing two possible scenarios of fruitful application. The first
one is oriented to better understand why conceptual modeling can help to manage
the social challenges of the world of the emerging information era, and how this
world that comes could benefit from it. The second one focuses on how under-
standing the human genome can open new ways to go beyond what we can
consider “traditional Homo Sapiens capabilities”, with especial implications in
the health domain and the new medicine of precision.

Towards Knowledge-Enabled Society

Hideaki Takeda

National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan
takeda@nii.ac.jp

Abstract. Nowadays, most activities in our society is performed with computers
or even by computers. It means that we have data about almost all activities in
our society. But data for the society as a total is a mess, i.e., scattered and
meaningless. Knowledge can help to interpret and organize it. The knowledge
engineering research has developed how knowledge is represented and used
such as ontology in computer science. Then combining it with Web, Semantic
Web is emerged to offer knowledge representation on the Web. Now web is not
just for human readable texts but it is used to represent any information from
products to sensor data. Linked Data is the direct application of Semantic Web
to represent things and knowledge in our society through the Web. So, the
knowledge graph, the representation of things and knowledge, is becoming the
basis of our society in the digital age.

What is the value of the knowledge graph? All applications and systems in
our society will be society-sensitive just like every human activity cannot be
performed without relationship with society. The knowledge graph is the inter-
face between such society-sensitive applications and the society.

The status of the knowledge graph is still in the very early stage. DBpedia,
Linked Data generated fromWikipedia is the core of the knowledge graph. But it
is not enough. In particular, metadata and ontology is not sufficient. Schema.org
is the typical activity for it. There are some other similar activities like Japanese
IMI Core vocabulary. There need more domain ontologies. Agriculture Activity
Ontology is the example how terms can be organized logically to improve
interoperability and machine-readability.

Keywords: Semantic web � Linked data � Knowledge graph � Society-sensitive
application � DBpedia

Contents

Keynotes

Improving the Correctness of Some Database Research
Using ORA-Semantics . 3

Tok Wang Ling, Zhong Zeng, Mong Li Lee, and Thuy Ngoc Le

Conceptual Modeling of Life: Beyond the Homo Sapiens 18
Oscar Pastor

Analytics and Conceptual Modeling

A Conceptual Modeling Framework for Business Analytics 35
Soroosh Nalchigar, Eric Yu, and Rajgopal Ramani

NOSQL Design for Analytical Workloads: Variability Matters 50
Victor Herrero, Alberto Abelló, and Oscar Romero

Translating Bayesian Networks into Entity Relationship Models 65
Frank Rosner and Alexander Hinneburg

Key Performance Indicator Elicitation and Selection
Through Conceptual Modelling. 73

Alejandro Maté, Juan Trujillo, and John Mylopoulos

Conceptual Modeling and Ontologies

Insights on the Use and Application of Ontology and Conceptual Modeling
Languages in Ontology-Driven Conceptual Modeling 83

Michael Verdonck and Frederik Gailly

An Ontological Approach for Identifying Software Variants: Specialization
and Template Instantiation . 98

Iris Reinhartz-Berger, Anna Zamansky, and Yair Wand

The Role of Ontology Design Patterns in Linked Data Projects. 113
Valentina Presutti, Giorgia Lodi, Andrea Nuzzolese, Aldo Gangemi,
Silvio Peroni, and Luigi Asprino

Bridging the IT and OT Worlds Using an Extensible Modeling Language . . . 122
Paola Lara, Mario Sánchez, and Jorge Villalobos

http://dx.doi.org/10.1007/978-3-319-46397-1_1
http://dx.doi.org/10.1007/978-3-319-46397-1_1
http://dx.doi.org/10.1007/978-3-319-46397-1_2
http://dx.doi.org/10.1007/978-3-319-46397-1_3
http://dx.doi.org/10.1007/978-3-319-46397-1_4
http://dx.doi.org/10.1007/978-3-319-46397-1_5
http://dx.doi.org/10.1007/978-3-319-46397-1_6
http://dx.doi.org/10.1007/978-3-319-46397-1_6
http://dx.doi.org/10.1007/978-3-319-46397-1_7
http://dx.doi.org/10.1007/978-3-319-46397-1_7
http://dx.doi.org/10.1007/978-3-319-46397-1_8
http://dx.doi.org/10.1007/978-3-319-46397-1_8
http://dx.doi.org/10.1007/978-3-319-46397-1_9
http://dx.doi.org/10.1007/978-3-319-46397-1_10

Requirements Engineering

Possibilistic Cardinality Constraints and Functional Dependencies 133
Tania K. Roblot and Sebastian Link

Exploring Views for Goal-Oriented Requirements Comprehension 149
Lyrene Silva, Ana Moreira, João Araújo, Catarina Gralha,
Miguel Goulão, and Vasco Amaral

Keys with Probabilistic Intervals . 164
Pieta Brown, Jeeva Ganesan, Henning Köhler, and Sebastian Link

Advanced Conceptual Modeling

On Referring Expressions in Information Systems Derived
from Conceptual Modelling . 183

Alexander Borgida, David Toman, and Grant Weddell

DeepTelos: Multi-level Modeling with Most General Instances 198
Manfred A. Jeusfeld and Bernd Neumayr

Pragmatic Quality Assessment for Automatically Extracted Data 212
Scott N. Woodfield, Deryle W. Lonsdale, Stephen W. Liddle,
Tae Woo Kim, David W. Embley, and Christopher Almquist

UnifiedOCL: Achieving System-Wide Constraint Representations 221
David Weber, Jakub Szymanek, and Moira C. Norrie

Semantic Annotations

Building Large Models of Law with NómosT. 233
N. Zeni, E.A. Seid, P. Engiel, S. Ingolfo, and J. Mylopoulos

An Efficient and Simple Graph Model for Scientific Article Cold Start
Recommendation . 248

Tengyuan Cai, Hongrong Cheng, Jiaqing Luo, and Shijie Zhou

Keyword Queries over the Deep Web . 260
Andrea Calì, Davide Martinenghi, and Riccardo Torlone

Sensor Observation Service Semantic Mediation: Generic Wrappers
for In-Situ and Remote Devices . 269

Manuel A. Regueiro, José R.R. Viqueira, Christoph Stasch,
and José A. Taboada

XX Contents

http://dx.doi.org/10.1007/978-3-319-46397-1_11
http://dx.doi.org/10.1007/978-3-319-46397-1_12
http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://dx.doi.org/10.1007/978-3-319-46397-1_14
http://dx.doi.org/10.1007/978-3-319-46397-1_14
http://dx.doi.org/10.1007/978-3-319-46397-1_15
http://dx.doi.org/10.1007/978-3-319-46397-1_16
http://dx.doi.org/10.1007/978-3-319-46397-1_17
http://dx.doi.org/10.1007/978-3-319-46397-1_18
http://dx.doi.org/10.1007/978-3-319-46397-1_19
http://dx.doi.org/10.1007/978-3-319-46397-1_19
http://dx.doi.org/10.1007/978-3-319-46397-1_20
http://dx.doi.org/10.1007/978-3-319-46397-1_21
http://dx.doi.org/10.1007/978-3-319-46397-1_21

Modeling and Executing Business Processes

Probabilistic Evaluation of Process Model Matching Techniques 279
Elena Kuss, Henrik Leopold, Han van der Aa, Heiner Stuckenschmidt,
and Hajo A. Reijers

Context-Aware Workflow Execution Engine for E-Contract Enactment 293
Himanshu Jain, P. Radha Krishna, and Kamalakar Karlapalem

Annotating and Mining for Effects of Processes . 302
Suman Roy, Metta Santiputri, and Aditya Ghose

Business Process Management and Modeling

Automated Discovery of Structured Process Models: Discover Structured
vs. Discover and Structure . 313

Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,
and Giorgio Bruno

Detecting Drift from Event Streams of Unpredictable Business Processes 330
Alireza Ostovar, Abderrahmane Maaradji, Marcello La Rosa,
Arthur H.M. ter Hofstede, and Boudewijn F.V. van Dongen

Modeling Structured and Unstructured Processes: An Empirical Evaluation. . . 347
Evellin Cardoso, Katsiaryna Labunets, Fabiano Dalpiaz,
John Mylopoulos, and Paolo Giorgini

Applications and Experiments of Conceptual Modeling

MetaScience: An Holistic Approach for Research Modeling 365
Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot

Comparison and Synergy Between Fact-Orientation and Relation
Extraction for Domain Model Generation in Regulatory Compliance 381

Sagar Sunkle, Deepali Kholkar, and Vinay Kulkarni

Development of a Modeling Language for Capability Driven Development:
Experiences from Meta-modeling . 396

Janis Stirna and Jelena Zdravkovic

Applying Conceptual Modeling to Better Understand the Human Genome . . . 404
José F. Reyes Román, Óscar Pastor, Juan Carlos Casamayor,
and Francisco Valverde

Schema Mapping

Data Analytics: From Conceptual Modelling to Logical Representation 415
Qing Wang and Minjian Liu

Contents XXI

http://dx.doi.org/10.1007/978-3-319-46397-1_22
http://dx.doi.org/10.1007/978-3-319-46397-1_23
http://dx.doi.org/10.1007/978-3-319-46397-1_24
http://dx.doi.org/10.1007/978-3-319-46397-1_25
http://dx.doi.org/10.1007/978-3-319-46397-1_25
http://dx.doi.org/10.1007/978-3-319-46397-1_26
http://dx.doi.org/10.1007/978-3-319-46397-1_27
http://dx.doi.org/10.1007/978-3-319-46397-1_28
http://dx.doi.org/10.1007/978-3-319-46397-1_29
http://dx.doi.org/10.1007/978-3-319-46397-1_29
http://dx.doi.org/10.1007/978-3-319-46397-1_30
http://dx.doi.org/10.1007/978-3-319-46397-1_30
http://dx.doi.org/10.1007/978-3-319-46397-1_31
http://dx.doi.org/10.1007/978-3-319-46397-1_32

UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases 430
Gwendal Daniel, Gerson Sunyé, and Jordi Cabot

Facilitating Data-Metadata Transformation by Domain Specialists
in a Web-Based Information System Using Simple Correspondences 445

Scott Britell, Lois M.L. Delcambre, and Paolo Atzeni

Conceptual Modeling Guidance

Visualizing User Story Requirements at Multiple Granularity Levels
via Semantic Relatedness . 463

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E.M. van der Werf,
and Sjaak Brinkkemper

User Progress Modelling in Counselling Systems: An Application
to an Adaptive Virtual Coach . 479

Nuria Medina-Medina, Zoraida Callejas, Kawtar Benghazi,
and Manuel Noguera

Stepwise Refinement of Software Development Problem Analysis. 488
Tsutomu Kobayashi, Fuyuki Ishikawa, and Shinichi Honiden

Tailoring User Interfaces to Include Gesture-Based Interaction with gestUI 496
Otto Parra, Sergio España, and Oscar Pastor

Unlocking Visual Understanding: Towards Effective Keys for Diagrams 505
Nicolas Genon, Gilles Perrouin, Xavier Le Pallec, and Patrick Heymans

Goal Modeling

MEMO GoalML: A Context-Enriched Modeling Language to Support
Reflective Organizational Goal Planning and Decision Processes. 515

Alexander Bock and Ulrich Frank

Can Goal Reasoning Techniques Be Used for Strategic Decision-Making? . . . 530
Elda Paja, Alejandro Maté, Carson Woo, and John Mylopoulos

Requirements Evolution and Evolution Requirements
with Constrained Goal Models . 544

Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini,
and John Mylopoulos

RationalGRL: A Framework for Rationalizing Goal Models
Using Argument Diagrams . 553

Marc van Zee, Diana Marosin, Floris Bex, and Sepideh Ghanavati

Author Index . 561

XXII Contents

http://dx.doi.org/10.1007/978-3-319-46397-1_33
http://dx.doi.org/10.1007/978-3-319-46397-1_34
http://dx.doi.org/10.1007/978-3-319-46397-1_34
http://dx.doi.org/10.1007/978-3-319-46397-1_35
http://dx.doi.org/10.1007/978-3-319-46397-1_35
http://dx.doi.org/10.1007/978-3-319-46397-1_36
http://dx.doi.org/10.1007/978-3-319-46397-1_36
http://dx.doi.org/10.1007/978-3-319-46397-1_37
http://dx.doi.org/10.1007/978-3-319-46397-1_38
http://dx.doi.org/10.1007/978-3-319-46397-1_39
http://dx.doi.org/10.1007/978-3-319-46397-1_40
http://dx.doi.org/10.1007/978-3-319-46397-1_40
http://dx.doi.org/10.1007/978-3-319-46397-1_41
http://dx.doi.org/10.1007/978-3-319-46397-1_42
http://dx.doi.org/10.1007/978-3-319-46397-1_42
http://dx.doi.org/10.1007/978-3-319-46397-1_43
http://dx.doi.org/10.1007/978-3-319-46397-1_43

Keynotes

Improving the Correctness of Some Database
Research Using ORA-Semantics

Tok Wang Ling(B), Zhong Zeng, Mong Li Lee, and Thuy Ngoc Le

National University of Singapore, Singapore, Singapore
{lingtw,zengzh,leeml,ltngoc}@comp.nus.edu.sg

Abstract. We refer to the concepts of object class, relationship type,
and attribute of object class and relationship type in the ER model as
ORA-semantics. Common database models such as the relational model
and the XML data model do not capture these ORA-semantics which
leads to many serious problems in relational and XML database design,
data and schema integration, and keyword query processing in these
databases. In this paper, we highlight the limitations and problems of
current database research in these areas, and discuss how ORA-semantics
can be utilized to resolve these problems.

1 Introduction

The three basic concepts in the Entity Relationship (ER) Model are the object
class, relationship type, and attribute of object class/relationship type [2]. We
call these concepts ORA-semantics. We observe that the schemas of both the
relational and XML data models do not capture the ORA-semantics in the ER
model explicitly.

In the relational model [3], functional dependencies (FDs) are integrity
constraints, many of which are artificially imposed. Multivalued dependencies
(MVDs) are relation-sensitive, that is, the existence of a MVD depends on the
relation that contains the attributes of the MVD [14]. A MVD occurs when some
independent attributes (of an object class or a relationship type) are wrongly
grouped in a relation, and it is difficult to detect MVDs. FDs and MVDs are
used to remove redundancy and obtain normal form relations in database schema
design. However, there is no concept of ORA-semantics in the relational model.
Note that relation names in relational database is not the same as relationship
type.

In the XML data model, the DTD/XML Schema can only represent sim-
ple constraints in the hierarchical structures and there is no concept of ORA-
semantics. The ID in the DTD is not the same as object identifier, and a multi-
valued attribute of an object class cannot be represented directly as an attribute
in DTD/XML Schema. Further, XML cannot distinguish between an attribute
of an object class vs an attribute of a relationship type. The parent-child rela-
tionship in XML does not indicate any relationship type, in fact, relationship
types (especially n-ary) are not explicitly captured in DTD/XML Schema.

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-46397-1 1

4 T.W. Ling et al.

In this paper, we re-visit the relational and XML data models and discuss the
issues that arise due to the inability of these models to capture and represent
object classes and relationship types together with their attributes explicitly
in their schema languages. We show how ORA-semantics can overcome seri-
ous problems in relational and XML database schema design, data and schema
integration, and keyword query processing.

2 ER Model and ORA-Semantics

The Entity Relationship (ER) Model [2] describes the data involved in a real-
world enterprise in terms of objects and their relationships, and is widely used to
develop an initial database design. Figure 1 shows an example ER diagram for a
university database. It captures the information of Student, Course, Textbook,
Lecturer and Department objects that interact with each other via Enrol, Use,
Teach, WorkFor and Prereq relationships.

Student

Entrol

Course Teach Lecturer

SID Name

Grade

Code Title

LID

Name

Degree Major University

Qualification

m

m
m

m

Department

WorkFor

1m

DID Name Address

Textbook

m

Hobby

Prereq
prereq m

code m

ISBN Title

Use

m

Joindate

Year

Fig. 1. The ER diagram for a university database

We call the concepts of object class, relationship type, and their attributes in
the ER model as Object-Relationship-Attribute (ORA) semantics. We advocate
that a database designer must know the ORA-semantics in order to design a good
schema for the database. Further, programmers must know the ORA-semantics
of the database (or part of the database involved) in order to write their SQL or
XQuery programs correctly. Similarly, users also need to know ORA-semantics
in order to ask sensible queries to get the information they want.

3 Limitations of Relational Model

In this section, we discuss the limitations of the relational model on capturing
ORA-semantics in databases, which leads to problems in database design.

Improving the Correctness of Some Database Research 5

3.1 FDs and MVDs

FDs and MVDs are integrity constraints among attributes in the relational
model. Most of FDs are imposed by database designers and/or organizations.
On the other hand, the existence of MVDs in relations are mainly because of
the following wrong designs:

Case 1. Single valued attributes and multivalued attributes of an object class
or a relationship type are put in one relation.

Case 2. Two independent multivalued attributes of an object class or a rela-
tionship type are put in one relation.

Case 3. Two independent relationship types are put in one relation.

Example 1. Consider the ER diagram for the university database in Fig. 1. Sup-
pose we capture the lecturer ids, names, and their hobbies in one relation:

Lecturer (LID, Name, Hobby)

This relation will have an MVD: LID � Hobby because the hobbies of a lecturer
only depends on the lecturer identifier LID, and is independent of the lecturer
name (Case 1).

On the other hand, suppose we put the hobbies and qualifications of lecturers
together in one relation (Case 2):

Lecturer hobby qual(LID, Hobby, Degree, Major, University,Year)

This relation will have two MVDs: LID � Hobby and LID � {Degree, Major,
University, Year}, because hobbies and qualifications are two independent
multivalued attributes of lecturers.

Finally, suppose we combine the Use and Teach relationships in Fig. 1 into
one relation as follows (Case 3):

CTL(Code, ISBN, LID)

We will have Code � ISBN and Code � LID. This is because the textbooks of a
course are independent of the lecturers of the course. ��

MVDs are problematic because they are relation sensitive [14]. In
Example 1, the relation CTL(Code, ISBN, LID) has two MVDs: Code � ISBN
and Code � LID. Suppose we add one more attribute percentage to the rela-
tion and obtain CTL’(Code, ISBN, LID, percentage). A tuple (c, i, l, p) in the
CTL’ relation means lecturer l teaches course c and p percentages of his material
is from textbook i. We have the FD: {Code, ISBN, LID} → percentage. How-
ever, Code � ISBN and Code � LID are no longer hold in CTL’. Note that MVD
is different from multivalued attribute and many-to-many relationship, and we
cannot determine MVDs until we have the relations.

6 T.W. Ling et al.

Further, FDs/MVDs cannot be automatically discovered from database
instances. The relation Student (SID, Name) stores the information of stu-
dents in Fig. 1. Given an instance of this relation, even if the student names are
unique, the FD: Name → SID is incorrect in general. This is because the number
of students in the current relation instance is limited. In addition, the relation
may have frequent updates. We cannot use a static instance of a relation to
discover FDs and MVDs. In other words, the discovered FDs and MVDs are
just potential FDs and MVDs, and new inserts and/or updates may make these
potential FDs and MVDs invalid.

Clearly, FDs/MVDs do not capture ORA-semantics. The ER diagram in
Fig. 1 indicates that each lecturer works for only one department. Suppose we
store all the information of lecturers and departments in a relation, we will have
the FD: LID → Joindate. However, this FD does not indicate if Joindate is
an attribute of lecturers or an attribute of relationships between lecturers and
departments [12].

3.2 Relational Database Design

The three common methods for relational database schema design are the decom-
position method, the synthesis method and the ER approach.

Decomposition Method. This method is based on the Universal Relation
Assumption (URA) that a database can be represented by a universal rela-
tion containing all the attributes of the database. The universal relation is then
decomposed into smaller relations to remove redundant data using the given
FDs and MVDs. However, since MVDs are relation sensitive [14], it is almost
impossible to obtain MVDs before the decomposition process because MVDs
may change when relations are decomposed. The process is non-deterministic,
depending on the order of FDs and MVDs that are used for decompositions.
Different orders may lead to different sets of relations. In addition, this method
cannot handle recursive relationship (e.g., manager of employee), ISA relation-
ship (e.g., a manager is also an employee), and more than one relationship type
among object classes in the ER model naturally and directly.

Synthesis Method [1]. This method is also based on URA and assumes that
a database can be represented by a set of attributes together with a set of
FDs. It then synthesizes a set of 3NF relations. Each step of the method makes
sure the closure of the set of FDs remains unchanged, and does not consider
MVDs. Similar to the decomposition method, the synthesis depends on the non-
redundant covering of FDs to generate 3NF relations. Recursive relationship,
ISA relationship, more than one relationship type among object classes, mul-
tivalued attribute of object classes and relationship types, and many-to-many
relationship type without attribute cannot be handled naturally. Finally, the
synthesis method does not guarantee the re-constructibility and the resulting
relations may contain global redundant attributes [16].

Improving the Correctness of Some Database Research 7

The ER Approach. This approach first constructs an ER diagram (ERD)
based on the database specifications and requirements, including recursive rela-
tionship, isa relationship, more than one relationship type defined among object
classes, etc. Then it normalizes the ERD to a normal form ERD [15]. Finally
it translates the normal form ERD to a set of normal form relations together
with a set of constraints (e.g., role name, inclusion dependency, etc.) which can-
not be represented in the relational schema. The ER approach is based on the
relaxed URA, that is, only object identifier names have to be unique. Users do
not need to consider MVDs which are relation sensitive. Further, it captures
ORA-semantics and thus can avoid the problems of the decomposition method
and synthesis method.

Summary. The relational model only considers integrity constraints and does
not capture the important ORA-semantics which exists in the ER model. The
decomposition method and the synthesis method use FDs and MVDs to generate
relational database schema. However, they are non-deterministic, sensitive to the
changes of FDs and MVDs, and cannot handle recursive relationship, ISA rela-
tionship, and more than one relationship type defined among object classes, etc.
naturally. These problems can be solved by the ER approach, which translates
a normal form ERD to a set of normal form relations [15].

4 Limitations of XML Data Model

XML (eXtensible Markup Language) has become a de facto standard of informa-
tion representation and exchange over the Internet. Compared to HTML, XML
does not have predefined elements and attributes, and provides a flexible way
for users to define their own elements, attributes and the structure of the data.

4.1 XML DTD and XML Schema

An XML document is organized in a hierarchical structure, where the data is
bounded in a pair of starting and ending tags. The constraints on the structure
and content of the document can be described by DTD or XML Schema.

Figure 2 shows an example DTD for the database in Fig. 1. It indicates that
the XML document starts with a db element, and db contains 0 or more occur-
rences of Lecturer and Course elements. A Lecturer element has attributes
LID, Name and Course. Further, LID is the unique identifier of lecturer elements.

We see that DTD/XML Schema only specifies the structural representation of
XML documents with simple constraints, and has no concept of ORA-semantics.
This is reflected in the following aspects:

ID in DTD Is Not the Same as Object Identifier. Although ID defines
unique values for an attribute, an object class cannot have the ID attribute if
it has a m:m or 1:m relationship with its higher level object class. For instance,

8 T.W. Ling et al.

Fig. 2. An XML DTD for the university database in Fig. 1

we cannot define SID as the unique ID identifier of Student elements in Fig. 2.
This is because the same Student element may occur multiple times in the XML
as the student may enrol in more than one course.

Multivalued Attribute Cannot Be Defined as an Attribute. In Fig. 2,
the hobbies and qualifications of lecturers are given by the elements Hobby
and Qualification under the Lecturer elements. They cannot be defined as
attributes of Lecturer elements.

Relationship Type Is Implicit via Parent-Child Relationship. This leads
to the problems of capturing the type of relationships and distinguishing between
object attribute vs relationship attribute. For example, both Name and Grade
are elements of Student in Fig. 2. However, from ORA-semantics in the ER
diagram in Fig. 1, we know that name is a property of students while grade is
an attribute of enrol relationships between students and courses. Further, DTD
cannot distinguish 2 binary relationships vs one binary relationship together
with a ternary relationship in a hierarchical path that involve 3 object classes.

4.2 ORA-SS Data Model

In contrast to the DTD/XML Schema, the ORA-SS data model [4] is designed
to capture the ORA-semantics in XML data. This model distinguishes between
objects, relationships and their attributes. The identifier of an object class is
highlighted, while the other attributes are associated with cardinalities to indi-
cate whether they are single valued or multivalued attributes. The relationship
type is explicitly expressed with its name, degree and the cardinality of partic-
ipating object classes. The attributes of a relationship type are labeled by the
relationship name in order to distinguish from attributes of an object class.

Figure 3 shows an ORA-SS schema diagram for the XML document based on
the ER diagram of the university database in Fig. 1. We see that this diagram

Improving the Correctness of Some Database Research 9

Fig. 3. An ORA-SS schema diagram for the university database in Fig. 1

fully captures the information of Student, Course, Textbook, Lecturer and
Department objects, as well as the information of their relationships. In fact,
an ORA-SS schema diagram is an ER diagram augmented with hierarchical
structure. It solves the problems of DTD/XML Schema, and can be used to
detect redundancy in XML data and define normal form for XML schema.

5 ORA-Semantics in Data and Schema Integration

Data and schema integration has been widely studied. However, the importance
of ORA-semantics in data/schema integration is largely ignored. We list the
problems in data and schema integration, and show that how ORA-semantics
can solve these problems and improve the correctness of the integration.

Different Data Models. Databases may have different data models such as
RDB, XML, NoSQL, etc. This requires us to transform the schemas of different
data models into an ER schema diagram, and then integrate the data based on
the integrated ERD. The transformation can only be done semi-automatically
with ORA-semantics enrichment manually. This ER approach can improve the
correctness of the integrated database/schema because ERDs capture ORA-
semantics in databases.

Different Relationship Types. Entity resolution (i.e., object identification
and record linking) is used to identify if two records refer to the same object
across different data sources. However, this is not enough for data/schema inte-
gration, as we need to consider the relationship types as well.

Example 2. Consider two databases about person and house:

DB1: PersonHouse(SSN, Address)
DB2: PersonHouse(SSN, Address)

Assuming both SSN and Address uniquely identify a person and a house respec-
tively, we cannot simply integrate the two databases together although they have
the same schema. This is because the two relationship types between persons
and houses may be different, e.g., DB1 may capture the relationship type Own

10 T.W. Ling et al.

(person owns house), while DB2 captures the relationship type Live (person
lives in house). This indicates that we need the proper identification of both
objects and relationships in order to integrate database or schema correctly. ��

Local/Global Object Identifier. We need to consider local object identifier
vs global object identifier during integration, otherwise, we may obtain incorrect
integrated database/schema.

Suppose we have two databases with the same schema Enrol(SID, Code,
Grade) that store the information of student enrolment. We cannot directly
integrate them into one relation because the databases may come from two
universities, and the same SID and Code may refer to different students and
courses. In other words, SID and Code are local identifiers.

Local/Global FD. Similarly, we need to consider whether an FD is local or
global during integration.

Example 3. Consider two bookstore databases:

DB1: Book(ISBN, Title, First author, Price)
DB2: Book(ISBN, Title, First author, Price)

We cannot integrate them into one relation because the same book may have
different prices in different stores. Theoretically, we have the global FD: ISBN →
{Title, First author}, and the local FD: ISBN → Price. The global FD for
price is {ISBN, Store} → Price. The integrated schema of these two databases
should consists of 2 relations: Book info(ISBN, Title, First author) and
Book price(ISBN, Store, Price). ��

Semantic Dependency. The work in [12] introduces the notion of semantic
dependency to capture the semantic relationship between two sets of attributes.

Example 4. Consider the following relations that store the information of
employees and departments:

R1: Emp(EID, Ename, Jointdate, DID)
R2: Dept(DID, Dname)

The FDs that hold on these relations are: EID → {Ename, Joindate, DID} and
DID → Dname. Based on the FDs, it is unclear whether Joindate is an attribute of
employees (i.e., the date when an employee joined the company) or an attribute
of the relationship between employees and departments (i.e., the date when an
employee started working for a department). However, if we have the semantic
dependency {EID, DID} Sem−→ Joindate, then we know that Joindate indicates
the date when an employee started working for a department. In order to discover
semantic dependencies in a database, we need ORA-semantics. ��

Improving the Correctness of Some Database Research 11

Schematic Discrepancy. This occurs when the name of an attribute or a rela-
tion in one database corresponds to attribute values in the other databases [5].

Example 5. Suppose we want to store the quantities of parts supplied by suppli-
ers in each month of the year. Depending on whether the values of months are
stored as attribute values or names of attributes or names of relations, we can
have 3 equivalent designs of the database as follows:

DB1: Supply(SID, PID, Month, Quantity)
DB2: Supply(SID, PID, Jan, Feb, ..., Dec)
DB3: Jan Supply(SID, PID, Quantity),

Feb Supply(SID, PID, Quantity),
...
Dec Supply(SID, PID, Quantity)

The value of attribute Month in DB1 corresponds to an attribute name in DB2,
and a relation name in DB3. When we integrate these 3 databases, we need to
resolve schematic discrepancy using ORA-semantics. In particular, we remove
the context of schema constructs by transforming attributes that cause schematic
discrepancy into object classes, relationship types and their attributes. ��

In summary, we see that many issues must be considered during data/schema
integration: different data models, different relationship types, local/global
object identifier, local/global FD, semantic dependency, schematic discrepancy.
All these require ORA-semantics if we want to achieve a good quality integration.

6 ORA-Semantics in Relational Keyword Search

The success of web search has made keyword search a major form of retrieval
method. Given the rapid growth of relational data, the ability to support keyword
search in relational database has gained traction. Existing works in relational
keyword search can be classified into data graph approach [7] and schema graph
approach [6]. In data graph approach, an RDB is represented as a graph where
each node represents a tuple and each edge represents a foreign key-key refer-
ence. An answer to a keyword query is typically defined as a minimal connected
subgraph (Steiner tree) which contains all the keywords. On the other hand,
schema graph approach considers an RDB as a schema graph where each node
represents a relation and each edge represents a foreign key-key constraint. Based
on the schema graph, it translates a keyword query into a set of SQL statements,
and leverages on RDBMSs to evaluate the SQL statements and retrieve answers.

We choose data graph approach as a representative and use the database
in Fig. 4 to illustrate the serious problems of current relational keyword search
approaches. The data graph of the database is shown in Fig. 5. Schema graph
approach suffers from the similar problems. More details can be found in [19].

12 T.W. Ling et al.

Fig. 4. University database

Fig. 5. The data graph for the RDB in Fig. 4

Incomplete Object Answer. Suppose a user issues the keyword query Q1 =
{Steven} to retrieve all the information about him. Existing works only return
his id and name, i.e., the tuple L3 in the Lecturer relation. However, information
of his multivalued attributes such as degrees, majors, universities and years of
Steven, which are stored in the Qualification relation, are not retrieved.

Incomplete Relationship Answer. Suppose a user wants to know the infor-
mation of the course where a student Bill obtains grade A, and issues the
keyword query Q2 = {Bill A}. Existing works retrieve a Steiner tree which
contains the tuples S1 and E1, as the two query keywords occur in these tuples
respectively and there exists a foreign key reference between them. This answer
is not informative as the course title is not retrieved.

Meaningless Answer. Suppose a user issues the keyword query Q3 = {S1
S3}. Existing works returns two answers: (a) S1 −E1 −CS521 −L1 −CS203 −
E4−S3 and (b) S1−E1−CS521−E3−S2−E2−CS203−E4−S3. The first
answer indicates that student S1 is enrolled in the course CS521 and student S3
is enrolled in the course CS203. Both the courses are taught by the same lecturer
L1. In other words, L1 is the common lecturer of S1 and S3. The second answer
means that some other student S2 is enrolled in the same course CS521 as S1;
S2 is also enrolled in the same course CS203 as S3. We observe that the second
answer is most likely meaningless to the user.

Improving the Correctness of Some Database Research 13

Complex Answers. Given a query answer which is a Steiner tree, e.g., S1 −
E1 − CS521 − L1 − CS203 − E4 − S3 for query Q3, the user may feel difficult
to understand. This is because the answer may consists of many nodes that are
connected in a complex structure.

Inconsistent Types of Answers. Consider queries Q3 and Q4 = {S1 S2}.
Both the queries comprise of two student ids. However, existing works retrieve
answer S1 − E1 − CS521 − L1 − CS203 − E4 − S3 for query Q3 and answer
S1 − E1 − CS521 − E3 − S2 for query Q4. The former indicates the common
lecturer while the latter indicates the common course of these two students. This
can be confusing as two similar queries have inconsistent answers. The reason is
that existing keyword search methods do not interpret the user’s search intention
and blindly return Steiner trees of keyword match nodes.

Schema Dependence. Given the same data source, the relations in RDB are
often denormalized to improve runtime performance. This denormalization leads
to data duplication and affects the database schema. Existing works do not con-
sider unnormalized relations in RDB, and thus may suffer from the problems
of duplicated answers and missing answers. For example, suppose we join the
Student, Enrol and Course relations in Fig. 4 and obtain an unnormalized rela-
tion Enrolment(SID, Name, Code, Title, LID, Grade) to store information
of students, courses and the many-to-many relationships between students and
courses. Given the query {Bill}, existing works will retrieve duplicated answers
as information of student Bill are duplicated in the Enrolment relation. On the
other hand, the data graph of this relation has no edges because of no foreign
key references. Then existing works will not retrieve any answers for query Q3.

From the above problems, we see that existing works on relational keyword
search are highly dependent on foreign key-key references and return Steiner
trees as query answers. These answers are difficult to understand and often
fail to satisfy users’ search intention. This is because existing methods do not
consider ORA-semantics and thus cannot interpret keyword queries.

In contrast, we exploit ORA-semantics and utilize them to solve these prob-
lems. We classify relations in RDB into object relations, relationship relations,
mixed relations and component relations [19]. An object (relationship resp.) rela-
tion captures the information of objects (relationships resp.). The multivalued
attributes of an object class (relationship type) are captured in component rela-
tions. A mixed relation contains information of both objects and relationships,
which occurs when we have a many-to-one relationship.

Based on the different types of relations, we build an ORM data graph that
consists of object, relationship and mixed nodes. Each node includes some tuple
in the corresponding relation. Tuples in component relations are attached to
their corresponding object/relationship/mixed nodes. Two nodes are connected
via an edge if there is a foreign key-key reference between tuples in the nodes.

We search over the ORM data graph and process queries based on the types
of keyword match nodes. The information of objects and relationships in the

14 T.W. Ling et al.

ORM data graph enable us to retrieve more complete and informative answers.
We further extend keyword queries to include metadata keywords and aggregate
functions to enhance the expressive power and evaluation of keyword queries.
More details are described in [18,20].

7 ORA-Semantics in XML Keyword Search

Similar to relational keyword search, XML keyword search has also been widely
studied [17,21]. Existing works in XML keyword search typically consider an
XML document without ID references and model it as a tree. An answer to
a keyword query is defined as an LCA (Least Common Ancestor) of keyword
match nodes, or its variants such as SLCA [17] and ELCA [21].

We choose the LCA-based approach as a representative and use Fig. 6 to
illustrate the problems of current XML keyword search. More details are in [11].

Meaningless Answer. Consider query Q5 = {Bill}. The LCA-based app-
roach returns node Bill (21). However, this is not useful since it does not pro-
vide any relevant information about Bill. This happens when a returned node is
a non-object node, e.g., an attribute or a value. The reason is that the LCA-based
approach cannot differentiate object and non-object nodes. Returning object
node is meaningful while returning non-object node is not. The expected answer
should be the object node Student (17), which includes the id and name of
Bill and excludes his grade as grade is a relationship attribute.

Missing Answer. Consider query Q6 = {DB Java}. The LCA-based approach
only returns Lecturer (7). However, it can never recognize that Student (24)
and Student (36) refer to the same object Student S2. This is the common stu-
dent taking the DB and Java courses. The LCA-based approach should also return
the common student taking these two courses, namely, Student S2 appearing
as Student (24) or Student (36) as an answer.

Fig. 6. University.xml

Improving the Correctness of Some Database Research 15

Duplicated Answer. Consider query Q7 = {S2 John}. The LCA-based app-
roach returns two answers Student (24) and Student (36). These two answers
are duplicated as they actually refer to the same object Student S2. This prob-
lem is caused by the duplications of student objects as DTD/XML Schema can-
not declare SID as the ID of students, and the LCA-based approach are unaware
of these duplications. Users expect that either Student (24) or Student (36)
is returned, but not both.

Problems Related to Relationships. Consider query Q8 = {Bill A}. The
LCA-based approach returns node Student (17). This answer is incomplete
because A grade is not an attribute of a student, but the grade of a student taking
a course instead. In other words, grade is an attribute of relationships between
students and courses. The LCA-based approach cannot distinguish between an
object attribute and a relationship attribute under an object node, as DTD
cannot express this semantics. The answer should be moved up to contain other
objects (i.e., Course (12)) participating in the relationship that A grade belongs
to. It means that the student Bill takes the Course (12) and obtains an A grade.

Inconsistent Types of Answers. Similar to RDB keyword search, the LCA-
based approach returns inconsistent types of answers for similar queries. For
example, the LCA-based approach returns answer {Course (12)} for query {S1
S2} and answer {Lecturer (7)} for query {S1 S3}. These two answers refer to
objects of different classes and users may get confused as the queries are similar.

Schema Dependence. There may be several designs for the same data source.
The XML data in Fig. 6 can be represented by another design where Student
objects become the parents of Course objects. Since the LCA-based approach
replies on the hierarchical structure of the XML data, it may return different
answers for different designs even though these designs refer to exactly the same
information and we are dealing with the same query.

From the above, we see that existing LCA-based approach only depends on
the hierarchical structure of XML and is unaware of ORA-semantics in the data.
This approach suffers from serious problems as it cannot distinguish between
objects, relationships and their attributes, and it cannot detect duplications of
objects/relationships.

We have designed an approach to discover ORA-semantics in XML [13].
Based on the ORA-semantics, we construct an Object tree for the XML data
by keeping only object nodes and associating all non-object nodes to the cor-
responding object nodes. The Object tree contains a much smaller number of
nodes than the original XML and every node represents an object.

Given a keyword query, we search for lowest common object ancestors
(LCOAs) over the Object tree. Since each LCOA contains all the information of
an object, we can avoid returning meaningless answers and duplicated answers.
We also search for highest common object descendants (HCODs) to find answers

16 T.W. Ling et al.

that are missed by LCOAs. Finally, we introduc common relatives (CRs) to per-
form a schema independent keyword search. More details are given in [8,10].

We also support queries involving aggregates and GROUPBY in XML key-
word search [9]. We show that ORA-semantics is sufficient and necessary to
compute aggregate functions correctly. Without ORA-semantics, we may answer
aggregate queries incorrectly.

8 Conclusion

In this paper, we identify the expressive limitations of common database models
such as the relational model and the XML data model due to the lack of ORA-
semantics. First of all, both FDs/MVDs in the relational model and DTD/XML
Schema in the XML data model do not have concepts of ORA-semantics. They
are just integrity constraints and many are imposed artificially by database
designers/organizations. This may lead to problematic database schemas in rela-
tional/XML database design. Next, without ORA-semantics, data and schema
integration suffers from many problems such as different data models, differ-
ent relationship types, local/global object identifier, local/global FD, semantic
dependency, and schematic discrepancy. Finally, existing works on RDB/XML
keyword search do not consider ORA-semantics and thus return incomplete
answers, duplicated answers, meaningless answers, inconsistent types of answers
and schema dependent answers. We point out the reasons of these serious prob-
lems and show how ORA-semantics can improve the correctness of database
research in these areas. In future, we plan to study ORA-semantics on NoSQL
databases, and keyword search on multiple databases that are represented by
various data models including RDB, XML and NoSQL.

References

1. Bernstein, P.A.: Synthesizing third normal form relations from functional depen-
dencies. ACM Trans. Database Syst. 1, 277–298 (1976)

2. Chen, P.P.: The entity-relationship model: toward a unified view of data. ACM
Trans. Database Syst. 1, 9–36 (1976)

3. Codd, E.F.: A relational model of data for large shared data banks. ACM Commun.
13, 377–387 (1970)

4. Dobbie, G., Wu, X., Ling, T.W., Lee, M.L.: ORA-SS: an object-relationship-
attribute model for semistructured data. Technical report, National University of
Singapore (2000)

5. He, Q., Ling, T. W.: Extending and inferring functional dependencies in schema
transformation. In: CIKM (2004)

6. Hristidis, V., Papakonstantinou, Y., Discover: keyword search in relational data-
bases. In: VLDB (2002)

7. Hulgeri, A., Nakhe, C.: Keyword searching and browsing in databases using
BANKS. In: ICDE (2002)

8. Le, T.N., Bao, Z., Ling, T.W.: Schema-independence in XML keyword search. In:
Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp.
71–85. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12206-9 6

http://dx.doi.org/10.1007/978-3-319-12206-9_6

Improving the Correctness of Some Database Research 17

9. Le, T.N., Bao, Z., Ling, T.W., Dobbie, G.: Group-by and aggregate functions in
XML keyword search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R.
(eds.) DEXA 2014. LNCS, vol. 8644, pp. 105–121. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10073-9 10

10. Le, T.N., Ling, T.W., Jagadish, H.V., Lu, J.: Object semantics for XML keyword
search. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara,
A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 311–327. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-05813-9 21

11. Le, T.N., Wu, H., Ling, T.W., Li, L., Lu, J.: From structure-based to semantics-
based: towards effective XML keyword search. In: Ng, W., Storey, V.C., Trujillo,
J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 356–371. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-41924-9 29

12. Lee, M., Ling, T.W.: Resolving structural conflicts in the integration of entity-
relationship schemas. In: Papazoglou, M.P. (ed.) OOER 1995. LNCS, vol. 1021,
pp. 424–433. Springer, Heidelberg (1995). doi:10.1007/BFb0020552

13. Li, L., Le, T.N., Wu, H., Ling, T.W., Bressan, S.: Discovering semantics from
data-centric XML. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.)
DEXA 2013. LNCS, vol. 8055, pp. 88–102. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40285-2 10

14. Ling, T.W.: An analysis of multivalued and join dependencies based on the entity-
relationship approach. Data Knowl. Eng. 1, 253–271 (1985)

15. Ling, T.W., Teo, P.K.: A normal form object-oriented entity relationship dia-
gram. In: Loucopoulos, P. (ed.) ER 1994. LNCS, vol. 881, pp. 241–258. Springer,
Heidelberg (1994). doi:10.1007/3-540-58786-1 83

16. Ling, T.W., Tompa, F.W., Kameda, T.: An improved third normal form for rela-
tional databases. ACM Trans. Database Syst. 6, 329–346 (1981)

17. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest LCAs in XML
databases. In: SIGMOD (2005)

18. Zeng, Z., Bao, Z., Le, T.N., Lee, M.L., Ling, W.T.: ExpressQ: identifying keyword
context and search target in relational keyword queries. In: CIKM (2014)

19. Zeng, Z., Bao, Z., Lee, M.L., Ling, T.W.: A semantic approach to keyword
search over relational databases. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.)
ER 2013. LNCS, vol. 8217, pp. 241–254. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41924-9 21

20. Zeng, Z., Lee, M.L., Ling, W.T.: Answering keyword queries involving aggregates
and groupby on relational databases. In: EDBT (2016)

21. Zhou, R., Liu, C., Li, J.: Fast ELCA computation for keyword queries on XML
data. In: EDBT (2010)

http://dx.doi.org/10.1007/978-3-319-10073-9_10
http://dx.doi.org/10.1007/978-3-319-05813-9_21
http://dx.doi.org/10.1007/978-3-642-41924-9_29
http://dx.doi.org/10.1007/BFb0020552
http://dx.doi.org/10.1007/978-3-642-40285-2_10
http://dx.doi.org/10.1007/978-3-642-40285-2_10
http://dx.doi.org/10.1007/3-540-58786-1_83
http://dx.doi.org/10.1007/978-3-642-41924-9_21
http://dx.doi.org/10.1007/978-3-642-41924-9_21

Conceptual Modeling of Life: Beyond
the Homo Sapiens

Oscar Pastor(&)

Centro de I+D en Métodos de Producción de Software (PROS),
Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

opastor@dsic.upv.es

Abstract. Our strong capability of conceptualization makes us, human beings,
different from any other species in our planet. We, as conceptual modelers,
should apply in the right direction such fascinating capability to make it play an
essential role in the design of the world to come. What does it mean that “right
direction” requiresa challenging discussion. Halfway between the need of having
a sound philosophical characterization and an effective, practical computer sci-
ence application, conceptual modeling emerges as the ideal discipline needed for
understanding life and improving our life style. This keynote explores this
argument by delimiting the notion and scope of conceptual modeling, and by
introducing and discussing two possible scenarios of fruitful application. The first
one is oriented to better understand why conceptual modeling can help to manage
the social challenges of the world of the emerging information era, and how this
world that comes could benefit from it. The second one focuses on how under-
standing the human genome can open new ways to go beyond what we can
consider “traditional Homo Sapiens capabilities”, with especial implications in
the health domain and the new medicine of precision.

Keywords: Conceptual modeling � Conceptual models � Applications of
conceptual modeling

1 Introduction

I live Conceptual Modeling (CM) with passion. For a person with this working passion,
conceptualizing—as the basic process of CM—is present in almost every aspect of life.
How to use it successfully becomes a challenge whose analysis is the objective of this
keynote paper. The selected title is the first consequence of the faced topic. Conceptual
modeling of life because behind any section of the paper there is always a concrete
goal: to analyze how CM could be seen as a scientific approach to understand and
improve life.

This covers a too open spectrum, and as time and space are limited, two main
perspectives are going to be explored. The first one (Sect. 3) is a so-called “social
perspective”, intended to discuss how CM could help to better design the world to come,
the world that in the information and hyperconnectivity era is already approaching. The
second one (Sect. 4) is a so-called “biological perspective”, which is closer to the
scientific meaning of life, focused on arguing on how CM could help to understand

© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 18–31, 2016.
DOI: 10.1007/978-3-319-46397-1_2

the human genome transforming us, the current Homo Sapiens “version”, into an
evolved species able tomanage and transform life in our planet.

To make this discussion meaningful, the first aspect to be studied is necessarily to
determine as much precisely as possible the scope and the definition of CM. It is a
concept largely discussed but without a universally accepted definition, and the second
section will be dedicated to this problem. Based on this positioning, the two previous
perspectives will be then analyzed. Conclusions and references will close as usual the
work. The idea of this paper is to introduce the guidelines of the keynote, in which
more concrete details and examples will be given.

2 Conceptual Modeling Fundamentals: What Are We
Talking About

The capability of conceptualizing is essential for human beings as it makes us different
for any other species in our planet. It should then be massively accepted as an essential
tool in the scope of software engineering (SE) and information systems (IS) engineer-
ing. This is not the case, and programming (as the act) and programmers (as the actors)
are frequently socially recognized as their main roles. Conceptual models should be the
key artefacts to make true that “the model is the code” instead “the code is the model”.
Unfortunately, this does not appear to be the case… yet! In current practice, software
production methods are mainly code-centric, and it is the latter statement the one still
guiding traditionally a software production process.

In a world heavily influenced by “doers”, just doing something without under-
standing with a sound conceptual basis why to do it and how to do it better, appears to be
too often the selected approach. Working as a Conceptual Modeler, or being nowadays a
participant in a Conceptual Modeling conference, could be seen in some way close to the
famous call for participation done by Shackleton, British explorer and adventurer, when
looking for candidates for his expedition to cross the Antarctic (see Fig. 1).

Fig. 1. Conceptual modelers wanted to face the challenges of the world to come: an analogy
with the famous Shackleton call to cross the Antarctic.

Conceptual Modeling of Life: Beyond the Homo Sapiens 19

In practical terms, conceptual modeling-based software production tools should be
widely used and conceptual programmers should be the basic actors of any sound,
well-defined software production process. As said before, even if a significant set of
concrete proposals already exist (i.e. the conceptual programming manifesto presented
in [1], the fundamentals of a conceptual model compiler introduced in [2]), this does
not appear to be the case. Any discussion around this fact should start clarifying the
definition and the scope of CM to try to envision scenarios of fruitful use. In this
context, this keynote has three main goals:

– to discuss the notion and the scope of Conceptual Modeling,
– to analyze how conceptual modeling can help us to understand the world that comes

(within what we could call a “social perspective”), and
– to analyze how conceptual modeling can open promising and challenging scenarios

in the domain of the genome understanding.

2.1 Definitions for Conceptual Modeling/Conceptual Model

Teaching conceptual modeling since the early nineties, I have faced many times the
very simple question of “what is conceptual modeling” and “what is a conceptual
model”. While some common, basic understanding could be said to be shared by many
conceptual modelers, it is amazing to realize that so many years after the introduction
by Chen of the seminal ER model [3] as a widely recognized conceptual model, the
discussion for providing a universal, widely-accepted simple definition is still an open
problem. Let me analyze some basic definitions to understand how CM is perceived
commonly, and to explore the commented, shared understanding of the two notions.

Starting from a so elementary source as Wikipedia, we can find this first definition:
“a conceptual model is a model made of the composition of concepts, which are used to
help people know, understand, or simulate a subject the model represents”. If a con-
ceptual model is a model, the problem is transferred to the definition of “model”. If we
want to find what is a “model”, what we have is that a model may refer to a conceptual
model, a physical model, a scale model or a scientific model. Loop and back to the
beginning…

Probably,Wikipedia is not the best option from a formal point of view. But if we look
at some of the most well-known definition of “model” [4], we find that a model is defined
as a simplification of a system built with an intended goal in mind [5], as an abstraction of
a system to reason about it (either a physical system [6] or a real or language-based
system [7]), as a description of specification of a system and its environment for some
certain purpose [8], … One main conclusion that we can reach is that the distinction
between “model” and “conceptual model” is not always as precise at it should be. As
stated in [4], “while much has already been written on this topic, there is however neither
precise description about we do when we model, nor rigorous description about of the
relations amongmodeling artifacts”. Looking for a kind of universal definition, it appears
to be true what JochenLudewig states in [9]: “nobody can just define what a model is, and
expect that other people will accept this definition: endless discussions have proven that
there is no consistent problem understanding of models”.

20 O. Pastor

I would not agree with such a statement as a major conclusion. As said before,
conceptualizing provides the key notion to characterize a modeling process. As a
“conceptual” process, it is difficult to imagine a “model” that has not behind its essence
a process of conceptualizing. This is why in this keynote we will explore the use of the
“conceptual model” term assuming that a conceptual model is a model where the main
components are concepts resulting from a process of conceptualizing a part of reality.

Back to Wikipedia to understand how CM is defined in non-formal contexts, more
complexity arises. Exploring the definition it can be immediately discovered that there
is another different proposed definition for conceptual model in the context of computer
science: “A Conceptual model in the field of computer science is also known as a
domain model. Conceptual modeling should not be confused with other modeling
disciplines such as data modelling, logical modelling and physical modelling. The
conceptual model is explicitly chosen to be independent of design or implementation
concerns…”. We see that the distinction between modeling and conceptual modeling is
again unclear. What it is interesting is how an ontological perspective is introduced:
“the aim of a conceptual model is to express the meaning of terms and concepts used by
domain experts to discuss the problem, and to find the correct relationships between
different concepts. The conceptual model attempts to clarify the meaning of various,
usually ambiguous terms, and ensure that problems with different interpretations of the
terms and concepts cannot occur. Such differing interpretations could easily cause
confusion amongst stakeholders, especially those responsible for designing and
implementing a solution, where the conceptual model provides a key artifact of busi-
ness understanding and clarity”. This ontological perspective will be explored in more
detail later.

Another important aspect in this context is the connection between the conceptual
model and the corresponding software product that materializes it. Once concepts of the
domain have been modeled, the model becomes a stable basis for subsequent devel-
opment of applications in the domain. The concepts of the conceptual model can be
mapped into physical design or implementation constructs using either manual or
automated code generation approaches. This is the basis of any model-driven devel-
opment approach.

At least, this “computer science” perspective of CM—that I will prefer to refer to as
SE/IS perspective—opens a more precise way to define CM, where we can find a
significant agreement. Let me first refer to the John Mylopoulos’s seminal paper [10]
that defines the discipline of conceptual modeling as “the activity of formally
describing some aspects of the physical and social world around us for purposes of
understanding and communication. Conceptual modelling supports structuring and
inferential facilities that are psychologically grounded. After all, the descriptions that
arise from conceptual modelling activities are intended to be used by humans, not
machines… The adequacy of a conceptual modelling notation rests on its contribution
to the construction of models of reality that promote a common understanding of that
reality among their human users…”

Back to the conceptualization human capability, we can conclude that a conceptual
model is then the result of making explicit a conceptualization process applied to a part
of the world considered relevant for the conceptual modeler purpose. This idea is
clearly developed by Olivé in [11]: “In the information systems field, we use the name

Conceptual Modeling of Life: Beyond the Homo Sapiens 21

conceptual modeling for the activity that elicits and describes the general knowledge a
particular information system needs to know. The main objective of conceptual
modeling is to obtain that description, which is called a conceptual schema. Conceptual
schemas are written in languages called conceptual modeling languages. Conceptual
modeling is an important part of requirements engineering, the first and most important
phase in the development of an information system”.

This statement raises an interesting concern: how the terms “conceptual model” and
“conceptual schema” are traditionally mixed up probably incorrectly. As an example
taken from the database field, this mistake does not appear when we distinguish
between “relational model” and “relational schema”. Even it is frequent to see that
these terms are used in a undistinguishable way, we have to be at least aware that what
it is frequently referred to as a “conceptual model”, it is really representing a particular
“conceptual schema”.

In the considered SE/IS context, we can then conclude that conceptual modeling is
about describing the semantics of software applications at a high level of abstraction.
Specifically, conceptual modelers have to (1) describe structure models in terms of
entities, relationships, and constraints; (2) describe behavior or functional models in
terms of states, transitions among states, and actions performed in states and transition;
and (3) describe interactions and user interfaces in terms of messages sent and received,
information exchanged, and look-and-feel navigation and appearance. Conceptual
model diagrams are high-level abstractions that enable clients and analysts to under-
stand one another and enable analysts to communicate successfully with application
programmers. An immediate challenge is to facilitate the long-time dream of being able
to develop information systems strictly by conceptual modeling, to be able to say that
conceptual modeling is programming.

If behind a conceptual model there is a conceptualization process, the ontological
perspective of conceptual modeling becomes a first-order issue to understand what CM
is. Let’s develop this aspect in the next section.

2.2 Foundational Ontological Background

Recovering Olive’s ideas [11], in the field of information systems we make the fun-
damental assumption that a domain consists of a number of objects and the relation-
ships between them, which are classified into concepts. The set of concepts used in a
particular domain constitutes a conceptualization of that domain. The specification of
this conceptualization is what conforms a particular conceptual model of the domain
(sometimes called an ontology of the domain, although to see the conceptual schema as
anontology-based representation of a domain provides a more precise picture). Note
that in this context, the term ontology is used—in computer science terms—as a
specification of the basic conceptual primitives used in the process of conceptualiza-
tion. There may be several conceptualizations of the same domain and thus several
possible conceptual schemas, all of them based on the same ontological primitives.
Additionally, an ontology provides a concrete view of a particular domain. Therefore, it
is also an ontological commitment for the people who observe and act on this domain.

22 O. Pastor

In the field of information systems, ontologies are the basis for creating conceptual
schemas, and the languages in which they are written are called conceptual modeling
languages.

This perspective provides a solid basis to link ontologies and CM, through the use
of a foundational ontology. Conceptual models provide a precise definition of structural
knowledge in a specific field that can be instantiated across different application
domains in the corresponding field. Such a conceptual model should always be built
based on a foundational ontology that must determine the basic conceptual building
units to be used to specify any concrete application domain.

The notion of foundational ontology is essential. A foundational ontology can be
defined as an ontology that “defines a range of top-level domain-independent onto-
logical categories, which form a general foundation for more elaborated
domain-specific ontologies” [12, 13]. Rephrasing Guizzardi in [14], on the basis of a
foundational ontology “a domain ontology is constructed with the goal of making the
best possible description of the domain in reality”. It can be represented as a conceptual
model, as an engineering artifact with the additional requirement of representing a
model of consensus within a community. Once users have already agreed on a common
conceptualization, operational versions of the reference (foundational) ontology can be
created. Selecting a foundational ontology determines the kind of conceptualization
that must be performed.

Contrary to foundational ontologies, operational ontologies are designed with the
focus on guaranteeing desirable computational properties. This makes a clear distinc-
tion between the foundational ontological perspective of conceptual modeling, and the
operational perspective of ontologies represented by OWL, that it is not then a good
choice for representing “foundational” ontologies. As a representation of a foundational
ontology, a particular OWL ontology could consequently be seen as a conceptual
model for the considered application domain.

In this context of ontology-driven conceptual modeling it is very important to
characterize the different sets of meta-ontological choices that can produce different
types of conceptual models. As analyzed in the OntoCom workshop series [15], “the
effects of these differences resonate further into the overall information systems
(IS) development lifecycle, with potentially significant economic impact on the evo-
lution and integration of information systems. This especially affects the intended
quality of the conceptual models that are generated to represent a given domain”. It is
important to know and to understand what methaphysical choices are taken when a
given foundational ontology is proposed, because these choices characterizes the type
of conceptual models that can be generated. In some sense, these metaphysical options
determine what kind of conceptualization is applied to elaborate a specific conceptual
model and not another one. As it is stated in [15], “sound knowledge of a foundational
ontology’s metaphysical choices better enables the IS modeler and practitioner to
assess the consequences of selecting one foundational ontology over another, including
the effects on the quality of the conceptual models underpinning the requirements and
design of information systems”.

Conceptual Modeling of Life: Beyond the Homo Sapiens 23

Examples of meta-ontological choices were discussed in [15] and include [16–18]:

• Realism vs. idealism: there exists an objective reality (realism) or reality is indi-
vidually constructed by one’s own concepts (or ideas) resulting from one’s sub-
jective interpretation (idealism).

• Endurantism vs. perdurantism: individual objects are fully present at any given time
and do not extend temporally (endurantism) or individual objects extend spatially
and temporally, therefore, an individual is never wholly present at a specific instant
in time (perdurantism).

• Physical vs. abstract objects: all individual objects are physical and no abstract
objects exist (physical objects) or not all objects are physical therefore some objects
are abstract (abstract objects).

• Higher order types: types can instantiate other types.
• Possible worlds: Our actual world is one of many possible worlds.

These different dimensions can help to classify different types of conceptualization
supported by different proposals of foundational ontologies. Since the application of
meta-ontology to conceptual modeling and IS development is still relatively under-
explored and with a scarce literature, this perspective can really help to conduct
comparative analyses of two or more foundational ontologies (and their subsequent
conceptual modeling languages). This would allow to, for example, make explicit their
theoretical differences, understand the different expressiveness of the resultant con-
ceptual and investigating the implications of such differences on conceptual modelling
within information systems development.

3 Conceptual Modeling and Life: A Social View
and a Biological View

After emphasizing the link between conceptualizing and conceptual modeling, and the
subsequent importance of conceptual modeling for human beings, let’s explore in this
section how we could benefit from recognizing and improving our CM capabilities.
Understanding how our process of conceptualizing works in order to better understand
our world and how to adapt it to our purposes, would allow us to go beyond the current,
conventional “Homo Sapiens” rational capabilities. CM should be the basic tool of a
future, evolved human being, able to use a level of knowledge never reached before,
based on the rational use of universal information and advanced technologies. We are
going to develop these ideas from two points of view:

• a social one, intended to analyze how CM can help us to look at the world to come
as a better world, and

• a biological one, oriented to discover the secrets of life in our planet through the
detailed understanding of the genome language, in order to profit this knowledge in
the right direction.

24 O. Pastor

3.1 The Social Perspective: Conceptual Modeling for Understanding
the World That Is Coming

Understanding the world to come can be seen as a challenge whose solution should be
CM-based. The sequence of social and technological advances that we are witnessing
in the last decades is the source of a new era for the humanity. A CM-based exercise is
required to understand those big changes and their immediate consequences. Once
more, conceptualization is the key activity to guide adequately this new world that
comes. This conceptualization process should be oriented to identify the basic issues
that lead the change, to understand how they affect the current social context and to
develop strategies to implement an accurate transformation.

Many works study this attractive social perspective. For instance, in [19], the basic
issues whose continuous development is creating the context for the new world to come
includes:

1. Hyperconnectity: the global net platform that has been created gives a big power to
individuals and it allows the whole world to be more and more connected, having
immediate access at any information and knowledge in the planet. This also blurs
geographical barriers and it creates world of total, open competition.

2. Technological acceleration: the technological improvement is following an expo-
nential growth. This technological explosion opens the way for a technological
revolution whose intensity and social implications have never seen before.

3. Raising of world-wide emerging citizens, coming potentially from any country of
the world and ready to consume and compete. The emergence of this new actor will
impact economics and politics.

What role can CM play in this context? The combination of these three issues
requires to perform an intense CM exercise to understand how they interact among
them and to analyze the possible scenarios that could be generated as a result of these
interactions. “Just doing it” does not appear to be an adequate approach.

A precise understanding of the concepts that participate in those potential scenarios
is strongly required. Beyond its conventional use in the design and development of IS,
conceptual modeling should provide a solid basis to discuss and materialize the
opportunities demanded by this new world that is coming. The IS that must support this
human evolution should be conceptually well-founded, and concepts as relevant as
context, adaptability, decision, luck, user experience, satisfaction, sustainability…
should have a strong conceptual support to represent them appropriately in those ISs.

Educating conceptual modeling skills will be the essential challenge to form citi-
zens whose capabilities are expected to go beyond the Homo Sapiens traditional
behavior. To do it, the role of a conceptual modeler is to understand the mental models
used to abstract and represent the concepts that are relevant for a given domain.
Identifying concepts and their relationships should guide the conceptual discussion
intended to elaborate the most adequate solution.

An interesting conceptual starting point to characterize the types of knowledge that
must be considered are proposed by Gervasi et al. [20] and explored in by Sutcliffe
et al. [21] from a RE perspective. A Tacit Knowledge Framework is introduced, using
the properties of expressible, i.e. known knowledge; articulated, as documented known

Conceptual Modeling of Life: Beyond the Homo Sapiens 25

knowledge; accessible, which is known but not in the foreground of the stakeholder’s
mind and therefore a memory recall problem; and relevant to the project and domain.
As a result this work defines:

• Known knowns: expressible, articulated, and relevant.
• Known unknowns: not expressible or articulated, but accessible and potentially

relevant.
• Unknown knowns: potentially accessible but not articulated.
• Unknown unknowns: not expressible, articulated or accessible but still potentially

relevant.

While conventional CM focus on identifying “known knowns”, these definitions
provides an attractive taxonomy to be used in the conception process of a conceptual
model. Conceptual modelers should act as the knowledge architects of those relevant
data and the information generated by this hyperconnected world, composed by
last-generation technologies in continuous evolution and reached by virtually all the
human population.

One of the most appealing and challenging applications of this advanced tech-
nologies are those that focus on understanding the Human Genome. In the next sub-
section we are going to discuss another perspective of conceptual modeling of life: a
biological one centered around facing the problem of how conceptual modeling can be
applied to the never-answered question of understanding why we are as we are, and
how the challenge of managing life could be faced.

3.2 The Biological Perspective: Conceptual Modeling for Understanding
the Human Genome

Philosophers are for centuries trying to answer the question of why we—human beings
—are as we are. Why do we behave as we behave? What is our origin and our destiny?
Understanding and manipulating life has historically being out of our scope, and
considered closer to religion than to pure science.

But again a new world is coming where CM can play an essential role. From a
SE/IS perspective software products can be generated from a conceptual schema fol-
lowing a binary, silicon-based execution model based on 0s and 1s. Using an analogy,
from a biological point of view we have the programs—any living being—executing an
execution model that is carbon-based and instead uses four letters (A, C, G, T, the four
nucleotides that conforms the basic elements of a DNA sequence). In this case we have
the program instances, but we don’t have the models. Analyzing this as a reverse
engineering model-driven problem, we have the program and but don’t know—yet!—
the conceptual schema that a given program represent. This analogy is represented in
Fig. 2.

A huge amount of data is generated continuously in the genome domain. While the
sequencing technologies are making more feasible and accessible to obtain our genome
sequenced, what do we do with a data file that contains approximately 3,200,000,000
nucleotides of DNA whose meaning is mainly unknown for us? We could go further in
our analogy with conventional code, wondering what we would do with a huge

26 O. Pastor

sequence of 0–1s of an executable program if this sequence of millions of 0–1s were
our only documentation of the program.

The technologies that are sequencing DNA improve at an impressive speed,
Converting the initial sample of blood or saliva in a final sequence requests a
sophisticated process where again the data perspective is essential. The so-called
bioinformatics pipeline (see Fig. 3) follows a precise process where firstly, after a raw
data capturing step the initial physical sample is converted into a given file visual-
ization format (usually technology dependent). Secondly a sequence estimation process
and an alignment to a reference sequence process generate a set of files with a de-facto,
widely accepted data file formats (FAST, FASTQ, SAM, BAM). Finally, a compara-
tive report with the relevant genome variants is generated using another text file format
especially created for the case (VCF).

The problem is that this is just one concern of the problem. Beyond this techno-
logical perspective, once we have for instance the VCF file with the reported variants,
the other concern of the problem is how to interpret the semantics of these variants in
terms of what phenotype implications they may have. In clinical terms, we want to
know what variations are related to what diseases. Considering the big number of
diseases and the short amount of knowledge that we currently have, it is easy to
conclude how much work is still to be done in the next decades.

Fig. 2. Conceptual models for software versus conceptual models for life

Fig. 3. The bioinformatics pipeline: sequence of actions, each one generating a type of file with
a particular data format.

Conceptual Modeling of Life: Beyond the Homo Sapiens 27

To improve our knowledge of DNA variation and the consistency in variant
classification will require a massive effort in data sharing. As we will discuss next, this
data sharing implies a CM exercise to identify the relevant concepts and their corre-
sponding relationships. Only having such a CM-based background, an efficient data
analysis can be done and assessed. For instance, a recent analysis of the ClinVar data
source on variant interpretation comparisons concluded that 11 % (12,895 up to
118,169) of variants had two or more submitters, and 17 % (2229 up to 12,895) were
interpreted differently [22, 23]. Increasingly, genetic tests provide ambiguous results,
leaving doctors and scientists searching to make sense of these “variants of unknown
significance”. Clinic genetics may have a big problem that is affecting people’s lives.
One again, CM can provide the required answer. Designing the correct conceptual
models, the genomic community could come together to develop its own standards to
ensure safe and effective use of genetic and genomic medicine.

Interestingly, we could talk not only about diseases. In terms of facing the problem
of understanding the human genome, the final challenge is to understand any charac-
teristic related with our way of living: physiognomy, personality features… The
capability of being able to know and manipulate this type of properties opens scientific
and ethical challenges that we have never faced in our history. Never in the past the
Homo Sapiens has been able to understand how life works in order to manage this
knowledge to transform life according to his interests. This is a strong, cultural revo-
lution, that justifies why in the title of this keynote the term “beyond the Homo
Sapiens” has been introduced. A Homo Sapiens with the capability of transforming
herself appears to conform an evolved Homo Sapiens. Without any doubt, an inter-
esting topic for a rich, long discussion!

Bioinformatics and CM. If we wonder what it is the role of CM in this context, the
answer is immediate. More and more data are generated every day. Just for the human
case, the size of a complete genome for an individual person is approximately 2.5–
3 GB, but the data involved in the process is ten times bigger. We can imagine the Big
Data problem related to the setup and maintenance of a sort of Genome database where
we could for instance store the genomes of all the humanity. The most similar expe-
rience, the 1000 Genomes database, stores several TB of data. Still worse, it is not just
a problem of data loading, it is a problem of data management. We should be able to
“read” any particular genome, to compare different genomes, to edit a genome as we do
with a conventional program… Genome editing technologies start to be a reality and
the practical implications of all these facts are anticipating a revolution in our human
concept of medicine, leading to the medicine of precision, a personalized medicine
where any treatment will be dependent on the personal “genomic” code of the patient.

Additionally, we do not should forget that life in our planet is not only limited to
humans! Any life as we understand it on the Earth is genome-based. This means that
whatever we are saying for the human genome could be generalized and could be
applied to any genome of any kind of species. Giving a unifying data treatment to the
problem of representing life as a whole is a problem whose dimension is even hard to
delimit.

This context provides a challenging working environment for the CM community.
It is surprising to realize that in such a complex context, where data management and

28 O. Pastor

data understanding is a first-order problem, CM practice is ignored too frequently. To
make things worse, current data are spread over a very diverse set of heterogeneous
data sources, where data consistency is not warranted and data integration is tremen-
dously complex - when just not possible.

The only feasible strategy to provide a sustainable solution should be centered
around the use of the well-known IS principles, using CM techniques and proposing a
kind of Genome IS approach based on a precise conceptual schema of the human
genome (CSGH). While steps in this direction are already under development [24],
much more work is to be done to assess that a sound conceptual background is
provided to make possible an effective and efficient genome data management policy.
This CSHG will act as conceptual repository designed to include all the knowledge
accumulated around the human genome, and unifying the management of that
heterogeneous set of data sources from a holistic perspective. Only with such an
“oracle” of valid, well-designed data, a sustainable progress can be performed, based
on storing and managing more and more right (“curated”) data to be obtained as
research in the domain progresses and to be provided to the community in the form of
accurate results.

The steps towards a successful and reliable universal medicine of precision are fully
dependent on the success of this IS and CM perspective, and this is probably the most
promising scenario for CM practices in the next future.

4 Conclusions

This keynote emphasizes the intended importance of conceptualizing from two per-
spectives: from an Information Systems/Software Engineering perspective on the one
side, and from a social, human being-oriented perspective on the other side. The world
to come is plenty of social and technological challenges, and the discussed approach is
that its fruitful development should be CM-based.

Assuming that CM is the essential discipline to develop such an evolved, better
world where technology and information were properly used, conceptual modelers
should play a central role. To understand this role, what CM is and what its scope is has
been analyzed, focusing on the ontological background that such a sound definition
requires.

An initial analysis of practical implications is discussed, If we want to build a better
world, we must know what we are trying to build. The hardest part for most designers
of complex systems is not knowing how to design such a complex system, but what it
is what they are trying to design. This is where CM can provide the needed answers and
tools. Using CM to understand and manage life—from both those social and biological
points of view—will help us to use adequately our rational power of conceptualization,
going beyond the capabilities traditionally attached to human beings and opening the
door to an improved version of our species: beyond the Homo Sapiens, for developing
a challenging, improved world that is already coming, with a sound CM background as
the essential strategy to make it viable and real.

Conceptual Modeling of Life: Beyond the Homo Sapiens 29

References

1. Embley, D.W., Liddle, S.W., Pastor, O.: Conceptual-model programming: a manifesto. In:
Embley, D.W., Thalheim, B. (eds.) Handbook of Conceptual Modeling, pp. 3–16. Springer,
Heidelberg (2011)

2. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Production
Environment Based on Conceptual Modeling. Springer, Heidelberg (2007). pp. I–XVI,
1–302. ISBN 978-3-540-71867-3

3. Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM Trans.
Database Syst. 1(1), 9–36 (1976)

4. Muller, P.-A., Fondement, F., Baudry, B.: Modeling modeling. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 2–16. Springer, Heidelberg (2009)

5. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework. Presented
at ASE, Automated Software Engineering, November 2001

6. Brown, A.W.: Model driven architecture: principles and practice. SoSyM 3(3), 314–327
(2004)

7. Kuehne, T.: Matters of (meta-) modeling. SoSyM 5(4), 369–385 (2006)
8. OMG, Model Driven Architecture, Electronic Source: Object Management Group. http://

www.omg.org/mda/
9. Ludewig, J.: Models in software engineering - an introduction. SoSyM 2(3), 5–14 (2003)
10. Mylopoulos, J.: Conceptual modeling and telos. In: Loucopoulos, P., Zicari, R. (eds.)

Conceptual Modeling, Databases, and CASE: an Integrated View of Information Systems
Development, pp. 49–68. Wiley, New York (1992)

11. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007).
pp. I–XXV, 1–455

12. Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications of it in
business modeling. In: CAiSE Workshops, vol. 3, pp. 129–143 (2004)

13. Guizzardi, G.: Towards ontological foundations for conceptual modeling: the unified
foundational ontology (UFO) story. Appl. Ontol. 10, 259–271 (2015)

14. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages and
(meta)models. In: Vasilecas, O., Edler, J., Caplinskas, A. (eds.) Databases and Information
Systems IV, pp. 18–39. IOS Press, Amsterdam (2007)

15. de Cesare, S., Gailly, F., Guizzardi, G., Lycett, M., Partridge, C., Pastor, O.: 4th International
Workshop on Ontologies and Conceptual Modeling, Onto.Com 2016 (together with FOIS
2016). http://www.mis.ugent.be/ontocom2016/workshop-program-presentations/

16. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb Deliverable
D18: Ontology Library. Ontology Infrastructure for the Semantic Web. Laboratory For
Applied Ontology - ISTC-CNR, Trento (2003)

17. Partridge, C.: Note: A Couple of Meta-Ontological Choices for Ontological Architectures.
LADSEB CNR, Padova (2002)

18. Sem, S.K., Pulvermacher, M.K., Obrst, L.J.: Toward the Use of an Upper Ontology for U.S.
Government and U.S. Military Domains: An Evaluation. The MITRE Corporation, Bedford
(2004)

19. Martinez-Barea, J.: The world to come, Ed. Gestión 200, 144 pages. ISBN:
978-84-9875-374-5

20. Gervasi, V., Gacitua, R., Rouncefield,M., Sawyer, P., Kof, L.,Ma, L., Nuseibeh, B., Piwek, P.,
de Roeck, A., Willis, A., Yang, H.: Unpacking tacit knowledge for requirements engineering.
In: Maalej, W., Thurimella, A.K. (eds.) Managing Requirements Knowledge. Springer,
Heidelberg (2013)

30 O. Pastor

http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.mis.ugent.be/ontocom2016/workshop-program-presentations/

21. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In 21st
IEEE International Requirements Engineering Conference, RE 2013, pp. 92–104. IEEE
(2013). ISBN 978-1-4673-5765-4/13

22. Rehm, H.L:. Deciphering the genome: community driven approaches. In: BioIT World,
Boston, MA (2016). http://www.bio-itworldexpo.com/

23. Rehm, H.L., et al.: ClinGen: the clinical genome resource. New Engl. J. Med. Spec.
Rep. NEJM 372, 2235–2242 (2015)

24. Pastor, O., Casamayor, J.C., Celma, M., Mota, L., Pastor, M., Levin, A.M.: Conceptual
modeling of human genome: integration challenges. In: Düsterhöft, A., Klettke, M., Schewe,
K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations. LNCS, vol. 7260,
pp. 231–250. Springer, Heidelberg (2012)

Conceptual Modeling of Life: Beyond the Homo Sapiens 31

http://www.bio-itworldexpo.com/

Analytics and Conceptual Modeling

A Conceptual Modeling Framework
for Business Analytics

Soroosh Nalchigar1(B), Eric Yu1, and Rajgopal Ramani2

1 Department of Computer Science, University of Toronto, Toronto, Canada
{soroosh,eric}@cs.toronto.edu

2 Deloitte, Global Technology Services, Toronto, Canada
rramani@deloitte.ca

Abstract. Data analytics is an essential element for success in modern
enterprises. Nonetheless, to effectively design and implement analytics
systems is a non-trivial task. This paper proposes a modeling framework
(a set of metamodels and a set of design catalogues) for requirements
analysis of data analytics systems. It consists of three complementary
modeling views: business view, analytics design view, and data prepara-
tion view. These views are linked together and act as a bridge between
enterprise strategies, analytics algorithms, and data preparation activ-
ities. The framework comes with a set of catalogues that codify and
represent an organized body of business analytics design knowledge. The
framework has been applied to three real-world case studies and findings
are discussed.

Keywords: Conceptual modeling · Data analytics · Machine learning ·
Goal-oriented requirements engineering · Business analytics

1 Introduction

The effective design and implementation of data analytics solutions has proven
to be difficult. This difficulty is, in part, due to challenges such as determining
the right analytics needs, utilizing the right analytics algorithms, as well as
connecting them with high-level business objectives and strategies.

Requirements elicitation for data analytics systems is a complex task [12,27].
Analytics requirements are often unclear and incomplete at the early phases of
projects. While business users often have a clear understanding of their strategic
goals (e.g., improve marketing campaigns, reduce inventory levels), they are not
clear on how analytics can help them achieve those goals. This is, to a great
extent, due to a huge conceptual distance between business strategies, decision
processes and organizational performance on one hand, and the implementation
of analytics systems in terms of databases, preprocessing activities, and machine
learning algorithms on the other hand. Previous researches report that the lead-
ing barrier to using analytics techniques is lack of understanding of how to use
analytics and unlock its value to improve the business [17,19].
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 35–49, 2016.
DOI: 10.1007/978-3-319-46397-1 3

36 S. Nalchigar et al.

Moreover, designing analytics solutions includes making critical design deci-
sions while taking into account softgoals and tradeoffs [18]. A large number of
machine learning and data mining algorithms exists and new ones are being
developed continuously. During analytics projects, one needs to make design
choices such as what are potential algorithms that can address the problem
at hand? What criteria should be considered to evaluate those algorithms?
What/how data should be prepared to be used by algorithms? These decisions
have important implications in several aspects of the eventual analytics solution,
such as scalability, understandability, tolerance to noisy data and missing values.

On the other hand, aligning analytics with business strategies is critical for
achieving value through analytics [14,17]. Lack of this alignment can result in
unclear expectations of how analytics contribute to business strategies, lack of
executive sponsorship, and analytics project failures. It is important for organi-
zations to discover, justify, and establish why there is a need for the organization
to allocate resources to analytics initiatives. Towards this end, discovering the
business goals and translating them into analytics goals is a critical step [4,15].

This paper presents a modeling framework (i.e., a set of metamodels and a set
of design catalogues) for overcoming these challenges. The framework includes
three complementary modeling views: (i) The Business View represents an enter-
prise in terms of strategies, decisions, analytics questions, and required insights.
This view is used to systematically elicit analytics requirements and to inform
the types of analytics that the user needs. (ii) The Analytics Design View repre-
sents the core design of an analytics system in terms of analytical goals, (machine
learning) algorithms, softgoals, and metrics. This view identifies design trade-
offs, captures the experiments (to be) performed with a range of algorithms,
and supports algorithm selection. (iii) The Data Preparation View represents
data preparation processes in terms of mechanisms, algorithms and prepara-
tion tasks. This view expresses the structure and content of data sources and
the design of data preparation tasks. The three views are used together to link
enterprise strategies to analytics algorithms and data preparation activities. The
framework comes with three catalogues, each corresponding to a modeling view.
Catalogues codify and represent reusable analytics knowledge for users.

Organization. Section 2 presents an illustration of the proposed framework in
a real analytics project. Section 3 introduces primitive concepts and presents
metamodels. Section 4 offers three analytics design catalogues. Section 5 dis-
cusses findings from applying the framework in three analytics projects. Section 6
reviews related work and Sect. 7 concludes the paper.

2 An Illustration

We illustrate the framework using a project aimed at developing an analytics
system to predict upcoming software system outages. The company has around
300 globally accessible software applications hosted in its data centers across
the world. Software system outages are costly and predicting them can enable
preventive maintenance activities.

A Conceptual Modeling Framework for Business Analytics 37

Fig. 1. Business View for the software outage prediction project (partial). This model
is constructed based on interviews with domain experts, review of reporting dashboards
and metrics in place, supplemented with some assumptions.

Figure 1 illustrates the Business View for the software outage prediction
project. The purpose of this view is to represent the analytics needs of an organi-
zation and to ensure that those needs are driven by organizational decisions and
strategies. This view models the business motivation for the analytics project in
terms of its strategic goals, indicators, decision goals, question goals, and insights.

The model in Fig. 1 shows that Improve maintenance of IT systems is a strate-
gic goal of the company. It also shows that Mean time between failures and Uptime
(%) are among the indicators that the company uses to evaluate the goal. Strate-
gic goals are decomposed into lower level strategic goals and eventually into deci-
sion goals. Software outage prevention decision is an example of a decision goal.
The model indicates that in order to Prevent software outages, the corresponding
actor1 needs to decide on how to prevent a software from failing. Decision goals
are further decomposed into question goals. When will [Software outage] happen?
is an example of a question goal. The model depicts that for making Software
outage prevention decision, the corresponding actor needs to know if a software
outage will happen in the near future. Question goals are answered by insights.
Software outage predictive model is an example of an insight to be generated by

1 Actors are not shown here due to space limitations.

38 S. Nalchigar et al.

Fig. 2. Analytics Design View for software outage prediction project (partial).

the intended analytics system. It is a Predictive model that, in runtime, will be
used Hourly to generate Alerts before an upcoming outage.

By modeling decision goals, this view represents the areas that need support
from analytics insights. It ensures the connection between analytics, organiza-
tional decision processes, and strategic goals. This concept also facilitates linking
and turning analytics-driven insights into actions, because the actions are indeed
the decision outcomes. Through the question goals, the framework captures the
business needs that the analytics work is intended to address. The catalogue
of question goals (introduced in Sect. 4) can be used while performing modeling
activities in this view. Eliciting the questions at the early phases of analytics will
help perform the right analysis for the right user. Later in the analytics process
and once the findings are generated, the questions can also facilitate the process
of interpreting and framing the findings. By modeling insights, this view rep-
resents the knowledge that is extracted from data for answering the questions.
The insight elements connect business view to analytics design view.

Figure 2 illustrates the Analytics Design View for the software outage predic-
tion project. The purpose of this view is to represent the design of the analytics
system, including algorithm selection. This view models an analytics system in
terms of analytics goals, (machine learning) algorithms, softgoals, and indicators.

In Fig. 2, Predict software outage is an example of an analytics goal. To achieve
this goal, the system needs to achieve the Classification of software entity states

A Conceptual Modeling Framework for Business Analytics 39

goal2. The model shows that Neural networks and Decision forest are alternative
algorithms that perform classification. Moreover, the model represents the contri-
butions from algorithms towards indicators and softgoals. For example, the link
from Decision Forest algorithm towards Precision means that during experiments,
the algorithm resulted in the value of 0.92 for Precision. Also, this algorithm has
a positive contribution towards the Speed of learning. By capturing these, the
view supports algorithm selection while designing the analytics systems3. The
algorithms catalogue (introduced in Sect. 4) assists users in this modeling view
and supports designing analytics systems. The analytics goals connect this view
to the data preparation view.

Fig. 3. Data Preparation View for software failure prediction project (partial).

Figure 3 illustrates the Data Preparation View for the software outage predic-
tion project. The purpose of this view is to support the design and documentation
of data preparations workflows. This view models data preparation processes in
terms of entities, attributes, mechanisms, algorithms, and preparation tasks.

The model in Fig. 3 shows the content and structure of data sources4. It
shows that an Application is related to many Assets and each asset in turn can
have many ManagedEntities. The State data captures the status of the software
2 There were several instances of classification goal that each addressed a specific

prediction period, such as 8, 16, 24 h. Each of the goals is connected to a different
instance of the insight element. Due to space limitations, only one pair of analytics
goal and insight is illustrated here.

3 In the first case study, the indicator Precision had highest priority which justified
the choice of Decision Forest for the corresponding classification goal.

4 The company has a cross-platform data center management system that logs com-
puter systems operations.

40 S. Nalchigar et al.

entities over time. The model shows the sequence of data preparation mechanism
and algorithms. Join and Filter are examples of mechanism. SMOTE is an exam-
ple of an algorithm for data preparation. A set of mechanisms and algorithms
together form a data preparation task. In Fig. 3 the gray shaded area shows a
Data numerosity reduction task. This task is responsible for removing managed
entities whose State data is not showing any meaningful relationship with soft-
ware outage. The k-means clustering is an example of an algorithm which, in
this case, performs the main part of the data reduction task. The main outcome
of the workflows is the prepared dataset that is required for the analytics goal
To predict [software outage]. The data preparation catalogue (see Sect. 4) assists
users in this modeling view and supports designing data preparation workflows.

3 Metamodels

3.1 Business View

Figure 4 shows metamodel of the Business View in terms of a UML class diagram.
Concepts in the gray shaded area are adopted from the Business Intelligence
Model (BIM) [10,11]. Here we explain concepts that are added to extend BIM.

Fig. 4. Part of metamodel for the Business View.

Decision Goals. This concept represents intention of an actor for taking actions
towards achieving strategic goals. Strategic goals can be decomposed into one
or more decision goals.

A Conceptual Modeling Framework for Business Analytics 41

Question Goals. This concept represents the desire of an actor for understand-
ing or knowing something that is required for making decisions (i.e., achieving
decisions goals). It captures “needs to know” of an actor. Decision goals are
decomposed into one or more questions. Questions can be refined into one or
more questions.

Question goals are analyzed into a type and topic as in NFR framework [5],
and also tense (see the metamodel in Fig. 4). The question type denotes the
question phrase (e.g., When in Fig. 1), while the question topic denotes the sub-
ject and focus of the (intended) analysis (e.g. [Software outage] in Fig. 1). The
question tense captures the time horizon that a question goal addresses. Elicita-
tion of question type and tense together allows specifying what kinds of analytics
and machine learning algorithms are required as part of the intended system.
Moreover, identification of topic allows specifying what kind of data (or what
parts of database) will the intended analytics system use for mining. In addition,
as shown in Fig. 4, question goals are specified in terms of their frequency. This
attribute captures time scales and frequencies that the corresponding question
is being raised. High frequency analytics question have more potential to be
embedded into automated analytics systems and tools [21].

Insights. This concept represents a structured, (machine) understandable pat-
tern (i.e., relationship among data) that is extracted from data by applying
analytics algorithms. It represents a piece of information/knowledge that (par-
tially) answers a question goal, and thereafter facilitates decision making and
contributes to strategic goals. This concept has the following subtypes: Predic-
tive model, Probability Estimation Function, Diagrams (e.g., trees, graphs), Log-
ical Rule (e.g., association rules) and Groupings of Records (e.g., clusters). This
concept connects to the question goals through the answers link. It represents
the immediate output of the data analytics activities.

Fig. 5. Part of metamodel for the Analytics Design View.

42 S. Nalchigar et al.

3.2 Analytics Design View

Analytics Goals. This concept (see the metamodel in Fig. 5) represents the
top-goal of the data analytics system, i.e., to extract insight from data. Ana-
lytics goals connect to insights via the link generates. There are three types of
analytics goals. Prediction Goal represents an intention to predict value of a
target data attribute (i.e., label attribute) by using other existing attributes in
the dataset. It shows the desire to find the relationship between the target fea-
ture and other existing features in the dataset. Two subtypes of this concept are
Classification (predicts categorical values) and Numeric Prediction. Description
Goal represents an intention to summarize and describe the dataset and includes
two subtypes: Clustering and Pattern Discovery. Prescription Goal represents
an intention to find the optimal alternative among a set of potential alternatives.
Optimization and Simulation are subtypes of prescription goals.

Algorithms. This concept represents a procedure that addresses an analytics
goal. An algorithm is a set of steps that are necessary for an analytics goal to
be achieved. It is a way through which insight is extracted from data in order
to satisfy an analytics goal. This concept is connected to analytics goal through
the performs links, representing a means-end relationship.

Indicators and Softgoals. Indicators [10] are numeric metrics that measure
performance with regard to some goal (analytics goal in this modeling view).
Softgoals [28] capture qualities that should sufficiently hold when performing
analytics. Algorithms connect to indicators and softgoals through the influence
links. Influence links that are directed towards an indicator, can be labeled with
the corresponding numeric value.Contributions that are directed towards quali-
ties can range from positive to negative, following i∗ guidelines [28].

Analytics projects involve experimenting with different algorithms. During
design time, indicators and softgoals represent criteria to be considered for eval-
uation/comparison of alternative algorithms that perform the analytics task at
hand. They can be used to reduce the domain of experiments. During runtime
they can be used for monitoring the performance of the running analytics system.

3.3 Data Preparation View

Data Preparation Tasks. This concept (see the metamodel in Fig. 6) repre-
sents the general task of preparing the data that is required for achieving some
analytics goal. A data preparation task consists of one or more Operator(s). It
has four subtypes [9]: Data reduction generates a data set that is smaller in size
than the input data set and yet produces the same analytical results (i.e., serves
the same analytical goals). Data numerosity reduction (see an example in Fig. 3)
and Data dimensionality reduction are two types of data reduction tasks. Data
cleaning represents the tasks that remove errors from the input dataset and also
treat missing values in it. Clean missing value and Clean noisy attribute are
subtypes of this concept. Data transformation transforms the shape of data in a

A Conceptual Modeling Framework for Business Analytics 43

Fig. 6. Part of metamodel for the Data Preparation View.

way that is more appropriate for analytics algorithms to mine and find patterns.
Data normalization and Data discretization are subtypes of this concept. Data
integration merges data from different data sources.

Operator. It represents an atomic activity that performs (part of) a data prepa-
ration task. Operators are linked by data flows to represent the sequence. There
are two types of operators. Mechanism represents fundamental data preparation
operations such as Join and Filter [6,24]. Algorithm is identical with algorithm
in the previous view. In the data preparation view, this concept captures situ-
ations where machine learning algorithms are used for preparing data, and not
for performing the actual analytics task (see examples in Fig. 3).

Table 1. High-level structure of question goals catalogue. Due to space limitations,
instances of each category of question goals are not provided here.

44 S. Nalchigar et al.

4 Cataloguing Analytics Design Knowledge

The proposed framework comes with three kinds of design catalogues. These cat-
alogues bring relevant analytics knowledge to the attention of the project team
for use and re-use during the design and development processes. They provide
an organized body of analytics knowledge, accumulated from surveys (e.g., [16]),
textbooks (e.g., [9]), formal ontologies (e.g., [25]), and previous experiences.

Business Questions Catalogue. This catalogue represents knowledge about
the types of question goals, and their associated analytics types. It categorizes
question goals based on their type and tense (see Sect. 3.1) and associates each
category with relevant analytics goal(s). Table 1 presents the high level schema
of the catalogue. This catalogue is populated with a wide collection of instances
for each category of questions goals. For example, the question goal of Who will
be [leaving the firm]? belongs to the Who will be involved in it? category in Table 1,
and can be addressed by Prediction type of analytics. As another example, the
question goal of When will [Software outage] happen? from Fig. 1, belongs to
the When will it happen? category in Table 1. This catalogue can be used by
analytcis team and stakeholders during the modeling activities of business view.
It can facilitate the elicitation of analytics requirements (i.e., needs to know)
by suggesting and refining question goals. It also guides users to the kinds of
analytics solutions that can address their needs.

Algorithms Catalogue. This catalogue systematically organizes machine
learning algorithms that are available for addressing different types of analytics
goals. The catalogue provides existing metrics to be taken into account while
comparing/evaluating performances of different algorithms. It also presents crit-
ical softgoals that need to be taken into account while developing analytics solu-
tions. In addition, it encodes the knowledge on how each algorithm perform with
regard to different softgoals (influence links). A portion of this catalogue is illus-
trated in Fig. 7. As an example, it shows that Support Vector Machine (SVM)
is an algorithm that performs Numeric prediction and its performance can be
evaluated using the Mean Absolute Error (MAE) metric.

The context semantics from [1] are used to associate context with machine
learning algorithms. In this way, the catalogue represents when certain machine
learning algorithms are shown to perform well based on a collection of previous
evidences and experiments in the literature or relevant sources. This can guide
the decision on which algorithms are more appropriate for the analytics goal and
shorten the experimentation phase of the projects. In Fig. 7, context C1 shows
that the Classification goal is activated when Target attribute type (the value to be
predicted) is categorical. On the other hand, C2 shows that Neural network can be
used for Numeric prediction, when Input dataset is scaled to a narrow range around
zero. Due to space limitations, not all the contexts are given in Fig. 7.

Data Preparation Techniques Catalogue. This catalogue captures knowl-
edge on available methods for different types of data preparation tasks. It makes
use of the same modeling elements as in the algorithm catalogue. As shown in

A Conceptual Modeling Framework for Business Analytics 45

Fig. 7. A portion of algorithm catalogue. Influence links from algorithms towards soft-
goals are not shown here to keep the model readable.

Fig. 8. A portion of data preparation catalogue. Not all the contexts are shown.

Fig. 8, Using median is a method for Cleaning missing values when the correspond-
ing Attribute has a skewed distribution. Analytics development team can browse
through this catalogue and design data preparation workflows.

46 S. Nalchigar et al.

5 Case Studies

The proposed framework has been applied to three analytics projects. The first
two case studies were reconstructions of completed projects. The third case study
was an application of the framework to an on-going analytics project. These cases
together serve as an initial validation of the framework. In Sect. 2, we used the
first case study for illustrating the modeling views. The second project focused on
finance analytics. The purpose of this project was to predict an upcoming event
regarding financial metrics in company’s network. The third project focuses on
search engine analytics. The purpose of this project is to use analytics to provide
query suggestions to online users.

Our main observation from the first and second cases is that the model-
ing views together provide an adequate set of concepts for connecting strategic
goals to analytics algorithms and data preparation activities. The three model-
ing views were instantiated for these case studies, presented to and understood
by stakeholders. We observed that the framework can be used for representing
analytics requirements, can show design tradeoffs and support algorithm selec-
tion, can capture data preparation activities, and can represent the alignment
between analytics systems and business strategies.

Our main observation from the third case is that the framework can be use-
ful in guiding analytics projects. A model from business view was constructed,
in collaboration with stakeholders, at the requirements elicitation phase of the
project. While at the beginning the focus of the project was broad and imprecise
(to use analytics for improving users’ search experience), the models effectively
helped the team to narrow down the scope and reach an agreement about the
“to-be” analytics system (to use analytics to provide query suggestions). We
observed that users are able to understand the content of the model and can
work with analytics team to construct and elaborate on the models. The mod-
els raised effective discussions during meetings and resulted in removing some
and adding new question goals. These suggest that the framework can enhance
the communication between domain experts and data scientists (who develop
analytics systems). Models from data analytics design view were constructed
and updated during the project, mostly by the project manager and data scien-
tists. The softgoals (most importantly Scalability) were used for making design
decisions.

6 Related Work

Conceptual Modeling for Data Warehouses. These works propose con-
ceptual modeling approaches for requirements engineering of data warehouses.
For example, the work in [20] proposes a goal-oriented, model-driven approach
for development of data warehouses. Authors in [23] propose goal-decision-
information model for analyzing data warehouse requirements. Reference [8]
proposes a Tropos-based methodology for requirements analysis in data ware-
houses. While we adopt some of concepts from these works (e.g., decision goals

A Conceptual Modeling Framework for Business Analytics 47

in [20,23]), the proposed framework supports requirements engineering for pre-
dictive and prescriptive types of analytics systems, in addition to descriptive
ones.

Conceptual Modeling for ETL Processes. These works propose conceptual
modelings for ETL (Extraction-Transformation-Loading) processes. The work
in [26] presents a metamodel and notation for modeling ETL processes in the
early stages of data warehouse projects. In [24] authors define a set of common
ETL activities in terms of stereotyped classes and use UML dependencies to
link them together. Reference [22] defines a model–driven architecture approach
to transform ETL conceptual models to code. In [6], a BPMN-based modeling
approach for ETL processes is presented. While the proposed framework reuses
modeling constructs from these works (e.g., mechanism from [24]), it captures
machine learning and organizational aspects of analytics solutions.

Modeling for BI. The Business Intelligence Model (BIM) [11] represents a
business in terms of strategic goals, processes, performance indicators, influences,
and situations. BIM supports a wide range of automated reasoning and business
analyses techniques [2,10]. It is shown that the language can facilitate design
and development of BI solutions [3]. BIM lacks primitive concepts for supporting
design of advanced analytics solutions. This work uses and extends the modeling
constructs to capture analytics work from data preparation tasks to algorithms,
and thereafter to insights and question goals.

Data Mining Process Models. These models describe the sequence of tasks
that should be done in order to carry out data mining projects. The work by
Fayyad et al. [7] is often considered as the first reported data mining process
model. The CRISP-DM model [4] is often mentioned as the most used and the
de facto standard process model. These works do not offer a modeling language.

Data Mining Ontologies. Several efforts have been made to establish formal
ontologies for supporting users during data mining processes. For example, ref-
erences [13] propose ontologies for facilitating algorithm selection and designing
the data mining workflows. The ontology in [25] formally represents data min-
ing experiments to enable meta-learning. Concepts that express business and
requirements aspect of analytics solutions are not included in these works.

7 Conclusion

This paper presented initial research results towards a conceptual modeling
framework for business analytics. The framework has been tested in three case
studies. The case studies suggest that the proposed framework can support the
design and implementation of analytics solutions. It is notable that all these
case studies belong to a single domain and company. In future we plan to extend
the framework and evaluate it in different domains, completing other pieces of
the design science research approach. We plan to conduct empirical studies with
users who are not the researchers. Usage, comprehensibility and learning curve

48 S. Nalchigar et al.

of the modeling views can be examined for different types of roles (from busi-
ness decision makers to data scientists) that are typically involved in analytics
projects. These studies can lead to definition of a model-based methodology, as
part of the framework, for developing analytics systems. The content of analytics
catalogues can be extended, validated, and their usage can be examined in real
cases. We also plan to develop tools that support the framework.

References

1. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual require-
ments modeling and analysis. Requirements Eng. 15(4), 439–458 (2010)

2. Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Composite indicators for
business intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER
2011. LNCS, vol. 6998, pp. 448–458. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24606-7 35

3. Barone, D., Topaloglou, T., Mylopoulos, J.: Business intelligence modeling in
action: a hospital case study. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza,
S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 502–517. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31095-9 33

4. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,
Wirth, R.: CRISP-DM 1.0 Step-by-Step Data Mining Guide. SPSS Inc. (2000)

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in
Software Engineering. Springer Science & Business Media, New York (2012)

6. Akkaoui, Z., Mazón, J.-N., Vaisman, A., Zimányi, E.: BPMN-based concep-
tual modeling of ETL processes. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK
2012. LNCS, vol. 7448, pp. 1–14. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32584-7 1

7. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Mag. 17(3), 37–54 (1996)

8. Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: a goal-oriented approach to require-
ment analysis in data warehouses. Decis. Support Syst. 45(1), 4–21 (2008)

9. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier,
Waltham (2012)

10. Horkoff, J., Barone, D., Jiang, L., Eric, Y., Amyot, D., Borgida, A., Mylopoulos,
J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model.
13(3), 1015–1041 (2014)

11. Jiang, L., Barone, D., Amyot, D., Mylopoulos, J.: Strategic models for busi-
ness intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER
2011. LNCS, vol. 6998, pp. 429–439. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24606-7 33

12. Kandogan, E., Balakrishnan, A., Haber, E.M., Pierce, J.S.: From data to insight:
work practices of analysts in the enterprise. IEEE Comput. Graphics Appl. 34(5),
42–50 (2014)

13. Keet, C.M., Lawrynowicz, A., dAmato, C., Hilario, M.: Modeling issues and choices
in the Data Mining OPtimization Ontology. In: OWLED 2013, Montpellier, France,
May 2013

14. Kohavi, R., Mason, L., Parekh, R., Zheng, Z.: Lessons and challenges from mining
retail e-Commerce data. Mach. Learn. 57, 83–113 (2004)

http://dx.doi.org/10.1007/978-3-642-24606-7_35
http://dx.doi.org/10.1007/978-3-642-24606-7_35
http://dx.doi.org/10.1007/978-3-642-31095-9_33
http://dx.doi.org/10.1007/978-3-642-32584-7_1
http://dx.doi.org/10.1007/978-3-642-32584-7_1
http://dx.doi.org/10.1007/978-3-642-24606-7_33
http://dx.doi.org/10.1007/978-3-642-24606-7_33

A Conceptual Modeling Framework for Business Analytics 49

15. Kohavi, R., Rothleder, N.J., Simoudis, E.: Emerging trends in business analytics.
Commun. ACM 45(8), 45–48 (2002)

16. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques.
Informatica 31(3) (2007)

17. LaValle, S., Hopkins, M.S., Lesser, E., Shockley, R., Kruschwitz, N.: Analytics: the
new path to value. MIT Sloan Manag. Rev. (2010)

18. Luca, M., Kleinberg, J., Mullainathan, S.: Algorithms need managers, too. Harvard
Bus. Rev. 94, 96–101 (2016)

19. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.H.: Big data: the next frontier for innovation, competition, and productivity.
Technical report, McKinsey Global Institute (2011)

20. Mazón, J.-N., Pardillo, J., Trujillo, J.: A model-driven goal-oriented requirement
engineering approach for data warehouses. In: Hainaut, J.-L., et al. (eds.) ER
2007. LNCS, vol. 4802, pp. 255–264. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76292-8 31

21. Menzies, T., Zimmermann, T.: Software analytics: so what? IEEE Softw. 30(4),
31–37 (2013)

22. Muñoz, L., Mazón, J.-N., Trujillo, J.: Automatic generation of ETL processes from
conceptual models. In: DOLAP 2009, pp. 33–40 (2009)

23. Prakash, N., Gosain, A.: An approach to engineering the requirements of data
warehouses. Requirements Eng. 13(1), 49–72 (2008)

24. Trujillo, J., Luján-Mora, S.: A UML based approach for modeling ETL processes
in data warehouses. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P.
(eds.) ER 2003. LNCS, vol. 2813, pp. 307–320. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-39648-2 25

25. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases -
a new way to share, organize and learn from experiments. Mach. Learn. 87(2),
127–158 (2012)

26. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL
processes. In: DOLAP 2002, pp. 14–21 (2002)

27. Viaene, S., Van den Bunder, A.: The secrets to managing business analytics
projects. MIT Sloan Manag. Rev. 53(1), 65–69 (2011)

28. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. thesis,
University of Toronto, Canada (1995)

http://dx.doi.org/10.1007/978-3-540-76292-8_31
http://dx.doi.org/10.1007/978-3-540-76292-8_31
http://dx.doi.org/10.1007/978-3-540-39648-2_25
http://dx.doi.org/10.1007/978-3-540-39648-2_25

NOSQL Design for Analytical Workloads:
Variability Matters

Victor Herrero(B), Alberto Abelló, and Oscar Romero

Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain
{vherrero,aabello,oromero}@essi.upc.edu

Abstract. Big Data has recently gained popularity and has strongly
questioned relational databases as universal storage systems, especially
in the presence of analytical workloads. As result, co-relational alter-
natives, commonly known as NOSQL (Not Only SQL) databases, are
extensively used for Big Data. As the primary focus of NOSQL is on
performance, NOSQL databases are directly designed at the physical
level, and consequently the resulting schema is tailored to the dataset
and access patterns of the problem in hand. However, we believe that
NOSQL design can also benefit from traditional design approaches. In
this paper we present a method to design databases for analytical work-
loads. Starting from the conceptual model and adopting the classical
3-phase design used for relational databases, we propose a novel design
method considering the new features brought by NOSQL and encom-
passing relational and co-relational design altogether.

Keywords: NOSQL · DW · Big data · Relational · Co-relational ·
Database design

1 Introduction

Deriving valuable information from raw data is nowadays a priority for most
companies [21], which see in today’s business the need to effectively monitor
and analyse own and external data to predict future trends and make informed
decisions. The success of Business Intelligence (BI) and the data-driven society
paradigm [15] gave rise to data-oriented companies and the consequent data del-
uge, which requires non-traditional sources (e.g., logs, sensors, free-text data,
images, etc.) to be included in current analytical processes. Such paradigm shift
is known as Big Data (BD), a wide concept commonly defined by the so-called 3
V’s [11], which enable data analysis in the presence of very large volumes (Vol-
ume) of heterogeneous (Variety) data in near real time environments (Velocity).

The data warehouse (DW) is the current de-facto implementation standard
in BI, where data is multidimensionally modeled (with a star-join schema),
stored in Relational Database Management System (RDBMS), and exploited
by two means [10]: OLAP and Data Mining/Machine Learning (DM/ML).
Thus, the DW is actually modeled according to OLAP needs, while for DM/ML
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 50–64, 2016.
DOI: 10.1007/978-3-319-46397-1 4

NOSQL Design for Analytical Workloads: Variability Matters 51

database dumps are generated from the DW and loaded into specialised tools
(e.g., SAS or R). The two exploitation means are still present in BD as Small
(OLAP) and Big (DM/ML) Analytics [19]. However, Small and Big Analytics
require a specific management when combined with any of the aforementioned 3
V’s. As result, Not Only SQL (NOSQL) databases [22] raised as an alternative.

NOSQL systems focus almost exclusively on performance and are based on
distributed database principles, also using flexible data models to reduce the
impedance mismatch [2]. Aiming at exploiting the data locality principle [16],
they discourage dumping data to a file for DM/ML. Consequently, the data
scientist role emerged: a data analyst with strong Computer Science skills able to
access NOSQL systems and perform advanced analysis inside them. In parallel,
several BD tools were developed for them to conduct both Small (e.g., Hive1)
and Big Analytics (e.g., SparkR2) in BD ecosystems. As result, NOSQL systems
must consider the access patterns of DM/ML to better design the database.
However, there are no systematic design methods for them, and traditional ones
cannot be reused as-they-are since they do not consider Big Analytics.

In this paper, we present a novel database design method to support ana-
lytical workloads (i.e., Small and Big Analytics). Currently, some approaches
have discussed how to model OLAP in BD (e.g., [17]) but, to our knowledge,
there is no systematic unified modeling strategy also considering DM/ML. To
accommodate NOSQL novel features, we build on the ideas in [14], where the
relationship between relational and NOSQL databases is shown to actually be
different faces of the same coin. They claim for the co-existence of the relational
(whose core data structure is the relation) and the co-relational (whose core is a
finer-grained structure; such as the key-value) data models. In our approach, we
benefit from the well-researched relational design techniques and extend them
for the co-relational model, and from DW concepts that also apply in BD.

Currently, NOSQL design is, at best, performed at the logical level, in a
performance-wise manner and not following the classical ANSI/SPARC archi-
tecture. However, this results to be problematic as BD requirements are more
dynamic than in DW. Data scientists frequently ask for new attributes, entities
or relationships that were not considered in their statistical models before. Thus,
since the schema will change and we cannot assume a complete view of the user
needs will be available at design time, we need to accommodate variability [9]
during the design phase (not only that coming from schema evolution, but also
caused by heterogeneity of data). For this reason, we claim for starting the design
at the conceptual level and for identifying relevant subject areas of analysis [10].
Oppositely, purely performance-oriented solutions work at the attribute level
and denormalise relational tables (to avoid joins) and cluster attributes accord-
ing to their affinity [16] (i.e., how often they are queried together). However, such
solutions do not accommodate evolution as entity correspondences are not pre-
served. Therefore, we advocate for a high level subject-oriented (i.e., coarser)
design preserving the main focus of analysis, which is further refined

1 https://hive.apache.org.
2 https://spark.apache.org.

https://hive.apache.org
https://spark.apache.org

52 V. Herrero et al.

according to the characteristics of each subject identified (to accommodate vari-
ability inside). Such refinement includes the decision per subject of using either
the relational or co-relational data model (i.e., the degree of denormalisation).
Finally, performance is considered at the physical level and, according to the
expected workload, each subject is vertically fragmented to improve the effec-
tive read ratio [16]. We apply our method to an anonimised real-world BD case
study and discuss the pros and cons compared to a purely performance-oriented
solution.

Contributions. In particular, our main contributions are as follows:

– We follow the traditional 3-phase design: conceptual, logical and physical.
– Integrate both relational and co-relational design into a single quantitative

method, also considering classical DW subject orientation.
– We showcase the use of our method in a real use case.

Outline. Section 2 briefly introduces co-relational data models considered.
Section 3 introduces the use case. Section 4 details the proposed method. Sec-
tions 5 the impact of our method and Sect. 6 the related work. Finally, Sect. 7
concludes the paper.

2 Co-relational Models

The three co-relational models considered in this paper are key-value, document
and column-family. Figure 1 classifies their underlying structures with respect
to the schema nature. Schemas are explicit if they are declared, which allows
the database to automatically parse the instance data. Explicit schemas can in
turn be either fix or variable. In the former, all instances’ data follow the same
schema, which is globally declared once, while in the latter, instance data is
individually embedded with its schema. A DBMS with implicit schema does not
manage any information about the instance structure, which is a black-box for
the system, and data must be parsed at the application level.

To exemplify those three models, we will use a toy example. Let us sup-
pose the following information: “the city of Barcelona (BCN) has a pop-
ulation of 2,000,000 inhabitants and it is located in Catalonia (CAT)”.
This could be captured in a single relation (city), with three attributes:
name, population and region. Using SQL notation, it would look like:
city(name, population, region) VALUES (‘BCN’, ‘2,000,000’, ‘CAT’).

Key-value stores have the simplest layout. Instance data is stored in tables and
represented with a key (i.e., identifier), and a value (i.e., associated data). Neither
the key nor the value are tied to a specific format. The former is typically a string
and the value a binary object. Thus, no declarative query language and optimizer
can be provided to accesss the data, and only simple actions (such as get and
put by key) are provided via low-level APIs. Consequently, the application layer
is responsible for interpreting each instance, and we consider the schema to be
implicit. Our example could be represented as: [‘BCN’, ‘2,000,000;CAT’].

NOSQL Design for Analytical Workloads: Variability Matters 53

Fig. 1. DBMS based
on their schema prop-
erties

Fig. 2. Use case conceptual schema

Document stores keep documents within collections (i.e., namespace). A doc-
ument is a key-value structure where the value is a semi-structured document
(typically JSON or XML), that can be seen as a set of entries in the form of
(potentially nested) key-value pairs. Thus, the schema is explicit but variable,
since the XML or JSON structure is stored with the instance. In our example,
the corresponding document would be [id:‘BCN’, population:‘2,000,000’,
region:‘CAT’]. So structuring the value opens the door for higher-level query
languages and optimization. Typically, document stores use a query-by-example
approach. Given a pattern document (e.g., name = ‘BCN’ or salary > 5000),
all documents fulfilling such pattern are retrieved.

Column-family stores are key-value stores that further structure the value
into families, which contain groups of attributes (aka columns). Similar to doc-
uments, we could query and retrieve the whole instance, a family, or a specific
attribute within a family. Families actually denote vertical fragments, and each is
physically stored in a different disk file. From the schema point of view, families
are static and defined at table creation time, whereas attributes can be dynami-
cally specified at data insertion time (i.e., the attribute name is stored together
with the instance data). Thus, the table schema (i.e., the families) is (i) explicitly
declared, static, and shared by all instances, but also (ii) explicit and variable
within families, since attributes may vary among instances, and finally (iii) data
types are implicit since the attribute value is stored in the form of key-values. Our
example could result in a table with two families, namely population and region,
and a constant attribute in each of them, named value, to store each attribute:
[‘BCN’, population:{value:‘2,000,000’}, region:{value:‘CAT’}].
Alternatively, we could use a family all containing both
attributes: [‘BCN’, all:{population:‘2,000,000’,region:‘CAT’}]. Simi-
lar to key-value stores, we may use a single column inside the family:
[‘BCN’, all:{value:‘2,000,000;CAT’}].

54 V. Herrero et al.

3 Motivating Use Case

This section presents a BD real-world use case where our method was applied to
create a decisional NOSQL repository as a complement to the existing relational
DW. We choose this use case for being representative of all the problems typi-
cally due to variability in BD projects. We outline the limitations of traditional
approaches, and define the objectives to be tackled by a design method.

Figure 2 shows the conceptual schema of the use case domain (due to a disclo-
sure agreement, class names have been altered but relationships between them
remain the same). Customers (either individual Persons or Companies) buy
Products that are composed of Services which, in turn, are complemented
by different Supplements. Complaints can be filed if services do not fulfill the
customer expectations. To contact customers, their Contact Information is
registered in the form of eMails, Addresses or Phone numbers. Finally, com-
panies can agree on Contracts that comprise several products. Our company
needed to predict actions from customers regarding products.

The large heterogeinity involving some entities becomes the first limitation
(e.g., dozens of products, several hundreds of services and some thousands of
supplements). Relational tables provide a homogeneous representation of enti-
ties and we would need to either create a table for each possible specialised entity
or a single general table containing the union of all attributes. This would poorly
perform since deploying thousands of tables, that would be joined to produce the
general entity, or creating a table with thousands of attributes (Supplement alone
has almost one hundred) results unpractical and generates expensive queries [22].
Furthermore, new products are constantly developed and released. In the OLTP
system, this was solved by implementing specialisations with ad-hoc tables con-
taining generic columns storing different attributes depending on the specialised
entity. For example, the product table contained hundreds of columns of type
varchar(50). A row representing productA stores in column C the product
model, while those of type productB use C to store location). A dictionary at
the application level keeps track of the mapping of each product column (e.g.,
C) to its real meaning (e.g., productA → model).

Schema evolution becomes extremely important in the context of Big Analyt-
ics as analysts constantly look for new patterns and therefore ask for new data to
be included in the decisional datasets. Reflecting such changes in the relational
model is possible, but turns out to be costly as it either requires to alter the cur-
rent table (massively updating the new columns for existing instances) or create
a sibling one (same key) for the new attributes (this was the approach followed
in the data sources of our company). Thus, in our use case, changes affecting
the DW were simply ignored, resulting in data scientists spending most of their
time collecting data from different sources, and cleaning and merging them by
themselves prior to conduct the analysis.

Data matrices are the query output for Big Analytics. Traditional DW relies
on star-join schemas [12] and data is organised in factual and dimensional tables,

NOSQL Design for Analytical Workloads: Variability Matters 55

which represent subjects of analysis (e.g., Sales) and analysis facets (e.g., Store,
Time), respectively. Dimensional data contains hierarchies representing the dif-
ferent levels to which aggregate factual data for each facet. This, e.g., allows
aggregating to count sales per store and year, and later easily disaggregate
them per day. However, star-join schemas cannot be easily used to produce
data matrices, because joins between different cuboids are necessary. Consider
Product to be the subject and Customer one of its facets, and we want to
produce a flatten data matrix where each row represents a product bought by
a customer. The matrix columns hold any type of information regarding such
event, and limitations arise when they must contain data at coarser levels, like
totalAmountBought (i.e., the total amount bought by the customer of the prod-
uct in a given matrix row). Since this is not an atomic value, but an aggre-
gated one through the Product-Customer relationship, a parallel aggregation
on Product per Customer must be computed and subsequently joined so that
all products from the same customer show the same value. Such requirement is
usual in DM/ML, but goes against the star-join query pattern [12]. In BI, this
issue is tackled once data is loaded in specialised software (such as R) and never
considered when designing the database.

Design Objectives: Given those limitations, we present the list of objectives
to be overcome by considering co-relational data models.

(a) Simplify the representation of large specialisations so that queries on such
entities are kept simple.

(b) Consider schema evolution at design time and acknowledge the possibility
of adding new features or values later.

(c) Generate flatten data matrices (i.e., without nested structures).
(d) Performance must be considered first-class citizen.

Note that (a) and (b) correspond to dealing with variability.

4 Design Method for Relational and Co-relational

Fig. 3. Summary of steps composing the design method

In current BD settings, the lack of know-how to address database design results
in most solutions being designed only considering performance. Oppositely, our

56 V. Herrero et al.

Fig. 4. Graph representation after the first three steps

method advocates for a top-down approach: we drive the design from the con-
ceptual schema and find a physical design resilient to variability while perfor-
mance penalisation is minimised. Spanning the 3-phases shown in Fig. 3, in the
first phase we assume that a requirement engineering (RE) process, tailored for
analysis-oriented systems [7], has been conducted. During RE the conceptual
schema must be produced (in BI/BD settings typically by using reengineering
techniques [3]) and entity evolution likelihood quantified. Such quantification is
typical of DW, where it is used to identify Slowly Changing Dimensions (SCD)
[12]. Note we assume a correct RE process was conducted and thus, although the
conceptual schema may evolve, the current knowledge is correct. Starting
from the conceptual schema, the second phase decides the degree of normaliza-
tion after identifying subjects of analysis and, accordingly, proposes a relational
or co-relational data model. The last phase accommodates performance issues
and, according to the currently known workload, vertically fragments the iden-
tified subjects to improve the effective read ratio [16].

4.1 Phase I: Conceptual Schema

Step 1. Firstly, we transform the conceptual schema (assumed to have been
reified) into an undirected graph G = (V,E) where nodes V denote entities,
and edges E denote relationships between them (tagged with the relationship
type and its multiplicity). We consider three relationship types (i.e., “special-
isation”, “composition”, or “association”). Aggregations, unlike compositions,
cannot guarantee membership between entities and for our goal they are treated
as “associations”. Finally, multiplicities are also kept in G.

Use case. We produced the conceptual schema by reverse engineering from
the available data sources. The result is depicted in Fig. 2 (numbers by the

NOSQL Design for Analytical Workloads: Variability Matters 57

entities denote their evolving likelihood, being 4 the highest probability), and
its transformation into G is shown in Fig. 4(a).

4.2 Phase II: Logical Schema

Step 2. Binary large objects (BLOBs), such as images, videos or other non-
detachable objects, cannot be decomposed in smaller subcomponents and are
directly understood by the application (i.e., its schema is implicit). Thus, key-
value stores rise as a natural option to store them. Any entity containing a BLOB
entails the creation of a new node vBLOB in G. This is linked to the entity node v
by means of a edge of type “BLOB”. Although this is a physical decision, since
BLOBs are separated because of performance reasons (i.e., unknown format,
large size, and rarely retrieved together with other attributes), doing it earlier
does not affect the result and simplifies the process.

Use case. BLOBs could be found in Contract, where PDF documents were
stored. Figure 4(b) shows how the Contract vertex is updated accordingly.

Step 3. We then explore the conceptual schema to identify two different types of
entity sets: first, sets of nested entities and, second, sets of heterogeneous entities.
Nested entities essentially refer to compositions where the content can only exist
within the container’s scope (compositions). Heterogeneous entities are those
where the schema may vary among instances (specialisations). Thus, general
entities (e.g., Contact Information) are narrowed in other specialised enti-
ties (e.g., Address, Phone, etc.). Entities not involved in any specialisation are
considered homogeneous as their schema is fix. Thus, the goal of this step is to
group entities regarding the aforementioned types and synthesise G in groups of
independent domain concepts (i.e., subjects). This process accordingly results
in a hypergraph H = (X,E′) where a hypernode x ∈ X maps to a subgraph
of G representing each group entity and E′ represents the set of hyperedges.
Note an entity can be part of several heterogeneous hypernodes if involved in
specialisations belonging to different groups. In these cases, such entity must be
replicated in each hypernode. Hypernodes are adorned with its type: Nested,
heTerogeneous or hoMogeneous. Also, they take the name of their main entity;
either the container entity from compositions or the most general entity from
specialisations. Note a hypernode might be adorned with more than one type.
We define a dominant function � among the tags as follows: (N) � (T) � (M)
so that only one tag prevails over others. Hyperedges E′ are created from “asso-
ciations” in G, from where they inherit their multiplicity.

Use case. Figure 4(c) shows H. The hypernodes in H (named after the main
hypernode entity) contain the following entities:

Xcustomer = {Customer, Person, Company, Contact Inf, eMail, Address,
Phone}

Xproduct = {Product, Service, Supplement, (plus all their subclasses)}
Xcontract = {Contract}
Xcomplaint = {Complaint}.

58 V. Herrero et al.

Step 4. We now identify hypernodes to be potentially merged in order to
improve performance. Note, however, this compromises the variability resilience
as modifications in a graph node will impact on the hypernodes it has been
placed in. To prevent this, we only merge hypernodes detected as part of the
same subject. Following well-known DW principles [12], only hypernodes con-
nected by hyperedges with 1-1 and 1-* multiplicities are considered. Merging
hypernodes related by 1-1 hyperedges clearly preserves the subject, and the main
entity in this case corresponds to the hypernode with higher likelihood to evolve
(as it facilitates further changes in the merged hypernode schema). Similarly,
hypernodes related by a 1-* hyperedge can only be merged if the to-one end
of the hyperedge represents an SCD. Since the SCD evolution likelihood is very
low, the main entity of the merged hypernode is its counterpart hypernode in
the hyperedge. Replication of an SCD in different merged hypernodes can occur
if such SCD is connected to several hypernodes. Finally, the created hypernode
acquires the most dominant adornment of the merged ones.

Use case. In the use case, no 1-1 hyperedge exists. Contract, however, was
identified as an SCD. We thus merged Xproduct and Xcontract and created
Xproduct contract. The merged hypernode is adorned as (N) and Product is
accordingly identified as main entity. Incident hyperedges on the merged hyper-
nodes are now related to Xproduct contract.

Step 5. For each hypernode, we decide whether it should be designed following
the relational or co-relational model depending on the adornments defined. We
use the evolution likelihood threshold te as indicator to resolve situations where
more than one solution is possible.

1. Hypernodes adorned with (M) should be designed by means of relational
structures unless they are expected to evolve, as their fix schema can be
separately declared and shared by all instances. Oppositely, if their evolu-
tion likelihood is above te, then they should be designed with co-relational
structures to facilitate the accommodation of schema changes.

2. Hypernodes adorned with (T) can be either represented by relational or co-
relational structures. Several alternatives exist in case of the former [4], while
the most natural way to model heterogeneous entities in case of the latter
is with explicit but variable schemas. Deciding between the two data mod-
els depends on the degree of heterogeneity. Co-relational should be chosen
when the number of heterogeneous entities involved is large (e.g., Product).
Alternatively, we can consider relational if only few specialised entities exist
(e.g., Contact Information). In the latter case, two types of schema evolu-
tion must be considered: (i) if only new attributes can be added to existing
entities, an analogous rationale to M holds, (ii) if new specialisations are reg-
ularly created (e.g., new types of Supplement), then a co-relational model is
a better option. Note that the expertise of the database designer is key to
decide, given the RE process artefacts, in which case each hypernode falls.

3. Finally, hypernodes adorned with (N) must be stored in co-relational struc-
tures by means of nested lists, which allow recursively storing lists of lists.

NOSQL Design for Analytical Workloads: Variability Matters 59

This way, the container holds its components. In case (N) hypernodes contain
entities with fix schema, these are stored in co-relational structures by embed-
ding their schema into the instance. Note that relational structures may also
be used, but each of the entities must then be mapped to a relational table
and their relationships represented with foreign keys (heavily penalizing per-
formance). Schema evolution in (N) hypernodes is smoothly absorbed by the
co-relational model.

Use case. The data model chosen for the hypernodes are the following:

Co-relational for Xcustomer and Xproduct contract (adorned both with (N))
Relational for Xcomplaint (adorned with (M)).

4.3 Phase III: Physical Schema

Step 6. We now focus on the remaining hyperedges (i.e., “associations”). Since
two data models are being considered, these hyperedges might be relating two
hypernodes to be modeled with different data models. Design rules are intro-
duced in Table 1, where all situations are shown. Rows denote what reference
direction is possible given the case in the columns, where R is used to refer to a
relational hypernode, and Co to a co-relational hypernode. The feasibility of a
certain reference is given by considering whether the source hypernode accepts
mono-valued or multi-valued attributes, or both. The relational model can only
take mono-valued attributes and designing R-R hyperedges can be devised in a
traditional manner [4], although *-* can also be designed by transforming one
end into Co. Co-Co hyperedges can be indifferently designed, as multi-valued
attributes are natively supported. Similarly, for R-Co hyperedges, references
from the R-end are only possible when the Co-end has a to-one multiplicity,
whereas references from the Co-end are always possible.

Table 1. Feasible reference directions for hyperedges

Use case. (i) The hyperedge relating Xcomplaint and Xproduct contract has a *-1
multiplicity relating a relational to a co-relational hypernode. Consequently, this
hyperedge is designed through a reference from Xcomplaint to Xproduct contract.
(ii) Two hyperedges relate Xproduct contract and Xcustomer: one originally relating
Product and Customer, and the other Contract and Company. Both hyperedges
connect two co-relational hypernodes and have a *-1 multiplicity. Thus, they are

60 V. Herrero et al.

implemented as two references from Xproduct contract to Xcustomer (each reference
corresponds to a hyperedge).

Step 7. We aim to improve performance by maximizing the effective read ratio
by grouping/splitting entities according to the known workload. Unlike other
approaches, we fragment honouring the subjects identified, which cannot be
split. Importantly, fragmentation is implemented in most RDBMS and given by
all column-family stores. For each hypernode, we identify the vertical fragments
checking how often two attributes are queried together. To compute such affinity,
we can use well-known techniques such as the affinity matrix (AM) [16]. Columns
and rows in AM represent attributes and a cell describes the frequency these
two attributes are queried together. Given a certain threshold ta, fragments are
identified. AM assumes the query workload is given, but this might not be true
(e.g., a situation where the solution is built from scratch and there is no past
experience on how the database is queried). In such cases, the expected workload
is identified during RE. Such process requires the participation of data analysts
and techniques such as observation [7].

Use case. For each hypernode, an AM must be created. Figure 5 illustrates
the resulting AM for hypernode Xproduct contract. Attributes from the use case
entities have been renamed to numbered table prefixes in order to honour the
disclosure agreement, and cells are percentages. At the bottom of the figure, we
sketch a simplified version of the query workload corresponding to four para-
metrised batch processes creating different matrices. Frequencies represent how
many times queries were run per month and we transform them into percent-
ages. Q1, Q3 and Q4 were executed 20 times/month and Q2 15 times/month.
In our use case, ta was set to 73.4 % and led to two fragments: one containing
{pr1, pr2, pr3, pr5, su1, su2} and another with the rest of attributes.

Fig. 5. Affinity matrix for hypernode Xproduct contract

Deployment. Importantly, note that deciding relational or co-relational to
design a hypernode is not bind to the choice of a specific kind of DBMS, but to
unveil its nature. Although our method remains agnostic of the chosen product,

NOSQL Design for Analytical Workloads: Variability Matters 61

we finish our case study showing how to deploy the hypergraph in a commercial
relational DBMS (i.e., Oracle) and in an open source co-relational store (i.e.,
HBase plus Hive). The output of our method then hints the best storage model,
but the subsequent technological instantiation and the corresponding product-
oriented tuning fall out of the scope of this paper.

Despite having a relational architecture underneath, Oracle3 supports data
structures traditionally not considered relational-like. Of special relevance for
this paper are the data types XMLType and NESTED TABLE. The former
corresponds to XML data and the latter to tables embedded in other table
columns. These data structures map to co-relational structures introduced in
Sect. 2. Documents in Oracle can therefore be stored through the data type
XMLType, and vertical fragments be implemented with NESTED TABLE. Thus,
relational hypernodes would be designed as regular relational tables whereas co-
relational hypernodes can be designed through XMLType structures (if no verti-
cal fragmentation is applied), and NESTED TABLES for hypernodes vertically
fragmented.

Another example coming from the open-source world is HBase4 plus Hive
(see Footnote 1). HBase is a column-family system. Consequently, vertically
fragmented hypernodes can be naturally stored, regardless being relational or
co-relational. Similarly, both relational and co-relational hypernodes where ver-
tical fragmentation did not apply can still be designed as single-family HBase
tables. Nevertheless, benefits from using relational structures (HBase has no
global schemas and therefore embeds the schema into each instance) and docu-
ment stores (column values are stored as string and parsing relies on the appli-
cation level) are then lost in HBase. This cannot be solved from the point of
view of the storage, but Hive can be added on top to provide a relational view
so that queries can be run as if the underlying storage was relational.

5 Scrutinizing Our Method

This section discusses how our method meets design objectives in Sect. 3.

Objective (a): Our method properly deals with large specialisations by means
of Steps 3 and 5. In Step 3, entities related by specialisations are grouped as part
of the same subject. In Step 5, subjects are evaluated to decide the data model
to design them. If classified as too heterogeneous, then the co-relational model
is chosen. In the use case, for Product, Service and Supplement the number of
potential tables was reduced from dozens, hundreds or thousands, respectively,
to one entity with explicit and variable schema.

Objective (b): Two key characteristics of our method facilitate schema evo-
lution. Firstly, the main entities from the conceptual model are identified as
centroids of a clustered subject-oriented design. Secondly, schema evolution like-
lihood, quantified per entity in Step 1, is used in Step 5 to decide the data model
3 https://www.oracle.com/database.
4 https://hbase.apache.org.

https://www.oracle.com/database
https://hbase.apache.org

62 V. Herrero et al.

of each subject. In our use case, we easily added new attributes to entities as well
as specialisation and composition relationships. During the project we added 205
new attributes/relationships and none required to reconsider the current design.

Objective (c): Conceptually, the multidimensional model is a good starting
point for creating matrices. However, the star-join schema statically binds the
subjects of analysis with dimensions at design time. To accommodate variability
our method identifies subjects (Steps 3 and 5) reflecting them in the database
schema. However, unlike a star-join schema, we do not identify dimensions at
design time but at query time, depending on analysts concrete needs. Thus, we
deploy a dimensionless decisional schema, relieving dimensional data of meet-
ing well-formedness OLAP characteristics (e.g., multidimensional normal forms
[13]). Decoupling both concepts in the schema provides us with the needed flex-
ibility to tackle unforeseen dimensional concepts. For example, in our use case,
several new features were required by data scientists throughout the project.
Many times, such features were computed by aggregating data in an already
identified dimension but at a coarser granularity, which would have raised the
problems discussed in Sect. 3.

Objective (d): To evaluate performance, we compare the subject-oriented result
obtained for our case study (S) against a performance-oriented (P) design for
the same workload, built by computing the AM at the attribute level over the
universal relation [16]. Considering the same ta we chose (i.e., 73.4 %), we obtain
one fragment per entity Customer, Address, Contract and Service; plus two
more fragments P1 : {pr1, pr5, com4}, and P2 : {pr2, pr3, su1, su2}, correspond-
ing to a vertical fragmentation of Product��Supplement��Complaint. Despite S
only proposed three hypernodes, the number of joins needed is larger than in
P , since attribute grouping in P is perfectly tailored to the queries in the cur-
rent workload (Table 2 reports on the number of joins). Thus, average number
of joins of S turns to be 6.3 % worse than that of P , a reasonable price for the
gain obtained. Note, furthermore, that the effective read ratio of S matches that
of P since we apply vertical fragmentation per hypernode (see Step 7).

Table 2. Join operations in the subject- (S) and performance-oriented (P) designs

Query Frequency Joins (S) Joins (P)

Q1 26.7 % 0 1

Q2 20.0 % 3 4

Q3 26.7 % 1 0

Q4 26.7 % 1 0

Average: 1.134 1.063

NOSQL Design for Analytical Workloads: Variability Matters 63

6 Related Work

Operational (write-intensive) RDBMS use normalization to avoid redundancy
and therefore insert, update and delete anomalies [8]. Oppositely, decision sup-
port (read-intensive) systems use denormalisation in order to avoid joins and
improve performance. Multidimensional modeling [12], the de-facto standard for
DW, is a simple yet powerful metaphor that focuses on subjects of analysis and
their facets, which is implemented with a star-join relational schema. However,
the star-join schema is not appropriate for flexible BD settings since not only the
subject, but also the potential dimensions of analysis are fixed at design time.
Furthermore, adding new dimensional or factual data is a costly operation in
the DW, since it is typically implemented with relational technology.

Column-oriented engines take vertical fragmentation to the extreme, and
redesign the DBMS architecture enabling the combination of light-weight encod-
ing and vector processing [16]. Such engines have shown excellent performance for
read-intensive workloads [20] and adaptive systems dynamically exploit vertical
or horizontal layouts depending on the workload [1]. However, current techniques
for fragmenting a database vertically, such as attribute clustering or AM [16], do
not consider evolution and assume static workloads. Also, vertical fragmentation
is not always the best modeling choice [1]. Finally, several guidelines specific for
NOSQL design are nowadays available [6,18,22] presenting high-level guidelines
that map either to phase two or three of our method. Other approaches bet
for the integration of heterogeneous data by means of functional SQL-like lan-
guages [5] and, thus, integration occurs at query time rather than at design time.
To our knowledge, this is the first holistic approach encompassing the relational
and co-relational design altogether.

7 Conclusions

We have presented a novel method to holistically address the design of relational
and co-relational databases in the presence of analytical workloads. Unlike most
spread habits among BD practitioners, we underline the importance of the con-
ceptual schema and propose a method resembling traditional database design
following the classical 3-phase design: conceptual, logical and physical. However,
we do not diminish the importance of performance in BD, but rather balance it
with other equally important aspects such as data structural variability, which
we have shown that can be managed by subject-oriented design (a well-known
DW concept). We have exemplified our method with a real case study paradig-
matic of the typical modeling complexities found in BD projects, and shown the
benefits of our design approach.

Acknowledgments. We would like to thank Antoni Olivé for revising the paper.

64 V. Herrero et al.

References

1. Alagiannis, I., et al.: H2O: a hands-free adaptive store. In: SIGMOD (2014)
2. Ambler, S.: Agile Database Techniques: Effective Strategies for the Agile Software

Developer. Wiley, New York (2003)
3. Blaha, M.: On reverse engineering of vendor databases. In: WCRE (1998)
4. Blaha, M.: Patterns of Data Modeling. CRC Press, Inc., Boca Raton (2010)
5. Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez, P.: Integrating big data

and relational data with a functional SQL-like query language. In: Databaseand
Expert Systems Applications - 26th International Conference, DEXA 2015, Valen-
cia, Spain, 1–4 September 2015, Proceedings, Part I, pp. 170–185 (2015). http://
dx.doi.org/10.1007/978-3-319-22849-5 13

6. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL
systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol.
8824, pp. 223–231. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12206-9 18

7. Garcia, S., et al.: DSS from an RE perspective: a systematic mapping. J. Syst.
Softw. 117, 488–507 (2016)

8. Garcia-Molina, H., et al.: Database Systems - The Complete Book. Pearson Edu-
cation, Harlow (2009)

9. Gartner: Focus on the ’Three Vs’ of Big Data Analytics: Variability, Veracity and
Value. https://www.gartner.com/doc/2921417/focus-vs-big-data-analytics

10. Inmon, W.H., et al.: Corporate Information Factory. Wiley, New York (2001)
11. Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM 57(7),

86–94 (2014)
12. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building

Dimensional Data Warehouses. Wiley, New York (1996)
13. Mazón, J.-N., Trujillo, J., Lechtenbörger, J.: A set of QVT relations to assure

the correctness of data warehouses by using multidimensional normal forms. In:
Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 385–398.
Springer, Heidelberg (2006). doi:10.1007/11901181 29

14. Meijer, E., Bierman, G.M.: A co-relational model of data for large shared data
banks. Commun. ACM 54(4), 49–58 (2011)

15. OCDE: Data-driven Innovation for Growth and Well-being. http://www.oecd.org/
sti/inno/data-driven-innovation-interim-synthesis.pdf

16. Özsu, M.T., Valduriez, P.: Principles of Distributed DB Systems. Springer,
New York (2011)

17. Romero, O., et al.: Tuning small analytics on big data: data partitioning and
secondary indexes in the Hadoop ecosystem. Inf. Syst. 54, 336–356 (2015)

18. Sadalage, P., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley Professional, Upper Saddle River (2012)

19. Stonebraker, M.: What Does ‘Big Data’ Mean? http://cacm.acm.org/blogs/
blog-cacm/155468-what-does-big-data-mean/fulltext

20. Stonebraker, M., et al.: C-store: a column-oriented DBMS. In: VLDB (2005)
21. TDWI: TDWI Best Practices Report, Achieving Greater Agility with Busi-

ness Intelligence. https://tdwi.org/research/2013/01/tdwi-best-practices-report-
achieving-greater-agility-with-business-intelligence.aspx

22. Wiese, L.: Advanced Data Management for SQL, NoSQL, Cloud and Distributed
Databases. DeGruyter, Boston (2015)

http://dx.doi.org/10.1007/978-3-319-22849-5_13
http://dx.doi.org/10.1007/978-3-319-22849-5_13
http://dx.doi.org/10.1007/978-3-319-12206-9_18
https://www.gartner.com/doc/2921417/focus-vs-big-data-analytics
http://dx.doi.org/10.1007/11901181_29
http://www.oecd.org/sti/inno/data-driven-innovation-interim-synthesis.pdf
http://www.oecd.org/sti/inno/data-driven-innovation-interim-synthesis.pdf
http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext
http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext
https://tdwi.org/research/2013/01/tdwi-best-practices-report-achieving-greater-agility-with-business-intelligence.aspx
https://tdwi.org/research/2013/01/tdwi-best-practices-report-achieving-greater-agility-with-business-intelligence.aspx

Translating Bayesian Networks into Entity
Relationship Models

Frank Rosner1(B) and Alexander Hinneburg2(B)

1 Global Data and Analytics, Allianz SE, Munich, Germany
frank.rosner@allianz.com

2 Computer Science, Martin-Luther-University Halle-Wittenberg, Halle, Germany
hinneburg@informatik.uni-halle.de

Abstract. Big data analytics applications drive the convergence of data
management and machine learning. But there is no conceptual language
available that is spoken in both worlds. The main contribution of the
paper is a method to translate Bayesian networks, a main conceptual lan-
guage for probabilistic graphical models, into usable entity relationship
models. The transformed representation of a Bayesian network leaves
out mathematical details about probabilistic relationships but unfolds
all information relevant for data management tasks.

1 Introduction

The implementation of a big data analytics application requires to join data
management software with machine learning tools. However, the fields of data
management and machine learning developed quite different models and nota-
tions. The former frequently uses entity-relationship models (ERM) while the
latter uses probabilistic graphical models to communicate key concepts. In this
paper, we pick Bayesian networks (BN) as a widely used graphical notation for
machine learning models. Note that the presented ideas can be transferred to
other common graphical notions like undirected Markov models or factor graphs
as well.

The notations of ERMs and BNs are designed to serve the needs of the
respective fields. They are stressing information relevant in the particular domain
while visually suppressing less important details. E.g. an ERM highlights the
existence and cardinalities of relationships between distinguishable entities. On
the other hand, a BN represents a joint probability distribution as a factorization
of several hierarchically linked conditional probabilities. Even while both kinds
of graphical notations show many details of the data, information explicit on
one side remains implicit on the other one and vice versa—there is no natural
understanding of the two worlds. However, a common conceptual description of
the contribution from both worlds is crucial for the successes of big data analytics
projects.

The data management part of a big data analytics project typically repre-
sents more details of the data than the machine learning part. Therefore, it is

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 65–72, 2016.
DOI: 10.1007/978-3-319-46397-1 5

66 F. Rosner and A. Hinneburg

reasonable to translate the machine learning part to the conceptual language
of data management. Attempts into this direction include machine learning
libraries with APIs in one or multiple programming languages [8,13,14], and
new declarative languages or extension of existings ones [1,2,6,10,11]. However,
none of these approaches solves the problem of integrating the information about
machine learning that is relevant for data management into the conceptual view
of this side. The advantages of a formal conceptual view of machine learning
models integrated into the conceptual view of the data management side would
be (i) no black box behind an abstract API in the data management model and
(ii) developers from the data management side understand the basic in- and
outputs of the machine learning part.

We propose a rule-based method to translate a graphical BN model in plate
notation into an ERM. Such ERM can be easily integrated into the overall ERM
of the whole application. As an example, we look at topic modeling of documents
[3]. Latent Dirichlet allocation (LDA) [4] – shown in Fig. 3a – is one of the most
popular topic models. Although not limited to this application, it is often used
to find a hidden structure in text documents, called topics. Topics are modeled
as probability distributions over a vocabulary. They are often presented as word
lists each ordered by descending probabilities.

The given data in this example include documents consisting of word tokens.
Each token corresponds to a particular occurrence of a word from the vocabulary.
Documents, tokens and words have additional information attached like title,
publication date or part-of-speech (POS) tags. The entities and relationships
about the given data are shown in Fig. 1 (left). The BN describing the LDA topic
model shown in Fig. 3a represents the given word tokens dnm as shaded circles,
which indicates random variables with given values. The hidden random variables
represented by empty circles are the token-topic assignments znm, document
specific topic proportions θn and topic-vocabulary distributions μk. For those
variables, either expectations or probable value assignments are computed during
machine learning inference. The black dots represent fixed hyper-parameters that
determine the prior distributions for the hidden variables. The descriptions of the
boxes (plates) correspond to the entities Document and Token. However, some
entities like Word do not appear in the BN as they are implicit in the definition
of vectors. Further, the plate named Topics introduces a new entity.

The result of the whole translation is shown in Fig. 1 (right). The ERM of
the BN represents all relevant entities with respective primary keys. Further, the
relationships between topics on one side and documents, tokens and vocabulary
words on the other side are shown with their respective cardinalities. The ERMs
about the given data and the translated one from BN can be combined into a
single one by merging the matching entities. We believe that such an overall ERM
helps to improve the efficiency of the development process as now the developers
on the data management side can see what data is needed and contributed from
the machine learning part with respect to relational aspects.

Our main contribution is a rule-based translation from BN in plate notation
to ERMs, described in Sect. 2. This method provides semantic guidelines for

Translating Bayesian Networks into Entity Relationship Models 67

Fig. 1. ERM of given Data (left) and translated ERM for LDA (right).

building a conceptual representation of a BN that addresses the needs of the data
management side of a big data analytics project. However, a BN is not a unique
way to describe a probabilistic model, i.e. the same probabilistic model can be
described by multiple BNs that differ in complexity. Therefore, our proposed
translation constructs an intermediate atomic plate model (APM) in several
steps (Sect. 2.1). It gradually uncovers implicit information not represented in
the original BN. Further, the subsequent translation from an APM to an ERM
(Sect. 2.2) can include different probabilistic relationships between the generated
entities. Finally, a reduction step is applied to eliminate possible translation
artifacts (Sect. 2.3). Last, we discuss related work in Sect. 3 and conclude the
paper in Sect. 4.

2 Translation of Bayesian Networks in Plate Notation

BNs mainly describe data with random variables at the level of data items, e.g.
word tokens. The BN for LDA in Fig. 3a has an observed random variable dnm

for each of the Mn tokens of the nth document. As plotting all data items one
by one is not possible, the visual notation of plates is used. A plate groups a set
of random variables sharing an index set. Due to this, plates convey information
about entities and relationships. However, some random variables are implicitly
denoted in BNs: (i) multidimensional vector notation of random variables and
(ii) functions that implicitly describe data transformations coupled with joins.
Therefore, we propose a stepwise approach to transform a given BN in plate
notation into a well-formed ERM. This is done in three steps:

1. Make implicit relational information explicit: The resulting model is called
an atomic plate model (APM).

68 F. Rosner and A. Hinneburg

Fig. 2. Conversion of data transformation in BNs to atomic plate models

2. Convert the APM into an ERM based on graphical rules.
3. Reduce the ERM to avoid translation artifacts.

We use the standard ERM notation [5] with min-max cardinalities [7, p. 82].
We call an ERM well-formed iff it (1) is syntactically correct, (2) is explicit
and (3) does not have redundant constructs. Explicitness means that all real
world constructs which have a corresponding construct in the ERM notation are
modeled using those. Thus, a well-formed ERM does not contain explicit foreign
key attributes but uses relationships instead. Having no redundant constructs
means that no entity or relationship is duplicate, i.e. semantically expressing the
same thing. However, those duplicates may appear as intermediate results of the
translation procedure. The following subsections offer detailed explanations of
all steps to translate a BN to an ERM.

2.1 Construction of Atomic Plate Models

Plate models (BN in plate notation) may contain multidimensional random vari-
ables (e.g. vectors or matrices), hidden deterministic data transformations, and
relationships. A plate model is converted to an APM by explicitly including those
hidden transformations and relationships and any variables associated with it,
as well as splitting multidimensional variables into their components.

For example, a word token is coded as a bit vector dnm ∈ {0, 1}|V | that has
exactly a single 1 at the index associated with the respective word v ∈ V . Thus,
the respective APM for LDA (Fig. 3b) includes a word plate for the dimensions
this vector and the vector variable is split into the respective components dnmv.
In this translation, edges are discarded. If they would be preserved, they con-
veyed wrong semantics about the conditional probabilities of the BN after the
decomposition.

Detecting the deterministic relationships and data transformations hidden in
BNs is a bit more subtle. Figure 2 illustrates this on the example of polynomial
regression. The one-dimensional input x is transformed into a vector x′ of several
inputs x′

k = xk by taking different powers k ∈ K ⊂ N. All powers are multiplied
with weights that are components of the vector w ∈ R

|K|. Finally, the weighted
powers are summed up and this sum is used as the mean µ of a normal distri-
bution that governs a univariate random variable y. As we introduced another
multidimensional variable x′ ∈ R

|K|, splitting all multidimensional variables
yields a common plate with index set K including all x′

k and wk.

Translating Bayesian Networks into Entity Relationship Models 69

Fig. 3. Transformation of the LDA plate model to an APM.

Fig. 4. Intermediate ERM for LDA, translated from an APM.

2.2 Translation of APM to ERM

After converting a plate model to an APM, it is translated to an ERM. For
this step, we extend the mapping from plate models to DAPER models [9].
We defer the discussion of the differences between our mapping and DAPER
models to the related work section. We briefly state the translation rules. Due to
space restrictions, we refer to [12] for extended graphical explanations. Further,
we explain the handling of special model constraints. The rules are illustrated
by examples included in the translation of the APM (Fig. 3b) of LDA to an
intermediate verbose ERM (Fig. 4) and then to the final ERM (Fig. 1 right).

Translate plates to entity types. Each plate of an APM is represented as an
entity type. Usually there is an index set associated with each plate. Each entity
type gets an artificial key (ID) that enumerates the index set. Thus, the plates
word, document, token and topic become entities in Fig. 4.

Translate plate intersections to relationships. Plate intersections represent
many-to-many relationships between the corresponding entity types. In contrast

70 F. Rosner and A. Hinneburg

to [9], we express all relationships as association entity types [7, pp. 86–88].
This allows a generic translation procedure that can easily be used for n-ary
relationships. E.g. the intersection between the plates for topics and words is
translated as the association entity T-W in Fig. 4.

Translate variables to attributes. The translation of attributes depends on
the number of plates surrounding them. If a variable is surrounded by exactly
one plate, the entity type of that plate gets an additional attribute representing
this variable. If a variable resides inside multiple plates, it becomes an attribute
of the corresponding association entity. Variables that are associated with no
plate are assigned to an artificial entity type called Global. There exists only
one entity of type Global.

Translate nested plates to one-to-many relationships. If a plate is nested
in another plate, the resulting relationship has one-to-many cardinality instead
of many-to-many. This works well in the simple case of a binary relation, but
falls short when one or both plates are additionally intersected or nested with
further plates. Therefore, nested plates are translated using an additional weak
entity, the parent of which is the entity of the inside plate. For example, the
token plate, which is nested inside the document plate (Fig. 3b), is translated
to a one-to-many relationship between the token and document entity via the
association entity D-T-W in Fig. 4. This case shows the benefit of our approach
as the word entity also becomes a parent of D-T-W due to the intersections of
the word, document and token plates. In case of only binary relationships, the
weak entity is not necessary. Such cases will be fixed in the reduction step that
follows the translation to ERM.

In addition to these basic rules, we propose two additional transformation
rules that consider the effects of constraints for random variables on the resulting
ERM and cope with self relationships as a result of matrix or tensor variable
translations.

Adjust cardinalities depending on variable constraints. In some appli-
cations there are variables that solely express associations between objects. In
the LDA example, a token m inside a document n is assigned to a topic k
through znm ∈ {0, 1}K with

∑K
k=1 znmk = 1. In this case the plate intersec-

tion of the topic plate should not be translated as a many-to-many relationship
but as one-to-many relationship. The one-to-many relationship is expressed by
an additional weak entity with only a single parent as in the previous rule to
allow the translation to continue with further plate intersections covering zk.
The entity index set of which is summed over, becomes not a parent of the weak
entity. Finally, the constrained attribute zk of the association entity is removed
since now the association information is expressed by the relationships. In case
of only two overlapping plates, the more complex expression of the one-to-many
relationship is simplified in the final reduction step. The intermediate ERM in
Fig. 4 shows the situation between the token and the topic entity before apply-
ing this rule, Fig. 1 shows the final result after the reduction. A more detailed
example is found in [12].

Translating Bayesian Networks into Entity Relationship Models 71

Translate overlapping plates with same index set to self relationships.
When converting plate models with matrix or tensor variables to APMs, the
translation procedure will produce overlapping plates. Given a matrix with equal
dimensions N = M , this will result in two overlapping plates of the same index
set. These are simply translated as a many-to-many self relationship. The matrix
components are then represented as an attribute of the resulting association
entity.

With this set of rules it is possible to translate any given plate model into an
ERM. However, in some cases the resulting model might not be well-formed. It
might express simple one-to-many relationships in a complicated way. Therefore,
a reduction step is performed as described in the next section.

2.3 Reduction of Translated Entity-Relationship Models

In order to produce well-formed ERMs from plate models, it is necessary to
apply a reduction step after the conversion from APM to ERM. This reduction
will make sure that all translation artifacts are eliminated that are caused by
straight application of the translation rules. Those artifacts are weak entities
without primary key extension and duplicate relationships.

Plate intersections are translated to association entities having a weak rela-
tionship to all entities that form the intersection. However, 1-of-K coded vari-
ables and nested plates turn weak entity relationships into normal ones. In case
only one weak relationship is left after the completed translation, the construct
is not well-formed when it does not extend the primary key. The weak entity
relationship is then a degenerated one-to-one relationship and the weak entity is
merged with parent entity. After removing the degenerated weak relationships
as described above there may be duplicate relationships left. The translating
person can decide to merge these relationships if they are expressing the same
fact [12]. The right part of Fig. 1 shows the result of applying the reduction steps
to the intermediate ERM from Fig. 4.

3 Related Work

Directed acyclic probabilistic entity-relationship (DAPER) models [9] are closely
related to our work. However, they are designed to unify probabilistic relational
models and plate models. While we discard all facts about probabilistic rela-
tionships in our translation, DAPER models can still be used to express such
relationships. As a consequence, vector variables and other implicit information
are not resolved in DAPER models like in the proposed translation to APMs.
Thus, DAPER models are not used and also not intended to work as ERMs for
conceptional design of data management.

Our work is closely related in spirit to a recently proposed conceptual mod-
eling framework work for network analytics [15]. In contrast, we target BNs, but
we believe that our proposed translation method is a core building block for a
conceptual framework for probabilistic models that can yield similar benefits.

72 F. Rosner and A. Hinneburg

4 Conclusion

Our proposed translation shows that modeling an ERM for a given BN is a non-
trival task. Knowledge of the translation procedure helps data architects to pose
the right questions for machine learning experts to uncover implicit information
in a BN. Future work includes building a library of ERMs for widely used BNs.
Based on such library, we want to work out a framework that gives guidelines
how to effectively build an integrated conceptual model that includes details
about domain specific aspects as well as the machine learning side of a big
data analytics application. Within such framework, efficiency optimizations can
be embedded when translating an integrated conceptual model to a particular
implementation.

References

1. Akdere, M., Cetintemel, U., Riondato, M., et al.: The case for predictive database
systems: opportunities and challenges. In: CIDR, pp. 167–174 (2011)

2. Armbrust, M., Xin, R.S., Lian, C., et al.: Spark SQL: relational data processing in
spark. In: SIGMOD, pp. 1383–1394 (2015)

3. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)
4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.

Res. 3, 993–1022 (2003)
5. Chen, P.P.-S.: The entity-relationship model–toward a unified view of data. ACM

Trans. Database Syst. (TODS) 1(1), 9–36 (1976)
6. Domingos, P., Richardson, M.: Markov logic: a unifying framework for statistical

relational learning. In: Introduction to Statistical Relational Learning, pp. 339–371
(2007)

7. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. Pearson, Boston
(2007)

8. Hall, M., Frank, E., Holmes, G., et al.: The WEKA data mining software: an
update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

9. Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-relationship models,
PRMs, and plate models. In: Introduction to statistical relational learning, pp.
201–238 (2007)

10. Hellerstein, J.M., Ré, C., Schoppmann, F., et al.: The MADlib analytics library:
or MAD skills, the SQL. J. VLDB 5(12), 1700–1711 (2012)

11. Kumar, A., Niu, F., Ré, C.: Hazy: making it easier to build and maintain big-data
analytics. Commun. ACM 56(3), 40–49 (2013)

12. Rosner, F., Hinneburg, A.: Translating Bayesian networks into entity relationship
models (Extended Version). arXiv e-prints, 1607.02399 (2016)

13. Scikit: scikit-learn. Machine Learning in Python (2014)
14. Sparks, E.R., Smith, V., et al.: MLI: an API for distributed machine learning. In:

ICDM, pp. 1187–1192 (2013)
15. Wang, Q.: A conceptual modeling framework for network analytics. Data Knowl.

Eng. 99, 59–71 (2015)

Key Performance Indicator Elicitation
and Selection Through Conceptual Modelling

Alejandro Maté1(B), Juan Trujillo1, and John Mylopoulos2

1 Lucentia Research Group, Department of Software and Computing Systems,
University of Alicante, Alicante, Spain

{amate,jtrujillo}@dlsi.ua.es
2 Department of Computer Science, University of Trento, Trento, Italy

jm@cs.toronto.edu

Abstract. Key Performance Indicators (KPIs) operationalize ambigu-
ous enterprise goals into quantified variables with clear thresholds. Their
usefulness has been established in multiple domains yet it remains a diffi-
cult and error-prone task to find suitable KPIs for a given strategic goal.
A careful analysis of the literature on both strategic modeling, planning
and management reveals that this difficulty is due to a number of fac-
tors. Firstly, there is a general lack of adequate conceptualizations that
capture the subtle yet important differences between performance and
result indicators. Secondly, there is a lack of integration between mod-
elling and data analysis techniques that interleaves analysis with the
modeling process. In order to tackle these deficiencies, we propose an
approach for selecting explicitly KPIs and Key Result Indicators (KRIs).
Our approach is comprised of (i) a novel modeling language that exploits
the essential elements of indicators, covering KPIs, KRIs and measures,
(ii) a data mining-based analysis technique for providing data-driven
information about the elements in the model, thereby enabling domain
experts to validate the KPIs selected, and (iii) an iterative process that
guides the discovery and definition of indicators. In order to validate our
approach, we apply our proposal to a real case study on water manage-
ment.

Keywords: Business intelligence · KPIs · KRIs · Conceptual modeling

1 Introduction

Key Performance Indicators (KPIs) constitute a popular tool for monitoring the
performance of an enterprise [11]. KPIs translate ambiguous enterprise goals,
such as “Increase revenue”, into measurable ones with concrete thresholds, such
as “Revenue increased by 5 %”, which can be objectively assessed in order to
obtain a clear picture of the current status of an enterprise. However, whenever
KPIs are defined to monitor strategic goals in any area the same question arises
“is this an adequate KPI?” Answering this question is far from trivial.

First, the selection of a wrong KPI can have a severely detrimental effect for
an organization. A wrong KPI wastes resources in the wrong place and those
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 73–80, 2016.
DOI: 10.1007/978-3-319-46397-1 6

74 A. Maté et al.

responsible for its improvement develop a resilience over time to change the KPI
they are focusing on [14]. Second, even though domain experts do know their
business, once we start moving from measures related to results (e.g. number of
products sold) to measures related to actual performance it is no longer clear
which are the KPIs that the enterprise should focus on, their priorities and even
more, their interrelationships and influences [2]. This is aggravated by the fact
that value thresholds that should be established for each KPI are also unknown.
Third, although organizations within the same industry sector typically share a
common set of candidate KPIs [5], each of them actually operates in a slightly
different fashion and different priorities, leading to subtle yet significant differ-
ences in the KPIs they use.

In order to tackle this problem, in this paper we present an approach for
eliciting, assessing, and selecting KPIs and KRIs (Key Result Indicators). The
main objective of our proposal, is to establish a baseline for improving indicator
elicitation and selection, and it is comprised of the following contributions:

1. A modeling language that extends the expressivity of traditional models by
including KPIs, KRIs, and measures as first class citizens.

2. A data mining approach to analyze the relationship between indicators by
exploiting the conceptual model created by the domain experts.

3. A three step iterative process that covers the definition of the indicator map,
as well as its refinement and assessment through data analysis, thereby con-
necting objectives to data through data mining.

The rest of the paper is structured as follows. Section 2 describes related
work. Section 3 presents the proposed approach. Section 4 describes a case study
based on water management for the validation of the proposal. Finally, Sect. 5
presents the conclusions and directions for future works.

2 Related Work

There is a broad literature on performance indicators due to their attractiveness
as a monitoring tool. Strategic modeling works [6,8,10,13] treat KPIs are as a
quantification, with no distinction between performance and result indicators.
This is because strategic modeling provides the tools for representing indica-
tors, but their selection is responsibility of the domain expert and the business
strategy modeler. Management literature [4,7,11] aims to improve business man-
agement by providing tools to identify problems within organizations. It includes
numerous research works on the use of predefined set of indicators and their effec-
tiveness [1,4], as well as on the differentiation between lag (provides information
when the target has been met) versus lead (provides information ahead of time,
inaccurate) indicators [7]. The main drawback is that this knowledge has not
been mapped into formal models which can be used for analysis.

Aside from these disciplines it is worth mentioning data analysis approaches
[9,12]. These approaches are strongly data driven, with clear inputs and outputs
to a process where domain experts have limited interaction. They are effective

Key Performance Indicator Elicitation and Selection 75

but not flexible, which limits their application when there are additional factors
(e.g. recession) with no associated no data available.

As we can see, there has been a lot of interest on the topic of performance
indicators. However, the lack of adequate tools has maintained indicator selection
as one of the key problems in strategic management.

3 Eliciting and Selecting Business Indicators

Selecting adequate indicators for business objectives requires exploring the busi-
ness strategy together with domain experts, while providing data-driven insights
whenever confirmation or additional information is required. Therefore, the ideal
solution is an iterative approach that alternates conceptual modeling with data
analysis for enriching the strategic model obtained. Our proposal is a 3-step
iterative process, based on strategic modeling, data analysis, and model update.
In the following, we describe the main components involved in our process: the
modeling language and the analysis process.

3.1 Business Modeling and Indicator Metamodel

Business strategy modeling can be a very complex task. Existing modeling lan-
guages [6,10,13] include a large set of concepts that are required for analyzing
different aspects of the business strategy, such as dependencies across organiza-
tions, or the business mission and vision. However, these are unnecessary for the
task at hand and, additionally, do not provide the expressiveness required for
the indicator analysis. In order to keep the analysis simple, we propose a reduced
metamodel that can be integrated as an extension for any of the existing model-
ing languages. Our metamodel is shown in Fig. 1. In this Figure we can see the
following concepts included in the modeling language:

Fig. 1. Metamodel with the concepts and relationships for our modeling language

76 A. Maté et al.

1. Goals are desired state of affairs. They are included in pretty much every
strategic modeling language [6,10,13].

2. Relationships allow domain experts and analysts to express the expected
relationships between goals and, therefore, between their associated indica-
tors. They can be either contributions (with positive or negative effect) or
decomposition. In our language, relationships have the evidence property,
which captures the results from the analysis step showing whether the rela-
tionship is supported by the data or not.

3. Indicators measure the satisfaction of goals. In order to make indicators from
our model compatible with existing proposals [6,13] all indicators can have a
formula, current value, target value, threshold, worst value, and target time.
Furthermore they have a status, which provides information on the status of
the indicator with respect to the data. They are further specialized into three
types, not found in current modeling languages:
(a) Measures are the simplest form of indicators. They represent known for-

mulas for measuring business activities with no known targets or thresh-
olds. Their are potential as KPI and KRI candidates.

(b) Key Result Indicators are indicators which directly correlate with the
satisfaction of a goal. For example, “Increment in sales by 5 %” is a KRI,
since it provides information about the results of the business objective
“Increase sales”. Every KRI must have clear defined thresholds and val-
ues, and its usefulness comes from the capability to determine the exact
status of the associated business objective. However, compared to KPIs,
(i) KRIs always provide information at the same point in time when the
associated objective should be fulfilled and (ii) organizations cannot effect
KRIs directly. Following our examples, we cannot increase sales directly,
we have to effect them through promotions.

(c) Key Performance Indicators are indicators that measure the perfor-
mance of key activities related to KRIs. As KRIs, KPIs have clear defined
thresholds, but they may not have a target time since they can monitor
continuous tasks. For example, “Average response time under 3 days” is
a continuous task. KPIs are important for the company due to the ability
to effect them directly and, thus, indirectly effect their associated KRIs.
Therefore, if KRIs change, it is likely the set of KPIs also changes. Finally,
KPIs provide information ahead of time about the satisfaction of KRIs.
Intuitively, if we perform well, we will obtain good results. However, this
information is not accurate, as KPIs only measure a subset of the factors
influencing a KRI.

With this metamodel, we can construct strategic models focused on indica-
tors in collaboration with domain experts. The process for building the initial
strategic model is approached in a top-bottom fashion as follows. First, the main
objectives pursued by the organization are listed as top level goals. For each of
these top level goals assign a candidate KRI (if known) or a measure that quan-
tifies it. Next, using the information provided by the main objectives established
and the KRIs and measures, we start refining the goals. Goals that are coarse

Key Performance Indicator Elicitation and Selection 77

grained can be decomposed into simpler goals. Once we have simpler goals, we
can ask how/what are we doing (or plan to do) in order to achieve them, and
what effect these actions have any of the current goals in our strategic model.
The lower level goals obtained will be candidates to be monitored through KPIs.
Finally, any candidate KRI, KPI, or measure not related to any goal is listed
and included into the model with no relationship to the rest of elements.

3.2 Analysis

Indicators included in the strategic model represent specific formulas that allow
us to evaluate their behavior over time. However, quality data is often scarce,
and can be present in different formats. Therefore, we have defined a multi-step
analysis process that accounts for several challenges that can be found during
data analysis. Due to space constrains we mention only the key aspects.

If we have enough time data, then we start our time series by analyzing the
correlation between indicators, in order to obtain candidate relationships within
the data. These relationships are further analyzed though cross-correlation to
estimate the time difference between the behavior of one variable and its effect on
the other. Finally, we fit an ARIMA [3] to estimate the confidence and direction
of the relationship identified.

If there is not enough time data and instead we rely on large number of
instances with few time points, then we require simpler models. As previously, we
start by analyzing the correlation between indicators. Then, we generate multiple
linear regressions (one per region) in order to compare the behavior of indicators
across regions and confirm the existence and direction of the relationship. Finally,
we estimate the confidence of the relationship using simple sentinel-like rules [9].
These rules are calculated by using the difference in values across time for each
indicator and comparing if a positive (negative) value for the predicting indicator
results in a positive (negative) value for the affected indicator. Occurrences of
the same type (direct/inverse relationship) are added, while occurrences of the
opposite type subtract from each other.

The information obtained during the analysis is used to update the model in
order to feed the next iteration of the process. New contribution relationships
are added between goals whose indicator have a correlation with a confidence
rate higher than the threshold defined during model update. If there is no asso-
ciated goal, then a new goal is created with? As its description. The rest of the
modifications are omitted due to paper constraints. With the newly added infor-
mation, domain experts and analysts can begin the next iteration of the process,
by defining composite measures and re-designing the strategic model using the
newly obtained insights.

4 Case Study: Performance Indicators for Water Supply
Management

Water supply management companies focus on ensuring water supply to multiple
zones. It is a complex activity that involves multiple elements and processes.

78 A. Maté et al.

The water supply network incurs into loses, and must be renovated once critical
points are reached. However, finding the specific parts of the network that require
renovation is a challenging task, and thus entire blocks of the network have to
be renovated, which is costly. Therefore, in the following we apply our approach
in order to help the company explore their objectives and metrics and improve
both their performance monitoring as well as decision making.

We start with a simple indicator model depicting the high level goals pursued
and including the whole list of measures (cropped due to space constraints, and
mostly anonymized due to privacy reasons). The highest level goal is to provide
an efficient water supply, which does not have any known measure associated. In
order to track this high level objective, it is further decomposed into minimizing
water lost and improve network efficiency. In order to minimize water lost, intu-
itively the company wishes to minimize breakdowns and leaks, which are avoided
by maintaining the supply network and renovating it when needed. However,
renovating the supply network involves a costly process, and thus harms the
reduction of maintenance costs. With regards to improving network efficiency,
Measure 9 is proposed, which is related to the population density and cannot be
directly effected by the company. Therefore, no further goals are related to this
objective, which acts merely as a monitoring tool (Fig. 2).

Due to space constraints, we can only provide a summary of the data analysis
performed. For the first iteration of the analysis we start with 21 measures,
which contain yearly readings for the period of 2008 to 2014 (6 data points)
for 574 instances of the data. We start the preprocessing by extending the set
of measures, calculating water lost (not directly available), from water supplied
and water registered. Furthermore, due to the presence of missing values across
different measures, we remove Measure 15, which presents largest number of
missing values (382) and limits the application of statistical methods.

After performing the analysis, we identify a number of potential relation-
ships (see Fig. 3) between result indicators, generating new potential goals that
may be hidden and require exploration. Conversely, an initially expected rela-
tionship between Measure 14 and water lost is not supported by the data. This
indicates that we need to review either the way we are monitoring our goal. i.e.

Fig. 2. Subset of the initial model for our case study

Key Performance Indicator Elicitation and Selection 79

Fig. 3. Subset of the indicator model updated with data analysis results

how are we measuring breakdowns, or review the suitability of the relationship,
i.e. breakdowns not cause severe water loses? During the first step of the next
iteration we identified three relationships (Measures 12–16, 13–17, 20-water lost)
as not interesting, since the measures involved calculated in a similar fashion,
while another three relationships (4–5, 7–11, 19–20) were marked as of special
interest.

At the moment we gathering additional data that leads us to more insights,
but our approach has already successfully helped us to both simplify the initial
indicator list as well as enrich the strategic model.

5 Conclusions and Future Work

We have presented an iterative approach for the elicitation, assessment and selec-
tion of KPIs and KRIs. To the best of our knowledge, it is the first proposal that
explicitly includes the distinction between KPIs, KRIs, and measures within its
modeling language and exploits this information in order to drive the analysis.
Thanks to this information, our proposal enables domain experts to explore their
candidate indicators, helping them to iteratively build an indicator map that
reflects their priorities and is aligned with the results pursued. Furthermore, we
have applied our approach to a real case study based on the water management
sector, where we needed to elicit and select indicators for improving water effi-
ciency. As shown in the case study, the combination of strategic models together
with data analysis contributes greatly to progress in this search.

In the short term, we plan to focus on defining a methodology to cover the
whole process and improving the data analysis to detect more complex rela-
tionships between indicators. This will likely contribute to create more detailed
models and possibly extend the modeling language, where these complex rela-
tionships provide additional insights and ideas for domain experts.

80 A. Maté et al.

Acknowledgments. This work has been partially supported by the European
Research Council (ERC) through advanced grant 267856, titled “Lucretius: Foun-
dations for Software Evolution” (04/2011/2016) http://www.lucretius.eu. Alejandro
Maté is funded by the Generalitat Valenciana (APOSTD/2014/064). This work has
been partially funded by the Spanish Ministry of Economy and Competitiveness
(MINECO/FEDER) under the Granted Project SEQUOIA-UA (Management require-
ments and methodology for Big Data analytics) (TIN2015-63502-C3-3-R).

References

1. American productivity and quality center. https://www.apqc.org/
2. Angoss: Key Performance Indicators, Six Sigma and Data Mining. White

Paper (2011). http://www.angoss.com/white-papers/key-performance-indicators-
six-sigma-data-mining/

3. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Fore-
casting and Control. Wiley, New York (2015)

4. Chae, B.: Developing key performance indicators for supply chain: an industry
perspective. Supply Chain Manag. Int. J. 14(6), 422–428 (2009)

5. Chan, A.P., Chan, A.P.: Key performance indicators for measuring construction
success. Benchmarking Int. J. 11(2), 203–221 (2004)

6. Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos,
J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model.
13(3), 1015–1041 (2014)

7. Laursen, G., Thorlund, J.: Business Analytics for Managers: Taking Business Intel-
ligence Beyond Reporting. Wiley, New York (2010)

8. Maté, A., Trujillo, J., Mylopoulos, J.: Conceptualizing and specifying key perfor-
mance indicators in business strategy models. In: Atzeni, P., Cheung, D., Ram, S.
(eds.) ER 2012. LNCS, vol. 7532, pp. 282–291. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34002-4 22

9. Middelfart, M., Pedersen, T.B.: Implementing sentinels in the TARGIT BI suite.
In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp.
1187–1198. IEEE (2011)

10. Object Management Group: Business Motivation Model (BMM) 1.3. (2014).
http://www.omg.org/spec/BMM/1.3

11. Parmenter, D.: Key Performance Indicators: Developing, Implementing, and Using
Winning KPIs. Wiley, New York (2015)

12. Rodriguez, R.R., Saiz, J.J.A., Bas, A.O.: Quantitative relationships between key
performance indicators for supporting decision-making processes. Comput. Ind.
60(2), 104–113 (2009)

13. Silva Souza, V.E., Mazón, J.N., Garrigós, I., Trujillo, J., Mylopoulos, J.: Monitoring
strategic goals in data warehouses with awareness requirements. In: Proceedings of
the 27th Annual ACM Symposium on Applied Computing, pp. 1075–1082. ACM
(2012)

14. Van Thiel, S., Leeuw, F.L.: The performance paradox in the public sector. Public
Perform. Manag. Rev. 25(3), 267–281 (2002)

http://www.lucretius.eu
https://www.apqc.org/
http://www.angoss.com/white-papers/key-performance-indicators-six-sigma-data-mining/
http://www.angoss.com/white-papers/key-performance-indicators-six-sigma-data-mining/
http://dx.doi.org/10.1007/978-3-642-34002-4_22
http://dx.doi.org/10.1007/978-3-642-34002-4_22
http://www.omg.org/spec/BMM/1.3

Conceptual Modeling and Ontologies

Insights on the Use and Application
of Ontology and Conceptual Modeling

Languages in Ontology-Driven Conceptual
Modeling

Michael Verdonck(&) and Frederik Gailly

Faculty of Economics and Business Administration, Ghent University,
Ghent, Belgium

{michael.verdonck,frederik.gailly}@UGent.be

Abstract. In this paper, we critically survey the existing literature in
ontology-driven conceptual modeling in order to identify the kind of research
that has been performed over the years and establish its current state of the art by
describing the use and the application of ontologies in mapping phenomena to
models. We are interested if there exist any connections between representing
kinds of phenomena with certain ontologies and conceptual modeling lan-
guages. To understand and identify any gaps and research opportunities, our
literature study is conducted in the form of a systematic mapping review, which
aims at structuring and classifying the area that is being investigated. Our results
indicate that there are several research gaps that should be addressed, which we
translated into several future research opportunities.

1 Introduction

Modeling, in all its various forms, plays an important role in representing and sup-
porting complex human design activities. Especially in the development, the analysis,
as well as in the re-engineering of information systems, modeling has proved to be an
essential element in achieving high performing information systems [1]. More
specifically, conceptual models are descriptions of the organizational context for which
a particular system is developed [2]. According to Stachowiak [3], a model possesses
three features. The mapping feature, of a model can be seen as a representation of the
‘original’ system and is expressed through a modeling language. Second, the reduction
feature characterizes the model as only a subset of the original system. Finally, every
model is created with an intended purpose or objective, i.e. the pragmatic feature. Due
to many project failures that were the consequence of faulty requirement analysis in the
1960s, the importance of conceptual modeling grew substantially as a means to enable
early detection and correction of errors. As a consequence, a wide range of conceptual
modeling-based approaches and techniques were introduced. Criticism however arose,
stating that most of these modeling-based approaches and techniques were based on
common sense and the intuition of their developers, therefore lacking sound theoretical
foundations [4, 5]. This led to the introduction of ontologies, which provide a foun-
dation for conceptual modeling by means of a formal specification of the semantics

© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 83–97, 2016.
DOI: 10.1007/978-3-319-46397-1_7

of models and describe precisely which modeling constructs represent which phe-
nomena [6]. Although ontologies were originally used in the domain of conceptual
modeling to analyze the constructs used in the models and evaluate conceptual
grammars for their ontological expressiveness, the role of ontological theories evolved
towards improving and extending conceptual modeling languages (CML). From now
on, we refer to all of these techniques as ontology-driven conceptual modeling
(ODCM) approaches. We define ODCM as the utilization of ontological theories,
coming from areas such as formal ontology, cognitive science and philosophical logics,
to develop engineering artifacts (e.g. modeling languages, methodologies, design
patterns and simulators) for improving the theory and practice of conceptual modeling
[7]. In this paper, we intend to examine the mapping feature of conceptual models more
closely in the context of ODCM. We aim to describe the use and the application of
ontologies in mapping phenomena to models and are interested if there exist any
connections between representing kinds of phenomena with certain ontologies and
modeling languages. As such, we will survey the existing literature and determine
which phenomena, ontologies and CMLs occur the most in the area of ODCM. Our
survey of the literature will be conducted in the form of a systematic mapping review
(SMR). The purpose of a SMR is to summarize prior research and to describe and
classify what has been produced by the literature. Therefore, this paper aims to make
the following contributions: (1) provide a classification founded on previously devel-
oped research that will categorize the different kinds of phenomena; (2) present two
frequency tables that describe the types of ontologies and CMLs that occur the most;
and (3) discuss the current and past use and application of ontologies and CMLs in
representing phenomena.

2 Research Methodology

In order to achieve a rigorous mapping study, we based our method on the systematic
literature study methods described in [8–10]. A mapping study aims to outline the
structure of the investigated research area. In this paper, we thus perform a SMR on the
use and application of ontologies and CMLs in the domain of ODCM. To conduct our
SMR, we rely on the guidelines defined by [8]: (1) definition of the research questions;
(2) formulation of a search strategy and the paper selection criteria; (3) construction of
the classification and frequency table; (4) extraction of data and (5) synthesis of the
results. In this section, we will describe guidelines (1) through (4). The synthesis of the
results will be discussed in Sect. 3. We would like to note that this SMR is being
performed by building further upon the literature set that was collected in [11]. In this
paper, a literature study was conducted on the existing literature of ODCM in order to
assess the kind of research that has been performed over the years. While this literature
study focused more on the general research trends that occurred in ODCM, our paper
intends to be more specific. Our objective is to focus on the type of ontologies and the
kind of CMLs that have been applied in ODCM to represent different phenomena. As
such, both the literature study as the SMR of this paper target the same research

84 M. Verdonck and F. Gailly

domain, i.e. ODCM, but perform their study on a different level of depth and focus.
Therefore, for a full explanation of the formulation of the search strategy and paper
selection criteria, we refer to [11].

The research questions, as defined below, act as the foundation for all further steps
of the literature study. The research questions should be formulated in such a way that
they represent the objectives of this literature study. Our questions serve multiple
purposes: RQ1 aims at gaining more insight into the kind of phenomena the modeling
languages represent. The purpose of this question is to reveal which type of phenomena
research in ODCM has been focusing upon, and to discover which phenomena have
been disregarded. We define phenomena as: elements or concepts that embody
real-world occurrences and can be represented by a conceptual modeling grammar
which provides a set of rules and constructs that show how to model and represent
these real-world domains and phenomena [12]. RQ2 aims to discover which type of
ontology and which type of CML has been used in a specific article. This question will
allow us to determine the ontologies and CMLs that have been applied the most in
previous research efforts. Finally, RQ3 intends to deliver more insights on the rela-
tionship between phenomena, ontologies and CMLs. As such, we compare the results
of RQ1 and RQ2, and aim to reveal if there exists any influence between the kind of
phenomena that are being represented by a conceptual model and the kind of ontology
and CML that is being used to construct this conceptual model.

• RQ1: Which kinds of phenomena are considered the most in ODCM?
• RQ2: Which type of ontologies and CMLs are being used in ODCM?
• RQ3: How are ontologies and CMLs applied to represent phenomena?

Our classification and frequency tables are based upon these first two research
questions. To answer RQ1, we construct a classification that will allow us to categorize
between different kinds of phenomena. We base our classification on the structuring
principles defined by [12, 13]. In this paper, various perspectives or structuring prin-
ciples are being distinguished, based upon previous research performed in classifying
phenomena. A structuring principle or perspective is defined as a rule or assumption
indicating how phenomena should be structured. We therefore construct our classifi-
cation scheme and assign phenomena into different categories based upon these per-
spectives. Each of these categories is discussed in more detail below:

• Static perspective: Phenomena that are characterized within the static perspective
tend to describe the structure of a system. These kinds of phenomena are often
represented with constructs named as entity, thing or object. These entities are being
distinguished with a unique principle of identity and often hold a number of
attributes, which represent specific values of the entity. Generally, these entities are
also connected through a variety of relationships.

• Dynamic perspective: The dynamic structure collects phenomena that represent
change and time. These phenomena are generally translated in constructs that
describe events and processes. The happening of an operation or activity that has

Insights on the Use and Application of Ontology and CMLs 85

been triggered by an external factor is called an event. A process is the trace of the
events during the existence of an entity.

• Behavioral & Functional (B&F) perspective: The main phenomena that belong to
the B&F perspective are social phenomena and states and their transitions or
transformations. Social phenomena relate to entities such as actors and the roles
they assume and actions they perform. Also rules and goals can be categorized as
social phenomena since they influence the behavior of an actor. A transformation of
a state can be defined as an activity, based on a set of phenomena that transforms
them to another set of phenomena. Other terms used are function or task.

For example, if a paper introduces a new method to model and describes data structures
used for representing and exchanging database information, we would add a reference
from this paper to the static perspective. Similarly, if a paper focuses on the semantic
incompleteness of models in the area of business process modeling, a reference is
added to the dynamic perspective. Finally, a paper that aims to represent role-related
and goal-related concepts in agent-oriented modeling will be classified as a reference to
the B&F perspective.

In order to answer RQ2, we will construct a frequency table that lists all CMLs, and
another frequency table that lists all ontologies that are being used in the papers of our
literature set. We thus start of with an ‘empty’ frequency table, and populate this table
during the analysis and the reading of the articles. Whenever we encounter a yet
undefined CML or ontology, we insert this as a new category of our frequency table. It
is important for the reader to realize that one paper can address multiple CMLs,
ontologies or perspectives of phenomena. For example, if a paper performs an onto-
logical analysis with the Bunge Wand Weber (BWW) ontology [14] on both the
languages UML and EER, then this paper has one reference to the BWW ontology, and
one reference each to respectively UML and EER. Similarly, if a paper introduces an
ontological framework based upon Unified Foundational Ontology (UFO) [15] and
explains how this framework can be adopted without specifically demonstrating this
framework to a CML, this paper will only be assigned a reference to UFO.

After we collected our research articles, we applied our classification and started to
perform our data extraction. In total, the literature set represents 200 articles that are
related to research in ODCM, and that were published from 1993 to 2015. All articles,
classifications and other data of the SMR can be found at http://www.mis.ugent.be/
ER2016/. To extract the data, we first gathered all the collected literature from our
search strategy into the reference manager Mendeley1, to organize the general demo-
graphic information such as title, author, publication year etc. Next, the extraction was
performed through the qualitative analysis tool Nvivo2 to analyze and structure our
data. Both the data from Mendeley and Nvivo were then merged in the statistical
software tool SPSS3 to conduct some additional qualitative analyses. The results of this
analysis can be found in the section below.

1 https://www.mendeley.com/.
2 http://www.qsrinternational.com/products_nvivo.aspx.
3 http://www-01.ibm.com/software/be/analytics/spss/.

86 M. Verdonck and F. Gailly

http://www.mis.ugent.be/ER2016/
http://www.mis.ugent.be/ER2016/
https://www.mendeley.com/
http://www.qsrinternational.com/products_nvivo.aspx
http://www-01.ibm.com/software/be/analytics/spss/

3 Systematic Mapping Study Results

3.1 RQ1: Which Kinds of Phenomena Are Considered the Most
in ODCM?

In order to answer RQ1, we classified the articles according to our classification
scheme. In total, 104 articles belonged to the Static Perspective (45,8 %), 74 articles
(32,6 %) to the B&F perspective and 49 articles (21,6 %) could be classified to the
dynamical perspective. These findings are in line with the results of Fettke [16] and
Davies et al. [17]. In their research, they investigated how practitioners applied con-
ceptual modeling and which tools and techniques where the most popular. When
asking the practitioners for the purpose of conceptual modeling use, the highest ranked
application areas were: database design & management and software development.
These domains mostly require rather static phenomena to be modeled. Other main
application areas were improvement of internal business processes and workflow
management. These domains encompass more phenomena of the B&F perspective and
the dynamic perspective. It seems logical that academic research would also focuses on
the same kind of areas and types of phenomena that are deemed important to practi-
tioners and enterprises. To gain more insight at the evolution of which kind of phe-
nomena have been the topic of interest in the field of ODCM, we display in Fig. 1 the
number of references per type of perspective over the period 1993–2015. As the figure

Fig. 1. Perspectives over time

Insights on the Use and Application of Ontology and CMLs 87

demonstrates, phenomena of the static perspective have been dominating ODCM for
almost its entire life span.

Only in the last five years has the B&F perspective overruled the interest in the
static perspective. Starting from 2005, both the phenomena of the dynamic and B&F
perspectives have increased in interest. A possible explanation to this trend is that
ontologies were first applied to analyze constructs that represented static phenomena,
while after several years of successfully applying these practices, the research com-
munity shifted the application of ontologies to constructs belonging to the dynamic and
B&F perspective. Moreover our observation is in line with Recker and Rosemann [18],
where they state that an increasing demand for a more disciplined approach towards
process modeling and business process management (BPM) triggered related academic
and commercial work aiming towards advanced process and business modeling solu-
tions. Since these areas require concepts and elements that represent phenomena from
both the dynamical and B&F perspective, it is likely that the increased demand in
process modeling and BPM solutions caused the ODCM community to focus more on
this domain.

3.2 RQ2: Which Type of Ontologies and CMLs Are Being Used
in ODCM?

To answer our second research question, we display the frequency tables in Tables 1
and 2, which represent respectively all the ontologies that have been applied and all of
the modeling languages that have been used in the field of ODCM. As we can see from
our first frequency table, the BWW ontology (68) is by far the most occurring ontology.
The second most occurring ontology is UFO (24). Both ontologies are by no coinci-
dence foundational ontologies. Foundational ontologies are suitable for many different
target domains since they provide a broad view of the world [19]. Therefore, they are a
popular means to employ for different kind of phenomena and modeling languages.
This assumption is again confirmed when regarding the many domain ontologies in the
table and their frequency. Many of these ontologies have been referenced only once in
a paper. Evidently, since a domain ontology is often developed for a specific purpose
and targets a certain domain, its number of references is significantly lower compared
to the domain-independent foundational ontologies. In our frequency table, we have
made a distinction between foundational ontologies and domain ontologies, where we
further categorized every domain ontology according to their application domain. Most
of the domain ontologies in ODCM seem to apply to the business and enterprise
domain, followed by domain ontologies in software systems development & archi-
tecture and the semantic web. The most frequently referenced domain ontology was the
Resource-Event-Agent (REA) ontology.

To get a closer look at the kinds of modeling languages that have been used by
ODCM researchers, we summarize our results in frequency Table 2. As with ontolo-
gies, we can see that several CMLs dominate the field of ODCM. The most popular
modeling language is by far the Unified Modeling Language (UML) with 68 refer-
ences. EER holds second place, with a total number of 25 references. Again, these

88 M. Verdonck and F. Gailly

Table 1. Frequency table - type of ontology

Type of Ontology Frequency Type of Ontology Frequency

Foundational Ontology Semantic Web

BWW 68
Web Service Modeling Ontology
(WSMO)

3

UFO 24 DAML ontology 1

General Formal Ontology
(GFO)

4 FOAF ontology 1

Discrete Event Simulation
Ontology (DESO)

3 Geographic Ontology 1

DOLCE 3 MUSIC Ontology 1

Chisholm Ontology 2 RICO Ontology 1

SUMO 2 USMO ontology 1

BORO 1 Software Systems Development & Architecture

Basic Formal Ontology
(BFO)

1 Architectural Style Ontology 2

Searle’s Ontology 1 FRISCO 1

Business/Enterprise GUIMeta Ontology 1

REA 5
IT Service Configuration
Management Ontology

1

UEML Ontology 2 ONTOMADEM 1

CM Task Ontology (CMTO) 1 Software Measurement Ontology 2

Construction Core Ontology
(CCO)

1 Technology Risk Ontology 1

Domain Ontology for
Resource (DORe)

1 Vulnerability-Centric Ontology 2

EAF Ontology 1 Medicine & Healthcare

e-Business Model Ontology
(e-BMO)

1 HOTMES Ontology 2

Project-Collaboration
Ontology (PCO)

1 ECG Ontology 1

PRONTO 1 Neuroweb Reference Ontology 1

e3 Service Ontology 3
Public Health Informatics (PHI)
Ontology

1

SOA Ontology 1 Conceptual Design Knowledge

Database Design & Architecture Activity-Space Ontology 1

AERDIA ontology 1 CAM ontology 1

Context Ontology 1 Port Ontology 1

ITSM Knowledge Ontology 1 Scale-extended Geo-Ontology 1

Transportation Tactile information ontology 1

Public Transportation
Ontology

1

Insights on the Use and Application of Ontology and CMLs 89

observations are similar to those of Fettke [16] and Davies et al. [17]. Their findings
identified that the modeling languages UML and EER are two of the most frequently
used modeling techniques of practitioners.

It is again no coincidence that the modeling languages UML and EER are most
frequently applied to model static phenomena in areas such as database design and
software development. Many modeling languages have been developed for specific
purposes. For example, the EER modeling language was specifically developed for the
purpose of describing the data and information aspects of databases while the Business
Process Modeling Notation (BPMN) is more focused on specifying business processes.
Other modeling languages that were frequently identified are the Web Ontology
Language (OWL) and OntoUML. While most of the identified modeling languages are
used to represent concepts and elements of a domain, the OWL language is often used
to represent the structure of the ontology. One of the main advantages of using OWL is
that it provides a machine-readable ontology, which can then be processed by appli-
cations. The language OntoUML is an example of a CML whose metamodel has been
designed to comply with the ontological distinctions and axiomatic theories put forth
by a foundational ontology, in this case UFO. When a model is built in OntoUML, the
language induces the user to construct the resulting models via the combination of
existing ontologically motivated design patterns. It is an interesting development to
observe this kind of ontologically supported modeling language ranking fifth in the
frequency table.

Table 2. Frequency table - type of CML (CML)

Type of CML Frequency Type of CML Frequency

UML 68 Multiagent-based Integrative
Business Modeling Language

2

ER & EER 25 ADONIS 1
OWL 24 AIML 1
BPMN 16 Information flow diagram (IFD) 1
OntoUML 9 LItER 1
Petri Nets 5 Misuse case maps (MUCM) 1
ArchiMate 4 OPEN Modeling Language (OML) 1
ARIS 4 ORM 1
Event-driven Process
Chain (EPC)

3 REA 1

Unified Enterprise
Modelling Language
(UEML)

3 Reference Model of Open
Distributed Processing
(RM-ODP) language

1

e3 Value 2 Value Delivery Modeling Language
(VDML)

1

iStar 2

90 M. Verdonck and F. Gailly

3.3 RQ3: How Are Ontologies and CMLs Applied to Represent
Phenomena?

To gain a better understanding of the two most applied ontologies in ODCM, we have
mapped their frequency of references over time. As we can see from Fig. 2, the BWW
ontology has been especially popular in the years 2005-2009. However, since UFO’s
introduction in 2005, researchers performing ODCM have keenly adopted the ontol-
ogy. It is clear that many users of BWW have switched to UFO in the years 2010–
2015.

To better explain this shift in ontologies, we take a closer look at which phenomena
the ontologies have been applied for in ODCM. As displayed in Table 3, more than
half of all the phenomena that are related to the BWW ontology are categorized into the
static perspective. Both the dynamic and B&F perspective each represent around 25 %
of the phenomena that correspond with the BWW ontology. Contrary to the UFO
ontology, more than half of the phenomena belong to the B&F perspective. These
results imply that the BWW and UFO ontologies are being applied for specific kind of
phenomena. Our results would suggest that the BWW ontology is more convenient to
apply to static phenomena while the UFO ontology is more suited to deal with B&F

Fig. 2. BWW and UFO over time

Insights on the Use and Application of Ontology and CMLs 91

phenomena. A similar, theoretical observation has also been made by [20], where they
contribute a lack of social or behavioral aspects in the BWW ontology that are nec-
essary to model a social environment. Our assumption is further supported when
observing the structure of UFO. The UFO ontology is divided into three incrementally
layered compliance sets: (1) UFO-A, which defines the core of UFO, describing
Endurants, i.e. entities that persist through time; (2) UFO-B defining terms related to
Perdurants, entities that do not persist through time such as events, and finally
(3) UFO-C which describes social entities (both Endurants and Perdurants) and their
behavior, or more specifically the social aspects of actors, roles and goals. UFO thus
has a layer that specifically targets behavioral phenomena.

Our results suggest that certain ontologies are more preferred depending on the kind
of phenomena the modeler is dealing with. An interesting research opportunity would
therefore be to investigate if certain ontologies are in fact more advantageous to apply
depending on the kind of phenomena. Further, as described in Fig. 1, since the year
2005, the B&F perspective has gained much attention in the field of ODCM. Similarly
in Fig. 2, we also notice an increase starting from 2005 in the utilization of the UFO
ontology. When linking both trends, the shift from BWW to UFO could therefore be
explained that the increased interest in modeling phenomena from the B&F perspective
has persuaded more researchers into applying UFO instead of BWW, because of
UFO’s beneficial ability to deal with this kind of phenomena.

To gain a better understanding in how CMLs are applied in ODCM, we map the ten
most frequently used CMLs to the phenomena they should represent accordingly. The
results are displayed in Fig. 3. For the static perspective, UML (39) is by far the most
occurring modeling language, followed by the EER language (19) and OWL (16).
Concerning the dynamic perspective, these phenomena seem to be represented the most
through the UML language (12) and BPMN (11). Also languages such as EPC and
Petri-nets are the most used for this perspective. Finally, when looking at modeling
languages in the B&F perspective, we see that UML (27) is the most dominating
modeling language. It seems that there does not really exist a second ‘competing’ or
preferred modeling language in this perspective. We can see that modeling languages
such as BPMN, ArchiMate and UEML are also applied to represent B&F phenomena,
although they clearly are still far behind of UML. Despite UML offering many types of
diagrams (class, activity, interaction, statechart etc.) to model a wide variety of phe-
nomena, it is curious that one modeling language dominates all three perspectives. As
mentioned above, many CMLs have been developed to represent and be applied in

Table 3. BWW and UFO per type of perspective

Type of phenomena BWW Percentage UFO Percentage

Static Perspective 40 52,0 % 8 27,6 %
Dynamical Perspective 19 24,7 % 5 17,2 %
B&F Perspective 18 23,3 % 16 55,2 %

92 M. Verdonck and F. Gailly

certain kind of application areas. Even though UML is a standard modeling language
for a wide spectrum of application domains, it still has it deficiencies in representing
certain kind of phenomena. Research by [21] for example, expressed the deficiencies of
UML diagrams to model business organizations and the inadequate use of UML for
abstracting high-level business-specific concepts. We should therefore carefully con-
sider during the modeling process which kind of CML we will apply in order to
represent certain kind of phenomena.

Fig. 3. CMLs per perspective

Insights on the Use and Application of Ontology and CMLs 93

3.4 Additional Results

Beyond the investigation into the state of the research in ODCM, we describe here
additional results that can be of interest for producers and consumers of research in
ODCM. We have identified the top five journal and conference papers that were the
most occurring publication forums in our literature set. These forums allow us to
identify the main targets for ODCM research and to determine were previous research
efforts can be found. The top five journals, with the respective number of papers are:
Information Systems Journal (14), Data and Knowledge Engineering (9), Scandinavian
Journal of Information Systems (7), Decision Support Systems (6) and Journal of
Database Management (5). The top five conferences are the International Conference
on Conceptual Modelling (8), Americas Conference on Information Systems (7),
European Conference on Information Systems (7), International Conference on
Information Systems (7) and Enterprise Distributed Object Computing Conference (6).

4 Discussion

In order to contribute to the field of ODCM, we discuss certain shortcomings and
possible research opportunities that have been identified within this literature study.

Research Opportunity 1. As observed in Sect. 3.1, the field of ODCM has focused
mostly on phenomena of the static perspective. Only in the last decade did we observe
an increased interest in the dynamic and especially the B&F perspective. Similarly, the
BWW ontology was by far the most applied in ODCM. We did recognize a growing
interest in the UFO ontology, which is likely related to the growing interest in the B&F
perspective. Furthermore, our results indicated that UML is the principal modeling
language in ODCM. Moreover, UML was the most applied CML in every perspective.
Although we do not doubt that both the BWW ontology and the UML modeling
language are very adequate in performing ODCM, we can ask ourselves if this rather
unilateral approach is much desired. As mentioned by Guizzardi [7], research in
ODCM aims to develop engineering artifacts for improving the theory and practice of
conceptual modeling. This research process is essential, not only to support acceptance
among IS professionals, but also to establish the credibility of ODCM research among
the larger body of researchers in the various engineering fields. If the field of ODCM
produces artifacts that are mostly based upon the same and existing knowledge base,
we tend to transform this research process into routine design [22]. As such, we believe
many opportunities in ODCM still lie in addressing important and unsolved problems
with new ontologies and different conceptual modeling languages. This diversification
will lead to unique and innovative ways into solving these problems. A good example
of such an innovative solution is the pattern language OntoUML, which was referenced
by several papers in our literature set.

Research Opportunity 2. Our results would suggest that certain ontologies are more
advantageous to apply, depending on which kind of phenomena the modeler is dealing
with. However, as observed in [11], many researchers remain vague in defining the
specific application of the ontology and in motivating their choice of ontological

94 M. Verdonck and F. Gailly

theories for the intended purpose. As displayed in Table 3, we observed that more than
half of all the phenomena that were applied together with the BWW ontology where
phenomena from the static perspective, while more than half of the phenomena that
were used with the UFO ontology belong to the B&F perspective. These results would
suggest that the BWW ontology is more convenient to apply to static phenomena while
the UFO ontology is more suited to deal with B&F phenomena. These implications
could serve as a testing hypothesis for future research to investigate these topics more
thoroughly. This opportunity can also be approached from a different perspective, by
relating the choice of an ontology (and the choice of a CML) to the pragmatic feature of
a model [3]. Since every model is created with an intended purpose (its pragmatics), the
ontology should correspond to this purpose. In other words, we believe that an
opportunity lies in properly investigating which ontology can be applied according to
the pragmatics of the model.

Research Opportunity 3. Ontologies are increasingly seen as key to successfully
achieve semantic interoperability between models and languages. As identified in fre-
quency Table 1, many different types of ontologies are being applied. Consequently, the
field of ODCM has a wide variety of ontological analyses, ontology-based models and
numerous methods in how to create or perform such analyses and models. However, this
has re-introduced the interoperability problem, as also mentioned by Khan and Keet
[23]. Especially on the long term, this raises the ambiguity between different
ontology-founded models and increases the terminological confusion, which as a result
leads to more complexity for both modelers and practitioners of ODCM. By increasing
the interoperability between ontologies, we could facilitate their ease of use. By creating
a mapping of elements between different ontological concepts and structures, this would
reduce the workload for new research efforts since they could be based upon already
earlier performed research. Efforts to increase interoperability can occur in many dif-
ferent forms. For example, as a way to increase the interoperability between ontologies,
Khan and Keet [23] have created an online library of foundational ontologies called
ROMULUS (Repository of Ontologies for MULtiple USes). ROMULUS maintains a
catalogue of mappable and non-mappable elements among several foundational
ontologies, and the pairwise machine-processable mapped ontologies.

5 Conclusion

This paper conducted a systematic mapping review in the field of ODCM. In total, our
mapping study investigated 200 articles that originated from six digital libraries. We
have provided a classification founded on previously developed research and two
frequency tables, in order to clearly and thoroughly categorize papers dealing with
ODCM. The classification scheme was used to identify which types of phenomena
occurred the most, while the frequency tables aimed to discover the most frequently
applied ontologies and CMLs. The results of the classification scheme indicate that
phenomena of the static perspective have been considered the most in ODCM. How-
ever, during the last decade, we noticed an increased interest in phenomena of the
dynamic and the B&F perspective. Our frequency tables determined that the BWW

Insights on the Use and Application of Ontology and CMLs 95

ontology and the UML modeling language have been applied most often. Originating
from these results, we formulated several research opportunities: (1) we emphasized the
importance of applying new kind of ontologies and types of modeling languages;
(2) we suggest that the kind of ontology which is used to produce ODCM is of
importance, and should be justified as a design choice in the modeling process; and
(3) by increasing the interoperability between ontologies, we can link many of their
analyses, models and frameworks and facilitate the overall ease of use in ODCM.

References

1. Karimi, J.: Strategic planning for information systems: requirements and information
engineering methods. J. Manag. Inf. Syst. 4, 5–24 (1988)

2. Evermann, J., Wand, Y.: Ontology based object-oriented domain modelling: fundamental
concepts. Requir. Eng. 10, 146–160 (2005)

3. Stachowiak, H.: Allgemeine Modelltheorie. Springer-Verlag, Wien (1973)
4. Siau, K., Rossi, M.: Evaluation techniques for systems analysis and design modelling

methods - a review and comparative analysis. Inf. Syst. J. 21, 249–268 (2007)
5. Batra, D., Marakas, G.M.: Conceptual data modelling in theory and practice. Eur. J. Inf.

Syst. 4, 185–193 (1995)
6. Opdahl, A.L., Berio, G., Harzallah, M., Matulevičius, R.: An ontology for enterprise and

information systems modelling. Appl. Ontol. 7, 49–92 (2012)
7. Guizzardi, G.: Ontological foundations for conceptual modeling with applications. In:

Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328,
pp. 695–696. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31095-9_45

8. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering (2007)

9. Dybå, T., Dingsøyr, T., Hanssen, G.K.: Applying systematic reviews to diverse study types:
an experience report. In: Proceedings of 1st International Symposium Empirical Software
Engineering and Measurement, 2007, pp. 225–234 (2007)

10. Petersen, K.: Measuring and predicting software productivity: a systematic map and review.
Inf. Softw. Technol. 53, 317–343 (2011)

11. Verdonck, M., Gailly, F., de Cesare, S., Poels, G.: Ontology-driven conceptual modeling:
a systematic literature mapping and review. Appl. Ontol. 10, 197–227 (2015)

12. Wand, W.: Research commentary: information systems and conceptual modeling—
a research agenda. Inf. Syst. Res. 13, 363–376 (2002)

13. Krogstie, J.: Perspectives to process modeling. In: Glykas, M. (ed.) Business Process
Management. SCI, vol. 444, pp. 1–40. Springer, Heidelberg (2013)

14. Wand, W.R.: On the ontological expressiveness of information systems analysis and design
grammars. Inf. Syst. J. 3, 217–237 (1993)

15. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. CTIT, Centre for
Telematics and Information Technology (2005)

16. Fettke, P.: How conceptual modeling is used. Commun. Assoc. Inf. 25, 43 (2009)
17. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners use

conceptual modeling in practice? Data Knowl. Eng. 58, 358–380 (2006)
18. Recker, J., Rosemann, M.: Integration of models for understanding continuance of process

modeling techniques. In: Proceedings of the 13th Americas Conference on Information
Systems 2007, pp. 1–12 (2007)

96 M. Verdonck and F. Gailly

http://dx.doi.org/10.1007/978-3-642-31095-9_45

19. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Handbook on Ontologies,
pp. 1–17 (2009)

20. Johnston, R.B., Milton, S.K.: The foundational role for theories of agency in understanding
of information systems design. Australas. J. Inf. Syst. 10, 40–49 (2002)

21. De Cesare, S. De Lycett, M.: Business modelling with UML: distilling directions for future
research. In: International Conference on Enterprise Information Systems, pp. 570–579
(2002)

22. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28, 75–105 (2004)

23. Khan, Z.C., Keet, C.: The foundational ontology library ROMULUS. In: Cuzzocrea, A.,
Maabout, S. (eds.) MEDI 2013. LNCS, vol. 8216, pp. 200–211. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41366-7_17

Insights on the Use and Application of Ontology and CMLs 97

http://dx.doi.org/10.1007/978-3-642-41366-7_17

An Ontological Approach for Identifying
Software Variants: Specialization

and Template Instantiation

Iris Reinhartz-Berger1(&), Anna Zamansky1, and Yair Wand2

1 Department of Information Systems, University of Haifa, 31905 Haifa, Israel
{iris,annazam}@is.haifa.ac.il

2 Sauder School of Business, University of British Columbia,
Vancouver, Canada

yair.wand@ubc.ca

Abstract. Software is a crucial component of many products and often is a
product in itself. Software artifacts are typically developed for particular needs.
Often, identifying software variants is important for increasing reuse, reducing
time and costs of development and maintenance, increasing quality and relia-
bility, and improving productivity. We propose a method for utilizing variability
mechanisms of Software Product Line Engineering (SPLE) to allow identifi-
cation of variants of software artifacts. The method is based on an ontological
framework for representing variability of behaviors. We demonstrate the fea-
sibility of the method on two common variability mechanisms – specialization
and template instantiation. The method has been implemented using reverse
engineered code. This provides a proof-of-concept of its feasibility.

Keywords: Variability � Reuse � Software Product Line Engineering

1 Introduction

Development has become increasingly complex while reducing time-to-market remains
a critical issue. Therefore, identifying variants of software artifacts, such as require-
ments, design models, and code, plays a central role in software engineering. Vari-
ability is specifically researched and studied in the field of Software Product Line
Engineering (SPLE) [7, 20], which aims at providing techniques, methods, and tools
for effectively and efficiently developing and maintaining similar software products.
This is done by promoting systematic reuse through what is commonly called vari-
ability mechanisms (namely, reuse or variation mechanisms). These are techniques
applied to adapt generic (reusable) artifacts to the context of particular products. Dif-
ferent variability mechanisms have been suggested for different development stages,
e.g., implementation [1], architecture design [3], and reference models [5]. Special-
ization (a.k.a. inheritance) and template instantiation are two examples of such
mechanisms relevant throughout the whole development lifecycle. Specialization deals
with refining behaviors (commonly by introducing new attributes or restricting the
ranges of existing attributes) or adding behaviors. Unlike code inheritance, which

© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 98–112, 2016.
DOI: 10.1007/978-3-319-46397-1_8

sometimes “just” promotes software reuse or behavior substitution (through operation
overriding), in specialization, the specialized element is expected not to “violate” the
laws (i.e., the intended behavior) of the generalized element, but to refine it. Template
instantiation enables adapting types or filling product-specific parts in a generic
behavior. In Java and C#, for example, it is achieved using the concept of generics.

Despite the benefits of reuse in general and SPLE in particular, in practice artifacts
are often not developed for reuse. Cloning, for instant, involves copying artifacts and
adapting them to the particular needs and related requirements. It provides a common,
available, and simple practice [13] whose consequences are identified in adaptation,
bug fixing, and maintenance.

When dealing with software product lines, a recent industrial survey [4] reveals that
SPLE is commonly adopted extractively (i.e., existing product artifacts are
re-engineered into a software product line) or reactively (i.e., one or several products
are built before the product line artifacts are developed). In those scenarios identifi-
cation of variants is required to support adaptation and improve maintenance or bug
fixing.

To this end, we propose a method for identifying variants of software artifacts and
associating them with variability mechanisms to help increase their reuse and improve
their future development and maintenance. A formal framework for representing
properties of variability has already been presented in [22] and used to define different
variability mechanisms. In that framework, software products and software product
lines are defined as things exhibiting behavior. The framework identifies relationships
among software product lines and software products and enables mathematical defi-
nition of well-known variability mechanisms.

In this paper we suggest using the above framework to identify variants and rec-
ommend which variability mechanisms may potentially be applied in those cases. The
method is composed of three stages, as depicted in Fig. 1. In the first stage the
information regarding the software products (P1, …, Pn) is extracted from their artifacts
and represented in a repository. Next, the commonality and variability are analyzed
utilizing properties of different variability mechanisms, such as specialization and
template instantiation. Finally, the analysis results are presented in variability models,
expressed in languages such as feature diagrams [12] or Orthogonal Variability Models
(OVM) [20]. The actual application of the mechanisms is currently left to software
designers and implementers.

Fig. 1. A high level description of the suggested approach

An Ontological Approach for Identifying Software Variants 99

Below, Sect. 2 reviews the relevant literature. Section 3 briefly presents the onto-
logical foundations. Section 4 introduces the formal basis for the suggested method,
while Sect. 5 presents its realization and refers to preliminary results. Finally, Sect. 6
concludes and sets the ground for future research.

2 Related Work

Identifying variants of software artifacts has been studied for several purposes. First,
techniques have been suggested to detect code clones and manage them through
refactoring or tracking [18, 23]. Roy and Cordy [23] refer to four categories of clone
detection approaches: textual, lexical, syntactic, and semantic. After being detected, the
clones can be divided to those that should be refactored (i.e., merged into a single
fragment) and those that should be tracked in order to improve management (e.g., to
support consistent update of all clones). In the context of SPLE, Faust et al. [9] propose
a method for migrating multiple instances of code units of a “successful” single
information system to a software product line. The method is based on a two phase
model: (1) grow, in which the code is copied and modified to implement additional
similar functionality, and (2) prune, in which the different variants are merged to
support easy percolation of changes. Mende et al. [16] further suggest a tool to support
the maintenance of code developed following the grow-and-prune model. In order
to identify similar functions that may be merged, token-based clone detection is used to
detect pairs of functions sharing code. Then, textual similarity measures are utilized to
lift sufficiently similar functions to the architectural level.

Detection of variants is also studied for analyzing variability. Ryssel et al. [25], for
example, propose how to automatically identify variation points, namely, places where
variability occurs, in function-block-based models. These are models that decompose
the functionality of systems into components (function blocks). Yoshimura et al. [28]
describe an approach to detect variability in a software product line from the change
history of the software. Several studies offer methods for generating variability models
from existing artifacts, e.g., [8, 11, 19, 27]. Overall, these studies concentrate on
identification of particular types of artifacts (most notably, code or requirements) and
create feature diagrams or OVM models for representing variability. Moreover, many
approaches for managing cloned variants make assumptions on the project context or
the application domain [24].

In this paper we suggest identifying variants utilizing properties of commonly used
variability mechanisms, such as specialization and template instantiation. The study in
[2] has already referred to variability mechanisms as techniques to guide customization
or modification of existing components. Our approach formalizes such guidance for the
general case and demonstrates it on two variability mechanisms and object-oriented
design and code artifacts.

100 I. Reinhartz-Berger et al.

3 The Ontological Foundations

Our approach is based on the ontological model of Bunge [6]. We chose this general
purpose ontology because it has been widely used in conceptual modeling of infor-
mation systems analysis and design [26]. It can be therefore considered a natural
candidate for defining software artifacts and providing the semantics of variability
mechanisms. Although other, more expressive ontological models could be used, we
show next how Bunge’s concepts can be used for defining variability mechanisms and
analyzing the differences between them. Elaboration on Bunge’s ontological model in
the context of software variability analysis can be found at [22].

3.1 Things, States, and Behaviors

The elementary unit in Bunge’s ontology is a thing, which possesses properties (in-
trinsic and mutual) and manifests behaviors. Properties are known to humans via
attributes. A chosen set of attributes forms the state variables by which we model
things. The values of state variables change in time, due to the occurrence of an event
which triggers changes of state. Events can be external – caused by changes in other
things, or internal – caused by the thing itself. From an external view, the behavior of
things can be modeled by the initial state of the thing before the behavior occurs (S1),
the sequence of external events triggering the behavior (<e>), and the final state of the
thing after the behavior occurs (S*) [21]. Table 1 summarizes these concepts and
exemplifies them using library management systems. Book Copy is a thing, charac-
terized by status (available or unavailable) and an indicator whether it can be borrowed
or not (due to library’s policies).

Table 1. The relevant concepts based on Bunge’s ontological model

Concept Definition Example

State
variable

An expression of the form xi, which
has an associated set Range(xi) of
values that can be assigned to it

Range (status) = {available,
unavailable}; Range
(borrowable?) = {yes, no}

State (of
the thing)

A (potentially partial) assignment of
values (from the associated ranges)
at a given time to the state variables
of the thing

s′ = (available, yes);
s″ = (unavailable, yes)

External
event

A (trigger that causes) change in the
state of a thing as a result of an
action of another thing

User borrows
User returns

Behavior A triple b = (S1, <e>, S*). S1 and S*
are the initial and final states. <e> is
a sequence of external events

Borrowing: (s′, <user borrows>, s″);
Returning: (s″, <user returns>, s′)

Thing Described by T = (SV, E, B):
SV is the state variables of interest
E is a set of external events of interest
B is a set of allowed behaviors

Book copy = ({status, borrowable?},
{user borrows, user returns},
{borrowing, returning})

An Ontological Approach for Identifying Software Variants 101

3.2 The Formal Framework for Representing Variability Mechanisms

Using Bunge’s ontology, software product lines and software products are represented
by things exhibiting behaviors. Product artifacts are descriptions of software products
and core assets are descriptions of software product lines which determine (part of) the
behavior of software products. Product artifacts are obtained by introducing modifi-
cations to core assets.

Modifications can be classified along two dimensions: product and element. In the
product dimension we examine the relationship between the whole set of behaviors BP

of a product (as specified in the relevant product artifact) and the whole set of the
software product line behaviors BSPL (as specified in the relevant core asset). Along
this dimension, we can find for example configuration – choosing alternative functions
and implementations [10]. However, in this paper we focus on the element dimension
which deals with the relationship between a single behavior of a software product, bP,
and the corresponding (single) behavior of the software product line - bSPL. The pre-
mise is that bP “concretizes” bSPL. Concretization allows for changes in the use of state
variables (from the core asset) and in their allowed values. This is described by a state
mapping from the set of states for the software product line to the set of states for a
software product. The state mapping is induced by the relevant state variable mapping
and the value mapping (see [22] for the full definitions of these mappings).

Concretization of a behavior bSPL = (S1, <e>, S*) can be achieved in different
ways, two of which are specialized and template-instantiated behaviors (see Table 2).
We refer to events as the triggers of transformations. Thus, we currently do not involve
them in the definitions of specialized and template-instantiated behaviors, concentrat-
ing on the essence of the transformation depicted by the initial and final states.

Table 2. Properties and examples of specialized and template-instantiated behaviors

Variability of
behaviors

Effect Example

Specialized behavior
(S′1 � S1 and
S′* � S*)

Addition of state
variables which
are used in
existing
behaviors (to
refine them)

bSPL:
Book Copy
is available

!user borrows Book Copy
is unavailable

(status: {available, unavailable})

bP:
Book Copy is
available and
borrowable

!user borrows
Book Copy is

unavailable and
borrowable

(status: {available, unavailable};
borrowable?:{yes, no})

Template-instantiated
behavior (S1 ⤖ S′1
and S* ⤖ S′)

Different state
variables and
their values
which change
similarly

bSPL:
Item

is available
!user borrows Item

is unavailable
(ItemStatus: {available, unavailable})

bP:
Disk is
on shelf

!user borrows Disk is
off shelf

(DiskLocation: {on shelf, off shelf})

102 I. Reinhartz-Berger et al.

A specialized behavior bP = (S′1, <e′>, S′*) refines the initial state and/or the final
state of the original behavior (bSPL) by considering additional state variables or more
detailed values. This means that the set S1′ is a refinement (specialization) of the set S1
and similarly for S′* and S*. We denote these relations by S′1 � S1 and S′* � S*.

A template-instantiated behavior bP = (S′1, <e′>, S′*) applies to different state
variables than the original behavior (bSPL), but its effect in terms of transformation is
similar. Formally, there are two bijections m1:S1 → S′1, m*: S* → S′* (i.e., m1 and
m* are total, onto, and 1-to-1). We denote these bijections by S1 ⤖ S′1 and S* ⤖ S′.

4 Identifying Variants Through Variability Mechanisms

The above framework describes the relations between core assets and product artifacts
in the element dimension, in terms of state variables and values. Due to the great
popularity of object-orientation in the software engineering community, we adapt the
general framework described in Sect. 3 to object-oriented artifacts (design & code).
The mapping between the object-oriented terminology and the ontological concepts is
straightforward: (objects of) classes can be mapped to things, attributes – to state
variables, types – to (potential) values, and operations (methods) – to behaviors.

Below we adapt the notions of specialized and template-instantiated behaviors to
object-oriented concepts in order to identify places where specialization and/or tem-
plate instantiation can be applied. A method to use these adapted notions in practice
and preliminary results are described in Sect. 5.

4.1 Basic Definitions and Notations

We consider a set of classes, along with their attributes and operations.
As a simple example, consider a class BookCopy whose attributes are:

• BorrowingPeriod (specifying for how many days the book copy can be borrowed);
• AvailabilityStatus (specifying whether the book is available or not, i.e., borrowed);
• ReturnDate (specifying the date in which the book copy is expected to be returned,

if it is borrowed).

The operations of the class (besides the constructor) include:

• A borrow operation (changing the AvailabilityStatus from true to false and the
ReturnDate to the current date plus BorrowingPeriod);

• A return operation (changing the AvailabilityStatus from false to true and resetting
the ReturnDate).

We use the following representations of attributes and operations.

Definition 1. An attribute att is represented by a pair (name, vals), where name is the
attribute name and vals is its type, representing the values it can assume.

We denote by att.name and att.vals the first and second constituents of att,
respectively. The three attributes of the BookCopy class are depicted in Table 3.

An Ontological Approach for Identifying Software Variants 103

An operation o is represented by two descriptors. One, named shallow (external), is
equivalent to the operation signature (interface) and includes what other classes or
operations “know” regarding the behavior. The second, named deep, reflects the (in-
ternal) impact of the operation on attributes. In other words, it specifies the transfor-
mation performed by the operation and its impact on the attributes. As shown later, the
shallow and deep behavior descriptors enable specifying the behavior captured by the
operation in terms of initial state (S1), external events (<e>), and final state (S*).

Definition 2. The shallow behavior descriptor of an operation o is denoted by
bshallow(o) = (op_name, params, ret_type) where op-name is the operation name,
params is a set of pairs (name, vals) denoting the operation’s parameters and types, and
ret_type is the returned type (all types have the form of sets of possible values).

We denote by bshallow(o).op-name, bshallow(o).params, and bshallow(o).ret-type the
three constituents of bshallow(o), respectively. The shallow behavior descriptors of the
two operations of class BookCopy are depicted in Table 4.

Definition 3. The deep behavior descriptor of an operation o has the form
bdeep(o) = (att_used, att_modified): att_used is the set of attributes involved in the
operation having the form (name, type) where name is the name of an attribute a, and
type is a subset of values of the type of a; att_modified is the set of the attributes being
modified by the operation which have the same form.

We denote by bdeep(o).att_used and bdeep(o).att_modified the two constituents of
bdeep(o), respectively. The deep behavior descriptors of the BookCopy class are
depicted in Table 4. Note that since we are interested in an external view of a behavior,
as reflected in the triplet (S1, <e>, S*), we currently ignore the impact of the behavior
on the local variables of the operation.

Table 3. Attributes of the book copy class

a1 a2 a3
Name BorrowingPeriod AvailabilityStatus ReturnDate
Vals {i | i is of type int} {true, false} {d | d is of type Date}

Table 4. Operations of the book copy class

o1 o2
Shallow Op-name Borrow Return

Params ∅ ∅

Ret-type ∅ ∅

Deep Att-used (AvailabilityStatus, {true}) (AvailabilityStatus,
{false})

Att-modified (AvailabilityStatus, {false})
(ReturnDate, {now()
+BorrowingPeriod})

(AvailabilityStatus,
{true})

(ReturnDate, {null})

104 I. Reinhartz-Berger et al.

Attributes and operations are used to represent the ontological counterparts, which
are state variables and behaviors of things. State variables have names and a range of
possible values, as reflected by the name and range of values (type) of attributes.

Ontological behaviors have the form b = (S1, <e>, S*), reflected by S1 = att_used
[params (namely, all attributes and parameters being used by the operation before
being modified by it) and S* = att_modified [ret_type (i.e., all attributes modified by
the operation and the returned parameter). <e> is derived from the semantics of
op_name.

4.2 Similarity-Based Relations

In order to identify whether operations, and consequently classes, can be considered
variants of each other or variants of core asset classes, we use the notion of similarity.
Similarity between classes is based on the similarity of their attributes and operations.
Similarity of attributes is calculated with their names and possible values. Similarity of
operations is calculated with respect to shallow and deep behavior descriptors. We
therefore assume the existence of a similarity measure of the following form:

Definition 4. Let C be a set of classes {C1, …, Cn}. A similarity measure for C is a
function from pairs of class constituents (attributes, shallow behavior descriptors, or
deep behavior descriptors) to a Boolean value1 indicating whether the pair of con-
stituents is similar or not. Formally expressed:

sim: Atts(C)xAtts(C) [Bshallow(C)xBshallow(C) [Bdeep(C)xBdeep(C) → {0,1},
where:

Atts(C) = {(a.att_name, a.vals) | a is an attribute of Ci2C}
Bshallow(C) = {bshallow(o) | o is an operation of Ci2C}
Bdeep(C) = {bdeep(o) | is an operation of Ci2C}

Using the example of class BookCopy, assume another class MediaItem with an
attribute Location of type enumeration and possible values: on-the-shelf and
off-the-shelf (meaning borrowed). The operations of this class are similar to those of
BookCopy, borrow and return, where borrow changes the Location from on-the-shelf
to off-the-shelf, and return changes this attribute in the opposite direction. We can
argue that the similarity of the attributes Location and AvailabilityStatus is 1 due to
their isomorphic types and the similar roles they play in borrow and return. The
similarity of the operations, in terms of both shallow and deep, is also 1.

Based on the similarity measure above, we define two relations between behaviors:
inclusion similarity (�sim) and replacement similarity (⤖sim). Using these relations we
can adapt the notions of specialized and template-instantiated behaviors to
object-oriented design and programming.

1 Note that for simplicity, we assume that the similarity measure returns a Boolean value, 0 (different)
or 1 (similar), rather than a range of values indicating the degree of similarity. In the method
implementation, we realized the similarity measure by ranges and thresholds.

An Ontological Approach for Identifying Software Variants 105

Definition 5 (inclusion similar). Operation oi of class Ci is inclusion similar to
operation oj of class Cj if the components of bshallow(oi), (op-name, params, ret-type),
are included in the components of bshallow(oj) and the components of bdeep(oi), (att-used
and att-modified), are included in the components of bdeep(oj), up to the similarity
measure for {Ci, Cj}

2. We denote this by oi � simoj.

Definition 6 (replacement similar). Operation oi of class Ci is replacement similar to
operation oj of class Cj if there is a bijection b, which maps each component c of
bshallow(oi) and bdeep(oi), (namely, op-name, params, ret-type, att-used and att-modified)
to a corresponding component b(c) of bshallow(oj) and bdeep(oj), respectively, such that
sim(c, b(c)) = 1. We denote this by oi ⤖ simoj.

Using the examples of classes BookCopy and MediaItem, assume an extra Boolean
attribute of MediaItem, borrowable?, indicating whether the media item is borrowable
or not. The operation borrow changes the media item’s location from “on-the-shelf” to
“off-the-shelf” if borrowable is true. It is easy to check that BookCopy.borrow �sim

MediaItem.borrow, as op-name, params, ret-type, att-used and att-modified of Book-
Copy.borrow are similar (as explained above) to the corresponding components of
MediaItem.borrow. The latter also has an additional attribute (borrowable?) which does
not match any attributes of BookCopy.borrow, but influences the behavior of the
operation ‘borrow’. Thus, actually, BookCopy.borrow sim MediaItem.borrow.

Now consider two classes: CatalogOfBooks and CatalogOfItems. Both have similar
operations, such as addToCatalog and Browse. However, they work on different
objects: CatalogOfBooks works on objects of the class BookCopy, while Cata-
logOfItems works on items (such as BookCopy and MediaItem). Defining a bijection
mapping between Item and BookCopy, it can be shown that:

CatalogOfItems.addToCatalog ⤖sim CatalogOfBooks.addToCatalog;
CatalogOfItems.browse ⤖sim CatalogOfBooks.browse.

4.3 Identifying Specialization and Template Instantiation

So far we have discussed specialization and template instantiation on the behavior (or
operation) level. However, these concepts are usually used on the class-level.

Specialization deals with refinement of behavior by addition of state variables
(attributes) or by restricting values of existing state variables. We concentrate here on
cases where specialized classes do not violate the intended behaviors of the generalized
classes (as may occur in code inheritance, e.g., through overriding). Since our approach
is behavioral, we refer to attributes implicitly, through the changes they undergo
(described in att-used and att-modified of the deep behavior descriptor). We next define
specialization in terms of behaviors and inclusion similarity.

2 By ‘up to the similarity measure’ we mean that for each pair of components of either shallow or deep
behavior descriptors, A and B, B includes A means that for each element a 2 A there is an element
b 2 B, such that sim(a, b) = 1.

106 I. Reinhartz-Berger et al.

Definition 7. Let C1, C2 be classes. C1 is a specialization of C2 if for each operation o2
of C2 there is an operation o1 of C1 such that o2 is inclusion similar to o1 (o2 � simo1).

Note that the behavior of C2 can be extended in C1, namely, C1 has operations with
no counterparts in C2, and operations from C2 can be used as they are (without
specialization) in C1. As an example consider a variation of the class BookCopy,
named BookCopy1, with an additional attribute – last? – which indicates whether the
book copy is considered the last to be borrowed. Borrowing the last book copy requires
special handling, e.g., notifying the librarian. According to the definition above,
BookCopy1 is a specialization of BookCopy.

As noted, template instantiation deals with type adaptation and generic behaviors
and can be characterized using replacement similarity as follows:

Definition 8. Let C1, C2 be classes. C1 is template instantiation of C2 if:

– For each operation o2 of C2 there is an operation o1 of C1 such that o2 is
replacement similar to o1 (o2 ⤖ simo1).

– For each operation o1 of C1 there is an operation o2 of C2 such that o1 is
replacement similar to o2 (o1 ⤖ simo2).

The class CatalogOfBooks demonstrated above is a template instantiation of the class
CatalogOfItems.

5 Implementation and Preliminary Results

To evaluate our approach, we developed and implemented a proof-of-concept, fol-
lowing the stages in Fig. 1. The inputs are object-oriented code artifacts belonging to
different products (P1, …, Pn). The outputs are variability models specifying similar
classes and the variability mechanisms associated with them. Note that we do not
assume the existence of core assets. Instead we use our formal foundations in order to
set the ground for the definition of core assets. We next elaborate on each stage of the
implemented method and on some preliminary results.

Extract Information The input software artifacts (object-oriented code) are trans-
formed (reverse engineered) into: (i) class diagrams from which the attributes and
shallow behavior descriptors can be extracted and (ii) Program Dependence Graphs
(PDG)3 [15] from which the deep behavior descriptors are extracted. These particular
models have the ability to represent structure and behavior (rather than specific sce-
narios). Moreover, they are common and mature as can be reflected by the availability
of a variety of tools to reverse engineer object-oriented code. Finally, these models
enabled ignoring low level details, such as comments and syntactic differences.

While the attributes and the shallow behavior descriptors are directly and simply
derived from the class diagrams, the extraction of deep behavior descriptors deserves
special attention. We utilize only the vertices getField and putField from the PDGs.
These vertices get or set a value of static/object field. The use and modification of

3 PDG explicitly represents the data and control dependencies of a program.

An Ontological Approach for Identifying Software Variants 107

attributes may be done directly in the operation or through other operations invoked by
the operation at hand. Hence, we consider a third type of vertices – CallSite. Through
these vertices our method can recursively check getField and putField vertices in the
invoked operations. Listing 1 describes how the initial state of a (behavior induced by
a) given operation o is derived. The final state is similarly computed on put field
vertices.

OperationInitialState(operation o, Set s1): Set

Set combinedS1=s1∪retrieveGetField(o)
Set invoked=retrieveCallSite()
For each op in invoked

combinedS1=OperationInitialState(op, combinedS1)
return combinedS1

Listing 1. Deriving the initial state of a given operation

Analyze Commonality/Variability Similarity plays an important role in analyzing
variability. We decided to measure the similarity of names (attributes, operations, and
parameters) by using semantic metrics [17]. It provides for not considering the exact
same written names, but commonly utilizes semantic nets or statistical techniques to
measure the distances among words and terms4. As for similarity of types, for the sake
of simplicity, we used equality, namely, two types are similar if and only if they are the
same. This metric can be replaced in the future by more sophisticated measures, such as
a metric that measures whether two types are isomorphic or not.

Shallow similarity was computed as the weighted average of the similarities of their
operation names, parameters, and returned types. Parameters similarity was computed
as the weighted average of name and type similarities. The weights can be manually
tuned by software designers to reflect the specific characteristics of the given products.

Finally, deep similarity was calculated based on the symmetric difference (for
multisets) of the attributes used and attributes modified. Formally expressed, let AUo

and AMo be the attributes_used and attributes_modified of operation o, respectively,
and AUo′, AMo′ – the attributes_used and attributes_modified of operation o′,
respectively. The deep similarity of o and o′ is defined as:

1� D AUo;AUo0ð Þj j þ D AMo;AMo0ð Þj j
AUoj þAUo0j j þ AMoj j þAMo0 j

where Δ(A, B) is the symmetric difference operator for multisets, calculated as (A – B)
[(B – A) and |A| is the number of elements in A.

For grouping similar shallow behavior descriptors and deep behavior descriptors,
we used a hierarchical agglomerative clustering algorithm [14]. This algorithm starts by
putting each element in a separate cluster and merges in each iteration the closest

4 We assume that in order to make the code comprehensible attributes and operations have meaningful
names (potentially including several words separated by underscores or capital letters).

108 I. Reinhartz-Berger et al.

clusters, namely, clusters whose average similarity is the highest. Those clusters are
used for examining inclusion similarity and replacement similarity. Note that the
method associates a variability mechanism (specialization or template instantiation) if
potentially the classes satisfy the mechanism relation (inclusion or replacement simi-
larity, respectively).

Model Variability To visualize the analysis results, we use Orthogonal Variability
Modeling (OVM) [20]. OVM represents variability through the concepts of variation
point and variant. A variation point, denoted by triangles, represents a variable item or
a property of an item. A variant, denoted by a rectangle, defines a possibility to realize
the variable item or property. OVM further supports relating variability information to
software artifacts (such as requirements, design, and code) that are affected by the
variability. For each cluster of similar classes, our method defines a variation point and
associates with it the variability mechanisms utilized to identify the variants. The
method further defines variants – one for each class in the cluster – and associates them
with the variation point via an OR relation (see Fig. 2 for an example). Currently, we
do not handle dependencies between variation points and variants.

Preliminary Evaluation We explored the code of two open-source versions of a
SuperSnake game5: Supersnake 1.0 (released in 2008, containing 8 classes) and
Supersnake 2.0 (released in 2010, containing 14 classes, some of which are exact
copies or adaptations of classes from version 1.0). Running the method on the repre-
sentations reversed engineered from this code resulted in 20 cases of specialization and
18 cases of template instantiation6. While 7 of the specialization and 5 of the template
instantiation cases were trivial (i.e., included exact classes from the previous version),
the rest of the cases were found relevant based on manual examination. Particularly,
these cases pointed on high degrees of similarity between classes, in terms of their
exhibited behaviors. We further observed some limitations which we plan to address in
future research. First, the use of a general purpose vocabulary for measuring the
semantic similarities led to irrelevant cases, such as menu (in the context of GUI) and
food. These can be easily eliminated by using programming-related or domain-specific
vocabularies. Second, the implemented method tries to locate for each element in one
class similar elements in the other class without controlling multiplicities, thus leading
to over generalization (e.g., classes with similar GUI controls). Finally, the presence of
numerous getter and setter operations led to identification of template instantiation,
regardless of the semantics of the corresponding transformations. This can be addressed
in the future by a more in-depth analysis of code representations and refinement of the
similarity measure for deep behaviors.

5 The two versions were taken from http://sourceforge.net/.
6 See details in http://mis.hevra.haifa.ac.il/*iris/research/VarMech/InhTmpAnalysis.xlsx.

An Ontological Approach for Identifying Software Variants 109

http://sourceforge.net/
http://mis.hevra.haifa.ac.il/%7eiris/research/VarMech/InhTmpAnalysis.xlsx

6 Conclusions and Future Directions

Identification of variants of software artifacts is important for improving software
development and maintenance. While current approaches mainly aim to avoid variants
(through refactoring) or track them, we propose a method for utilizing variability
mechanisms, and specifically specialization and template instantiation, to analyze and
represent variability. The method is based on ontological foundations, which allow
focusing on behaviors rather than on implementation. The method can be used to
identify situations and places in software artifacts where different variability mecha-
nisms may need to be applied in order to increase and systematize reuse.
A proof-of-concept implementation of the method was applied to open-source code.

Immediate directions for future research are evaluating the method with software
designers and developers and extending it to other well-known variability mechanisms,
such as parameterization, configuration, and analogy. Another direction is refining the
analysis of similarity of attributes and operations, e.g., by considering isomorphic types
and semantics of deep descriptors. Furthermore, employing other representations in
addition to class diagrams and PDGs may lead to a more wide-spread analysis. These
directions will facilitate the development of a tool for an automatic construction of core
assets for the analyzed software artifacts, based on the relations at the basis of different
variability mechanisms.

References

1. Anastasopoulos, M., Gracek, C.: Implementing product line variabilities. ACM SIGSOFT
Softw. Eng. Notes 26(3), 109–117 (2001)

2. Anguswamy, R., Frakes, W.B.: Reuse design principles. In: International Workshop on
Designing Reusable Components and Measuring Reusability (DReMeR 2013) (2013)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series in
Software Engineering, 3rd edn. Addison Wesley, Boston (2012)

4. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski, A.:
A survey of variability modeling in industrial practice. In: Proceedings of the 7th International
Workshop on Variability Modelling of Software-Intensive Systems (VaMoS 2013),
pp. 7:1–7:8 (2013)

Fig. 2. Examples of the method outputs

110 I. Reinhartz-Berger et al.

5. Brocke, J.: Design principles for reference modelling - reusing information models by means
of aggregation, specialisation, instantiation, and analogy. In: Fettke, P., Loos, P. (eds.)
Reference Modeling for Business Systems Analysis, pp. 47–75. Idea Group, Hershey (2007)

6. Bunge, M.: Treatise on Basic Philosophy. Ontology I: The Furniture of the World, vol. 3.
Reidel, Boston, Massachusetts (1977)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2001)

8. Chen, K., Zhang, W., Zhao, H., Mei, H.: An approach to constructing feature models based
on requirements clustering. In: 13th IEEE International Conference on Requirements
Engineering, pp. 31–40 (2005)

9. Faust, D., Verhoef, C.: Software product line migration and deployment. J. Softw. Pract.
Exp. 30(10), 933–955 (2003)

10. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture. Process and Organization
for Business Success. ACM/Addison-Wesley, New York (1997)

11. Itzik, N., Reinhartz-Berger, I., Wand, Y.: Variability analysis of requirements: considering
behavioral differences and reflecting stakeholders perspectives. IEEE Trans. Softw. Eng. 42,
7687–7706 (2016)

12. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report, SEI (1990)

13. Kapser, C.J., Godfrey, M.W.: “Cloning Considered Harmful” considered harmful: patterns
of cloning in software. Empir. Softw. Eng. 13, 645–692 (2008)

14. Kurita, T.: An efficient agglomerative clustering algorithm using a heap. Pattern Recogn.
24(3), 205–209 (1991)

15. Krinke, J.: Identifying similar code with program dependence graphs. In: 8th Working
Conference on Reverse Engineering, pp. 301–309 (2001)

16. Mende, T., Koschke, R., Beckwermert, F.: An evaluation of code similarity identification for
the grow-and-prune model. J. Softw. Maint. Evol. Res. Pract. 21(2), 143–169 (2009)

17. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of
text semantic similarity. In: American Association for Artificial Intelligence (AAAI 2006),
pp. 775–780 (2006)

18. Mondal, M., Roy, C.K., Schneider, K.A.: Automatic identification of important clones for
refactoring and tracking. In: 14th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2014), pp. 11–20 (2014)

19. Niu, N., Easterbrook, S.: Extracting and modeling product line functional requirements. In:
International Conference on Requirements Engineering (RE 2008), pp. 155–164 (2008)

20. Pohl, K., Böckle, G., van der Linden, F.: Software Product-Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

21. Reinhartz-Berger, I., Sturm, A., Wand, Y.: External variability of software: classification and
ontological foundations. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011.
LNCS, vol. 6998, pp. 275–289. Springer, Heidelberg (2011)

22. Reinhartz-Berger, I., Zamansky, A., Wand, Y.: Taming software variability: ontological
foundations of variability mechanisms. In: Johannesson, P., et al. (eds.) ER 2015. LNCS,
vol. 9381, pp. 399–406. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25264-3_29

23. Roy, C.K., Cordy, J.R.: Scenario-based comparison of clone detection techniques. In: The
16th IEEE International Conference on Program Comprehension (ICPC 2008), pp. 153–162
(2008)

24. Rubin, J., Czarnecki, K., Chechik, M.: Managing cloned variants: a framework and
experience. In: 17th ACM International Software Product Line Conference, pp. 101–110
(2013)

An Ontological Approach for Identifying Software Variants 111

http://dx.doi.org/10.1007/978-3-319-25264-3_29

25. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification in
function-block-based models. In: 9th International Conference on Generative Programming
and Component Engineering (GPCE 2010), pp. 23–32 (2010)

26. Wand, Y., Weber, R.: An ontological model of an information system. IEEE Trans. Softw.
Eng. 16, 1282–1292 (1990)

27. Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically
composable feature models from natural language requirements. In: 13th International
Software Product Line Conference, pp. 211–220 (2009)

28. Yoshimura, K., Narisawa, F., Hashimoto, K., Kikuno, T.: Factor analysis based approach for
detecting product line variability from change history. In: 5th Working Conference on
Mining Software Repositories, pp. 11–18 (2008)

112 I. Reinhartz-Berger et al.

The Role of Ontology Design Patterns in Linked
Data Projects

Valentina Presutti1(B), Giorgia Lodi1(B), Andrea Nuzzolese1,
Aldo Gangemi1,3, Silvio Peroni2, and Luigi Asprino1,2(B)

1 Institute of Cognitive Sciences and Technologies,
National Research Council of Italy, Rome, Italy

{valentina.presutti,giorgia.lodi,andrea.nuzzolese,aldo.gangemi,
luigi.asprino}@istc.cnr.it

2 DISI, University of Bologna, Bologna, Italy
{silvio.peroni,luigi.asprino}@unibo.it

3 LIPN, Université Paris 13 Sorbonne Cité, CNRS, Paris, France

Abstract. The contribution of this paper is twofold: (i) a UML stereo-
type for component diagrams that allows for representing ontologies as
a set of interconnected Ontology Design Patterns, aimed at support-
ing the communication between domain experts and ontology engineers;
(ii) an analysis of possible approaches to ontology reuse and the defini-
tion of four methods according to their impact on the sustainability and
stability of the resulting ontologies and knowledge bases. To conceptu-
ally prove the effectiveness of our proposals, we present two real LOD
projects.

Keywords: Ontology · Ontology design patterns · Linked data · Ontol-
ogy reuse · eXtreme Design

1 Introduction

Linked Data (LD) is rapidly increasing, especially in the public sector where
opening data is becoming a consolidated institutional activity. However, the
importance of providing LD with a high quality ontology modelling is still far
from being fully perceived. The result is that LD are mostly modelled by direct
reuse of individual classes and properties defined in external ontologies, overlook-
ing the possible risks caused by such a practice. We claim that this practice may
compromise the level of semantic interoperability that can be achieved. There-
fore, the need of clear practices for motivated guidelines for ontology reuse arise.
Ontology Design Patterns (ODPs) proved to be an effective means for improving
the quality of ontologies. Another neglected aspect in ontology projects is the
need of proper tools for sharing ontology details with domain experts, without
requiring training sessions in knowledge representation.

Starting from the eXtreme Design (XD) methodology, the contribution of
this paper is twofold. Firstly, we introduce a new task in XD concerning the
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 113–121, 2016.
DOI: 10.1007/978-3-319-46397-1 9

114 V. Presutti et al.

communication with domain experts. We define a UML stereotype that allows
representing ontologies as a web of ODPs modelled as UML components. This
notation hides the complexity of OWL representations while still conveying the
main semantics to domain experts. Secondly, we provide motivated guidelines for
reusing external ontologies and ODPs in ontology design projects. To prove the
effectiveness of our contributions we discuss two real examples of LOD projects.

Background. Originally ontologies were seen mainly as portable components [6],
while nowadays one of the most challenging areas of ontology design is reusabil-
ity [5]. Although ontology reuse is a recommended practice in most ontology
design methodologies [11], a standardisation of ontology reuse practices is still
missing. Most literature on ontology reuse is focused on the challenging issue of
ontology selection, while our perspective is on how to implement reuse once the
selection finalised. We contribute to this issue with an analysis of possible reuse
approaches, emphasising the role of Ontology Design Patterns (ODPs) [1,4] in
this process. Design patterns and ontology reuse have been investigated in ontol-
ogy engineering since early stages and they became hot topics in the context
of the Semantic Web. ODPs enabled pattern-based methodologies in ontology
engineering. These methodologies formalise approaches and provide facilities for
re-using ODPs, however they do not provide motivated alternative guidelines on
how to implement such a task.

The eXtreme Design (XD) [2,9] is an agile design methodology providing
guidelines for performing ontology design through an incremental and iterative
process based on the reuse of ontology design patterns (ODP) [8]. It is inspired by
the eXtreme Programming (XP) and it recommends pair and test driven devel-
opment, refactoring, and a divide-and-conquer approach to problem-solving [10].

Paper structure. Section 2 introduces the main contributions; namely, the new
UML stereotype for ontology and ODPs representation and different approaches
to ontology reuse while Sect. 3 provides real examples where the main contribu-
tion of the paper are applied. Section 4 concludes the paper.

2 Extending eXtreme Design

Figure 1 shows the eXtreme Design (XD) methodology highlighting in grey the
contributions of this paper. The first contribution (involving tasks 7 and 8)
regards the need of a model that describes possible approaches to ODP reuse,
allowing ontology engineers to choose the most appropriate model for their
project according to its specific characteristics. The second contribution (task
13 in Fig. 1) regards the need of describing ontologies to domain experts. It is
important to provide them with enough insights about the ontology structure,
its main concepts and usage, without exposing them to the burden of learning
logics and knowledge representation languages.

2.1 Approaches to Semantic Web Ontology Reuse

Ontology reuse models can be classified based on (i) the type of reused ontol-
ogy (e.g. foundational, top-level, ontology design patterns, domain ontologies),

ODP in Linked Data Projects 115

Fig. 1. Extended XD workflow

(ii) the type of reused ontology fragment (e.g. individual entities, modules, ontol-
ogy design patterns, arbitrary fragments), (iii) the amount of reused axioms (e.g.
import of all axioms, of only axioms in a given neighbourhood of an entity, of
no axioms), (iv) and the alignment policy (e.g. direct reuse of entities, reuse
via equivalent relations such as rdfs:subClassOf and owl:equivalentClass).
The only characteristic that all these models share is to reuse entities with the
same logical type as they were defined (e.g. an entity defined as owl:Class in
an ontology is commonly reused as such).

A certain choice of reuse practice impacts significantly on the semantics of
an ontology, its sustainability, and its interoperability.

2.2 Guidelines for Ontology Reuse

In this paper we provide guidelines for ontology reuse in the context of ontology
projects that exhibit these characteristics: (i) there is no ontology that addresses
all or most of the requirements of the local ontology project; (ii) the ontology
under development is meant to be used as a reference ontology for a certain
domain, and (iii) there is the willingness to comply with existing standards. We
identify the following possible approaches to ontology reuse.

Direct reuse of individual entities. This approach consists on directly intro-
ducing individual entities of external ontologies in local axioms. This practice is
very common in the LD community, however it is a routine, not a good practice,
at all. It is essentially driven by the intuition of the semantics of concepts based
on their names, instead of their axioms. In this case, the risk that the formal
semantics of the reused entities is incompatible with the intended semantics to be
represented is rather high. Moreover, with this practice a strong dependency of
the local ontology with all the reused ontologies is created. This dependency may
put at risk the sustainability and stability of the local ontology and its associated
knowledge bases: if a change in the external ontology introduces incoherences
in the local one, they must be dealt with a redesign process and consequential
change in the ontology signature.

Indirect reuse of ontology modules and alignments. With this approach,
the modelling of some concepts and relations, which are relevant for the domain

116 V. Presutti et al.

but applicable to more general scopes, is delegated to external ontologies by
means of ontology module reuse. An ontology module is a fragment that may
be identified as providing a solution to one or more specific requirements of the
local ontology. For example, let us consider an external ontology modelling the
participation of an individual (e.g. through a property ex:isInvolvedIn) to an
event (e.g. a class ex:Event). If the local ontology needs to specify a particu-
lar involvement in an event (e.g. lo:hosted) it should specialize (it indirectly
reuses) the relation of the external one (i.e. ex:isInvolvedIn). The fragment
of the external ontology identified as relevant for the local ontology may be
communicated in some usage documentation provided with the ontology. Nev-
ertheless, it is difficult to provide third parties with a formal indication of the
fragment that was meant to be relevant. This may lead to high heterogeneity in
the usage of external fragments in data modelled through the local ontology. As
for ontology sustainability, when a change in the external ontology provokes pos-
sible incoherences, the redesign process would be easier dealt with as compared
to the previous approach.

Direct reuse of ontology design patterns and alignments. If the fragment
is clearly and formally identified, since it is embedded in a dedicated ontology,
some of the previous remarked issues can be mitigated. Let us consider that the
earlier example class ex:Event is defined in an external ontology that implements
a specific ODP. In this case, a scenario in which a redesign process must be
undertaken may be less frequent. In fact, ODPs are developed for reuse purposes
and thus they are unlikely to change. In the light of these observations, it is
recommended to reuse ODPs in contrast to individual entities.

Indirect reuse of ontology design patterns and alignments. ODPs are
used as templates. This approach is an extension of the previous one. At the
same time, the ontology guarantees interoperability by keeping the appropriate
alignments with the external ODPs, and provides extensions that satisfy more
specific requirements. The alignment axioms may be published separately from
the core of the ontology. With this type of reuse, the potential impact of possible
changes in the external ODP is minimised. In fact, should incoherences show after
a change in the external ODP (which is rather unlikely to happen) the redesign
process would be very simple. The ontology signature and axioms would remain
unchanged, as incoherences would be resolved by simply removing or revising
the alignment axioms.

Table 1 summarises the advantages and disadvantages of the discussed four
approaches. In general, among all of them, the recommended one is the fourth
approach: in the situation of incoherence raised by a change in an external reused
ontology, it guarantees the easiest maintenance.

2.3 UML Profile for Representing ODP-Based Ontologies

Ontology development processes are all supported by languages, notations and
tools for producing inputs and outputs of the various phases. XD provides
detailed guidelines on how to perform some of its process tasks. For example, user

ODP in Linked Data Projects 117

Table 1. Pros and cons of different approaches to ontology reuse.

Reuse Fragment Pros Cons

method

Direct

reuse

Individual

entity

Linked data practise Semantic ambiguity, difficulty in

verifying the consistency among

the diverse reused concepts,

dependency on external

ontologies, instability and

unsustainability

Direct

reuse

Ontology

module

Stability and sustainability of

domain relations and concepts,

modularity, interoperability

Possible heterogeneity in module

usage, dependency on external

modules, instability and

unsustainability limited to

external modules

Direct

reuse

ODP Stability and sustainability of

domain relations and concepts,

modularity, interoperability,

easier redesign in case of external

changes

Dependency on external modules,

mitigated risk of instability and

unsustainability limited to

external ODPs

Indirect

reuse

ODP Stability and sustainability of

domain relations and concepts,

modularity, interoperability,

dependency on external modules

limited to alignment axioms

Slightly increased design effort for

moulding ODPs

stories are collected by means of story cards with a template, OWL is used as
ontology modelling language and its related UML profile defined in the Ontology
Definition Metamodel (ODM) [7] is used as a graphical notation for represent-
ing the ontology in its documentation. ODM provides stereotypes for both class
diagrams and packages. The package profile is the only one addressing the repre-
sentation of whole ontologies or ontology modules and their inter-relations. The
relation between packages (i.e., among ontology modules) can only be an import
relation referring to owl:import for its semantics.

This package- and OWL-based notation may be inadequate in some context,
in particular when the target user is a domain expert without an expertise in
knowledge representation. Our proposal extends the ODM OWL profile by intro-
ducing a stereotype for component diagrams that enables the representation of
ODPs as components that implement and/or reuse certain interfaces.

The concept of ontology interface has been investigated in the literature
related to ontology modularisation and knowledge encapsulation [3]. An ontology
module defines its content (e.g. classes and relations) by means of interfaces that
constitute the access point to its model.

Our main focus is to provide a notation that can be used for sketching the
design of an ODP-based ontology and for communicating (sharing) the ontology
model and discussing it with domain experts by hiding implementation details.
The proposed ODM profile extension is depicted in Fig. 2. We define two stereo-
types that can be used with UML components diagrams: Ontology Module (OM)
and Ontology Design Pattern (ODP). The latter inherits from the former and

118 V. Presutti et al.

Fig. 2. Ontology module and ODP stereotypes for UML component diagrams

has a tagged value intent, i.e., a multi-line text that describes the modelling
problem addressed by the ODP.

Each component defines two types of interfaces (compliant with standard
UML notation): (i) the interfaces that the ODP implements (i.e., realises)
denoted by lollipops; (ii) the interfaces that a ODP uses denoted by sockets.
An ontology engineer may exploit this profile to sketch an abstract view of the
adopted design choices when she has not decided yet what specific implementa-
tion of an ODP will be reused. The abstract view can be shared with domain
experts in a phase between the collection of requirements (i.e., user stories) and
the implementation, in order to share design choices and tune them before the
actual reuse happens, if needed. Referring to Fig. 1, this would be between Task
7 and Task 8.

3 Applying the XD Extensions in Linked Data Projects

We applied the described contributions in two real Linked Open Data projects
of the e-government sector. The first project was developed in the context of
cultural heritage, in collaboration with the Italian Ministry of Cultural Heritage
and Activities and Tourism; the second was carried out within the agriculture
domain, in collaboration with the Italian Ministry of Agriculture.

3.1 Cultural-ON: Cultural ONtologies

Cultural-ON 1 is a suite of ontology modules for modelling knowledge in the cul-
tural heritage domain. In Cultural-ON we applied the pattern-based ontology
engineering approach, extensively reusing ODPs. The class Cultural Institute or
Site (shortly, CIS) is used to model the different types of cultural heritage insti-
tutes or sites (e.g., museums, libraries, monumental areas). A number of orga-
nizations or juridicial entities (i.e., agents), playing specific roles on CISs, are
represented in the ontology by cis:Agent. CISs are located in specific physical
places that are precisely identified by geographical coordinates and/or addresses.
CISs host collections (cis:Collection using the ODP Collection) and/or cul-
tural heritage objects (cis:CulturalHeritageObject). Finally, cultural events
(i.e., the class cis:Event that reuses the ODP TimeIndexedSituation) can be
hosted in a CIS.

ODPs for domain experts communication. In the project we wanted
domain experts to be focussed on the requirements. However, it was important
1 http://stlab.istc.cnr.it/documents/mibact/cultural-ON xml.owl.

http://stlab.istc.cnr.it/documents/mibact/cultural-ON_xml.owl

ODP in Linked Data Projects 119

Fig. 3. Cultural-ON: UML component diagram for ODPs representation

to let them understand the main concepts of the ontology in order to facilitate
reuse, and favour technological transfer to them who are ultimately responsible
for ontology maintenance. In doing so, we faced the same issues as those earlier
discussed: several times we were more focussed on explaining details of logics
and ontology design best practices, and on convincing them not to concentrate
on mere terms, as ontologys classes and properties were mostly seen. In the light
of this, we elaborated the UML notation of Sect. 2.3.

Figure 3 illustrates the UML component diagram that describes Cultural-ON
as a set of interconnected ODPs. For example, the component CulturalInstitute-
OrSite depicts the class CIS and some of its main characterisations such as the
composition (i.e., the partOf relation). The component RoleInTime, an applica-
tion of the TimeIndexed ODP, exposes three main concepts; namely, Role, Time
and Agent. It is then linked to a CIS by means of the concept roleAt. Note that
this notation allows us to hide the OWL-specific modelling of an n-ary relation,
requiring reification, while still conveying its semantics to domain experts.

External ontologies reuse. We adopted the earlier fourth model and we iden-
tified most relevant ODPs of external ontologies that were selected during an
alignment process. We reproduced those ODPs in Cultural-ON so that to use
ODPs as templates.

3.2 FOOD: FOod in Linked Open Data

FOOD2 aims at publishing LOD data of EU quality schemes, known as PDO and
PGI. Each PDO and PGI agriculture product is described, in its characteristics,
by a policy document.

The data contained in these documents were modelled as OWL ontologies,
reusing ODPs. Specifically, we produced an upper ontology that represents gen-
eral elements that contribute to form the content of the documents. The upper
2 http://w3id.org/food/.

http://w3id.org/food/

120 V. Presutti et al.

Fig. 4. FOOD: UML component diagram for the upper ontology

ontology represents the product name to be protected, its different types, the
geographical area where it is produced and its characteristics3 (including raw
materials, and principal physical, chemical, microbiological or organoleptic char-
acteristics). Specific ontologies per single product category were also produced
in order to specialize the elements modelled in the upper ontology.

ODPs reuse in domain experts communication. Figure 4 shows the result-
ing UML component diagram of the upper ontology. Underlined components
represent more general ODPs. The Description ODP applied to raw materials
of a product, the component DescriptionRawMaterial exposes the concept Raw-
Material and is connected through hasDescription with the component Product
Type hiding the OWL representation details.

External ontologies reuse. In FOOD we applied both indirect and direct reuse
(Agrovoc has been directly reused for representing raw materials). The direct use
of domain dependent controlled vocabularies (coverage-oriented ontologies) such
as Agrovoc can be recommended in order to maintain the produced ontologies
fully aligned with possible evolutions of those vocabularies, which can be viewed
as domain reference standards usually developed by reference bodies in stable
processes.

4 Conclusions

In this paper we discussed the role of ODPs in the design of ontologies within
Linked Data projects. In particular, we extended the eXtreme Design method-
ology in order to address two issues we faced in practice: communication with
domain experts and approaches to ontology reuse. Two real e-government Linked
Data projects are described in order to prove the applicability of the introduced
XD extensions. Future works focus on performing user-based surveys for a larger
scale evaluation of our proposals by both ontology and domain experts.

3 Reusing http://ontologydesignpatterns.org/wiki/Submissions:Description.

http://ontologydesignpatterns.org/wiki/Submissions:Description

ODP in Linked Data Projects 121

References

1. Blomqvist, E., Sandkuhl, K.: Patterns in ontology engineering: classification of
ontology patterns. In: Proceedings of ICEIS, Miami, Florida, USA, pp. 413–416.
CEUR-WS (2005)

2. Blomqvist, E., Presutti, V., Daga, E., Gangemi, A.: Experimenting with eXtreme
Design. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317,
pp. 120–134. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16438-5 9

3. Ensan, F., Du, W.: A knowledge encapsulation approach to ontology modulariza-
tion. Knowl. Inf. Syst. 26(2), 249–283 (2010)

4. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 262–276. Springer, Heidelberg (2005). doi:10.1007/11574620 21

5. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, 2nd edn, pp. 221–243. Springer, Heidelberg (2009)

6. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

7. ODM: Version 1.1. OMG, September 2014
8. Presutti, V., Gangemi, A.: Content ontology design patterns as practical building

blocks for web ontologies. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.)
ER 2008. LNCS, vol. 5231, pp. 128–141. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87877-3 11

9. Presutti, V., et al.: eXtreme Design with content ontology design patterns. In:
Proceedings of WOP, Washington, DC USA. CEUR-WS.org (2009)

10. Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-based ontology design.
In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontol-
ogy Engineering in a Networked World, pp. 35–64. Springer, Heidelberg (2012)

11. Simperl, E.P.B., Mochol, M., Bürger, T.: Achieving maturity: the state of practice
in ontology engineering in 2009. IJCSA 7(1), 45–65 (2010)

http://dx.doi.org/10.1007/978-3-642-16438-5_9
http://dx.doi.org/10.1007/11574620_21
http://dx.doi.org/10.1007/978-3-540-87877-3_11
http://dx.doi.org/10.1007/978-3-540-87877-3_11

Bridging the IT and OT Worlds Using
an Extensible Modeling Language

Paola Lara(&), Mario Sánchez, and Jorge Villalobos

Systems and Computing Engineering, Universidad de Los Andes,
Bogotá, Colombia

{p.lara1081,mar-san1,jvillalo}@uniandes.edu.co

Abstract. Enterprise Modeling is used to analyze and improve IT, as well as to
make IT more suitable to the needs of the business. However, asset intensive
organizations have an ample set of operational technologies (OT) that Enterprise
Modeling does not account for. When trying to model such enterprises, there is
no accurate form of showing components that belong to the world of OT nor is
there a way to bridge the division between OT and IT. Existing languages fall
short due to their limited focus that does not consider modeling operational
technologies and even less relating them to the IT and Business dimensions. To
address these issues, in this paper we present a new modeling language which
extends ArchiMate. This language proposes a set of core elements for modeling
OT components, based on existing OT standards and ontologies, and makes it
possible to associate these components to business and IT elements. Introducing
this language makes it possible to apply existing modeling and analysis tech-
niques from Enterprise Modeling in settings that cover Business, OT and IT.

Keywords: Operational Technology � Modeling language � Archimate

1 Introduction

According to IEEE, “Architecture is the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment,
and the principle guiding its design and evolution” [4]. Similarly, Enterprise Archi-
tecture (EA) is “a coherent whole of principles, methods, and models that are used in
the design and realization of an enterprise’s organizational structure, business pro-
cesses, information systems, and infrastructure. Enterprise architecture captures the
essentials of the business, IT and its evolution.” [5]. Enterprise Modeling (EM), which
can be seen as an integral part of building an EA, is the process of creating an
integrated enterprise model, which represents certain aspects of the enterprise, in their
current or future state, and materializes the knowledge of stakeholders involved in the
modeling process [7].

A central element to EM is using a modeling language, which may be standardized
and open, or may be proprietary and embedded in modeling tools. Recently, ArchiMate
[9] has become a de facto standard, both for its relative simplicity and for its closeness
to the Architecture Content Framework from TOGAF [10]. The problem with this is
that these tools have a narrow focus limited to the business and IT dimensions: most

© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 122–129, 2016.
DOI: 10.1007/978-3-319-46397-1_10

organizations are interested in modeling a much larger scope than just this. For
example, in asset-intensive organizations it is extremely important to monitor other
kinds of elements that are central to the business and its success such as drills in the oil
and gas industry.

Gartner defines operational technologies (OT) as the “hardware and software that
detects or causes a change through the direct monitoring and/or control of physical
devices, processes and events in the enterprise” [3]. However, OT encompasses a
number of elements that are not typically classified as hardware or software, but are still
technological elements fundamental to the success of the business. On top of that, with
the advent of advances in technology OT elements are becoming capable of generating
lots of information thus closing the gap with IT components. The structure that stan-
dards and reference models provide is not very strong for the OT domain. An even
more specific problem is that there are no languages to model OT in a way that relates
them to the IT and Business dimensions. Considering the current widespread concern
about IT and OT convergence [2], it is clear that novel mechanisms are required in
order to bridge these two worlds. In this paper we present a language extension to
ArchiMate 2.1 that we built to target the OT world. The contribution of our work is
thus the structure for the base elements in the OT dimension, as well as establishing
their relationships with IT.

The rest of the paper is structured as follows. Section 2 presents an overview of EM
and Sect. 3 discusses the operational technologies world. Then Sect. 4 presents the
core of our proposal: the OT extension for ArchiMate. Finally, Sect. 5 concludes the
paper.

2 Enterprise Modeling and IT

EA is used to align business and IT elements according to the enterprise strategy and
stated organizational goals. An architecture landscape comprises three core dimensions
(business, software, and hardware) and is analyzed with respect to concerns such as
business improvement, information, technology, security, and governance [6]. EM
focuses on the integration of different elements and components of an organization to
display an abstract representation and its inter-dependencies. This practice enables a
view on the current situation of an enterprise which may be utilized for different aspects
such as process optimization, business and IT strategic development, and security and
issue detection among others. To allow organizations to create accurate models many
tools, modeling practices and languages such as UML, BPMN and ArchiMate, have
been developed tailored to different needs of the enterprise [7].

It is noticeable that both EA and EM concentrate on the dimensions of IT (hardware
and software) and business. The blueprint created through EA enables a clear view of
key resources in the organization and how these intertwine to close the gap between
business, systems and technology architectures. Such focus allows organizations to
vastly cover their needs for analyzing, designing, planning, and modeling their business
and its IT support. The caveat is that this is typically valuable only to information
intensive organization.

Bridging the IT and OT Worlds 123

The de facto standard language used nowadays for EA and EM is ArchiMate.
Governed by The Open Group it has been described as an enterprise architecture
modeling language which provides a “structuring mechanism for architecture do-
mains, layers, and aspects” [9]. As such, it provides a graphical language for repre-
senting enterprises that is aligned with TOGAF’s Architecture Content Framework
which covers business, information systems, and technology elements. Moreover,
ArchiMate 2.1 makes it possible to specify inter-related architectures, which span
several of those dimensions, and also offers a set of commonly used viewpoints
Moreover, what sets ArchiMate apart from other modeling languages such as BPMN
and UML is its wide scope, the tradeoff behind this is the lack of detail that ArchiMate
2.1 supports in any of the layers and which have to be covered by other languages.

3 Operational Technologies - OT

In asset intensive industries, such as energy, mining, oil and gas, utilities, and manu-
facturing, the OT world encompasses the truly critical factors to execute daily tasks and
operations. With EA and EM, the world of IT has developed numerous mechanisms for
modeling and understanding the technology and business dimensions. However, these
tools fall short for asset intensive organizations, where the scope of modeling and
analysis is vaster. In fact, there is a lack of alternatives to model both IT and OT
architectures for understanding the relationships between these two worlds.

T build a sound conceptual model of the OT domain, the structure of said reality
must be understood. It comprises technologies to control and monitor equipment
(devices, actuators, sensors and software) in industrial processes and activities executed
by personnel. These elements collaborate and interact to achieve industrial objectives
aligned with the organization plans and are therefore critical for the company to
achieve its planned business goals.

Currently, a few standards propose terminology and industry specific models and
topologies for OT. The international standard ANSI/ISA 95 Enterprise – Control
System Integration [1], contains terminology and object models developed to be used
in all industries for production process. Similarly, there are standards and guides that
define industry or equipment specific topology and models. For example, the NSIT
Guide to Industrial Control Systems (ICS) Security contains aspects specific to types of
technology, operation models, layout and topology models [8].

The goal behind the idea of modeling OT is understanding how these elements
support the business and its goals and to design improvements to effectively integrate
IT and OT. However, differences between these domains creates gaps that must be
understood to bridge this division accurately. For example, elements in OT have longer
life cycles compared to those in IT and with the increase of OT elements connected
over networks there is a greater exposure and risk of attacks [11]. Likewise, OT and IT
are organizational silos as there is a clear difference in ownership and governance [2].
Because of these differences, in many organizations OT elements exist in the world of
IT only as mere inventory in ERP systems; also, a great deal of information that these
OT elements generate is ignored when analyzing business components because they are
only used during operation flows.

124 P. Lara et al.

While it is not a complete solution for the presented problem, a first step in this
direction could be to create mechanisms to enable a better understanding of OT
architectures, and their relationships with IT architectures. For this reason, we have
created a modeling language based on ArchiMate to enable the modeling of OT
architectures and their relationship with IT.

4 An ArchiMate Extension for OT

This section describes our ArchiMate Extension for modeling Operational Technolo-
gies. This extension is intended to be used in three ways. Firstly, it can be used to
model OT architectures by using core OT elements. Secondly, it can be used to relate
the OT architecture to IT and Business architectures modeled using ArchiMate’s core
elements. Finally, it can be used as a base for creating industry-specific OT extensions,
i.e., OT modeling languages customized to the needs of particular industries.

To design the OT extension, we mimicked the structure of ArchiMate’s core: it is
organized in three layers that separate elements by the concern they address (business,
application, and technology) and three types of elements (active structure elements,
behavior elements, and passive structure elements). The OT extension identifies three
layers: the operational layer, the operational application layer extension, and the
infrastructure layer. In addition to this, it also categorizes elements according to the role

Fig. 1. OT extension concepts and relationships

Bridging the IT and OT Worlds 125

they play in the architecture as active structure elements, behavior elements, and
passive structure elements. The elements found in each area of the grid are described
further along in this section, as well as their graphical notations.

The construction of the OT extension started with the observation of standards and
ontologies in the OT world (see Sect. 3): common concepts were identified to form a
core set with applicability in a large number of organizations. Each concept was then
assigned to a layer and relationships between them were identified. Figure 1 presents
the resulting meta-model for the extension: this figure only shows relationships within
layers and between adjacent layers. Section 4.4 shows how the extended elements can
also be related to core ArchiMate elements.

4.1 Operational Layer

Elements in the Operational Layer (Tables 1, 2 and 3) serve to model services,
functions, and products that are considered part of the operative areas such as pro-
duction flows and operational actors. This includes actors such as a laborer that
manages manufacturing machinery, production flows (e.g., drilling an oil well), and
operational passive elements needed to perform behavioral concepts. Following the
principles established by ArchiMate, the operational layer uses concepts such as
interface, interaction, and collaboration congruent to the operative context.

4.2 Operational Application Extension Layer

The Operational Application Layer (Table 4) extends ArchiMate’s Application Layer
to support the needs of the Operational Layer. Since it is an extension, it does not add
many additional elements. Instead, it builds on top of the existing elements (e.g.
Application Component, Application Function, Data Object, etc.).

Table 1. Active structure concepts in the Operational Layer

Concept Notation Description

Operational
Actor

An operative entity that is capable of performing
(operational) behavior.

Operational
Role

A responsibility for performing some behavior,
to which an operational actor can be assigned.

Operational
Collaboration

Aggregate of two or more operational roles that
work together to perform collective behavior.

Operational
Interface

A point of access where an operational service
is made available to the environment.

Work Center
A subtype of Location under which equipment
performs production and storage of material.

126 P. Lara et al.

Table 2. Behavior structure concepts in the Operational Layer

Concept Notation Description

Production
Flow

It groups behavior based on operational activi-
ties to produce products or operational services.

Operational
Function

An element that groups behavior based on cho-
sen criteria (resources, materials, competences).

Operational
Interaction

A behavior element that describes the behavior
of an operational collaboration.

Operational
Event

Something that happens internally and influ-
ences an operational behavior.

Operational
Service

A service that fulfills an operational need for
internal use in the organization.

Operational
Control

The ability to perform actions or behavioral
elements using the available resources.

Table 3. Passive structure concepts in the Operational Layer

Concept Notation Description

Resource
An asset that provides capabilities required by the exe-
cution of operation activities and/or business process.

Material
A subassembly, part, and/or items used in production of
a finished good.

Rule A norm that directs an operational control.

Produced
good

A partial or finished product which has endured pro-
cessing and production.

Bill
A representation of the needed bills for production such
as bill of lading, bill of materials, and bill of resources.

Table 4. Operational Application Extension Layer

Concept Notation Description
Application

Control Point
An active structure that exercises direction over
an application or software system.

Application
Stimulation

An application stimulation triggers an occurrence
in the operational infrastructure layer.

Stimulation
Interface

The stimulation interface the intermediate be-
tween the operational data and the application
control point that uses the data to take decisions.

Bridging the IT and OT Worlds 127

4.3 Operational Infrastructure Layer

The Operational Infrastructure Layer (Table 5) includes elements to execute, monitor
and control the operational context. These include equipment, assets, and functions that
support the productivity of the organization. Additionally, this encompasses elements
that enable control (e.g., actuators and sensors), assets that may be controlled (e.g.,
equipment, HMI), and their respective functions.

Table 5. Operational Infrastructure Layer

Concept Notation Description

Actuator
An active component responsible for controlling
other mechanisms, systems or equipment.

Sensor
An active structure that detects changes in oper-
ational equipment.

Operational
Equipment

An active structure used in the production of a
good through a specific function.

Communica-
tion Field

An active structure through which operational
equipment interacts with a sensor or an actuator.

Human Ma-
chine Interface

A control panel through which an operational
actor may interact with operational equipment.

Equipment
Function

A behavior element that groups behavior based
on an operational equipment role in production.

Fig. 2. (a) Operational layer concepts and relationships with ArchiMate (b) Operational
application extension layer concepts and relationships with ArchiMate (c) Operational infras-
tructure layer concepts and relationships with ArchiMate

128 P. Lara et al.

4.4 Relations with the IT and Business Dimensions

The elements for modeling the OT dimension are also intended to be related to the rest
of the organization, and specifically to the business and IT dimensions. To support this,
the extension specifies allowed relationships between some of the newly proposed
elements and core ArchiMate elements (see Fig. 2). It should be noted that all of these
are established between layers in the same “level” (e.g., there are no relationships
between the operational and the application layer).

5 Conclusion

This paper presented an extension to ArchiMate for the Operational Technology
domain. It expands the scope of ArchiMate beyond business and IT, and makes it
possible to model operational elements which are typically studied independently. This
extension can be used for three purposes: to model OT architectures using general OT
concepts; to model OT architectures and their relationships to Business and IT ele-
ments; and to model OT architectures in specific industries, using industry-specific OT
concepts. For this last objective, it is necessary to extend even more the proposed OT
extension and derive industry specific concepts.

Ultimately, the goal of enterprise modeling languages is to make it possible to
apply techniques for the improvement of enterprises, based on the analysis of enterprise
models. With the proposed language extension, we expect to bring this possibility to
elements that so far have been neglected even though they are of the maximum
importance in many organizations and industries.

References

1. ANSI/ISA-95, Enterprise-Control System Integration
2. Atos Scientific Community IT/OT Convergence Track Team: The Convergence of IT and

Operational Technology. Atos Scientific Community (2012)
3. Operational Technology (OT): Gartner IT Glossary (2016)
4. IEEE: Recommended practice for architectural description of software intensive systems.

Technical report IEEE P1471:2000, ISO/IEC 42010:2007 (2000)
5. Lankhorst, M., et al.: Enterprise Architecture at Work: Modelling Communication and

Analysis. Springer, Heidelberg (2009)
6. Land, M., Proper, E., Wage, M., Cloo, J., Steghuis, C.: Enterprise Architecture. Springer,

Heidelberg (2009)
7. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise Modeling: Tackling Business

Challenges with the 4EM Method. Springer, Heidelberg (2014)
8. Stouffer, K., Falco, J., Scarfone, K.: Guide to Industrial Control Systems (ICS) Security. U.S.

Department of Commerce (2011)
9. The Open Group: ArchiMate 2.1 Specification. Van Haren Publishing (2012)
10. The Open Group: TOGAF Version 9.1. Van Haren Publishing (2011)
11. Harp, D., Gregory-Brown, B.: IT/OT Convergence - Bridging the Divide. NEX DEFENSE

(2014)

Bridging the IT and OT Worlds 129

Requirements Engineering

Possibilistic Cardinality Constraints
and Functional Dependencies

Tania K. Roblot and Sebastian Link(B)

Department of Computer Science, University of Auckland,
Auckland, New Zealand

{t.roblot,s.link}@auckland.ac.nz

Abstract. Cardinality constraints and functional dependencies together
can express many semantic properties for applications in which data is
certain. However, modern applications need to process large volumes
of uncertain data. So far, cardinality constraints and functional depen-
dencies have only been studied in isolation over uncertain data. We
investigate the more challenging real-world case in which both types
of constraints co-occur. While more expressive constraints could easily
be defined, they would not enjoy the computational properties we show
to hold for our combined class. Indeed, we characterize the associated
implication problem axiomatically and algorithmically in linear input
time. We also show how to summarize any given set of our constraints
as an Armstrong instance. These instances help data analysts consoli-
date meaningful degrees of certainty by which our constraints hold in
the underlying application domain.

Keywords: Data semantics · Integrity constraints · Possibility theory ·
Requirements engineering · Uncertain data

1 Introduction

Background. Cardinality constraints (CCs) and functional dependencies (FDs)
are fundamental for understanding the structure and semantics of data, and
have a long and fruitful history in conceptual modeling, database theory and
practice. CCs were introduced in the seminal paper by Chen [5], while FDs were
introduced in the seminal paper by Codd [6]. We focus on cardinality constraints
that define an upper bound on the number of objects that have matching values
on a given set of attributes. For example, any project manager should not be
looking after more than three projects at any period of time. An FD expresses
that the values on some attributes uniquely determine the values on some other
attributes. For example, every project has at most one manager. Due to their
ability to express desirable properties of many application domains, CCs and FDs
have been used successfully for core data management tasks, including database
cleaning, design, integration, modeling, querying, and updating.

Motivation. Relational databases were developed for applications with certain
data, including accounting, inventory and payroll. Modern applications, such
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 133–148, 2016.
DOI: 10.1007/978-3-319-46397-1 11

134 T.K. Roblot and S. Link

Fig. 1. A possibilistic instance and the scope by which constraints apply to its objects

as information extraction, sensors, and data integration produce large volumes
of uncertain data. While different approaches to uncertainty in data exist, our
running example considers a simple scenario in which a qualitative approach
is applied to the integration of two data sources. The scenario maintains the
levels of confidence associated with objects. Indeed, objects that occur in both
sources are labeled ‘fully possible’, while objects that occur in only one source
are labeled ‘somewhat possible’. The information about the confidence of objects
is clearly useful, but probability distributions are unavailable. Instead, a qualita-
tive approach as founded in possibility theory is appropriate [9,10,35]. Figure 1
shows a possibilistic instance (p-instance) where each object is associated with a
possibility degree (p-degree) from a finite scale: α1 > . . . > αk+1. The top degree
α1 is reserved for objects that are ‘fully possible’, the bottom degree αk+1 for
objects that are ‘impossible’ to occur. Intermediate degrees and their linguistic
interpretations are used as preferred, such as ‘somewhat possible’ (α2).

Interestingly, p-degrees enable us to express CCs and FDs with different
degrees of certainty. For example, to express that it is ‘impossible’ that the same
department and manager are associated with more than three employees we
declare the CC card(Dep, Mgr) ≤ 3 to be ‘fully certain’ by using the label β1,
stipulating that no combination of department and manager can feature in more
than three objects that are at least ‘somewhat possible’. Similarly, to say it is only
‘somewhat possible’ that departments with different managers exist we declare
the FD Dep → Mgr as ‘somewhat certain’ by using the label β2, stipulating that
no department has more than one manager in ‘fully possible’ objects. We will
investigate the combined class of CCs and FDs in this possibilistic data model.

Contributions and impact. Our contributions are as follows. (1) We show
that the combination of CCs and FDs in a possibilistic data model constitutes
a ‘sweet spot’ in terms of expressivity and computational behavior. In partic-
ular, we unify previous work under a more expressive framework that retains
efficient computational properties. Slightly more expressive approaches result
in non-axiomatizability, intractability, or even undecidability. (2) We establish
a finite axiomatization and a linear-time decision algorithm for the associated
implication problem. We illustrate applications from constraint maintenance,

Possibilistic Cardinality Constraints and Functional Dependencies 135

query optimization, and pivoting to eliminate data redundancy. (3) We estab-
lish an effective construction of Armstrong representations for any given set of
our constraints. Here, we overcome the practical challenge that finite Armstrong
instances do not frequently exist. We thus provide automated support for the
acquisition of the constraints that are meaningful in a given application domain.

Organization. Section 2 discusses related work. Our data model is defined in
Sect. 3. In Sect. 4 we characterize the implication problem axiomatically and
algorithmically. Applications are highlighted in Sect. 5. Section 6 describes how
to compute Armstrong representations. In Sect. 7 we conclude and discuss future
work. Proofs are available in [39].

2 Related Work

FDs are probably the most studied class of constraints, due to their expressivity,
computational behavior, and impact on practice. FDs were introduced in Codd’s
seminal paper [6], and are intrinsically linked to conceptual, logical, and physical
database design [27,44]. Applications on the conceptual level include graphical
reasoning [8] and pivoting [3,17]. CCs are an influential contribution of concep-
tual modeling to database constraints. They featured in Chen’s seminal paper
[5]. Cardinality constraints subsume the class of keys as a special case where the
upper bound on the cardinality is fixed to 1. Keys are fundamental to most data
models [4,11,16,21,22,26,29,30,42,46]. Most languages for conceptual design
(description logics, ER, UML, ORM) come with means for specifying CCs. CCs
have been studied extensively in database design [7,18,25,31,32,38,43].

Probability theory offers a popular quantitative approach to uncertain data
[41]. Research about constraints on probabilistic data is in its infancy [4,40].
Probabilistic FDs, which specify a lower bound on the marginal probability that
FDs exhibit on probabilistic databases, are not finitely axiomatizable.

The results of our article unify various previous works under one, more expres-
sive, framework. In fact, our framework subsumes (1) the sole class of possibilis-
tic CCs [15,28], (2) the sole class of possibilistic FDs [35], and (3) the combined
class of CCs and FDs over relational data (the special case of possibilistic data
with only one degree of confidence, i.e. where k = 1) [18]. While our framework
is strictly more expressive, it retains the good computational properties of pre-
vious work, making it special. Indeed, making our framework more expressive is
likely to result in the loss of good computational behavior. For example, using
numerical dependencies instead of FDs leaves the implication problem not finitely
axiomatizable [14], using multivalued dependencies requires more elaborate pos-
sibilistic data models and the interaction with CCs is not well-understood
[19,20,23,24,33,34,45], using conditional FDs leaves the implication problem
coNP-complete [13], adding inclusion dependencies makes the implication prob-
lem undecidable [37], and adding lower bounds to the upper bounds of our CCs’
results requires us to solve unsolved problems from combinatorial design theory,
even in the special case where k = 1 [18]. Further restrictions on what we addi-
tionally include are always possible, but our focus here is the natural class of
cardinality constraints with upper bounds and functional dependencies.

136 T.K. Roblot and S. Link

Fig. 2. Nested worlds of the p-instance from Fig. 1 and possibilistic constraints

3 Cardinality Constraints and Functional Dependencies

We extend object types that model certain objects in traditional conceptual
modeling to model uncertain objects qualitatively. This allows us to extend CCs
and FDs from their use on certain object types to uncertain object types.

An object type, denoted by O, is a finite non-empty set of attributes. Each
attribute A ∈ O has a domain dom(A) of values. An object o over O is an
element of the Cartesian product

∏
A∈O dom(A). For X ⊆ O we denote by

o(X) the projection of o on X. An instance over O is a set ι of objects over
O. For example we use the object type Work with attributes Emp, Dep, and
Mgr. Objects either belong or do not belong to an instance. For example, we
cannot express that we have less confidence for Employee Nara to work in the
department Tennis under Manager Federer than for the Employee Nishikori.

We model uncertain instances by assigning to each object some degree of
possibility with which the object occurs in an instance. Formally, we have a
possibility scale, or p-scale, that is, a strict linear order S = (S,<) with k + 1
elements. We write S = {α1, . . . , αk+1} to declare that α1 > · · · > αk > αk+1.
The elements αi ∈ S are called possibility degrees, or p-degrees. Here, α1 is
reserved for objects that are ‘fully possible’ while αk+1 is reserved for objects
that are ‘impossible’ to occur in an instance. Humans like to use simple scales in
everyday life to communicate, compare, or rank. Here, the word “simple” means
that items are classified qualitatively rather than quantitatively by putting pre-
cise values on them. Classical instances use two p-degrees, i.e. k = 1.

A possibilistic object type (O,S), or p-object type, consists of an object type
O and a p-scale S. A possibilistic instance, or p-instance, over (O,S) consists
of an instance ι over O, and a function Poss that assigns to each object o ∈ ι
a p-degree Poss(o) ∈ S − {αk+1}. We sometimes omit Poss when denoting a
p-instance. Figure 1 shows a p-instance over (Work,S = {α1, α2, α3}).

P-instances enjoy a possible world semantics. For i = 1, . . . , k let wi consist of
all objects in ι that have p-degree at least αi, that is, wi = {o ∈ ι | Poss(o) ≥ αi}.
Indeed, we have w1 ⊆ w2 ⊆ · · · ⊆ wk. If o /∈ wk, then Poss(o) = αk+1. Every
object that is ‘fully possible’ occurs in every possible world, and is therefore also

Possibilistic Cardinality Constraints and Functional Dependencies 137

‘fully certain’. Hence, instances are a special case of uncertain instances. Figure 2
shows the possible worlds w1 � w2 of the p-instance of Fig. 1.

As CCs and FDs are fundamental to applications with certain data, their
possibilistic variants serve similar roles for applications with uncertain data. A
cardinality constraint over object type O is an expression card(X) ≤ b where
X ⊆ O, and b is a positive integer. The CC card(X) ≤ b over O is satisfied by
an instance w over O, denoted by |=w card(X) ≤ b, if there are no b + 1 distinct
objects o1, . . . , ob+1 ∈ w with matching values on all the attributes in X. For
example, Fig. 2 shows that card(Dep,Mgr) ≤ 1 is not satisfied by any instance
w1 or w2, and card(Dep,Mgr) ≤ 2 is satisfied by w1, but not by w2. A functional
dependency over object type O is an expression X → Y where X,Y ⊆ O. The
FD X → Y over O is satisfied by an instance w over O, denoted by |=w X → Y ,
if for any two objects o1, o2 ∈ w the following holds: if o1(X) = o2(X), then
o1(Y) = o2(Y). For example, Fig. 2 shows that Dep → Mgr is satisfied by w1,
but not by w2, and Emp → Dep is satisfied by w1 and w2.

The p-degrees of objects result in degrees of certainty by which constraints
hold. Since Emp → Dep holds in every possible world, it is fully certain to hold
on ι. As Dep → Mgr and card(Dep,Mgr) ≤ 2 are only violated in a somewhat pos-
sible world w2, they are somewhat certain to hold on ι. Since card(Dep,Mgr) ≤ 1
is violated in the fully possible world w1, it is not certain to hold on ι.

Similar to the scale S of p-degrees αi for objects, we use a scale ST of certainty
degrees, or c-degrees, βj for CCs and FDs. Formally, the correspondence between
p-degrees in S and the c-degrees in ST is defined by the mapping αi �→ βk+2−i

for i = 1, . . . , k+1. Hence, the certainty Cι(σ) by which the CC σ = card(X) ≤ b
or FD σ = X → Y holds on the uncertain instance ι is either the top degree
β1 if σ is satisfied by wk, or the minimum amongst the c-degrees βk+2−i that
correspond to possible worlds wi in which σ is violated, that is,

Cι(σ) =
{

β1 , if |=wk
σ

min{βk+2−i |�|=wi
σ} , otherwise .

We can now define the semantics of possibilistic CCs and FDs. Let (O,S)
denote a p-object type. A possibilistic CC (p-CC) over (O,S) is an expres-
sion (card(X) ≤ b, β) where card(X) ≤ b denotes a CC over O and β ∈ ST . A
p-instance (ι,Poss) over (O,S) satisfies the p-CC (card(X) ≤ b, β) if and only
if Cι(card(X) ≤ b) ≥ β. A possibilistic FD (p-FD) over (O,S) is an expression
(X → Y, β) where X → Y denotes an FD over O and β ∈ ST . A p-instance
(ι,Poss) over (O,S) satisfies the p-FD (X → Y, β) if and only if Cι(X → Y) ≥ β.

For example, Fig. 2 shows some of the p-CCs and p-FDs that the p-instance ι
from Fig. 1 satisfies. The next example introduces the set Σ of p-CCs and p-FDs
we will use as an example constraint set in the remainder of the article.

Example 1. Let Σ denote the set with the following p-CCs and p-FDs over p-
object type (Work,S = {α1, α2, α3}): (Emp → Dep, β1), (card(Dep,Mgr) ≤
3, β1), (Dep → Mgr, β2), and (card(Mgr) ≤ 2, β2). 	

138 T.K. Roblot and S. Link

4 Computational Problems and Their Solutions

We establish fundamental tools to reason about p-CCs and p-FDs. Their applica-
bility will be illustrated in Sect. 5. First, we define the implication problem and
then address its solution in terms of inference rules and algorithms.

Let Σ ∪ {ϕ} denote a set of p-CCs and p-FDs over (O,S). We say Σ implies
ϕ, denoted by Σ |= ϕ, if every p-instance (ι,Poss) over (O,S) that satisfies
every element of Σ also satisfies ϕ. We use Σ∗ = {ϕ | Σ |= ϕ} to denote
the semantic closure of Σ. The implication problem for p-CCs and p-FDs is to
decide, given any p-object type, and any set Σ ∪ {ϕ} of p-CCs and p-FDs over
the p-object type, whether Σ |= ϕ holds.

Example 2. Let Σ be as in Example 1. Further, let σ denote the CC card(Dep) ≤
2. Then the highest c-degree β such that (σ, β) is implied by Σ is β2. Indeed,
Σ does not imply ϕ = (σ, β1). We can create a p-instance that has 3 different
objects, all of which have matching values for department and manager, but
pairwise different employees, and 2 of those objects have p-degree α1 while the
remaining object has p-degree α2. Then the c-degree of card(Dep) ≤ 2 in ι is
β2, which means that (card(Dep) ≤ 2, β1) is violated. Since the c-degrees of
Emp → Dep, Dep → Mgr, and card(Dep,Mgr) ≤ 3 in ι are β1, and the c-degree
of card(Mgr) ≤ 2 in ι is β2, ι satisfies Σ, but violates ϕ. 	

4.1 Using β-Cuts

Our overarching goal is to extend the combined use of CCs and FDs from cer-
tain to uncertain data, while maintaining their good computational properties.
The core notion for achieving this goal is that of a β-cut for a given set Σ of
p-CCs and p-FDs and c-degree β > βk+1. Informally, the β-cut Σβ of Σ contains
all CCs and FDs σ such that there is some p-CCs or p-FD (σ, β′) in Σ where β′

is at least β. That is, Σβ = {σ | (σ, β′) ∈ Σ and β′ ≥ β} is the β-cut of Σ. The
following theorem shows how the β-cut can be used to reduce the implication
problem for p-CCs and p-FDs to the implication problem of traditional CCs
and FDs. The theorem does not hold for CCs with lower bounds or multivalued
dependencies.

Theorem 1. Let Σ ∪ {(σ, β)} be a set of p-CCs and p-FDs over (O,S) where
β > βk+1. Then Σ |= (σ, β) if and only if Σβ |= σ.

Theorem 1 allows us to apply achievements from CCs and FDs for certain
data to p-CCs and p-FDs. It is a major tool to establish our results.

Example 3. Let Σ be as in Example 1. Then Σβ1 consists of card(Dep,Mgr) ≤ 3
and Emp → Dep, while Σβ2 contains Σβ1 and includes card(Mgr) ≤ 2 and Dep →
Mgr. Using knowledge about the interaction of CCs and FDs from relational data
[18], we conclude that Σβ1 does not imply card(Dep) ≤ 2, but Σβ2 does imply
card(Dep) ≤ 2. Theorem 1 shows then that Σ does not imply (card(Dep) ≤ 2, β1),
but Σ does imply (card(Dep) ≤ 2, β2). In fact, the possible world w1 of the p-
instance ι from Example 2 satisfies Σβ1 , and violates card(Dep) ≤ 2. 	

Possibilistic Cardinality Constraints and Functional Dependencies 139

Table 1. Finite axiomatization of p-CCs and p-FDs

(XY → X, β1)

(X → Y, β)

(X → XY, β)

(X → Y, β) (Y → Z, β)

(X → Z, β)
(reflexivity) (extension) (transitivity)

(card(O) ≤ 1, β1)

(card(X) ≤ b, β)

(card(X) ≤ b + 1, β)

(X → Y, β) (card(Y) ≤ b, β)

(card(X) ≤ b, β)
(top) (relax) (pullback)

(card(X) ≤ 1, β)

(X → Y, β) (σ, βk+1)

(σ, β)

(σ, β′)
β′ ≤ β

(key) (bottom) (weakening)

4.2 Axiomatic Characterization

A finite axiomatization allows us to effectively enumerate all implied p-CCs and
p-FDs, that is, to determine the semantic closure Σ∗ = {σ | Σ |= σ} of Σ. A
finite axiomatization facilitates human understanding of the interaction of the
given constraints, and ensures all opportunities for the use of these constraints
in applications can be exploited (Sect. 5). We determine the semantic closure by

applying inference rules of the form
premise

conclusion
. For a set R of inference rules let

Σ �R ϕ denote the inference of ϕ from Σ by R. That is, there is some sequence
σ1, . . . , σn such that σn = ϕ and every σi is an element of Σ or is the conclusion
that results from an application of an inference rule in R to some premises in
{σ1, . . . , σi−1}. Let Σ+

R = {ϕ | Σ �R ϕ} be the syntactic closure of Σ under
inferences by R. R is sound (complete) if for every set Σ over every (O,S) we
have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if

R is both sound and complete. Table 1 shows an axiomatization C for p-CCs
and p-FDs. Here, (O,S) is an arbitrarily given p-object type, X,Y ⊆ O, b is a
positive integer, β, β′ ∈ ST are c-degrees, and σ uniformly denotes either some
CC or FD. In particular, βk+1 denotes the bottom c-degree in ST .

Theorem 2. The set C forms a finite axiomatization for the implication of pos-
sibilistic cardinality constraints and functional dependencies. 	

The application of inference rules in C from Table 1 is illustrated next.

Example 4. Consider Σ from Example 1. Applying pullback to (Dep → Mgr, β2)
and (card(Mgr) ≤ 2, β2) results in (card(Dep) ≤ 2, β2) ∈ Σ+

C . For an inference of
(card(Emp,Mgr) ≤ 1, β1) consider the following steps. Applying reflexivity infers
(Emp,Mgr → Emp, β1). Then we apply transitivity to (Emp,Mgr → Emp, β1)
and (Emp → Dep, β1) to infer (Emp,Mgr → Dep, β1). Next we apply extension
to (Emp,Mgr → Dep, β1) to infer (Emp,Mgr → Emp,Dep,Mgr, β1). The top rule

140 T.K. Roblot and S. Link

infers (card(Emp,Dep,Mgr) ≤ 1, β1). Finally, we apply pullback to (Emp,Mgr →
Emp,Dep,Mgr, β1) and (card(Emp,Dep,Mgr) ≤ 1, β1) to infer (card(Emp,Mgr) ≤
1, β1) ∈ Σ+

C . 	

4.3 Algorithmic Characterization

While C enables us to enumerate all p-CCs and p-FDs that are implied by a set
Σ of p-CCs and p-FDs, in practice it often suffices to decide whether a given p-
CC or p-FD ϕ is implied by Σ. Enumerating all implied constraints and checking
whether ϕ is among them is neither efficient nor makes good use of ϕ. However,
our axiomatization C provides us with the insight to develop efficient algorithms
for deciding the associated implication problem.

First, Theorem 1 tells us that the implication of some p-CC or p-FD (σ, β)
by Σ can be decided by considering the β-cut Σβ . If σ denotes an FD X →
Y , then our axiomatization C tells us that the decision only depends on the
FDs in Σβ and the cardinality constraints card(X) ≤ 1 ∈ Σβ , as the latter
implies the FD X → O ∈ Σ∗

β . For a given set Σ of cardinality constraints
and functional dependencies, let Σ[FD] denote the set of FDs in Σ together
with the FDs X → O for every card(X) ≤ 1 ∈ Σ. The p-FD (X → Y, β) is
therefore implied by Σ if and only if the FD X → Y is implied by Σβ [FD]. The
latter condition is equivalent to Y being a subset of the attribute set closure
X+

Σβ [FD] = {A ∈ X | Σβ [FD] |= X → A}, which can be computed in linear
time in the input set Σβ [FD] [1]. This shows condition (i) in Theorem3 below.
If σ denotes a cardinality constraint card(X) ≤ b, then our axiomatization C
tells us that the decision only depends on the existence of some cardinality
constraint card(Y) ≤ b′ ∈ Σβ such that Y ⊆ X+

Σβ [FD] and b′ ≤ b. The clause
that b′ ≤ b follows from the relax rule, and the clause that Y ⊆ X+

Σβ [FD] follows
from the pullback rule and the fact that X+

Σβ [FD] is the maximal subset of O

that is functionally determined by X given Σβ [FD]. This shows condition (ii) in
Theorem 3 below.

Theorem 3. Let Σ denote a set of p-CCs and p-FDs over (O,S) with |S| =
k + 1. Then (i) Σ implies (X → Y, β) if and only if Y ⊆ X+

Σβ [FD], and (ii) Σ

implies (card(X) ≤ b, β) if and only if X+
Σβ [FD] = O, or there is some card(Y) ≤

b′ ∈ Σβ such that Y ⊆ X+
Σβ [FD] and b′ ≤ b.

The worst-case complexity bound in the following result follows from the
well-known fact that the computation of X+

Σ[FD] is linear in the total number
of attribute occurrences in Σ[FD] [1], and this size of Σ[FD] is bounded by
|O| × |Σ| where |S| denotes the number of elements in S.

Corollary 1. An instance Σ |= ϕ of the implication problem for p-CCs and
p-FDs can be decided in time O(|O| × |Σ ∪ {ϕ}|). 	

We illustrate the use of Theorem3 on our running example.

Possibilistic Cardinality Constraints and Functional Dependencies 141

Example 5. Let Σ be as in Example 1. Then we can use Theorem 3 to decide
whether the p-CC (card(Dep) ≤ 2, β2) is implied by Σ. Indeed, Dep∗

Σβ2 [FD] =
{Dep,Mgr} and card(Mgr) ≤ 2 ∈ Σβ2 . Similarly, Σ implies (card(Emp,Mgr) ≤
1, β1) since {Emp,Mgr}+Σβ1 [FD] = O. 	

5 Applications

We give a series of examples that illustrate core data processing areas on which
our solutions have an impact. These include more efficient update and query
operations, as well as schema decompositions to avoid data redundancy.

Non-redundant Constraint Maintenance. Constraints ensure data
integrity. Whenever database instances are updated, it must be validated that
the updated instance satisfies all the given constraints. Data integrity there-
fore comes at the cost of enforcing it. However, it is redundant to validate any
implied constraints, because every instance that satisfies the remaining con-
straints already satisfies the implied constraints. Unnecessary costs for implied
constraints are removed by computing a non-redundant cover of the given con-
straint set. This is done by successively removing any constraint σ ∈ Σ from Σ
whenever Σ −{σ} implies σ. Having an efficient algorithm to decide implication
means that we also have an efficient algorithm to compute a non-redundant
set of constraints. Note that the time complexity refers to the schema size,
which is negligible in comparison to the size of the instance. Furthermore, the
larger database instances are the more time we save by validating non-redundant
sets of constraints. We will now illustrate these ideas on our running exam-
ple from the introduction. Some of the p-CCs and p-FDs satisfied by the p-
instance in Fig. 1 include: (Emp → Dep, β1), (card(Dep) ≤ 3, β1), (card(Mgr) ≤
3, β1), (card(Emp) ≤ 2, β1), (card(Emp,Dep) ≤ 2, β1), (Emp → Dep, β2),
(Dep → Mgr, β2), (Emp → Mgr, β2), (card(Dep) ≤ 2, β2), (card(Mgr) ≤ 2, β2),
(card(Dep,Mgr) ≤ 2, β2), and (card(Emp, Mgr) ≤ 3, β2). This set is redundant,
and a non-redundant subset that implies all constraints of the given set is shown
in Fig. 2.

Query Optimization. Knowing which constraints hold on a given instance
also assists us with making the evaluation of queries more efficient. Take, for
example, the query

SELECT DISTINCT Emp FROM Work WHERE p-degree=α1;

and assume it is evaluated on the p-instance from Fig. 1. Since the p-instance
satisfies the p-CCs and p-FDs in Fig. 2, and these constraints imply the p-CC
card(Emp ≤ 1, β2), a query optimizer that can reason about our constraints is
able to conclude that the DISTINCT clause in the query above is superfluous.
The elimination of this clause can save considerable evaluation time because the
ordering of tuples and removing of duplicates is an expensive operation. For
another query evaluated on the same p-instance consider

142 T.K. Roblot and S. Link

SELECT Dep, COUNT(Emp) FROM Work WHERE p-degree=α1

GROUP BY Dep HAVING Count(Emp)≤ 3;

which lists the departments together with the number of their ‘certain’ employ-
ees, if that number does not exceed 3. A query optimizer able to determine that
the p-CC (card(Dep) ≤ 3, β2) is implied by the satisfied set of p-CCs and p-FDs,
can remove the HAVING clause from the query without affecting the result.

Removing Data Redundancy by Pivoting. The goal of pivoting is to decom-
pose object schemata at design time in an effort to reduce data redundancy and
optimize constraint validation time during the lifetime of the target database.
We briefly use our running example to illustrate the impact of possibilistic con-
straints on pivoting. For this purpose, consider again the (possible worlds of the)
p-instance in Fig. 2.

Each occurrence of the Mgr -value Federer in world w1 is redundant in the
sense that any update of this occurrence to a different value would result in a
violation of the p-FD (Dep → Mgr, β2). In contrast, the occurrence of Federer in
w2 is not redundant, because the p-FD (Dep → Mgr, β2) only applies to objects
with p-degree α1. In other words, we could decompose the schema Work into
the two schemata {Dep,Mgr,ID1} and {Emp,ID1} for objects with p-degree α1.
For objects with p-degree α2 we could decompose Work into the two schemata
{Emp,Dep,ID2} and {Mgr,ID2}, based on the p-FD (Emp → Dep, β1). That is,
our framework enables us to first apply a horizontal decomposition of the given
database instance into w1 and w2 − w1, and then apply traditional pivoting to
decompose the schemata with respect to the β-cuts Σβ2 and Σβ1 , respectively.
The resulting decomposition of the p-instance from Fig. 1 would look like:

Dep Mgr ID1
Tennis Federer 1
Physics Gauss 2
Maths Gauss 3

Emp ID1
Nishikori 1

Date 1
Sakita 2
Sato 3

Emp Dep ID2
Nara Tennis 1

Musashimaru Sumo 2

Mgr ID2
Federer 1
Hakuho 2
Taiho 2

in which all redundant data value occurrences have been removed. In addition,
the original cardinality constraint (card(Dep,Mgr) ≤ 2, β2) now becomes a cardi-
nality constraint stipulating that each ID1 value in the {Dep,Mgr, ID1} instance
should occur in at least 1 and at most 2 objects of the {Emp, ID1} instance.

6 Armstrong Instances and Representations

We establish computational support for the acquisition of p-CCs and p-FDs that
are meaningful in a given application domain. A major inhibitor to the acquisi-
tion is the mismatch in expertise between business analysts and domain experts.

Possibilistic Cardinality Constraints and Functional Dependencies 143

The former know database concepts but not the domain, while the latter know
the domain but not database concepts. To facilitate effective communication
between them, Armstrong instances serve as data samples that perfectly repre-
sent the current set of constraint sets. We will sketch how to compute Armstrong
instances for any given set of p-CCs and p-FDs, which analysts and experts can
jointly inspect to consolidate the set of meaningful constraints.

We first restate the original definition of an Armstrong database [12] in our
context. A p-instance ι is said to be Armstrong for a given set Σ of p-CCs and p-
FDs on a given p-object type (O,S) if and only if for all p-CCs and p-FDs ϕ over
(O,S) it is true that ι satisfies ϕ if and only if Σ implies ϕ. As such, Armstrong
p-instances exhibit for each cardinality constraint and functional dependency
the largest c-degree for which it is implied by the given set Σ.

Example 6. The p-instance from Fig. 1 is Armstrong for the set of p-CCs and
p-FDs from Fig. 2. 	

We will now explain how to compute an Armstrong p-instance ι for an arbi-
trarily given set Σ of p-CCs and p-FDs.

For every attribute subset X and every c-degree βi, we compute the smallest
bX,i such that (card(X) ≤ bX,i, βi) is implied by Σ. We start with bX,i = ∞,
and set bX,i = 1, if X+

Σβi
[FD] = O holds. Otherwise, we set bX,i to b whenever

there is some card(Y) ≤ b ∈ Σβi
such that Y ⊆ X+

Σβi
[FD] and b < bX,i, see

Theorem 3 (ii). Now it suffices to introduce bX,i objects into ι with p-degree
αk+1−i and matching values cA,i on all A ∈ X and unique values on all A /∈ X.
This ensures that all p-CCs implied by Σ are satisfied in ι and all p-CCs not
implied by Σ are violated. Several optimizations reduce the number of objects
in an Armstrong p-instance: If bX,i = 1, no objects need to be introduced in
ι. If Y ⊂ X and bY,i = bX,i, then it suffices to introduce bX,i objects, because
they also violate (card(Y) ≤ bY,i, βi). For j > i and bX,j ≤ bX,i for which bX,j

objects with (at most) p-degree αk+1−j have already been introduced, it suffices
to introduce further bX,i − bX,j objects of p-degree αk+1−i, again with matching
values cX,j on all A ∈ X and unique values on all A /∈ X.

As an illustration, Fig. 3 shows for all attribute subsets X and c-degrees β1

and β2 the associated cardinalities bX,i for our running example from Example 1.
The bold attribute sets are those that require the insertion of objects into an
Armstrong p-instance for the given Σ.

In general, we still need to ensure that all p-FDs not implied by Σ are
violated. For all A ∈ X and every c-degree βi, we compute all maximal
attribute subsets X such that A /∈ X+

Σβi
[FD], i.e., for all B /∈ (XA) we have

A ∈ (XB)+Σβi
[FD]. These sets are known as the maximal sets for Σβi

[FD] and
can be computed by an algorithm given in [36]. For each set X that is maximal
with respect to Σβi

[FD], we introduce two objects with p-degree αk+1−i and
matching values cA,i on all A ∈ X and unique values on all A /∈ X. Again, some
optimizations reduce the number of objects in the final Armstrong p-instance:
If X is maximal with respect to Σβi

[FD] and Σβj
[FD] and i < j, then it suf-

fices to introduce the two objects with p-degree αk+1−j . Finally, we do not need

144 T.K. Roblot and S. Link

Fig. 3. Attribute sets X with cardinalities bX,i for i = 1, 2 from left to right

to introduce the two objects for the maximal set X, if bY,j objects have previ-
ously been introduced for some j ≥ i where X ⊆ Y and X is only maximal for
attributes A /∈ Y − X with respect to Σβi

[FD].
Continuing with the construction of an Armstrong p-instance for the given

set Σ from Example 1, the following table lists the attribute subsets (only one
maximal set in each case here) that are maximal for the given attributes and
Σβi

[FD].

Emp Dep Mgr

Σβ1 {Dep,Mgr} {Mgr} {Emp,Dep}
Σβ2 {Dep,Mgr} {Mgr} ∅

Indeed, only the set {Mgr} that is maximal for Σβ2 [FD] requires us to insert
two objects. In particular, the maximal set X = {Dep,Mgr} for Σβ2 [FD] is
already covered by the bX,2 = 2 objects introduced previously, see Fig. 3, and
the maximal set ∅ is covered because the p-FD (∅ → Mgr, β2) is already violated
after two objects with different Mgr values have been introduced. Similarly, all
the maximal sets for Σβ1 [FD] have already been covered.

The outlined algorithm ensures that Armstrong p-instances exist for every
given set Σ of p-CCs and p-FDs, and that they are computed in time expo-
nential in input. Since there are cases where the minimum number of required
objects is exponential in the given input, which is known for traditional FDs
[2], no polynomial-time algorithm can exist. However, as our running example
illustrates we still need to deal with the following occurring case, which occurs
frequently in practice. There are attribute subsets X and c-degrees βi such that
bX,i = ∞, that is, there is no finite upper bound b such that (card(X) ≤ b, βi) is
implied by the input Σ. It follows that every Armstrong p-instance is necessarily
infinite, which seems to make our acquisition strategy unfit for its intended pur-
pose. However, we apply the following representation trick that overcomes this
challenge. Instead of introducing bX,i different objects with matching values cA,i

Possibilistic Cardinality Constraints and Functional Dependencies 145

on all A ∈ X and unique values on all A /∈ X, we introduce one single object
with cA,i on all A ∈ X and ∗ on all A /∈ X, plus its cardinality bX,i in a new
column card. This single object represents the bX,i different objects, in particu-
lar, ∗ for unique values in all columns outside of X. If the objects result from a
maximal set, then the cardinality is simply 2. Representations resulting from this
transformation of (finite or infinite) Armstrong p-instances are called Armstrong
p-representations for Σ. We can show that the optimizations applied in our com-
putation result in representations that are bounded by the size of minimum-sized
Armstrong p-representations (those Armstrong p-representations with the least
number of objects) and the number of given constraints.

Theorem 4. Given an arbitrary set Σ of poss-CCs and poss-FDs over some
given p-object type, the outlined algorithm computes an Armstrong p-represen-
tation ζ for Σ whose size is bounded by that of a minimum-sized Armstrong
p-representation ζmin for Σ and the number of elements in Σ as follows: |ζ| ≤
|ζmin| × (|Σ| + |ζmin|). 	

This construction yields the following Armstrong p-instance for the given set
Σ of p-CCs and p-FDs from Example 1.

Emp Dep Mgr p-degree card

∗ Tennis Federer α1 2

∗ ∗ Gauss α1 2

∗ Tennis Federer α2 1

Musashimaru Sumo ∗ α2 ∞
∗ ∗ Taiho α2 ∞

We list some of the observations we can make by inspecting this Arm-
strong p-instance. First of all, the given constraint set Σ has not captured any
‘fully certain’ finite bounds on the cardinalities by which (Emp,Dep)-objects
or (Mgr)-objects occur. Indeed, the combination (Musashimaru, Sumo) can
occur infinitely many times when ‘somewhat possible’ objects are involved,
and the same applies to (Taiho). In contrast, Σ does guarantee the unique-
ness of any (Emp)-objects that are ‘fully possible’, and a maximum cardinality
of two on any (Dep,Mgr)-objects that are ‘fully possible’. Similarly, any non-
trivial FD Mgr → A is not even ‘somewhat certain’. The FD Dep → Mgr is
‘somewhat certain’, because there are two ‘somewhat possible’ occurrences of
the (Sumo) department, but in combination with different managers. While
the FD Emp → Dep is ‘fully certain’, the FD Emp → Mgr is only ‘some-
what certain’, because there are two ‘somewhat possible’ occurrences of the
employee (Musashimaru), but each occurrence is in combination with different
managers.

146 T.K. Roblot and S. Link

7 Conclusion and Future Work

Cardinality constraints and functional dependencies naturally co-occur in most
aspects of life. Consequently, they have received invested interest from the con-
ceptual modeling community over the last three decades. In contrast to various
previous works, we have studied cardinality constraints and functional dependen-
cies over uncertain data. Uncertainty has been modeled qualitatively by applying
the framework of possibility theory. Our results show that cardinality constraints
and functional dependencies form a ‘sweet spot’ in terms of both expressivity and
good computational behavior, as more expressive classes of constraints behave
poorly. In particular, we have established a finite axiomatization and a linear
time algorithm to decide the implication problem associated with our class, and
illustrated their applicability to conceptual design, update and query efficiency.
We have also established an algorithm that computes for every given set of
our constraints an Armstrong representation. These representations embody the
exact certainty with which any constraint in our class is currently perceived to
hold by data analysts. The analysts can show our Armstrong representations to
domain experts in order to jointly consolidate the actual certainty with which
cardinality constraints and functional dependencies shall hold in a given appli-
cation domain.

Our framework opens up several questions for future investigation, including
a detailed study and performance tests for our applications, the interaction with
yet other constraint classes despite the limits outlined, and empirical evalua-
tions for the usefulness of Armstrong representations. It is further interesting to
investigate possibilistic approaches to more expressive data models, such as SQL
with partial and duplicate information, XML, RDF, or graph databases.

Acknowledgement. This research is supported by the Marsden fund council from
Government funding, administered by the Royal Society of New Zealand.

References

1. Beeri, C., Bernstein, P.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)

2. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong rela-
tions for functional dependencies. J. ACM 31(1), 30–46 (1984)

3. Biskup, J., Menzel, R., Polle, T., Sagiv, Y.: Decomposition of relationships through
pivoting. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 28–41. Springer,
Heidelberg (1996). doi:10.1007/BFb0019913

4. Brown, P., Link, S.: Probabilistic keys for data quality management. In:
Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097,
pp. 118–132. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19069-3 8

5. Chen, P.P.: The Entity-Relationship model - toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

6. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

http://dx.doi.org/10.1007/BFb0019913
http://dx.doi.org/10.1007/978-3-319-19069-3_8

Possibilistic Cardinality Constraints and Functional Dependencies 147

7. Currim, F., Neidig, N., Kampoowale, A., Mhatre, G.: The CARD system. In:
Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol.
6412, pp. 433–437. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16373-9 31

8. Demetrovics, J., Molnár, A., Thalheim, B.: Graphical reasoning for sets of func-
tional dependencies. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.)
ER 2004. LNCS, vol. 3288, pp. 166–179. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30464-7 14

9. Dubois, D., Prade, H.: Possibility theory and its applications: Where do we stand?
In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelli-
gence, pp. 31–60. Springer, Heidelberg (2015)

10. Dubois, D., Prade, H.: Practical methods for constructing possibility distributions.
Int. J. Intell. Syst. 31(3), 215–239 (2016)

11. Fagin, R.: A normal form for relational databases that is based on domains and
keys. ACM Trans. Database Syst. 6(3), 387–415 (1981)

12. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)
13. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependen-

cies for capturing data inconsistencies. ACM Trans. Database Syst. 33(2), 94–115
(2008)

14. Grant, J., Minker, J.: Inferences for numerical dependencies. Theor. Comput. Sci.
41, 271–287 (1985)

15. Hall, N., Köhler, H., Link, S., Prade, H., Zhou, X.: Cardinality constraints on
qualitatively uncertain data. Data Knowl. Eng. 99, 126–150 (2015)

16. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems
of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

17. Hartmann, S.: Decomposing relationship types by pivoting and schema equivalence.
Data Knowl. Eng. 39(1), 75–99 (2001)

18. Hartmann, S.: On the implication problem for cardinality constraints and func-
tional dependencies. Ann. Math. Artif. Intell. 33(2–4), 253–307 (2001)

19. Hartmann, S., Link, S.: Multi-valued dependencies in the presence of lists. In: Beeri,
C., Deutsch, A. (eds.) Proceedings of the Twenty-Third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, 14–16 June 2004, Paris,
France, pp. 330–341. ACM (2004)

20. Hartmann, S., Link, S.: On a problem of Fagin concerning multivalued dependen-
cies in relational databases. Theor. Comput. Sci. 353(1–3), 53–62 (2006)

21. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

22. Hartmann, S., Link, S.: Expressive, yet tractable XML keys. In: Kersten, M.L.,
Novikov, B., Teubner, J., Polutin, V., Manegold, S. (eds.) EDBT 2009, 12th Inter-
national Conference on Extending Database Technology, Saint Petersburg, Russia,
24–26 March, 2009, Proceedings. ACM International Conference Proceeding Series,
vol. 360, pp. 357–367. ACM (2009)

23. Hartmann, S., Link, S., Schewe, K.-D.: Reasoning about functional and multi-
valued dependencies in the presence of lists. In: Seipel, D., Turull-Torres, J.M.
(eds.) FoIKS 2004. LNCS, vol. 2942, pp. 134–154. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24627-5 10

24. Hartmann, S., Link, S., Schewe, K.: Functional and multivalued dependencies in
nested databases generated by record and list constructor. Ann. Math. Artif. Intell.
46(1–2), 114–164 (2006)

25. Jones, T.H., Song, I.Y.: Analysis of binary/ternary cardinality combinations in
entity-relationship modeling. Data Knowl. Eng. 19(1), 39–64 (1996)

http://dx.doi.org/10.1007/978-3-642-16373-9_31
http://dx.doi.org/10.1007/978-3-540-30464-7_14
http://dx.doi.org/10.1007/978-3-540-30464-7_14
http://dx.doi.org/10.1007/978-3-540-24627-5_10

148 T.K. Roblot and S. Link

26. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB
J. 25(4), 571–596 (2016)

27. Köhler, H., Link, S.: SQL schema design: Foundations, normal forms, and normal-
ization. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, 26 June–01 July 2016, pp. 267–279. ACM (2016)

28. Koehler, H., Link, S., Prade, H., Zhou, X.: Cardinality constraints for uncertain
data. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824,
pp. 108–121. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12206-9 9

29. Köhler, H., Link, S., Zhou, X.: Possible and certain SQL keys. PVLDB 8(11),
1118–1129 (2015)

30. Köhler, H., Link, S., Zhou, X.: Discovering meaningful certain keys from incomplete
and inconsistent relations. IEEE Data Eng. Bull. 39(2), 21–37 (2016)

31. Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-
relationship schemata. Inf. Syst. 15(4), 453–461 (1990)

32. Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality constraints in semantic
data models. Data Knowl. Eng. 11(3), 235–270 (1993)

33. Link, S.: Charting the completeness frontier of inference systems for multivalued
dependencies. Acta Inf. 45(7–8), 565–591 (2008)

34. Link, S.: Characterisations of multivalued dependency implication over undeter-
mined universes. J. Comput. Syst. Sci. 78(4), 1026–1044 (2012)

35. Link, S., Prade, H.: Possibilistic functional dependencies and their relationship to
possibility theory. IEEE Trans. Fuzzy Syst. 24(3), 757–763 (2016)

36. Mannila, H., Räihä, K.J.: Design by example: an application of Armstrong rela-
tions. J. Comput. Syst. Sci. 33(2), 126–141 (1986)

37. Mitchell, J.C.: The implication problem for functional and inclusion dependencies.
Inf. Control 56(3), 154–173 (1983)

38. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-lite: finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

39. Roblot, T.: Cardinality constraints for probabilistic and possibilistic databases.
Ph.D. thesis, Department of Computer Science, The University of Auckland, New
Zealand (2016)

40. Roblot, T., Link, S.: Probabilistic cardinality constraints. In: Johannesson, P., Lee,
M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381,
pp. 214–228. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25264-3 16

41. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lec-
tures on Data Management. Morgan & Claypool Publishers, Boston (2011)

42. Thalheim, B.: On semantic issues connected with keys in relational databases
permitting null values. Elektronische Informationsverarbeitung und Kybernetik
25(1/2), 11–20 (1989)

43. Thalheim, B.: Fundamentals of cardinality constraints. In: Pernul, G., Tjoa, A.M.
(eds.) ER 1992. LNCS, vol. 645, pp. 7–23. Springer, Heidelberg (1992). doi:10.
1007/3-540-56023-8 3

44. Thalheim, B.: Entity-relationship modeling - foundations of database technology.
Springer, Heidelberg (2000)

45. Thalheim, B.: Conceptual treatment of multivalued dependencies. In: Song, I.-Y.,
Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp.
363–375. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39648-2 29

46. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class cit-
izens in description logics. J. Autom. Reasoning 40(2–3), 117–132 (2008)

http://dx.doi.org/10.1007/978-3-319-12206-9_9
http://dx.doi.org/10.1007/978-3-319-25264-3_16
http://dx.doi.org/10.1007/3-540-56023-8_3
http://dx.doi.org/10.1007/3-540-56023-8_3
http://dx.doi.org/10.1007/978-3-540-39648-2_29

Exploring Views for Goal-Oriented
Requirements Comprehension

Lyrene Silva1(B), Ana Moreira2, João Araújo2, Catarina Gralha2,
Miguel Goulão2, and Vasco Amaral2

1 Dimap/IMD, Federal University of Rio Grande do Norte, Natal, Brazil
lyrene@dimap.ufrn.br

2 NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Lisbon, Portugal
{amm,joao.araujo,mgoul,vma}@fct.unl.pt, acg.almeida@campus.fct.unl.pt

Abstract. Requirements documents and models need to be used by
many stakeholders with different technological proficiency during soft-
ware development. Each stakeholder may need to understand the entire
(or simply part of the) requirements artifacts. To empower these stake-
holders, views of the requirements should be configurable to their par-
ticular needs. This paper uses information visualization techniques to
help in this process. It proposes different views aiming at highlighting
information that is relevant for a particular stakeholder, helping him to
query requirements artifacts. We offer three kinds of visualizations cap-
turing language and domain elements, while providing a gradual model
overview: the big picture view, the syntax-based view, and the concern-
based view. We instantiate these views with i* models and introduce an
implementation prototype in the iStarLab tool.

Keywords: Requirements exploration · Visualization · Comprehen-
sion · Views

1 Introduction

Information exploration tasks, such as zooming, obtaining details-on-demand,
filtering, extracting, relating, and overviewing [1] are basic tasks for information
analysis. They have been used in several areas, including software engineering.
For code exploration, for example, these tasks may help the maintenance soft-
ware engineer to comprehend the structure and behavior of a program through
the generation of multiple views [2]. Multiple views are also broadly employed
in requirements modeling for very specific purposes. Usually, these views do not
offer interactive features to allow stakeholders browsing the information accord-
ing to their needs [3–6].

Requirements artifacts are usually described textually or graphically (e.g.,
with use case scenarios, or NFR graphs). These artifacts are often too large
or too complex to be quickly understood or easily queried for information of
interest by different stakeholders, including clients, domain experts, and soft-
ware engineers. Therefore, how to navigate through requirements artifacts to
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 149–163, 2016.
DOI: 10.1007/978-3-319-46397-1 12

150 L. Silva et al.

get the relevant information? In other words, how can we explore (i.e., examine
or study) requirements that have been elicited and documented (often by other
people and/or not recently) to accomplish some activity of the software devel-
opment process? This need for exploration shares some similarities with needs
from other domains, such as map exploration, where the information is hierar-
chically organized, so that zoom and filter mechanisms may be used for seamless
navigation through several information abstraction levels.

We aim at providing interactive mechanisms to allow users looking for infor-
mation pieces they intend to analyze. To achieve this goal, we propose three views
focusing on exploratory tasks: big picture, syntax-based view and concern-based
view. These views are conceptually abstract, and so can be used with various
types of models. Here, we chose i*, a social goal modeling requirements language
[7], to illustrate them. As we will see later, i* models get complex very quickly.
So, it is a good target to illustrate the value of our proposal.

This paper is structured as follows. Section 2 presents an overview of software
exploration and i*. Section 3 defines the three views, illustrates them with i*,
and shows an implementation of the concern-based view. It then discusses how
to apply the views to other languages and indicates some challenges on using
multiple views for requirements exploration. Section 4 discusses related work and
Sect. 5 summarizes our conclusions and discusses ideas for further research.

2 Background

Requirements exploration is a process to navigate through requirements arti-
facts, aiming at comprehending their structure and content. Each stakeholder
engaged in requirements exploration has particular skills and goals, and aims
to quickly find specific information to confirm or refute his understanding of
the requirements. These skills, goals and understanding can evolve over time.
In fact, the faster stakeholders understand artifacts, the faster they may adjust
their exploration goals [8]. Similarly to program exploration [9], there are three
major reasons to provide mechanisms for requirements exploration:

– Requirements artifacts are often used by people that have not created them.
Consequently, these artifacts have unknown structure and content to them.

– Stakeholders need to search information on these artifacts, aiming at com-
pleting a software development task or at understanding a domain. Therefore
questions may vary from simple (“Who are the stakeholders?”) to complex
(“How to modularize the system?”).

– Requirements are potentially huge, typically written in natural language in
several abstraction levels, and scattered among different artifacts which may
be specified in distinct languages. Exploration mechanisms can help navigat-
ing through the entire documentation to find the elements associated with a
specific point of interest.

To illustrate our need for exploration mechanisms, we use the i* framework.
i* is a goal-oriented requirements framework, whose objective is to analyze and

Exploring Views for Goal-Oriented Requirements Comprehension 151

represent how actors collaborate to achieve system goals [7]. i* offers two mod-
els: the Strategic Dependency model (SD), focused on the collaboration among
actors, and the Strategic Rationale model (SR), focused on identifying how these
goals are achieved by detailing them into tasks.

Usually, modeling starts by building the SD model, showing actors, their
main goals and dependencies. After that, in the SR model, each actor is detailed
to operationalize the defined goals. Therefore, we may understand the SR model
as an expansion of the information offered by the SD model—i* defines the
boundary element to group all the elements relevant to an actor. Despite these
two levels of abstraction, i* models may still be considered complex, since its
meta-model defines many kinds of elements and relationships. Even using only
a subset of these kinds of elements, the model can easily become too large and
complex.

Some works have investigated ways to make the i* notation simpler, for
example by increasing its semantic transparency [10]. Instead, we aim at provid-
ing visualization mechanisms that essentially use the standard notation, enriched
with information hiding mechanisms, so that a particular view supports an easier
way to focus on the relevant parts of the model, for a particular stakeholder.

Figure 1 presents an SR model for the Health Care System (HCS), mod-
eled with the iStarLab tool [11]. HCS provides costs management of a medical
service, considering the trade-offs between Patients, Insurance Companies and
Physicians [7]. This model consists of 13 actors, 13 goals, 41 tasks, 26 softgoals,
and 165 relationships. If a stakeholder needs to analyze just one of the actors
and its internal activity, the boundary element provides this information, and
we could cut out all the other external dependencies. However, if we do that,
we lose the context of those elements. On the other hand, if we do not cut them
out, we need to manage a larger than actually needed model, and struggle to
follow the intricate links. This example shows how the size and complexity of
i* models can be significant, and consequently decrease our ability to analyze
them.

3 Views for Requirements Exploration

Creating multiple views is a strategy for requirements exploration. These explo-
ration views must include interaction. Zoom, filter, extract, details on demand,
history, relate, and overview are examples of exploration tasks supporting inter-
action with the information [1]. This paper defines three views focusing on fil-
tering and zooming of requirements models. We have taken the classical Visual
Information Seeking Mantra, “Overview first, zoom and filter, then details-on-
demand” [1], into consideration. Thus, the focus is on our need for: top-down
and bottom-up navigation; selecting the parts to be detailed; and selecting infor-
mation types offered for the models, as well as information related to the domain
vocabulary.

Our views offer an information subset (raw or pre-processed) of a model
taken as source, and represent it by using the same (or similar) notation of the

152 L. Silva et al.

Fig. 1. The HCS strategy dependency model, taken from [11]

source model. Using the representation of the original model may decrease the
cognitive effort required from stakeholders. However, this representation should
depend on the task that stakeholders are performing and thus other notations
may be more appropriated in some situations.

The three views defined in this paper are: the big picture view, the syntax-
based view, and the concern-based view. The big picture generates an overview
[12] for a source model (or artifact), offering the ability to expand and reduce the
details on demand; it organizes the model information on levels of importance
or by aggregation. The syntax-oriented view filters the types of language ele-
ments that will be visualized. Finally, the concern-oriented view filters concerns,
through meta-data, system lexicon (key words) or semantic similarity.

While the big picture generalizes the need of top-down and bottom-up nav-
igation through the information aggregation/disaggregation, the concern and
syntax-based views generalize the search for information according to its abstrac-
tion level, from instance level to meta-model level, respectively. These views aim
to reduce the scope by hiding model elements that are not of interest in a given
moment. Next we present a conceptual model of our views.

Exploring Views for Goal-Oriented Requirements Comprehension 153

3.1 Conceptual Model

Figure 2 presents a conceptual model relating our views, the exploration task
types and the kind of data that we have taken into consideration. The visualiza-
tion entity consists of views and interaction techniques. Views are projections
of a model taken as source. A model consists of elements (components and rela-
tionships), which are characterized by attributes. This model entity generalizes
model approaches (e.g. i*, use cases, and KAOS). For example, for i* the set
of components includes nodes such as actors, boundaries, goals, softgoals, tasks,
and beliefs, while the set of relationships includes dependencies, decomposition,
associations, and means-end links.

The interaction techniques that we have focused on this paper are zoom and
filter. Zoom realizes the big picture while filter realizes the syntax and concern-
based views. We define the big picture view to offer an overview that aggregates
elements of a model, while the concern and syntax-based views filter, respectively,
data into attributes and from the model elements.

Fig. 2. Conceptual model for exploration views

Although we have classified our views as a kind of zoom and filter, they also
include characteristics of the following types of interaction:

– extract, because they are slices of an original model, hence representing an
information subset of the original model and obeying its syntactic and seman-
tic rules;

– overview, because the aggregation proposed in the big picture may generate a
collapsed representation at a higher abstraction level;

– details on demand, because the aggregations may be gradually expanded
according to the user needs.

These views should be used in an interactive and integrative way. This means
that it is necessary to provide tools to make the views interactive so that the
stakeholder can directly manipulate, as well as combine, them in a non predefined
order.

154 L. Silva et al.

3.2 Exploring i*

To instantiate our views for i*, we analyze i* elements, hierarchy, composition
and decomposition characteristics, and intrinsic goal. We model its components
and identify which one of them could be filtered and aggregated.

The Big Picture View. We can perceive the SD model as an abstract view
of a system, showing its context. The SD model is later refined into SR models,
each specifying an actor in the SD model. Here, the SD model can be seen as a
Big Picture for the SR models.

SD models usually show more than one dependency between any two actors.
The larger the number of links (i.e., the actor’s fan-in and fan-out), the more
unreadable the model becomes. Hence, an SD overview, or simpler view, may be
useful, allowing us to gradually expand and reduce it according to our needs. It
is worth mentioning that we want to create ways to aggregate (and disaggregate)
information into models, rather than creating new notations to represent them.
So, if the source model language does not provide aggregation elements, we must
create visual mechanisms to help the user see the collapsed points of information.

The intrinsic characteristics of SD and SR models led to us to identify four
ways to reduce their quantity of elements:

– Hiding dependencies: multiple dependencies between any two actors are col-
lapsed into one single relationship. This relationship will be annotated in both
directions, defining the quantity of dependencies collapsed into it.

– Hiding actors: actors (as well as roles, positions and agents) associated to
others by isa, is-part-of, plays, occupies or ins relationships may be omitted
since they do not have dependencies with other actors. For example, if actor1
isa actor2, then actor1 may be collapsed.

– Hiding the internal elements of an actor: the boundary element may be used
to reduce the size of the model by hiding its internal elements. This is an i*
resource that tools have already explored.

– Hiding relationships among tasks, goals, softgoals and beliefs: any two ele-
ments only linked by decomposition relationships are collapsed into the most
general element. Note that means-ends and contributions are not hidden, as
they are not hierarchical relationships.

Figure 3 depicts the visual mechanisms our approach adds to i* models, so
that the stakeholders are made aware of available model exploration alternatives
at a given moment. The plus sign in an actor denotes the possibility of expanding
the information on that actor, while the minus sign provides the alternative
for collapsing (i.e.) that information. Finally, a simple line aggregates several
dependencies that can, if necessary, be expanded.

Figure 4 illustrates our big picture view for Fig. 1. It is a simplification of
the original model, since it hides several visual elements. This reduction still
shows the actors and dependencies among them. Note that dependencies are
represented by an annotated relationship, whose ends indicate how many depen-
dencies exist on each direction, if any. Although it uses a different notation for

Exploring Views for Goal-Oriented Requirements Comprehension 155

Actor can be
expanded

Actor can be
reduced

Dependencies can
be expanded

Fig. 3. Visual clues for simplifying
i* models visualization

Fig. 4. The Big Picture with both
actors and dependencies collpased

dependencies and actors, there are no new elements involved, hence still repre-
senting a subset of an SD model. The number of dependencies collapsed in each
relation may be used to identify, for example, actors that accumulate too many
responsibilities, or those that have too few (their fan-in and fan-out).

Stakeholders may explore (collapse and expand) actors and relationships
(their elements of interest), by directly selecting them or by using other interac-
tion elements such as menus and check boxes. For example, Fig. 5 illustrates the
expansion of Patient actor and dependencies between Physician and Insurance
Company actors, which were collapsed in Fig. 4.

Fig. 5. The Big Picture with an expanded link and actor

156 L. Silva et al.

Syntax-Based View. This view provides the possibility of choosing the syn-
tactic elements of interest. It is worth noting that hiding some combinations
of elements (subsets of the language) may generate semantically invalid models
(e.g., showing the boundary but not its related actor). Therefore, it is necessary
to define the possible combinations of elements through rules to generate well-
formed views. Another alternative is to use visual clues to contrast focused with
non-focused elements.

Figure 6 depicts a SD model showing only the resource dependencies. This
view helps stakeholders to identify the resources flow among actors, for example,
Lab can receive a Lab fee from Claim manager and Physician. Other important
filters are related to each dependum, node or relationship kinds. For instance,
generating a view that shows only the goals (softgoals, tasks or beliefs) related
to each actor helps to understand why those actors depend on each other, or if
their goals are not directly related to their dependencies.

Fig. 6. Syntax-based view: filtering resource dependums

Concern-Based View. This view allows the abstraction of the model by fil-
tering model elements. The focus is not on a type of element of the language,
but, instead, on values for these types. For instance, if stakeholders only need
to explore one specific actor through its SR model or identify which aspects
concerning response time have been addressed, the actor’s name and keywords
about response time, respectively, may be used as criteria for generating these

Exploring Views for Goal-Oriented Requirements Comprehension 157

views. Additionally, we can use the syntax-based view in conjunction with the
concern-based view to make the filter more precise. For example, if the name of
that actor is being used for naming another kind of element, we could narrow
the search by only considering the actor element type.

This kind of visualization also represents a set of views that could be defined
by the stakeholders. Basically, they can specify values for particular types of
language elements (in this case the syntax and concern based views are used in
conjunction), or, more freely, search for a concern on any type of element. It is
also necessary to consider that the result of these searches has to include the
context (the model elements) related to the concern searched, as this is usually
relevant for the analysis. For instance, when stakeholders search for the actor
named Patient, they probably want actor Patient with all its internal elements
(those within its boundary), and the actors with dependencies to Patient.

In this case, there is a clear need to consider the distance to the elements to be
captured by this view. For example, a distance of zero only captures the elements
directly searched, a distance of one considers the elements directly searched and
those elements linked to them, a distance of two searches all elements in distance
of one and those elements linked to them, and so on and so forth. Moreover, some
kind of query language could be needed.

Figure 7 illustrates the result for a free search, requiring the elements that
match the value Cost, with a distance of one. The result is all elements with the
string Cost and the actors, tasks, goals and softgoals directly linked to them.

Fig. 7. Concern-based view (considering a distance of one): filtering the string Cost

3.3 Implementation

The i* models presented in this paper were created with our iStarLab tool, an
Eclipse-based i* editor that allows stakeholders to generate concern-based views

158 L. Silva et al.

by selecting one or more concerns. After the selection, the tool presents a view
that shows which elements of the model are involved or contribute to achieve that
concern or set of concerns. The prototype tool was implemented using Domain
Specific Language (DSL) construction mechanisms.

The tool can be used to create i* models as well as to analyze them in
terms of concerns. In this context, a concern can be viewed, for example, as
a non-functional requirement (NFR) or a symbol of the system lexicon. Each
one of the model elements should have one or more concerns associated with it,
through tags. The stakeholder can assign one or more concerns to the elements
at any time. During or after the modeling process, s/he can choose a set of those
concerns, from a list, for further scrutiny. With this analysis, stakeholders can,
for example, perceive if there are elements that should have associated a specific
concern, which are the most used concerns, and which resources are involved or
are needed to achieve a desired concern.

In this implementation of the concern-based view, there are two types of
visualizations available: (i) highlight model elements with a specific set of con-
cerns, without losing the model context; and (ii) view only model elements with
a specific set of concerns, i.e., the others should be hidden in the model. After
analyzing a given concern, the stakeholder can view the model in its original
state, i.e., the model without highlighted elements or deleted ones.

3.4 Discussion and Challenges

Big picture, syntax and concern-base views were defined in an abstract manner.
So, they can be instantiated to other types of requirements models. To instantiate
these views, it is necessary to analyze the model principles and their syntactic
and semantic elements and structure. Also, it is necessary to analyze if the model
has aggregation elements that may be used, similarly to the boundary element
in i*. To validate this claim about the generality of these views, we successfully
applied them to use case diagrams and their scenario descriptions (the results
cannot be presented here, due to lack of space).

Taking into consideration the performed literature review and our experi-
ence with the i* and use case models, we enumerate some of the challenges
on generating or using multiple views for requirements exploration: (i) in the
requirements engineering process, many different models are generated; so, it is
necessary to provide exploration mechanisms to navigate through them, instead
of only navigating an isolated model; (ii) the proposed views complement each
other, so it is necessary to define, for each model, how they may be composed;
(iii) the tools implementing these views should provide mechanisms to allow
users to interact directly with the visual elements; (iv) this interaction includes
generating other views from the resulting views, and so, care must be taken to
avoid confusion between the source model and its views; (v) since users may
interact with the source model as well as with the views, it is also necessary to
generate a view about the path followed to the achieved result; (vi) interaction
mechanisms include aspects from human-computer interaction have not been
taken into consideration yet.

Exploring Views for Goal-Oriented Requirements Comprehension 159

4 Related Work

For software comprehension, it is necessary to enhance bottom-up and top-down
comprehension approaches, facilitate the navigation, provide orientation clues,
and reduce disorientation [9]. Tools that support program comprehension should
provide requirements such as browse, search and filter mechanisms, as well as
abstractions, history and multiples views [13,14]. Actually, software exploration
requires flexible and interactive views, i.e., visualization techniques rather than
static and isolated views, in order to enable the user navigating through artifacts
[14–18].

Visualization includes data types and interaction techniques [1,8,19]. In this
paper, we have considered that our data types are basically software, graphs and
text, while the task types are filter and zoom. Therefore, there is a wide set of
other alternatives that may also be used for requirements comprehension.

Views generated for software comprehension serve firstly to reveal and under-
stand software structures and behavior. Consistency is secondary, as these views
are generated when needed and may be discarded soon after, to be regenerated
when necessary. This idea comes from the information visualization field, where
visualization is an activity rather than an artifact [17]. There is a high potential
for this type of visualization in requirements engineering, due to the emphasis on
information seeking and creation, with multiple parties and activities involved
[16,17].

In this context, we may separate the related works into two categories: those
that propose views generated from data sets (that describe requirements and
their attributes), and those that propose views generated from constructs (or
properties) of a meta-model. In the first category, filters and attributes of require-
ments are used to generate graphical views, usually graphs or charts [4,6,16,20].
Although they have inspired our work, they are distinct because neither do they
deal with the properties of a modeling language nor with the generation of visual
clues in the source model (or source model subset).

In the second category (see Table 1) we list approaches that generate views
from models like i* [5,21], theme/doc [22], use cases [23] and NFR graphs [24].
This category is highly related to our work. In general, these views are distinct
from the views defined in our research, because: (i) they deal with a specific
kind of input, while ours are abstract enough to be applied to many kinds of
models; (ii) they generate static views by using a very specific criterion, while
ours use criteria defined by users, so that many views can be generated; or
(iii) they support only one way of interacting, while in our approach, views
abstract three ways to interact with requirements models.

Horkoff and Yu [5] present two views (or filters): one to highlight the starting
points for analysis (the leaves of model), and another to indicate the elements
involved in a conflict. These views focus on seeking for elements of the meta-
meta model that match with pre-defined properties, while our views are generic
to accommodate user-defined properties.

Ernst, Yu and Mylopoulos [21] propose a visualization scheme where quality
attributes are added to elements of i* models to enable the projection of views

160 L. Silva et al.

Table 1. Requirements aggregation and filtering mechanisms

Ref. Source Target Static/Interactive Pre-defined criteria

[21] i*, meta-
data

i* Interactive Concern-based

[5] i* i* Static Syntax-based: leaves
and elements in
conflict

[22] ThemeDoc ThemeDoc Interactive Aggregation

[23,25] Use cases Use cases,
UML

Static Aggregation and
concern-oriented

[24] NFR
frame-
work

NFR
frame-
work

Static Syntax-based:
objective, problem,
alternative and
selection patterns

Our views i*, use
cases,
others

i*, use
cases,
others

Interactive Aggregation, concern
and syntax-based

based on these attributes. In their work, the quality attributes of efficiency,
trustability, certainty and feasibility are defined and showed on the goal model
by using visual clues. The difference between this work and ours is that it does
not provide other filters types, neither overview.

Baniassad and Clarke [22] define a summarized view of Theme/Doc to deal
with the lack of scalability of this kind of model. This view is similar to our Big
Picture, and it was idealized to have the same kind of interaction we claim it
is needed. However, their view has not been designed to be generalized nor to
support filters.

Jacobson and Ng [25] define an approach where use case slices are elab-
orated, including pieces of the use case model and other UML models that
deal with a specific concern. We can understand this use case slice as a sta-
tic concern-oriented overview of the UML models, but it is not automatically
(or semi-automatically) generated. Furthermore, Jacobson, Spence and Bittner
[23] reinforce the importance of a Big Picture, but in this case, it is the use
case diagram (unchanged). In opposition to that, our approach considers that
an integrated model exists and from it a tool should be able to generate the
slices, and these slices are user-defined, by considering three abstract criteria.

Supakkul and Chung [24] present a framework for visualization of patterns
(objective, problem, alternatives and selection patterns) in NFRs graphs. There-
fore, the criterion for visualization is specific for these patterns, so that users
cannot make free searches.

Exploring Views for Goal-Oriented Requirements Comprehension 161

5 Conclusions and Future Work

This work presents three views for models exploration: big picture view, syntax-
based view and concern-based view. These views are based on the interaction
tasks zoom and filter. Therefore, they capture three manners of abstracting a
model, by decreasing its amount of elements, making it possible for stakeholders
to search and focus on information of interest. Although only an instantiation
of these views were shown for i* models, they are abstract enough to be applied
to other kinds of models and we have done so already for use case models.

The related works diverge from our abstract views because they are well
tailored to specific languages or concerns. Instead, our views are to be adapted
to different languages, and capture many kinds of concerns. Therefore, our pro-
posal provides a strategy to effectively deal with the complexity of requirements
models, where our views offer more flexible mechanisms for exploring and under-
standing such models. Without these kinds of mechanisms, more stakeholders’
effort is demanded to find and analyze relevant information in the system model.

For the near future, we are interested in investigating how tools can be pre-
pared for supporting our views. We are already exploring the use of DSLs to
query requirements models, and meta-data to provide richer insights. Also, we
will focus on other interaction tasks and define the variabilities that are intrin-
sic to requirements exploration, visualization and comprehension, as well as to
define a process to instantiate our views to other requirement models. We plan
to conduct experimental evaluations of the impact of introducing the proposed
mechanisms in requirements tools and on the efficiency and effectiveness of dif-
ferent stakeholders while performing requirements exploration. Approaches to
manage consistency among models such as in [26] will be also considered.

Acknowledgments. This work was funded by UFRN and NOVA LINCS research
laboratory (Ref. UID/CEC/04516/2013), CNPq-PDE grant 201848/2014-7, and FCT-
MCTES research grant SFRH/BD/108492/2015.

References

1. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Symposium on Visual Languages, pp. 336–343. IEEE (1996)

2. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evo-
lution of Software. Springer Science & Business Media, New York (2007)

3. Cooper Jr., J.R., Lee, S.W., Gandhi, R., Gotel, O.: Requirements engineering
visualization: a survey on the state-of-the-art. In: 4th International Workshop on
Requirements Engineering Visualization (REV 2009), pp. 46–55. IEEE (2009)

4. Donzelli, P., Hirschbach, D., Basili, V.: Using visualization to understand depend-
ability: a tool support for requirements analysis. In: 29th Annual IEEE/NASA
Software Engineering Workshop, pp. 315–324. IEEE (2005)

5. Horkoff, J., Yu, E.: Visualizations to support interactive goal model analysis. In: 5th
International Workshop on Requirements Engineering Visualization (REV 2010),
pp. 1–10. IEEE (2010)

162 L. Silva et al.

6. Reddivari, S., Rad, S., Bhowmik, T., Cain, N., Niu, N.: Visual requirements ana-
lytics: a framework and case study. Requirements Eng. 19(3), 257–279 (2014)

7. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. thesis,
University of Toronto, Canada (1996)

8. Keim, D.: Information visualization and visual data mining. IEEE Trans. Visual
Comput. Graphics 8(1), 1–8 (2002)

9. Storey, M.A.D., Fracchia, F.D., Müller, H.A.: Cognitive design elements to support
the construction of a mental model during software exploration. J. Syst. Softw.
44(3), 171–185 (1999)

10. Moody, D., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving
the cognitive effectiveness of the i* visual notation. Requirements Eng. 15(2), 141–
175 (2010)

11. Gralha, C., Goulão, M., Araújo, J.: Identifying modularity improvement opportu-
nities in goal-oriented requirements models. In: Jarke, M., Mylopoulos, J., Quix,
C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE
2014. LNCS, vol. 8484, pp. 91–104. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-07881-6 7

12. Hornbæk, K., Hertzum, M.: The notion of overview in information visualization.
Int. J. Hum. Comput. Stud. 69(7), 509–525 (2011)

13. Kienle, H.M., Müller, H., et al.: Requirements of software visualization tools: a
literature survey. In: 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis, (VISSOFT 2007), pp. 2–9. IEEE (2007)

14. Storey, M.A.D.: Theories, methods and tools in program comprehension: past,
present and future. In: 13th International Workshop on Program Comprehension
(IWPC 2005), pp. 181–191. IEEE (2005)

15. Favre, J.M.: A new approach to software exploration: back-packing with GSEE.
In: 6th European Conference on Software Maintenance and Reengineering, pp.
251–262. IEEE (2002)

16. Gotel, O., Marchese, F.T., Morris, S.J.: On requirements visualization. In: 2nd
International Workshop on Requirements Engineering Visualization (REV 2007).
IEEE (2007)

17. Gotel, O., Marchese, F.T., Morris, S.J.: The potential for synergy between infor-
mation visualization and software engineering visualization. In: 12th International
Conference on Information Visualisation, (IV 2008), pp. 547–552. IEEE (2008)

18. Niu, N., Mahmoud, A., Yang, X.: Faceted navigation for software exploration. In:
IEEE International Conference on Program Comprehension, pp. 193–196 (2011)

19. Keller, P.R., Keller, M.M.: Visual Cues: Practical Data Visualization. IEEE Com-
puter Society Press, Los Alamitos (1994)

20. Heim, P., Lohmann, S., Lauenroth, K., Ziegler, J.: Graph-based visualization of
requirements relationships. In: 3rd International Workshop on Requirements Engi-
neering Visualization, (REV 2008), pp. 51–55. IEEE (2008)

21. Ernst, N., Yu, Y., Mylopoulos, J.: Visualizing non-functional requirements. In: 1st
International Workshop on Requirements Engineering Visualization (REV 2006).
IEEE (2006)

22. Baniassad, E., Clarke, S.: Investigating the use of clues for scaling document-
level concern graphs. In: Workshop on Early Aspects (held with ECOOP 2004),
Vancouver, Canada, pp. 1–7 (2004)

23. Jacobson, I., Spence, I., Bittner, K.: Use Case 2.0: the guide to succeeding with
use cases. In: Ivar Jacobson International, pp. 1–55 (2011)

http://dx.doi.org/10.1007/978-3-319-07881-6_7
http://dx.doi.org/10.1007/978-3-319-07881-6_7

Exploring Views for Goal-Oriented Requirements Comprehension 163

24. Supakkul, S., Chung, L.: Visualizing non-functional requirements patterns. In: 5th
International Workshop on Requirements Engineering Visualization (REV 2010),
pp. 25–34. IEEE (2010)

25. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases.
Addison-Wesley Object Technology Series. Addison-Wesley Professional, Reading
(2004)

26. Bork, D., Buchmann, R., Karagiannis, D.: Preserving multi-view consistency in
diagrammatic knowledge representation. In: Zhang, S., Wirsing, M., Zhang, Z.
(eds.) KSEM 2015. LNCS, vol. 9403, pp. 177–182. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25159-2 16

http://dx.doi.org/10.1007/978-3-319-25159-2_16

Keys with Probabilistic Intervals

Pieta Brown1, Jeeva Ganesan1, Henning Köhler2, and Sebastian Link1(B)

1 Department of Computer Science, University of Auckland, Auckland, New Zealand
{pieta.brown,j.ganesan,s.link}@auckland.ac.nz

2 School of Engineering and Advanced Technology, Massey University,
Palmerston North, New Zealand

h.koehler@massey.ac.nz

Abstract. Probabilistic databases accommodate well the requirements
of modern applications that produce large volumes of uncertain data
from a variety of sources. We propose an expressive class of probabilis-
tic keys which empowers users to specify lower and upper bounds on
the marginal probabilities by which keys should hold in a data set of
acceptable quality. Indeed, the bounds help organizations balance the
consistency and completeness targets for their data quality. For this pur-
pose, algorithms are established for an agile schema- and data-driven
acquisition of the right lower and upper bounds in a given application
domain, and for reasoning about these keys. The efficiency of our acqui-
sition framework is demonstrated theoretically and experimentally.

Keywords: Data mining · Data semantics · Integrity constraint · Prob-
abilistic data · Requirements acquisition

1 Introduction

Background. Keys allow us to understand the structure and semantics of data.
In relational databases, a key is a set of attributes that holds on a relation if no
two different tuples in the relation have matching values on all the attributes of
the key. The ability of keys to uniquely identify entities makes them invaluable
in data processing and applications.

Motivation. Relational databases target applications with certain data, such
as accounting and payroll. Modern applications, such as data integration and
financial risk assessment produce large volumes of uncertain data from a variety
of sources. For instance, RFID (radio frequency identification) can track move-
ments of endangered species of animals, such as the Japanese Serow in central
Honshu. Here it is sensible to apply probabilistic databases. Table 1 shows two
probabilistic relations (p-relation), which are probability distributions over a
finite set of possible worlds, each being a relation.

In requirements acquisition the goal is to specify all keys that apply to the
application domain, and those keys only. This goal addresses the consistency and
completeness dimensions of data quality. Here, consistency means to specify all
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 164–179, 2016.
DOI: 10.1007/978-3-319-46397-1 13

Keys with Probabilistic Intervals 165

Table 1. Probabilistic relations r1 and r2

r1 : W1 (p1 = 0.35)

rfid time zone

j1 2pm z1
j1 3pm z2
j2 4pm z1
j3 2pm z3

W2 (p2 = 0.3)

rfid time zone

j1 2pm z1
j3 2pm z3
j1 5pm z1

W3 (p3 = 0.1)

rfid time zone

j1 2pm z1
j1 5pm z1
j4 2pm z1

W4 (p4 = 0.25)

rfid time zone

j1 2pm z1
j1 5pm z1
j4 2pm z1
j1 2pm z4

r2 : W1 (p1 = 0.2)

rfid time zone

j1 2pm z1
j2 3pm z1

W2 (p2 = 0.3)

rfid time zone

j1 2pm z1
j2 3pm z1
j1 4pm z2
j3 2pm z3

W3 (p3 = 0.25)

rfid time zone

j1 2pm z1
j3 2pm z3
j1 5pm z1

W4 (p4 = 0.25)

rfid time zone

j1 2pm z1
j1 5pm z1
j1 2pm z4
j4 2pm z1

meaningful keys in order to prevent the occurrence of inconsistent data, while
completeness means not to specify any meaningless keys in order to capture any
potential meaningful database instance. This situation is exemplified in Fig. 1.

Fig. 1. Consistency and completeness dimensions as controlled by keys

In probabilistic databases, one may speak of a key when it holds in all possible
worlds. That is to say that a key holds with marginal probability one, which
means that the probabilities of the worlds in which the key holds add up to
one. Due to the veracity of probabilistic data and the variety of sources the data
originate from, one must not expect to satisfy the completeness criteria with this
definition. Neither does such definition make sensible use of probabilities, as one
would expect for probabilistic data. In our example, neither r1 nor r2 satisfy any
non-trivial key with marginal probability one: The key k{rfid, time} has marginal
probability 0.75 in both r1 and r2, while k{time, zone} has marginal probability
0.65 in r1 and marginal probability 0.75 in r2.

We propose keys with probabilistic intervals, or p-keys for short, which stip-
ulate lower and upper bounds on the marginal probability by which a tradi-
tional key holds on probabilistic data. For example, we may specify the p-keys

166 P. Brown et al.

k{rfid, time} ∈ (0.75, 1) and k{time, zone} ∈ (0.65, 0.75). In particular, the abil-
ity to stipulate lower and upper bounds on the marginal probability of keys is
useful for probabilistic data. The p-key k{time, zone} ∈ (0.65, 0.75) reflects our
observations that different serows may occur at the same time in the same zone
at least with probability 0.25 and at most with probability 0.35. Our main moti-
vation for p-keys is their ability to balance the consistency and completeness
targets for the quality of probabilistic data. Consistency means that for each
key the specified lower (upper) bound on its marginal probability is not too high
(low), and completeness means that for each key the specified lower (upper)
bound is not too low (high). Once the bounds have been consolidated, p-keys
can be utilized to control these data quality dimensions during updates. When
new data arrives, p-keys can help detect anomalous patterns of data in the form
of p-key violations. That is, automated warnings can be issued whenever data
would not meet a desired lower or upper bound of some p-key. In a different
showcase, p-keys can be used to infer probabilities that query answers are (non-
)unique. In our example, we may wonder about the chance that different serows
are in the same zone at the same time, indicating potential mating behavior. We
may ask

SELECT DISTINCT rfid FROM Tracking WHERE zone=‘z2’ AND time=‘2pm’ .

P-keys enable us to derive a minimum (maximum) probability of 0.65 (0.75) that
a unique answer is returned, because different serows are in zone z2 at 2pm at
least with probability 0.25 and at most with probability 0.35. These bounds can
be inferred without accessing any data at all, only requiring that k{time, zone}
has a marginal probability between 0.65 and 0.75 on the given data.

Contributions. Our contributions can be summarized as follows. Modeling:
We propose p-keys kX ∈ (p, q) as a natural class of integrity constraints over
uncertain data. Their main use is to help organizations balance consistency and
completeness targets for the quality of their data, and to quantify bounds on the
probability for (non-)unique query answers. Reasoning: While sets of p-keys
can be unsatisfiable, we establish an efficient algorithm to decide satisfiability.
The implication problem is to decide for a given set Σ ∪ {ϕ} of p-keys, whether

Table 2. Two PC-tables that form an Armstrong PC-base for the p-keys of Fig. 2

CD table

rfid time zone W

j1 2pm z1 1, 2, 3, 4
j1 3pm z2 1
j2 4pm z1 1
j3 2pm z3 1, 2
j1 5pm z1 2, 3, 4
j4 2pm z1 3, 4
j1 2pm z4 4

P table

W P
1 .35
2 .3
3 .1
4 .25

CD table

rfid time zone W

j1 2pm z1 1, 2, 3, 4
j2 3pm z1 1, 2
j1 4pm z2 2
j3 2pm z3 2, 3
j1 5pm z1 3, 4
j1 2pm z4 4
j4 2pm z1 4

P table

W P
1 .2
2 .3
3 .25
4 .25

Keys with Probabilistic Intervals 167

every p-relation that satisfies all elements of Σ also satisfies ϕ. We characterize
the implication problem of satisfiable sets of p-keys by a finite set of Horn rules,
and a linear time decision algorithm. This enables organizations to reduce the
overhead of managing p-keys to a minimal level necessary. Summarization:
For the schema-driven acquisition of the right probabilistic intervals, we show
how to perfectly summarize any given satisfiable set of p-keys as an Armstrong
PC-base. An Armstrong PC-base consists of two PC-tables: One that satisfies
every key with the exact marginal probability that is the perceived best lower
bound for the domain, and one that is the perceived best upper bound. Any
flaws with these perceptions are explicitly pointed out: Either as unreasonably
high lower bounds, or unreasonably low upper bounds. For example, Table 2
shows an Armstrong PC-base for the p-keys shown in Fig. 2. In the CD table,
the W column of a tuple shows the identifiers of possible worlds to which the
tuple belongs. The P -table shows the probability distribution on the possible
worlds. The first PC-table represents the p-relation r1 and the second PC-table
represents the p-relation r2 from Table 1. While all p-keys that are implied by this
p-key set are satisfied by both PC-tables, every non-implied p-key is violated by
at least one PC-table. For example, the implied p-key k{time,zone} ∈ (0.6, 0.8)
is satisfied by the p-relations the tables represent, while the non-implied p-key
k{time,zone} ∈ (0.7, 0.75) is violated by r1.

Fig. 2. P-key profile of Table 2

Discovery: For the data-driven acquisition of p-
keys we compute the probabilistic interval of any
key as the smallest and largest marginal proba-
bilities across all given PC-tables. For example,
given the two PC-tables in Table 2, our algo-
rithm would discover the profile of p-keys in
Fig. 2. Experiments: Experiments show that
our algorithms are efficient and scale linearly in
our acquisition framework.

Organization. We discuss related work in
Sect. 2. P-keys are introduced in Sect. 3. Com-
putational problems are characterized in Sect. 4.
The schema- and data-driven acquisition of p-keys is developed in Sect. 5. Exper-
iment results are presented in Sect. 6. We conclude in Sect. 7.

2 Related Work

Poor data quality inhibits the transformation of data into value [23]. P-keys
provide a well-founded, yet simple approach to balance the consistency and
completeness targets for the quality of data. Keys are fundamental to most
data models [3,6,9,12,15,25,26]. P-keys subsume keys from traditional relations
[1,2], covered by the special case where p-relations consist of one possible world
only. There is substantial work on the discovery of “approximate” constraints,
see [4,16,20] for recent surveys. Approximate means that not all tuples satisfy

168 P. Brown et al.

the given constraint, but exceptions are tolerable. P-keys are not approximate
since they are either satisfied or violated by the given p-relation. Future work will
investigate approximate p-keys. Possibilistic keys [11] are attributed some degree
of certainty saying to which tuples they apply. Possibility theory is a qualitative
approach, while probability theory is a quantitative approach to uncertainty. P-
keys complements the qualitative approach to possibilistic keys from [11]. Keys
with probabilistic intervals extend our own work on keys with lower bounds only
[3]. The extension causes significant differences. Keys with intervals are more
expressive as upper bounds smaller than 1 can be specified, addressing better
any consistency and completeness targets. Sets of keys with intervals may not
be satisfiable by any p-relation, while every set of keys with only lower bounds
is satisfiable. While implication and inference problems become more complex
for intervals, we succeed in establishing linear time algorithms. While keys with
only lower bounds enjoy representations by a single Armstrong PC-table, keys
with intervals require generally two PC-tables. This is an interesting novelty
for Armstrong databases for which more than one database instance have not
been considered in previous research. We also generalize the discovery problem
for keys with intervals to a collection of input instances, while only single input
instances were considered in [3] for keys with lower bounds.

3 Keys with Probabilistic Intervals

We introduce our notion of keys with probabilistic intervals after some prelimi-
naries on probabilistic databases.

A relation schema is a finite set R of attributes A. Each attribute A is
associated with a domain dom(A) of values. A tuple t over R is a function that
assigns to each attribute A of R an element t(A) from the domain dom(A).
A relation over R is a finite set of tuples over R. Relations over R are also
called possible worlds of R here. An expression kX over R with X ⊆ R is
called a key. A key kX is said to hold in a possible world W of R, denoted
by W |= kX, if and only if there no two tuples t1, t2 ∈ W such that t1 �= t2
and t1(X) = t2(X). A probabilistic relation (p-relation) over R is a pair r =
(W, P) of a finite non-empty set W of possible worlds over R and a probability
distribution P : W → (0, 1] such that

∑
W∈W P (W) = 1 holds. Table 1 shows

two p-relations over relation schema Tracking= {rfid,time,zone}. World W2 of
r1, for example, satisfies the keys k{rfid, time} and k{zone, time}, but violates
the key k{rfid, zone}. The marginal probability mX,r of a key kX in the p-relation
r is the sum of the probabilities of those possible worlds in r which satisfy kX.
We will now introduce the central notion of a key with probabilistic intervals.

Definition 1. A key with probabilistic intervals, or p-key for short, over rela-
tion schema R is an expression kX ∈ (l, u) where X ⊆ R, l, u ∈ [0, 1], and l ≤ u.
The p-key kX ∈ (l, u) over R is satisfied by, or said to hold in, the p-relation
r over R if and only if the marginal probability mX,r of kX in r falls into the
interval (l, u), that is, l ≤ mX,r ≤ u.

Keys with Probabilistic Intervals 169

In our running example over relation schema Tracking, the p-relation r2
from Table 1 satisfies the p-keys k{rfid, time} ∈ (0.7, 0.75) and k{time, zone} ∈
(0.3, 0.8), but violates the p-keys k{rfid, time} ∈ (0.7, 0.7) and k{time, zone} ∈
(0.3, 0.65). The reasons are that m{rfid,time},r2 = m{time,zone},r2 = 0.75.

It is useful to separate a p-key into one key that stipulates the lower bound
and one key that stipulates the upper bound. This allows users to focus on one
bound at a time, but also allows us to gain a better understanding of their
interaction. A key with lower bound, or l-key, is of the form kX ∈ (l, 1), and
we write kX≥l. A key with upper bound, or u-key, is of the form kX ∈ (0, u),
and written as kX≤u. For example, the p-key k{time, zone} ∈ (0.65, 0.75) can
be rewritten as the l-key k{time, zone}≥0.65 and the u-key k{time, zone}≤0.75. It
follows directly that a p-relation satisfies a p-key iff it satisfies the corresponding
l-key and u-key. L-keys were studied in [3]. First, we will study u-keys, and then
combine them with l-keys.

4 Reasoning Tools

When using sets of p-keys to enforce the consistency and completeness targets
on the quality of data, their overhead must be reduced to a minimal level nec-
essary. In practice, this requires us to reason about p-keys efficiently. We will
now establish tools to reason about the interaction of p-keys. This will help us
identify efficiently (i) if a given set of p-keys is consistent, and (ii) the most
concise interval by which a given key is implied from a given set of p-keys. This
helps optimize query and update efficiency, but is also essential for developing
our acquisition framework later.

4.1 Computational Problems

Let Σ ∪ {ϕ} denote a set of constraints over relation schema R. We say that
Σ is satisfiable, if there is some p-relation over R that satisfies all elements of
Σ; and say that Σ is unsatisfiable otherwise. We say Σ implies ϕ, denoted by
Σ |= ϕ, if every p-relation r over R that satisfies Σ, also satisfies ϕ. We use
Σ∗ = {ϕ : Σ |= ϕ} to denote the semantic closure of Σ. Let C denote a class of
constraints. The C-satisfiability problem is to decide for a given relation schema
R and a given set Σ of constraints in C over R, whether Σ is satisfiable. The
C-implication problem is to decide for a given relation schema R and a given
satisfiable set Σ ∪ {ϕ} of constraints in C over R, whether Σ implies ϕ. If C
denotes the class of p-keys, then the C-inference problem is to compute for a
given relation schema R, a given satisfiable set Σ of p-keys, and a given key
kX over R the largest probability l and the smallest probability u such that Σ
implies kX ∈ (l, u). We will characterize the computational problems for u-keys
first. Subsequently, we then show how to combine these results with our previous
findings on l-keys to characterize the computational problems for p-keys.

170 P. Brown et al.

Table 3. Axiomatization U = {R, F , W}

kR≤1

kXY≤p

kX≤p

kX≤p

kX≤p+q

(Maximum, M) (Fragment, F) (Relax, R)

4.2 Keys with Upper Bounds

Satisfiability. Unsatisfiability is strong evidence that a set of keys has been
over-specified. While every set of l-keys is satisfiable, this is not the case for
every set of u-keys. However, satisfiable sets are easy to characterize for u-keys:
Unsatisfiability can only originate from stipulating an upper bound smaller than
one for the trivial key kR.

Proposition 1. A set Σ of u-keys over relation schema R is satisfiable if
and only if Σ does not contain a u-key of the form kR≤u where u < 1. The
satisfiability problem for u-keys can thus be decided with one scan over the
input. �	

Axioms. We determine the semantic closure by applying inference rules of

the form
premise

conclusion
. For a set R of inference rules let Σ
R ϕ denote the

inference of ϕ from Σ by R. That is, there is some sequence σ1, . . . , σn such
that σn = ϕ and every σi is an element of Σ or is the conclusion that results
from an application of an inference rule in R to some premises in {σ1, . . . , σi−1}.
Let Σ+

R = {ϕ : Σ
R ϕ} be the syntactic closure of Σ under inferences by R. R
is sound (complete) if for every satisfiable set Σ over every R we have Σ+

R ⊆ Σ∗

(Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if R is both sound and

complete. The set U of inference rules from Table 3 forms a finite axiomatization
for the implication of u-keys. Here, R denotes the underlying relation schema,
X and Y form attribute subsets of R, and p, q as well as p + q are probabilities.

Theorem 1. U forms a finite axiomatization for u-keys. �	
It is worth pointing out the soundness of the rules. The maximum rule M

holds trivially, because every marginal probability can at most be one. For the
fragment rule F assume that the marginal probability of kX exceeds p. Since
every world that satisfies kX must also satisfy kXY , the marginal probability
of kXY exceeds p, too. Finally, for the relax rule R assume that the marginal
probability of kX exceeds p + q. Then the marginal probability of kX exceeds
p, for sure. Some examples illustrate the use of the inference rule for reasoning
about u-keys.

For example, Σ = {k{rfid,time}≤0.75} implies ϕ = k{time}≤0.8, but not ϕ′ =
k{time}≤0.2. Indeed, ϕ can be inferred from Σ by applying F to k{rfid,time}≤0.75

to infer k{time}≤0.75, and applying R to k{time}≥0.75 to infer ϕ.

Keys with Probabilistic Intervals 171

Algorithm 1. Inference
Require: R, Σ, kX with satisfiable set Σ of u-keys
Ensure: min{u : Σ |= kX≤u}
1: p ← 1;
2: for all kZ≤q ∈ Σ do
3: if X ⊆ Z and q < u then
4: u ← q;
5: return u;

If a p-relation satisfies a set Σ of p-keys, then it also satisfies every p-key
ϕ implied by Σ. Consequently, it is redundant to verify that a given p-relation
satisfies an implied p-key. In particular, the larger the given p-relation, the more
time we save by avoiding such redundant validation checks.

Algorithms. In practice, the semantic closure Σ∗ of a finite set Σ is infinite and
even though it can be represented finitely, it is often unnecessary to determine
all implied constraints. In fact, the implication problem has input Σ ∪ {ϕ} and
the question is if Σ implies ϕ. Computing Σ∗ and checking if ϕ ∈ Σ∗ is not
feasible. We will now establish a linear-time algorithm for computing the smallest
probability u, such that kX≤u is implied by Σ. The following theorem allows us
to reduce the implication problem for u-keys to a single scan of the input.

Theorem 2. Let Σ ∪ {kX≤u} denote a satisfiable set of u-keys over relation
schema R. Then Σ implies kX≤u if and only if (i) u = 1 or (ii) there is some
kZ≤q ∈ Σ such that X ⊆ Z and q ≤ u. �	

Based on Theorem 2, Algorithm 1 returns for a given satisfiable set Σ of
u-keys and a given key kX over R, the smallest probability u such that kX≤u

is implied by Σ. Starting with u = 1, the algorithm scans all input keys kZ≤q

and sets u to q whenever q is smaller than the current u and X is contained in
Z. We use |S| to denote the total number of attributes that occur in set S.

Corollary 1. On input (R,Σ, kX), Algorithm 1 returns in O(|Σ| + |R|) time
the minimum probability u with which kX≤u is implied by Σ. �	
Given R,Σ, kX≤p as an input to the implication problem for u-keys, Algorithm 1
computes u := min{q : Σ |= kX≤q} and we return an affirmative answer iff
u ≤ p. Hence, the implication problem is linear time decidable in the input.

Corollary 2. The implication problem of u-keys is decidable in linear time. �	
Given Σ = {k{rfid,time}≤0.75} and k{time}, Algorithm 1 returns u = 0.75.

For ϕ′ = k{time}≤0.2, we conclude that Σ does not imply ϕ′ as u > 0.2.

4.3 Keys with Probabilistic Intervals

We will now study p-keys as the combination of l-keys and u-keys. That is, we
think of every set Σ of p-keys as the union of the set Σl := {kX≤p | kX ∈
(p, q) ∈ Σ} of l-keys and the set Σu := {kX≥q | kX ∈ (p, q) ∈ Σ} of u-keys.

172 P. Brown et al.

Satisfiability. While satisfiability for l-keys can be decided in constant time [3],
and satisfiability for u-keys requires one scan over the input, the satisfiability
problem for p-keys requires two scans over the input.

Proposition 2. A set Σ of p-keys over relation schema R is satisfiable if and
only if Σl ∪ Σu ∪ {kR≥1} does not contain kX≥p, kXY≤q such that p > q. The
satisfiability problem for p-keys is decidable with two scans over the input. �	

The set Σ = {k{rfid} ∈ (0.75, 0.75), k{rfid,time} ∈ (0.6, 0.7)} is unsatisfiable.

No interaction. We reduce the remaining computational problems for p-keys
to those of u-keys and l-keys. This is possible since we can show that every
satisfiable set of p-keys does not exhibit any interaction between its l-keys and
u-keys. Formally, u-keys and l-keys do not interact if and only if for every relation
schema R, every satisfiable set Σ of p-keys, every l-key kX≥p and every u-key
kY≥u over R, the following two conditions hold:

– Σu ∪ Σl |= kX≥p if and only if Σl |= kX≥p,
– Σu ∪ Σl |= kY≤q if and only if Σu |= kY≤q.

In other words, the non-interaction between u-keys and l-keys enables us to
reduce the implication problem for p-keys to the implication problems for u-
keys and l-keys. That is, a p-key kX ∈ (p, q) is implied by a satisfiable set Σ of
p-keys if and only if i) kX≥p is implied by Σl, and ii) kX≤q is implied by Σu.

Theorem 3. U-keys and l-keys do not interact.

Proof (Sketch). The non-trivial direction is to show the following: if Σl � |= kX≥p,
then Σu ∪ Σl � |= kX≥p. If Σl � |= kX≥p, then any Armstrong p-relation for Σl

satisfies Σl and violates kX≥p. Since Σu ∪ Σl is satisfiable, it follows that the
Armstrong p-relation for Σl also satisfies Σu. Consequently, Σu ∪ Σl � |= kX≥p.
The arguments works similarly when we know that Σu � |= kY≤q. We can create
an Armstrong p-relation for Σu, which must also satisfy Σl because Σu ∪ Σl is
satisfiable. �	

Theorem 3 allows us to reduce the implication and inference problems for
p-keys to the implication and inference problems for l-keys and u-keys. As a
first consequence, combining our axiomatizations for u-keys and l-keys yields an
axiomatization for p-keys.

Corollary 3. Axiomatization U for u-keys from Theorem 1 together with axiom-
atization P for l-keys from [3] form a finite axiomatization for p-keys. �	

As a second consequence, we can also combine our inference algorithms for
u-keys and l-keys to obtain an efficient inference algorithm for p-keys.

Corollary 4. Given relation schema R, a satisfiable set Σ of p-keys, and a key
kX over R, we can return in O(|Σ| + |R|) time the maximum probability l and
the minimum probability u such that kX ∈ (l, u) is implied by Σ. �	

Keys with Probabilistic Intervals 173

Thirdly, the implication problem of p-keys can be decided efficiently.

Corollary 5. The implication problem of p-keys is decidable in linear time. �	
To decide if k{time,zone} ∈ (0.6, 0.7) is implied by the set Σ of p-keys from

Fig. 2, we check if k{time,zone}≥0.6 is implied by Σl and if k{time,zone}≤0.7 is
implied by Σu. As the second condition fails, the p-key is not implied by Σ.

Our results show that it takes quadratic time in the input to keep the enforce-
ment of p-key sets to a minimal level necessary: For a given p-key set, we can
remove successively all p-keys from the set that are implied by the remaining
set. More validation time is saved the bigger the underlying p-relations grow.

5 Tools for Acquiring Probabilistic Key Intervals

Fig. 3. Acquisition framework

The main inhibitor to the uptake of p-keys is
the difficulty to determine the right interval
for the marginal probabilities by which keys
hold in the underlying application domain.
For that purpose, analysts should communi-
cate with domain experts. We establish two
major computational tools that help ana-
lysts communicate effectively with domain
experts. We follow the framework in Fig. 3.
Here, analysts use our algorithm to sum-
marize abstract sets Σ of p-keys in the
form of some Armstrong PC-base, which is
then inspected jointly with domain experts.
In particular, the two PC-tables that form
together the PC-base represent simultane-
ously for every key kX their lowest and high-
est marginal probabilities that quality data
sets in the target domain should exhibit.
Domain experts may change the PC-tables or supply new PC-tables to the ana-
lysts. For that case we establish an algorithm that discovers p-keys from sets
of PC-tables. That is, the algorithm computes the lowest and highest marginal
probabilities of each key across all the given PC-tables. Such profiles are also
useful for query optimization, for example.

5.1 Summarizing Abstract Sets of P-Keys as Armstrong PC-bases

Our results will show that every satisfiable set Σ of p-keys can be summarized
in the form of two PC-tables such that all given p-keys are satisfied by the two
p-relations the PC-tables represent, and all those p-keys not implied by Σ are
violated by at least one of the p-relations. This notion generalizes the concept
of an Armstrong database, which is a single database instance that satisfies a
constraint if and only if it is implied by the given constraint set [5]. The reason

174 P. Brown et al.

why p-keys require two database instances is simple: Each instance can only
represent one marginal probability, but p-keys generally require a lower and an
upper bound on the marginal probability. So, unless every given key has the
same lower and upper bounds, we require two database instances. The formal
definition is therefore as follows.

Definition 2. Let Σ be a satisfiable set of p-keys over a given relation schema
R. A pair of p-relation r1, r2 over R is Armstrong for Σ if and only if for all
p-keys ϕ over R it holds that r1 and r2 satisfy ϕ if and only if Σ implies ϕ.

For example, the p-relations r1, r2 from Table 1 are Armstrong for the set
Σ of p-keys in Fig. 2. It is worth emphasizing the effectiveness of the definition:
Knowing that r1, r2 are Armstrong for a given Σ enables us to reduce every
instance Σ ∪ {ϕ} of the implication problem to simply checking if both r1 and
r2 satisfy ϕ. Knowing that u-keys and l-keys do not interact, we can compute
r1, r2 such that every instance Σ ∪ {kX} of the inference problem is reduced to
simply computing the lower (upper) bound l (u) in kX ∈ (l, u) as the marginal
probability mX,r1 (mX,r2) of kX in r1 (r2). For example, the k{time,zone} ∈
(0.6, 0.7) is not implied by Σ from Fig. 2 as the given upper bound 0.7 is smaller
than the marginal probability 0.75 of k{time,zone} in r2.

Instead of computing Armstrong p-relations we compute PC-tables that are
more concise representations. We call these Armstrong PC-bases. Recall the
following standard definition from probabilistic databases [24]. A conditional
table or c-table, is a tuple CD = 〈r,W 〉, where r is a relation, and W assigns to
each tuple t in r a finite set Wt of positive integers. The set of world identifiers
of CD is the union of the sets Wt for all tuples t of r. Given a world identifier
i of CD, the possible world associated with i is Wi = {t|t ∈ r and i ∈ Wt}.
The semantics of a c-table CD = 〈r,W 〉, called representation, is the set W of
possible worlds Wi where i denotes some world identifier of CD. A probabilistic
conditional database or PC-table, is a pair 〈CD,P 〉 where CD is a c-table, and
P is a probability distribution over the set of world identifiers of CD. The set
of possible worlds of a PC-table 〈CD,P 〉 is the representation of CD, and the
probability of each possible world Wi is defined as the probability of its world
identifier. For example, the PC-tables from Table 2 form an Armstrong PC-base
for the set Σ of p-keys from Fig. 2.

Algorithm 2 in [3] computes a single Armstrong PC-table for every given set
Σ of l-keys. In the construction, the number of possible worlds is given by the
number of distinct lower bounds that occur in Σ. Indeed, for every given set Σ of
l-keys over R and every p ∈ (0, 1], Σp = {kX : ∃kX≥q ∈ Σ ∧ q ≥ p} denotes the
p-cut of Σ. If Σ does not contain a p-key kX≥p where p = 1, an Armstrong PC-
table for Σ is computed that contains one more possible world than the number
of distinct lower bounds in Σ. Processing the bounds in Σ from smallest p1 to
largest pn, the algorithm computes as possible world with probability pi−pi−1 a
traditional Armstrong relation for the pi-cut Σpi

. For this purpose, the anti-keys
are computed for each pi-cut, and the set W of those worlds i is recorded for
which X is an anti-key with respect to Σpi

. The CD-table contains one tuple t0

Keys with Probabilistic Intervals 175

which occurs in all worlds, and for each anti-key X another tuple tj that occurs
in all worlds for which X is an anti-key and that has matching values with t0 in
exactly the columns of X.

For example, applying this construction to the lower bounds of p-keys in
Fig. 2 produces the PC-table on the left of Table 2. Indeed, let Σ consist of
k{rfid, time}≥.75, k{rfid, zone}≥.35, and k{time, zone}≥.65. Then Σ.35 consists of
k{rfid, time}, k{rfid, zone}, and k{time, zone}; Σ.65 consists of k{rfid, time}, and
k{time, zone}; Σ.75 consists of k{rfid, time}; and Σ1 is empty. The world W1

has thus probability p1 = 0.35, and is an Armstrong relation for Σ0.35. Here,
we have the three singleton anti-keys {rfid}, {time}, and {zone}. W1 has four
tuples, the first and second tuple have matching values on {rfid}, the first and
third tuple have matching values on {zone}, and the first and fourth tuple have
matching values on {time}. This gives us the Armstrong relation W1 of r1 shown
in Table 1. The world W2 has probability p2 = 0.3, and is an Armstrong relation
for Σ0.65. Here, we have the two anti-keys {time} and {rfid, zone}. The world
W3 has probability p3 = 0.1, and is an Armstrong relation for Σ0.75. Here, we
have the two anti-keys {rfid, zone} and {time, zone}. Finally, W4 has probability
p4 = 0.25, and is an Armstrong relation for Σ1. Here, we have the three anti-
keys {rfid, zone}, {time, zone}, and {rfid, time}. Similar to W1 it is easy to see
how W2, W3, and W4 of r1 in Table 1 constitute the corresponding Armstrong
relations. Finally, we simply record the identifiers of those worlds in which a
tuple appears to obtain the CD-table. This results in the CD-table shown in
Table 2.

The outlined algorithm can also compute an Armstrong PC-table for every
satisfiable set Σ of u-keys. The reason is that the algorithm is independent of
whether we view the given probabilities as lower or upper bounds. The only
necessary change concerns the definition of Σp which becomes Σp = {kX :
∃kX≤q ∈ Σ ∧ q ≥ p} in this case. For example, applying this construction to the
upper bounds of p-keys in Fig. 2 results in the PC-table on the right of Table 2.

The use of this algorithm can be taken further when we consider Theorem 3,
which states that u-keys and l-keys do not interact in satisfiable sets. This means,
given a satisfiable set Σ of p-keys, we can compute an Armstrong PC-base for
Σ by applying Algorithm 2 of [3] to compute an Armstrong PC-table for the set
Σl, and by applying Algorithm 2 of [3] to compute an Armstrong PC-table for
the set Σu. Indeed, we obtain an Armstrong PC-base for Σ by simply pairing
the outputs of both applications together.

Theorem 4. For every satisfiable set Σ of p-keys over relation schema R, appli-
cations of Algorithm 2 in [3] to Σl and Σu, respectively, result in an Armstrong
PC-base for Σ in which the total number of possible worlds coincides with the
sum of the distinct non-zero lower bounds in Σ′

l and the distinct non-zero upper
bounds in Σ′

u. Here, Σ′
l (Σ

′
u) denotes Σl (Σu) if there is some X ⊆ R such that

kX≥1 ∈ Σl (kX≤1 ∈ Σu), and Σl ∪ {kR≥1} (Σu ∪ {kR≤1}) otherwise. �	
The PC-tables of Table 2 form an Armstrong PC-base for the set Σ of p-keys

in Fig. 2. Indeed, the number of possible worlds in both PC-tables is 4, which

176 P. Brown et al.

Size of Armstrong PC-tables Time to compute Armstrong PC-table

Fig. 4. Results of experiments with visualization

is the number of distinct non-zero lower bounds in Σ and also the number of
distinct non-zero upper bounds in Σ. Finally, we derive some bounds on the
time complexity of finding Armstrong PC-tables. Additional insight is given by
our experiments in Sect. 6.

Theorem 5. The time complexity to find an Armstrong PC-base for a given set
Σ of p-keys over relation schema R is precisely exponential in |Σ|.

Here, precisely exponential means that there is an algorithm which requires
exponential time and that there are cases in which the number of tuples in the
output is exponential in the input size. Nevertheless, there are also cases where
the number of tuples in some Armstrong PC-base for Σ over R is logarithmic
in |Σ|. Such a case is given by Rn = {A1, . . . , A2n} and Σn = {k(X1 · · · Xn) ∈
(1, 1) : Xi ∈ {A2i−1, A2i} for i = 1, . . . , n} with |Σn| = n · 2n.

5.2 Discovery of P-Keys from Collections of PC-tables

The discovery problem of p-keys from a collection of PC-tables over a relation
schema R is to determine for all X ⊂ R, the smallest marginal probability
lX,r and the largest marginal probability uX,r of kX across all given p-relations
r = (W, P) represented by some given PC-table. The problem of computing the
marginal probability mX,r can be solved as follows: For each X ⊂ R, initialize
mX,r ← 0 and for all worlds W ∈ W, add the probability pW of W to mX,r, if X
contains some minimal key of W . The set of minimal keys of a world W is given
by the set of minimal transversals over the disagree sets of W (the complements
of agree sets) [21]. For example, applying this algorithm to the PC-tables from
Table 2 returns the p-keys shown in Fig. 2.

6 Experiments

In this section we report on some experiments regarding the computational com-
plexity of our algorithms for the summarization and discovery of p-keys.

Keys with Probabilistic Intervals 177

Fig. 5. GUI for summarization and times for discovering p-keys

Fig. 6. Results on “Car” data set for MapReduce implementation

Summarization. While the worst-case time complexity of generating
Armstrong PC-tables is exponential, these cases occur rarely in practice and
at random. In our experiment we simulated average case behavior by generat-
ing sets of keys with upper/lower bounds. For each key, the set of attributes,
the associated probability, and the type (either upper or lower) were randomly
selected. First, we checked whether the created set of p-keys was satisfiable. If
it was, one Armstrong PC-table was computed for the set of keys with upper
bounds and one for the set of keys with lower bounds. Overall, 24 % of the p-key
sets created were unsatisfiable. The average sizes and times to create the Arm-
strong PC-tables are shown in Fig. 4. The results demonstrate that Armstrong
PC-bases exhibit small sizes on average, which makes them a practical tool to
acquire keys with meaningful probabilistic intervals in a joint effort with domain
experts. A screenshot of our graphical user interface is shown on the left of Fig. 5.

Discovery. The right of Fig. 5 shows the discovery times of p-keys from two
given PC-tables. The input size is the total number of tuples in the input. We
also applied a MapReduce implementation on a single node machine with 40
processors to the “Car” data set1 of the UCI Machine Learning Repository. We

1 http://archive.ics.uci.edu/ml/datasets/Car+Evaluation.

http://archive.ics.uci.edu/ml/datasets/Car+Evaluation

178 P. Brown et al.

converted “Car” into a p-relation with rising numbers of possible worlds and
500 tuples in each world. Figure 6 shows that our algorithm for the discovery of
p-keys scales linearly in the number of possible worlds, considering this number
is relatively low in our acquisition framework.

7 Conclusion and Future Work

We introduced keys with probabilistic intervals, which stipulate lower and upper
bounds on the marginal probability by which keys shall hold on large volumes of
uncertain data. Keys with probabilistic intervals provide a principled, yet simple
enough mechanism to control the consistency and completeness targets for the
quality of an organization’s uncertain data. Similar to how lower bounds say that
a key is satisfied with some minimum probability, upper bounds provide us with
means to say that a key is violated with a minimum probability. Our axiomatic
and algorithmic reasoning tools minimize the overhead in using the keys for data
quality management and query processing. Our findings for the visualization and
discovery of these keys provide effective support for the efficient acquisition of
the right probabilistic intervals that apply in a given application domain.

In future research we will apply our algorithms to investigate empirically the
usefulness of our framework for acquiring the right probabilistic intervals of keys
in a given application domain. This will require us to extend empirical measures
from certain [17] to probabilistic data. Particularly intriguing is the question
whether PC-bases or their p-relations are more useful. It is also interesting to
investigate probabilistic variants of other useful constraint sets, such as func-
tional, multivalued, and inclusion dependencies [7,8,10,13,14,18,19]. However,
we have shown that such variants are not finitely axiomatizable. In this sense,
our results for p-keys are rather special. An extension that seems feasible is to
add lower bounds to the probabilistic cardinality constraints from [22].

References

1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J.
24(4), 557–581 (2015)

2. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong rela-
tions for functional dependencies. J. ACM 31(1), 30–46 (1984)

3. Brown, P., Link, S.: Probabilistic keys for data quality management. In:
Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097,
pp. 118–132. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19069-3 8

4. Caruccio, L., Deufemia, V., Polese, G.: Relaxed functional dependencies - a survey
of approaches. IEEE Trans. Knowl. Data Eng. 28(1), 147–165 (2016)

5. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)
6. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems

of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)
7. Hartmann, S., Link, S.: Multi-valued dependencies in the presence of lists. In: Beeri,

C., Deutsch, A. (eds.) Proceedings of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Paris, France, 14–16 June
2004, pp. 330–341. ACM (2004)

http://dx.doi.org/10.1007/978-3-319-19069-3_8

Keys with Probabilistic Intervals 179

8. Hartmann, S., Link, S.: On a problem of Fagin concerning multivalued dependen-
cies in relational databases. Theor. Comput. Sci. 353(1–3), 53–62 (2006)

9. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009). Article No.10

10. Hartmann, S., Link, S., Schewe, K.: Functional and multivalued dependencies in
nested databases generated by record and list constructor. Ann. Math. Artif. Intell.
46(1–2), 114–164 (2006)

11. Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys.
In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 181–195. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-11558-0 13

12. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB
J. 25(4), 571–596 (2016)

13. Köhler, H., Link, S.: Inclusion dependencies reloaded. In: Bailey, J., Moffat, A.,
Aggarwal, C.C., de Rijke, M., Kumar, R., Murdock, V., Sellis, T.K., Yu, J.X. (eds.)
Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, 19–23 October
2015, pp. 1361–1370. ACM (2015)

14. Köhler, H., Link, S.: SQL schema design: foundations, normal forms, and nor-
malization. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, 26 June–01 July 2016, pp. 267–279. ACM (2016)

15. Köhler, H., Link, S., Zhou, X.: Possible and certain SQL keys. PVLDB 8(11),
1118–1129 (2015)

16. Köhler, H., Link, S., Zhou, X.: Discovering meaningful certain keys from incomplete
and inconsistent relations. IEEE Data Eng. Bull. 39(2), 21–37 (2016)

17. Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong rela-
tions in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

18. Link, S.: Charting the completeness frontier of inference systems for multivalued
dependencies. Acta Inf. 45(7–8), 565–591 (2008)

19. Link, S.: Characterisations of multivalued dependency implication over undeter-
mined universes. J. Comput. Syst. Sci. 78(4), 1026–1044 (2012)

20. Liu, J., Li, J., Liu, C., Chen, Y.: Discover dependencies from data - a review. IEEE
Trans. Knowl. Data Eng. 24(2), 251–264 (2012)

21. Mannila, H., Räihä, K.J.: Algorithms for inferring functional dependencies from
relations. Data Knowl. Eng. 12(1), 83–99 (1994)

22. Roblot, T., Link, S.: Probabilistic cardinality constraints. In: Johannesson, P., Lee,
M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381,
pp. 214–228. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25264-3 16

23. Sadiq, S. (ed.): Handbook of Data Quality. Springer, Heidelberg (2013)
24. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lec-

tures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)
25. Thalheim, B.: On semantic issues connected with keys in relational databases

permitting null values. Elektronische Informationsverarbeitung und Kybernetik
25(1/2), 11–20 (1989)

26. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class cit-
izens in description logics. J. Autom. Reasoning 40(2–3), 117–132 (2008)

http://dx.doi.org/10.1007/978-3-319-11558-0_13
http://dx.doi.org/10.1007/978-3-319-25264-3_16

Advanced Conceptual Modeling

On Referring Expressions in Information
Systems Derived from Conceptual Modelling

Alexander Borgida1, David Toman2(B), and Grant Weddell2

1 Department of Computer Science, Rutgers University, New Brunswick, USA
borgida@cs.rutgers.edu

2 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{david,gweddell}@uwaterloo.ca

Abstract. We apply recent work on referring expression types to the
issue of identification in Conceptual Modelling. In particular, we con-
sider how such types yield a separation of concerns in a setting where
an Information System based on a conceptual schema is to be mapped
to a relational schema plus SQL queries. We start from a simple object-
centered representation (as in semantic data models), where naming is
not an issue because everything is self-identified (possibly using surro-
gates). We then allow the analyst to attach to every class a preferred
“referring expression type”, and to specify uniqueness constraints in the
form of generalized functional dependencies. We show (1) how a num-
ber of well-formedness conditions concerning an assignment of referring
expressions can be efficiently diagnosed, and (2) how the above types
attached to classes allow a concrete relational schema and SQL queries
over it to be derived from a combination of the conceptual schema and
queries over it.

1 Introduction

The Entity Relationship notation, and its many extensions, were designed with
the explicit purpose of helping to derive relational database schemata from the
conceptual model. One feature of the relational model, namely that attribute
fillers are values such as strings and integers, means that relationships between
entities need to be represented as relationships between their “names” (primary
keys), and therefore all entities need to have primary keys. This resulted in (E)ER
modelers having to pay premature attention to naming issues. For example:

(a) One cannot create tables representing relationships before one has decided
on how entities are going to be externally named.

(b) One needs to distinguish right from the beginning “weak entity sets”, like
ROOM, with attributes room-num and capacity, which are insufficient to act as
an external key, from regular entity sets like BUILDING, with attribute address

that can identify it. This is necessary even though no deep ontological factors
distinguish ROOM and BUILDING.

(c) If entity set PERSON is identified by ssn, and it has subclass FAMOUS-PERSON,
then the latter must inherit its identifier from the superclass. This, despite

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 183–197, 2016.
DOI: 10.1007/978-3-319-46397-1 14

184 A. Borgida et al.

the fact that we might prefer as identifier the attribute name for
FAMOUS-PERSON; or maybe even add star-name, which is only applicable to
FAMOUS-PERSON.

(d) Certain entity sets are introduced by generalization as the union of het-
erogeneous sub-classes; for example, LEGAL-ENTITY is the generalization of
PERSON and COMPANY, for the purpose of acting as participant in relationships
such as owns. In such cases, one is forced to create an artificial attribute,
(e.g., legal-entity-number), which replaces the natural keys of PERSON (e.g.,
ssn) and COMPANY (e.g., corp-name and city). Since legal-entity-number is
meaningless to end users, programmers must always remember to perform
joins so as to include the usual keys of the subclasses, depending on the
individuals returned.

We thank a reviewer for pointing out that Halpin [4] has been investigating,
independently, the modeling of reference schemes in languages such as ORM,
UML, Barker ER, and OWL, using a plethora of examples. The problems he
considers, including so-called compound, disjunctive and context-dependent ref-
erence schemes, overlap considerably with the above list. In Sect. 5, we point out
which examples our proposed solutions cannot handle.

Returning to issues (a) and (b), note that they do not arise when using
an object-centered modelling notation supporting object identity, such as most
semantic data models since Taxis [6], because relationships are stated between
objects themselves. Our essential starting point is that one can therefore post-
pone the naming issue to a separate pass. Unfortunately, problems (c) and (d)
persist, and naming of weak entities must eventually be handled. We propose a
multi-part approach to address these. The following outlines the remainder of
the paper and how our results provide a basis for this approach:1

(1) After this enumeration, we introduce by example a simple conceptual model,
C, that has the common features of so-called “attribute-based” semantic
models, such as those surveyed in Table 12 of [5]. The model is based on the
familiar object-centered view of the world consisting of individual objects,
with attributes that can have as values either other objects or atomic values,
such as SQL datatypes. The objects are grouped into classes, satisfying a
variety of constraints, such as subclass hierarchies, disjointness, coverage,
and a general form of functional dependency. As we hope to illustrate below,
C can serve as a lingua franca for standard conceptual models such as EER,
UML class diagrams, DL-Lite ontologies, and so on. The important point is
that C does this without the need to decide external referring expressions for
objects. In Sect. 2, we provide a slight syntactic variant, CAR, of C, which
gives it more of a relational flavor by making internal object identifiers
visible as “abstract” attribute values.

1 The outline is followed by a sequence of examples that illustrate intuitively the entire
process. The remainder of the paper is a somewhat more formal development of the
ideas.

On Referring Expressions in Information Systems Derived 185

(2) As with all object-centered conceptual models, one can describe data access
using arbitrary SQL-like queries over C, and especially CAR schemas, using
variables that range over extents of classes. In Sect. 2, we also introduce
SQLpath, a core of SQL in which it is also possible to employ “dotted path
notation” (e.g., x.manager.salary) to avoid explicit foreign key joins, and
hence make queries shorter2.

(3) In a separate, orthogonal pass, modellers specify (i) functional dependency-
like constraints that include keys, and (ii) a preferred naming scheme for
each class by associating with it a referring expression type specified in a
language introduced in Sect. 3. The notation makes it possible to address
situations like (b), (c) and (d) above.

(4) Given a CAR schema, a referring expresion type assignment, and a set of
SQLpath queries, algorithms can be given to perform several key tasks:
– In Sect. 3, we show how to verify that the referring expression naming

schemes in (3) above do indeed uniquely identify objects in tables and
queries.

– In Sect. 4, we how show how the referring expresion types in (3) guide
the replacement of abstract attributes in a C schema with sequences of
concrete attributes, thus obtaining a concrete relational schema.

– In Sect. 4, we also show how to translate any SQLpath query into a provably
equivalent regular SQL query over the concrete relational schema, thereby
eliminating all path expressions as well as non-printable object ids that
might have been returned by the query.

Let us illustrate the above using a situation where legal entities, which are either
persons or companies, can own vehicles (one owner per vehicle), while persons
can drive vehicles. A conceptual schema expressed in C might be given as follows:3

class PERSON (ssn: INT, name: STRING, isa LEGAL-ENTITY,

disjoint with VEHICLE)

class COMPANY (corp-name: STRING, city: STRING, isa LEGAL-ENTITY)

class LEGAL-ENTITY (covered by PERSON, COMPANY)

class VEHICLE (vin: INT, make: STRING, owned-by: LEGAL-ENTITY)

class CAN-DRIVE (driver: PERSON, driven: VEHICLE)

Given this schema, a modeller will then be able to express the following queries
in SQLpath:

– The name of anyone who can drive a vehicle made by Ford :

select d.driver.name from CAN-DRIVE d

where d.driven.make =’Ford’

– The owners of GM vehicles:

select v.owned-by from VEHICLE where v.make =’GM’

2 This and other features of C were already available in Taxis [6] and GEM [9].
3 We explain the correspondence to a CAR schema in the next section.

186 A. Borgida et al.

Note that as it stands, the second query does not specify how the (hetero-
geneous) owners, which share no common concrete attributes that can identify
them, will be described in the final answer.

Concurrently with writing queries, modellers can address external naming
preferences. Note that this might require adding (or discovering) functional
dependencies from which one can derive key/uniqueness information. The nam-
ing process might start by stating that ssn is a key for PERSON, and that the
combination of attributes (corp-name,city) is a key for COMPANY; and then asso-
ciating referring expresion types “ssn=?” to class PERSON, and “(corp-name=?,
city=?)” to class COMPANY, making these key values the references. (Note that
PERSON might have had other keys.) A referring expresion type for LEGAL-ENTITY

objects might be given as follows:

PERSON → ssn=?; COMPANY → (corp-name=?, city=?)

Were it possible for an object to be both a person and a company, the use of “;”
expresses a preference for using ssn attribute values for identifying the object.

Once it has been verified that this assignment of referring expresion types is
well-formed in the sense that it resolves all identification issues (see Sect. 3), it
then becomes possible to automatically map the schema originally given by mod-
ellers to a concrete relational schema with additional primary key attributes and
with “object pointer” attributes replaced by (sequences of) concrete attributes.
In turn, SQLpath queries are similarly translated to executable SQL queries over
this schema (see Sect. 4). To illustrate, the following are (parts of) the concrete
tables that would be produced for PERSON, LEGAL-ENTITY and VEHICLE:

table PERSON (ssn INT, name STRING, primary key (ssn), . . .)
table LEGAL-ENTITY (disc enum{’PERSON’,’COMPANY’}, ssn INT,

corp-name STRING, city STRING, primary key (disc,ssn,corp-name,city))

table VEHICLE (vin, make, owner-disc,owner-ssn,owner-co-name,owner-city,

foreign key (owner-disc, owner-ssn, owner-corp-name, owner-city)

references LEGAL-ENTITY (disc, ssn, corp-name, city))

Note how identification for LEGAL-ENTITY objects is ultimately resolved: four
attributes are added, with attribute disc acting as a discriminant in variant
records. (We assume inapplicable attributes are always initialized with default
non-null values.) To illustrate how SQLpath queries are mapped, consider the
second example query above; it maps to the following executable query:

select v.disc, v.ssn, v.corp-name, v.city from VEHICLE v

where v.make =’GM’.

2 Abstract Relational Databases

We now introduce CAR, a minor variant of the modeling language used in Sect. 1
examples. Essentially, it makes object identifiers user visible, in order to bring
data declaration and manipulation syntax closer to SQL, which is more familiar
to application programmers.

On Referring Expressions in Information Systems Derived 187

Definition 1 (CAR: A more relational but still abstract view of C).
Let TAB, AT, and CD be sets of table names, attribute names, and concrete
domains (data types), respectively, and let OID be an abstract domain of iden-
tifiers/surrogates, disjoint from all concrete domains. A CAR schema Σ is a set
of abstract table declarations of the form

table T (self OID, A1 D1, . . . , Ak Dk, ϕ1, . . . , ϕ�)

where T ∈ TAB, self ∈ AT is the primary key of T (self is a distinguished
attribute identifying the aggregation (A1, . . . , Ak ∈ AT)); Di ∈ CD ∪ {OID}, and
ϕj are constraints attached to the abstract table T (see below). ��
To illustrate, we begin translating class PERSON into CAR as follows:

table PERSON(self OID, ssn INT, name STRING, . . .

Note the occurrence of attribute self — the user visible object identifier. There
are five kinds of constraints relevant to identification issues, and which we use
in our examples:4

1. (foreign keys) foreign key A references T
2. (specialization) isa T
3. (cover constraints) covered by {T1, . . . , Tm}
4. (disjointness constraints) disjoint with T
5. (path functional dependencies) pathfd Pf1, . . . ,Pfn → Pf

Continuing with the translation of class PERSON to CAR, we add three constraints:

. . . isa LEGAL-ENTITY, disjoint with COMPANY, pathfd ssn → self).

The first two constraints assert that self values of PERSON tuples are a subset of
self values of LEGAL-ENTITY tuples, and are disjoint from self values of COMPANY
tuples; the third asserts that any pair of PERSON tuples agreeing on ssn also agree
on self (i.e., ssn is a key for PERSON). In fact, pathfds are more general and
powerful: one can declare

table OFFICE(self OID, office-num INT,located-in OID,

foreign key (located-in) references BUILDING,

pathfd office-numb, located-in.address → self)

once one specifies that buildings have addresses. This says that (i) each value of
located-in must appear as the self value of a BUILDING tuple, and (ii) the office
number and the address of the office’s building form a key for offices. The latter
addresses the issue (b) of weak entity identification, using the power of attribute
paths, located-in.address in this case. (For a formal definition of paths, please
see [2].)

4 To adhere to SQL’99 syntax, a formulation using a general assertion would be
needed in most cases. For formal definitions of constraints, please see [2].

188 A. Borgida et al.

We call attributes ranging over Di ∈ CD concrete, since their values are
atomic, such as the INTegers, and the remaining attributes abstract. Also, with-
out loss of generality, we assume that every attribute Ai, other than self, is
included in the declaration of at most one abstract table, and write Home(Ai)
to refer to this table. If Ai is abstract, we assume there is a “first” foreign
key constraint for Ai to some abstract table, referred to as Dom(Ai). Thus,
Home(ssn) = PERSON and Dom(located-in) = BUILDING in the above.

For a table T in schema Σ, we write Σ |= (ϕ ∈ T) to denote the fact that
a particular constraint ϕ for T (possibly not explicitly stated) logically follows
from the constraints in schema Σ. For example, the above declaration of PERSON
logically entails that “(pathfd ssn, name → self)” also holds for PERSON. And
if {T1, T2} cover T , then so does {T1, T2, S} for any S.

The problem of deciding when Σ |= (ϕ ∈ T) holds can be reduced to rea-
soning about logical consequence in the description logic DLFD [7], which is
decidable. If no cover constraints occur in Σ, it also becomes possible to reduce
such questions to reasoning about logical consequence in the description logic
CFDI∀−

nc [8], which is decidable in PTIME. (Details are beyond the scope of this
paper.)

We introduce next a core relational algebra fragment of SQL that incorpo-
rates attribute paths:

Definition 2 (SQLpath). The following grammar gives the syntax for (an ide-
alized) SQL-like query language over instances of C schema:

Q : := T x (table reference)
| select x1.Pf1, . . . , xk.Pfk Q (projection)
| from Q,Q (product)
| Q where x.Pf1 = y.Pf2 (selection)
| Q union Q (union)
| Q minus Q (set difference)

As in SQL, we require that all variables are appropriately bound with a “T x”
clause, and denote T by Bound(x); that Pf is well defined for Bound(x) for any
term “x.Pf”; that variables in subqueries of the from clause are disjoint; and
that the subqueries in the union and minus operations are union compatible. We
also assume the standard SQL-like interpretation of the above syntax. ��
In summary, SQLpath deviates from standard SQL in three ways:

1. In addition to standard atomic datatypes, we have introduced an abstract
domain OID (which then allows abstract attributes, and the ability to refer
directly to abstract identifiers with expressions of the form “x.A”).

2. We allow the use of attribute paths in place of single attributes in where

conditions.
3. We allow “T x” as a query (where SQL would require “select ∗ from T x”).

We also allow obvious syntactic sugar to make examples more readable, such as
using conjunction in the where clauses, and multi-arity from clauses instead of
the nested use of from.

On Referring Expressions in Information Systems Derived 189

Less obviously, terms of the form “x1.Pf .A” occurring in select and where

clauses can ultimately be replaced by terms of the form “x2.A” by repeatedly
applying straightforward rewritings. (More details are given in [2].) For example,
applying such rewritings to our introductory query

select d.driver.name from CAN-DRIVE d

where d.driven.make =’Ford’

would ultimately produce the query

select p.name from CAN-DRIVE d, PERSON p, VEHICLE v

where v.make =’Ford’ and d.driven = v.self and d.driver = p.self.
(1)

Note that this requires confirming, among others, that

Σ |= ((foreign key (driven) references VEHICLE) ∈ CAN-DRIVE)

and that make is an attribute of VEHICLE.

3 Managing Identity

By introducing the purely abstract domain OID, CAR frees the user from any
need to address identification issues when formulating queries. This enables our
main contribution: a separation of concerns in which identification issues can be
addressed concurrently with the formulation of data access requirements. But
unlike various object models, the values of attributes over this domain are purely
abstract and are not storable in concrete table instances.

We now show how these issues can be resolved by using the referring expres-
sion type language proposed in [1]. Intuitively, a type in this language defines a
space of first-order formulas free in one variable, x. The objective is for each for-
mula to be true for exactly one object in OID in every abstract schema instance
that satisfies all schema constraints. The language is given in the following:

Definition 3 (Referring Expressions, Types, and Assignments). Let Σ
be a CAR schema. A referring expression type Rt relative to Σ is an instance of
a recursive pattern language given by the grammar:

Rt ::= Pf= ? | Rt ,Rt | G → Rt | Rt ;Rt

where Pf is an attribute path ending in a concrete attribute, and where G =
{T1, . . . , T�} is a set of table names from Tables(Σ), called a guard. We write
Re(Rt) to refer to a set of referring expressions φi induced by a given referring
expression type Rt relative to Σ as follows:

Re(Pf= ?) = {x.Pf = a | a a constant}
Re(Rt1,Rt2) = {φ1 ∧ φ2 | φi ∈ Re(Rt i)}

Re({T1, . . . , Tk} → Rt) = {∧k
i=1(∃y1, . . . , yl.Ti(x, y1, . . . , yl)) ∧ φ | φ ∈ Re(Rt)}

Re(Rt1;Rt2) = Re(Rt1) ∪ {φ ∈ Re(Rt2) | ¬∃ψ ∈ Re(Rt1).(φ ≡ ψ)}

190 A. Borgida et al.

Given T ∈ Tables(Σ), we say that Rt is strongly identifying for T if, for all
instances I of Σ,

I |= ∀x1, x2.(∃y1, . . . , yl.T (x1, y1, . . . , yl) ∧ φ(x/x1)) ∧
(∃y1, . . . , yl.T (x2, y1, . . . , yl) ∧ φ(x/x2)) → x1 = x2,

holds for all φ ∈ Re(Rt), and

I |= ¬∃x.(φ1 ∧ φ2)

holds for all syntactically distinct φ1, φ2 ∈ Re(Rt). A referring type assign-
ment for Σ is a mapping RTA from Tables(Σ) to referring expresion types
relative to Σ. ��
For example, RTA might assign either “ssn=?” or “name=?” as the referring expre-
sion type for PERSON. Intuitively, the former would qualify as strongly identifying,
but the latter would not, since two people can have the same name.

In [1], it is also shown that any Rt can be converted to a normal form with
the following structure:

G1 → (Pf1,1= ?, . . . ,Pf1,k1 = ?); . . . ;Gk → (Pfk,1= ?, . . . ,Pfk,kk
= ?).

We call each subexpression separated by “;” a component of Rt . For the remain-
der of the paper, we assume RTA(T) is already in this form, and, that each guard
Gi contains at most one table name.5 To improve readability, we omit mention
of empty guards, and write T as shorthand for guard {T}. Finally, we write
Fix(Rt , T) to denote a normal form Rt with T added to any empty guard. Thus,
Fix(Rt , T) will have the form

T1 → (Pf1,1= ?, . . . ,Pf1,k1 = ?); . . . ;Tk → (Pfk,1= ?, . . . ,Pfk,kk
= ?). (2)

The next definition deals with situations illustrated by the case when
RTA(PERSON) is “PERSON → ssn=?; name=?”. Here, “name=?” will be ignored since
the guard of the first component has precedence, and will “catch” any PERSON.

Definition 4 (Non-redundant Referring Types). Let Σ be a CAR schema,
RTA a referring type assignment, T ∈ Tables(Σ), and assume Fix(RTA(T), T) has
the form (2). We say that the jth component “Tj → (Pfj,1 = ?, . . . ,Pfj,kj

= ?)”
is redundant with respect to T if it satisfies any of the following conditions:

(a) Σ |= ((covered by {T1, . . . , Tj−1}) ∈ Tj),
(b) Σ |= ((covered by {T1, . . . , Tj−1}) ∈ T), or
(c) Σ |= ((disjoint with Tj) ∈ T).

Given an arbitrary Rt in normal form, we write Prune(Rt , T) to denote the refer-
ring expression Fix(Rt , T) from which all components redundant with respect to
T have been removed. ��
5 Allowing guards to have more than one table name is a straightforward extension.

On Referring Expressions in Information Systems Derived 191

The following example illustrates another potential problem with a given
RTA: that not all possible referring type assignments can support synthesizing
arbitrary concrete SQL queries:

Example 5. Consider the SQLpath query

select x. self from T1 x, T2 y where x. self = y. self (3)

over a CAR schema Σ in which Ti is declared as follows:

create Ti (self OID, Ai STRING, pathfd Ai → self). (4)

When RTA(Ti) is given by “Ai = ?”, the ability to compare the OID values is lost
since the referring expressions associated with T1 and T2 do not provide a way
to determine if the same object belongs to both tables. The problem is solved,
e.g., by instead defining RTA(T2) as “T1 → A1 = ?;A2 = ?” since T2 objects are
then identified by A1 values when also in T1. ��
All such mapping issues are avoided when a referring expression type assignment
is identity resolving, which can be defined as follows:

Definition 6 (Identity Resolving Type Assignments). Let Σ be a CAR

schema and RTA a referring type assignment for Σ. Given a linear order O =
(Ti1 , . . . , Tik) on the set Tables(Σ), define O(RTA) as the following referring
expression type:

Fix(RTA(Ti1), Ti1); . . . ;Fix(RTA(Tik), Tik).

We say that RTA is identity resolving if there is some linear order O such that
the following conditions hold for each T ∈ Tables(Σ):

1. Fix(RTA(T), T) = Prune(O(RTA), T),
2. Σ |= ((covered by {T1, ..., Tn}) ∈ T), where {T1, ..., Tn} are all tables occur-

ring in the guards in Fix(RTA(T), T), and
3. for each component Tj → (Pfj,1= ?, . . . ,Pfj,kj

= ?) of Fix(RTA(T), T), the fol-
lowing also holds: (i) Pfj,i is well defined for Tj , for 1 ≤ i ≤ kj , and (ensuring
strong identification) (ii) Σ |= ((pathfd Pfj,1, . . . ,Pfj,kj

→ self) ∈ Tj).

We write Order(RTA) for a fixed choice for such an order when one exists. ��
Given an RTA, the existence of O can be tested by checking for cycles in a
graph with nodes labeled by table names and directed edges connecting tables
that appear in consecutive guards of a referring type assigned by RTA. The
linear order is then any topological sort of the (acyclic) graph. The remaining
conditions can also be checked by appeal to the description logics DLFD [7],
and CFDI∀−

nc [8] (see previous section).

Example 7. Consider the SQLpath query and CAR schema Σ given by (3) and
(4) in Example 5 above, and also assume RTA(T1) and RTA(T2) are given respec-
tively by “A1 = ?” and “T1 → A1 = ?;A2 = ?”. Then RTA(T2) implies that T1

192 A. Borgida et al.

must precede T2 in Order(RTA). Indeed, the linear order O = (T1, T2) satisfies
all conditions required for RTA to be identity resolving. In contrast, if RTA(T1)
is instead given by “T2 → A2 = ?;A1 = ?”, then no such linear order O exists
and RTA is not identity resolving. This can be blamed on an inherent ambiguity
on how objects belonging to both tables should be referenced.

More generally, entity sets/classes are often assumed to be disjoint, unless
they participate in an isa hierarchy. In such cases, one should be free to chose
the identifying Rt independently. For example, consider where RTA(Ti) is given
by “Ai = ?”, and where the constraint “disjoint with T2” is added to T1. RTA
is now identity resolving in this case since all conditions hold for O = (T1, T2)
(or for O = (T2, T1)). ��

An identity resolving referring type assignment yields a natural way to coerce
referring expression types to more general types. This is based on the observa-
tion that, for a linear order (Ti1 , . . . , Tik), all referring expression types that are
formed as sub-sequences of components of RTA can be simply extended with
additional components as long as the result is still a sub-sequence of Rt .

Definition 8 (Coercion). Let Σ be a CAR schema, RTA an identity resolving
referring type assignment for Σ, and Rt1 and Rt2 two referring expressions with
component orders conforming to Order(RTA). We say that Rt1 is a referring
supertype of Rt2 if all components of Rt2 are also components of Rt1, and write
Rt1 �Rt2 to denote the least common referring supertype of both Rt1 and Rt2,
that is, a referring expression type with components given by the union of the
components of Rt1 and Rt2 and that are ordered by Order(RTA). ��
Example 9. Consider the SQLpath query

(select x. self T1 x) union (select x. self T2 x) (5)

over schema (4) in Example 5 above, and also assume RTA(T1) and RTA(T2)
are given respectively by “A1 = ?” and “T1 → A1 = ?;A2 = ?”. As Example 7
shows, RTA is an identity resolving type assignment. However, the union oper-
ation requires a coercion to a common referring expression type for T1 and T2.
In particular, since Order(RTA) = (T1, T2), RTA(T1)�RTA(T2) defines this as
“T1 → A1 = ?;A2 = ?” (matching RTA(T2)). Thus, an encoding of referring
expressions given by “A1 = ?” in a concrete version of T1 must be extended to
an encoding of “T1 → A1 = ?;A2 = ?” before computing the union operation. In
the next section, we present a simple encoding that enables such coercion. ��

4 Concrete Relational Databases and SQLpath

For a given CAR schema Σ, an identity resolving referring type assignment can
serve as a basis to encoding elements of OID with sequences of values for con-
crete attributes that can serve as surrogate keys for the values. We now present
such an encoding, Rep, and show how it leads, in turn, to a concrete relational
database for Σ, and finally to SQL queries over this schema that implement
SQLpath queries. This “closes the loop” on our overall objective for a separation
of concerns.

On Referring Expressions in Information Systems Derived 193

On the Concrete Representation of Referring Expressions

Definition 10 (Rep). Let T and Rt be an abstract table and referring expres-
sion type, where Fix(Rt , T) is given by

T1 → (Pf1,1= ?, . . . ,Pf1,k1 = ?); . . . ;Tk → (Pfk,1= ?, . . . ,Pfk,kk
= ?),

and let Di,j be the underlying concrete domain for the final attribute in each
Pfi,j . Also let Nm(Pf), where Pf = A1. · · · .A�, denote a new attribute name
“A1-...-A�”. We write Rep(Rt , T) to denote the sequence of concrete attributes

(disc enum{‘T1’, . . . , ‘Tk’},Nm(Pf1,1) D1,1, . . . ,Nm(Pfk,kk
) Dk,kk

).

If Rt consists of a single component, then attribute disc is excluded. ��
Note that Rep uses an auxiliary Nm function to invent new attributes names
simply by replacing “dots” by “dashes”.6 The following example now illustrates
how Rep can be used to encode abstract values occurring in abstract tables:

Example 11. Consider the SQLpath query (5) over schema (4) above (see
Examples 9 and 5), and assume RTA(T1) and RTA(T2) are given respectively by
“A1 =?” and by “T1 → A1 =?;A2 =?”. Then Rep(RTA(T1)) and Rep(RTA(T2))
are given respectively by “(A1 STRING)” and by

"(disc enum{‘T1’, ‘T2’}, A1 STRING, A2 STRING)".

Now consider where: T1 has object e1 with A1 = ‘abc’, T2 has object e2 with
A2 = ‘bcd’, and both T1 and T2 have object e3 with A1 = ‘cde’ and A2 =
‘def’. Referring expressions for each ei would then be encoded as follows:7

e1 : (‘abc’),
e2 : (‘T2’, 〈defaultSTRINGvalue〉, ‘bcd’) and
e3 : (‘T1’, ‘cde’,‘def’).

To compute the union operator, coercion for concrete representations of refer-
ring expressions is necessary. In this case, value sequences encoding refer-
ences to ei will need to be augmented with additional values to conform to
Rep(RTA(T1)�RTA(T2)), which matches Rep(RTA(T2)) (see Example 9). Thus,
the encoding of the referring expression for e1 is extended to

(‘T1’, ‘abc’, 〈defaultSTRINGvalue〉)

prior to evaluating union. ��
As the example illustrates, extending our coercion operator for referring expres-
sion types to their concrete representations is straightforward. In particular, to
6 Other options for both Nm and Rep are clearly possible, e.g., based on introducing
variant record types.

7 We assume a non-null default value exists for each concrete domain.

194 A. Borgida et al.

coerce a Rep(Rt1, T1) tuple to a Rep(Rt2, T2) tuple, where Rt2 is a referring
supertype of Rt1, it suffices to create the Rep(Rt2, T2) tuple by using the values
from the Rep(Rt1, T1) tuple for the concrete attributes corresponding to com-
mon components, and to assign default values to the remaining columns. We
denote this function by Coerce

(Rt2,T2)
(Rt1,T1)

. To convert a Rep(Rt2, T2) tuple back to a
Rep(Rt1, T1) tuple, we first check if the value of the disc attribute corresponds to
a guard for some component of Rt1 and, if so, we project the former to attributes
in Rep(Rt1, T1); the conversion is undefined otherwise. We denote this function
by Restrict

(Rt1,T1)
(Rt2,T2)

. Note that both functions can be expressed using SQL query
constructs, e.g., by using constant expressions in a select clause in the case of
the Coerce function.

To simplify notation, we extend the Coerce and Restrict functions to tuples by
applying the functions component-wise (assuming values of concrete attributes
map to themselves), and omit mention of Ti to improve readability.

The main consequence of a referring expression type assignment RTA that is
identity resolving and of Rep, our suggestion for a concrete encoding of referring
expressions, is that we now have a way to compare possibly different represen-
tations of an OID value:

Lemma 12. Let RTA be an identity resolving type assignment for Σ and R a
set of referring expression types such that {RTA(T) | T ∈ Tables(Σ)} ⊆ R and
such that R is closed under �. Then, for every e1, e2 ∈ OID, if Rep(Rt1, T1) tuple
t1 and Rep(Rt2, T2) tuple t2 are concrete representations of referring expressions
to e1 and e2 induced by types occurring in R, respectively, then e1 = e2 if and
only if

CoerceRt1 �Rt2
Rt1

(t1) = CoerceRt1 �Rt2
Rt2

(t2).

��
The Coerce and Restrict functions are naturally extended to abstract attributes
to produce a list of column names of the representation, to abstract tuples that
may contain several abstract identifiers (we assume that concrete attributes are
represented by themselves), and, in turn, to abstract database instances and
query answers.

On Concrete Relational Schemata. With Rep, it is straightforward to define
a concrete relational schema corresponding to a given CAR schema (such as
“table PERSON (· · ·)” given in our introduction):

Definition 13 (Mapping Abstract CAR Tables to Concrete Relations).
Let T ∈ Σ be an abstract table and RTA an identity resolving referring type
assignment for Σ. The concrete relational table schema Tab(T) for T is obtained
by appending attributes and constraints to an initially empty sequence s, in
“table T (s)”, in the order they occur in T according to the following:

1. For attribute “self OID”, append columns Rep(RTA(T), T) together with a
primary key constraint consisting of these columns.

On Referring Expressions in Information Systems Derived 195

2. For a concrete attribute “A D”, append same if not already included.
3. For an abstract attribute “A OID”, append columns Rep(RTA(Dom(A), T)

after renaming each column by prefixing with “A-”. Also add a foreign key
constraint from these columns to Tab((Dom(A))).

4. For a constraint ϕ, add a general assertion constraint if ϕ is not the first
occurrence of a foreign key constraint defining Dom(A) for some attribute A.

��
Observe that assertion constraints are generated for all but the “first” foreign
key constraints defined on a given abstract attribute. Such are needed to ver-
ify the presence of appropriate values in referenced tables that might differ in
their assigned referring expression types. Alternatively, one may add additional
columns (using Rep repeatedly) and then enforce integrity locally.

Along similar lines, Rep can also be extended, with respect to a referring
type assignment RTA, to instances of abstract tables and to bindings of abstract
values to variables in queries. We write RepRTA to denote this extension.

Query Translation. To summarize, relational operations on the concrete rep-
resentation of referring expressions, in particular equality comparisons, requires
that compatibility issues between referring expression types that can potentially
refer to the same value in OID must be addressed. In our setting, Lemma 12
ensures this for Rep in the case of an identity resolving type assignment. Hence,
to translate a SQLpathQ to concrete SQL, we can apply rewritings to Q to ensure
all terms have the form “x.A”, for some abstract or concrete attribute A (see
Sect. 2 and [2] for more details), and then apply Map, a recursive procedure:

Definition 14 (Query Compilation). Let Q be a SQLpath query over the
abstract schema Σ, and RTA an identity resolving type assignment for Σ. We
define Map, a function that maps Q to concrete SQL by induction on the struc-
ture of Q, as follows:

Map(T x) �→ Tab(T) x
Map(select x1.A1, . . . , xk.Ak Q) �→ select RepRTA(x1.A1), . . . ,RepRTA(xk.Ak) Map(Q)

Map(from Q1, Q2) �→ from Map(Q1),Map(Q2)
Map(Qwhere x1.A1 = x2.A2) �→ Qwhere

Coerce
Rt(x1.A1)� Rt(x2.A2)
Rt(x1.A1)

(RepRTA(x1.A1)) = Coerce
Rt(x1.A1)� Rt(x2.A2)
Rt(x1.A1)

(RepRTA(x2.A2))

Map(Q1 union Q2) �→ Coerce
Rt(Q1�Q2)
Rt(Q1)

(Map(Q1))

union Coerce
Rt(Q1�Q2)
Rt(Q2)

(Map(Q2))

Map(Q1 minus Q2) �→ Restrict
Rt(Q1)
Rt(Q1�Q2)

(Coerce
Rt(Q1�Q2)
Rt(Q1)

(Map(Q1))

minus Coerce
Rt(Q1�Q2)
Rt(Q2)

(Map(Q2)))

Note that Rt(·) denotes the referring types assigned to variables in answer tuples
(or, by mild abuse of notation, to all components of a tuple), and also that
equality comparisons on Rep(·) are performed component-wise when needed.
(The type assignments originate from RTA and “T x” operators, and are pre-
served through the query save for union operators that convert variables to

196 A. Borgida et al.

least common referring supertypes with respect to the corresponding referring
types in Q1 and Q2.) ��

Observe that the definition of Map is purely syntactic and produces a concrete
SQL query for which the following, our main result, applies:

Theorem 15. Let Σ be a CAR schema and let RTA an identity resolving type
assignment for Σ. For any SQLpath query Q over Σ and every database instance
I of Σ we have RepRTA(Q(I)) = (Map(Q))(RepRTA(I)). ��
Example 16. Applying Map to the SQLpath query (1) from Sect. 2 then yields
the following in SQL when RTA(PERSON) and RTA(VEHICLE) are respectively
given by “ssn=?” and “vin=?”:

select p.name from CAN-DRIVE d, PERSON p, VEHICLE v

where v.make = ’Ford’ and d.driven-vin = v.vin and d.driver-ssn = p.ssn.

5 Summary and Future Work

This paper was motivated by two problems that seem to inhere in relational
DBMS: (i) the need to prematurely commit to an “external key” (printable
values) in designing relational schemas; and (ii) the need to choose a single and
simple way to refer to all entities/tuples in a class/table rather than allow for
variations.

To help with this, we started with a simple semantic data model C, where
naming is not an issue because objects have identity, together with a simple
extension of SQL, SQLpath, allowing implicit foreign key joins in the form of
“path expressions”8 In the hope of making SQL programmers more comfortable,
we turned C into CAR, a more relational-like version, where surrogates are visible
as columns in tables.

Orthogonally to schema and query specification, analysts can specify unique-
ness constraints in the form of path functional dependencies, and, most ino-
vatively, assign complex preferred naming schemes for each class/table in the
abstract schema. The language for preferred naming schemes allows us to solve
the problems raised in the beginning, such as having different naming schemes
for subclasses than for superclasses, and not having to invent new names for
generalizations. The examples of Halpin [4] can also be handled, especially if
one creates special subclasses to guard preferences, as in OWL. The one situa-
tion he considers which we cannot accommodate is non-deterministic choice of
references. This would immediately cause problems with equality checking.

We emphasize that we view the separation of concerns between naming and
schema/query body specification to be a central contribution of this work.

To support this, we provided ways to verify that the naming schemes are
indeed unique, based on the dependencies specified, and algorithms for convert-
ing the abstract schema and queries into ordinary SQL table declarations and
queries, where object (identifiers) are no longer visible.
8 We emphasize that such ideas have been present in database semantic models since

Taxis [6] and GEM [9].

On Referring Expressions in Information Systems Derived 197

There are a number of interesting problems that remain to be investigated.
One issue is how to help relieve analysts from the burden of having to write
complex referring expressions for every class in the schema. One could start
with default rules: a single key k for class C results in type expression k=?, which
is inherited to all subclasses of C that do not specify keys. This could then be
augmented with some form of “default inheritance” that allows subclasses to
over-ride superclass reference types. Other directions for work include a richer
language for referring expression types, alternatives to the concrete representa-
tion, (including support for alternative mappings of class hierarchies to relational
tables, which are mentioned in many textbooks).

A different research direction, also suggested by the referee, is to investigate
extensively the connection between the rather pragmatic notion of naming con-
sidered here and the deep ontological analysis of principles of individuation and
identity considered in [3], among others.

References

1. Borgida, A., Toman, D., Weddell, G.: On referring expressions in query answer-
ing over first order knowledge bases. In: International Conference on Principles of
Knowledge Representation and Reasoning, pp. 319–328 (2016)

2. Borgida, A., Toman, D., Weddell, G.: On Referring Expressions in Information
Systems derived from Conceptual Modelling. Technical report CS-2016-03, Cheriton
School of Computer Science, University of Waterloo (2016)

3. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An ontologically well-
founded profile for UML conceptual models. Adv. Inf. Syst. Eng. CAiSE 2004,
112–126 (2004)

4. Halpin, T.A.: Modeling of linguistic reference schemes. Int. J. Inf. Syst. Model.
Design 6(4), 1–23 (2015)

5. Hull, R., King, R.: Semantic database modeling: survey, applications, and research
issues. ACM Comput. Surv. 19(3), 201–260 (1987)

6. Mylopoulos, J., Bernstein, P.A., Wong, H.K.T.: A language facility for designing
database-intensive applications. ACM Trans. Database Syst. 5(2), 185–207 (1980)

7. Toman, D., Weddell, G.: On Attributes, roles, and dependencies in description log-
ics and the Ackermann case of the decision problem. In: Description Logics 2001,
CEUR-WS, vol. 49, pp. 76–85 (2001)

8. Toman, D., Weddell, G.E.: On adding inverse features to the description logic
CFD∀

nc. In: Pacific Rim International Conference on Artificial Intelligence, PRICAI
2014, pp. 587–599 (2014)

9. Zaniolo, C.: The database language GEM. In: ACM SIGMOD International Con-
ference on Management of Data, pp. 207–218 (1983)

DeepTelos: Multi-level Modeling
with Most General Instances

Manfred A. Jeusfeld1(B) and Bernd Neumayr2

1 University of Skövde, Skövde, Sweden
manfred.jeusfeld@his.se

2 Johannes Kepler University Linz, Linz, Austria
bernd.neumayr@jku.at

Abstract. Multi-level modeling aims to reduce redundancy in data
models by defining properties at the right abstraction level and inher-
iting them to more specific levels. We revisit one of the earliest such
approaches, Telos, and investigate what needs to be added to its axioms
to get a true multi-level modeling language. Unlike previous approaches,
we define levels not with numeric potencies but with hierarchies of so-
called most general instances.

Keywords: Multi-level modeling · Telos · Meta modeling

1 Introduction

Multi-level modeling [1,13] (or Deep Modeling) aims at reducing accidental com-
plexity [2] in software, data, and domain models by utilizing abstraction levels to
express model statements only once rather than repeating them multiple times,
e.g., defining a property listPrice for product models or a property owner
for individual products. Early approaches were materialization [19] and power
types [18]. Many current approaches [6,12,16,20] to multi-level modeling assign
potencies to relationships, attributes, and classes. Potencies constrain how many
times the respective concept can be instantiated until it can no further be instan-
tiated.

Telos [14] is a metamodeling language based on the single concept of propo-
sition to represent any model elements, regardless of its abstraction level. Con-
ceptBase [8] is an implementation of the O-Telos [9] variant of Telos that maps
all language axioms to Datalog. It shares the simplicity of Telos by solely using
a single data structure of propositions to represent objects, classes, attributes,
relationships, instantiations, and specializations. The 30+ axioms are forming
the rules for propositions, in particular how instantiation, specialization and
attribution/relationship interplay.

Telos pioneered core ideas of multi-level modeling. First, Telos models come
with an unrestricted number of meta-levels. Second, there is no separation
between classes and objects: a model element (later referred to as clabject) may
act both as object and as class, and possibly also as metaclass, and so forth.
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 198–211, 2016.
DOI: 10.1007/978-3-319-46397-1 15

DeepTelos: Multi-level Modeling with Most General Instances 199

Third, the reliance on a single language construct, proposition, which is instan-
tiated by model elements at all modeling levels, pioneered what was later referred
to as orthogonal classification architecture.

Telos, however, lacks a crucial feature of multi-level modeling, namely full
support for deep characterization. That is, in Telos, there is no easy way to
specify with a metaclass a property that is instantiated by the instances of the
instances of the metaclass. For example, there is no obvious way to specify that
all instances of all instances of ProductCategory have a property listPrice
and their instances in turn have a property owner.

The contribution of this paper is to extend Telos with most general instances
(MGI), a language construct for deep characterization. The result is DeepTelos,
a language and system for Deep Metamodeling (combining metamodeling and
multi-level modeling), akin to MetaDepth [12]. What sets DeepTelos apart are
the strengths inherited from Telos and ConceptBase:

– simplicity and conceptual clarity
– formal semantics expressed and implemented in Datalog
– rich query and query optimization facilities

In the remainder of the paper we introduce, in Sect. 2, the relevant O-Telos
axioms. The analysis of the axioms reveals that O-Telos as such is unable to
support deep characterization by its existing axioms. In Sect. 3 we propose the
simple yet powerful construct of most generic instances (MGI) to support deep
characterization within the axiomatic boundaries of Telos. Telos extended with
MGIs allows to combine “linguistic” metamodeling, e.g. modeling the entity-
relationship model, and “ontological” multi-level modeling, e.g., specifying prod-
uct hierarchies with multiple levels. In Sect. 4 we present details about the imple-
mentation of the approach and the implementation of the running example. In
Sect. 4 we discuss the approach and related work.

1.1 Running Example

The running example is derived from the example discussed in [15]: There are
product categories such as car models and phone models, also called product
models. Product models subsume products, which themselves subsume individ-
ual products. Product categories have persons as category managers. Car mod-
els have attributes like the number of doors. Product models have a list price.
Finally, products have a person as owner.

The example highlights that some concepts have both the nature of a
class (defining attribute and relation types for their instances) and of an
object (instantiating attribute and relation types). Such concepts are commonly
referred to as clabject [1,7]. In classical two-level models, one would have to sep-
arate the class and object flavors into different objects, e.g. using the powertype
pattern [4]. Multi-level modeling aims at avoiding this separation by regarding
each class also as an object that can have its own properties.

200 M.A. Jeusfeld and B. Neumayr

2 Telos

Telos was originally developed for requirements modeling [5] but later mostly
applied for the design of interrelated modeling languages [10,17], i.e. for the lin-
guistic flavor of metamodeling. Its O-Telos axioms [9] are defining the interplay
between instantiation, specialization, and properties (subsuming attributes and
relationships). A proposition in Telos is a quadruple P (o, x, n, y) where o is its
identifier, x its source, n its label, and y its target. The components x and y are
identifiers of either the same proposition (then it has the form P (o, o, n, o) and
is displayed as a node) or of some other propositions (then it is a link between
the other propositions). If the label is ‘in’, then it is an explicit instantiation. If
the label is ‘isa’, then it is an explicit specialization, otherwise it is a relation
between two proposition. Telos does not distinguish objects and values. Hence
attributes are just relations between propositions, the one being interpreted as
an object, the other being interpreted as a value. Propositions are then used to
derive the predicates In and Isa:

∀ o, x, c P (o, x, in, c) ⇒ In(x, c) (1)

∀ o, c, d P (o, c, isa, d) ⇒ Isa(c, d) (2)

Instantiation and specialization interplay via a number of axioms. The first
one is about inheritance of class membership, see also left half of Fig. 1:

∀ x, c, d In(x, c) ∧ Isa(c, d) ⇒ In(x, d) (3)

Instantiations are displayed as broken directed links and specializations as
directed links with white arrows heads. The instantiation of relations such as
the relation labelled m between c and d in the right half of Fig. 1 requires that
both the sources and targets of the instance with label n are synchronously
instantiated:

∀ o, x, n, y, p P (o, x, n, y) ∧ In(o, p) ⇒ ∃ c,m, d P (p, c,m, d) ∧ In(x, c) ∧ In(y, d)
(4)

The upper half of Fig. 1 refers to an analogous constraint on the specializa-
tion of relations. This synchronous semantics of instantiation and specialization
made Telos appear unsuitable for true multi-level modeling, at least on first
sight. To show this consider a Telos metaclass Product that has an attribute

Fig. 1. Instantiation and specialization in Telos

DeepTelos: Multi-level Modeling with Most General Instances 201

serialnumber whose value is an integer number. An instance of the attribute
serialnumber has to instantiate the source of the attribute to an instance of
Product, i.e., a simple class, and the destination to an instance of integer. The
latter one cannot be further instantiated, the former one is a class. Hence, we
cannot define serial numbers of actual products in this manner.

On the other hand, Telos does not distinguish classes from objects. Instead
it links them via the instantiation predicate In(x, c). Telos is also agnostic of
any pre-defined abstraction levels. Abstractions levels rather follow from chains
of instantiation facts such as

. . . , In(x, c), In(c,mc), In(mc,mmc), . . .

Such chains are un-restricted on both sides, i.e. the object x could also have
instances, and the object mmc could have classes.

3 Most General Instances

Our running example mentions the concepts product categories, product models,
and products. Each of them has describing properties such as the ownership of
a product, or the number of doors of a car model. Intuitively, products, product
models, and product categories are at different abstraction levels, but how can
this be expressed in Telos that has no builtin abstraction levels? We propose
the construct of most general instances to formalize the relationship between
the concepts. The most general instance of a class c is a class m that has all
instances of c as subclasses:

∀ x, c,m In(x, c) ∧ IN(m, c) ⇒ Isa(x,m) (5)

Figure 2 visualizes the construct. The class c has the (regular) instance x and
the most general instance m. The axiom (5) then demands that x is a subclass
of m. The axiom is similar to axiom (3). The difference is that it does not derive
instantiations but specializations. The predicate IN(m, c) defines m to be the
most general instance of c. This should not be confused with the instantiation
predicate In(x, c). The most general instance of a class is usually not an instance
of the class itself. It rather is a proxy of the class at the abstraction level below

Fig. 2. Most general instance

202 M.A. Jeusfeld and B. Neumayr

the class. It has all instances of all instances of class c as its instances. This is
defined via the class membership inheritance axiom (3). In Fig. 2 the instantia-
tion In(y,m) is derived via axiom (3).

A most general instance is placed on the top of generalization hierarchies.
One may argue that such a class must be abstract, i.e. that it should not have
any instance that does not occur in one of its proper subclasses. We leave this
open in order to minimize the set of additional axioms. The original axiom set [9]
plus the axiom (5) is referred to as DeepTelos, since it allows to use multi-level
modeling with Telos as discussed subsequently.

3.1 Linguistic Use of Most General Instances

Since Telos was originally developed for linguistic metamodeling, we apply the
new construct first to the entity-relationship diagramming language (ERD). It
features as constructs entity types, relationship types, role links between rela-
tionship types and entity types, domains, and attributes. Further, it defines
multiplicity constraints, specialization between entity types, and key attributes.
There are several approaches to provide meta models for ERD but to our knowl-
edge none defines the meaning of an entity in contrast to an entity type.

Entity in Fig. 3 is defined as most general instance of EntityType. As a
consequence, the two entity types Project and Employee become subclasses of
Entity, hence the instances p346 and mary are both instances of Entity. This
makes Entity a normal class that can be queried. In a symmetric way, Value is
declared as most general instance of Domain. All values of the database can then
be queried via the class Value. Even more, one can include a constraint that
the two classes Entity and Value are disjoint. This is an implicit assumption in
data modeling, which now becomes explicit.

The example can be pushed further in Fig. 4 by applying it to links, such
as the the attribution property of EntityType. Links are first class objects in
Telos and can also be subjected to the new construct for most general instances.

The link value of Entity is the most general instance of the link property of
EntityType. The latter defines that entity types can have describing properties,
such as the budget of projects. The most general instance value subsumes all

Fig. 3. Defining Entity and Value as most general instances

DeepTelos: Multi-level Modeling with Most General Instances 203

data level links such as the pbudget link. We can thus use the value link to
query all entities that have a certain property, regardless of the entity type! This
allows for schema-less querying.

3.2 Ontological Use of Most General Instances

We now turn to the running example to discuss the ontological use of most
general instances for multi-level modeling. The essential idea of multi-level mod-
eling is to define properties of objects and classes (clabjects) at the right level of
abstraction in order to avoid redundancy and accidental complexity [2]. Existing
approaches rely on potencies on links of clabjects, which are natural numbers
specifying how many times the clabject has to be instantiated to reach the most
specific incarnation of the clabject or link. For example, the link property in
Fig. 4 would have the potency 2 since we reach after two instantiations to a
link like pbudget, which me may classify as a fact that can not be instantiated
further.

DeepTelos has no potencies at all and thus we need to show that it can
be used for multi-level modeling. The replacement of potencies are hierarchies
of most general instances. In the running example, the central hierarchy is
formed by ProductCategory, ProductModel, and Product. In OMG terms,
ProductCategory would be a M3-level class (meta-metaclass), ProductModel
would be a M2 class (metaclass), and Product be an M1 class (simple class).

Figure 5 shows the main chain of most general instances in the running exam-
ple. The specializations to the MGI ProductModel are derived by axiom (5) from
the instantiation facts

In(CarModel,ProductCategory)

In(PhoneModel,ProductCategory)

By declaring Porsche911 as instance of CarModel it also becomes an instance
of the MGI ProductModel via axiom (3). This again matches axiom (5) and
makes Porsche911 a specialization of the MGI Product. Finally, maryscar is
an instance of Porsche911 and via axiom (3) an instance of Product. The right-
hand side on phones works analogously. The MGI chain triggers the two axioms

Fig. 4. Entity properties as most general instances

204 M.A. Jeusfeld and B. Neumayr

Fig. 5. The product hierarchy as chain of most general instances

Fig. 6. Multi-level attributes for the product hierarchy

(3) and (5) and results in a set of derived instantiations to the MGI clabjects.
These instantiations now allow to define the clabject properties of the running
example in a way that does not violate the existing axioms of Telos, in par-
ticular the synchronous instantiation of the source and target of a proposition,
axiom (4).

Figure 6 shows the use of the product hierarchy to model the properties of
the running example. Product categories can have category managers. So, here
peter is assigned as category manager of CarModel. Car models have a num-
ber of doors, here Porsche911 has 2 doors. And finally, products have owners,
e.g. mary owns maryscar. The product hierarchy chain of Fig. 5 replaces the
potencies at the expense of having multiple proxies of the ‘product’ concept, i.e.
ProductCategory for potency 3, ProductModel for potency 2, and Product for
potency 1. The benefit of the proxies is that we now have meaningful names

DeepTelos: Multi-level Modeling with Most General Instances 205

Fig. 7. Multiple MGI hierarchies

for the abstraction levels. Like with Telos instantiation, there is no limit on the
number of abstraction levels and they can also be extended at any time.

Several MGI hierarchies can co-exist and interact as shown in Fig. 7. Cars are
defined as most general instances of CarModel. The ‘owner’ relation of Product
is refined by Car, demanding that only adult persons may own a car (compare
right side of Fig. 1). This case requires however that Car is a specialization of
Product. We can ensure this by a second axiom for most general instances:

∀ c, d,m, n IN(m, c) ∧ IN(n, d) ∧ Isa(c, d) ⇒ Isa(m,n) (6)

4 Implementation

The described approach is implemented and tested with several examples by
extending ConceptBase with the required axioms. ConceptBase has Datalog as
underlying computational engine. All user-defined formulas are compiled into an
efficient Datalog program. For technical reasons, the Isa predicate is barred from
occurring as conclusion of deductive rules. For this reason, the implementation
defines a predicate ISA which behaves like the Isa predicate with respect to the
inheritance of class membership, axiom (3). The code for the implementation
uses a textual frame syntax. The new IN and ISA predicates are declared as
attributes of Proposition:

Proposition with

attribute

ISA: Proposition; IN: Proposition

end

Subsequently, the new axioms are declared. Rule mrule2 is equivalent to
axiom (3) but now formulated for the user-defined ISA attribute of Proposition.
Rules mrule1 and mrule3 are equivalent to axioms (5) and (6), respectively.

206 M.A. Jeusfeld and B. Neumayr

DeepTelosRules in Class with

rule

mrule1: $ forall m,x,c/Proposition

(x in c) and (m IN c) ==> (x ISA m) $;

mrule2: $ forall x,c,d/Proposition

(c ISA d) and (x in c) ==> (x in d) $;

mrule3: $ forall c,d,m,n/Proposition

(m IN c) and (n IN d) and (c ISA d) ==> (m ISA n) $

end

The product hierarchy is subsequently defined using the new IN relation.
Note that the Telos In predicate is spelled ‘in’ in the frame syntax. The source
code includes in comments the potencies of clabject, attributes and relations.
These comments serve for comparing DeepTelos with dual deep instantiation
(DDI) [15,16], see discussion in Sect. 5.

ProductCategory with {* 3 *}

attribute

categoryMgr: Person {* 1-1 *}

end

ProductModel with

IN c: ProductCategory

attribute listPrice: Integer {* 2-1 *}

end

Product with

IN c: ProductModel

attribute owner: Person {* 3-1 *}

end

CarModel in ProductCategory with {* 2 *}

categoryMgr c: peter {* 0-0 *}

attribute numberOfDoors: Integer {* 1-1 *}

end

Car with

IN c: CarModel

attribute mileage: Integer {* 2-1 *}

end

Porsche911 in CarModel with {* 1 *}

numberOfDoors d: 2 {* 0-0 *}

listPrice p: 120000 {* 0-0 *}

end

marysCar in Porsche911 with {* 0 *}

mileage m: 27000 {* 0-0 *}

owner o: mary {* 0-0 *}

end

Person end {* 1 *}

peter in Person end {* 0 *}

mary in Person end {* 0 *}

Figure 8 shows a ConceptBase screendump of the running example. Not all
attributes, instantiations, and specializations are shown in the screendump for

DeepTelos: Multi-level Modeling with Most General Instances 207

Fig. 8. ConceptBase screendump of the running example

sake of readability. ConceptBase uses a partial evaluation technique for formulas
that contain predicates matching In(x, c) with a variable c. Since the new axioms
contain such predicates, the formula compiler produces efficient Datalog code
for them. The implementation and examples can be downloaded under an open
license from http://conceptbase.cc/deeptelos.

5 Discussion and Related Work

MGIs can be regarded as the inverse of Odell’s power types [18]. Adding to
a metaclass c an MGI m results in a base class m with a power type c. The
contribution of DeepTelos is to fully integrate this construct in a metamodeling
language and system which already comes with support for unbounded deep
characterization via ‘mediated’ [20] properties and full support for metaclasses.
This also sets DeepTelos apart from work on the powertype pattern [4] where the
powertype role is played by a ‘normal’ class. For an insightful analysis of power
types and their role in multi-level modeling see [3]. We take a perspective that
is inverse to power types, because our starting point are metaclasses in Telos.
With MGIs we add full support for deep characterization to Telos, making it
possible that the metaclass introduces (via its MGI) a property that is directly
instantiated by the individual (its instance-instance, i.e., potency 2) without an
intermediate instantiation step at the class – this is similar to what Rossini [20]
refers to as ‘semantics of single-potency’.

DeepTelos is related to the metamodeling system VODAK [11], where a
metaclass c comes with own-type, instance-type, and instance-instance-type,

http://conceptbase.cc/deeptelos

208 M.A. Jeusfeld and B. Neumayr

which are all specified together with the metaclass. In that way, VODAK
supported deep characterization, but limited to two instantiation levels. The
added value of DeepTelos is to have unbounded meta-levels. For example,
ProductCategory (specifying own-values and instance-type) would typically be
created together with its MGI ProductModel (specifying the instance-instance-
type of ProductCategory) and its MGI’s MGI Product (specifying the instance-
instance-instance-type of ProductCategory). While DeepTelos is not restricted
to a particular modeling methodology, this example gives a hint of how MGIs
are applied by metamodelers.

DeepTelos is also related to our work on Dual Deep Instantiation [15,16].
In DDI, a class together with its MGI chain would be represented by a single
clabject where each property has source and target potency. For example (see
comments in the example in Sect. 4), ProductCategory, ProductModel, and
Product would be represented together by a single clabject with potency 3,
with property listPrice having source potency 2 and target potency 1.

Linguistic vs. Ontological Instantiation: In multi-level modeling one often dis-
tinguishes two types of classification (or instantiation), namely linguistic classi-
fication and ontological classification [6]. It is often argued that these two kinds
of instantiation are orthogonal to each other. In a first approach [15] to use O-
Telos for multi-level modeling, we specified and implemented dual deep instanti-
ation in ConceptBase. We followed the idea of separating linguistic instantiation
(defined by the O-Telos axioms) from DDI’s constructs for ontological instantia-
tion (defined by roughly another 30 new axioms). The result was consistent and
the axioms were free of redundancy, but it showed that this separation hinders
the modeler from making use of Telos’ metamodeling features together with
DDI’s multi-level modeling features, further, the combined set of axioms was
relatively large and their execution in ConceptBase rather slow.

The DeepTelos approach, in contrast, preserves all the strengths of Telos and
ConceptBase by not distinguishing linguistic and ontological instantiation. Inter-
estingly, there seem to be different kinds or levels of linguistic instantiation: first,
all model elements in a DeepTelos model are linguistic instances of Proposition,
second, when modeling a modeling language like ERD (see Sect. 3.1) with linguis-
tic classes Entity and EntityType, then some model elements, like mary, which
is a linguistic instance of Proposition is also a linguistic instance of Entity. It
seems that the former is a linguistic instantiation in DeepTelos and the second
is a linguistic instantiation in ERD, which is in turn modeled in DeepTelos. The
two scenarios about the linguistic use (see Sect. 3.1) and ontological use (see
Sect. 3.2) of MGIs can be combined and create no inconsistency because the two
hierarchies are separate. The combination allows to query for products that are
also entities, or for the identifier (key attribute) of a given product.

One may ask whether MGI hierarchies are model-specific or universal. This
cannot be answered from the axiomatic standpoint used in this paper. The ‘onto-
logical’ MGI hierarchy for products has more of a model-specific flavor, since
there are these 3 levels for product categories, product models, and actual prod-
ucts. This is a deliberate choice of the modeler. The ‘linguistic’ example for entity

DeepTelos: Multi-level Modeling with Most General Instances 209

types and entities has a more universal nature because of the set-theoretic seman-
tics of entity types as defined by the creator of the entity relationship model. A
closer investigation of this question is subject to future research.

Formalization of DeepTelos: The DeepTelos axiomatization requires virtually
only a single additional axiom (5) for Telos to realize an environment for multi-
level modeling. The main axiom (5) is surprisingly simple and similar to the
class membership axiom (3) of Telos. Both axioms closely interact with each
other: the specializations derived by axiom (5) feed into the condition of axiom
(3) to derive new instantiations. These instantiations then feed again into the
condition of axiom (5). A second axiom (6) was added to ensure consistency of
hierarchies where subtypes have MGIs. For example, in Fig. 7, CarModel with
MGI Car is a specialization of ProductModel with MGI Product; axiom (6) then
derives that Car is a specialization of Product.

As an alternative to MGIs, we also investigated extending Telos with single-
ton hierarchies (which we referred to internally as most specific classes). This
construct did work for part of the example but finally clashed with a naming
axiom in Telos that forbids that objects have multiple attributes/relations with
the same label. The singleton approach apparently was also heavier in terms
of required additional axioms, so we abandoned it. Both approaches share the
idea to have proxy objects at the required level to replace the usual potencies of
multi-level modeling approaches.

More Complex MGI Networks: We provided only examples of MGI chains, where
a class has at most one MGI and an object is MGI of at most one class. This is
the typical case, but it is worth discussing how more complicated MGI networks
operate. First, consider the case that a class c has two MGIs m1 and m2. Axiom
(5) will then derive the same subclasses for both m1 and m2. If the two MGIs
are abstract classes, then they shall always have the same set of instances. One
may then argue that they are redundant and multiple MGIs of the same class
should be excluded. Even if the two MGIs had different attributes, then every
instance of the first MGI would also be an instance of the other one. Hence, they
always can use all attributes. As a consequence, we may want to forbid multiple
MGIs of the same class c.

A second case is that an object m is the most general instance of two dif-
ferent classes c1 and c2. In this case, it shall have the instances of c1 and the
instances of c2 as subclasses. This is useful when having different classifica-
tions for the same kind of objects. In our running example instead of a sin-
gle ProductCategory class there may be multiple categorizations of product
models, e.g., SalesProductCategory and LogisticsProductCategory which
have different instances, e.g., LuxuryCar and GoodsForResale, respectively, but
ProductModel as most general instance.

A network of MGI relations could be cyclic, e.g. IN(m1,m2), IN(m2,m1).
The instances of the one would then be subclasses of the other. We see no real-
world application of such a pattern but did not forbid it in the axioms. We rather
followed a minimalistic approach and leave additional constraints open for the
reader.

210 M.A. Jeusfeld and B. Neumayr

6 Conclusions

We presented a specification of multi-level modeling within Telos that exploits
the existence of the Telos axioms to keep it very simple, yet consistent with the
Telos specification of instantiation and specialization. We further presented the
implementation of DeepTelos in ConceptBase. Since ConceptBase is a highly
optimized implementation of Telos, the extended language DeepTelos also has
an efficient implementation. This implementation is available under an open
license and can be downloaded to be applied and extended for own research and
experimentation. Future work includes the following:

– DeepTelos should be tested with more example models from other multi-level
modeling approaches to see its precise limitations.

– The restriction on the Isa predicate implementation in ConceptBase should
be lifted to avoid the detour via the self-defined ISA relation.

– Additional axioms, e.g. forbidding the cyclicity of IN should be investigated.
– The introduction of additional axioms and relations can be guided by Car-

valho’s work [3] on ontological foundations of multi-level modeling.
– The linguistic and ontological use of the new construct of most general

instances deserves more research with respect to utility and consistency.

References

1. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001). doi:10.1007/3-540-45441-1 3

2. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Softw.
Syst. Model. 7(3), 345–359 (2008)

3. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Extending the
foundations of ontology-based conceptual modeling with a multi-level theory. In:
Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER
2015. LNCS, vol. 9381, pp. 119–133. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25264-3 9

4. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling
framework. Softw. Syst. Model. 5(1), 72–90 (2006)

5. Greenspan, S.J., Mylopoulos, J., Borgida, A.: On formal requirements modeling
languages: RML revisited. In: ICSE 1994, pp. 135–147. IEEE Computer Soci-
ety/ACM Press (1994)

6. Gutheil, M., Kennel, B., Atkinson, C.: A systematic approach to connectors in a
multi-level modeling environment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 843–857. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87875-9 58

7. Henderson-Sellers, B., Gonzalez-Perez, C.: The rationale of powertype-based meta-
modelling to underpin software development methodologies. In: APCCM 2005, pp.
7–16. Australian Computer Society (2005)

8. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S.: ConceptBase
- a deductive object base for meta data management. J. Intell. Inf. Syst. 4(2),
167–192 (1995)

http://dx.doi.org/10.1007/3-540-45441-1_3
http://dx.doi.org/10.1007/978-3-319-25264-3_9
http://dx.doi.org/10.1007/978-3-319-25264-3_9
http://dx.doi.org/10.1007/978-3-540-87875-9_58

DeepTelos: Multi-level Modeling with Most General Instances 211

9. Jeusfeld, M.A.: Complete list of O-Telos axioms (2005). http://merkur.informatik.
rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf

10. Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds.): Metamodeling for Method Engi-
neering. Cooperative Information Systems. MIT Press, Cambridge (2009)

11. Klas, W., Schrefl, M.: Metaclasses and Their Application: Data Model Tailoring
and Database Integration. LNCS, vol. 943. Springer, Heidelberg (1995). doi:10.
1007/BFb0027185

12. Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13953-6 1

13. de Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling.
ACM Trans. Softw. Eng. Methodol. 24(2), 12:1–12:46 (2014)

14. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowl-
edge about information systems. ACM Trans. Inf. Syst. 8(4), 325–362 (1990)

15. Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schütz, C.: Dual deep instantiation and
its ConceptBase implementation. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 503–517. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07881-6 34

16. Neumayr, B., Schuetz, C.G., Jeusfeld, M.A., Schrefl, M.: Dual deep modeling:
multi-level modeling with dual potencies and its formalization in F-Logic. Softw.
Syst. Model. 1–36 (2016). doi:10.1007/s10270-016-0519-z

17. Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G.V., Huber, H.: Managing
multiple requirements perspectives with metamodels. IEEE Softw. 13(2), 37–48
(1996). http://dx.doi.org/10.1109/52.506461

18. Odell, J.J.: Power types. In: Odell, J.J. (ed.) Advanced Object-Oriented Analysis
and Design Using UML, pp. 23–32. Cambridge University Press, Cambridge (1998)

19. Pirotte, A., Zimányi, E., Massart, D., Yakusheva, T.: Materialization: a powerful
and ubiquitous abstraction pattern. In: VLDB, pp. 630–641 (1994)

20. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Wolter, U.: A formalisation of deep
metamodelling. Formal Aspects Comput. 26(6), 1115–1152 (2014)

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d1228997/O-Telos-Axioms.pdf
http://dx.doi.org/10.1007/BFb0027185
http://dx.doi.org/10.1007/BFb0027185
http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-319-07881-6_34
http://dx.doi.org/10.1007/s10270-016-0519-z
http://dx.doi.org/10.1109/52.506461

Pragmatic Quality Assessment for Automatically
Extracted Data

Scott N. Woodfield1, Deryle W. Lonsdale1, Stephen W. Liddle1,
Tae Woo Kim1, David W. Embley1,2(B), and Christopher Almquist1

1 Brigham Young University, Provo, UT 84602, USA
embley@cs.byu.edu

2 FamilySearch International, Orem, UT 84097, USA

Abstract. Automatically extracted data is rarely “clean” with respect
to pragmatic (real-world) constraints—which thus hinders applications
that depend on quality data. We proffer a solution to detecting prag-
matic constraint violations that works via a declarative and semantically
enabled constraint-violation checker. In conjunction with an ensemble of
automated information extractors, the implemented prototype checks
both hard and soft constraints—respectively those that are satisfied or
not and those that are satisfied probabilistically with respect to a thresh-
old. An experimental evaluation shows that the constraint checker iden-
tifies semantic errors with high precision and recall and that pragmatic
error identification can improve results.

Keywords: Quality data · Data cleaning · Automated information
extraction · Declarative constraint specification · Automated integrity
checking · Conceptual-model-based extraction ensemble.

1 Introduction

Automated information-extraction systems (and sometimes even humans) can
extract erroneous (even ridiculous) information. Unless extracted information
about entities, values, and relationship assertions among entities and values
is correct, applications that depend on the information being correct—such as
search, marketing, advertising, and hinting applications—quickly degrade.

Perhaps the most important aspect of data quality is whether the data
satisfies real-world constraints—formally, pragmatic constraints. In our pro-
posed solution to assessing the quality of automatically extracted data, we
begin by aligning internal conceptual-model constraints—formally, semantic
constraints—with pragmatic constraints. Realizing that pragmatic constraints
may be probabilistic and both hard and soft and that verification of accuracy
may require supporting documentation, we semantically enrich conceptual mod-
els with constraint specification based on probability distributions, and we add
the possibility of attaching supporting documentation to every object and rela-
tionship assertion [1]. Then, contrary to standard practice in business database
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 212–220, 2016.
DOI: 10.1007/978-3-319-46397-1 16

Pragmatic Quality Assessment of Data 213

systems, we allow an ensemble of automated extractors to populate the concep-
tual schema with data that may violate declared integrity constraints. Checking
incoming data against declared constraints is straightforward—indeed, is fully
automatic based on the declarations alone. Deciding how to handle constraint
violations, however, is application-dependent.

Although these augmented conceptual models are generally applicable for
use with machine-learned or rule-encoded expert information-extraction systems,
our implemented prototype, Fe6,1 focuses on family-history applications. In Fe6
we handle constraint violations by flagging them red, yellow, or green depending
on the severity of the violation and allow adjudication users to correct errors.
Interestingly, because constraint specification is declarative in Fe6 conceptual
models, handlers that send warning messages to adjudication users for constraint
violations can all be generated automatically.

Figures 1 and 2 show an example. In the text snippet in Fig. 1, observe that
Reverend Ely’s children belong to two different mothers: Elizabeth who died
in 1871 and Abbie, whom Reverend Ely married subsequently. The automated
extraction in Fig. 2 has the children all belonging to Elizabeth, but Francis, the
last child in the list, was born after Elizabeth died. The automatic extraction
engines, which are blind to pragmatics, regularly make these kinds of mistakes.
Semantic constraint checkers, however, can assess the extracted information and
catch constraint violations. Handlers generate messages and flag potentially erro-
neous filled-in form-fields with a “circle-?” warning icon. When an adjudication
user clicks on the icon, a message like the one in Fig. 2 pops up to warn the
user of potential constraint violation(s). (Note that the message refers to birth
dates, which are not present in the family-composition form in Fig. 2. They are,
however, extracted onto another form.)

The Fe6 constraint checker primarily contributes to increasing data qual-
ity, a major concern in information systems and conceptual modeling. Concep-
tual modeling researchers have proposed various frameworks for assessing model
quality (e.g. [2]) from which some level of data quality will presumably follow.
Fe6 constraint checkers directly address data quality in ontological conceptual-
izations by aligning conceptually declared semantic constraints with pragmatic
real-world constraints and then checking asserted fact-instances proposed for
inclusion in a populated model instance. Moreover, the Fe6 approach to con-
straint checking harmonizes well with work on information-extraction systems in
which inconsistencies and errors are detected and repaired (e.g. [3]). It also har-
monizes well with work on data cleaning for database systems [4], but extends
this work by allowing contradictory facts to be captured and then reasoning
probabilistically over facts to increase data quality.

1 Fe6: Form-based ensemble with 6 pipeline phases that accepts an OCRed document
as input and generates a conceptualization of document-asserted facts as output.

214 S.N. Woodfield et al.

Fig. 1. Text snippet from The Ely Ancestry [5], p. 421.

Fig. 2. Screenshot of constraint violation: child born after mother’s death.

2 Application System

To serve their customers, family-history web sites such as FamilySearch.org and
Ancestry.com provide search and hinting facilities over a large collection of data
about individuals and families. They populate their searchable data stores mostly
by crowd-sourcing. Hundreds of thousands of volunteers painstakingly fill in
forms with data copied from images displayed on a computer screen. Most of the
images are of handwritten data, often in pre-created forms (e.g. census records,
birth certificates, death certificates, and military records). Some of the images,
however, are typeset or typewritten such as are newspaper obituaries and family-
history books. To extract genealogical data from these printed sources, providers
are turning to OCR and automated information-extraction techniques to make
this data available for search and hinting.

Fe6 consists of an ensemble of extractors designed to span the space from
fully unstructured text to highly semi-structured text. Extracted data from a
page of a document (e.g. Page 421 of The Ely Ancestry in Fig. 2) is distributed
to a form (e.g. the “Family” form in Fig. 2). An adjudicator checks the filled-in
form for correctness and makes corrections as necessary. As an aid to checking,

Pragmatic Quality Assessment of Data 215

hovering over a record in the form highlights fields as Fig. 2 shows and also
displays warning icons on fields for which the system has detected a semantic
constraint violation. Clicking on an icon pops open a display window explaining
the violation.

2.1 Conceptualization

An evidence-based conceptual model [1] serves as the formal foundation for Fe6
applications. Figure 3 shows an example—a conceptualization with its predi-
cates, constraints, and documenting evidence.

The diagram in Fig. 3 graphically represents a logic database schema. Object
sets, depicted as named rectangular boxes, are one-place predicates (e.g. Per-
son(x)). Relationship sets, depicted by lines connecting object sets, are n-place
predicates (e.g. Person(x) has BirthDate(y)). Observe that predicates are in
infix form and that predicate names come directly from the text and reading
direction arrows in the diagram.

Constraints can be hard (returning only either satisfied or not satisfied when
checked) or soft (returning a probability of being satisfied when checked). The
conceptual-model diagram in Fig. 3 has 28 hard participation constraints speci-
fying a minimum and maximum number of times an object may participate in
a relationship set. Each object-set/relationship-set connection has one partici-
pation constraint as denoted by the decorations on the ends of the connecting
lines. The 2’s in Fig. 3 explicitly specify participation constraints that override
decoration-specified participation constraints—each specifies that children have
two parents. The diagram also shows 4 hard subset constraints (denoted by tri-
angles on connecting lines) specifying that the objects in an object set must
be a subset of the objects in another object set—children and spouses are also
persons. In addition, Fig. 3 shows one of many possible soft constraints as a prob-
ability distribution (Child being born Years after marriage date of parent Person
has Probability). Figure 3 indicates, as well, that evidence can be associated with

Fig. 3. Depiction of conceptual model features.

216 S.N. Woodfield et al.

(and in Fe6 is associated with) every predicate assertion instance (e.g. Child is
child of Person statements found in a document).

2.2 Hard Constraints

The conceptual-model diagram itself declaratively specifies hard cardinality con-
straints [6]. For example, it specifies that a person has at most one death date.
The Person side of the Person has DeathDate relationship set has an “o” (“o”
for “optional”) on its connection and thus allows for no death date. The Death-
Date side of the relationship set has an arrowhead, which specifies that the
relationship from Person to DeathDate is functional (at most one death date).

The declaration of a participation constraint is sufficient to generate code
that both checks for participation constraint violations and handles them. In a
populated model instance, counting the number of times an object participates in
a relationship set is straightforward, as is checking whether the count is within
a min–max range. Similarly, generating a handler that names the object sets
involved and lists the violating objects in a statement template is also straight-
forward.

2.3 Soft Constraints

Soft constraints are based on probability distributions. Since the conceptual
model is foundationally predicate calculus, constraint rules can all be Datalog-
like implications. The antecedents of an implication are predicates in the model
or derived from these predicates or from given probability distributions, and
the single consequent gives the probability of a condition being satisfied. For
example, we can write a rule about the length of time after a parent’s marriage
date a child is born:

Child(x1) is child of Person(x2),
Person(x1) has BirthDate(x3),
Person(x2) and Spouse(x4) married on MarriageDate(x5) in Marriage-
Place(x6),
Years(x7) = Years(YearOf (x3) − YearOf (x5)),
child being born Years(x7) after marriage date of parent has Probability(x8)
⇒
Child(x1) being born Years(x7) after marriage date of parent Person(x2) has
Probability(x8).

Any probability that fails to meet a user-specified threshold is a constraint
violation. Violations tell us that one or more of the antecedents must be incorrect.

Each possible constraint violation has an application-dependent handler.
Interestingly, given only the Datalog rule, both the code to check for a vio-
lation and the code to handle a violation can be generated automatically. The
checker code need only run its usual interpreter on the given Datalog statement,
which in essence creates a relational table in which each tuple is the join of all

Pragmatic Quality Assessment of Data 217

predicate instances that satisfy the Datalog statement. These tuples are then
fed one at a time to the handler. Given a user-chosen threshold for constraint
violation, the handler fills in a message template with extracted instance data
found to be in violation. The handler generator substitutes textual instance val-
ues for variables in unary predicate-statement phrases (such as BirthDate(x))
and formats them for ease of reading. Since non-textual objects (such as Person
instances and Child instances) come into existence by the principle of ontological
commitment, the handler generator replaces unary person predicates with the
person’s name—the trigger for committing the extraction ontology to recognize
the existence of a person.

3 Experimental Evaluation

We designed an experiment to test the constraint checker: (1) How well does
it identify errors with semantic inconsistencies? (2) Can extraction accuracy be
improved by intelligently removing assertions flagged by the constraint checker
as possible extraction errors?

For the experiment we selected three books: The Ely Ancestry [5] (sample
page snippet in Fig. 2), The Register of Marriages and Baptisms in the Parish
of Kilbarchan [7], and A Genealogical History of the Harwood Families [8]. As
a development test set, we chose three pages from each book. On these nine
pages, we identified extraction errors with semantic inconsistencies made by the
ensemble of extractors. For soft errors, we wrote Datalog rules over probability
distributions, that would find each of these errors. These soft constraints plus
the hard max-participation constraints in the conceptual model in Fig. 3 became
the fixed set of constraints for the blind test set. The blind test set consisted of
the four pages in each book located 1/5, 2/5, 3/5, and 4/5 of the way through
the book (although we took a subsequent page if the page turned out to be a
picture page as happened in three cases and also if the page contained essentially
no genealogical information as happened in one case).

To determine how well the constraint checker identifies errors, we ran the
extraction ensemble on the development test pages, identified the semantic errors
encountered, and wrote rules to catch these errors—14 rules in addition to the
model-specified participation-constraint rules in Fig. 3. Table 1 shows the results
of applying the constraint checker to the twelve blind test pages. Overall, the
ensemble extracted 479 records consisting of 1201 filled-in fields. The constraint
checker marked 239 of these fields as possibly being in error as a result of
finding violations of the 14 probabilistic semantic inference rules and the max-
participation-constraint rules in the conceptual model. Looking for additional
rules that would have caught errors in the blind test set that did not occur in
the development test set, we found three—person names consisting of all digits
and two kinds of improbable in-law relationships.

After ground-truthing the extraction for the blind test pages, we again
applied the constraint checker to determine whether it would incorrectly iden-
tify and erroneously mark fields as possible semantic errors. Table 1 shows the
precision, recall, and F-score. True positives are fields marked as possible errors

218 S.N. Woodfield et al.

Table 1. Fields marked as potential errors by the constraint checker.

Erroneously

Filled Marked Marked unMarked %

Book Records Fields Fields Fields Fields Prec. Rec. F-score

Ely 159 410 127 3 25 97.7 83.6 90.1

Kilbarchan 276 694 108 12 0 90.0 100 94.7

Harwood 44 97 4 0 0 100 100 100

Overall 479 1201 239 12 25 94.1 90.5 92.3

Total number of development test-set rules: 14
Total number of new rules needed for blind test set: 3

Table 2. Accuracy (%): Precision, Recall, and F-score.

Ensemble All Suspect Identifiable Erroneous

Extraction Results Assertions Retracted Assertions Retracted

Book Prec. Rec. F-s. Prec. Rec. F-s. Prec. Rec. F-s.

Ely 81.2 65.1 72.2 83.6 44.0 57.6 77.0 59.1 66.8

Person 83.8 93.3 88.3 82.7 75.3 78.8 83.8 93.3 88.3

Couple 78.6 35.5 48.9 84.6 35.5 50.0 84.0 33.9 48.3

Family 78.0 56.8 65.7 86.7 16.0 27.1 61.1 40.7 48.9

Kilbarchan 91.9 90.5 91.2 97.3 85.2 90.8 95.3 91.1 93.2

Person 100 96.4 98.2 100 89.2 94.3 100 94.2 97.0

Couple 87.7 87.7 87.7 94.4 93.2 93.8 88.7 86.3 87.5

Family 85.6 85.6 85.6 96.0 76.0 84.8 94.2 90.4 92.2

Harwood 79.1 79.1 79.1 80.5 76.7 78.6 81.0 79.1 80.0

Person 96.3 86.7 91.2 96.2 83.3 89.3 96.3 86.7 91.2

Couple 75.0 60.0 66.7 85.7 60.0 70.6 85.7 60.0 70.6

Family 25.0 66.7 36.4 25.0 66.7 36.4 25.0 66.7 36.4

Overall 87.3 80.1 83.5 92.1 69.0 78.9 88.2 78.1 82.8

in pre-ground-truthing forms that were not marked in the post-ground-truthing
forms. False positives are those marked fields that appeared in both pre- and
post-ground-truthing forms. The total number of positives is the number of true-
positive marked fields plus the number of unmarked fields that would have been
marked had the constraint checker encoded the additional three rules for seman-
tic errors in the blind test set that did not apply to the development test set.
In our experiment the constraint checker was 100 % accurate except in a few
instances in the Kilbarchan and Ely books where it encountered parents of the
same child supposedly having the same gender. Gender is inferred from gender
designators such as “son of”, “Mrs.”, etc. or in the absence of a gender designator
by a large list of name/gender-frequency pairs.

Pragmatic Quality Assessment of Data 219

Table 2 shows the results of our efforts to determine how well the constraint
checker could repair erroneously extracted data. Overall, the ensemble extracted
information with an F-score of 83.5 %. Retracting all suspect assertions improved
precision by 4.8 % points at the expense of a large drop in recall (11.1 % points)
and a drop in F-score of 4.6 % points. Intelligently retracting just those asser-
tions that are certainly or heuristically identifiable as being erroneous, improved
precision slightly to 88.2 % without dropping recall by much, but enough to cause
a slight drop in the F-score of 0.7 % points.

Assertions identifiable as certainly erroneous are those from rules with exactly
one antecedent assertion such as “parent of self” and “spouse of self”. Based on
text layout, we heuristically chose to reject assertions violating participation con-
straints in which the lexical reading distance between the objects being related
is more distant than the closest. Thus, for example, when the extractors declared
two death dates for an individual, we kept only the date closest to the person’s
name.

4 Concluding Remarks

Being based on a formal conceptual model whose underlying semantics is pred-
icate calculus makes the specification of constraints and constraint process-
ing declarative. To the extent user-specified inference rules reflect real-world
pragmatics, constraint checkers can identify semantically inconsistent extraction
errors. Except in a few cases, however, the checker does not know which of the
extracted assertions in antecedent predicates is in error. In general, determining
which one(s) of several possible antecedent assertions is in error is non-trivial.

References

1. Embley, D.W., Liddle, S.W., Woodfield, S.N.: A superstructure for models of qual-
ity. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 147–156.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-12256-4 16

2. Akoka, J., Berti-Equille, L., Boucelma, O., Bouzeghoub, M., Comyn-Wattiau, I.,
Cosquer, M., Goasdoué-Thion, V., Kedad, Z., Nugier, S., Peralta, V., Cherfi, S.S.:
A framework for quality evaluation in data integration systems. In: ICEIS 2007
- Proceedings of the Ninth International Conference on Enterprise Information
Systems, pp. 170–175, Funchal, Madeira, Portugal, June 2007

3. Gutierrez, F., Dou, D., Fickas, S., Wimalasuriya, D., Zong, H.: A hybrid ontology-
based information extraction system. J. Inf. Sci. (2015). On-line publication num-
ber 0165551515610989

4. Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Data
Eng. Bull. 23(4), 3–13 (2000)

5. Vanderpoel, G.B. (ed.): The Ely Ancestry: Lineage of RICHARD ELY of
Plymouth, England, Who Came to Boston, Mass., about 1655 & settled at Lyme,
Conn., in 1660. The Calumet Press, New York (1902)

6. Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality constraints in semantic
data models. Data & Knowl. Eng. 11(3), 235–270 (1993)

http://dx.doi.org/10.1007/978-3-319-12256-4_16

220 S.N. Woodfield et al.

7. Grant, F.J. (ed.): Index to The Register of Marriages and Baptisms in the PARISH
OF KILBARCHAN, pp. 1649–1772. J. Skinner & Company, LTD, Edinburgh,
Scotland (1912)

8. Harwood, W.H.: A Genealogical History of the Harwood Families, Descended from
Andrew Harwood, Whose English Home Was in Dartmouth, Devonshire, England,
and Who Emigrated to America, and Was Living in Boston, Mass., in 1643. Watson
H. Harwood, M.D., Chasm Falls, New York, 3rd edn. (1911)

UnifiedOCL: Achieving System-Wide
Constraint Representations

David Weber(B), Jakub Szymanek, and Moira C. Norrie

Department of Computer Science, ETH Zurich, Zürich, Switzerland
{weber,norrie}@inf.ethz.ch, jakub.szymanek@alumni.ethz.ch

http://www.globis.ethz.ch

Abstract. Constraint definitions tend to be distributed across the com-
ponents of an information system using a variety of technology-specific
representations. We propose an approach where constraints are man-
aged in a single place using OCL with extensions for technology-specific
concepts. These constraints are then mapped to technology-specific rep-
resentations which are validated at runtime. Bi-directional translations
of constraint definitions allows existing components to be easily inte-
grated into the system. We present an implementation of the approach
and report on a user study with developers from industry and research.

Keywords: Constraints · OCL · Transformations

1 Introduction

Constraints for basic data validation typically are defined in different compo-
nents of an information system, including client-side form validation, business
logic and databases. Further, the set of applicable constraints may depend on
a particular configuration or context. For example, different constraints might
apply in the mobile and desktop versions of an application due to differences
in the functionality offered. Since constraints are derived from software require-
ments which may evolve over time, especially with agile methods, it can be
challenging for developers to keep track of all constraints and maintain con-
sistency throughout an entire system. It would therefore be highly beneficial
if constraint definitions could be managed in a single place and automatically
mapped to component-specific implementations for runtime validation.

To achieve this, we propose an approach in line with Model-Driven Archi-
tecture (MDA) [7,9] where a technology-independent model serves as a base for
technology-specific code generation. In our model, constraints are expressed in
UnifiedOCL, a domain specific language which extends OCL with capabilities to
represent technology-specific constraints. To cater for the integration of differ-
ent technologies, the grammar of UnifiedOCL is extensible by means of so-called
labels which are grouped into dictionaries.

Furthermore, we studied various approaches and technologies of bi-directional
translations between various models and representations. This resulted in an
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 221–229, 2016.
DOI: 10.1007/978-3-319-46397-1 17

222 D. Weber et al.

extensible toolkit capable of efficiently translating constraints to and from Uni-
fiedOCL. As a consequence, the system allows for translation from any source
representation to any target representation, which we call multi-translations. Our
proof-of-concept implementation supports three technology-specific representa-
tions: object-oriented language (Java), relational database (SQL) and business
rules (Drools), which let us explore and cover a broad range of constraints.

After discussing the background and related work in Sect. 2, we introduce
our approach in Sect. 3. The details of the unified constraint representation are
presented along with our DSL UnifiedOCL and pluggable label dictionaries in
Sect. 4. In Sect. 5, we describe our multi-translations and we report on the user
study that we carried out in Sect. 6. Concluding remarks are given in Sect. 7.

2 Background

The OCL [16] plays an important role alongside UML in model-centric method-
ologies and enables concepts such as design by contract to be supported. How-
ever, the fact that it is platform independent results in the limitation that not
all types of constraints that can be defined in technology-specific representations
can be expressed directly. For example, the primary key constraint in relational
databases has to be represented by a combination of not null and unique con-
straints. Further, it cannot express common restrictions on values such as email
addresses or number precision which can be handled in Java using @Email and
@Digits annotations, respectively. Additionally, OCL is not powerful enough to
allow for the validation of numbers that require complex algorithms computing
checksums such as the Luhn algorithm for a credit card number.

Several approaches have been proposed for translating OCL constraints to
technology-specific languages. Many of these provide translations to SQL, e.g.
[11,12]. Others have proposed translations to Java, e.g. [17] and specifically also
to the Java Modeling Language (JML) [8], e.g. [5]. Aspect-oriented approaches,
e.g. [6], translate design constraints defined in OCL into aspects that, when
applied to a particular implementation, check the constraints at runtime. A com-
parison of different approaches to constraint validation based on OCL is provided
in [1]. Their comparison includes direct translation to implementation languages,
use of executable assertion languages, and use of aspect-oriented programming
languages.

Some projects support translations from OCL to any form of assertion, e.g. [2,
10]. Moiseev et al. [10] use the same MDA approach as we do, but with the
goal of showing how structural similarities can be used to generate additional
translations with minimum effort.

Cosentino and Mart́ınez [3] address reverse engineering by translating rela-
tional schemas into OCL expressions. Since OCL constraints are not context-free,
they also generate the associated UML class diagram.

Shimba et al. [13] is one of the few projects that handle bi-directional trans-
lations, in their case between OCL and JML. Like us, their implementation is

UnifiedOCL: Achieving System-Wide Constraint Representations 223

based on Eclipse1 and Xtext2. However, although they mention Query/View/-
Transformation Operational (QVT)3 and the ATL Transformation Language
(ATL)4, they do not explicitly state if they use it for writing translation rules.
We used QVT for only one case, using Xtend5 for all others.

To the best of our knowledge, ours is the first approach that supports bi-
directional translations between an OCL-like platform-independent constraint
model and multiple technology-specific representations. This is beneficial if
legacy systems want to move from one constraint representation to another or
if a software developer prefers not to use a specific representation.

3 Approach

Figure 1 presents an overview of our approach. The various technology-specific
constraint representations are depicted at the bottom (JavaBeans Validation,
SQL, Drools). Each representation could be used in one or more components of
the information system.

Fig. 1. Approach overview

UnifiedOCL is implemented as a new Domain Specific Language (DSL) that
allows developers to define a wide variety of constraints using a textual represen-
tation that can be extended with labels to provide a compact way of specifying
common constraints. This makes it easy for non-programmers to understand.

It combines structural domain information (UML), constraint definitions
from OCL and a set of labels which either represent constraints not available
in OCL (such as primary key in SQL) or simply provide a more convenient
representation (such as email and credit card constraints). The syntax and con-
straint representation capabilities of UnifiedOCL will be presented in Sect. 4,
while details of the constraint translations will be given in Sect. 5.
1 https://eclipse.org/.
2 http://www.eclipse.org/Xtext/.
3 https://projects.eclipse.org/projects/modeling.mmt.qvt-oml.
4 https://wiki.eclipse.org/ATL.
5 https://eclipse.org/xtend/.

https://eclipse.org/
http://www.eclipse.org/Xtext/
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://wiki.eclipse.org/ATL
https://eclipse.org/xtend/

224 D. Weber et al.

In our approach, it is possible to model an information system using a UML
editor, enhancing the model with constraints defined in the standard OCL nota-
tion or with our label notation as depicted at the top of Fig. 1. This UML model
can then be converted to a UnifiedOCL representation. Nonetheless, it is also
possible to create and modify the UnifiedOCL representation in a text editor
independent of a UML model.

By additionally introducing individual translations from all technology-
specific representations to UnifiedOCL as indicated by the bi-directional arrows
in Fig. 1, it is possible to translate between any two constraint representations
in an information system. To add an extension for a technology-specific repre-
sentation, only one single bi-directional translation to and from UnifiedOCL has
to be provided to achieve multi-translations as depicted at the bottom of Fig. 1.
This is possible since UnifiedOCL is powerful enough to express most of the
constraints from various representations. Furthermore, it is possible to translate
UnifiedOCL to pure OCL and exchange UnifiedOCL in an XML format.

4 Unified Constraint Representations

UnifiedOCL specifies both the constraints and the contextual data structure in
which constraints exist, such as an SQL table schema or a Java class. An example
is presented in Listing 1 where OCL together with our concept of labels are used
to define constraints.

Listing 1. Example of UnifiedOCL

package org.example {

public abstract class Employee {

public attribute id: Integer {primarykey};

public attribute name: String {notnull};

public attribute birthDate: Date {past};

public attribute email: String {email};

public attribute salary: Real {range(min=2500, max=5300)};

public reference subordinates: Employee[0..*]{unique};

invariant IsJunior: self.age<25;

invariant PersonId: not self.id.oclIsUndefined()

and Person.allInstances()

->forAll(a : Person|a<>self implies a.id<>self.id);

public operation checkIn (time: in Date,

checkedIn: inout Boolean): String {

precondition NotAlreadyCheckedIn: checkedIn=false;

body CheckInBody: checkedIn=true;

postcondition SuccessfullyCheckedIn: result=true;

};

...

UnifiedOCL: Achieving System-Wide Constraint Representations 225

In the given example in Listing 1 the data structure is class Employee in
package (org.example) with the attributes (id, name, etc.) of data types
(Integer, String, etc.). UnifiedOCL labels are used to define constraints asso-
ciated with these. For example, the attribute id is labelled as a primarykey
based on the SQL concept. The labels past and email define pattern matches
not supported in OCL, while the notnull, range and unique labels provide a
convenient way of defining the appropriate constraints.

Additionally, the reference (subordinates) has a label unique to disal-
low duplicates along with cardinality constraints specifying that any number
of subordinates can exist, where the syntax [0..*] is part of the UnifiedOCL
grammar. UnifiedOCL also allows directionalities to be specified for the para-
meters of operations as shown in the definition of the checkIn operation. Pre-,
body- and post-conditions are also defined for this operation.

In contrast, the invariant constraints IsJunior and PersonId are defined in
OCL. We have included a duplicate definition of the PersonId invariant using
the primarykey label just to emphasise the convenience of using UnifiedOCL
labels over OCL notation. With labels, the developer only has to name commonly
used constraints and not care about the implementation. The technology-specific
representation and validation of these constraints is the concern of the constraint
translation which is discussed in the next section.

Labels also provide a way of extending the language with technology-specific
concepts since the set of labels may be expanded. A list of all labels defined
within our current implementation together with their parameters can be found
in [15, pp. 163–165].

UnifiedOCL is based on the OCLinEcore syntax which allows an EMF Ecore
model [14] to be combined with OCL statements. The OCLinEcore gram-
mar extends the EssentialOCL [4] grammar, which allows OCL expressions
to be specified but has no relation to the Ecore (or any other) data model.
We derived UnifiedOCL by extending the EssentialOCL language and reusing
the OCLinEcore language components and Ecore metamodel. We changed the
metamodel by extending OCLinEcore concepts with attributes or relationships
required to reflect the structure of a UML class diagram. For example, this
involved introducing (1) a grammar element to reflect the concept of encap-
sulation levels, (2) simple exceptions, (3) a directionality meaning for method
parameters, (4) user defined primitive types, (5) a Date built-in primitive type,
and (6) a grammar element to allow operations to be specified as multithreaded.
Additionally, and most important, we introduced support for the special con-
straint representation labels described above.

5 Constraint Translations

We distinguish between a formal constraint definition specified in UnifiedOCL
and a technology-specific representation which is dependent on the particular
programming language used for validation code. Bi-directional translations are
concerned with generating the validation code from the formal constraint defin-
ition and vice versa.

226 D. Weber et al.

For example, assume that a Food entity has a name attribute of type string
which must be at least of length 3. The formal constraint definition in Uni-
fiedOCL is shown in Listing 2.

Listing 2. UnifiedOCL translation example

package org.example {

public abstract class Food {

public attribute name: String {length(min=3)};

}

}

The technology-specific representations for SQL, Bean Validation (BV) and
Drools are given in Listings 3, 4 and 5 respectively:

Listing 3. SQL translation example

CREATE TABLE Food (

name VARCHAR NOT NULL,

CONSTRAINT ck_food_name CHECK (length(name::text) >= 3)

);

Listing 4. Java BV translation example

package org.example;

public class Food {

@Length(min = 3)

public String name;

}

Listing 5. Drools translation example

rule "Food_name_minlength"

when Food (name.length < 3)

then

...

end;

All translations, except for pure OCL extractions, use the model-to-text M2T
[18] approach and consist of three main steps: (1) obtaining a traversable in-
memory model instance from the source file(s), (2) model discovery and analysis
and (3) performing a model to text serialisation.

Three different approaches have been used for generating an in-memory
model such as an abstract syntax tree (AST). In some cases, such as Drools,
an existing parser that accompanies the technology was used. For SQL, a parser
was generated with the help of the modeling framework Xtext which is based
on the ANTLR6 parser. Bean Validation is an example where a model discovery
tool such as MoDisco7 was used.

Usually, the entire model needs to be analysed before serialisation can begin.
For example, constraints in SQL can be defined in various places including as part
of a column definition, at the table level or as an ALTER TABLE statement defined
outside of the table, possibly in a different script. Therefore, an intermediary
model is generated before being converted to the target textual representation.

When analysing a model, we identify constraint occurrences with regular
expressions and create abstract constraint representations (ACRs) containing

6 http://www.antlr.org/.
7 https://eclipse.org/MoDisco/.

http://www.antlr.org/
https://eclipse.org/MoDisco/

UnifiedOCL: Achieving System-Wide Constraint Representations 227

all information about the constraint in a technology independent way. Dictio-
naries define the mapping of positions within regular expressions to constraint
parameters. An ACR defines the location, type, names, parameters and values
of a constraint. To generate a target representation, we use specific target rep-
resentation producers (TRPs) which are also defined in dictionaries and able to
serialise the ACRs to the target textual representation.

In the JavaBeans Validation example of Listing 4 the technology-specific con-
straint @Length(min = 3) would be matched with an abstract size constraint
from our Java2UnifiedOCL dictionary. The resulting ACR would then have the
location org.example.Food.name, the type size, a unique name and the lower-
Bound parameter with a value of 3. Our General2UnifiedOCL dictionary can be
used to translate any ACR to a specific UnifiedOCL representation and would
be used to generate the representation in Listing 2. Similarly, the dictionary
could also be used for the opposite translation from UnifiedOCL to JavaBeans
Validation.

The extraction of OCL statements from UnifiedOCL increases the usefulness
of our system since tools such as DresdenOCL8 allow objects such as JavaBeans
to be validated based on the pure OCL specification.

6 Evaluation

We conducted a user study with 20 software engineers from both research and
industry (15 male, 5 female). 50 % had studied or worked in a university at some
time and 75 % had worked in industry.

The participants had to solve three tasks with the help of our tool. Before
each task, additional features of the tool relevant to the task were explained. A
feedback questionnaire based on a 5-point Likert-type scale (‘totally disagree’
to ‘totally agree’) was used. In this summary of results, we combine the first
two values into ‘disagree’ and the last two into ‘agree’.

In the first task, participants had to convert a UML diagram with two simple,
connected entities without any constraints and a total of eight attributes into
their choice of Java, SQL or Drools code. They were then presented with the same
UML diagram with seven constraint definitions in UnifiedOCL label notation,
without an explanation of the notation, and were required to extend the code
accordingly. Finally, they had to generate the same code using our tool and edit
it if it did not meet their expectations.

For the second task, they were given a short introduction to UnifiedOCL and
asked to add a field to one of the classes along with a specific constraint. The
third task, required them to combine a definition in Java with one in SQL to
give a single definition in Java, SQL or UnifiedOCL using our tool.

85 % of the participants chose Java in task 1 and 15 % SQL. Only 30 % were
able to manually solve the task completely, even though 80 % of all users had a
good or very good understanding of UML and almost half (43 %) of those with

8 http://www.dresden-ocl.org/index.php/DresdenOCL.

http://www.dresden-ocl.org/index.php/DresdenOCL

228 D. Weber et al.

partial solutions declared their knowledge in the selected technology as very
good.

The average time users spent writing initial code was 185 s (std. dev. 70 s),
while the average for extending it was 224 s (std. dev. 73 s). The average time
required using our tool was significantly less at 46 s (std. dev. 21 s). Moreover,
all agreed that the generated code met their expectations, with only five of them
editing it slightly to adjust formatting, organise imports, or alter names. All
agreed that the tool was easy to learn and use.

Task two was successfully solved by almost all participants (90 % knew how to
define the field and 85 % the constraint) with failures due to a misunderstanding
about what to do rather than not knowing how to do it. 90 % of users agreed
that the UnifiedOCL syntax is intuitive. Similarly, almost all (75 %) agreed that
they would remember the UnifiedOCL syntax required to solve this task.

In task three, there were no errors in the use of the system. Most users (60 %)
chose UnifiedOCL as the common format used for the comparison with stated
reasons including ‘UnifiedOCL can represent all constraints whereas Java and
SQL will have some problems with certain constraints’ and ‘this translation is
easier and more obvious’. Of those selecting conversion to Java or SQL, most
justified it in terms of familiarity, with one stating that UnifiedOCL would be
the preferred choice if they had more experience with it.

All participants agreed that the tool was efficient and convenient to use, and
85 % were satisfied with the results. Those who were not satisfied were missing
some sort of order of the attributes in the target representation. We decided
to maintain the same order of attributes as in the source representation, but
nevertheless it is one of the extensions that should be considered since it was
mentioned by seven participants (35 %).

Full details of the results are provided in [15, pp. 136–143].

7 Conclusions

We have presented an approach that allows constraints validated in different
components of an information system to be managed in a central repository,
with technology-specific validation code generated automatically. Constraints
are specified in UnifiedOCL using a mix of OCL and UnifiedOCL labels which
provide a shorthand for common technology-specific constraints. UnifiedOCL is
extensible as new labels can be introduced at any time.

References

1. Avila, C., Sarcar, A., Cheon, Y., Yeep, C.: Runtime constraint checking approaches
for OCL. a critical comparison. In: SEKE (2010)

2. Baresi, L., Young, M.: Toward translating design constraints to run-time assertions.
Electr. Notes Theor. Comput. Sci. 116, 73–84 (2005)

3. Cosentino, V., Mart́ınez, S.: Extracting UML/OCL integrity constraints and
derived types from relational databases. In: MoDELS International Workshops
(2013)

UnifiedOCL: Achieving System-Wide Constraint Representations 229

4. EssentialOCL. http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.ocl.
doc%2Fhelp%2FEssentialOCL.html. Accessed 04 Apr 2016

5. Hamie, A.: Using patterns to map OCL constraints to JML specifications. In: Ham-
moudi, S., Pires, L.F., Filipe, J., Neves, R.C.D. (eds.) Model-Driven Engineering
and Software Development. Communications in Computer and Information Sci-
ence, vol. 506, pp. 35–48. Springer, Switzerland (2015)

6. Khan, M.U., Arshad, N., Iqbal, M.Z., Umar, H.: AspectOCL: extending OCL
for crosscutting constraints. In: Taentzer, G., Bordeleau, F. (eds.) ECMFA
2015. LNCS, vol. 9153, pp. 92–107. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21151-0 7

7. Kleppe, A., Warmer, J., Bast, W.: MDA explained - the model driven architecture:
practice and promise. Addison-Wesley, Reading (2003)

8. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a notation for detailed design. In:
Kilov, E., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems. The Springer International Series in Engineering and Computer Sci-
ence, vol. 523, pp. 175–188. Springer, New York (1999)

9. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: Model-driven architecture. In: Bruel,
J.-M., Bellahsene, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 290–297. Springer,
Heidelberg (2002). doi:10.1007/3-540-46105-1 33

10. Moiseev, R., Hayashi, S., Saeki, M.: Using hierarchical transformation to generate
assertion code from OCL constraints. IEICE Trans. 94(3), 612–621 (2011)

11. Obrenovic, N., Popovic, A., Aleksic, S., Lukovic, I.: Transformations of check con-
straint PIM specifications. Comput. Inf. 31(5), 1045–1079 (2012)

12. Oriol, X., Teniente, E.: Incremental checking of OCL constraints with aggregates
through SQL. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López,
Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 199–213. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25264-3 15

13. Shimba, H., Hanada, K., Okano, K., Kusumoto, S.: Bidirectional translation
between OCL and JML for round-trip engineering. In: APSEC (2013)

14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, Reading (2009)

15. Szymanek, J.: Achieving unified data quality representation by constraints trans-
formation. http://dx.doi.org/10.3929/ethz-a-010510131 (2015)

16. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edn. Addison-Wesley Longman Publishing Co. Inc., Boston
(2003)

17. Wilke, C.: Java code generation for Dresden OCL2 for eclipse. Technische Univer-
sität Dresden, Germany (2009)

18. Wimmer, M., Burgueño, L.: Testing M2T/T2M transformations. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol.
8107, pp. 203–219. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41533-3 13

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.ocl.doc%2Fhelp%2FEssentialOCL.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.ocl.doc%2Fhelp%2FEssentialOCL.html
http://dx.doi.org/10.1007/978-3-319-21151-0_7
http://dx.doi.org/10.1007/978-3-319-21151-0_7
http://dx.doi.org/10.1007/3-540-46105-1_33
http://dx.doi.org/10.1007/978-3-319-25264-3_15
http://dx.doi.org/10.3929/ethz-a-010510131
http://dx.doi.org/10.1007/978-3-642-41533-3_13

Semantic Annotations

Building Large Models of Law with NómosT

N. Zeni1(B), E.A. Seid1, P. Engiel2, S. Ingolfo1, and J. Mylopoulos1

1 Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy

{nicola.zeni,elias.seid,silvia.ingolfo,john.mylopolous}@unitn.it
2 Programa de Pós-Graduação em Informática, PUC-Rio, Rio de Janeiro, Brazil

pengiel@inf.puc-rio.br

Abstract. Laws and regulations impact the design of software systems,
as they introduce new requirements and constrain existing ones. The
analysis of a software system and the degree to which it complies with
applicable laws can be greatly facilitated by models of applicable laws.
However, laws are inherently voluminous, often consisting of hundreds
of pages of text, and so are their models, consisting of thousands of
concepts and relationships. This paper studies the possibility of building
models of law semi-automatically by using the NómosT tool. Specifically,
we present the NómosT architecture and the process by which a user
constructs a model of law semi-automatically, by first annotating the
text of a law and then generating from it a model. We then evaluate
the performance of the tool relative to building a model of a piece of
law manually. In addition, we offer statistics on the quality of the final
output that suggest that tool supported generation of models of law
reduces substantially human effort without affecting the quality of the
output.

1 Introduction

Laws and regulations impact the design of software systems, as they constrain
their features and their operations. The analysis of a software system, intended to
ensure that it complies with applicable laws can be greatly facilitated by concep-
tual models of applicable laws. However, laws are inherently voluminous, often
consisting of hundreds of pages of text. This suggests that their models will also
be voluminous, consisting of thousands of concepts and relationships. For exam-
ple, for the two laws studied in this work, generated models had approximately
6,000 and 11,000 elements (concepts, relationships) respectively. This paper stud-
ies the possibility of building conceptual models of law semi-automatically by
using a tool-supported process.

In particular, we present the NómosT tool, its architecture and the process
by which a user constructs a model of law semi-automatically. The process con-
sists of first annotating the text of a law with semantic tags, and then generating
from it a conceptual model, with supplementary input from the user. To eval-
uate NómosT, we have compared models constructed semi-automatically using
NómosT with manually constructed models. In addition, we offer statistics on
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 233–247, 2016.
DOI: 10.1007/978-3-319-46397-1 18

234 N. Zeni et al.

the quality of the final output that suggest that tool-supported generation of
models of law reduces human effort by more than 400 % without affecting the
quality of the output. For the two laws we have included in our study, this means
that instead of requiring about 50 h of manual labour to construct a full model
of the law manually, one can use the NómosT tool and reduce manual effort to
approximately 10 h. Precise statistics on our experiments are presented in the
sequel.

The rest of the paper is structured as follows. Section 2 presents the research
baseline for our work, while Sect. 3 presents the NómosT tool. In Sects. 4 and 5
we present the two experiments and report and discuss derived results. Section 6
compares our results to related research in the literature, and Sect. 7 concludes
and discusses future work.

2 Research Baseline

This section presents the GaiusT framework for semantic annotation of legal
documents, as well as the Nómos modeling language, intended for modeling law.

Fig. 1. A meta-model for the Nómos modeling language

GaiusT. The GaiusT tool automates the semantic annotation of legal docu-
ments. The tool has been successfully applied for the annotation of different legal
documents in both English and Italian and has proven useful in supporting legal
text analysis [16]. GaiusT uses structural and semantic patterns to extract and
annotate text fragments that describe legal concepts from documents. Structural
analysis identifies legal document structure, including cross references. Using a
metamodel of legal concepts, GaiusT identifies instances of complex deontic con-
cepts, such as actors, rights and obligations. The metamodel constitutes a core
element for semantic analysis. From it, one can derive an annotation schema that
specifies the rules for identifying instances of legal concepts by listing concept
identifiers with their syntactic indicators and patterns to represent complex con-
cepts. Syntactic indicators can be single words, phrases, or references previously
parsed basic entities, while patterns are collection of concepts related by regular
expressions. Patterns are also useful in identifying relationships among concepts.
The output of GaiusT is an XML file that lists all annotations generated by the
tool.

Building Large Models of Law with NómosT 235

Nómos. Nómos is a modeling language for law, intended to support compliance
analysis for software requirements [8,15]. The modeling framework is founded
on the concept of a norm, an atomic fragment of law with deontic status. A
norm is characterized by: (1) a type which can be right or duty, (2) a holder
– a role responsible for complying with the norm, (3) a beneficiary who profits
from the norm, (4) an antecedent situation that makes the norm applicable,
and (5) a consequent situation that has to be achieved for the satisfaction of
the norm A situation is a state-of-affairs, such as being in a public building
or sending personal information. In addition to the primitive concepts of norm
and situation, Nómos includes relationships between norms and/or situations.
In particular, the following relationships are included: Activate, Block, Break
and Satisfy. Activate and Block relate situations to norms and determine the
applicability of a norm, while Break and Satisfy determine the satisfiability of
a norm or situation. Nómos has been developed over several years, and includes
several dialects (Nómos, Nómos 2 and Nómos 3). For our purposes, we are using
the Nómos 2 dialect. Figure 1 presents the metamodel of Nómos2.

3 NómosT

NómosT was developed upon the GaiusT framework to semi-automate the gen-
eration of Nómos models. NómosT supplements GaiusT with four new modules
that support the entire model generation process:

1. A library module including helper functions and data for managing different
legal document type templates (e.g. American regulations, European law,
Italian law etc.); for each template, the module includes annotation patterns
for document structure, concepts, and syntactic indicators;

2. An extended semantic annotation module over what is available in GaiusT;
this supports nested patterns defined in the NómosT metamodel;

3. A new visualization module that applies XSLT transformations on XML
annotated documents and generates an HTML report; and

4. A new module that computes statistics on legal concepts and annotated ele-
ments.

The architecture of NómosT is presented in Fig. 2, the components presented
in dark gray constitute GaiusT while, the components in light gray represent
the additional functionalities of NómosT. The core component of the tool uses
and manipulates on the metamodel of GaiusT and Nómos. The meta-model of
Nómos contains five concepts namely: Role, Norm, Duty, Right and Situation
(see Fig. 1). In the tool we add a set of auxiliary patterns – Actor, Resource,
Exception, Antecedent, Consequent, PositiveVerb, NegativeVerb, Holder and
Beneficiary – used to extract instances of the five concepts. A pattern can be
nested within other patterns. For example, the Role concept has syntactic indi-
cators that identify instances of actor, beneficiary and holder in the document
while the concept of Situation has been defined as a combination of an Actor
or Role, an Action and a Resource. PositiveVerb identifies instances of a modal

236 N. Zeni et al.

Fig. 2. NómosT system architecture

verb that express permission, while NegativeVerb identifies instances of obliga-
tion and prohibition. Figure 3 reports the main patterns used in the mapping of
concepts and relationships. Concepts, patterns and relationships are described in
the annotation schema and are the basis for semantic annotation, and the gen-
eration of Nómos models. The annotation schema includes not only concepts,
patterns and relationships but also structural elements that capture the struc-
ture of laws such as Part, Title, Chapter, Section and their sub items. Every
concept of the conceptual model has a correspondence concept or pattern in the
annotation schema.

Each pattern is represented in an extended BNF notation (aka eBNF) and
describes allowable combinations of concepts, sub-patterns and structural ele-
ments. Turning to the identification of relationships, instances of Activate and
Block are identified through new patterns derived through a manual analysis of
four Sections of annotated legal documents of Italian and German laws. These
patterns are highly heuristic and need to be augmented by manual inspection of
the legal text. Table 1 reports the list of new syntactic indicators and patterns
identified1.

3.1 Generation Process

The process of generating a Nómos model requires three steps.

Set Up of the Annotation Schema. Tune the syntactic indicators for actor,
role and resource, since these can vary for different laws.

This step requires the analysis of the target legal document, concerning the
Definition Part, where main actors, roles, and terms are defined precisely and

1 The tool is available at http://www.fastsas.com/.

http://www.fastsas.com/

Building Large Models of Law with NómosT 237

Fig. 3. EBNF patterns used to generate Nómos model

Table 1. Syntactic indicators, and patterns extrapolated with heuristic approach

Syntactic indicators Antecedent/consequent

Where, as long as, if then, as far as,
given than, only when, subject to

Activate/block

In cases referred to, in which Activate

As referred to, in this case, when Activate/satisfy

In accordance Activate/consequent

Only to fulfil, to ensure, in order to Consequent/satisfy

Nómos relation type Patterns

Activate <Antecedent>+<Obligation>

Satisfy <Consequent>+<Right>

Block <Antecedent + NegativeModalVerb>

Break <Consequent>+<NegativeModalVerb>

a reference synonym is assigned. The step is supported by statistical analysis
using word and n-grams frequency.

Semantic Annotation of the Document. The second step performs the
semantic annotation of the document. The step consists of several sub-steps of
normalizing and parsing. In particular we have: (1) Normalize and flatten the
input document by removing leading and unprintable characters, trailing spaces,
to produce a text document where each line represents a phrase; (2) the anno-
tation of text units of a given document with XML tags delimiting its text unit

238 N. Zeni et al.

Fig. 4. Excerpt of output of Nómos model

boundaries – structure identification – and annotating cross references; (3) the
identification of concepts, by using syntactic indicators and grammar rules. Every
concept is annotated with a XML tag; (4) the identification of relationships, by
using the heuristic patterns. (5) the annotation of nested patterns; (6) lastly, a
statistical analysis resulting in a conceptual model. The final output consists of
both an XML and and HTML report with all elements annotated, the graphical
model, the statistical analysis and the input document browsable within anno-
tated elements. The output of step two is an annotated text document (see an
example in Fig. 4), along with a conceptual model.

Improve and Validate the Models. In the final step, human modellers
improve and validate the final models by going through the XML and HTML
documents checking all identified elements.

4 Evaluation of NómosT

Two experiments have been conducted to evaluate the tool by comparing the
Nómos model generated by the tool-supported process, against the golden stan-
dard Nómos models created by Nómos experts. We adopt the same evaluation
strategy as we used for GaiusT tool by comparing the output of the tool with
gold standard [16]. With these experiments we evaluated how tool-constructed
models compare with the gold standard with respect to quality and how the tool
improves productivity. For both studies, the comparison is twofold: on one hand
we evaluate the effectiveness of NómosT in reducing human effort, and on the
other hand we evaluate the quality of the output, measured in terms of preci-
sion and recall. The evaluation does not consider overhead to set up NómosT

Building Large Models of Law with NómosT 239

resources, such as the construction of the conceptual model, time used for tuning
the syntactic elements of the annotation schema and relationship patterns. After
all, this is an one-time only overhead for a given language or normative system of
a country and can be at least partially offset by overhead to train people, so that
they are comfortable with legal concepts and the annotation process for legal
documents. The experiments conducted are intended to answer the following
research questions:

– RQ1: Does the semi-automatic extraction of Nómos model reduce manual
effort?

– RQ2: What is the quality of the model produced by NómosT process compared
to the models produced through a manual process?

To answer these questions, we use two measures. The first measures the manual
effort it takes to build a model of law with/without the NómosT tool, measured
in min/h. The second measure evaluates the correctness of the models generated
relative to a golden standard. We assume that quality of manual generated mod-
els constitutes an upper bound, however, in order to take into account human
disagreement and obtain a more realistic estimate of system performance, we
calibrate automatic results relative to human performance. Thus recall and pre-
cision have been calibrated taking into account human disagreement. Correctness
was measured in terms of precision and recall in the identification of elements
(concepts, relationships) that constitute the output conceptual model.

4.1 Italian Law Experiment

In this study we used four Sections of the official English translation of the
Italian privacy law “Italian Personal Data Protection Code”: Sections 37, 43,
54 and 78 (see http://www.garanteprivacy.it/home en/italian-legislation). The
Sections have been chosen for pragmatic reasons2. In this experiment we used
four participants (three are authors of this paper). Two participants were Nómos
experts involved in building the golden standard for evaluating the accuracy of
the NómosT tool in generating Nómos models. Two of the participants were
given the original legal text of the selected four sections of the Italian privacy
law. The other two participants had background in processing legal text with
NLP techniques. These generated models of law semi-automatically using the
NómosT tool.

To answer RQ1 we evaluate how much the tool improves manual perfor-
mance by comparing the time taken to build manually the golden standard with
the time taken to build models with the help of the tool. Table 2 reports the time
taken by human experts to manually annotate the four Sections and produce a
Nómos model. The table also reports on the time taken to generate models semi-
automatically. In the table we can observe that Section 78 takes much longer
than others Sections. This happens because Section 78 is much more dense in
2 Section 37 has 507 words, 14 sentences, Section 43 has 438 words, 12 sentences,

Section 54 has 343 words, 10 sentences and Section 78 has 373 words, 13 sentences.

http://www.garanteprivacy.it/home_en/italian-legislation

240 N. Zeni et al.

Table 2. Time efforts for the creation of the models

Sections Manual anno- Manual generation of Manual generation anno- Tool supported generation

of law tation (min) graphical model (min) tation and model (min) of the model (min)

37 8 38 46 12

43 9 32 41 8

54 7 26 33 14

78 35 53 88 23

Average 15 37 52 14

the concepts and relationships it describes. The golden standard models have
been built by experts in an average of 15 min for each Section. The process of
producing annotated documents by the tool requires in total 32 ms while the
average time for checking a model is 14 min. As expected, checking models for
consistency and completeness (column 5 on Table 2) takes much less than gener-
ating models (column 3). Also note that the Italian law included many instances
of Satisfy which had to be added manually because they are not handled by
NómosT.

The time reported for the Tool assisted includes the effort to improve and
validate the model generated by the tool. Our preliminary results indicate that
the NómosT tool largely reduces human effort in building Nómos model.

To answer RQ2 we have analyzed the models produced with the help of
the tool, against a golden standard. The model produced by the expert has been
evaluated pairwise with the model produced by tool and refined manually adopt-
ing the following criteria: (1) first, annotated concepts were considered correct
when they overlapped on most meaningful words, so that minor divergences in
text fragment boundaries were ignored; (2) concepts identified by NómosT and
missed by expert were manually revisited and validated; (3) concepts that the
tool annotates using more than one annotation are count as valid (for example
human annotator mark a sentence as situation while NómosT mark the same
sentence with two situations). Nómos relationships were the most troublesome
to identify in the text. Indeed in the results from the tool-supported process
relationships such as activate and block were often mis-identified or missing
altogether3. Table 3 reports qualitative results of the Italian law. Results have
been calibrated considering human disagreement which was 13.3 %, reporting an
overall performance of 81 %. As aspected, Section 78 reports a drop in perfor-
mance due to the complexity of the content. Section 54 reports similar results
as Section 78 since the the tool did not captured relationships.

4.2 German Law Experiment

To gather further evidence about the performance of NómosT, we run a second
experiment using The German Data Protection Act. The goal was to test the
effectiveness of the tool with a law from a different jurisdiction. The hierarchi-

3 Generated models are available at http://www.fastsas.com/Experiments/Ita.

http://www.fastsas.com/Experiments/Ita

Building Large Models of Law with NómosT 241

Table 3. Evaluation rates for the Nómos concepts retrieved semi-automatically with
the use of the NómosT tool.

Measure Section Avg

37 43 54 78

Recall 0.84 0.90 0.54 0.55 0.71

Precision 0.96 0.97 1.00 1.00 0.98

Fallout 1.00 1.00 0.00 0.00 0.50

Accuracy 0.82 0.88 0.54 0.55 0.69

Error 0.18 0.13 0.46 0.45 0.31

F-measure 0.90 0.93 0.70 0.71 0.81

cal structure of the document contains Part, Title, Chapter and Sections, Sub-
section, Sub-sub-section and List. The German Data Protection Act contains 48
Sections which are categorised into four parts. The tool annotates and generates
Nómos models for all 48 Sections. For the evaluation, we used Sections 13 and
14 of part II and Sections 41 and 42 of part IV of the official English translation
of the German Data Protection Act (see http://www.gesetze-im-internet.de)4

to annotate and generate models, for purposes of comparison. The four Sections
have been chosen randomly, without using specific criteria. In this experiment
we used two participants (both authors of this paper). These participants were
given a printed document with the original legal text of the selected four Sec-
tions. The two participants did the annotation and in second stage they checked
the correctness of the models generated by the tool. These participants have
experience in modeling and Nómos language.

To evaluate the human effort, RQ1, we compared the time taken to build
manually the model with the time taken with the help of the tool. Table 4 sum-
marizes the time that annotators spent to do the task. In particular, to manually
annotate and build a model for a Section of German law, annotators take an
average of 52 min. On the other hand, annotators spent an average of 11.5 min
to check and verify the model generated by the tool. The time used by the tool
to generate the final graphical model is an average of ten for an increase in pro-
ductivity of more than 400 %. We have a four-fold improvement in productivity.
By extrapolating from the results concerning the four sections, we estimate that
to build Nómos models manually for the entire German law would require 42 h,
but with the use of NómosT, manual effort can be reduced to 9.5 h.

To answer RQ2, we have compared the models produced with the help of the
tool with ones manually generated by analysts. To calculate human disagreement
we compared the models generated manually to each other noting the differences
(number of concepts and relationships) and calculating the percentage of agree-
ment.

4 Section 13 has 303 words with 12 sentences, Section 14 has 572 words, 21 sentences,
Section 41 has 264 words, 12 sentences and Section 42 has 249 words, 13 sentences.

http://www.gesetze-im-internet.de

242 N. Zeni et al.

Table 4. Time required to build the Model

Sections
of law

Manual
annotation
(min)

Manual generation of
graphical model (min)

Manual generation
annotation and
model (min)

Tool supported
generation of
the model (min)

13 15 40 55 8

14 10 36 46 15

41 15 40 55 10

42 15 30 45 13

Average 14 37 51 12

Table 5. Evaluation rates for the Nómos model with the use of the NómosT tool.

Measure Section Avg

13 14 41 42

Recall 1.00 0.78 0.73 0.83 0.84

Precision 0.85 0.89 0.94 0.95 0.91

Fallout 1.0 1.00 1.13 1.00 1.00

Accuracy 0.83 0.69 0.65 0.80 0.74

Error 0.22 0.36 0.48 0.20 0.31

F-measure 0.92 0.83 0.82 0.89 0.86

Table 5 reports the results of the second experiment. Results of the tool have
been calibrated with both human annotated models, considering the rate of
agreement in average around 83.0 %. F-measure in average is 86.6 % with an
accuracy of 74.2 %, showing that the generated models have a good quality and
with a small human effort can be improved. The overall quality compared with
the Italian experiment shows a better result for this experiment, because of the
way German laws are structured and phrased.

5 Discussion

The comparison of the two laws in terms of size shows that they have a differ-
ent density with respect to concepts and style. This is because of the different
structure of Italian vs German laws. The statistics reported in Table 6 indicate
that, for example in the Italian privacy law, the number of extracted actions is
much higher than the number of rights and duties. Italian laws do not use modal
verbs to express right and duty explicitly, but our syntactic indicators refer to
modal verbs. On the other hand, the number of obligations in the German law
is four times the number of rights. This is because the law is written using the
perspective of the actor who must comply with the law5.

5 Generated models are available at http://www.fastsas.com/Experiments/Ger.

http://www.fastsas.com/Experiments/Ger

Building Large Models of Law with NómosT 243

Table 6. Comparison of elements of the two laws.

Elements German (44 pages) Italian (101 pages)

Antecedent 70 313

Beneficiary 28 0

Obligation 61 276

Right 50 145

Situation 257 748

Actor 847 940

Auxuliary patterns 5,229 8,263

Relationships 775 Not applicable

Overall elements 7,317 10,685

During the study we observed a number of limitations of the NómosT that we
will addressed in future development of the tool. In particular: (1) The pattern
for the Situation concept must be refined with other grammar rules; (2) The
identification of other Nómos relationships must be addressed by expanding the
current set of implemented patterns for identifying relationships. (3) The use
of data-mining techniques to discover regularities – patterns – in concepts and
structure of input document.

Threats to Validity. The objective of this evaluation was to assess the benefits
of using the NómosT tool for the semi-automatic generation of large models of
law. The use of Nómos experts to generate the golden standard for our study,
lends confidence to the correctness of the models used in our experiments, and
limit risks for construct validity. External validity for our study is concerned with
the generalizability of the results to other cases. The results of our investigation
are encouraging but we consider them preliminary, so they need to be confirmed
by other experiments including a larger set of participants, both expert and
non-expert, and laws from other jurisdictions. More importantly, our results
depend critically on the modelling language used for laws. Nómos is a light-
weight propositional language lacking quantifiers, modal operators and other
features present in languages used to formalize law. It would be very difficult
to extend our results to other law-modelling languages that are more expressive
than Nómos.

Internal validity—factors affecting subject performance during the study—is
also very important. The skills of the subjects involved in the experiments were
appropriate to the objective of our preliminary investigation. Moreover, there
was no bias of the subjects towards the topics covered by the Sections used for
the experiments.

244 N. Zeni et al.

6 Related Work

The problem of tool-supported generation of models of law is particularly chal-
lenging because it combines the difficulties of analyzing legal documents to
extract deontic concepts with those of relating these concepts with semantic
relationships to generate a complete conceptual model. Generally speaking, the
NómosT tool supports the semi-automatic generation of Nómos models and as
such is not comparable with any of the existing tools, even though the techniques
used for semantic annotation, syntactic patterns and model element identifica-
tion are shared by many of the approaches reviewed below.

The extraction of normative concepts from legal documents is an old, and
still open, research problem. Several approaches have been proposed in the past
decade [1,2], though none deals explicitly with the problem of tool-supported
generation of full-fledged models of law. A related, and equally old, problem
addressed in the literature is the automation of software requirements extrac-
tion from text. On this front, [12] proposes a tool named LOLITA to preprocess
user requirements using full natural language analysis, while [9] proposes another
tool NL-OOPS, based on LOLITA, to automatically derive class diagrams. More
recently, [10] presents a system to fully analyze legal documents using a deep syn-
tactic analysis to produce automatic annotations of normative documents. [14]
proposes a methodology that applies NLP techniques using grammatical pat-
terns to analyse textual requirement documents and extract conceptual models.

[5] proposes a name entity recognition approach based on NLP techniques
to extract automatically actors from legal document. NómosT tool uses word
and n-grams frequency of the Definition Part of law to identify instances of
actors and roles. [3,4] propose a framework for acquiring legal requirements using
a systematic frame-based requirements analysis methodology. The framework
uses an upper ontology to classify regulatory statements, context-free mark-ups
to annotate natural language fragments with XML, and document models to
handle the structural organization of regulatory documents. Their approach for
extracting legal requirements is similar to ours, however our work goes farther
in generating full models of law.

[13] presents a system called SALOMON to summarize Belgian criminal
cases, while [2] proposes EuNómos, a management service that uses semantic text
classication and ontologies to enable users to view legal documents from different
sources and find legal concepts. Along similar lines, [7] proposes a methodology
to extract legal norms from laws using a set of pattern that helps in the extraction
of the conditions and logical structure of legal rules for modelling and reason-
ing with obligations for compliance checking. Similarly to our approach, they
use patterns to identify relevant case summaries from legal documents, though
we focus on the generation of full models of law, taking also into account the
strucuture of the document.

[11] proposes a tool and a methodology for assessing the compliance of soft-
ware requirements with relevant laws and regulations, while [1] proposes a frame-
work for extracting normative elements? such as provisions, obligations, and
sanctions? from a legal document. NómosT goes a step farther by extracting

Building Large Models of Law with NómosT 245

conditions (antecedents and consequents) for norms using a heuristic approach.
Our approach go a step further, extracting conditions (antecedent and conse-
quent) using again an heuristic approach. In this regard our tool processes the
normative elements and conditions which motivates the norm to be applicable
or satifiable.

[6] proposes to build goal models from legal documents with the objective to
compare the compliance of goals of organizations with respect to legal require-
ments. Towards this end, a goal oriented language is applied to extract goal
models from the legal documents. The modeling framework does not include the
norm and situation relationships included in NómosT.

NómosT tool supports the semi-automatic generation of Nómos models and
as such is not comparable with any of the existing tools, even if, the techniques
used for semantic annotation, syntactic patterns and model element identifica-
tion are shared by many of the approaches reviewed here.

7 Conclusions and Future Work

Building conceptual models of laws is a hard and time consuming process that
requires legal knowledge as well as modeling skills. Moreover, laws are intri-
cate and voluminous thus resulting in models with thousands of elements. The
NómosT tool supports the semi-automatic construction of models of law by first
annotating legal text and then generating a conceptual model. It is then up to
the user of the tool to check the model against the legal text for soundness
and completeness. The effectiveness of NómosT has been evaluated with two
experiments that measured the reduction of human effort in time saved, and
the quality of the resulting models. Experiments have been conducted on two
different laws, the Italian Personal Data Protection Code, and the German Data
Protection Act, both available in English. The results from the two experiments
are encouraging: human effort was reduced by more than 400 % without affecting
the quality of the output. Testing the tool on two different laws demonstrates
that the tool is easily adaptable with few adjustments, even when the laws come
from different jurisdictions.

However, the tool needs to be extended and improved since it lacks patterns
to cover the break and satisfy relationships of Nómos. The tool also needs to
be further extended with a graphical representation of the model, and better
traceability of annotated concepts, in order to better support the analyst as she
is comparing a generated model with corresponding text. In addition, the tool is
missing the functionality of generating a model using the XMI interchangeable
format for better tool interoperation.

Acknowledgment. This research has been partially supported by the ERC advanced
grant 267856 ‘Lucretius: Foundations for Software Evolution’.

246 N. Zeni et al.

References

1. Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., Soria, C.: Automatic
semantics extraction in law documents. In: 10th International Conference on Arti-
ficial Intelligence and Law, ICAIL 2005, pp. 133–140. ACM, New York (2005).
http://doi.acm.org/10.1145/1165485.1165506

2. Boella, G., di Caro, L., Humphreys, L., Robaldo, L., van der Torre, L.: NLP chal-
lenges for eunomos a tool to build and manage legal knowledge. In: Proceedings of
the Eight International Conference on Language Resources and Evaluation (LREC
2012). ELRA, Istanbul, May 2012

3. Breaux, T.D., Anton, A.I.: A systematic method for acquiring regulatory require-
ments: a frame-based approach. In: RHAS-6: Proceedings of the 6th International
Workshop on Requirements for High Assurance Systems (RHAS-6). Software Engi-
neering Institute (SEI), Pittsburgh, September 2007

4. Breaux, T.D.: Legal requirements acquisition for the specification of legally com-
pliant information systems. Ph.D. thesis, North Carolina State University (2009)

5. Dozier, C., Kondadadi, R., Light, M., Vachher, A., Veeramachaneni, S., Wudali,
R.: Named entity recognition and resolution in legal text. In: Francesconi, E.,
Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal
Texts. LNCS (LNAI), vol. 6036, pp. 27–43. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-12837-0 2

6. Ghanavati, S., Amyot, D., Peyton, L.: Compliance analysis based on a goal-
oriented requirement language evaluation methodology. In: 17th IEEE Interna-
tional Requirements Engineering Conference, RE 2009, Atlanta, Georgia, USA,
31 August–4 September 2009, pp. 133–142 (2009). http://dx.doi.org/10.1109/RE.
2009.42

7. Hashmi, M.: A methodology for extracting legal norms from regulatory documents.
In: 2015 IEEE 19th International Enterprise Distributed Object Computing Work-
shop (EDOCW), pp. 41–50, September 2015

8. Ingolfo, S., Siena, A., Mylopoulos, J., Susi, A., Perini, A.: Arguing regulatory
compliance of software requirements. Data Knowl. Eng. 87, 279–296 (2013).
http://www.sciencedirect.com/science/article/pii/S0169023X1200105X

9. Kiyavitskaya, N., Zeni, N., Mich, L., Mylopoulos, J.: Experimenting with linguistic
tools for conceptual modelling: quality of the models and critical features. In:
Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 135–146. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-27779-8 12

10. Lesmo, L., Mazzei, A., Palmirani, M., Radicioni, D.: Tulsi: an NLP system for
extracting legal modificatory provisions. Artif. Intell. Law 21(2), 139–172 (2013).
http://dx.doi.org/10.1007/s10506-012-9127-6

11. Massey, A.K.: Legal requirements metrics for compliance analysis. Ph.D. thesis,
North Carolina State University (2012)

12. Mich, L.: NL-OOPS: from natural language to object oriented requirements using
the natural language processing system LOLITA. Nat. Lang. Eng. 2(2), 161–187
(1996). http://dx.doi.org/10.1017/S1351324996001337

13. Moens, M., Uyttendaele, C., Dumortier, J.: Information extraction from legal texts:
the potential of discourse analysis. Int. J. Hum. Comput. Stud. 51(6), 1155–1171
(1999). http://dx.doi.org/10.1006/ijhc.1999.0296

14. Rolland, C., Proix, C.: A natural language approach for requirements engineering.
In: Loucopoulos, P. (ed.) CAiSE 1992. LNCS, vol. 593, pp. 257–277. Springer,
Heidelberg (1992). doi:10.1007/BFb0035136

http://doi.acm.org/10.1145/1165485.1165506
http://dx.doi.org/10.1007/978-3-642-12837-0_2
http://dx.doi.org/10.1007/978-3-642-12837-0_2
http://dx.doi.org/10.1109/RE.2009.42
http://dx.doi.org/10.1109/RE.2009.42
http://www.sciencedirect.com/science/article/pii/S0169023X1200105X
http://dx.doi.org/10.1007/978-3-540-27779-8_12
http://dx.doi.org/10.1007/s10506-012-9127-6
http://dx.doi.org/10.1017/S1351324996001337
http://dx.doi.org/10.1006/ijhc.1999.0296
http://dx.doi.org/10.1007/BFb0035136

Building Large Models of Law with NómosT 247

15. Siena, A., Jureta, I., Ingolfo, S., Susi, A., Perini, A., Mylopoulos, J.: Capturing
variability of law with Nómos 2. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER
2012. LNCS, vol. 7532, pp. 383–396. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34002-4 30

16. Zeni, N., Kiyavitskaya, N., Mich, L., Cordy, J., Mylopoulos, J.: GaiusT: supporting
the extraction of rights and obligations for regulatory compliance. Requir. Eng. 20,
1–22 (2013). http://dx.doi.org/10.1007/s00766-013-0181-8

http://dx.doi.org/10.1007/978-3-642-34002-4_30
http://dx.doi.org/10.1007/978-3-642-34002-4_30
http://dx.doi.org/10.1007/s00766-013-0181-8

An Efficient and Simple Graph Model
for Scientific Article Cold Start

Recommendation

Tengyuan Cai, Hongrong Cheng(B), Jiaqing Luo, and Shijie Zhou

School of Computer Science and Engineering,
University of Electronic Science and Technology of China,

No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, China
tycai1@sina.com, hrcheng@uestc.edu.cn

Abstract. Since there is little history information for the newly pub-
lished scientific articles, it is difficult to recommend related new articles
for users. Although tags of articles can provide important information
for new articles, they are ignored by existing solutions. Moreover, the
efficiency of these solutions is unsatisfactory, especially on the big data
situation. In this paper, we propose an efficient and simple bi-relational
graph for new scientific article recommendation called user-article based
graph model with tags (UAGMT), which can integrate various valuable
information (e.g., readership, tag, content and citation) into the graph
for new article recommendation. Since the structure of the bi-relational
graph model is simple and the model incorporates only a few similar-
ity relationships, it can ensure high efficiency. Besides, the tags’ infor-
mation of articles which summarizes the main content is integrated to
enhance the reliability of the similarity of articles. It is especially helpful
for improving the cold start recommendation performance. A series of
experiments on CiteULike dataset show that the recommendation effi-
ciency is greatly improved by using our UAGMT with the guaranteed
performance on the cold-start situation.

Keywords: New article recommendation · Cold start problem ·
Bi-relational graph · Tags’ information

1 Introduction

Recently, websites like CiteULike1 and Mendeley2 allow users to organize the
scientific articles which they are interested in and share them with other users.
These websites have paved the way for using recommendation methods to help
researchers find their interested articles.

There have existed various recommendation methods, such as collaborative
filtering (CF), content-based and hybrid recommendation methods. The collab-
orative filtering techniques [1,2] base on the rating matrixes created from the
1 http://www.citeulike.org.
2 http://www.mendeley.com.

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 248–259, 2016.
DOI: 10.1007/978-3-319-46397-1 19

http://www.citeulike.org
http://www.mendeley.com

UAGMT for Scientific Article Cold Start Recommendation 249

user readership or the paper citation network [3], while the textual content of
articles is hardly accessed. Especially, when the articles are newly published, the
rating matrixes and usage histories are extremely sparse which makes the tradi-
tional collaborative filtering methods become inapplicable. This is the so-called
cold start problem in recommendation systems. In contrast, the content-based
methods [4,5] mainly use the content of items (e.g., title and abstract of articles,
description of images and synopsis of movies etc.) for recommendation. How-
ever, the content-based methods can not solve the cold start problem satisfacto-
rily either, because they only exploit the content information of items but miss
other behaviour information (e.g., citation information of articles). The hybrid
recommendation methods [6–9] try to combine the advantages of both collabo-
rative and content-based recommendation methods. These models can solve the
cold start problem in a certain degree, but ignore the important tags’ informa-
tion of the articles which is helpful for covering the shortage of new articles for
lack of the historical information. Thus, it is likely lead to hinder the further
improvement of the recommendation performance. Moreover, the efficiency of
the hybrid models is not satisfactory, especially on the big data situation.

In this paper, we propose an efficient and simple bi-relational graph model
for new scientific article recommendation. The main contributions of this paper
can be summarized as follows:

– A user-article based graph model with tags is proposed, which appends only a
few similarity relationships. Thus, it can greatly reduce the data dimensions.
In this way, UAGMT can ensure high efficiency of recommendation.

– UAGMT integrates tags’ information into it. Due to the tags’ information can
make up the deficiency of lacking of historical information for new articles, via
integrating tags’ information, UAGMT can enhance the reliability of intrinsic
links between the content of articles, which is conducive to guarantee the
recommendation performance.

– UAGMT combines multiple relationships for new article recommendation,
which can easily allow us to explore how these types of existed information
can be better combined.

– An extensive evaluation is conducted using the real-world dataset gathered
from CiteULike to show that the importance of tag information and the highly
efficiency of our proposed model on the cold-start situation.

The rest of the paper is organized as follows. In Sect. 2, we review related work
about new article recommendation and the random walk with restart (RWR)
method used in this paper. In Sect. 3, we describe our graph model. In Sect. 4,
we present the evaluation results in detail. Finally, we conclude the paper with
a summary and future work in Sect. 5.

2 Related Work

New Article Recommendation. Cold-start problem recommendation refers
to either new items or new users, and we focus on the former case in this paper.

250 T. Cai et al.

For new articles, the content information (e.g., title, abstract, text and author
etc.) of articles is important for making recommendation. Blei et al. [10] propose
Latent Dirichlet Allocation (LDA) and use it to find the hidden thematic struc-
tures based on the content information of the articles. They use the hidden theme
to compute the similarity of articles, and then recommend most appropriate new
articles for users. Sugiyama et al. [11] extend scholar paper recommendation with
citation and reference information. By combining potential reference information
with article content, they show that how they can improve the results. Jiwoon
et al. [12] presented a Belief Propagation based method to predict the likelihood
of new published articles’ relevance to a target user, and use citation relationship
to infer probabilistically of the user interest. Then, they can recommend most
interesting new articles for a target user. Wang et al. [8] present a probabilistic
graphical models called collaborative topic regression (CTR) to recommend arti-
cles. When the article is new, they use the resulting topics and proportions of
LDA to initialize the CTR model. Then they can help users to find new articles
which they are interested in. However, these hybrid models have not considered
the tags’ information in the field of cold-start recommendation. The tags’ infor-
mation of articles can be integrated in a graph-based approach, that is one of
the research focus in UAGMT.

Random Walk with Restart. Several studies exist in the field of applying
Random Walk with Restart (RWR) [13,14] on graphs. RWR is a good choice to
measure vertex-to-vertex relevance. Although other random walk based theories
are also applicable, RWR has been proven to be a powerful tool, and has recently
been applied in recommendation systems [9,15–18]. Konstas et al. [16] propose
a recommendation technique that is based on RWR over a graph which connects
both users to tags and tags to items. They merge additional information such as
friendship and social tagging embedded in social knowledge to perform item rec-
ommendation. Meng et al. [17] propose a unified graph-based model with RWR
that integrates the content information, authorship and citation into a graph,
which can provide personal item recommendation. For a similar application, Tian
et al. [9] propose an approach to recommend old and new articles which based
on RWR in a user-item graph that combines the similarity of users and items as
well as user preferences together. Bagci et al. [18] propose a random walk based
context-aware friend recommendation algorithm (RWCFR), which considers the
current context (e.g., current social relations, personal preferences and current
location) of the user to provide personalized recommendations. In this paper,
we also build a graph model with users and articles. However, we make up the
deficiency of lacking of historical information for new articles with integrating
tags’ information into the bi-relational graph. Thus, our work is different from
previous works.

3 Proposed Method

To investigate the effects of tags’ information, we analyze the combination
of primary content (title and abstract) and all existed information (title,

UAGMT for Scientific Article Cold Start Recommendation 251

abstract and tag). In this section, we describe our proposed UAGMT for han-
dling the cold-start problem on scientific article recommendation with different
combination.

3.1 Similarity Computation

In the article recommendation system, we represent the user information with
the symbol U = {U1, U2, · · · , Um}, where m is the number of users on the
dataset. Similarly, the articles can be represented by a n-dimensional vector
like A = {A1, A2, · · · , An}. Each article can be represented by its feature vector
with n vocabulary words. As we all known, for new articles, there is few ratings
and little usage history information, thus their contents are especially significant
for appropriate recommendation. Since the role of tags’ information is similar to
the keywords of the articles, we regard that the tags’ information as one part of
its content information can be combined with other content information for new
article recommendation. In order to explore the effects of tags’ information, we
compare the performance of recommended results using different combination of
resources, whether or not the tags’ information is merged in the resource.

Firstly, we only use the articles’ title and abstract to constitute its primary
content. Let Aiw be the vector of v primary words given by Eq. 1. Then we use
the cosine similarity to compute the relevance of articles, and use symbol Spri

to indicate the relevance.

Aiw = {w1, w2, · · · , wv}, (1)

As we mentioned above, the content information of articles is important for
marking recommendation. Since the tags’ information with short words summa-
rizes the main idea of the articles, it may be better and more quickly help users
discover the articles in their own research areas or they are interested. Here, we
can enhance the reliability of the similarity of articles and improve the perfor-
mance of recommendation via integrating tags’ information to the content of
articles. We use a l-dimensional vector Ait to represent the tags’ information,
where the l is the number of tags in this article.

Ait = {t1, t2, · · · , tl}, (2)

Then each article can be represented by a feature vector with v + l words.
Because a tag uses the words that are effective in capturing the idea of the arti-
cles, whose role is similar to the keywords, we assume that the tags’ information
is more important than the primary content. Here, we set the wT weight of tags
in the feature vector. Thus, the finally feature vector of articles is defined by
Eq. 3.

Ai = {Aiw , wTAit}, (3)

After that, we use the cosine similarity to compute the pairwise similarities
among articles. These similarities can be represented by a symbol Smix which
has integrated the tags’ information into the bi-relational graph model.

252 T. Cai et al.

3.2 Graph Construction

The UAGMT as illustrated in Fig. 1 has two parts corresponding to the two
different types of objects. We use an undirected graph G = <V,E>, where
V = VU ∪ VA. VU and VA indicate the user and article vertices, respectively. As
we can see, two types of links are needed in this graph, which are intra-layer links
and inter-layer links. Obviously, the edges connecting user with article describe
the inter-layer links, contrarily other edges describe the intra-layer links.

Fig. 1. User-article based graph model with tags

For the inter-layer links, we construct them based on the user-article rela-
tionships. Each article is associated with ui(ui ≤ m) users libraries. So we define
Eq. 4 to judge whether there is an edge between them.

WUA(Ui, Aj) =
{

1, ifAj appears in the library ofUi

0, otherwise . (4)

Our model is an undirected graph, so its adjacency matrix is symmetric.
Thus, we can get that WAU = WT

UA.
The intra-layer links denote the relations between the same types of objects.

To make the model easier, now we only consider article relations. In Sect. 4.5,
we will further explore the impact of user networks and article relations.

UAGMT for Scientific Article Cold Start Recommendation 253

For article relations, we define two types of links in this model. One type
of links denote the citation information among the articles, we abbreviate it as
CI-links, another type of links denote the similarity among articles which can
be represented by SI-links. In UAGMT, we construct the CI-links based on the
citation data.

WAACI
(Ai, Aj) =

{
1, ifAj is one of citations ofAi

0, otherwise . (5)

Analogously, SI-links are determined by the pairwise similarities Spri (or
Smix) and a pre-defined parameter k.

WAASI
(Ai, Aj) =

{
1, ifAj is one of the kmost similar toAi

0, otherwise . (6)

3.3 Random Walk with Restart Based Recommendation

Based on the multiple information embedded in UAGMT, we apply a random
walk with restart based algorithm to recommend new articles. In order to adopt
random walk with restart learning method on UAGMT, we use a matrix to
represent G, which can be taken as the transition probability matrix M for a
random walk.

As we discussed in Sect. 3.2, now we only consider article relationships which
can be represented by the symbol MAA when we construct the intra-layer links.
Therefore the user relations MUU = 0 in the transition probability matrix M .
Let MUA and MAU represent the inter-layer links between the subgraph GU

and GA, respectively. The edge chosen by a random walker is proportional to its
weight in the adjacency matrix. So we get the normalized transition probability
matrix M̃ through its row regularization [19]. Then we use the method proposed
by [14] to iteratively calculate Eq. 7 until the ranking vector r converges.

r = (1 − c)M̃r + cq , (7)

Where the vector q is the starting vector, and the index of the seed node in it
sets to 1 and others to 0. During initialization, we set the nodes in the graph
which corresponds to new articles to 1, others to 0. As a result, the ranking
scores of all of the vertices, represented by r , are determined. Finally, the top-N
highly ranked vertice that includes one article vertex and other user vertexes.

4 Experiments

We evaluate UAGMT on a real dataset for new article recommendation and
conduct several experiments to compare the performance of our proposed model
with the state-of-art models.

254 T. Cai et al.

4.1 Dataset

The real dataset used in our experiments is from CiteULike and extends by Wang
and Blei [8] by adding the tag information into original dataset [20]. The content
information of the article in the dataset is extracted from its title and abstract.
After removing the stop words, for all articles, we choose the top 8000 distinct
words with high tf-idf value as the vocabulary. Since the content of articles can
be easily summarized by the brief tags, which is similar to the role of keywords,
we regard tags’ information as a part of its content information, and then each
article can be represented as a vector of vocabulary. In order to reduce noise and
dimension of the vector, we remove the little-used tags which are used less than
5 times. After that each element (word or tag) can be denoted by a binary value
val, such that val = 1 if the word or tag occurs in the current article, otherwise,
val = 0. A brief description of final dataset is presented in Table 1.

Table 1. Statistics of the dataset

Users Items Tags User-item Citations

5551 16980 7386 20498 44709

Here, we only consider the problem of new article recommendation. In this
case, we use 5-fold cross validation. First, we evenly group all articles into 5
folds, and then we iteratively treat one fold as the testing set and other as the
training set. We form predictive ratings for the test set, and then record the
average performance. Notice that in this case, for the articles appearing in the
training set, all article-tag pairs and user-article relationships are kept, while the
articles in the testing set do not have any user information.

4.2 Evaluation Scheme

In our experiment, the aim of recommender system is to find good new articles
for users, so a set of articles and user libraries are analyzed. We will present
each article with N users which are sorted by the predicted rating for the entries
in the testing set and evaluate those users who are actually interested in this
article.

Two possible metrics are precision and recall. However, zero ratings are uncer-
tain. Since zero entries can be caused either by irrelevance between the user and
the article or by users who may do not know the articles in the prediction
progress, the precision is not a proper metric here. Therefore, as in [8], we use
recall as one evaluation metric. Like most recommender systems, the recall met-
ric only considers the positively rated users within the top N . Note that a higher
recall with lower N implies a better model. The recall@N for each articles is
defined as:

recall@N =
number of relevant users in topN

total number of relevant users
.

UAGMT for Scientific Article Cold Start Recommendation 255

Besides, we also use success@N as in [20] as our another evaluation metric.
The success@N metric is the probability of finding a true user among the top
N recommended users for each articles. It is defined as:

success@N =
{

1, if a true user in the recommended users
0, otherwise .

Since recommendations should not only be recall and success but also be
provided the computational costs, we evaluate the computational costs of the
methods in terms of Runtime and Memory. Both runtime and memory are mea-
sured for the complete workflow of the parameter optimization using a PC with
a 2-core Intel i5-2410 2.3 GHz CPU and 16 GB memory.

4.3 Baselines and Experimental Settings

Depending on whether to add tags’ information to calculate the similarity of
articles, two approaches are supported by UAGMT. These approaches are for-
mulated as follows:

– UAGMT-P: Based on the primary content of articles, we use the Spri to
compute the WAASI

and build graph model for recommendation.
– UAGMT-M: Based on the additional tags’ information, we use the Smix to

compute the WAASI
and build graph model for recommendation.

Since both articles’ content and user-article relationships are used in the
UAGMT-P, we use CTR [8] and BG-IteRWR [9] as the baselines for comparison
to show the performance of UAGMT.

We use 5-fold cross-validation to search for the optimal parameters in vali-
dation sets. More specifically, we find that CTR achieves good prediction per-
formance when v = 100, u = 0.01, a = 1, b = 0.01, and K = 200. For UAGMT,
we set the both weight of tag wT and k to 5, the restart probability c to 0.25.

4.4 Computational Cost

In the first set of experiments, we ignore the tags’ information, and put our focus
on the role of the articles’ primary content. So, we compare the computational
costs for parameter optimization of UAGMT-P with CTR and BG-IteRWR.

However, since BG-IteRWR uses all the similarity of users and articles, the
graph model is extremely dense. Thus, BG-IteRWR requires large amount of
computing resources for matrix inversion. Due to the space limitation, UAGMT-
P and CTR successfully process in the dataset, while BG-IteRWR fails due to its
high memory requirement. So, there are only two models in Table 2, which shows
that the time and space are required by these models for parameter optimization.

By looking at the results presented in Table 2, we can find that the UAGMT-
P requires less time and is almost up to 2 faster than that of CTR. In addition,
we measure the memory required for parameter optimization of each method.

256 T. Cai et al.

Table 2. Computational costs for parameter optimization.

Methods Memory (MB) Runtime (s)

UAGMT-P 2118.33 4545.96

CTR 5164.21 8139.25

Obviously, UAGMT-P nearly saves 50 % memory space, which results in the
superior efficiency of UAGMT-P compared with CTR.

In order to compare our model with BG-IteRWR, we compare the edges of
graph, the space and time are required when the graph data is read into memory.
The final result can be seen in Table 3.

Table 3. Computational costs of UAGMT-P vs. BG-IteRWR

Methods N m Memory (MB) Runtime (s)

UAGMT-P 22531 259444 7 0.65

BG-IteRWR 22531 249646622 5713.8 1063.5

From Table 3, we can see that UAGMT-P not only achieves 1636× speedup
for on-line response (0.65/1063.5 s), but also saves 816× on storage (7/5713.8 M)
compared with BG-IteRWR.

4.5 Effects of Tags’ Information

As what we have declared, the tags’ information can enhance the reliability of
the similarity of articles and is more important than the primary content, we
would expect that UAGMT-M recommends more interesting articles to users
than UAGMT-P. Now, it is great interest to us to look at whether this is true.
Here, we compare the recall and success of UAGMT-M with UAGMT-P. At
the same time, we also compare UAGMT-P with CTR.

Figure 2(a) and (b) show the overall recall@N and success@N of all models
on the dataset when we set N = 5, 10, 20, 40, 60, respectively.

As we can see, using the same resource, the UAGMT-P achieves better perfor-
mance than CTR. Besides, UAGMT-M is clearly superior to UAGMT-P, which
indicates that UAGMT-M is expert in finding the potential users who are really
interested in the corresponding articles. UAGMT-M improves the performance
by 21% and 6% on average in terms of recall and success compared to that of
UAGMT-P which ignores the tags’ information of articles. To understand what
makes such changes, we compare the recommended results of UAGMT-M and
UAGMT-P. The former enhances the reliability of intrinsic links between the
content of articles, and find out more interesting new articles for users.

UAGMT for Scientific Article Cold Start Recommendation 257

Fig. 2. Experimental results on dataset for new article recommendation. (a) shows the
recall@N of all methods when N ranges from 5 to 60. (b) shows the success@N of all
methods when N ranges from 5 to 60.

4.6 Further Analysis of User Networks and Article Relations

To understand the impact of user networks and article relations, we conduct
additional experiments by adding the user networks or removing the similarities
of articles from UAGMT-M. Here, the + (or −) indicate adding (or removing)
related information to graph model. Additionally, we use symbol UU and AAS
to denote the user networks and article similarities information, respectively.

Table 4. The impact of user networks and article relations

Recall Success

@5 @10 @20 @40 @60 @5 @10 @20 @40 @60

UAGMT-M 0.15 0.231 0.326 0.44 0.515 0.657 0.759 0.841 0.902 0.926

UAGMT-M(+UU) 0.12 0.19 0.27 0.38 0.45 0.56 0.67 0.77 0.84 0.88

UAGMT-M(-AAS) 0.09 0.14 0.20 0.28 0.33 0.45 0.53 0.60 0.66 0.70

By comparing UAGMT-M with UAGMT-M(-AAS), we can find the graph
model benefits a lot from the similarities of articles, which means that the con-
tent information of articles is absolutely important on the cold-start situation.
By looking at the results presented in Table 4, the approach (UAGMT-M) with
the similarities of articles improves 60 % on average in terms of recall com-
pared to the approach (UAGMT-M(-AAS)) without the similarities. In contrast,
UAGMT-M(+UU) appears that the relations among users do not work very well
on our dataset. The relations among users may introduce more noise and seems
to have negative impact on this dataset.

258 T. Cai et al.

5 Conclusions

In this paper, we propose an efficient and simple bi-relational graph model, which
integrates various valuable information into the bi-relational graph as a solution
to handle cold-start problem in the article recommendation. We conduct a series
of experiments on the real world dataset. The experimental results demonstrate
that our model takes less time and requires less memory space than other base-
line models. Meanwhile, our model also achieves better performance than the
CTR. Once the tags’ information is integrating, the graph model achieves the
best performance for new article recommendation. Besides, comparing with BG-
IteRWR, our model can balance the processing cost and recommendation quality.
It can preserve 90 % quality, while dramatically saving the stored cost and the
computation time.

For future work, the information of authors is worth integrating into graph
to make better predictions for personalized recommendation. Our future work
direction also aims at producing such a novel tag’s weighting scheme suitable for
old article recommendation.

Acknowledgments. This research is supported by National Nature Foundation under
Grant 61300094 and the Fundamental Research Funds for the Central Universities
under Grant ZYGX2013J083.

References

1. Sarwar, B., Karypis, G., Konstan, J., et al.: Item-based collaborative filtering rec-
ommendation algorithms. In: Proceedings of the 10th International Conference on
World Wide Web, pp. 285–295. ACM (2001)

2. Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. In: Advances in
Neural Information Processing Systems, pp. 1257–1264 (2007)

3. McNee, S.M., Albert, I., Cosley, D., et al.: On the recommending of citations
for research papers. In: Proceedings of the 2002 ACM Conference on Computer
Supported Cooperative Work, pp. 116–125. ACM (2002)

4. El-Arini, K., Veda, G., Shahaf, D., et al.: Turning down the noise in the blo-
gosphere. In: Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 289–298. ACM (2009)

5. He, Q., Pei, J., Kifer, D., et al.: Context-aware citation recommendation. In: Pro-
ceedings of the 19th International Conference on World Wide Web, pp. 421–430.
ACM (2010)

6. Basilico, J., Hofmann, T.: Unifying collaborative and content-based filtering. In:
Proceedings of the Twenty-First International Conference on Machine Learning,
p. 9. ACM (2004)

7. Xia, F., Asabere, N.Y., Liu, H., et al.: Folksonomy based socially-aware recom-
mendation of scholarly papers for conference participants. In: International World
Wide Web Conferences Steering Committee, pp. 781–786 (2014)

8. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific
articles. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 448–456. ACM (2011)

UAGMT for Scientific Article Cold Start Recommendation 259

9. Tian, G., Jing, L.: Recommending scientific articles using bi-relational graph-based
iterative RWR. In: Proceedings of the 7th ACM Conference on Recommender
Systems, pp. 399–402. ACM (2013)

10. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

11. Sugiyama, K., Kan, M.Y.: Exploiting potential citation papers in scholarly paper
recommendation. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on
Digital Libraries, pp. 153–162. ACM (2013)

12. Ha, J., Kwon, S.H., Kim, S.W., et al.: Recommendation of newly published
research papers using belief propagation. In: Proceedings of the 2014 Conference
on Research in Adaptive and Convergent Systems, pp. 77–81. ACM (2014)

13. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applica-
tions. In: Proceedings of ICDM, pp. 613–622 (2006)

14. Shin, K., Jung, J., Lee, S., et al.: BEAR: block elimination approach for random
walk with restart on large graphs. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pp. 1571–1585. ACM (2015)

15. Eto, M.: Random Walk with Wait and Restart on Document Co-citation Network
for Similar Document Search. RecSys Posters (2014)

16. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative rec-
ommendation. In: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 195–202. ACM (2009)

17. Meng, F., Gao, D., Li, W., et al.: A unified graph model for personalized query-
oriented reference paper recommendation. In: Proceedings of the 22nd ACM Inter-
national Conference on Information and Knowledge Management, pp. 1509–1512.
ACM (2013)

18. Bagci, H., Karagoz, P.: Context-aware friend recommendation for location based
social networks using random walk. In: Proceedings of the 25th International Con-
ference Companion on World Wide Web, pp. 531–536. ACM (2016)

19. Pan, J.-Y., Yang, H.-J., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-
modal correlation discovery. In: KDD, pp. 653–658. ACM (2004)

20. Wang, H., Chen, B., Li, W.J.: Collaborative topic regression with social regulariza-
tion for tag recommendation. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 2719–2725. AAAI Press (2013)

Keyword Queries over the Deep Web

Andrea Cal̀ı1, Davide Martinenghi2(B), and Riccardo Torlone3

1 Birkbeck, University of London, London, UK
andrea@dcs.bbk.ac.uk

2 Politecnico di Milano, Milano, Italy
davide.martinenghi@polimi.it

3 Università Roma Tre, Roma, Italy
torlone@dia.uniroma3.it

Abstract. The Deep Web is constituted by data that are accessible
through Web pages, but not indexable by search engines as they are
returned in dynamic pages. In this paper we propose a conceptual frame-
work for answering keyword queries on Deep Web sources represented
as relational tables with so-called access limitations. We formalize the
notion of optimal answer and characterize queries for which an answer
can be found.

Keywords: Keyword query · Access pattern · Deep web

1 Introduction

It is well known that the portion of the Web indexed by search engines constitutes
only a very small fraction of the data available online. The vast majority of the
data, commonly referred to as Deep Web, is “hidden” in local databases whose
content can only be accessed by manually filling up Web forms. This happens
for instance when we need to find a flight from Italy to Japan on the Web site of
an airline company. This immediately poses an interesting challenge, i.e., how to
automatically retrieve relevant information from the Deep Web – a problem that
has been deeply investigated in recent years (see, e.g., [2,3,6,17] for discussion).
Usually, a data source in the Deep Web is conceptually modeled by a relational
table in which some columns, called input attributes, represent fields of a form
that need to be filled in so as to retrieve data from the source, while all the
others, called output attributes, represent values that are returned to the user.
Consider for instance the following relations in which the i superscript denotes
the input attributes.

r1 =
Depti Emp
IT John t11
AI Mike t12

r2 =

Empi Proj
John P1 t21
Ann P2 t22
Mike P2 t23

r3 =
Proji Emp Role
P1 John DBA t31
P1 Ann Analyst t32

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 260–268, 2016.
DOI: 10.1007/978-3-319-46397-1 20

Keyword Queries over the Deep Web 261

Relation r1 represents a form that, given a department, returns all the employ-
ees working in it; relation r2 a form that, given an employee, returns all the
projects he/she works on; and relation r3 a form that, given a project, returns
the employees working in it along with their role. These access modalities are
commonly referred to as access limitations, in that data can only be queried
according to given patterns. Different approaches have been proposed in the lit-
erature for querying databases with access limitations: conjunctive queries [4,5],
natural language [15], and SQL-like statements [13]. In this paper, we address
the novel problem of accessing the Deep Web by just providing a set of keywords,
in the same way in which we usually search for information on the Web with
a search engine. Consider for instance the case in which the user only provides
the keywords “DBA” and “IT” for querying the portion of the Deep Web repre-
sented by the relations above. Intuitively, he/she is searching for employees with
the DBA role in the IT department. Given the access limitations, this query
can be concretely answered by first accessing relation r1 using the keyword IT,
which allows us to extract the tuple t11. Then, using the value John in t11, we
can extract the tuple t21 from relation r2. Finally, using the value P1 in t21,
we can extract the tuples t31 and t32 from relation r3. Now, since t31 contains
DBA, it turns out that the set of tuples {t11, t21, t31} is a possible answer to the
input query in that the set is connected (every two tuples in it share a constant)
and contains the given keywords. However, the tuple t21 is somehow redundant
and can be safely eliminated from the solution, since the set {t11, t31} is also
connected and contains the keywords. This example shows that, in this context,
the keyword query answering problem can be involved and tricky, even in sim-
ple situations. In the rest of this paper, we formally investigate this problem
in depth. We first propose, in Sect. 2, a precise semantics of (optimal) answer
to a keyword query in the Deep Web. We then tackle, in Sect. 3, the problem
of finding an answer to a keyword query by assuming that the domains of the
keywords are known in advance. This allows us to perform static analysis to
immediately discard irrelevant cases from our consideration. Section 4 ends the
paper with some conclusions and future works.

Related work. To our knowledge, this is the first paper that proposes a com-
prehensive approach to the problem of querying the Deep Web using keywords.
In an earlier work [7], we have just defined the problem and provided some
preliminary insights on query processing. The problem of query processing in
the Deep Web has been widely investigated in the last years, with different
approaches and under different perspectives including: data crawling [18], inte-
gration of data sources [11], query plan optimization [5], and generic structured
query models [13]. However, none of them has tackled the problem that we have
addressed in this paper. The idea of querying structured data using keywords
emerged more than a decade ago [1] as a way to provide high-level access to
data and free the user from the knowledge of query languages and data organi-
zation. Since then, a lot of work has been done in this field (see, e.g., [20] for a
survey) but never in the context of the Deep Web. This problem has been investi-
gated in the context of various data models: relational [14], semi-structured [16],

262 A. Cal̀ı et al.

XML [10], and RDF [19]. Within the relational model, the common assump-
tion is that an answer to a keyword query is a graph of minimal size in which
the nodes represent tuples, the edges represent foreign key references between
them, and the keywords occur in some node of the graph [12]. Our definition of
query answer follows this line but it is more general, since it is only based on
the presence of common values between tuples, while not forcing the presence
of foreign keys. The various approaches to keyword query answering over rela-
tional databases are commonly classified into two categories: schema-based and
schema-free. Schema-based approaches [1,12] make use, in a preliminary phase,
of the database schema to build SQL queries that are able to return the answer.
Conversely, schema-free approaches [9,14] rely on exploration techniques over a
graph-based representation of the whole database. Since the search for an opti-
mal answer consists in finding a minimal Steiner tree on the graph, which is
known to be an NP-Complete problem [8], the various proposals rely on heuris-
tics aimed at generating approximations of Steiner trees. Our approach makes
use of the schema of the data sources but cannot be classified in any of the
approaches above since, given the access limitations, it rather relies on building
a minimal query plan of accesses to the data sources.

2 Preliminaries and Problem Definition

We model data sources as relations of a relational database and we assume that,
albeit autonomous, they have “compatible” attributes. For this, we fix a set
of abstract domains D = {D1, . . . , Dm}, which, rather than denoting concrete
value types (such as string or integer), represent data types at a higher level of
abstraction (for instance, car or country). Therefore, in an abstract domain an
object is uniquely represented by a value. The set of all values is denoted by
D =

⋃n
i=1 Di. For simplicity, we assume that all abstract domains are disjoint.

We then say that a (relation) schema r, customarily indicated as r(A1, . . . , Ak),
is a set of attributes {A1, . . . , Ak}, each associated with an abstract domain
dom(Ai) ∈ D, 1 ≤ i ≤ k. A database schema S is a set of schemas {r1, . . . , rn}.
As usual, given a schema r, a tuple t over r is a function that associates a value
c ∈ dom(A) with each attribute A ∈ r, and a relation instance rI of r is a set of
tuples over r. For simplicity, we also write dom(c) to indicate the domain of c. A
(database) instance I of a database schema S = {r1, . . . , rn} is a set of relation
instances {rI1 , . . . , rIn }, where rIi denotes the relation instance of ri in I. For
the sake of simplicity, in the following we assign the same name to attributes of
different schemas that are defined over the same abstract domain.

Definition 1 (Access pattern). An access pattern Π for a schema
r(A1, . . . , Ak) is a mapping Π : {A1, . . . , Ak} → M , where M = {i, o} is called
access mode, and i and o denote input and output, respectively; Ai is corre-
spondingly called an input (resp., output) attribute for r wrt Π.

Henceforth, we denote input attributes with an ‘i’ superscript, e.g., Ai. Moreover,
we assume that each relation has exactly one access pattern.

Keyword Queries over the Deep Web 263

Definition 2 (Binding). Let A′
1, . . . , A

′
� be all the input attributes for r wrt

Π; any tuple b = 〈c1, . . . , c�〉 such that ci ∈ dom(A′
i) for 1 ≤ i ≤ � is called a

binding for r wrt Π.

Definition 3 (Access). An access is a pair 〈Π,b〉, where Π is an access pattern
for a schema r and b is a binding for r wrt Π. The output of such an access
on an instance I is the set T of all tuples in the relation rI ∈ I over r that
match the binding, i.e., such that T = σA1=c1,...,A�=c�

(r).

Intuitively, we can only access a relation if we can provide a binding for it, i.e.,
a value for every input attribute.

Definition 4 (Access path). Given an instance I for a database schema S,
a set of access patterns Π for the relations in S, and a set of values C ⊆ D, an
access path on I (for S, Π and C) is a sequence b1−→rI

1
T1

b2−→rI
2

· · · bn−→rI
n
Tn,

where, for 1 ≤ i ≤ n (i) bi is a binding for a relation ri ∈ S wrt a pattern
Πi ∈ Π for ri (ii) Ti is the output of access 〈Πi,bi〉 on I, and (iii) each value
in bi either occurs in Tj with j < i or is a value in C.

Definition 5 (Reachable portion). A tuple t in I is said to be reachable
given C if there exists an access path P (for S, Π and C) such that t is in the
output of some access in P ; the reachable portion reach(I,Π,C) of I is the
set of all reachable tuples in I given C.

In the following, we will write SΠ to refer to schema S under access patterns Π.

Example 1. Consider the following instance I of a schema SΠ =
{r1(Ai

1, A2), r2(Ai
2, A1), r3(Ai

1, A2, A3)}.

r1 =
Ai

1 A2

c0 c1 t11
c2 c3 t12

r2 =

Ai
2 A1

c1 c2 t21
c4 c2 t22
c1 c6 t23

r3 =

Ai
1 A2 A3

c2 c1 c8 t31
c5 c4 c8 t32
c6 c7 c9 t33

Then, for instance, {t11} is the output of the access with binding 〈c0〉 wrt

r1(Ai
1, A2), and

〈c0〉−→rI
1

{t11} 〈c1〉−→rI
2

{t21, t23}, is an access path for S, Π and
C = {c0}, since, given C, we can extract t11 from r1 and, given {c1} from t11,
we can extract t21 and t23 from r2. The reachable portion of I, given C, is
reach(I,Π,C) = {t11, t12, t21, t23, t31, t33}, while {t22, t32} ∩ reach(I,Π,C) =
∅. Figure 1a shows the reachable portion I′ of I given C along with the access
paths used to extract it, with dotted lines enclosing outputs of accesses. �
The definition of answer to a keyword query in our setting requires the prelimi-
nary notion of join graph.

Definition 6. (Join graph). Given a set T of tuples, the join graph of T is a
node-labeled undirected graph 〈N,E〉 constructed as follows: (i) the nodes N are
labeled with tuples of T, with a one-to-one correspondence between tuples of T
and nodes of N ; and (ii) there is an arc between two nodes n1 and n2 whenever
the tuples labeling n1 and n2 have at least one value in common.

264 A. Cal̀ı et al.

<c6><c2><c2>

<c0>

<c1>

t31 t33

t23

t11

t21

t12

r1

r2

r3r1r3

(a) Reachable portion I′, given {c0}.

t31 t33

t23

t11

t21

t12

(b) Join graph of I′.

t31
t33

t23
t11t11

21

(c) Two answers to KQ q.

Fig. 1. Illustration of Examples 1, 2, and 3.

Example 2. Consider instance I of Example 1 and the reachable portion I′ of
I given {c0}, shown in Fig. 1a. The join graph of I′ is shown in Fig. 1b. �

A keyword query (KQ) is a non-empty set of values in D called keywords.

Definition 7 (Answer to a KQ). An answer to a KQ q against a database
instance I over a schema SΠ is a set of tuples A in reach(I,Π, q) such that:
(i) each keyword k ∈ q occurs in at least one tuple t in A; (ii) the join graph
of A is connected; (iii) no proper subset A′ ⊂ A satisfies both Conditions (i)
and (ii) above.

It is straightforward to see that there could be several answers to a KQ; below
we give a widely accepted criterion for ranking such answers [20].

Definition 8. Let A1,A2 be two answers to a KQ q on an instance I. We
say that A1 is better than A2 if |A1| ≤ |A2|. The optimal answers are those of
minimum size.

Example 3. Consider a KQ q = {c1, c8} over the instance I of Example 1.
Figure 1a shows two possible answers: A1 = {t11, t31} and A2 = {t11, t23, t33}.
A1 is better than A2 and is the optimal answer to q. �

3 Detecting Non-answerable Queries

For convenience of notation, we sometimes write c : D to denote value c and
indicate that dom(c) = D. In addition, in our examples, the name of an attribute
will also indicate its abstract domain.

3.1 Compatible Queries

In order to focus on meaningful queries, we semantically characterize queries for
which an answer might be found.

Definition 9 (Compatibility). A KQ q is said to be compatible with a schema
S if there exist a set of access patterns Π and an instance I over SΠ such that
there is an answer to q against I.

Keyword Queries over the Deep Web 265

Example 4. The KQ q1 = {a : A, c : C} is not compatible with schema S1 =
{r1(A,B), r2(C,D)}, since no set of tuples from S containing all the keywords in
q1 can ever be connected, independently of the access patterns for S1. Conversely,
q1 is compatible with S2 = {r1(A,B), r3(B,C)}, as witnessed by a possible
answer {r1(a, b), r3(b, c)} and patterns Π such that SΠ

2 = {r1(Ai, B), r3(B,C)}.
Similarly, KQ q2 = {a : A, a′ : A} is compatible with a schema S3 = {r1(A,B)},
as witnessed by a possible answer {r1(a, b), r1(a′, b)} and patterns Π such that
SΠ
3 = {r1(Ai, B)}. However, q2 is not compatible with a schema S4 = {r4(A)},

since a unary relation, alone, can never connect two keywords. �

Checking compatibility of a KQ with a schema essentially amounts to checking
reachability on a graph. The main idea is that in order for an answer to ever be
possible, we must find an instance that exhibits a witness (i.e., a set of tuples)
satisfying all the conditions of Definition 7.

3.2 Answerable Queries

A stricter requirement than compatibility is given by the notion of answerability.

Definition 10 (Answerability). A KQ q is answerable against a schema SΠ

if there is an instance I over SΠ such that there is an answer to q against I.

Example 5. Consider KQ q = {a : A, c : C} and schema SΠ
1 = {r(Ai, B),

s(B,C,Di)}. Although q is compatible with S1, it is not answerable against
SΠ
1 , since no tuple from S1 can be extracted under Π (no values for domain D

are available). Conversely, q is answerable against SΠ
2 = {r(Ai, B), s(Bi, C,D)},

since an answer like {r(a, b), s(b, c, d)} could be extracted by first accessing r
with binding 〈a〉, thus extracting value b, and then s with binding 〈b〉. �

In order to check answerability, we need to check that all the required relations
can be accessed according to the access patterns. To this end, we first refer to a
schema enriched with unary relations representing the keywords in the KQ1.

Definition 11 (Expanded schema). Let q be a KQ over a schema SΠ. The
expanded schema SΠ

q of SΠ wrt. q is defined as SΠ
q = SΠ ∪ {rc(C)|c ∈ q},

where rc is a new unary relation, not occurring in SΠ, whose only attribute C
is an output attribute with abstract domain dom(C) = dom(c).

Then, we use the notion of dependency graph (d-graph) to denote output-input
dependencies between relation arguments, indicating that a relation under access
patterns needs values from other relations.

Definition 12 (d-graph). Let q be a KQ over a schema SΠ. The d-graph
GSΠ

q is a directed graph 〈N,E〉 defined as follows. For each attribute A of each

1 If other values are known besides the keywords, this knowledge may be represented
by means of appropriate unary relations with output mode in the schema.

266 A. Cal̀ı et al.

relation in the expanded schema SΠ
q , there is a node in N labeled with A’s access

mode and abstract domain. There is an arc u�v in E whenever: (i) u and v have
the same abstract domain; (ii) u is an output node; and (iii) v is an input node.

Some relations are made invisible by the access patterns and can be discarded.

Definition 13 (Visibility). An input node vn ∈ N in a d-graph 〈N,E〉 is
visible if there is a sequence of arcs u1

�v1, . . . , un
�vn in E such that (i) u1’s

relation has no input attributes, and (ii) vi’s and ui+1’s relation are the same,
for 1 ≤ i ≤ n − 1. A relation is visible if all of its input nodes are.

Example 5 (cont.). Consider the KQ and the schemas from Example 5. The

d-graphs G
SΠ
1

q and G
SΠ
2

q are shown in Figs. 2a and b, respectively. �

s

Di

C

B

c

C

r

B

Ai

a

A

(a) D-graph G
SΠ
1

q from Example 5; s is
not visible.

s

D

C

Bi

c

C

r

B

Ai

a

A

(b) D-graph G
SΠ
2

q from Example 5; all
relations are visible.

u

Ei

D

B

c

C

r

B

Ai

a

A

s

D

Ci

(c) D-graph GSΠ

q from Example 6; u is
not visible.

Fig. 2. D-graphs from the examples.

Answerability of a KQ q is checked by means of compatibility with a schema in
which all non-visible relations have been eliminated.

Example 6. Consider a KQ q = {a : A, c : C} and a schema SΠ =
{r(Ai, B), s(Ci,D), u(B,D,Ei)}. Relation u is not visible in GSΠ

q (Fig. 2c).
Then, q is not answerable in SΠ, since q is not compatible with schema
{r(A,B), s(C,D)} (i.e., S without relation u). �

4 Conclusions and Future Work

In this paper, we have defined the problem of keyword search in the Deep Web.
We are currently working on an algorithmic solution for query answering in this
context that aims at minimizing the number of accesses to the data sources. We
believe that several interesting issues can be studied in the framework defined in

Keyword Queries over the Deep Web 267

this paper. We plan, e.g., to leverage known values (besides the keywords) and
ontologies to speed up the search for an optimal answer as well as to consider
the case in which nodes and arcs of the join graph are weighted to model source
availability and proximity, respectively.

Acknowledgments. A. Cal̀ı acknowledges support from the EPSRC grant
EP/E010865/1 (“LIQUID”) and from the EU COST Action IC1302 (“KEYSTONE”).
D. Martinenghi acknowledges support from the EC’s FP7 “CUbRIK” and “SmartH2O”
projects, and the FESR project “Proactive”.

References

1. Agrawal, S., Chaudhuri, S., Das, G., DBXplorer: a system for keyword-based search
over relational databases. In: ICDE, pp. 5–16 (2002)

2. Bienvenu, M. et al.: Dealing with the deep web and all its quirks. In: Proceedings
of VLDS, pp. 21–24 (2012)

3. Cal̀ı, A., Calvanese, D., Martinenghi, D.: Dynamic query optimization under access
limitations and dependencies. J. UCS 15(1), 33–62 (2009)

4. Cal̀ı, A., Martinenghi, D.: Conjunctive query containment under access limitations.
In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp.
326–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87877-3 24

5. Cal̀ı, A., Martinenghi, D.: Querying data under access limitations. In: ICDE, pp.
50–59 (2008)

6. Cal̀ı, A., Martinenghi, D.: Querying the deep web. In: EDBT, pp. 724–727 (2010)
7. Cal̀ı, A., Martinenghi, D., Torlone, R.: Keyword search in the deep web. In: Pro-

ceedings of the 9th AMW (2015)
8. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing steiner

minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)
9. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data

graphs. In: SIGMOD, pp. 927–940 (2008)
10. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword

search over xml documents. In: SIGMOD, pp. 16–27 (2003)
11. He, B., Zhang, Z., Chang, K.C.-C., Metaquerier: querying structured web sources

on-the-fly. In: Proceedings of SIGMOD, pp. 927–929 (2005)
12. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational data-

bases. In: VLDB, pp. 670–681 (2002)
13. Jamil, HM, Jagadish, HV.: A structured query model for the deep relational web.

In: CIKM, pp. 1679–1682 (2015)
14. Kimelfeld B., Sagiv Y.: Finding and approximating top-k answers in keyword prox-

imity search. In: PODS, pp. 173–182 (2006)
15. Lehmann, J., Furche, T., Grasso, G., Ngomo, A.-C.N., Schallhart, C., Sellers, A.,

Unger, C., Bühmann, L., Gerber, D., Höffner, K., Liu, D., Auer, S.: deqa: deep
web extraction for question answering. In: Cudré-Mauroux, P., et al. (eds.) ISWC
2012. LNCS, vol. 7650, pp. 131–147. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35173-0 9

16. Guoliang Li, E., et al.: EASE: an effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data. In: SIGMOD, pp. 903–914
(2008)

http://dx.doi.org/10.1007/978-3-540-87877-3_24
http://dx.doi.org/10.1007/978-3-642-35173-0_9
http://dx.doi.org/10.1007/978-3-642-35173-0_9

268 A. Cal̀ı et al.

17. Madhavan, J., Afanasiev, L., Antova, L., Halevy, A.Y.: Harnessing the deep web:
present and future. In: CIDR (2009)

18. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. In: VLDB, pp. 129–138
(2001)

19. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-
didates for efficient keyword search on graph-shaped (rdf) data. In: ICDE, pp.
405–416 (2009)

20. Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: a survey.
IEEE Data Eng. Bull. 33(1), 67–78 (2010)

Sensor Observation Service Semantic Mediation:
Generic Wrappers for In-Situ

and Remote Devices

Manuel A. Regueiro1, José R.R. Viqueira1(B), Christoph Stasch2,
and José A. Taboada1

1 Computer Graphics and Data Engineering Group (COGRADE),
Centro de Investigación en Tecnolox́ıas da Información (CITIUS),

Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
{manuelantonio.regueiro,jrr.viqueira,manel.cotos}@usc.es

2 52◦ North Initiative for Geospatial Open Source Software GmbH,
Martin-Luther-King-Weg 24, 48155 Muenster, Germany

c.stasch@52north.org

Abstract. In-situ and remote sensors produce data that fit different
data modeling paradigms, namely, Entity/Relationship paradigm for the
former and Multidimensional Array paradigm for the latter. Besides, dif-
ferent standardized data access services are used in practice. Therefore
their integrated access is still a major challenge. This paper describes
a solution for the development of generic semantic data access wrap-
pers for observation datasets generated by in-situ and remote sensing
devices. Those wrappers are key components of data mediation archi-
tectures designed for the semantic integrated publishing of observation
data.

Keywords: Semantic mediation · Interoperability · Data integration ·
Observation data · Environmental data

1 Introduction

The amount of environmental observation datasets generated nowadays is
increasing due to the advances in sensing technologies. In-situ devices, like mete-
orological stations, generate data that fit well the Entity/Relationship paradigm
and relevant relational technologies. Remote devices, like radars, generate array
data, which are generally managed with ad-hoc implementations on top of stan-
dardized array file formats.

This article is based upon work from COST Action KEYSTONE IC1302, supported
by COST (European Cooperation in Science and Technology). It has been partially
funded by the Galician Government (Xunta de Galicia) and FEDER funds of the
EU under the Consolidation Program of Competitive Research Units (Network ref.
R2014/007).

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 269–276, 2016.
DOI: 10.1007/978-3-319-46397-1 21

270 M.A. Regueiro et al.

The implementation of Spatial Data Infrastructures (SDIs) demands from
data providers standardized data access services. The Open Geospatial Consor-
tium (OGC) proposes the Sensor Observation Service (SOS) specification to pro-
vide access to collections of observations. Informally, Observations provide values
of Properties of specific entities (Feature of Interest - FOI), which are generated
by some observation Process. Beyond the above metadata and the observed value,
an observation must also record temporal data and some other optional meta-
data, including the unit of measure (uom), quality information and some other
parameters. Mandatory operations of the SOS interface include DescribeSensor
and GetObservation. The former provides a Sensor Modeling Language - Sen-
sorML description of a specific Process. The later retrieves observation data that
matches specific criteria, including filters on space, time and metadata. To min-
imize the probability of getting an empty result in a GetObservation request,
the observations of each Process of a SOS are grouped into collections called
Offerings. Mandatory operation GetCapabilities provides appropriate metadata
of each available Offering.

Integrated access to in-situ and remote observation data sources through SOS
has already been reported in [10]. A semantic mediation solution of SOS data
sources has also been developed as previous work of these authors [9], where
a well-known mediator/wrapper architecture [12] is combined with the use of
ontologies. Basic SOS related concepts are defined in a Core Ontology as spe-
cializations of relevant W3C Semantic Sensor Network (SSN) [5] concepts. Data
Source Ontologies represent SOS metadata of each dataset by specializing rele-
vant concepts of the Core Ontology. Data source classes may be annotated with
relationships to classes of some well-known top-level application domain ontol-
ogy like SWEET [8]. The definition of a Mediator Ontology enables the expert
to specify required semantic integration knowledge, in the form of relationships
between global and local concepts. Those relationships are used to determine
which data sources must be queried and which criteria has to be used during
global GetObservation evaluations. The implementation of the wrappers of the
different data sources is always ad-hoc. However, many similarities exist between
the different relational sensor observation datasets, and the same applies to those
recording array observation data.

Based on the above, this paper describes the implementation of two generic
data access wrappers: (i) A wrapper for in-situ geospatial observation data
sources, recorded in spatial relational DBMSs and (ii) A wrapper for remote
geospatial observation data sources, accessible through NetCDFSubset1 stan-
dardized array data services.

The remainder of this paper is organized as follows. Section 2 discusses on
some related pieces of work. The design and implementation of the in-situ sensor
observation data wrapper is described in Sect. 3. Section 4 is devoted to the
remote sensor observation data wrapper. Finally, Sect. 5 concludes the paper.

1 http://www.unidata.ucar.edu/software/thredds/current/tds/reference/NetcdfSub
setServiceReference.html.

http://www.unidata.ucar.edu/software/thredds/current/tds/reference/NetcdfSubsetServiceReference.html
http://www.unidata.ucar.edu/software/thredds/current/tds/reference/NetcdfSubsetServiceReference.html

Sensor Observation Service Semantic Mediation: Generic Wrappers 271

2 Related Work

Most of the current SOS implementations are specialized on observations gen-
erated by in-situ devices, recorded in relational databases under specific data
models (see the 52◦ North SOS for a representative example2). Only [2] sup-
ports array data sources generated by remote sensing devices.

Semantic sensor data discovery and integration are identified as major chal-
lenges in [3], in the scope of the Semantic Sensor Web [11] and the Linked Sensor
Data. In the Model Based Mediation approach for scientific data sources [7], each
data source exports its semantics within relevant ontologies and the mediator
combines data source ontologies with data integration knowledge provided by
the domain expert. An extension of a conventional conceptual model with con-
structs that incorporate observation semantics is defined in [1]. The result data
modeling framework may be used to annotate data sources with observation
semantics.

In [4] the semantic annotation of SensorML documents is the base for the
semantic registration of sensing devices in SOS services, which enables subse-
quent semantically integrated access. A semantic SOS (SemSOS) implementation
is reported in [6], where sensor data is semantically annotated and transformed
to RDF to be recorded with semantic data storage technologies. Next, SPARQL
is used to implement SOS requests. It noticed that none of the above approaches
intend to provide semantic data mediation between various existing data sources.

3 In-Situ Sensor Observation Data Wrapper

A generic wrapper was developed that enables SOS access to any database of
in-situ observations recorded in a spatially enabled DBMS. To illustrate this, let
us first describe two real data sources, which were used during the evaluation of
the proposed solution.

Meteorological Stations3 (Fig. 1(a)): Observation data is generated every 10 min
(10MinutesData), daily (DalyData) and monthly (MonthlyData). Each Measure-
ment represents the fact that a sensing device (Sensor) that measures a given
property (Parameter) is installed in a Station at a given Elevation above the
soil and an aggregation process (Function) is next applied with a given time fre-
quency (Interval). Sensors are classified by SensorTypes whereas Stations are
integrated in Networks.

CTD Profiles4 (Fig. 1(b)): Each data element (Data) records a value, a sea depth
level and a reference to a Measurement. A Measurement references a measured
property (Parameter) and a Profile, which represents the use of a specific CTD-
Device at a given time instant and at a given location in the sea (Station).

A uniform view of any database is provided through a generic data model
(See Fig. 2).
2 http://52north.org/communities/sensorweb/sos/index.html.
3 http://www2.meteogalicia.es/galego/observacion/estacions/estacions.asp.
4 http://www.intecmar.org/Ctd/Default.aspx.

http://52north.org/communities/sensorweb/sos/index.html
http://www2.meteogalicia.es/galego/observacion/estacions/estacions.asp
http://www.intecmar.org/Ctd/Default.aspx

272 M.A. Regueiro et al.

Fig. 1. Conceptual models of meteorological station and CTD data sources.

The model enables both the generation of the required Data Source Ontology
and the implementation of the SOS GetObservation operation. At the top of the
diagram, three UML classes enable the representation of the Process, Property
and FOI OWL classes that might be available in the data source (SensorType,
GrandParameter and Network elements in the case of meteorological stations).
The URI of each class is constructed concatenating its identifier (id) with the
data source identifier. Relationships with the selected well-known top-level appli-
cation domain ontology (SWEET in our case) are also provided. Finally, each
OWL class has also a reference to its superclass in the model. This enables the
creation of OWL class hierarchies from the data source data.

Individuals of the above classes are represented by relevant UML classes.
ProcessDescriptionTime represents the temporal evolution o the SensorML
description of each Process. Finally, the observations of each Process and Prop-
erty at each FOI are represented by UML class ObservationInstance. Observa-
tionInstanceLatest is used to enable more efficient access to the last observations,
which is a typical data need in many real applications.

The SQL code of the ProcessInstance view for the data source of meteoro-
logical stations is given below.
SELECT CAST(p.id AS VARCHAR)||"_"|| replace(p.name , "", "-")||_||

CAST(e.id AS VARCHAR)||"_"|| replace(e.elevation , "", "-") AS id,
CAST(gp.id AS VARCHAR)||"_"||gp.name AS propertyClass

FROM Paramter AS p, GrandParameter AS gp, Measurement AS m, Elevation AS e
WHERE p.grandParameter=gp.id AND m.parameter=p.id AND m.elevation=e.id

Identifiers are generated concatenating appropriate keys of the database ele-
ments with other attributes that can be better interpreted by humans. Thus,

Sensor Observation Service Semantic Mediation: Generic Wrappers 273

Fig. 2. Generic conceptual model for in-situ observation databases.

Parameter “Temperature” (id = 25), measured at “10 m’ (Elevation identifier
15) has identifier “25 Temperature 15 10-m”.

A GetObservation request that retrieves all the observations of a Property
with identifier prop generated by a Process with identifier proc, during the period
defined by instants s and e at FOIs located inside a given rectangle b is imple-
mented with the following SQL statement5.
SELECT oi.*
FROM ObservationInstance oi JOIN

SamplingFeatureInstance sfi ON (oi.foi = sfi.id)
WHERE oi.process = proc AND oi.property = prop

AND oi.phenomenonTime BETWEEN s AND e
AND st_intersects(b, sfi.shape)

The above initial implementation offered very slow response times. This
is due to the fact that potential indexes of the underlying database are not
used, because of the way identifiers are constructed. To overcome this problem,
the application domain expert must provide the positions inside each identifier

5 Spatial SQL standard ISO/IEC 13249-3:2011 must be supported by the underlying
DBMS.

274 M.A. Regueiro et al.

Fig. 3. Performance evaluation.

occupied by key attributes (indexed ones). Thus, the restriction “oi.property =
‘25 Temperature 15 10-m”’ may be replaced by a more efficient “oi.paramId =
25 and oi.elevId = 15”. The gain in performance is shown in Fig. 3(a).

4 Remote Sensor Observation Data Wrapper

A generic wrapper was developed that enables the semantically integrated access
to array datasets produced by remote sensors and published through NetCDF-
Subset services. A specialization of the Raster Core Ontology, whose main ele-
ments are depicted in Fig. 4, is used by the expert to provide required metadata
of each such dataset.

Processes that generate the array data are represented by individuals of
core#Process. Each Offering of the data source will be defined normally as

Fig. 4. Raster core ontology.

Sensor Observation Service Semantic Mediation: Generic Wrappers 275

a subclass of core#Offering, specifying with a relevant restriction the reference
to its Process and with relevant annotation the reference to the specific catalog
of the specific THREDDS data server. Variables of the server are defined as indi-
viduals of raster#Variable, referencing their related SOS Property. An algorithm
is periodically executed to update such ontology with metadata obtained from
the THREDDS data server, which is required to solve future GetCapabilities and
GetObservation requests.

SOS GetCapabilities requests are implemented using SPARQL over the above
ontology. GetObservation requests are solved in two steps. First, a SPARQL
query is executed to obtain the relevant raster#Dataset classes of the ontology
and next a NetCDFSubset request is performed for each such dataset to obtain
the required array data. Regarding performance evaluation, it is noticed that the
a main difference between the current generic implementation of the wrapper and
an ad-hoc one would be given by the time to access the ontology. However, such
time is two low in comparison to the time to access the datasets. This comparison
between the generic and ad-hoc implementations is given in Fig. 3(b).

5 Conclusion

The design and implementation of generic data access wrappers for in-situ and
remote sensor observation data sources was discussed. Those wrappers are key
components of a mediator/wrapper architecture for sensor observation semantic
data mediation. Generic models and ontologies are designed and based on them
SOS operations are implemented. The expert can concentrate now on semantic
issues related to the datasets, decreasing this way the development cost of data
wrappers, without a sensitive impact in the system performance.

References

1. Bowers, S., Madin, J., Schildhauer, M.: A conceptual modeling framework for
expressing observational data semantics. In: Li, Q., Spaccapietra, S., Yu, E., Olivé,
A. (eds.) Conceptual Modeling - ER 2008. LNCS, vol. 5231, pp. 41–54. Springer,
Heidelberg (2008)

2. Bridger, E., Bermudez, L.E., Maskey, M., Rueda, C., Babin, B.L., Blair, R.: Oost-
ethys - open source software for the global earth observing systems of systems. In:
American Geophysical Union Fall 2009 Meeting (2009)

3. Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S.,
Lemmens, R.: New generation sensor web enablement. Sensors 11(3), 2652 (2011)

4. Bröring, A., Maué, P., Janowicz, K., Nüst, D., Malewski, C.: Semantically-enabled
sensor plug & play for the sensor web. Sensors 11(8), 7568 (2011)

276 M.A. Regueiro et al.

5. Compton, M., Barnaghi, P., Bermudez, L., Garćıa-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K.,
Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page,
K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C semantic
sensor network incubator group. Web Semant. Sci. Serv. Agents World Wide Web
17, 25–32 (2012)

6. Henson, C.A., Pschorr, J.K., Sheth, A.P., Thirunarayan, K.: Semsos: semantic
sensor observation service. In: Proceedings of the 2009 International Symposium
on Collaborative Technologies and Systems, CTS 2009, pp. 44–53. IEEE Computer
Society (2009)

7. Ludascher, B., Gupta, A., Martone, M.: Model-based mediation with domain maps.
In: 17th International Conference on Data Engineering, Proceedings, pp. 81–90
(2001)

8. Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for earth
and environmental terminology (SWEET). Comput. Geosci. 31(9), 1119–1125
(2005)

9. Regueiro, M.A., Viqueira, J.R., Stasch, C., Taboada, J.A.: Semantic mediation
of observation datasets through sensor observation services. Technical report,
CITIUS, Universidade de Santiago de Compostela, January 2016

10. Regueiro, M.A., Viqueira, J.R., Taboada, J.A., Cotos, J.M.: Virtual integration of
sensor observation data. Comput. Geosci. 81, 12–19 (2015)

11. Sheth, A., Henson, C., Sahoo, S.: Semantic sensor web. IEEE Internet Comput.
12(4), 78–83 (2008)

12. Wiederhold, G.: Mediators in the architecture of future information systems. Com-
puter 25(3), 38–49 (1992)

Modeling and Executing Business
Processes

Probabilistic Evaluation of Process Model
Matching Techniques

Elena Kuss1(B), Henrik Leopold2, Han van der Aa2, Heiner Stuckenschmidt1,
and Hajo A. Reijers2

1 Research Group Data and Web Science, University of Mannheim,
68163 Mannheim, Germany

{elena,heiner}@informatik.uni-mannheim.de
2 Department of Computer Science, Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
{h.leopold,j.h.vander.aa,h.a.reijers}@vu.nl

Abstract. Process model matching refers to the automatic identifica-
tion of corresponding activities between two process models. It represents
the basis for many advanced process model analysis techniques such as
the identification of similar process parts or process model search. A
central problem is how to evaluate the performance of process model
matching techniques. Often, not even humans can agree on a set of cor-
rect correspondences. Current evaluation methods, however, require a
binary gold standard, which clearly defines which correspondences are
correct. The disadvantage of this evaluation method is that it does not
take the true complexity of the matching problem into account and does
not fairly assess the capabilities of a matching technique. In this paper,
we propose a novel evaluation method for process model matching tech-
niques. In particular, we build on the assessment of multiple annotators
to define probabilistic notions of precision and recall. We use the dataset
and the results of the Process Model Matching Contest 2015 to assess and
compare our evaluation method. We find that our probabilistic evalua-
tion method assigns different ranks to the matching techniques from the
contest and allows to gain more detailed insights into their performance.

Keywords: Process model matching · Non-binary evaluation · Match-
ing performance assessment

1 Introduction

Process models are conceptual models used for purposes ranging from the doc-
umentation of organizational operations [6] to the definition of requirements for
information systems [19]. Process model matching refers to the automatic iden-
tification of corresponding activities between such models. The application sce-
narios of matching techniques are manifold. They include the analysis of model
differences [12], harmonization of process model variants [13], process model

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 279–292, 2016.
DOI: 10.1007/978-3-319-46397-1 22

280 E. Kuss et al.

search [9], and the detection of process model clones [22]. The challenges asso-
ciated with the matching task are considerable. Among others, process model
matching techniques must be able to deal with heterogeneous vocabulary, differ-
ent levels of granularity, and the fact that typically only a few activities from one
model have a corresponding counterpart in the other. In recent years, a signifi-
cant number of process model matching techniques have been defined to address
these problems (cf. [4,10,11,14,23,24]). One central question that concerns all
these techniques is how to demonstrate that they actually perform well.

To demonstrate the performance of a matching technique, authors typically
conduct evaluation experiments that consist of solving a concrete matching prob-
lem. So far, the basis of such evaluation experiments is a binary gold standard
created by humans, which clearly defines which correspondences are correct. By
comparing the correspondences generated by the matching technique against
those from the gold standard, it is possible to compute the well-established met-
rics precision, recall, and F-measure [15]. In this way, the performance of an
approach can be quantified and compared against others.

The disadvantage of this evaluation method is that it does not take the true
complexity of the matching problem into account. This is, for instance, illustrated
by the gold standards of the Process Model Matching Contests (PMMCs) 2013
and 2015. The organizers of the contests found that there was not a single model
for which two independent annotators fully agreed on all correspondences [1,3].
A binary gold standard, however, implies that any correspondence that is not
part of the gold standard is incorrect and, thus, negatively affects the above
mentioned metrics. This raises the question of why the performance of process
model matching techniques is determined by referring to a single correct solution
when human annotators may not even agree on what this correct solution is.

Recognizing the need for a more suitable evaluation strategy for process
model matching techniques, we use this paper to propose a novel process model
matching evaluation method. Instead of building on a binary gold standard, we
define a non-binary gold standard that combines a number of binary assess-
ments created by individual annotators. This allows us to express the support
that exists for correspondences in the non-binary gold standard as the fraction
of annotators that agree that a given correspondence is correct. The probabilistic
precision and recall metrics we define take these support values into consider-
ation when assessing the performance of matching techniques. As such, corre-
spondences with high support values have a greater impact on precision and
recall scores than correspondences with low support.

The rest of the paper is organized as follows. Section 2 illustrates the problems
associated with the usage of binary gold standards for process model matching
evaluation. In Sect. 3, we define the non-binary gold standard and probabilistic
precision and recall metrics. In Sect. 4, we assess and compare the proposed
probabilistic evaluation metrics by applying our method on the dataset of the
PMMC 2015. Section 5 discusses related work on the evaluation of matching
techniques in different application domains. Finally, we conclude the paper and
discuss future research directions in Sect. 6.

Probabilistic Evaluation of Process Model Matching Techniques 281

2 Problem Illustration

Given two process models with their respective sets of activities A1 and A2, the
goal of process model matching is to automatically identify the activities (or
sets of activities) from A1 and A2 that represent similar behavior. The result
of conducting process model matching, therefore, is a set of activity correspon-
dences. One of the central questions in the context of process model matching is
how to assess whether the correspondences identified by a matching technique
are correct. To illustrate the problems associated with the evaluation of process
model matching, consider the example depicted in Fig. 1. It shows two simplified
process models from the PMMC 2015 [1], as well as possible correspondences
between them.

Receive
online

application

U
ni

ve
rs

ity
 1

U

ni
ve

rs
ity

 2

Check
documents

Assess
applicant

Invite for
interview

Send
decision letter

Receive
application

form

Check if
application is

complete

Check if
bachelor is
sufficient

Inform about
decision

Invite for
aptitude test

Fig. 1. Two process models and possible correspondences

Upon closer inspection of the correspondences shown in Fig. 1 it becomes
clear that many of the correspondences are actually disputable. Consider, for
instance, the correspondence between “Receive online application” from Univer-
sity 1 and “Receive application form” in the process of University 2. On the one
hand, we can argue in favor of this correspondence because they both describe
the receipt of an application document. On the other hand, we can argue that
these activities do not correspond to each other because the former relates to an
online procedure, whereas the second refers to a paper-based step. We can bring
forward similar arguments for the correspondence between “Invite for interview”
and “Invite for aptitude test”. Both activities aim to assess whether an applicant
is suitable for a university. However, an interview is clearly a different assessment
instrument than an aptitude test, which makes the correspondence disputable.
Lastly, also the correspondence between “Check documents” from University 1

282 E. Kuss et al.

and the two activities “Check if application is complete” and “Check if bache-
lor is sufficient” from University 2 is controversial. If we consider the activity
“Check documents” to solely relate to the completeness of the documents, then
the activity “Check if bachelor is sufficient” should not be part of the correspon-
dence. These examples illustrate that it may be hard and, in some cases, even
impossible to agree on a single correct set of correspondences. Despite this, the
evaluation of process model matching techniques currently depends on the defi-
nition of such a single set of correct correspondences, i.e. a binary gold standard.
This binary gold standard is needed to compute precision, recall, and F-measure,
which are traditionally used to evaluate process model matching techniques (cf.
[1,3,14,23,24]).

In this paper, we argue that a binary evaluation of process model match-
ing techniques does not account for the full complexity of the process model
matching task. Binary evaluation does not consider disagreements that may
exist regarding the correctness of correspondences. Therefore, binary evaluation
does not provide a fair assessment of the output generated by a matching tech-
nique. We address this problem by defining the first non-binary process model
matching evaluation method. We build on a gold standard that has been defined
by several annotators and, in this way, allows to account for the subjectivity
associated with identifying correspondences.

3 Probabilistic Evaluation of Process Model Matching

In this section, we define our method for non-binary matching evaluation. The
starting point of our method is formed by binary assessments created by indi-
vidual human annotators. Each of these binary human assessments captures the
correspondences that a single annotator identifies between two given process
models.

Definition 1 (Binary Human Assessment). Let A1 and A2 be the sets of
activities of two process models. Then, a binary human assessment can be cap-
tured by the relation H : A1 × A2. Each element (a1, a2) ∈ H specifies that the
human assessor considers the activity a1 to correspond to the activity a2.

Note that Definition 1 also allows for one-to-many and many-to-many rela-
tionships. If, for instance, the elements (a1, a2) and (a1, a3) are both part of H,
then there exists a one-to-many relationship between the activity a1 and the two
activities a2 and a3. Further note that a binary human assessment according to
Definition 1 should be created independently and solely reflect the opinion of a
single assessor. Based on a number of such independently created binary human
assessments, we can then define a non-binary gold standard.

Definition 2 (Non-binary Gold Standard). A non-binary gold standard is
a tuple GS = (A1, A2, H, σ) where

– A1 and A2 are the sets of activities of two process models,

Probabilistic Evaluation of Process Model Matching Techniques 283

– H = {H1, . . . , Hn} is a set of independently created binary human assess-
ments, and

– σ : A1 ×A2 → R is a function assigning to each (a1, a2) ∈ A1 ×A2 a support
value, which is the number of binary human assessments in H that contain the
correspondence (a1, a2) divided by the total number of binary human assess-
ments |H|.
The overall rationale of the non-binary gold standard from Definition 2 is to

count the individual opinions from the binary human assessments as votes. In
this way, we obtain a support value σ for each correspondence according to the
number of votes in favor of this correspondence. In this way, any correspondence
with a support value 0.0 < σ < 1.0 can be regarded as an uncertain correspon-
dence. For these correspondences, there is no unanimous vote about whether or
not it is a correct correspondence. Based on these support values, we define non-
binary notions of the well-established metrics precision, recall, and F-measure
that take the uncertainty of correspondences into account. For convenience, we
introduce C as the set of all unique correspondences based on the union of all
binary human assessments from H.

Definition 3 (Probabilistic Precision, Recall, and F-Measure). Let A1

and A2 be the sets of activities of two process models, M : A1 × A2 the cor-
respondences identified by a matching technique, and GS = (A1, A2, H, σ) a
non-binary gold standard. Then, we define probabilistic precision, recall, and F-
measure as follows:

Probabilistic Precision (ProP) =

∑

m∈M

σ(m)
∑

m∈M

σ(m) + |M\C| (1)

Probabilistic Recall (ProR) =

∑

m∈M

σ(m)
∑

c∈C
σ(c)

(2)

Probabilistic F-Measure (ProFM) = 2 × ProP × ProR
ProP + ProR

(3)

Probabilistic precision and recall are adaptations of the traditional notions of
precision and recall that incorporate the support values from a non-binary gold
standard GS. We define probabilistic precision ProP as the sum of the support
values of the correspondences identified by the matching technique (M) divided
by the same value plus the number of correspondences that are not part of the
gold standard (|M\C|). This definition gives those correspondences that have
been identified by many annotators a higher weight than those that have only
been identified by a few. Therefore, it accounts for the uncertainty associated
with correspondences in the non-binary gold standard. As a result, the impact
of false positives, i.e. correspondences that have been identified by the matching
technique but are not part of the gold standard, result in a strong penalty of 1.0.
We justify this high penalty by the high coverage of uncertain correspondences

284 E. Kuss et al.

included in non-binary gold standards. These gold standards can be expected
to contain a broad range of potential correspondences, including those identified
by only a single annotator. Any correspondence not included in this broad range
can be considered as incorrect with certainty, which is reflected in the penalty
of 1.0 for false positives.

Probabilistic recall. ProR follows the same principle as the probabilistic precision.
It resembles the traditional definition of recall, but incorporates the support
values from the non-binary gold standard respectively. As a result, identifying
correspondences with a higher support has a higher influence on the recall than
identifying correspondences with a low support. The probabilistic F-measure
ProFM presents the harmonic mean of probabilistic precision and recall. It is
computed in the same way as the traditional F-measure, though it is here based
on ProP and ProR.

To illustrate these metrics, consider the correspondences, their support val-
ues, and the output of three matchers depicted in Table 1. The support values
reveal that five out of six correspondences are considered to be correct correspon-
dences in one or more binary human assessments. Matcher M1 identifies exactly
these five correspondences. Therefore, M1 achieves ProP and ProR scores of
1.0. By contrast, matcher M2 identifies only three of the five correct correspon-
dences. The matcher also includes the incorrect correspondence c6 in its output.
This results in a ProP value of 0.71 and a ProR value of 0.77. Although matcher
M3 correctly identifies four correspondences, instead of the three identified by
M2, it achieves the exact same ProP and ProR values. This occurs because M3

identifies c4 and c5, which have a combined support value of 0.75, i.e. the same
support value as correspondence c3 that is identified by M2. This demonstrates
that correspondences with a high support value have a greater contribution to
the metrics than those with low support.

Table 1. Exemplary matcher output and metrics

Corr. (C) Supp. (σ) M1 M2 M3

c1 1.00 1 1 1

c2 0.75 1 1 1

c3 0.75 1 1 0

c4 0.50 1 0 1

c5 0.25 1 0 1

c6 0.00 0 1 1

Furthermore, non-binary gold standards allow us to obtain more fine-granular
insights into the performance of matchers. We can achieve this by computing
probabilistic precision and recall scores for correspondences with a minimal sup-
port level. By adapting the equations from Definition 3 in this way, we can
differentiate between matchers that identify correspondences with a broad range

Probabilistic Evaluation of Process Model Matching Techniques 285

of support values and those that focus on the identification of correspondences
with high support values. We capture this notion of bounded probabilistic pre-
cision, recall, and F-measure in Definition 4.

Definition 4 (Bounded Probabilistic Precision, Recall, and F-
measure). Let A1 and A2 be the sets of activities of two process models,
M : A1 × A2 the correspondences identified by a matching technique, GS =
(A1, A2, H, σ) a non-binary gold standard, and Cτ refer to the set of corre-
spondences with a support level σ ≥ τ . Then, we define bounded probabilistic
precision, recall, and F-measure as follows:

ProP(τ) =

∑

m∈M

σ(m)
∑

m∈M

σ(m) + |M\Cτ | (4)

ProR(τ) =

∑

m∈M

σ(m)
∑

c∈Cτ

σ(c)
(5)

ProFM(τ) = 2 × ProP(τ) × ProR(τ)
ProP(τ) + ProR(τ)

(6)

By computing bounded precision and recall values, we can directly gain
insights into the differences between the results obtained by matchers M2 and
M3. For instance, M2 and M3 respectively achieve ProP(0.75) scores which
only consider correspondences with σ ≥ 0.75, i.e. 0.71 and 0.50. Similarly, they
achieve ProR(0.75) scores of 0.77 and 0.54. These metrics indicate that matcher
M2 is more successful in identifying correspondences with high support values.
By contrast, the bounded scores reveal that M3 identifies more correspondences,
although it also includes those with lower support values.

4 Evaluation Experiments

In this section, we apply our probabilistic evaluation method to a dataset from
the Process Model Matching Contest 2015. To this end, we create a non-binary
gold standard and compute the probabilistic metrics for the matchers that par-
ticipated in the contest. The overall goal of our experiments is to demonstrate
the usefulness of the non-binary perspective and the value of the insights that
our evaluation method delivers. Section 4.1 first describes the setup of our exper-
iments. Then, Sect. 4.2 elaborates on the results.

4.1 Setup

To demonstrate the usefulness of our evaluation method, we apply it to the
University Admission dataset from the PMMC 2015 [1]. This dataset consists
of nine BPMN process models describing the admission processes for graduate
study programs of different German universities. The size of the models varies

286 E. Kuss et al.

between 10 and 44 activities. The task in the context of the Process Model
Matching Contest 2015 was to match these models pairwise, resulting in a total
number of 36 matching pairs. Our experiments with this dataset consist of two
steps:

1. Non-binary gold standard creation: To define a non-binary gold standard, we
asked eight different individuals to identify the correspondences for the 36
model pairs from the dataset. The group of annotators involved was het-
erogeneous and included four researchers being familiar with process model
matching and four student assistants from the University of Mannheim in
Germany. The student assistants were introduced to the problem of process
model matching but not influenced in the way they identified correspondences.
The result of this step, was a non-binary gold standard based on eight binary
assessments. Note that we did not apply any changes to the individual assess-
ments. We included them in their original form into the non-binary gold stan-
dard.

2. Probabilistic evaluation: Based on the non-binary gold standard, we calcu-
lated probabilistic precision, probabilistic recall, and F-measure for each of
the 12 matchers that participated in the PMMC 2015. In line with the report
from the PMMC 2015 we distinguish between micro and macro average.
Macro average is defined as the average precision, recall, and F-measure of
all 36 matching pairs. Micro average, by contrast, is computed by considering
all 36 pairs as one matching problem. The micro average scores take different
sizes of matching pairs (in terms of the correspondences they consist of) into
account. As a result, a poor recall on a small matching pair has only limited
impact on the overall micro average recall score.

4.2 Results

This section discusses the results of our experiments. We first elaborate on the
characteristics of the non-binary gold standard we created. Then, we present the
results from the probabilistic evaluation and compare them to the results of the
non-binary evaluation from the PMMC 2015. Finally, we present the insights
from the bounded probabilistic evaluation.

Non-binary Gold Standard Creation. The non-binary gold standard result-
ing from the eight binary assessments consists of a total of 879 correspondences.
The binary gold standard from the PMMC 2015 only consisted of 234 corre-
spondences, which is less than a third. The average support value per model
pair ranges from 0.33 to 0.91. This illustrates that the models considerably dif-
fer with respect to how obvious the contained correspondences are.

Figure 2 illustrates the distribution of the support values. It shows that there
are two extremes. On the one hand, there is a high number of correspondences
with six or more votes (support value ≥ 0.75). On the other hand, there is also
a high number of correspondences with three votes or less (support value ≤
0.375). Overall, the number of correspondences that would be included based

Probabilistic Evaluation of Process Model Matching Techniques 287

Fig. 2. Distribution of support values in the non-binary gold standard

on a majority vote (support value ≥ 0.5) amounts to 495, which is only a lit-
tle more than half of the correspondences from the non-binary gold standard.
These numbers illustrate the complexity associated with defining a binary gold
standard and highlight the risks of a purely binary method. Instead of excluding
a high number of possible correspondences, we include them with a respective
support value.

Probabilistic Evaluation. Table 2 presents the probabilistic evaluation results
based on the non-binary gold standard. It shows the micro and macro values of
probabilistic F-measure (ProFM), precision (ProP), and recall (ProR) for each
matcher that participated in the PMMC 2015. The column Rank - New indicates
the rank the matcher has achieved according to the probabilistic F-measure
micro value. The column Rank - Old shows the rank the systems has achieved
according to the binary evaluation from the PMMC 2015 [1].

The results from the table illustrate that the probabilistic evaluation has
notable effects on the ranking. Although four matchers remain on the same
rank, the ranking changes dramatically for other matchers. For instance, the
matcher AML-PM moves from rank 10 to 2 and the matcher RMM-NLM moves
from rank 2 to rank 9. A brief analysis of how the matchers work provides an
explanation for this development. The matcher AML-PM does not impose strict
thresholds on the similarity values it uses for identifying correspondences. As a
result, it also identifies correspondences with low support values. In the binary
gold standard, however, these correspondences were simply not included and
resulted in a decrease of precision. Table 3 illustrates this effect by showing an
excerpt from the correspondences generated by the matcher AML-PM and the
respective entries from the binary and the non-binary gold standard. We can see
that from the five correspondences from Table 3 only two were included in the
binary gold standard. In the context of an evaluation based on this gold standard
these three correspondence would therefore reduce the precision of this matcher.
An evaluation based on the non-binary gold standard, however, would come to
a different assessment. The non-binary gold standard does not only include the

288 E. Kuss et al.

Table 2. Results of probabilistic evaluation with new gold standard

Rank Approach ProFM ProP ProR

New Old Δ Mic Mac Mic Mac Mic Mac

1 1 ±0 RMM-NHCM .431 .387 .783 .751 .297 .302

2 10 +8 AML-PM .387 .365 .377 .390 .398 .399

3 9 +6 KnoMa-Proc .378 .312 .506 .493 .302 .286

4 4 ±0 OPBOT .369 .322 .648 .666 .258 .256

5 5 ±0 KMSSS .368 .313 .563 .623 .274 .276

6 8 +2 BPLangMatch .360 .325 .532 .475 .272 .272

7 11 +4 RMM-VM2 .329 .293 .516 .643 .242 .240

8 3 −5 MSSS .307 .238 .761 .772 .192 .201

9 2 −7 RMM-NLM .306 .244 .681 .565 .197 .203

10 6 −4 RMM-SMSL .301 .289 .309 .306 .294 .297

11 7 −4 TripleS .293 .200 .486 .473 .210 .214

12 12 ±0 pPalm-DS .258 .235 .210 .249 .335 .332

Table 3. Effect of gold standard on assessment of output of matcher AML-PM

Correspondence (C) Gold standard

Activity 1 Activity 2 Binary Non-binary

Send documents by post Send appl. form and documents 0 0.750

Evaluate Check and evaluate application 0 0.500

Apply online Complete online interview 0 0.375

Wait for results Waiting for response 1 0.875

Rejected Receive rejection 1 0.625

two correspondence from the binary gold standard, but also includes the three
other correspondences. It is obvious that this positively affects the ProP of the
matcher and improves its overall ProFM respectively.

For the matcher RMM-NLM we observe the opposite effect. In the context
of the evaluation with the non-binary gold standard it misses a huge range of
correspondences. Consequently, the ProR of this matcher decreases considerably.

Bounded Probabilistic Evaluation. The bounded variants of probabilistic
precision, recall, and F-measure provide the possibility to obtain more detailed
insights into the performance of the matchers. Figure 3 illustrates this by showing
the values of ProP, ProR, and ProFM for τ = 0.0, τ = 0.375, τ = 0.5, and
τ = 0.75 for five selected matchers from the PMMC 2015.

The results from Fig. 3 show that the effect of a change in the minimum sup-
port level τ varies for the different matchers. In general, we observe a decreasing
ProP and an increasing ProR for higher values of τ . This is intuitive because

Probabilistic Evaluation of Process Model Matching Techniques 289

Fig. 3. ProP, ProR, and ProFM for different values of τ

a higher value of τ results in the consideration of fewer correspondences. How-
ever, for some matchers this effect is stronger than for others. For instance,
we observe hardly any change in ProP and a strong increase in ProR for
the matcher pPalm-DS. This means that this matcher mainly identifies cor-
respondences with high support. It therefore benefits from a stricter gold stan-
dard. The matcher RMM-NLM represents a contrasting case. The ProP of this
matcher decreases dramatically with an increase of τ , while its ProR slightly
increases. This reveals that this matcher also identifies a considerable number of
correspondences with low support. Since these correspondences turn into false
positives when we increase τ , the ProP drops respectively.

The consideration of the bounded variants of ProP, ProR, and ProFM illus-
trate that an evaluation based on a non-binary gold standard facilitates a
more detailed assessment of specific matchers. It is possible to identify whether
a matcher focuses on rather obvious correspondences (with high support) or

290 E. Kuss et al.

whether a matcher also identifies less apparent correspondences (with low
support).

5 Related Work

Existing work on process model matching evaluate their approaches using pre-
cision, recall, and F -measures, see for example the reports of the Process Model
Matching Contests [1,3]. Thus, the used evaluation metrics compare an absolute
correspondence list with a binary gold standard. Schema matching and ontology
matching techniques are similar to process model matching techniques in the
sense that these techniques all set out to identify relations between concepts in
different conceptual models [8]. Research in the fields of schema and ontology
matching (cf. [18,21]) shows a similar tendency to evaluate the performance of
matching techniques based on binary values. However, these fields use a broader
range of evaluation metrics to suit needs related to specific applications. For
example, aside from the F -measure [2], error [17], information loss [16], and
overall [5] are all used to aggregate precision and recall values.

More recently, some metrics have been proposed that relax the binary eval-
uations of precision and recall metrics. Ehrig and Euzenat [7] propose alterna-
tive precision and recall metrics that take into account the closeness of results
in ontology matching. Closeness can, for example, exploit the tree structure
of ontologies, where the distance between elements in the tree can be com-
puted to determine if a result is close or remote from the expected result. Sagi
and Gal [20] adapt precision and recall metrics in order to support non-binary
matching results. These metrics can, for instance, be directly applied on first-
line-matching results that contain non-binary confidence values. Although this
work also specifies that precision and recall could be adapted to support non-
binary gold standards, to the best of our knowledge, no works have done this
so far.

6 Conclusion

In this paper, we proposed a probabilistic method for assessing the performance
of process model matching techniques. Our method is motivated by the insight
that it is often hard and in many cases even impossible to define a sensible binary
gold standard that clearly specifies which correspondences are correct. There-
fore, our evaluation method builds on a number of independent assessments of
the correspondences, which are combined into a single probabilistic gold stan-
dard. By interpreting the number of votes for each correspondence as support,
we defined probabilistic notions of the well-established metrics precision, recall,
and F-measure.

To gain insights into the usefulness of our probabilistic evaluation method,
we applied it to the University admission data set and the participating twelve
matching techniques from the PMMC 2015. To this end, we recruited eight
annotators for the creation of a non-binary gold standard and then computed

Probabilistic Evaluation of Process Model Matching Techniques 291

the probabilistic metrics for each of the matching techniques. We found that the
non-binary gold standard contained almost three times as many correspondences
as the existing binary gold standard and that only for a fraction of these corre-
spondences there was a unanimous agreement. This emphasizes the risk of using
a purely binary evaluation method, which is also reflected in the considerable
effect of our probabilistic evaluation method on the ranking of the matching tech-
niques. Furthermore, we found that the probabilistic evaluation allows to obtain
more detailed insights into the specific strengths and weaknesses of individual
matchers.

In future work, we plan to apply our method on additional data sets and
to investigate how human experts perceive the probabilistic results. Our overall
goal is to establish the proposed method as a new standard for the evaluation
of process model matching techniques and to apply it in the context of the next
PMMC.

References

1. Antunes, G., Bakhshandeh, M., Borbinha, J., Cardoso, J., Dadashnia, S.,
Francescomarino, C.D., Dragoni, M., Fettke, P., Gal, A., Ghidini, C., Hake, P.,
Khiat, A., Klinkmüller, C., Kuss, E., Leopold, H., Loos, P., Meilicke, C., Niesen, T.,
Pesquita, C., Péus, T., Schoknecht, A., Sheetrit, E., Sonntag, A., Stuckenschmidt,
H., Thaler, T., Weber, I., Weidlich, M.: The process model matching contest 2015.
In: 6th International Workshop on Enterprise Modelling and Information Systems
Architectures (2015)

2. Berlin, J., Motro, A.: Autoplex: automated discovery of content for virtual data-
bases. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS
2001. LNCS, vol. 2172, pp. 108–122. Springer, Heidelberg (2001). doi:10.1007/
3-540-44751-2 10

3. Cayoglu, U., Dijkman, R., Dumas, M., Fettke, P., Garcıa-Banuelos, L., Hake, P.,
Klinkmüller, C., Leopold, H., Ludwig, A., Loos, P., et al.: The process model
matching contest 2013. In: 4th International Workshop on Process Model Collec-
tions: Management and Reuse (PMC-MR 2013) (2013)

4. Cayoglu, U., Oberweis, A., Schoknecht, A., Ullrich, M.: Triple-S: a matching app-
roach for Petri nets on syntactic, semantic and structural level. Technical report,
Karlsruhe Institute of Technology (KIT) (2013)

5. Do, H.-H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe 2002. LNCS, vol.
2593, pp. 221–237. Springer, Heidelberg (2003). doi:10.1007/3-540-36560-5 17

6. Dumas, M., Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process
Management. Springer, Heidelberg (2013)

7. Ehrig, M., Euzenat, J.: Relaxed precision and recall for ontology matching. In:
Proceedings of K-Cap 2005 Workshop on Integrating Ontology, pp. 25–32. No
commercial editor (2005)

8. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic matching. In: Liu, L., Özsu,
M.T. (eds.) Encyclopedia of Database Systems, pp. 2561–2566. Springer, New York
(2009)

9. Jin, T., Wang, J., La Rosa, M., Ter Hofstede, A., Wen, L.: Efficient querying of
large process model repositories. Comput. Ind. 64(1), 41–49 (2013)

http://dx.doi.org/10.1007/3-540-44751-2_10
http://dx.doi.org/10.1007/3-540-44751-2_10
http://dx.doi.org/10.1007/3-540-36560-5_17

292 E. Kuss et al.

10. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall
of process model matching by improved activity label matching. In: Daniel, F.,
Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40176-3 17

11. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
166–181. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23059-2 15

12. Küster, J.M., Koehler, J., Ryndina, K.: Improving business process models with
reference models in business-driven development. In: Eder, J., Dustdar, S. (eds.)
BPM 2006. LNCS, vol. 4103, pp. 35–44. Springer, Heidelberg (2006). doi:10.1007/
11837862 5

13. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging:
an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 22(2), 11 (2013)

14. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt,
H.: Probabilistic optimization of semantic process model matching. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32885-5 25

15. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
vol. 1. Cambridge University Press, Cambridge (2008)

16. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Imprecise answers in distrib-
uted environments: Estimation of information loss for multi-ontology based query
processing. Int. J. Coop. Inf. Syst. 9(04), 403–425 (2000)

17. Modica, G., Gal, A., Jamil, H.M.: The use of machine-generated ontologies in
dynamic information seeking. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella,
M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 433–447. Springer, Heidelberg (2001).
doi:10.1007/3-540-44751-2 32

18. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

19. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling.
Requir. Eng. 4(4), 169–187 (1999)

20. Sagi, T., Gal, A.: Non-binary evaluation for schema matching. In: Atzeni, P.,
Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 477–486. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34002-4 37

21. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

22. Uba, R., Dumas, M., Garćıa-Bañuelos, L., Rosa, M.: Clone detection in repositories
of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 248–264. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23059-2 20

23. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identifica-
tion of correspondences between process models. In: Pernici, B. (ed.) CAiSE
2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13094-6 37

24. Weidlich, M., Sheetrit, E., Branco, M.C., Gal, A.: Matching business process
models using positional passage-based language models. In: Ng, W., Storey,
V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 130–137. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41924-9 12

http://dx.doi.org/10.1007/978-3-642-40176-3_17
http://dx.doi.org/10.1007/978-3-642-23059-2_15
http://dx.doi.org/10.1007/11837862_5
http://dx.doi.org/10.1007/11837862_5
http://dx.doi.org/10.1007/978-3-642-32885-5_25
http://dx.doi.org/10.1007/3-540-44751-2_32
http://dx.doi.org/10.1007/978-3-642-34002-4_37
http://dx.doi.org/10.1007/978-3-642-23059-2_20
http://dx.doi.org/10.1007/978-3-642-23059-2_20
http://dx.doi.org/10.1007/978-3-642-13094-6_37
http://dx.doi.org/10.1007/978-3-642-13094-6_37
http://dx.doi.org/10.1007/978-3-642-41924-9_12

Context-Aware Workflow Execution Engine
for E-Contract Enactment

Himanshu Jain1(&), P. Radha Krishna2, and Kamalakar Karlapalem1

1 Center for Data Engineering, IIIT-Hyderabad, Hyderabad, India
himanshu.jain@student.iiit.ac.in, kamal@iiit.ac.in

2 Infosys Limited, Hyderabad, India
radhakrishna_p@infosys.com

Abstract. An e-contract is a contract that is specified, modeled and executed by
a software system. E-contract business processes are modeled using workflows
and their enactment is mostly dependent on the execution context. Existing
e-contract systems lack context-awareness, and thus often face difficulties in
enacting when context and requirements of e-contracts change at run-time. In
this paper, we (a) present an approach for context pattern discovery and build a
context-aware workflow execution engine, (b) develop an approach for
context-aware execution-workflow to instantiate and execute context-based
workflow instances and (c) provide a framework for context-aware e-contract
enactment system. We also demonstrate the viability of our approach using a
government contract.

Keywords: E-Contracts � WFMS � Execution-Workflow � Context-aware
systems

1 Introduction

An e-contract is an electronic version of the conventional contract which stipulates that
the involved parties agree to fulfill specified activities and deliverables. E-contracts are
associated with several entities, processes and procedures, and are used to regulate
cross-organizational business processes. Usually, e-contract business processes are
modeled using workflows and their enactment is mostly dependent on the execution
context. Workflow systems require capturing such context information for dynamic
update of workflows during execution. This necessitates incorporating context infor-
mation at run-time, which is not feasible for generic workflow management system
(WFMS), as it needs to capture, comprehend and act on just-in-time context infor-
mation. Contracts evolve over a period and the contextual changes influence the
e-contract enactment. To provide adequate service for the users, applications and
services should be aware of their contexts and should automatically adapt to their
changing contexts [1]. Existing e-contract systems (e.g., [2, 3]) do not emphasize the
role of contextual information during the specification and execution of e-contracts, but
addressed the problem of e-contract enactment as just workflow orchestration. In
today’s organizations (ex., Government and Health), it is unlikely that application
processes are modeled once and executed repeatedly without any changes. Huge cost is

© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 293–301, 2016.
DOI: 10.1007/978-3-319-46397-1_23

incurred to re-model a business process or to change its specification during execution
(or, to handle new context information), as these processes and their structures are
pre-defined. Several methods have been proposed in the past to overcome these
challenges (e.g., [4]. However, those solutions work at the “workflow instance” level;
where they change/modify the workflow instance itself and follow a fixed specification
and execution procedure of workflow engine (detailed example with such WFMS is
presented in Sect. 4). Hence, there is not much flexibility at the specification and
execution level. On the other hand, meta-level execution models dynamically modify
and enhance the workflow execution engine procedures [5]. However, such systems
require some prior information (such as external information and present resource
availability) to adapt them according to the requirement of the workflow instance.

In this work, we introduce a Context-Aware Meta Execution-Workflow (C-MEW)
approach, which allows modification of workflow execution engine procedure when
required, according to the business and technological needs, without changing the
workflow engine execution code. Here, the workflow engine execution procedure is
defined as a workflow so that it can be adapted to the changes [5]. C-MEW generates
context-based execution-workflow (CEW) as a workflow engine with process context
information to dynamically execute the workflow instances and adapt to changes of the
environment. The proposed context-aware e-contract enactment system draws the
contextual information and incorporates it at the CEW which performs the actual
workflow instance execution. In this work, we show an e-government contract activity
between Internet Service Provider (ISP) and Government of India to illustrate our
approach. The rest of the paper is organized as follows. Section 2 presents an overview
of our context-aware e-contract enactment system. Context-aware workflow execution
engine component is described in Sect. 3. Section 4 illustrates our approach using an
example e-contract activity and Sect. 5 concludes the paper.

2 Context-Aware E-Contract Enactment Framework

In this section, we develop a framework for an information system life cycle starting
from collecting and analyzing context information till executing modified workflows
to completion in order to support the changes in run-time or requirements during e-
contract enactment. Our system provides the capabilities of defining and selecting
different contract flows for contract specification, and is capable of efficiently managing
the execution states. The ability to store, update, retrieve, and share the pertinent
information by users is an important feature of our system.

Figure 1 shows the framework of our context-aware e-contract enactment system.
Contract Enactor continuously monitors the contract execution for clause violations or
path deviations. Multiple workflows, defined for various individual tasks, are difficult
to coordinate among various parties, as there are dependencies between tasks. For
instance, in an e-governance project, several activities have dependencies across
multiple departments, which require huge coordination, but at the same time need to be
satisfied for their successful commitment.

Contract Workflow helps in managing workflows globally for all the parties. It
ensures that context change for an inter-dependent activity shall propagate among its

294 H. Jain et al.

dependents, for example, change of payment details of a user during an activity is used
among all its dependent activities. Contract workflow combines activity (or set of tasks)
of parties in the required order as per the inputs provided by the contract enactor and
with human support, if required. It also allows flexibility of augmenting additional
tasks and events. Workflow Views are derived from contract workflow, which enable
cross-organizational workflow interaction. Workflow views explicitly represent the
interdependency in both data and control between different aspects of e-contract, and
focus more on input and output data, conditions and events. A userId is associated with
every task, which enable only specific user to perform the corresponding task. Hence, a
user can only see his tasks on his worklist. Workflow views are created by analyzing
the task allocated to a user in the XML specification document.

Figure 2 shows workflow views for “Payment of Subscriber’s tariff” activity. Here,
the two workflow views are pertaining to Service provider and Subscriber parties in our
example contract (see Sect. 4). First workflow view corresponds to the service pro-
vider, who will be initiating the payment collection independent of second party. But,
as soon as service provider sends the notification, it triggers the second workflow view,
which is associated with the subscriber, using message method. These two workflow
views will coordinate each other for completion of desired activity (see Sect. 4).

Workflow Specification com-
ponent performs two steps:
(i) create workflows from the
activities using XML specification
document uploaded by the con-
tract manager, and (ii) provides
explicit provisions for represent-
ing exceptions, task attributes
such as organizational hierarchy
and roles. During specification,
the workflow tasks are associated
with policies and applications
mentioned in domain enabler
component. The workflow speci-
fication module retrieves the
associated attributes and related

Fig. 1. Framework for context-aware e-contract enactment system

End

Fig. 2. Workflow views for payment of subscriber’s
tariff activity

Context-Aware Workflow Execution Engine for E-Contract Enactment 295

information from the knowledge base. Workflow is validated based on tasks’ specifi-
cations and the data specified to make a workflow executable. Validation criteria include
‘after specification of an activity, every node, except start node, shall have at least one
incoming node’, ‘every node except exit node shall have at least one outgoing node’ and
‘start node has only one path’. During execution, when a task requires human inter-
vention, it appears as a to-do task onWork-List of associated user such that user can see
what tasks are pending and thereby select them for processing. Other sub-components
such as identity manager and user info manage hierarchical information, task escalation
structure, and calendar of users in an organization. Domain Enabler has information
such as regulatory compliance, policies, payment and procurement clauses related to the
domain. Once, the contract enactment starts, it should comply with such domain specific
constraints. Contract enactor automatically maps these constraints to clauses and
activities depending upon the type of event.

Event Handler consists of Event-Condition-Action (ECA) rules manager. When an
event occurs, it checks the conditions, identifies the corresponding rule and executes
the action part. Exception handling is done using ECA rule manager in coordination
with contract enactor component. When an exception occurs at runtime, a CEW exe-
cution definition is dynamically selected from the knowledge base depending on the
context of the exception and particular workflow instance (Sect. 5). This new definition
performs appropriate actions in order to continue execution of e-contract. However, if
unknown exception occurs, manual intervention is required to define ECA rule cor-
responding to this exception. Therefore, both expected and unexpected exceptions are
catered in real time by ECA rule manager, so that ‘manual handling’ is minimized.
ECA definition tables are defined as follows:

• Event (eventID, eventType, description, objectAffected, ruleFires, eventEvalua-
tionLocation)

• Condition (conditionID, conditionType, description, conditionEvaluationLocation)
• Action (actionID, actionType, description, objectAffected, eventRaise, actionPerf,

location)
• Activity-log (time, event, object, prevAction, postAction)

Knowledge Base (KB) is our underlying data and meta data Database component.
During execution of an activity workflow, workflow engine generates context variables
such as location and time along with events related to that activity. This context
information is stored in the KB, which will be further used during execution. All
definitions of CEWs are stored in the KB for their re-use. KB also consists of database
triggers that are associated with tasks.

Context model determines the schema of the context that is captured. It provides
context information to the workflow specification component and helps workflow
execution component during run-time. It processes the context data and stores it in a
XML format. Our context model is based on Key-Value model, where key refers to the
category of context information such as exceptions and events, and value refers to the
data collected from internal and external sources. For modeling of context information,
we categorize context information into two types: Type-A (internal) and Type-B
(external). Type-A represents the context generated from internal to the system such as
values associated with task parameters, task assignment to resources/users and

296 H. Jain et al.

events/exceptions generated. Type-B represents the context generated by the external to
the system during execution of workflow instances such as capabilities of users per-
forming a task and location where the task is executed. Type-B’s context information
sources are system interfaces which allow capturing external information/events.
Similarly, log files and XML specification files are source of context information for
Type-A class. After classification of context information, it is stored in a repository
from which appropriate as well as task-relevant context information is derived. Both
Type-A and Type-B together provides necessary information to update the current
workflow instance or selection of an appropriate workflow by the C-MEW. Every task
has a unique task-ID and parameters associated with it for extracting context
information.

Relationships between different kinds of context information have to be identified
and established in order to enable further reasoning about context. For example, we can
improve task allocation by allocating more tasks to those users who have good
success/completion rate. Context miner, which is subcomponent of context model,
extracts context information semantics. Derivation and identification of semantics
between context information permits correlation and aggregation of context informa-
tion at the application level. The aggregator maintains an up-to-date list of currently
available context-information related to the executing instances based on instance
specification and the extrinsic information. Controller Unit (see Fig. 1) is responsible
for managing and matching the relevant context information.

3 Context-Aware Workflow Execution Engine

C-MEW provide re-usable workflow execution by generating context-aware
execution-workflow (CEW) instances. C-MEW has the ability to re-configure and
manipulates its objects based on the context information. It allows flexible execution
control flow and procedure to specify and execute workflows. This procedure is
implemented as the workflow engine, and can be modified or enhanced based on the
current context.

Figure 3 shows C-MEW generating different CEWs based on the task require-
ments. CEW executes an activity by executing its individual tasks one-by-one. During
execution of a workflow, C-MEW requests for associated context-information, which is
retrieved from Context Model, C-MEW’s controller validates context information
against workflow’s requirement. In case the information provided fails to fulfill the
desired requirement, C-MEW performs workflow instances using other sources of
information such as databases and human resources. Otherwise, if context model
provides the desired information, then the information is extracted using
“get-context-information” method, which is defined with C-MEW and used against the
task requirements. Also, C-MEW has information about the task specification and node
arrangements, which helps in monitoring and checking conformance during execution.
Execution of an activity is done by using specified transition path, transition condition
between the tasks and other parameters related to a task. By designing context-aware
execution-workflow, we resolve the various dependencies between tasks such as
data-dependency from users, temporal event dependency, and dependency of a task on

Context-Aware Workflow Execution Engine for E-Contract Enactment 297

external events. Since instances of an activity usually consists of same definition and
prone to similar exceptions, context-based specification of an instance can result in less
redundancy and consumption of time. Similarly, pre-conditions can be evaluated
beforehand and execution engine can proceed without allowing it to wait for the
evaluation of that condition.

Exceptions are logged in the event-logs. Storing exceptions in the event log helps in
determining which task has raised which exception, and these exceptions are well
monitored in future instances of such tasks. In case, already handled exceptions occur,
another definition of CEW is selected from knowledge base based on the
past-experience, and accordingly, modify the current CEW to execute the task. But if
selected CEW is also not able to handle the exception, user intervention is required for
defining a new ECA rule which acts as a handler for this new exception. Along with
exception handling, better user allocation can be carried out using the C-MEW. For
instance, based on the users’ profile and their related history, it can be easily inferred
for “who is the best person to whom this task can be assigned”. Each activity has an
associated set of variables (stored in database) specified by workflow specification
component. These are process variables whose values are set based on context for an
instance selected for execution. This feature allows CEW to support reactive adapta-
tion to context parameters when their values can change abruptly during the execution.
The workflow is executed as if it is a standard one, however, when the engine
encounters an activity, it executes using two sub-components: Meta Execution Con-
troller and Task Dispatcher. These two components interact with each other to execute
the user workflows. Meta execution controller, using the workflow definition, move
from one task instance to another and complete its execution. It consists of set of

Fig. 3. Context-aware Meta Execution Workflow generating CEWs

298 H. Jain et al.

programs and routines that execute the tasks. Task dispatcher receives request from the
controller to execute task instances. It returns post event data to the controller. After
completion of sub-process, the control returns to the CEW in order to perform the next
activity.

4 E-Government Contract – Tariff Payment

In this work, we used the e-government contract, which involves four parties namely
Licensor, Licensee, Subscriber and Bank. Licensor refers to any authorized person,
who grants license. Licensee is a registered company that has been awarded license for
providing the service. Subscriber is a person or legal entity who avails service from the
licensee. The Licensor grant contract to the Licensee on the terms and conditions to
establish, maintain and operate internet service in the country. This contract will enable
the licensee to provide internet based services to its subscribers and collect tariff from
them accordingly. Initially, instance related context information (Type A) is retrieved
from its source. Context manager creates/decides appropriate CEW on the basis of
combination of base CEW and available context information.

Consider Payment of tariff by subscriber to the licensee activity. Table 1 displays
the specification of payment activity and also show that several manual (M) tasks in the
case of traditional WFMS can be automated (A) using CEW. According to the contract,
the periodic payment of the tariff is made by the subscriber. In case the subscriber
becomes defaulter for more than a specified period, then system will issue notice.
Further, if the number of months of non-payment of tariff crosses a specified limit, then
it may terminate the services. Certain task entities (such as exceptions, data variables,
resultant event, actions and triggering events) are linked to every activity. When the
due date for payment of tariff falls below a deadline, the payment has to be done by the
client to the service provider to renew the service. In that process, the context infor-
mation such as client Information (last renewal date, due date, type); bill details;
provider’s bank information for crediting payment, etc. is needed. Task ‘Pay tariff’
parameters are:

– Triggering event: Due date for payment.
– Condition: Payment of tariff should be done strictly by end of every month.
– Action: Receive the bill and credit to the Licensee’s account.
– Resultant/Post events: payment receipt, renew service, bill sent, bill received,

payment verified, acknowledgement sent etc.
– Exception: Incorrect account info, unable to credit, etc. (see Table 1).
– Related Variables: Bank account information of subscriber, number of subscribers

paying simultaneously, amount to be paid, bank account information of licensee,
last date for payment, mode of payment, past status of subscriber (pending bill,
number of defaults, penalty etc.)

– Applicability condition: validSubscriber = true, currentTime - lastPaymentTime >
1 month. Here, currentTime and validSubscriber are context variables included in
subscriber’s context.

Context-Aware Workflow Execution Engine for E-Contract Enactment 299

Using the above information, C-MEW generates CEW instance that executes the
payment workflow instance. Consider a simple payment workflow as given below for a
particular service (say cable subscription):

Start ! Enter payee bank details ! Enter payee bank account number ! Enter
amount ! Submit ! Payee bank sends for reconciliation ! Credit the amount to
payee account number ! End

During the execution of this workflow, suppose (i) the task ‘Submit’ is done before
the due date of payment, (ii) there is a problem at reconciliation center (e.g., system
overload due to bulk processing of transactions), and (iii) the amount is not credited to
the payee account by the due date. This (i), (ii) and (iii) causes payment not received by
the due date causing penalty on payment amount. In the case of traditional workflow
execution scenario, the payment task is not in the successful state and expects a human
intervention as there is a delay in the credit task operation. This may lead to a cum-
bersome process (in some cases) as the person in-charge may not have sufficient

Table 1. Specification of example payment activity (A- Automated, M-Manual)

Id Task Input Output Exceptions
CEW WFMS

1 Notification Subscribers
address

Notification signal Communication
error

Bill detail Sent Wrong details of
subs.

Not sent by senderA M
2 Receive

notification
Bill details None Notification not

received
Communication
error

Timeout
Subscriber not
checked

A M Wrong bill
received

3 Pay bill Bill detail Invoke payment
sub-workflow

Payment
unsuccessful

Bank
information

Payment done Wrong bank info.

Due date Payment failed Less available
amount

A M Method of
payment

Due date expired

4 Collection of
tariff

Payment
information

Payment verified Payment not
received

A A Payment not verified
5 Renew service Service renew

request
Subscriber id Renewal request

not sentA M payment verification

300 H. Jain et al.

knowledge and needs to escalate the case. However, in our context oriented approach,
the CEW involves (a) capturing execution context (e.g., value of currentTime variable)
during the execution of ‘Submit’ task, (b) capturing context pertaining to the delay at
reconciliation center, (c) generating a new workflow instance based on the context
information for sending a notification message (that overcomes the additional penalty
due to non-payment within the due date) and (d) continuing the execution of previous
workflow instance for crediting the amount. This is possible due to availability of
context information pertaining to differences in the task execution timings (i.e., Type A -
(a) and (d)) as well as the past experience by the concerned staff (i.e., Type B – (b) and
(c)), and thus the C-MEW seamlessly handles the late credit of payment and in turn
avoiding discontinuity of subscription service. Note that there can be other solutions for
this specific issue, but our aim is to show how context oriented solution handles this
specific issue. Our solution is capable of handling more complex situations (e.g., new
Licensee taken over the existing subscribers of internet service with new terms and
conditions).

5 Conclusions

In this paper, a framework is presented to support context-aware electronic contract
enactment life-cycle. We showed the viability of context-aware WFMS to coordinate
and automate contract enactment. Our CEW approach facilitates building a knowledge
base by capturing both internal and external context and model the workflows to
support a variety of e-contracts. Further, C-MEWs drives the complete workflow
engine so that it can cope with context changes and enact the contracts.

References

1. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)
2. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: Crossflow: cross-organizational workflow

management in dynamic virtual enterprises. Int. J. Comput. Syst. Sci. Eng. 15(5), 277–290
(2000)

3. Krishna, P.R., Karlapalem, K., Chiu, D.K.W.: An EREC framework for E-contract modeling,
enactment and monitoring. Data Knowl. Eng. 51(1), 31–58 (2004)

4. Murguzur, A., De Carlos, X., Trujillo, S., Sagardui, G.: Context-aware staged configuration of
process Variants@Runtime. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 241–255. Springer, Heidelberg (2014)

5. Sharma, S., Karlapalem, K., Krishna, P.R.: A case for a workflow driven workflow execution
engine. In: 22nd Workshop on Information Technology and Systems (WITS) (2012)

Context-Aware Workflow Execution Engine for E-Contract Enactment 301

Annotating and Mining for Effects of Processes

Suman Roy1(B), Metta Santiputri2, and Aditya Ghose2

1 Infosys Ltd., # 44 Electronics City, Hosur Road, Bangalore 560 100, India
Sunam Roy@infosys.com

2 School of Computer Science and Software Engineering, University of Wollongong,
Wollongong, NSW 2500, Australia

ms804@uowmail.edu.au, aditya@uow.edu.au

Abstract. We provide a novel explicit annotation of a process model
by way of accumulating effects of individual tasks specified by analysts
using belief bases and computing the accumulated effect up to the point
of execution of the process model in an automated manner. This tech-
nique permits the analyst to specify immediate effect annotations in a
practitioner-accessible simple propositional logic formulas and generates
a sequence of tasks along with cumulative effects, called effect logs. Fur-
ther we propose and solve an effect mining problem, that is, given an
effect log discover the process model with effect annotations of individ-
ual tasks which is close to the original annotated process model.

Keywords: Business process modeling · Semantic annotation · Effects ·
Belief bases · Annotated processes · Effect logs · Effect mining

1 Introduction

In this work we describe a technique for an explicit semantic annotation of
process models. We require practitioners to provide a description of the imme-
diate effects of each task. An effect of a task becomes true when the latter gets
executed. These effects are propagated across different nodes (tasks and gate-
ways) in the process model and then accumulated in a context-sensitive man-
ner automatically, such that the cumulative effect annotation associated with
any task in a BPMN process model1 would describe the effects achieved by the
process as if the process were executed up to that point [3]. The cumulative effect
description of a task might be non-deterministic, this non-determinism may be
caused by the execution of parallel gateways resulting in interleaving of paths
in the process model, and belief update leading to multiple alternative means of
resolving inconsistencies generated by the “undoing” of effects. Our effect anno-
tation borrows ideas from Semantic Business Process Validation (SBPV) which

S. Roy—This work was done when the author visited University of Wollongong
during July–Dec’14 to work on Infosys-CRC funded project on data-driven process
discovery.

1 Process models captured using industry standard notation BPMN.

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 302–310, 2016.
DOI: 10.1007/978-3-319-46397-1 24

Annotating and Mining for Effects of Processes 303

combines concepts from the workflow [6,8,13] and AI action and changes [4,15].
While we adopt the token semantics from workflow literature [14,15] for deter-
mining execution traces of processes we use belief operator from AI [5,7] for
updating the effect and their accumulation on enabling of nodes. By this way we
are able to compute an effect trace of the process which is a sequence of pairs
consisting of task and the cumulative effect at this node.

Next we consider an inverse problem: given an effect log, i.e., a set of effect
traces, how one can determine the original effects at the tasks? We call this
effect mining problem, aka process mining problem [11,12]. Although process
designers take utmost care in designing process models there is no guarantee
that they indeed reflect the correct models under consideration. The goal of
process discovery is to derive some sort of model that describes the process
as accurately as possible. Similarly, the goal of effect discovery is to generate a
semantically annotated process which is close to the original semantic description
of the process model. As one solution approach for this effect mining problem we
propose a modification of process discovery algorithm, viz., α-mining problem
to find out a process model along with the effects associated with each task.

Related Work. There is a rich body of work on semantic annotation for web
services. In one of them Weber et al. proposed an approach, Semantic Business
Process Validation (SBPV) [15], in which axiomatic task descriptions are anno-
tated and propagated across process models. The SBPV approach requires the
user to completely specify pre-conditions and post-conditions that are context
sensitive. In another approach Hinge et al. [3] proposed a technique for obtain-
ing semantic effect descriptions of BPMN process models, without requiring the
analyst to express excessive formal specification. Using an approach similar to
SBPV in [4] Hoffman et al. proposed a framework of annotating processes for
capturing the semantics of task execution in which compliance is checked against
a set of constraints imposed on process states. Motivated by SBPV [4,15] and
the annotation method suggested in [3] we lift ideas from AI and use belief bases
to annotate the tasks with effects, propagate these effects across the nodes auto-
matically in a context sensitive manner, and compute the accumulated effects of
each task up to the execution point.

There is not much work on effect mining we could find. In [10] Santiputri
et al. present a data-driven approach for mining semantically annotated busi-
ness processes. The authors assume event logs in execution histories of business
processes describing both task execution events (found in process logs) and state
update events (recorded in effect logs) at disposal and mine for immediate effect
annotations for each task in the process model to be edited and refined by ana-
lysts. In our work we only consider effect logs which is a collection of pairs
consisting of tasks and accumulated effects, and discover the process model with
effect annotations for each task. While in the previous work the authors use a
variant of sequence mining algorithms for effect mining we use a modified process
mining algorithm for effect discovery.

304 S. Roy et al.

The paper is organized as follows. We introduce a semantic annotation of
process models in Sect. 2 along with an example of effect annotation. The prob-
lem of effect mining is defined in Sect. 3. Finally we conclude in Sect. 4.

2 A Semantic Annotation of Processes

We introduce an annotation framework for business processes where tasks are
annotated with effects. An effect of a task is some fact which materializes when
the task is executed. It is captured by analysts providing a description of the
immediate effects of each process task, i.e., a context independent specification of
the functionality of each task. For the sake of easier readability we first introduce
a simple process graph without annotation. We use a formalism of a business
process which bears close resemblance with those described in [1,4,15] and that
of work-flows [8].

A BPM process is a graph (also called a process model graph) P = (N ,F)
where N is a finite set of nodes which is partitioned into the set of tasks T , the
set of gateways G, and the set of events E , i.e., N =̂ T �G �E ; G can be further
partitioned into disjoint sets of decision merges, GM (Gand

M (synchronizer) and
Gxor

M (merge)) and decision splits, GS (Gand
S (fork) and Gxor

S (choice)); a set E of
events which is a disjoint union of two sets of events Es and Ef , where Es is the
set of start events with no incoming edges, Ef is the set of end events with no
outgoing edges; and F ⊆ (N\E ×N\E)

⋃
(Es ×N\E)

⋃
(N\E ×Ef) corresponds

to sequence flows connecting tasks with tasks, tasks with gateways, gateways
with tasks, start nodes with tasks and tasks with end nodes.

Let in(n) (out(n)) be the set of incoming (outgoing) edges to (out of)
node n ∈ N . We impose the following conditions: ∀ns ∈ Es, |in(ns)| = 0,
and |out(ns)| = 1; ∀nf ∈ Ef , |in(nf)| = 1, and |out(nf)| = 0; for every
n ∈ T , |in(n)| = |out(n)| = 1; for every n ∈ GS , |in(n)| = 1 and |out(n)| > 1;
for every n ∈ GM , |in(n)| > 1 and |out(n)| = 1; any outgoing edge out(n) from
a fork node n ∈ Gand

S will have a task node t appearing immediately after n:
(n, t) ∈ F , and every node is on a path from some start node to some end node.
If these conditions hold then we say the business process to be well-formed. We
shall consider only well-formed business processes henceforth.

Let us now specify the semantics of control elements of a business process.
Given a process P = (N ,F), a state of P is a marking μ : F→ N, also called
a token mapping. The number of tokes may change during the execution of the
process, when the transitions are enabled. A state μ′ is reached from state μ
via node n, written as μ

n→ μ′, when n can be a task, AND-split, AND-join or
XOR-split or XOR-join, for details see [9,15].

The initial state is given by a marking μ0 where μ0(es) = 1, for all es ∈ Es,
and μ0(e) = 0 for all other edges e. A node n is said to be activated in
a state μ if there exists state μ′ such that μ

n→ μ′. A state μ′ is reach-
able from a state μ, denoted as μ

∗→ μ′ if there exists a (possibly finite)
path, ρ : ns, n1, . . . , nf ∈ (N) and a finite sequence of markings μ1, . . . μk

such that μ is activated in ns and μ
ns→ μ1

n1→ · · · nl→ μk and μ′ = μk.

Annotating and Mining for Effects of Processes 305

For a path ρ we denote the projection of ρ on set of tasks T as ρ|T .
A complete trace (also called trace) of a business process P is a sequence of tasks
τ = t1, . . . tl, (ti ∈ T , 1 ≤ i ≤ l) such there is a path ρ = ns, n1, . . . , nf ∈ N in
P and τ = ρ|T . The set of all traces of a process P is denoted as TP. For the
remainder of the paper we assume our process to be sound [2,15].

For annotating processes with effects we shall use logical propositions and
assume the existence of a countable set P of propositions. The set of all literals
over P is denoted as LP . A belief base B is a conjunction of literals in P which is
logically consistent. It can be written using set-theoretic notation. For example,
if a belief base B = a ∧ ¬b ∧ c, where a, b, c ∈ P then B = {a,¬b, c}. A theory
T over P can be taken to be any propositional theory. A knowledge base K is a
pair (P,T), where T can be assumed to consist of rules and facts. Wlog we can
assume T to be the conjunction of those rules and facts.

We define an annotated process model/graph as GP = (N ,F ,K,A)2, where
P = (N ,F) is the underlying process model as before, K = (P,T) is the under-
lying knowledge base annotation, A is a partial function mapping n ∈ T to
eff(n) ⊆ B(P), and mapping e ∈ out(n) for n ∈ Gxor

S to (con(e),pos(e)) where
con(e) ∈ LP and pos(e) ∈ {1, . . . , |out(n)|}3. The following technical conditions
need to be imposed: there does not exist an e such that T∧con(e) is unsatisfiable;
there do not exist n, e, and e′ so that e, e′ ∈ out(n) (e and e′ being distinct), A(e)
and A(e′) are defined, and pos(e) = pos(e′). Moreover, the cardinality of the set
of reachable states immediately preceding a choice gateway must be bounded
from below by the number of outgoing edges from the gateway.

In an execution of process we shall assume the effects of the activities of the
process will be dynamically changed with the corresponding knowledge envi-
ronment. Let us assume the current available information be represented by
an a-priori available knowledge base K; and an accumulated effect B0 that we
assume to be true (i.e., to persist) until the next task has been executed. Sup-
pose that a task t in a process is executed in an instance of a process whose
effect can be captured by the belief base B = eff(t). What would be our knowl-
edge after t is executed? Borrowing concepts from artificial intelligence [5,7], we
revise our knowledge using belief update to capture the changing scenario (we
treat belief revision and belief update as same). This can be achived using an
update operators Δ details of which can be found in [9].

Let us now formally define semantics of an annotated process graph, a similar
semantic annotation for business processes is provided in [4,15]. A state s of
G is a pair ι = (μ, Ea) where μ is a token mapping as defined before, and
Ea : 2T 	→ 2(P) is a cumulative effect accumulation function. Assume that the
current set of tasks for which the effects are accumulated till date is Tc and its
accumulated effect is Ea(Tc). The updated set of tasks will be T ′

c when a new
task is executed. The initial state is ι0 = (μ0, Ea0) where Tc = ∅. By default,
we assume Ea0(∅) = ∅. The effects across the tasks/gateways are going to be

2 we shall drop the subscript P when it is clear from the context.
3 For the sake of rigor P can be partitioned into two sets P = Pt � Px, where tasks

are annotated with symbols from Pt, and conditions on choices come from Px.

306 S. Roy et al.

accumulated in a recursive manner; the accumulated effect will be denoted as
E ′

a(T ′
c). Let ι and ι′ be two states. A state ι′ is reached from state ι via node

n, written as ι
n→ ι′, if and only if n ∈ (T ∪ g) and (ni, n) ∈ F . We consider

different cases of n being an task, a split gateway, a join gateway etc. in [9]. As
before for a given a business process P we consider a trace P to be a sequence of
tasks τ = t1, . . . tl, where ti ∈ T , 1 ≤ i ≤ l. Similarly an effect trace is defined to
be a sequence ε : (t1, Ea1), (t2, Ea2), . . . , (tm, Eam), where τ = t1, . . . tm is called
the underlying trace of ε. Given an annotated process model we denote EG to be
the set of its effect traces.

Table 1. Effect annotations for process model in Fig. 1
Task Effects

Order (A) ordered ∧ received

Reject order (C) rejected

Fulfill order (B) fulfilled

Send invoice (D) invoiceSent ∧ paymentExpected

Ship order (E) shipped

Receive payment (F) paymentReceived

Accept payment (G) paymentAccepted ∧ ¬paymentExpected ∧ paid

Close order closed

Figure 1 depicts
an example of a
business process for
illustrating effect
annotation. This
process diagram is
drawn using BPM
notation. We use
this process graph
as the running exam-
ple throughout this paper. This process contains a start and an end node, and
various tasks, such as “order”, “reject order”, “fulfill order” etc. It also has a
number of routing constructs such as an XOR-split after the task order and an
AND-split after fulfill order. Only one of the branches after the XOR-split is
executed depending on the condition (approved or fulfilled) which is true.

In Fig. 1 the semantic annotation of each task is given in Table 1. The knowl-
edge base is given by K = {P,T}, where

P = {ordered, received, rejected, fulfilled, invoiceSent, paymentExpected, shipped,

paymentReceived, paymentAccepted, closed, approved, cancelled; and

T = {closed → ¬(ordered ∧ received ∧ fulfilled);

(cancelled ∧ rejected) → ¬(ordered ∧ received)}.

Assuming an initial state to be ι0 = (μ0, Ea0) where Tc = ∅ and Ea0(∅) = ∅ we
can compute the cumulative effect on the execution of each task/gateway. The

Fig. 1. An example of a process using BPM notation

Annotating and Mining for Effects of Processes 307

Table 2. Accumulated effect annotations for process model in Fig. 1

Task Accumulated effects

Order {ordered, received}
Reject order {ordered, received, cancelled, rejected}
Fulfill order {ordered, received, approved, fulfilled}
Send invoice {ordered, received, approved, fulfilled, shipped, invoiceSent,

paymentExpected}
{ordered, received, approved, fulfilled, invoiceSent,

paymentExpected}
Ship order {ordered, received, approved, fulfilled, shipped}

{ordered, received, approved, fulfilled, invoiceSent,
paymentReceived, paymentAccepted, paid, shipped}

Receive payment {ordered, received, approved, fulfilled, shipped, invoiceSent,
paymentExpected, paymentReceived}

{ordered, received, approved, fulfilled, invoiceSent,
paymentExpected, paymentReceived}

Accept payment {ordered, received, approved, fulfilled, shipped, invoiceSent,
paymentReceived, paymentAccepted, paid}

{ordered, received, approved, fulfilled, invoiceSent,
paymentReceived, paymentAccepted, paid}

Close order {cancelled, rejected, closed,¬fulfilled}
{ordered, received, approved, fulfilled, invoiceSent,

paymentReceived, paymentAccepted, paid, shipped, closed}

effect accumulation corresponding to the execution of each node is given in the
Table 2. The accumulated effect is computed by finding the maximal consistent
set computed out of the union of individual effect of the node and the current
accumulated effect [9].

3 Effect Log Mining

The log entries that we consider contain event of one type (viz., completion of
the event), hence we drop event from the log entries in subsequent discussions
and consider only tasks (similar convention is followed in ProM-framework).
Let T to be the set of tasks/activities. We denote a trace as σ ∈ T ∗, where
σ = t0, t1, . . . tn−1, such that ti ∈ T , 0 ≤ i ≤ n − 1. A process log is a defined
as a set of traces, denoted as W ∈ P(T ∗). An effect log Θ ⊆ P(T × B(P)) is
defined as a set of effect traces.

The problem of process mining takes process log as input and produces
process models as output. That is given a process log W ∈ P(T ∗) over a set
T of activities, find process model P = (N ,F) such that TP = W . In this work
we propose a variant of process mining problem which we call effect log mining

308 S. Roy et al.

(also called effect discovery). It says, given an effect log Θ ⊆ P(T × B(P)) find
annotated process model G = (N ,F ,K,A) such that EG = Θ.

We made some simplifications of our effect mining problem. We assume our
knowledge base K is a pair (P,T), and T is empty, that is, it contains no facts
or no rules. Further we make the unique name assumption for tasks, i.e., a task
appears only once in the process model, which is just a matter of renaming. Next
we propose an algorithm for effect discovery using log abstractions [12] based
on log-based ordering relations. Our log-based ordering relation is defined on
annotated task nodes (pairs of tasks with accumulated effects). We also define
an edge relation between annotated nodes based on the above ordering relation
as part of our discovery algorithm. Using this algorithm it will be possible to
discover the process and find effect for each individual task in the discovered
process. In this work we choose to use a modified α-algorithm to discover our
process model [11] (in spite of its inability to address loops, non-free-choice
structures, and limited ability to address variability and closed path). For the
details of the algorithm the reader is referred to [9].

We employ our process discovery technique on our example where we assume
the knowledge base to be K = {P, ∅}, where P is defined before. We consider the
effect log ε of the process model in Table 3. The workflow WP discovered thus
is shown in Fig. 2. Using our technique we can only recover gross annotation of

Table 3. Effect traces and its underlying trace of the process model

Effect trace ε The underlying trace

((start, ∅), (A,{ordered, received}), (A,{ordered, received, cancelled}),

(C,{ordered, received, cancelled, rejected}), (H,{ordered, received, can-
celled, rejected, closed}), (end,{ordered, received, cancelled, rejected,

closed}))

(start,A,C,H,end)

((start, ∅), (A, {ordered, received}), (A, {ordered, received, approved}),

(B, {ordered, received, approved, fulfilled}), (E, {ordered, received,

approved, fulfilled, shipped}), (D, {ordered, received, approved,

fulfilled, shipped, invoiceSent, paymentExpected}), (F, {ordered,
received, approved, fulfilled, shipped, invoiceSent, paymentEx-

pected, paymentReceived}), (G, {ordered, received, approved, fulfilled,

shipped, invoiceSent, paymentReceived, paymentAccepted, paid}), (H,

{ordered, received, approved, fulfilled, shipped, invoiceSent, paymen-

tReceived, paymentAccepted, paid, closed}), (end, {ordered, received,

approved, fulfilled, shipped, invoiceSent, paymentReceived, paymen-

tAccepted, paid, closed}))

(start,A,B,E,D,F,G,H,end)

((start, ∅), (A, {ordered, received}), (A, {ordered, received, approved}),

(B, {ordered, received, approved, fulfilled}), (D, {ordered, received,

approved, fulfilled, invoiceSent, paymentExpected}), (F, {ordered,
received, approved, fulfilled, invoiceSent, paymentExpected, paymen-

tReceived}), (G, {ordered, received, approved, fulfilled, invoiceSent,

paymentReceived, paymentAccepted, paid}), (E, {ordered, received,

approved, fulfilled, invoiceSent, paymentReceived, paymentAccepted,

paid, shipped}), (H, {ordered, received, approved, fulfilled, invoic-

eSent, paymentReceived, paymentAccepted, paid, shipped, closed}),

(end, {ordered, received, approved, fulfilled, invoiceSent, paymentRe-

ceived, paymentAccepted, paid, shipped, closed}))

(start,A,B,D,F,G,E,H,end)

Annotating and Mining for Effects of Processes 309

individual task instead of exact effect, however the satisfiability of the former
implies that of the latter.

Fig. 2. Discovered workflow WP

4 Conclusion

Our semantic annotation of process models can help bridge between the high-
level process and the actual IT infrastructure as support functions like discov-
ery, composition, mediation can be implemented with concrete services using
Semantic Web formalisms. Given an implementation of services and observed
snapshots, we should be able to discover the process with its effect annotations
using our algorithm. In future we plan to integrate our effect mining technique
with data-driven approach to mining effect annotations (and specifically post
conditions) from event logs arising in process execution histories [10].

References

1. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

2. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Analysis on demand: instantaneous soundness checking of industrial business
process models. Data Knowl. Eng. 70(5), 448–466 (2011)

3. Hinge, K., Ghose, A.K., Koliadis, G., Process, S.: A tool for semantic effect anno-
tation of business process models. In: Proceedings of the 13th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2009, pp. 54–63
(2009)

4. Hoffmann, J., Weber, I., Governatori, G.: On compliance checking for clausal con-
straints in annotated process models. Inf. Syst. Front. 14(2), 155–177 (2012)

5. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1991)

6. Kiepuszewski, B., ter Hofstede, A., van der Aalst, W.: Fundamentals of control
flow in workflows. Acta Informatica 39, 143–209 (2003)

7. Liberatore, P.: The complexity of belief update. Artif. Intell. 119(1–2), 141–190
(2000)

310 S. Roy et al.

8. Liu, R., Kumar, A.: An analysis and taxonomy of unstructured workflows. In:
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 268–284. Springer, Heidelberg (2005). doi:10.1007/11538394 18

9. Roy, S., Santriputri, M., Ghose, A.: Annotating and mining for effects of processes.
Technical report, University of Wollongong, Australia (2015, Available on request)

10. Santiputri, M., Ghose, A.K., Dam, H.K., Wen, X.: Mining process task post-
conditions. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López,
Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 514–527. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25264-3 38

11. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

12. Dongen, B.F., Aalst, W.M.P.: Multi-phase process mining: building instance
graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER
2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30464-7 29

13. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85758-7 10

14. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analy-
sis for business process models through SESE decomposition. In: Krämer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74974-5 4

15. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification
of semantic business process models. Distrib. Parallel Databases 27(3), 271–343
(2010)

http://dx.doi.org/10.1007/11538394_18
http://dx.doi.org/10.1007/978-3-319-25264-3_38
http://dx.doi.org/10.1007/978-3-540-30464-7_29
http://dx.doi.org/10.1007/978-3-540-30464-7_29
http://dx.doi.org/10.1007/978-3-540-85758-7_10
http://dx.doi.org/10.1007/978-3-540-74974-5_4

Business Process Management and
Modeling

Automated Discovery of Structured Process
Models: Discover Structured vs. Discover

and Structure

Adriano Augusto1,2(B), Raffaele Conforti1, Marlon Dumas3,
Marcello La Rosa1, and Giorgio Bruno2

1 Queensland University of Technology, Brisbane, Australia
{a.augusto,raffaele.conforti,m.larosa}@qut.edu.au

2 Politecnico di Torino, Turin, Italy
giorgio.bruno@polito.it

3 University of Tartu, Tartu, Estonia
marlon.dumas@ut.ee

Abstract. This paper addresses the problem of discovering business
process models from event logs. Existing approaches to this problem
strike various tradeoffs between accuracy and understandability of the
discovered models. With respect to the second criterion, empirical stud-
ies have shown that block-structured process models are generally more
understandable and less error-prone than unstructured ones. Accord-
ingly, several automated process discovery methods generate block-
structured models by construction. These approaches however intertwine
the concern of producing accurate models with that of ensuring their
structuredness, sometimes sacrificing the former to ensure the latter. In
this paper we propose an alternative approach that separates these two
concerns. Instead of directly discovering a structured process model, we
first apply a well-known heuristic that discovers more accurate but some-
times unstructured (and even unsound) process models, and then trans-
form the resulting model into a structured one. An experimental eval-
uation shows that our “discover and structure” approach outperforms
traditional “discover structured” approaches with respect to a range of
accuracy and complexity measures.

Keywords: Automated process discovery · Process structuring · BPMN

1 Introduction

Automated process discovery refers to a family of methods that generate a busi-
ness process model from an event log [18]. An event log in this context is a set
of traces, each consisting of a sequence of events observed within one execution
of a process.

Existing automated process discovery methods strike various tradeoffs
between accuracy and understandability [20]. In this setting, accuracy is com-
monly declined into three dimensions: (i) fitness: to what extent the discovered
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 313–329, 2016.
DOI: 10.1007/978-3-319-46397-1 25

314 A. Augusto et al.

model is able to “parse” the traces in the log; (ii) precision: how much behavior
is allowed by the model but not observed in the log; and (iii) generalization: to
what extent is the model able to parse traces that, despite not being present
in the input log, can actually be produced by the process under observation.
Understandability on the other hand is commonly measured via size metrics
(e.g. number of nodes) and structural complexity metrics. The latter quantify
either the amount of branching in a process model or its degree of structured-
ness (the extent to which a model is composed of well-structured single-entry,
single-exit components), which have been empirically shown to be proxies for
understandability [11].

Inspired by the observation that structured process models may be more
understandable than unstructured ones [6], several automated process discovery
methods generate structured models by construction [3,10,12]. These approaches
however intertwine the concern of accuracy with that of structuredness, some-
times sacrificing the former to achieve the latter. This paper obviates this tradeoff
by presenting an automated process discovery method that generates structured
models, yet achieves essentially the same fitness, precision and generalization as
methods that generate unstructured models. The method follows a two-phased
approach. In the first phase, a model is discovered from the log using a heuristic
process discovery method that has been shown to consistently produce accurate,
but potentially unstructured or even unsound models. In the second phase, the
discovered model is transformed into a sound and structured model by apply-
ing two techniques: a technique to maximally block-structure an acyclic process
model and an extended version of a technique for block-structuring flowcharts.

The paper reports on an empirical evaluation based on real-life and synthetic
event logs that puts into evidence the performance of the proposed method relative
to two representative methods that discover structured models by construction.

The rest of the paper is organized as follows. Section 2 introduces existing
automated process discovery methods and methods for structuring process mod-
els. Section 3 presents the proposed method while Sect. 4 reports on the empiri-
cal evaluation. Finally, Sect. 5 summarizes the contributions and outlines future
work directions.

2 Background and Related Work

In this section we review existing automated process discovery methods and asso-
ciated quality dimensions. We also introduce methods for transforming unstruc-
tured process models into structured ones, which we later use as building blocks
for our proposal.

2.1 Automated Process Discovery Algorithms

The bulk of automated process discovery algorithms are not designed to produce
structured process models. This includes for example of the α-algorithm [19],
which may produce unstructured models and sometimes even models with

Automated Discovery of Structured Process Models 315

disconnected fragments. The Heuristics Miner [21] partially addresses the lim-
itations of the α-algorithm and consistently performs well in terms of accuracy
and simplicity metrics [20]. However, its output may be unstructured and even
unsound, i.e. the produced models may contain deadlocks or gateways that do
not synchronize all their incoming tokens. Fodina1 is a variant of the Heuristics
Miner that partially addresses the latter issue but does not generally produce
structured models.

It has been observed that structured process models are generally more
understandable than unstructured ones [6]. Moreover, structured process models
are sound, provided that the gateways at the entry and exit of each block match.
Given these advantages, several algorithms are designed to produce structured
process models, represented for example as process trees [3,10]. A process tree
is a tree where the each leaf is labelled with an activity and each internal node
is labeled with a control-flow operator: sequence, exclusive choice, non-exclusive
choice, parallelism, or iteration.

The Inductive miner [10] uses a divide-and-conquer approach to discover
process trees. Using the direct follows dependency between event types in the
log, it first creates a directly-follows graph which is used to identify cuts. A
cut represent a specific control-flow dependency along which the log can be
bisected. The identification of cuts is repeated recursively, starting from the
most representative one until no more cuts can be identified. Once all cuts are
identified and the log split into portions, a process tree is generated on top of
each portion of the log. The algorithm then applies filters to remove “dangling”
directly-follows edges so that the result is purely a process tree.

The Evolutionary Tree Miner (ETM) [3] is a genetic algorithm that starts by
generating a population of random process trees. At each iteration, it computes
an overall fitness value for each tree in the population and applies mutations to
a subset thereof. A mutation is a tree change operation that adds or modifies
nodes. The algorithm iterates until a stop criterion is fulfilled, and returns the
tree with highest overall fitness.

Molka et al. [12] proposed another genetic automated process discovery algo-
rithm that produces structured process models. This latter algorithm is similar
in its principles to ETM, differing mainly in the set of change operations used
to produce mutations.

2.2 Quality Dimensions in Automated Process Discovery

The quality of an automatically discovered process model is generally assessed
along four dimensions: recall (a.k.a. fitness), precision, generalization and com-
plexity.

Fitness is the ability of a model to reproduce the behavior contained in a log.
Under trace semantics, a fitness of 1 means that the model can produce every
trace in the log. In this paper, we use the fitness measure proposed in [2], which
measures the degree to which every trace in the log can be aligned with a trace

1 http://www.processmining.be/fodina.

http://www.processmining.be/fodina

316 A. Augusto et al.

produced by the model. Precision measures the ability of a model to generate
only the behavior found in the log. A score of 1 indicates that any trace produced
by the model is somehow present in the log. In this paper we use the precision
measure defined in [1], which is based on similar principles as the above fitness
measure. Recall and precision can be combined into a single F-score, which is
the harmonic mean of the two measurements

(
2 · Fitness ·Precision

Fitness +Precision

)
.

Generalization measures the ability of a discovered model to produce behav-
ior that is not present in the log but that can be produced by the process under
observation. To measure generalization we use 10-fold cross validation [9]: We
divide the log into 10 parts, discover a model from 9 parts (i.e. we hold-out 1
part), and we measure fitness of the discovered model against the hold-out part.
This is repeated for every possible hold-out part. Generalization is the mean of
the fitness values obtained for each hold-out part. A generalization of 1 means
that the discovered models produce traces in the observed process, even if those
traces are not in the log from which the model was discovered.

Finally, complexity quantifies how difficult it is to understand a model. Sev-
eral complexity metrics have been shown to be (inversely) related to understand-
ability [11], including size (number of nodes); Control-Flow Complexity (CFC)
(the amount of branching caused by gateways in the model) and structuredness
(the percentage of nodes located directly inside a well-structured single-entry
single-exit fragment).

2.3 Structuring Techniques

Polyvyanyy et al. [15,16] propose a technique to transform unstructured process
models into behaviourally equivalent structured ones. The approach starts by
constructing the Refined Process Structure Tree (RPST) [17] of the input process
model. The RPST of a process model is a tree where the nodes are the single-
entry single-exit (SESE) fragments of the model and an edge denotes a con-
tainment relation between SESE fragments. Specifically, the children of a SESE
fragment in the tree are the SESE fragments that it directly contains. Fragments
at the same level of the tree are disjoint.

Each SESE fragment is represented by a set of edges. Depending on how
these edges are related, a SESE fragment can be of one of four types. A trivial
fragment consists of a single edge. A polygon is a sequence of fragments. A bond
is a fragment where all child fragments share two common gateways, one being
the entry node and the other being the exit node of the bond. In other words,
a bond consists of a split gateway with two or more sub-SESE fragments all
converging into a join gateway. Any other fragment is a rigid. A model that
consists only of trivials, polygons and bonds (i.e. no rigids) is fully structured.
Thus the goal of a block-structuring technique is to replace rigid fragments in
the RPST with combinations of trivials, polygons and bonds.

In the structuring technique by Polyvyanyy et al., each rigid fragment is
unfolded and an ordering relation graph is generated. This graph is then parsed
to construct a modular decomposition tree leading to a hierarchy of components

Automated Discovery of Structured Process Models 317

from which a maximally structured version of the original fragment is derived.
The technique in [16] produces a maximally-structured version of any acyclic
fragment (and thus of any model), but it does not structure rigid fragments that
contain cycles.

The problem of structuring behavioral models has also been studied in
the field of programming, specifically for flowcharts: graphs consisting of tasks
(instructions), exclusive split and exclusive join gateways. Oulsnam [13] iden-
tified six primitive forms of unstructuredness in flowcharts. He observed that
unstructuredness is caused by the presence either of an injection (entry point)
or an ejection (exit point) in one of the branches connecting a split gateway to a
matching join gateway. Later, Oulsnam [14] proposed an approach to structure
these six forms. The approach is based on two rules. The first rule deals with
an injection, and pushes the injection after the join gateway, duplicating every-
thing that was originally between the injection and the join. On the other hand,
when the unstructuredness is caused by an ejection, the ejection is pushed after
the join gateway and an additional conditional block is added to prevent the
execution of unnecessary instructions. These two rules are recursively applied
to the flowchart, starting from the innermost unstructured form, until no more
structuring is possible.

Polyvyanyy’s and Oulsnam’s technique are complementary: while
Polyvyanyy’s technique deals mainly with unstructured acyclic rigids with par-
allelism, Oulsnam’s one deals with rigid fragments without parallelism (exclusive
gateways only). This observation is a centrepiece of the approach presented in the
following section.

3 Approach

The proposed approach to discovering structured process models takes as input
an event log and operates in two phases: (i) discovery & cleaning, and (ii) struc-
turing.

3.1 Discovery and Cleaning

In this phase a process model is discovered from an input log using an existing
process discovery algorithm. Any process discovery algorithm can be used in this
phase. In this paper we use the Heuristics Miner because of its accuracy [20]. In
addition to discovering an initial (unstructured) model, this phase fixes model
correctness issues such as disconnected nodes (structural issues) and deadlocks
(behavioral issues). This is achieved via 3 heuristics. Before presenting them, we
formally define a process model.

Definition 1 (Process model). A process model is a connected graph G =
(i, o, A,G+, Gx, F), where A is a non-empty set of activities, i is the start event,
o is the end event, G+ is the set of AND-gateways, Gx is the set of XOR-
gateways, and F ⊆ ({i}∪A∪G+ ∪Gx)× ({o}∪A∪G+ ∪Gx) is the set of arcs.
A split gateway is a gateway with one incoming arc and multiple outgoing arcs,
while a join gateway is a gateway with multiple incoming arcs and one outgoing
arc.

318 A. Augusto et al.

Fig. 1. Examples of application of the three cleaning heuristics.

A process model starts with a unique start event, representing the process
trigger (e.g. “order received”) and concludes with a unique end event, represent-
ing the process outcome (e.g. “order fulfilled”). The model may contain activities,
which capture actions that are performed during the process (e.g. “check order”)
and gateways, which are used for branching (split) and merging (join) purposes.
Gateways can be of type XOR, to model exclusive decisions (XOR-split) and
simple merges (XOR-join), and AND, to model parallelism (AND-split) and
synchronization (AND-join).

The first heuristic (cf. Fig. 1) ensures that a model contains a single start
and a single end event, and that every activity in the model is on a path from
the start to the end. In case of multiple start or end events, these events are
connected via an XOR gateway. In case of activities not on a path from start to
end, the heuristic places the activity in parallel with the rest of the process, in
such a way that the activity can be skipped and repeated any number of times.
The second heuristic ensures that for every bond, the split and the join gateways
are of the same type – both AND or both XOR but not mixed (cf. Fig. 1). In
the case of an acyclic bond (a bond where all paths go from the entry to the
exit gateway), the heuristic matches the exit gateway type with that of entry
gateway type. If the bond is cyclic (there is a path from the exit to the entry
gateway), the heuristic converts all gateways into XORs. The third heuristic
addresses cases of unsoundness related to quasi-bonds. A quasi-bond is a bond
with an injection via a join gateway or an ejection via a split gateway, along a
path connecting the entry and exit gateways of the bond. The heuristic replaces
the entry and exit gateways of the quasi-bond as well as the join (split) causing
the injection (ejection), with XOR gateways.

3.2 Structuring

The second phase of our approach deals with the structuring of the discovered
process model by removing injections and ejections. Before discussing this phase,
we need to formally define the notions of activity path, injection and ejection.
An activity path is a path containing activity nodes only (no gateways), between
two gateways.

Automated Discovery of Structured Process Models 319

Definition 2 (Activity Path). Given two gateways gentry and gexit and a
sequence of activities S = 〈a1, . . . , an〉, there is a path from gentry to gexit , i.e.
gentry �S gexit iff gentry → a1 → a2 → · · · → an → gexit , where a → b holds
if there is an arc connecting a to b. Using the operator � we define the set of all
paths of a process model as P � {(g1, g2, S) ∈ G × G × A∗ | g1 �S g2}. The set
of incoming paths of a gateway gx is defined as �gx = {(g1, g2, S) ∈ P | gx = g2}.
Similarly the set of outgoing paths is defined as gx � = {(g1, g2, S) ∈ P | gx = g1}.
Definition 3 (Injection). Given four different gateways g1, g2, g3, g4, they
constitute an injection i = (g1, g2, g3, g4) iff ∃(S1, S2, S3) ∈ A∗ × A∗ × A∗ |
g1 �S1 g2 ∧ g2 �S2 g3 ∧ g4 �S3 g2 (see “before” column in Fig. 2).

Definition 4 (Ejection). Given four different gateways g1, g2, g3, g4, they
constitue an ejection e = (g1, g2, g3, g4) iff ∃(S1, S2, S3) ∈ A∗ ×A∗ ×A∗ | g1 �S1

g2 ∧ g2 �S2 g3 ∧ g2 �S3 g4 (see “before” column in Fig. 2)

According to [17], a rigid is homogeneous, if for all injections and ejections
in the rigid, the gateways are of the same type, otherwise it is heterogeneous.

Fig. 2. Structuring of injection and ejection.

Moreover, if an injec-
tion or ejection is part of
a cycle the rigid is cyclic,
otherwise it is acyclic. Now
we have all ingredients
to describe the structur-
ing phase. In this phase,
the RPST of the discov-
ered process model is gen-
erated and all its rigids
identified. Once all rigids
have been identified, the
RPST is traversed bottom-up, and each rigid is structured along the way.

Algorithm 1 shows how the RPST is traversed and each node is structured.
The algorithm uses a bottom-up traversal strategy implemented via a queue.
First, all leaves of the RPST are inserted in the queue. At each step a node
from the queue is removed, and structured if it is a rigid. The structuring is
performed using BPStruct [15] if the rigid is sound and consists only of AND
gateways (sound AND-homogeneous) or a mixture of AND and XOR gateways
(sound heretogeneous) – cf. line 8. Otherwise the structuring is performed using
an extended version of Oulsnam’s algorithm [14] (line 9) as discussed later. Then
the node is marked as visited and if the parent node has not been visited yet, it
is added to the queue (cf. line 11). This is repeated until the queue is empty.

We decided to use two different structuring techniques since BPStruct guar-
antees optimal results when applied on sound AND-homogeneous or hetero-
geneous rigids only, whilst it produces suboptimal results for acyclic XOR-
homogeneous rigids and it fails in case of cyclic XOR-homogeneous or unsound
rigids. The structuring of these types of rigids is achieved instead using an

320 A. Augusto et al.

Algorithm 1. Structuring flow
input: RPST rpst

Queue Queue := getLeaves(rpst);1

Set Visited := ∅;2

while Queue �= ∅ do3

node := remove(Queue);4

parent := getParent(node);5

if isRigid(node) then6

if isSoundANDHomogeneous(node) OR isSoundHeterogeneous(node)7

then
BPStruct(node);8

else EOStruct(node);9

Visited := Visited ∪ {node};10

if parent /∈ Visited then insert(Queue, parent);11

Algorithm 2. Push-Down
input: Injection i = (g1, g2, g3, g4)
input: Set of all Paths P
input: Set of all Gateways G

if g2
� ⊆ �g3 then1

g′
2 := copy(g2);2

G := G ∪ {g′
2};3

P := P ∪ {(g4, g′
2, S) ∈ G × G × A∗ | ∃(g4, g2, Sx) ∈ (g4

� ∩ �g2)[Sx = S]};4

P := P \ (g4
� ∩ �g2);5

P := P ∪ {(g′
2, g3, S

′) ∈ G × G × A∗ | ∃(g2, g3, S) ∈ (g2
� ∩ �g3)[S′ = copy(S)]};6

if (|g2 � | = 1) AND (| �g2| = 1) then G := G \ {g2};7

if (
∣
∣g′

2
�
∣
∣ = 1) AND (

∣
∣ �g′

2

∣
∣ = 1) then G := G \ {g′

2};8

Algorithm 3. Pull-Up
input: Ejection e = (g1, g2, g3, g4)
input: Set of all Paths P
input: Set of all Gateways G

if �g2 ⊆ g1
� then1

g′
2 := copy(g2);2

G := G ∪ {g′
2};3

P := P ∪ {(g′
2, g4, S) ∈ G × G × A∗ | ∃(g2, g4, Sx) ∈ (g2

� ∩ �g4)[Sx = S]};4

P := P \ (g2
� ∩ �g4);5

P := P ∪ {(g1, g′
2, S

′) ∈ G × G × A∗ | ∃(g1, g2, S) ∈ (g1
� ∩ �g2)[S′ = copy(S)]};6

if (|g2 � | = 1) AND (| �g2| = 1) then G := G \ {g2};7

if (
∣
∣g′

2
�
∣
∣ = 1) AND (

∣
∣ �g′

2

∣
∣ = 1) then G := G \ {g′

2};8

extended version of Oulsnam’s algorithm. Before presenting this latter algo-
rithm, we need to introduce two operators.

The first operator is the push-down operator (see Algorithm 2). Given
an Injection i = (g1, g2, g3, g4), Push-Down(i) can be applied if

Automated Discovery of Structured Process Models 321

g2 � ⊆ � g3 (see line 1). The operator removes the input injection in four steps:
(i) it creates a copy of g2, namely g′

2; (ii) for each path from g4 to g2, it changes
the end node of the path from g2 to the new gateway g′

2 (lines 4 and 5); (iii) for
each path from g2 to g3, it duplicates the path, setting g′

2 as the starting node
of the path, instead of g2 (line 6); and (iv) it removes any of g2 and g′

2 if it is a
trivial gateway (see Fig. 2).

The second operator is the pull-up operator (see Algorithm 3). Given an
Ejection e = (g1, g2, g3, g4), Pull-Up(e) can be applied if � g2 ⊆ g1 � (see line
1). The operator removes the input ejection in four steps: (i) it creates a copy
of g2, namely g′

2; (ii) for each path from g2 to g4, it changes the starting node of
the path from g2 to the new gateway g′

2 (lines 4 and 5); (iii) for each path from
g1 to g2, it duplicates the path, setting g′

2 as the end node of the path, instead
of g2 (line 6); and (iv) it removes any of g2 and g′

2 if it is a trivial gateway (see
Fig. 2).

While the push-down operator is an adaptation of Oulsnam’s technique [14],
the pull-up operator is a new operator. Despite the pull-up operator preserves
trace equivalence it does not preserve weak bisimulation equivalence, because
it does not preserve the moment of choice (it may pull a choice to an earlier
point). Indeed, referring to Fig. 2, given a generic ejection e = (g1, g2, g3, g4),
the pull-up operator by definition can be applied iff � g2 ⊆ g1 � , this means
g2 can be reached only from g1, and consequentially the only way to reach g4
from g2 is passing through g1. Considering this latter and that by definition the
pull-up operator generates a path S′

24 ∈ g′
2

� ∩ � g4 for each previously existing
path S24 ∈ g2 � ∩ � g4 (step ii), and creates a duplicate path S′

12 ∈ g1 � ∩ � g′
2

for each previously existing path S12 ∈ g1 � ∩ � g2 (step iii), it follows that for
each concatenation of S12 and S24 existing before the pull-up operator, after
the pull-up operator there will exist a concatenation of S′

12 and S′
24 that is its

duplicate. Therefore, the nature of the pull-up operator does not introduce nor
remove executable traces. The only drawback of the pull-up operator is that the
decision to take the path that will lead to g4 is anticipated at g1, whilst before
was at g2 (i.e. earlier point of choice). Due to this tradeoff, we make the use of
the pull-up operator optional as discussed below.

Algorithm 4 (Extended Oulsnam) shows how the two operators are used to
structure a rigid fragment. The inputs of the algorithm are an unstructured rigid
and a boolean value to indicate whether the pull-up operator is to be used. First,
the algorithm detects every injection on top of which the push-down operator
can be applied (see line 2), and if the pull-up is enabled, every ejection on top of
which the pull-up can be applied (line 4). Second, it selects the cheapest injection
and the cheapest ejection (lines 5 and 6). The cheapest injection (ejection) is the
injection (ejection) generating the minimum number of duplicates after a push-
down (pull-up). Third, the cheapest among these two is then chosen (line 8) and
the corresponding operator is applied. The algorithm iterates over these three
steps until no more ejections or injections can be removed, which results in a
fully structured or maximally structured rigid. Selecting the cheapest injection or
ejection at each step does not ensure that the final model will have the minimum

322 A. Augusto et al.

Algorithm 4. EOStruct (Extended Oulsnam)
input: Rigid r
input: Boolean pullup

do1

Set I := detectInjections(r);2

Set E := ∅;3

if pullup then Set E := detectEjections(r);4

if I �= ∅ then Injection i := cheapestInjection(I);5

if E �= ∅ then Ejection e := cheapestEjection(E);6

if (i not ⊥) OR (e not ⊥) then7

if ((e = ⊥) OR ((i not ⊥) AND (cost(i) ≤ cost(e)))) then8

Push-Down(i);
else Pull-Up(e);9

while I �= ∅ OR E �= ∅ ;10

g1 g2 g3 g4

g5
A

E

C D

F G

B

Input: Step 1

g1 g2

g4

g5

F G

G'

B

D

C

A

E

Step 1.1

g1 g4g5
A

E

C

D

F G

B

F'

G'

G'

Step 1.1.1

rigid2a

g1 g3 g4

g5A

E

C
D

F G

B

F'

Step 1.2

g1 g4g5 g3'
G'A

E

C

B

D

F'

F G

Step 1.2.1

Fig. 3. An example application of the A∗ search tree with our structuring method.

number of duplicates. In order to achieve the latter property, we embed the
Extended Oulsnam algorithm inside an A∗ search [8], where each state in the
search tree is a transformed version of the initial rigid fragment, and the cost
function associated with each state is defined as f(s) = g(s) + h(s) with g(s) =
#duplicates and h(s) = 0. We set function h(s) to zero since it is not possible to
predict how many duplicates are needed in order to structure a rigid.

Figure 3 illustrates an example where a rigid is structured using Algorithm 4
within an A∗ search. In this example, the rigid has two injections, i.e. i1 =
(g1, g2, g3, g5) and i2 = (g2, g3, g4, g5). Assuming i2 is the cheapest of the two
injections (i.e. the size of subprocess G is smaller than the size of subprocess F),
if we first remove i2 and then i1 (see Step 1.1 and Step 1.1.1) we will have to
duplicate sub-process G twice. This would not happen if we first removed i1 and
then i2 (see Step 1.2 and Step 1.2.1). The use of an A∗ search helps us avoid
these situations since it takes care of exploring the search tree and selecting

Automated Discovery of Structured Process Models 323

the sequence of removals of injections and ejections, that leads to the minimum
number of duplicated elements.

For unsound rigids, we only apply the push-down operator in order to pre-
serve the moment of choice of the split gateways of the quasi-bonds that will
be turned into bonds when structuring the rigid (not shown in Algorithm 4 for
brevity). After the structuring procedure has been completed, we match the type
of the join gateways of the acyclic bonds with the type of their corresponding
split gateways (e.g. if the split is an AND gateway the join will be turned into an
AND gateway). In case of cyclic bonds, we turn both split and join gateways into
XOR to avoid soundness issues. If multiple bonds share the same join gateway,
this is replaced with a chain of gateways, one for each bond, maintaining the
original bonds hierarchy. Finally, since we disable the use of the pull-up operator
on unsound rigids, we cannot guarantee that these will be fully structured, hence
we cannot guarantee that they will be turned into sound fragments.

Complexity. The complexity of the push-down and pull-up operators is linear
on the number of activity paths to be duplicated when structuring an injection
or ejection, i.e. O(|g2 � ∩ � g3|). This is bounded by O(n2), where n is the number
of nodes in the model. The complexity of the Extended Oulsnam algorithm is
linear on the number of injections and ejections, which is O

((
g
4

))
where g is

the number of gateways, which is bounded by the number of nodes n. Hence,
O

((
n
4

))
+ O(n2) ≈ O(n4). Finally, the complexity of A∗ is O(bq) where b is the

branching factor and q is the depth of the solution. In our case the branching
factor is the number of injections and ejections, and so is the depth of the
solution. Hence the complexity of our method is O(n4n

4

) · O(n4) ≈ O(nn). This
does not include the complexity of the baseline discovery method.

4 Evaluation

We implemented our method as a standalone tool as well as a ProM plugin,
namely the Structured Miner (hereafter SM).2 The tool takes a log in MXML
or XES format (currently it supports Heuristics Miner (HM) and Fodina (FM)
as baseline discovery algorithms), and returns a maximally structured process
model in BPMN format.

Using this tool, we conducted a series of experiments to evaluate the accuracy
of our discovery approach compared to that of methods that structure the model
during discovery. We selected two representative methods: Inductive Miner (IM)
and Evolutionary Tree Miner (ETM), and compared the results with our app-
roach on top of HM and FM. As the results obtained with FM were consistently
similar to those obtained with HM and due to space reasons, this section only
reports the results using HM.

We measured accuracy using the fitness, precision, F-score and generaliza-
tion metrics and model complexity via size, CFC and structuredness as defined
2 Available from http://apromore.org/platform/tools.

http://apromore.org/platform/tools

324 A. Augusto et al.

in Sect. 2.2. The experiments were done on an Intel dual-core i5-3337U 1.80 Ghz
with 12 GB of RAM running JVM 7 with 8 GB of heap, except for the exper-
iments using ETM, which were done on a 6-core Xeon E5-1650 3.50 Ghz with
128 GB of RAM running JVM 7 with 40 GB of heap, time-bounded to 30 min as
the ETM algorithm is computationally very expensive and can otherwise take
several hours per log.

4.1 Datasets

All Models(619)

SAP R/3(545)

Structured(484)

Unstructured(61)

Sound(21)

P. Unsound(25)

T. Unsound(15)

IBM BIT(54)

Structured(9)

Unstructured(45)

Sound(42)

P. Unsound (2)

T. Unsound (1)

Synthetic(20)

Unstructured(20)

Sound(16)

T. Unsound(4)

Fig. 4. Taxonomy of
models discovered by
HM from the logs (P. =
partially, T. = totally).

We generated three sets of logs using the ProM plu-
gin “Generate Event Log from Petri Net”. This plu-
gin takes as input a process model in PNML format
and generates a distinct log trace for each possible exe-
cution sequence in the model. The first set (591 Petri
nets) was obtained from the SAP R/3 collection, SAP’s
reference model to customize their R/3 ERP product
[4]. The log-generator plugin was only able to parse 545
out of 591 models, running into out-of-memory excep-
tions for the others. The second set (54 Workflow nets3)
was obtained from a collection of sound and unstruc-
tured models extracted from the IBM BIT collection
[6]. The BIT collection is a publicly-available set of
process models in financial services, telecommunication
and other domains, gathered from IBMs consultancy
practice [7]. The third set contains 20 artificial mod-
els, which we created to test our method with more
complex forms of unstructuredness, not observed in the
two real-life collections. These are: (i) rigids contain-
ing AND-gateway bonds, (ii) rigids containing a large
number of XOR gateways (>5); (iii) rigids containing
rigids and (iv) rigids being the root node of the model.
Out of these 619 logs we only selected those for which
HM produced an unstructured model, as our approach does not add value if
the resulting model is already structured. This resulted in 126 logs, of which
61 came from SAP, 45 from IBM and 20 were synthetic. These logs range from
4,111 to 201,758 total events (avg. 49,580) with 3 to 4,235 distinct traces (avg.
137). From the models discovered with HM, we identified 79 sound models, 31
partially unsound models, i.e. models for which there is at least one complete
trace, and 16 totally unsound models, i.e. models whose traces always deadlock.
A taxonomy of the datasets used is shown in Fig. 4.

4.2 Results

Tables 1 and 2 report the average value and standard deviation for each quality
measure across all discovery algorithms, for the models mined from the real-life
3 This collection originally counted 59 models, but we discarded five duplicates.

Automated Discovery of Structured Process Models 325

Table 1. Quality of models discovered from real-life data.

Log class
(Class
size)

Discovery
method

Accuracy Complexity

Fitness Precision F-score Gen. (10-fold) Size CFC Struct.

Sound
(63)

IM 1.00 ± 0.01 0.69 ± 0.31 0.77 ± 0.26 1.00 ± 0.01 23.8 ± 7.9 11.2 ± 5.0 1.00 ± 0.00

ETM 0.91 ± 0.08 0.93 ± 0.06 0.92 ± 0.06 0.90 ± 0.06 26.4 ± 8.6 8.6 ± 4.3 1.00 ± 0.00

HM 1.00 ± 0.00 0.99 ± 0.05 0.99 ± 0.03 1.00 ± 0.01 25.0 ± 7.7 8.7 ± 4.2 0.50 ± 0.16

SMHM 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.01 1.00 ± 0.00 29.7 ± 13.3 10.2 ± 6.5 0.90 ± 0.21

P.
unsound
(27)

IM 0.98 ± 0.03 0.73 ± 0.27 0.80 ± 0.22 0.98 ± 0.03 22.1 ± 5.9 11.6 ± 5.0 1.00 ± 0.00

ETM 0.90 ± 0.09 0.86 ± 0.11 0.87 ± 0.07 0.89 ± 0.06 21.7 ± 7.8 7.5 ± 5.2 1.00 ± 0.00

HM 0.69 ± 0.21 0.85 ± 0.10 0.75 ± 0.16 0.66 ± 0.21 21.9 ± 7.3 9.0 ± 5.1 0.53 ± 0.21

SMHM 0.97 ± 0.04 0.93 ± 0.11 0.95 ± 0.08 0.97 ± 0.04 24.6 ± 10.5 10.0 ± 6.7 0.97 ± 0.15

T.
unsound
(16)

IM 0.99 ± 0.03 0.82 ± 0.21 0.88 ± 0.14 0.99 ± 0.03 24.1 ± 12.0 9.6 ± 6.7 1.00 ± 0.00

ETM 0.90 ± 0.10 0.87 ± 0.09 0.88 ± 0.07 0.89 ± 0.09 25.0 ± 4.2 9.2 ± 0.7 1.00 ± 0.00

HM - - - - 22.3 ± 9.4 7.8 ± 3.6 0.72 ± 0.19

SMHM 0.96 ± 0.06 0.92 ± 0.14 0.93 ± 0.11 0.96 ± 0.06 23.2 ± 10.4 7.7 ± 3.3 1.00 ± 0.00

Table 2. Quality of models discovered from artificial data.

Log class
(Class
size)

Discovery
method

Accuracy Complexity

Fitness Precision F-score Gen. (10-fold) Size CFC Struct.

Sound
(16)

IM 1.00 ± 0.01 0.53 ± 0.31 0.64 ± 0.26 1.00 ± 0.01 18.7 ± 4.5 10.7 ± 3.7 1.00 ± 0.00

ETM 0.89 ± 0.07 0.96 ± 0.05 0.92 ± 0.04 0.89 ± 0.05 22.1 ± 7.7 7.3 ± 3.2 1.00 ± 0.00

HM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 21.6 ± 5.2 8.2 ± 3.1 0.32 ± 0.17

SMHM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 25.1 ± 7.7 9.1 ± 3.5 1.00 ± 0.00

P.
unsound
(4)

IM 1.00 ± 0.00 0.44 ± 0.27 0.56 ± 0.22 1.00 ± 0.00 23.5 ± 10.4 11.5 ± 1.1 1.00 ± 0.00

ETM 0.83 ± 0.12 0.88 ± 0.09 0.84 ± 0.07 0.78 ± 0.15 25.5 ± 1.5 10.0 ± 1.0 1.00 ± 0.00

HM 0.61 ± 0.16 0.84 ± 0.06 0.69 ± 0.14 0.61 ± 0.16 27.8 ± 9.1 8.8 ± 1.5 0.30 ± 0.15

SMHM 0.89 ± 0.13 0.98 ± 0.02 0.93 ± 0.07 0.89 ± 0.13 30.0 ± 12.3 11.0 ± 3.3 1.00 ± 0.00

data, respectively, artificial data. When HM generates sound models its out-
put is already of high quality along fitness, precision and generalization, with a
marginal standard deviation. In this case, our approach only improves the struc-
turedness of the models, at the cost of a minor increase in size and CFC, due to
the duplication introduced by the structuring. IM instead, despite having simi-
larly high values of fitness and generalization, loses in precision with an average
of 0.69 with high standard deviation, meaning that the actual precision may
be much better or worse depending on the specific log used. As expected, these
models are structured by construction, but CFC still remains higher than that
of HM (and its structured variant SM) due to IM’s tendency to generate flower
models (which is also the cause for low precision). Finally, the quality of the
models discovered by ETM ranks in-between that of IM and HM both in terms
of accuracy and complexity, at the price of sensibly longer execution times.

326 A. Augusto et al.

Method Accuracy Discovered model
IM

fitness: 1.00
precision: 0.20
F-score: 0.33
generaliz.: 1.00

H
M

fitness: 0.60
precision: 0.88
F-score: 0.72
generaliz.: 0.60

SM

fitness: 1.00
precision: 1.00
F-score: 1.00
generaliz.: 1.00

Fig. 5. A model from the SAP R/3 logs, discovered by IM, HM and SM (injections
and gateways causing unsoundness in the HM model are highlighted).

The improvement of our method on top of HM is more evident when the latter
discovers unsound models. Here HM’s accuracy dramatically worsen compared to
IM and ETM. For example, in the case of partially unsound models, on average
fitness is 0.69 for HM vs. 0.98 for IM on real-life data, and 0.61 vs. 1 on artificial
data, while for totally unsound models, fitness and precision for HM cannot even
be measured. Our approach does not only notably increases structuredness (e.g.
0.53 vs. 0.97), but it also repairs the soundness issues and recovers the accuracy
lost by HM, significantly outperforming both IM and ETM in terms of precision
and F-score without compromising fitness and generalization, which get very
close to those obtained by IM, e.g. fitness increases from 0.69 to 0.97, as opposed
to 0.98 for IM, with an F-score of 0.95 instead of 0.80 in the case of partially
unsound models discovered from real-life data. In the case of “sound models”,
ETM strikes a better tradeoff between accuracy and complexity compared to
IM, but again, at the price of long execution times.

To illustrate when our approach outperforms IM, Fig. 5 shows the BPMN
model generated by IM, HM and SM from one of the SAP R/3 logs and the
corresponding quality measures.4 In this example, the precision of the model
produced by IM is low due to the presence of a large “flower-like” structure,
which causes overgeneralization. Precision is higher with HM, though fitness
and generalization suffer from the model being unsound. By structuring and
fixing the behavioral issues of this model, SM improves on all metrics, scoring a
perfect 1 for both F-score and generalization.

The negative effects of overgeneralization brought by IM are higher when the
models used for generating the logs exhibit complex unstructured patterns, such
as those introduced in the artificial data (cf. Table 2). For example, the precision
of IM is 0.53 for sound models (with a high standard deviation), as opposed to

4 The original labels are replaced with letters for the sake of compactness.

Automated Discovery of Structured Process Models 327

1 with HM. In these cases, SM consistently outperforms IM and ETM, while
significantly improving over HM in terms of structuredness (0.3 vs. 1).

In these experiments we disabled the pull-up operator of our method in order
to ensure weak bisimulation equivalence between the model discovered by HM
and the structured one. As a result, we could not fully structure 15 models from
real-life data, which explains a value of structuredness less than 1 for SM in
Table 1. When we enable the pull-up operator, all the discovered models are
fully structured, at the price of losing weak bisimilarity.

Time performance. Despite having exponential complexity in the worst case
scenario, the time SM took to structure the models used in this evaluation was
well within acceptable bounds, taking on average less than one second per model
(avg = 894 ms, min = 2 ms, max = 109 s, 95 % percentile = 47.65 ms).

4.3 Threats to Validity

A potential threat to internal validity is the use of process model complexity
metrics as proxies for assessing the understandability of the discovered process
models, as opposed to direct human judgement. However, the three chosen com-
plexity metrics (size, CFC and structuredness) have been empirically shown to
be highly correlated with perceived understandability and error-proneness [6,11].
Further, while the process models obtained with our method are affected by the
individual accuracy (fitness, precision and generalization) of the baseline algo-
rithm used (HM or FM), Structured Miner is independent of these algorithms,
and our experiments show that the method significantly improves on structured-
ness while keeping the same levels of accuracy. In addition, the method can often
fix issues related to model correctness.

The evaluation reported above is based on two real-life datasets. This poses a
threat to external validity. It should be noted though that these two datasets col-
lect models from a variety of domains, including finance, sales, accounting, logis-
tics, communication and human resources, and that the resulting logs are rep-
resentative of different characteristics (number of events and number of distinct
traces). Moreover, the use of an additional dataset artificially generated allowed
us to evaluate our method against a large variety of unstructured model topolo-
gies, including some complex ones not observed in the two real-life datasets.

5 Conclusion

We presented a two-phased method to extract a structured process model from
an event log wherein a process model is first extracted without any structural
restriction, and then transformed into a structured one if needed. The experi-
mental results show that this two-phased method leads to higher F-score than
existing methods that discover a structured process model by design. In addi-
tion, the proposed method is more modular, insofar as different discovery and
block-structuring methods can be plugged into it.

328 A. Augusto et al.

In this paper, we used the Heuristics Miner and Fodina for the first phase.
In future work, we will experiment with alternative methods for discovering
(unstructured) process models to explore alternative tradeoffs between model
quality metrics. In the second phase, we employed a structuring method that
preserves weak bisimilarity (if the pull-up operator is disabled). A direction for
future work is to explore the option of partially sacrificing weak bisimilarity
(while still keeping trace equivalence) to obtain models with higher structured-
ness. Another direction for future work is to use process model clone detection
techniques [5] to refactor duplicates introduced by the structuring phase. This
may allow us to strike better tradeoffs between size and structuredness.

Acknowledgments. This research is partly funded by the Australian Research Coun-
cil (grant DP150103356) and the Estonian Research Council (grant IUT20-55).

References

1. Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B.F., Aalst, W.M.P.:
Alignment based precision checking. In: Rosa, M., Soffer, P. (eds.) BPM
2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36285-9 15

2. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: Proceedings of EDOC. IEEE (2011)

3. Buijs, J.C.A.M., Dongen, B.F., Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: Meersman, R., Panetto,
H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A.,
Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33606-5 19

4. Curran, T., Keller, G.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Prentice-Hall, Inc., Upper Saddle River (1997)

5. Dumas, M., Garćıa-Bañuelos, L., La Rosa, M., Uba, R.: Fast detection of exact
clones in business process model repositories. Inf. Syst. 38(4), 619–633 (2013)

6. Dumas, M., Rosa, M., Mendling, J., Mäesalu, R., Reijers, H.A., Semenenko, N.:
Understanding business process models: the costs and benefits of structuredness.
In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS,
vol. 7328, pp. 31–46. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31095-9 3

7. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on
demand: instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448–466 (2011)

8. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

9. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Proceedings of IJCAI, pp. 1137–1145. Morgan Kaufmann
(1995)

10. Leemans, S.J.J., Fahland, D., Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.)
PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38697-8 17

11. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008)

http://dx.doi.org/10.1007/978-3-642-36285-9_15
http://dx.doi.org/10.1007/978-3-642-36285-9_15
http://dx.doi.org/10.1007/978-3-642-33606-5_19
http://dx.doi.org/10.1007/978-3-642-31095-9_3
http://dx.doi.org/10.1007/978-3-642-38697-8_17

Automated Discovery of Structured Process Models 329

12. Molka, T., Redlich, D., Gilani, W., Zeng, X.-J., Drobek, M.: Evolutionary compu-
tation based discovery of hierarchical business process models. In: Abramowicz, W.
(ed.) BIS 2015. LNBIP, vol. 208, pp. 191–204. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-19027-3 16

13. Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3), 379–387
(1982)

14. Oulsnam, G.: The algorithmic transformation of schemas to structured form. Com-
put. J. 30(1), 43–51 (1987)

15. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. Inf. Syst. 37(6), 518–538 (2012)

16. Polyvyanyy, A., Garćıa-Bañuelos, L., Fahland, D., Weske, M.: Maximal structuring
of acyclic process models. Comput. J. 57(1), 12–35 (2014)

17. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and general-
ization of the refined process structure tree. In: Bravetti, M., Bultan, T. (eds.)
WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19589-1 2

18. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011)

19. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

20. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Inf. Syst. 37(7), 654–676 (2012)

21. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceed-
ings of CIDM. IEEE (2011)

http://dx.doi.org/10.1007/978-3-319-19027-3_16
http://dx.doi.org/10.1007/978-3-319-19027-3_16
http://dx.doi.org/10.1007/978-3-642-19589-1_2
http://dx.doi.org/10.1007/978-3-642-19589-1_2

Detecting Drift from Event Streams
of Unpredictable Business Processes

Alireza Ostovar1(B), Abderrahmane Maaradji1, Marcello La Rosa1,
Arthur H.M. ter Hofstede1,2, and Boudewijn F.V. van Dongen2

1 Queensland University of Technology, Brisbane, Australia
{alireza.ostovar,abderrahmane.maaradji,m.larosa,

a.terhofstede}@qut.edu.au
2 Eindhoven University of Technology, Eindhoven, The Netherlands

b.f.v.dongen@tue.nl

Abstract. Existing business process drift detection methods do not
work with event streams. As such, they are designed to detect inter-
trace drifts only, i.e. drifts that occur between complete process execu-
tions (traces), as recorded in event logs. However, process drift may also
occur during the execution of a process, and may impact ongoing exe-
cutions. Existing methods either do not detect such intra-trace drifts, or
detect them with a long delay. Moreover, they do not perform well with
unpredictable processes, i.e. processes whose logs exhibit a high num-
ber of distinct executions to the total number of executions. We address
these two issues by proposing a fully automated and scalable method for
online detection of process drift from event streams. We perform statis-
tical tests over distributions of behavioral relations between events, as
observed in two adjacent windows of adaptive size, sliding along with
the stream. An extensive evaluation on synthetic and real-life logs shows
that our method is fast and accurate in the detection of typical change
patterns, and performs significantly better than the state of the art.

1 Introduction

Business processes tend to evolve due to various types of changes in the business
environment in which they operate. For example, these can be changes in reg-
ulations, competition, supply, demand and technological capabilities, as well as
internal changes in resource capacity or workload, or simply changes in seasonal
factors. Some of these changes may not be documented at all, e.g. those initi-
ated by individual process participants due to replacement of staff, or exceptions
that in some cases give rise to new workarounds that over time become common
practices. In the long run, undocumented process changes may affect process
performance and more in general, hamper process improvement initiatives.

This motivated academics to devise methods and tools that allow business
analysts to pinpoint process changes as early as possible. Business process drift
detection [1–5] is a family of process mining techniques which aim at detect-
ing changes based on observations of business process executions recorded in
event logs. Event logs consist of traces, each representing one execution of the
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 330–346, 2016.
DOI: 10.1007/978-3-319-46397-1 26

Detecting Drift from Event Streams of Unpredictable Business Processes 331

business process. Accordingly, a business process drift is defined as a statistically
significant change in the process behavior [5].

Still, state-of-the-art methods in this area suffer from two major limitations.
First, they do not work in online settings with streams of events that incremen-
tally record the executions of a business process. As such, they are designed
to detect inter-trace drifts only, i.e. drifts that occur between complete process
executions (traces), as recorded in event logs. Even if some approaches work
in online settings (e.g. [5]), they still deal with streams of complete traces or
abstractions thereof. However, process drift may also occur during the execution
of a process, and may impact ongoing executions. Existing methods either do
not detect such intra-trace drifts, or detect them with a long delay, as they need
to wait for the trace to complete. A related problem is that they do not per-
form well with unpredictable processes, i.e. processes whose logs exhibit a high
number of distinct traces over the total number of traces – a typical character-
istic of healthcare logs. This is because they rely on statistical tests over trace
distributions, which may not have sufficient data samples when the proportion
of distinct traces over the total number of traces is very high, in other words,
where there is high variability in the log.

To address these two limitations, we propose a fully automated, online
method for detecting process drifts from event streams. We perform statistical
tests over distributions of behavioral relations between events such as conflict,
causality and concurrency, as observed from two adjacent windows of adjustable
size, which we slide over the stream. Given that behavioral relations between
events are a type of sub-trace features, the method does not suffer from low
accuracy when the log is highly variable (i.e. for unpredictable processes). We
extensively evaluate the accuracy and scalability of our method by simulating
event streams from artificial and real-life logs. The results show that the app-
roach is fast and highly accurate in detecting common change patterns, and
significantly better than the state of the art in process drift detection.

The paper is structured as follows. Section 2 discusses related work. Section 3
introduces the proposed method while Sects. 4 and 5 present its evaluations on
synthetic and real-life logs respectively. Section 6 concludes the paper.

2 Related Work

Various methods have been proposed to detect process drifts from event logs
[1–5]. These methods are based on the idea of extracting features (e.g. patterns)
from the traces of an event log. For example, Carmona et al. [1] propose to
represent a log as a polyhedron. This representation is computed for prefixes in
a random sample of the initial traces in the log. The method checks the fitness
of subsequent trace prefixes against the constructed polyhedron. If a significant
number of these prefixes does not lie in the polyhedron, a drift is declared.
The method guarantees that drifts of certain types will always be detected.
However, to find a second drift after the first one, the entire detection process
must be restarted, thus adversely affecting on the scalability of the method.

332 A. Ostovar et al.

In previous experiments we conducted [5], the execution of this implemented
method took hours to complete. Another drawback is its inability to pinpoint
the exact moment of the drift.

Accorsi et al. [2] propose to cluster the traces in a moving window of the
log, based on the average distance between each pair of events in the traces.
This method heavily depends on the choice of the window size: a low window
size may lead to false positives while a high size may lead to false negatives
(undetected drifts), as drifts happening inside the window go undetected. In
addition the method is not designed to deal with loops, and may fail to detect
types of changes that do not cause significant variations to the distances between
activity pairs, e.g. changes involving an activity being skipped.

Bose et al. [3] propose a method to detect process drifts based on statistical
testing over feature vectors. The method is not fully automated, as the user is
asked to identify the features to be used for drift detection, implying that they
have some a-priori knowledge of the possible nature of the drift. Further, this
method is unable to identify certain types of drifts such as inserting a conditional
branch or a conditional move, even if the relevant process activities are selected as
features. Finally, similar to Accorsi et al. [2], the user is required to set a window
size for drift detection. Depending on how this parameter is set, some drifts may
be missed. This latter limitation is partially lifted in a subsequent extension [4],
which introduces a notion of adaptive window. The idea is to increase the window
size until it reaches a maximum size or until a drift is detected. However, this
technique requires the user to set a minimum and a maximum window size.
If the minimum window size is too small, minor variations (e.g. noise) may be
misinterpreted as drifts (false positives). Conversely, if the maximum window size
is too large, the execution time is affected and some drifts may go undetected.

All these methods may miss certain types of changes that are not covered by
the types of features used. Moreover, their scalability is constrained by the need
to extract and analyze a feature space that is potentially very large. Hence, they
are not suitable for online settings. This motivated us to propose a new method [5]
for detecting process drifts determined by a wide range of typical process change
patterns [6]. The method is based on statistical tests over the distribution of runs
(an abstraction of complete traces), as observed in two consecutive time windows.
The size of these windows is adjusted based on changes in log variability. This
method outperforms all the above methods in terms of detection accuracy and
scalability. As such, we selected it as a baseline for the experiments in this paper.
As shown in the experiments, this method also does not cater for highly variable
event logs. In such logs each distinct run occurs only a few times, leading to a
less reliable statistical test, to hence to many false negatives. Further, the method
cannot detect intra-trace drifts from event streams.

To the best of our knowledge, the only method that deals with event streams
has been proposed by Burattin et al. [7]. However, this work mainly focuses
on the online discovery of process models captured as a set of business con-
straints (formulated in Linear Temporal Logic) between events. Any change in
the extracted constraints over time may be considered as a drift. Nonetheless,
there is no statistical support for detecting whether changes are in fact

Detecting Drift from Event Streams of Unpredictable Business Processes 333

significant, and the exact positions of the identified drifts are not reported.
As such, drift detection accuracy is not evaluated. In another study, Burattin
et al. [8] adapt an automated process discovery method, namely the Heuristics
Miner, to handle incremental updates as new events are produced. Our proposal
is complementary to this as it allows drifts to be detected accurately and effi-
ciently, and can be used as an oracle to identify points in time when the process
model should be updated.

Drift detection has been studied in the field of data mining [9], where a
widely studied challenge is that of designing efficient learning algorithms that
can adapt to data that evolves over time (a.k.a. concept drift). This includes
for example changes in the distributions of numerical or categorical variables.
However, the methods developed in this context deal with simple structures (e.g.
numerical or categorical variables and vectors thereof), while in business process
drift detection we seek to detect changes in more complex structures, specifically
behavioral relations between process events (e.g. concurrency, conflicts, loops).
Thus, methods from the field of concept drift detection in data mining cannot
be readily transposed to business process drift detection.

3 Drift Detection Method

From a statistical viewpoint, the problem of business process drift detection
can be formulated as follows: identify a time point before and after which there
is a statistically significant difference between the observed process behaviors.
Therefore, to detect a drift we need features that properly capture the behav-
ior of a process. By monitoring and analyzing the feature vectors over time,
we can identify the time points where the feature vectors exhibit statistically
significant changes. We explored a few different features including Direct Fol-
low relations (direct succession), Follow relations (succesion), Block Structures
(extracted from process trees produced by the Inductive Miner [10]) and α+

Relations [11]. We found that while the direct follow and follow relations are
over-fitting features, block structures were under-fitting features. However, α+

relations proved to be the suitable level of abstraction for capturing the behavior
of unpredictable processes represented in an event stream.

To detect a process drift we perform a statistical test, namely the G-test
of independence,1 over distributions of α+ relations observed in two adjacent
time windows of adaptive size, sliding along with a stream of events. Basically,
the most recent events are equally divided into reference window (less recent
events), and detection window (more recent events). Each time a new event
enters the event stream, the two windows shift forward so that the new event is
in the detection window. The set of events within each window is used to build
a corresponding sub-log. This sub-log represents the process behavior observed

1 The G-test is a non-parametric hypothesis statistical test which assumes no a-priori
knowledge of the statistical distributions. The G-test is a better approximation to
the theoretical chi-squared distribution than the chi-squared test [12].

334 A. Ostovar et al.

within the respective window. The sliding window is a well-established technique
in the concept drift community [9].

Then the α+ relations and their frequencies are extracted from each sub-log,
and used to populate a 2 × n matrix, the so-called contingency matrix, where
n is the number of distinct relations. Each column in the contingency matrix
corresponds to a category of a statistical variable, here an α+ relation. The first
row in the contingency matrix contains the frequencies of the relations in the
detection window, i.e. the observed frequencies, while the second row contains the
frequencies of the relations in the reference window, i.e. the expected frequencies.

The result of applying the G-test of independence on the contingency matrix
is the significance probability (P -value) that the populations of α+ relations over
the two windows come from the same distribution. A P -value above a predefined
threshold2 accepts the null hypothesis, i.e. the frequency distributions of the α+

relations in the two windows are similar. However, a P -value below the threshold
rejects the null hypothesis, meaning that the α+ relations in the two windows
come from different distributions. In other words, they reflect different process
behaviors (process drift).

3.1 Intra-trace vs. Inter-trace

A drift may occur between complete executions of a process. We call this an
inter-trace drift. For example, a new legislation requires an insurance company
to perform a more stringent verification on new claims, while old claims are
exempted. These however are not the only type of drift. In reality, a drift may
also occur during the execution of a process and may impact ongoing process
instances [6]. We call these intra-trace drifts. For example, an insurance check
may need to be removed altogether due to a contingency plan triggered by
severe weather conditions (e.g. a flood). Such a change may impact new process
instances as well as the instances that have already started, but that have not
yet gone through the check to be removed.

In addition, in order to detect a drift using a stream of traces, we have to
wait until each trace completes before we can use it. This delays the detection of
the drift. On the other hand, working on a stream of events allows us to instantly
use each observed event, thereby detecting a drift as soon as possible during the
execution of the process.

3.2 Event Stream and α+ Relations

An event log is a set of traces, each capturing the sequence of events originated
from a given process instance. Each event represents an occurrence of an activ-
ity. The configuration where these events are read individually from an online
source is known as event streaming. An event stream is a potentially infinite
sequence of events, where events are ordered by time and indexed. Events of the
same trace do not need to be consecutive in the event stream, i.e. traces can be
“overlapping”. Formally:
2 The typical value of the threshold, i.e. significance level, for the G-test is 0.05 [13].

Detecting Drift from Event Streams of Unpredictable Business Processes 335

Definition 1 (Event log, Trace, Event stream). Let L be an event log over the
set of labels L, i.e. L ∈ P(L∗). Let E be the set of event occurrences and λ : E → L a
labelling function. An event trace σ ∈ L is defined in terms of an order i ∈ [0, n − 1]
and a set of events Eσ ⊆ E with |Eσ| = n such that σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉.
An event stream is a function S : N+ → E that maps every element from the index
N+ to E .

In this paper, we use the α+ relations, as an extension of the α relations, to cap-
ture the behavior of a process. The α-algorithm defines three exclusive relations:
conflict, concurrency and causality. The α+-algorithm adds two more relations:
length-two loop and length-one loop. The α+ relations are formally defined as
follows:

Definition 2 (α+ relations from [11]). Let L be an event log over L. Let a,b ∈ L:

– a�Lb if and only if there is a trace σ = l1l2l3 . . . ln and i ∈ 1, . . . , n − 2 such that
σ ∈ L and li = li+2 = a and li+1 = b,

– a �L b if and only if a�Lb and b�La,
– a >L b if and only if there is a trace σ = l1l2l3 . . . ln and i ∈ 1, . . . , n − 2 such that

σ ∈ L and li = a and li+1 = b,
– a →L b if and only if a >L b and (b ≯L a or a �L b),
– a#Lb if and only if a ≯L b and b ≯L a, and
– a ‖L b if and only if a >L b and b >L a, and a
 �Lb.

A length-two loop relation, including a and b, is denoted with a�Lb. The
frequency of this relation in a log is the number of occurrences of the substring
aba. A causality relation from a to b is denoted with a →L b. The frequency of
this relation in a log is the number of occurrences of the substring ab. A parallel
relation between a and b is denoted with a ‖L b. The frequency of this relation
in a log is the minimum of the frequencies of the two substrings, ab and ba.
A conflict relation between a and b is denoted with a#Lb, and indicates that
there is no trace with the substring ab or ba. The frequency of this relation in
a log is the number of occurrences of a and b. The α+-algorithm also discovers
length-one loop relations as a pre-processing operation. For example, there is
a length-one loop including the activity a in a log if there is a trace with the
substring aa. The frequency of this relation in a log is the number of occurrences
of the substring aa.

3.3 Statistical Testing over Event Streams

This section describes our online drift detection algorithm as presented in Algo-
rithm 1. The drift detection algorithm has three parameters: 1. eventStream: a
stream of events. 2. initWinSize: initial size of the detection and reference win-
dows. 3. maxBufSize: maximum available memory for the event buffer storing
the incoming events, namely eventBuf . Since the algorithm works online the size
of this buffer must not exceed maxBufSize. Therefore, each time a new event e
arrives we first check if the buffer has reached its maximum size, and if so we
shift the events in the buffer and discard the least recent event (lines 10–11). We
then insert the new event into the buffer (line 12).

336 A. Ostovar et al.

The first statistical test should be performed when the number of events in the
buffer is 2×initWinSize (line 14). Before each statistical test we adapt the size of
the two windows to improve the accuracy of the approach (line 15). The notion
of adaptive window is explained in Sect. 3.4. The method updateSublogs updates
the sub-logs related to the detection and reference windows, namely detSubLog
and refSubLog , respectively, using the events within their corresponding windows
(line 16). The first time this method is called the sub-logs are built from scratch.
The α+ relations and their frequencies are extracted from the two sub-logs and
populated in a contingency matrix (line 18). We then perform the G-test of
independence on this contingency matrix and obtain the P -value (line 19). The
value of the G-test threshold, GtestThreshold , is set to the typical value of the
G-test, which is 0.05.

Each time the P -value drops below the threshold GtestThreshold , we store
the current event and the current window size in pbtEvent and pbtWinSize,
respectively (lines 23–24). Since any statistical test is subject to sporadic sto-
chastic oscillations, we introduced an additional filter, namely oscillation filter.
The P -value drops have to be consistent over many consecutive statistical tests
in order to avoid reporting incidental drops in the P -value (oscillations). The
size of the oscillation filter is calculated by function Φ which uses the window size
w as input. The number of consecutive tests in which the P -value is below the
threshold GtestThreshold is stored in pbtLen. We detect a drift only if pbtLen
is at least equal to Φ(w) (line 25). Our experiments showed that a value of
Φ(w) = w/2 provides the best results in terms of accuracy (cf. Sect. 4.3). The
drift is localized at the event where the P -value dropped consistently below
the threshold, stored at pbtEvent (line 26). Whenever the P -value exceeds the
threshold we reset pbtLen, pbtEvent and pbtWinSize (lines 28–30).

3.4 Adaptive Window

Best practices of using the G-test recommend that no more than 20 % of the
expected frequencies in the contingency matrix have less than 5 occurrences,
to have a reliable statistical test [12]. Thus, each time before performing the
statistical test we ensure the size of the two windows is large enough to fulfil this
requirement. Even though the larger the window size is the higher the chances
that the requirement of the statistical test is met, a very large window size may
increase the number of new events needed to detect a drift, so-called mean delay.
Furthermore, it may also cause the detection and reference windows to span
over multiple drifts, thereby letting some of the drifts go undetected. Therefore,
we need to balance between improving the reliability of the statistical test, by
increasing the window size, and reducing the detection delay of the method, by
decreasing the window size.

The idea behind our adaptive window originates from the requirement of the
statistical test mentioned above, meaning that on average we aim to have a fre-
quency of no less than 5 for each of the α+ relations in the contingency matrix.
Given that the maximum number of possible relations over the set of labels

Detecting Drift from Event Streams of Unpredictable Business Processes 337

Algorithm 1. Drift Detection Algorithm
Input: eventStream; initWinSize; maxBufSize.

1 eventBuf // Event buffer

2 w ←− initWinSize // Current window size

3 detSubLog , refSubLog // List of sub-traces within detection and

reference windows, respectively

4 GtestThreshold ←− 0.05 // Typical threshold value of G-test

5 pbtEvent ←− NIL // Current event when P-value drops below

GtestThreshold
6 pbtWinSize ←− −1 // Value of w when P-value drops below

GtestThreshold
7 pbtLen ←− 0 // # of consecutive tests that P-value remains below

GtestThreshold

8 while true do
9 e ←− fetch(eventStream) // Fetch a new event e

10 if size(eventBuf) = maxBufSize then
11 shift(eventBuf)

12 insert(eventBuf , e)
13 ebLength ←− length of eventBuf
14 if ebLength ≥ 2 · initWinSize then
15 newWinSize ←− adWin(eventBuf , w)
16 updateSublogs(eventBuf , detSubLog , refSubLog , w,newWinSize)
17 w ←− newWinSize
18 conMat ←− buildContingencyMatrix(detSubLog , refSubLog)
19 pValue ←− Gtest(conMat)
20 if pValue < GtestThreshold then
21 pbtLen ←− pbtLen + 1
22 if pbtEvent = NIL then
23 pbtEvent ←− e
24 pbtWinSize ←− w

25 if pbtLen = Φ(pbtWinSize) then
26 reportDrift(pbtEvent) // Drift detected and reported

27 else
28 pbtLen ←− 0
29 pbtEvent ←− NIL
30 pbtWinSize ←− −1

(activity names) L is |L|2, we calculate |L| over both detection and reference win-
dows, denoted by |Ldet|, |Lref |, respectively. By multiplying max(|Ldet|, |Lref |)2
by 5 it is likely to have enough events in both windows to fulfil the requirement of
the statistical test. Hence window size w is defined as w = max(|Ldet|, |Lref |)2 ·5.

The expansion and the shrinkage of the windows is performed recursively.
This is because each time the windows are, for example, expanded there may be
a need to expand the windows again due to changes in |Ldet| and/or |Lref |. It

338 A. Ostovar et al.

is worth mentioning that our adaptive window is not dependent on the initial
window size, since starting from any initial value the window sizes converge to
the length needed to fulfil the requirement of the statistical test. The maximum
size each window could grow to is the length of the event buffer divided by two.

It is worth mentioning that in the unlikely extreme scenario where the over-
lapping between traces is to the extent that each event within a window comes
from a distinct trace, data streaming techniques with a gradual forgetting strat-
egy [9] should be used.

Time complexity. Each time a new event is received from the stream, we first
extract the α+ relations in each sliding window and count their frequencies,
and then perform the G-test of independence. The worst-case complexity of
computing the α+ relations is quadratic in the cardinality of the label set, i.e.
O(|L|2). Given a contingency matrix of maximum size 2 × |L|2, the complexity
of the G-test is O(|L|2). Since the two mentioned operations have the same
complexity and are executed in a sequence, the complexity of our method is
O(|L|2) for every new event read from the stream.

4 Evaluation on Synthetic Logs

We implemented the proposed method as a plug-in, namely ProDrift 2.0,3 and
used this tool to assess the goodness of our method in terms of accuracy and
scalability in a variety of settings. The tool can read a continuous stream of
events or an event log replayed as an event stream. In the rest of this section
we discuss the design of the experiments, the datasets used, the impact that
oscillation filter and inter-drift distance have on our method, and conclude by
comparing our method with the method in [5].

4.1 Evaluation Design

To evaluate the effectiveness of our method, we created a variety of synthetic
logs with different configurations, and then replayed these logs as event streams.
We first modeled a base business process using CPN tools and then used this
model to generate the logs.4 The model features 28 different activities, combined
with different intertwined structural patterns: three XOR structures, four AND
structures, two loops of length two, and one loop of length four. We built this
model in a way that the resulting log is highly variable. To produce logs that
include drifts, we then injected different types of control-flow changes into the
base CPN model.

We applied in turn one out of twelve simple change patterns [6] to the base
model. These patterns, summarized in Table 1, describe different change opera-
tions commonly occurring in business process models, such as adding/removing
a model fragment, putting a model fragment in a loop, swapping two fragments,

3 Available at http://apromore.org/platform/tools.
4 http://cpntools.org.

http://apromore.org/platform/tools
http://cpntools.org

Detecting Drift from Event Streams of Unpredictable Business Processes 339

or parallelizing two sequential fragments. Similarly to our previous work [5], we
organized the simple changes into three categories: Insertion (“I”), Resequen-
tialization (“R”) and Optionalization (“O”) (cf. Table 1). These categories make
six possible composite change patterns (“IOR”, “IRO”, “OIR”, “ORI”, “RIO”,
and “ROI”) by nesting the simple patterns within each other. For example, the
composite pattern “ROI” can be obtained by first adding a new activity (“I”),
then making this activity parallel to an existing activity (“O”) and finally by
putting the whole parallel block into a loop structure (“R”).

Each of these change patterns were applied locally on the base model in such
a way that it is possible during log replay to choose between the base model
execution path and the altered one. For instance, if the applied change pattern
was to replace a process fragment (rp), the CPN model would have a branching
point, called drift toggle, right before this fragment, that allows the execution to
follow either the initial model fragment or the new process fragment. A drift is
injected by switching the toggle on or off. In this way, we can generate intra-
trace drifts. For instance, if the toggle is switched on when trace #500 starts,
the traces that started before that trace and have not yet reached the branching
point, will follow the new process behavior, thus exhibiting the change. These
traces will therefore have an intra-trace drift. In the remainder, whenever we say
that a drift has been injected at a given trace number (after a given number of
traces) it means that the drift toggle has been switched on at the first event of
that given trace number (resp. after that given number of traces have started).

Table 1. Simple control-flow change patterns

Code Simple change pattern Category

re Add/remove fragment I

cf Make two fragments conditional/sequential R

lp Make fragment loopable/non-loopable O

pl Make two fragments parallel/sequential R

cb Make fragment skippable/non-skippable O

cm Move fragment into/out of conditional branch I

cd Synchronize two fragments R

cp Duplicate fragment I

pm Move fragment into/out of parallel branch I

rp Substitute fragment I

sw Swap two fragments I

fr Change branching frequency O

Finally, in order to
vary the distance between
drifts, for each change pat-
tern we generated three
logs of 2,500, 5,000 and
10,000 traces, and injected
drifts by switching the
drift toggle on and off
every 10 % of the log.
This led to an inter-drift
distance of 250, 500 and
1,000 traces per change
pattern, with 9 drifts per
log. The position of an
injected drift is given by
the index of the first event
in the event stream, after the drift toggle has been switched on. These indexes
are used as the true positives of our evaluation (the gold standard). Further, for
each of the 6 composite change patterns, we created 3 possible combinations, by
changing the type of pattern used. This led to 12 (simple patterns) + 18 (com-
plex patterns) = 30 different variants of the CPN model times three inter-drift
distances, resulting in a total of 90 logs.5 All these logs exhibit a very high trace

5 All the CPN models used for this simulation, the resulting synthetic logs, and the
detailed evaluation results are available with the software distribution.

340 A. Ostovar et al.

variability (80 % ± 2), measured as the ratio between the number of distinct
traces and the number of total traces in the log. According to our analysis of
real-life logs, this value is very indicative of logs of unpredictable processes, such
as the one used in the second part of this evaluation.

To assess the scalability of our method for online drift detection, we mea-
sured the execution time per each new event read from the stream. To evaluate
accuracy, we used F-score and mean delay. The F-score is computed as the har-
monic mean of recall and precision, where recall measures the proportion of
actual drifts that have been detected and precision measures the proportion of
detected drifts that are correct. The mean delay [14] assesses the ability of the
method to find drifts as early as possible in an event stream, and is measured
as the number of events between the actual position of the drift and the end of
the detection window.

4.2 Execution Times

We conducted all tests on an Intel i7 2.20 GHz with 16 GB RAM (64 bit), running
Windows 7 and JVM 7 with standard heap space of 2 GB, and a stream buffer
(maxBufSize) of 1 GB. The time required to update the α+ relations and perform
the G-test, ranges from a minimum of 10 ms to a maximum of 50 ms with an
average of 14 ms. These results show that the method is suited for online drift
detection, including scenarios where the inter-arrival time between events is in
the order of milliseconds.

4.3 Impact of Oscillation Filter

In the first experiment, we measured the impact of the oscillation filter Φ(w)
on F-score and mean delay, by varying its value from w/4 to w, where w is the
window size. Figure 1 shows the obtained F-score and mean delay averaged over
all change patterns. As expected, we observe that the F-score increases as the
filter value grows and eventually plateaus when it reaches the sliding window
size, by filtering out false positives. However, a larger filter value causes a much
higher delay. On the other hand, while a smaller filter value leads to a smaller
delay, it may induce our method to consider incidental changes as actual drifts,
causing the F-score to drop, though this still remains above 0.9. As a tradeoff,
for the remainder of this evaluation, we used Φ(w) = w/2. With this parameter
being set empirically, our method is completely automated, and no parameter
setting is required from the user.

4.4 Inter-drift Distance

In the second experiment, we compared the F-score and mean delay obtained
on logs of different inter-drift distances (250, 500 and 1,000), in order to assess
the minimum distance that our method can handle. The results, averaged over
all change patterns, indicate that the method performs similarly for the logs

Detecting Drift from Event Streams of Unpredictable Business Processes 341

0.88

0.9

0.92

0.94

0.96

0.98

0.25 0.5 0.75 1

F-
sc

or
e

Oscillation filter (×)

0

1000

2000

3000

4000

5000

0.25 0.5 0.75 1

M
ea

n
de

la
y

(e
ve

nt
s)

Oscillation filter (×)

Fig. 1. F-score and mean delay using
different oscillation filter values.

0.91

0.92

0.93

0.94

0.95

0.96

250 500 1000

F-
sc

or
e

Inter-drift distance

0
500

1000
1500
2000
2500
3000
3500

250 500 1000

M
ea

n
de

la
y

(e
ve

nt
s)

Inter-drift distance

Fig. 2. F-score and mean delay using
different inter-drift distances.

with 500 and 1,000 traces of inter-drift distance, achieving an F-score of about
0.95 and mean delay of about 2,500 (cf. Fig. 2). There is a slight decrease in the
F-score and a notable increase in the mean delay when using a distance of 250
traces. In this case, the two sliding windows may contain two drifts as these are
very close. In such cases, the method may miss one of the two drifts, leading to
a lower recall. These cases however are not very common, as evidenced by the
value of the F-score, which does not go below 0.92.

4.5 Comparison with Baseline per Process Change Pattern

In the third experiment, we evaluated the accuracy of our method in detecting
each of the 18 change patterns. Figure 3 shows the F-score and mean delay for
each change pattern in Table 1, averaged over the three log sizes, in comparison
with those obtained with our previous run-based method [5] (the baseline).

Our method could find all the change patterns with a high F-score (above 0.9
in all but four cases), and a delay in the range of 2,500 events (approximately 100
traces), peaking at 4,000 events. When compared to the baseline method, our
method outperforms the baseline in terms of F-score in the majority of change
patterns (cf. Fig. 3(left)), while the baseline fails to detect half of the simple
change patterns (lp, pl, cb, cd, pm and sw). Since in highly variable logs each
distinct run is observed only a few times, the result of the statistical test is
less reliable. Thus, in such logs, the run-based method can only find drift types
whose occurrences replace the current set of runs with a considerably new set of
runs, e.g. when removing a process fragment (pattern re). On the other hand,
our current method considers events (as opposed to traces) and extracts fine-

0

0.2

0.4

0.6

0.8

1

re cf lp pl cb cm cd cp pm rp sw fr
IO

R
IR

O
O

IR
O

R
I

R
IO

R
O

I

F-
sc

or
e

Change patterns

α+
Runs

0
2000
4000
6000
8000

10000
12000
14000

re cf lp pl cb cm cd cp pm rp sw fr
IO

R
IR

O
O

IR
O

R
I

R
IO

R
O

I

M
ea

n
de

la
y (e

ve
nt

s)

Change patterns

α+
Runs

Fig. 3. F-score and mean delay per change pattern, obtained with our method vs. [5].

342 A. Ostovar et al.

grained, yet abstract features that capture the process behavior into a few basic
relations. Each drift type would be represented in a handful of α+ relations,
and any change in its frequency would be “echoed” through its correspondent
basic relations, making it easier for the statistical test to detect such a change.
Moreover, our method could always detect the drift faster than the baseline (cf.
Fig. 3(right)) as it does not need to wait until a trace is completed to consider
it as an input for the statistical test.

4.6 Comparison with Baseline over Different Log Variability Rates

In this last experiment with artificial logs, we evaluated our method in compar-
ison with the baseline, when changing the variability rate of the log. As said
before, the trace variability of a log is the ratio between distinct traces and the
total number of traces. It varies from close to 0 %, where all traces are the same,
to 100 %, where every trace is distinct. Similarly, we define the run variability
as the ratio between distinct runs and the total number of runs. Depending on
the concurrency oracle used, a high trace variability does not necessarily imply
a high run variability. On the other hand, a high run variability always implies
an equal or higher trace variability. For instance, a log with 50 % trace vari-
ability results in a run variability of 10 % (i.e. on average each run is repeated
10 times). This is due to the aggregation of traces into runs based on the con-
currency oracle. The baseline method performs relatively well with a log with
10 % run variability. Thus, we studied how F-score and mean delay vary as we
increase the run variability of a log.

For this purpose, we generated a new set of synthetic logs as described in
Sect. 4.1 with different run variability rates, achieved by varying the loopback
branching probability in the CPN model. For each run variability rate and change
pattern, we generated logs of 10,000 traces. The results of this evaluation are
reported in Fig. 4.

As the variability of the log increases, the baseline method’s accuracy drops
significantly. This is because the statistical test adopted by this method is inad-
equate when the number of distinct runs is large, as their frequency will be
low. In contrast, capturing the process behavior at a lower level of abstraction,
as done by the α+ relations, as opposed to runs, leads to much higher fre-
quencies in the contingency table of the statistical test, ensuring its reliability.

0
0.2
0.4
0.6
0.8

1

10% (50%) 25% (80%) 40% (90%)

F-
sc

or
e

Run variability (Trace variability)

α+
Runs

0
2000
4000
6000
8000

10% (50%) 25% (80%) 40% (90%)

M
ea

n
de

la
y

(e
ve

nt
s)

Run variability (Trace variability)

α+
Runs

Fig. 4. F-score and mean delay per log variability, obtained with our method vs. [5].

Detecting Drift from Event Streams of Unpredictable Business Processes 343

This property is valid regardless of the variability of the log which explains the
steady performance of our method.

5 Evaluation on Real-Life Log

In addition to the experiments with artificial logs, we evaluated out method
on the BPI Challenge (BPIC) 2011 log, and compared the results with those
obtained by the baseline.6 This log records patient treatments in the Gynaecol-
ogy department of a Dutch academic hospital. It contains 150,291 events in over
1,143 traces, of which 981 are distinct, and 623 labels. We first filtered the noise
from this event log, using an offline noise filter [15], which basically removes
infrequent activities.7 This operation reduced the number of traces to 1,121, of
which 798 are distinct, and the number of labels to 42, resulting in the same
trace and run variability of 71 %.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1
47

36
94

71
14

20
6

18
94

1
23

67
6

28
41

1
33

14
6

37
88

1
42

61
6

47
35

1
52

08
6

56
82

1
61

55
6

66
29

1
71

02
6

75
76

1
80

49
6

P-
va

lu
e

Event index

Drift1
Drift 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1 64 12
7

19
0

25
3

31
6

37
9

44
2

50
5

56
8

63
1

69
4

75
7

82
0

88
3

94
6

10
09

10
72

P-
va

lu
e

Completed trace index

Fig. 5. P-value in our method (left) and in the baseline (right) for the BPIC 2011 log.

0

500

1000

1500

2000

2500

3000

3500

4000

Fe
b-

05
M

ar
-0

5
Ap

r-0
5

M
ay

-0
5

Ju
n-

05
Ju

l-0
5

Au
g-

05
Se

p-
05

O
ct

-0
5

N
ov

-0
5

D
ec

-0
5

Ja
n-

06
Fe

b-
06

M
ar

-0
6

Ap
r-0

6
M

ay
-0

6
Ju

n-
06

Ju
l-0

6
Au

g-
06

Se
p-

06
O

ct
-0

6
N

ov
-0

6
D

ec
-0

6
Ja

n-
07

Fe
b-

07
M

ar
-0

7
Ap

r-0
7

M
ay

-0
7

Ju
n-

07
Ju

l-0
7

Au
g-

07
Se

p-
07

O
ct

-0
7

N
ov

-0
7

D
ec

-0
7

Ja
n-

08
Fe

b-
08

M
ar

-0
8

N
um

be
r o

f e
ve

nt
s

Time

Drift 2

Drift 1

0

100

200

300

400

500

600

Fe
b-

05
M

ar
-0

5
Ap

r-0
5

M
ay

-0
5

Ju
n-

05
Ju

l-0
5

Au
g-

05
Se

p-
05

O
ct

-0
5

N
ov

-0
5

D
ec

-0
5

Ja
n-

06
Fe

b-
06

M
ar

-0
6

Ap
r-0

6
M

ay
-0

6
Ju

n-
06

Ju
l-0

6
Au

g-
06

Se
p-

06
O

ct
-0

6
N

ov
-0

6
D

ec
-0

6
Ja

n-
07

Fe
b-

07
M

ar
-0

7
Ap

r-0
7

M
ay

-0
7

Ju
n-

07
Ju

l-0
7

Au
g-

07
Se

p-
07

O
ct

-0
7

N
ov

-0
7

D
ec

-0
7

Ja
n-

08
Fe

b-
08

M
ar

-0
8

N
um

be
r o

f a
ct

iv
e

ca
se

s

Time

Drift 2

Drift 1

Fig. 6. Number of events (left) and active cases per month (right) in the BPIC 2011
log.

6 http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.
7 In streaming settings, online noise filters such as the Kalman filter [16] could be used

instead.

http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

344 A. Ostovar et al.

We applied our method on the stream of events obtained by replaying the
filtered log. The average execution time for each new event in the stream was
44 ms. As shown in Fig. 5(left), two drifts were detected at the event indexes of
71,321 and 78,541, corresponding to the dates 6/9/2007 and 29/11/2007 respec-
tively. The baseline could not detect any drift as the p-value quickly dropped
and remained under the threshold, as shown in Fig. 5(right).

In order to validate the results, we profiled the number of events per month,
shown in Fig. 6(left). The plot exhibits a sharp and consistent increase in the
number of events between July and Sept. 2007 followed by a sharp and consistent
decrease between Sept. and Dec. 2007. We investigated the log and found that the
frequencies of five activities do increase and then decrease notably over the period
in question. Moreover, the number of active cases per month (cf. Fig. 6(right))
decreases gradually after August 2006. Thus, this variation in the number of
events cannot be explained because of new cases. Rather, this phenomenon could
be the result of some rework in the business process. A rework may manifest itself
with looping behavior and/or duplicate activities, which are change patterns our
method is able to detect.

In conclusion, while these observations support the hypothesis of the presence
of two drifts in the log, the results should be validated with domain experts.

6 Conclusion

We presented a fully automated method for online detection of business process
drifts from event streams. The method relies on a statistical test over distribu-
tions of behavioral relations observed in two adjacent windows sliding along the
event stream. We proposed an adaptive window technique in order to automati-
cally adjust the sliding windows size, striking a good tradeoff between accuracy
and detection delay.

We evaluated our method against different degrees of log variability and
varying inter-drift distance, by injecting various change patterns into synthetic
logs. The results showed that the method is able to scale up to online settings and
detect drifts very accurately, while outperforming a state-of-the-art baseline for
all the change patterns. A second evaluation on a healthcare log with very high
variability showed that our method could detect two drifts that were supported
by observations from the log.

In future we plan to empirically evaluate our technique with domain experts.
Moreover, we plan to work on drift characterization in order to provide process
stakeholders with relevant explanations on the detected drifts. A possible direc-
tion to tackle this problem is to apply the log delta analysis technique in [17]
in order to retrieve diagnostics of the behavioral differences between the pre-
drift and the post-drift sub-streams. Another avenue for future work is to study
the interplay between changes in the process control flow and changes in other
process perspectives, such as in the resources behavior or data involved in the
execution of the process. In this respect, a starting point is to look at the work
in [18], which analyses the dynamics of human resource behavior as observed
from event logs.

Detecting Drift from Event Streams of Unpredictable Business Processes 345

Acknowledgments. This research is partly funded by the Australian Research Coun-
cil (grant DP150103356).

References

1. Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift
in process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA
2012. LNCS, vol. 7619, pp. 90–102. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34156-4 10

2. Accorsi, R., Stocker, T.: Discovering workflow changes with time-based trace clus-
tering. In: Aberer, K., Damiani, E., Dillon, T. (eds.) SIMPDA 2011. LNBIP, vol.
116, pp. 154–168. Springer, Heidelberg (2012)

3. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing with
concept drifts in process mining. IEEE Trans. NNLS 25(1), 154–171 (2014)

4. Martjushev, J., Bose, R.P.J.C., Aalst, W.M.P.: Change point detection and dealing
with gradual and multi-order dynamics in process mining. In: Matulevičius, R.,
Dumas, M. (eds.) BIR 2015. LNBIP, vol. 229, pp. 161–178. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-21915-8 11

5. Maaradji, A., Dumas, M., Rosa, M., Ostovar, A.: Fast and accurate business
process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.)
BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23063-4 27

6. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features-enhancing flexibility in process-aware information systems. DKE 66(3),
438–466 (2008)

7. Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online discovery of declar-
ative process models from event streams. IEEE Trans. Serv. Comput. 8, 833–846
(2015)

8. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from
event streams. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2420–
2427. IEEE (2014)

9. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)

10. Leemans, S.J.J., Fahland, D., Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.)
PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38697-8 17

11. de Medeiros, A.A., van Dongen, B.F., Van der Aalst, W.M.P., Weijters, A.: Process
mining: extending the α-algorithm to mine short loops. Technical report, BETA
Working Paper Series, WP 113, Eindhoven University of Technology, Eindhoven
(2004)

12. Harremoës, P., Tusnády, G.: Information divergence is more χ2-distributed than
the χ2-statistics. In: IEEE ISIT, pp. 533–537 (2012)

13. Nuzzo, R.: Statistical errors. Nature 506(13), 150–152 (2014)
14. Ho, S.S.: A martingale framework for concept change detection in time-varying

data streams. In: Proceedings of ICML, pp. 321–327. ACM (2005)
15. Conforti, R., La Rosa, M., ter Hofstede, A.H.: Noise filtering of process execution

logs based on outliers detection (2015)

http://dx.doi.org/10.1007/978-3-642-34156-4_10
http://dx.doi.org/10.1007/978-3-642-34156-4_10
http://dx.doi.org/10.1007/978-3-319-21915-8_11
http://dx.doi.org/10.1007/978-3-319-23063-4_27
http://dx.doi.org/10.1007/978-3-319-23063-4_27
http://dx.doi.org/10.1007/978-3-642-38697-8_17

346 A. Ostovar et al.

16. Bifet, A., Gavaldà, R.: Kalman filters and adaptive windows for learning in data
streams. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI),
vol. 4265, pp. 29–40. Springer, Heidelberg (2006). doi:10.1007/11893318 7

17. Beest, N.R.T.P., Dumas, M., Garćıa-Bañuelos, L., Rosa, M.: Log delta analy-
sis: interpretable differencing of business process event logs. In: Motahari-Nezhad,
H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 386–405.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-23063-4 26

18. Pika, A., Wynn, M.T., Fidge, C.J., Hofstede, A.H.M., Leyer, M., Aalst, W.M.P.:
An extensible framework for analysing resource behaviour using event logs. In:
Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H.,
Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 564–579. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-07881-6 38

http://dx.doi.org/10.1007/11893318_7
http://dx.doi.org/10.1007/978-3-319-23063-4_26
http://dx.doi.org/10.1007/978-3-319-07881-6_38

Modeling Structured and Unstructured
Processes: An Empirical Evaluation

Evellin Cardoso1(B), Katsiaryna Labunets1, Fabiano Dalpiaz2,
John Mylopoulos1, and Paolo Giorgini1

1 University of Trento, Trento, Italy
{evellin.souzacardoso,katsiaryna.labunets,john.mylopoulos,

paolo.giorgini}@unitn.it
2 Utrecht University, Utrecht, The Netherlands

f.dalpiaz@uu.nl

Abstract. Imperative process languages, such as BPMN, describe busi-
ness processes in terms of collections of activities and control flows among
them. Despite their popularity, such languages remain useful mostly for
structured processes whose flow of activities is well-known and does not
vary greatly. For unstructured processes, on the other hand, the verdict
is still out as to the best way to represent them. In our previous work, we
have proposed Azzurra, a specification language for business processes
founded on social concepts, such as roles, agents and commitments. In
this paper, we present the results of an experiment that comparatively
evaluates Azzurra and BPMN in terms of their ability to represent struc-
tured and unstructured processes. Our results suggest that Azzurra is
better suited than BPMN for unstructured business processes.

Keywords: Azzurra · BPMN · Specification languages · Empirical
evaluation

1 Introduction

Business Process Management (BPM) is founded on the premise that process
behavior has to be explicitly modeled, analyzed and managed along with software
as a means for improving enterprise operations. In order to support such models,
many process modeling languages have been proposed, including BPMN, EPCs,
BPEL and more. Such languages are predominantly activity-centered [5,12], in
the sense that their modeling primitives [5] are founded on the notion of activity.
Within this paradigm, imperative models express business processes as a set of
activities inter-connected by control flow primitives inspired by Petri nets, finite
state machines, and other system modeling frameworks dating back to the 50 s
and 60 s. The distinguishing feature of imperative models is that they explicitly
capture all possible execution paths for a business process.

Despite the popularity of activity-centered, imperative models—as evidenced
by large industrial and academic adoption of the BPMN modeling language as

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 347–361, 2016.
DOI: 10.1007/978-3-319-46397-1 27

348 E. Cardoso et al.

de facto standard for process representation [10,16]—activity-centered languages
remain especially useful for routine, structured processes defined in terms of a
specific set of behaviors. For unstructured processes, however, execution order is
context-dependent and even the activities needed are unclear and/or undefined
at design time. For such processes, as also pointed out by van der Aalst [1],
activity-centered languages are an inflexible solution as they demand the iden-
tification of activities and control flows for the construction of a process model.

In our previous research, we have introduced Azzurra [6], a specification lan-
guage for business processes that shifts the focus of representation from activities
to social commitments. Formally, a commitment C(x,y,p,q) is a promise with con-
tractual validity made by an agent x (debtor) to another agent y (creditor) that,
if proposition p is brought about (antecedent), then proposition q will be brought
about (consequent). By introducing correctness criteria for the enactment of a
process, Azzurra abstracts away from specific activities (operationalizations) for
achieving a goal; rather, Azzurra focuses on the outcomes of a process through
the notion of a commitment’s consequent. The elements of Azzurra suggest the
hypothesis that it is more appropriate than its imperative cousins for unstruc-
tured processes, as they require more flexible specifications. To confirm/deny
this hypothesis, we have conducted a preliminary study using scenarios that
have been elaborated in [6], hoping to gain insights on the suitability of Azzurra
for modeling unstructured processes.

The contribution of this paper is to report the results of a preliminary exper-
iment performed with master’s students at the University of Trento, to exam-
ine the suitability of Azzurra for unstructured processes. To this purpose, we
designed and enacted an experiment to test two propositions about quality
of structured and unstructured processes models represented in both Azzurra
and BPMN. Here, model quality is defined in terms of the metrics of precision
and coverage used in Ontology Engineering for evaluating the quality of ontolo-
gies [19]. Our results suggest that Azzura is less usable than BPMN in the sense
that the social concepts it is founded on are less familiar to master’s-level stu-
dents in Computer Science. On the other hand, Azzura leads to better models,
where “better” is defined in terms of the metrics of precision and coverage.

The rest of the paper is structured as follows: Sect. 2 provides the research
baseline for our work, including classifications of processes from the BPM liter-
ature, together with a sketchy overview of current process modeling languages.
Section 3 describes the experimental process, covering scope, plan, execution,
analysis and interpretation of the results, including a general discussion of the
findings. Finally, Sect. 4 summarizes the results and outlines future work.

2 Baseline

We discuss classifications for business processes in Sect. 2.1, and we briefly review
the most prominent business process modeling languages in Sect. 2.2.

Modeling Structured and Unstructured Processes: An Empirical Evaluation 349

2.1 The Spectrum of Work in BPM

There exist several classifications for business processes according to their charac-
teristics [2,8]. A common classification scheme considers the level of structuring
or predictability, thus dividing business processes into a spectrum of work of
four types (see Fig. 1) [2,4,8]. The level of structuring and predictability basi-
cally considers the extent to which the behavior of a given business process is
predictable at modeling time:

Tightly framed
(structured) processes

Fully unframed
(unstructured)

processes

Loosely framed
processes

Ad-hoc framed
processes

(Fully predictable,
highly repetitive) (Fully unpredictable,

highly non-repetitive)

Fig. 1. The spectrum of work in BPM adapted from [17]

In the leftmost extreme of the spectrum, a tightly framed (or structured)
process comprehends those processes whose execution of activities consistently
follows a predefined process model [2,8]. Since a formal representation of
these processes can be easily described prior to their execution, tightly framed
processes are characterized as fully predictable and repetitive and after their
design-time description they can be repeatedly instantiated at runtime. Exam-
ples of this category are production and administrative processes [7] and as well
as bank transactions that are executed in an exact sequence to comply with legal
norms.

Even though tightly framed processes usually have a predictable behavior,
a certain degree of unpredictability is expected due to the occurrence of excep-
tions and evolutions within the domain. Therefore, a loosely framed process cor-
responds to a process in which it is possible to represent the process behavior
and a set of constraints a priori [2], such that the process model describes the
“standard way of doing things” while requiring additions, removals or generation
of alternative sequence of activities during runtime [7].

Differently from a tightly and loosely framed processes that can be described
a priori by an explicit process model, the behavior of ad-hoc framed process
cannot be determined in terms of a explicit process logic during design time due
to a lack of domain knowledge or the complexity of task combinations. Instead,
only structured fragments can be identified a priori and properly composed on
a per-case basis, while process parts that are undefined or uncertain can only be
specified and incorporated as the process evolves [7].

Finally, within the rightmost category of the spectrum, fully unframed (or
unstructured) processes have sufficient variability in such way that no process

350 E. Cardoso et al.

description can be pre-defined at all [2,7]. As a result, process participants need
to make decisions using their knowledge to create activities on demand. The
creation of such activities is based on situation-specific parameters whose values
are determined as the process execution proceeds. Besides choosing activities on
demand, they also dynamically decide the execution order of such activities.

2.2 Process Modeling Languages

Although the disparities regarding the nature of process behavior in reality
trigger process modeling languages to accommodate such diversity, contempo-
rary techniques for process modeling are predominantly activity-centered [5,12],
although over the past years an artifact-centered approach has also emerged [12].

The activity-centered paradigm elects the concept of activity as its first class
modeling construct [5] in order to express business processes as a set of activities.
Within activity-centered models, a plethora of conceptual languages like BPMN,
BPEL, UML, EPCs represent business processes within an imperative (or pro-
cedural) paradigm that is basically founded on the notions of activities and
a number of causal dependencies among such activities. The paradigm requires
modelers to explicitly represent the causal activations of activities and therefore,
all possible paths executed by the business process have to be also exhaustively
enumerated during modeling time.

The rigidity imposed by the imperative paradigm triggered the development
of (activity-centered) declarative languages. In this context, declarative work-
flows [1] have arisen as a more flexible alternative for the specification of business
processes by enabling the representation of behavior in terms of minimal prece-
dence constraints among activities. By default, all execution paths are allowed
and prohibited execution paths are specified by constraints on the execution
order between activities.

Unlike the activity-centered paradigm, the artifact-centered paradigm rep-
resents the states of artifacts (also denominated as data objects) that are used
throughout the process and how these states are changed/updated by activi-
ties [17]. Further, the paradigm also complements the representation of processes
in relation to declaratives languages as it focuses on a hybrid approach of the
representation of data and activities that update such data objects.

Deviating from the current trends of process representation, we introduced
the Azzurra [6] specification language for business processes that shifts the focus
from activities and data objects to agents, roles, social commitments and proto-
cols. In Azzurra, business processes are represented as protocols that are carried
out by intentional agents and roles. Such agents and roles have expectations in
relation to each other that are modeled in terms of social commitments. Formally
speaking, a social commitment C(x,y,p,q) is a promise with contractual validity
made by an agent x (debtor) to another agent y (creditor) that, if proposition p

is brought about (antecedent), then proposition q will be brought about (con-
sequent). Commitments’ consequents specify correctness criteria that have to
be respected, rather than capturing how to achieve a determined business goal

Modeling Structured and Unstructured Processes: An Empirical Evaluation 351

through a prescription of a number of steps (activities). This shift in the mod-
eling paradigm opens up the possibility of providing more flexible specifications
for business processes as it allows the participating agents to decide the best
operationalizations to achieve the outcomes during runtime.

In light of the assumption that Azzurra provides a more flexible solution for
the specification of business processes, we have performed a preliminary evalua-
tion of the language by means of two scenarios in [6]. Both scenarios have been
extracted from the BPM literature as representatives of business processes that
require flexible specifications. More specifically, Scenario 1 (Fracture treatment)
intended to compare Azzurra’s representational features with the representa-
tional features of current modeling languages, namely procedural, declarative
and data-centered approaches. The conclusion of such comparison led us to the
realization that Azzurra focuses on different aspects of current modeling lan-
guages in order to represent business processes. As a consequence of that, our
intuition rests on the realization that this shift of focus can better capture the
features of unstructured business processes. Therefore, Scenario 2 (Transient
Ischemic Attack (TIA) Clinical Guideline) has been chosen due to its unstruc-
tured nature to check this intuition that Azzurra better supports the represen-
tation of such kind of processes. In this context, we enumerated the domain
representational needs of unstructured processes such as the absence of genuine
activities to be executed as well as the lack of ordering constraints between such
activities and compared both representations in Azzurra and BPMN of the TIA
clinical guideline. A direct conclusion of such comparison indeed established that
Azzurra is better than BPMN for unstructured processes.

With these insights at hand, in this paper we perform an experiment with
students to check the validity of our insights regarding the suitability of Azzurra
and BPMN for structured and unstructured processes. BPMN has been chosen
for the comparison under consideration due to its wide acceptance and popularity
as a standard for business processes representation [10,16]. More specifically,
with this experiment, we want to acquire objective and statistically significant
evidence regarding the suitability of Azzurra for unstructured processes. In order
to perform the experiment, we elaborated the following propositions:

P1. Azzurra produces models of better quality than BPMN in the representation
of unframed (unstructured) business processes;

P2. BPMN produces models of better quality than Azzurra in the representation
of tightly framed (structured) business processes.

3 The Experiment Process

The design of our experiment has been conducted on the basis of guidelines for
experimentation in software engineering [13,20]. According to such guidelines,
the experiment process can be divided into five main activities depicted in Fig. 2.

Within the Scoping activity, the experiment is defined in terms of problem
statement and goals, defining why the experiment is needed. According to the

352 E. Cardoso et al.

Fig. 2. The experimentation process according to [20]

Wohlin’s guidelines [20], the Goal, Question, Metric (GQM) template [3] com-
prehends a suitable instrument for defining the scope of a given experiment. Our
GQM template is described in Sect. 3.1.

The Planning activity is the phase in which the foundation of the experiment
is laid, defining how it is conducted. The steps conducted in the scope of our
planning activity are described in Sect. 3.1.

The Operation activity encompasses the preparation of subjects and
required material on which the experiment in executed (i.e., objects), the actual
execution of the experiment as well as the collection of measurements (see
Sect. 3.2). The Analysis and Interpretation activity focuses on qualitatively
and quantitatively processing the outcomes of the experiment (Sect. 3.3 and
Sect. 3.4). Finally, the results are presented in the course of the Presentation
and Package (leading to the present paper).

3.1 Experiment Scoping and Planning

Our experiment starts by scoping its objectives using the GQM template
depicted in Table 1:

Table 1. GQM for our experiment

Focus of the experiment: Analyze Azzurra specification language and compare
it with the BPMN modeling language.

Objective of the experiment: Checking the adequacy of the Azzurra and
BPMN languages for the representation of structured and unstructured business
processes.

Variables selection: We compare Azzurra and BPMN modeling languages in
terms of model quality.

Subject: From the point of view of M.Sc. students enrolled in classes of
Organizational Information Systems.

Context of the experiment: M.Sc. students creating Azzurra and BPMN
models.

In the following, the planning phase of our experiment required us to elab-
orate the hypotheses (together with the independent and dependent variables),
factors and treatments applied to our experiment.

Modeling Structured and Unstructured Processes: An Empirical Evaluation 353

Hypothesis Formulation. As we intend to compare Azzurra and BPMN for
structured and unstructured processes, we construct three null hypotheses, one
for each factor and a third one for the interaction between the factors [20].

– Null Hypothesis H0−1: There is no significant difference in model quality
of Azzurra and BPMN modeling languages.

– Ha−1: There is significant difference in the model quality of Azzurra and
BPMN modeling languages.

– Null Hypothesis H0−2: There is no significant difference in model quality
of structured and unstructured scenarios.

– Ha−2: There is significant difference in model quality of structured and
unstructured scenarios.

– Null Hypothesis H3: There are no significant interactions between the type
of modeling language and types of business processes in terms of model quality.

– Ha−3: There are significant interactions between the type of modeling lan-
guage and types of business processes in terms of model quality.

Note that our hypotheses are elaborated in terms of model quality (depen-
dent variable). In order to select the metrics for measuring model quality in our
evaluation, we get inspiration from the field of Ontology Engineering; more pre-
cisely, we use a formal evaluation framework [19] that defines the dimensions of
precision and coverage to define the quality of a given ontology (model).

In [19], a conceptualization comprehends a set of conceptual relations about
a certain portion of reality perceived by an agent, defining a set of intended
models IK . In this context, the role of an ontology is to provide a specification
of such conceptualization, precisely capturing the intended models according to
such conceptualization and excluding the non-intended ones. Considering that it
is not always easy to find the right set of entities so that an ontology admits only
the intended models [9], ontologies are considered only approximations of con-
ceptualizations. Consequently, the formal framework of Staab et al. [19] proposes
a schema for evaluating ontologies with respect to the degree of approximation
they can provide to their respective conceptualizations. To evaluate such degree
of approximation, the precision and coverage metrics are introduced and can be
mathematically defined as:

P =
|IK ∩ OK |

|OK | (precision) C =
|IK ∩ OK |

|IK | (coverage)

In Ontology Engineering, precision measures how much the represented mod-
els OK are relevant according to the set of intended models IK , while coverage
measures how much of the intended models IK are represented by the ontology
OK . We use analog reasoning for our evaluation of Azzurra and BPMN modeling
languages. In our case, business processes are considered the target conceptu-
alization that can be represented by two distinct ontologies, i.e., the Azzurra
and BPMN modeling languages. Every business process has a natural language
description that admits a number of execution paths (in our case, the set of
intended models IK corresponds to the set of intended execution paths IexecPath)

354 E. Cardoso et al.

and specifications in BPMN and Azzurra provide representation of such execu-
tion paths (RexecPath). Therefore, precision measures how many paths which are
represented in the model are correct in relation to the intended paths prescribed
by the natural language description, while coverage measures how many paths
provided in the natural language description are indeed captured in the model
representation. In our case, precision and coverage are mathematically defined
as follows:

P =
|IexecPath ∩ RexecPath |

|RexecPath | (precision)C =
|IexecPath ∩ RexecPath |

|IexecPath | (coverage)

Factor and Treatment. As the aim of our experiment is to investigate whether
the Azzurra modeling language has a more faithful representation of unstruc-
tured business process than the BPMN modeling language, we have two factors:
factor A is the type business process modeling language (whose treatments are
Azzurra and BPMN modeling languages) and factor B is the type of business
process under consideration (whose treatments are unstructured and structured
business processes). Factors and treatments are depicted in Table 2:

Table 2. Factors and treatments applied in our experiment

Instrumentation. Participants used a free online modeling tool1 for the elabo-
ration of BPMN 2.0 models and a plug-in2 developed at University of Trento for
the elaboration of Azzurra models. In the end of the experiment, they provided
the source of Azzurra and BPMN models for later evaluation of the results.

Validity evaluation. We enumerate the main threats to the validity of our
experiment using the Wohlin’s categorization [20]:

Threats to construct validity. The threats in this category are: (i) a major threat
to construct validity is that the chosen business processes may not be represen-
tative samples for the structured and unstructured types of business processes.
To mitigate this issue, we have chosen already consolidated scenarios within the
BPM literature as representatives from structured and unstructured processes;
(ii) furthermore, the domain knowledge involved in the description of the sce-
narios may entail some difficulty during the modeling process; (iii) the fact that
1 www.lucidchart.com.
2 https://trinity.disi.unitn.it/azura/azura/.

www.lucidchart.com
https://trinity.disi.unitn.it/azura/azura/

Modeling Structured and Unstructured Processes: An Empirical Evaluation 355

BPMN is an imperative language, while Azzurra is declarative may also entail
additional difficulties as there is some evidence that imperative languages are
more understandable than declarative ones [15]; (iv) hypothesis guessing may
also represent a threat as subjects can be conditioned by the results they are
providing. We mitigated this threat by carefully formulating questions on the
basis of correct usage and preference of modeling languages.

Threats to external validity. Here, our largest threat is the usage of students as
subjects in our experiment. Further, they had prior training in BPMN and UML
activity diagrams during the course lectures. To mitigate these issues and make
their background more uniform, we have provided preliminary training in both
Azzurra and BPMN languages by means of one example. In order to encourage
subjects to participate, they could earn at most one point in the overall course
grade on the basis of the correct usage of languages constructs.

Threats to conclusion validity. The two threats to conclusion validity are the
low number and homogeneity of the samples (students) that may impact our
ability to reveal patterns in the data. Besides that, the first author of this paper
evaluated the number of admissible execution paths for each scenario, together
with their respective representations in Azzurra and BPMN.

Threats to internal validity. This type of validity is threatened by the effect of
order in which the subjects apply the treatments (structured and unstructured)
as students may learn the content of natural languages descriptions, and the
second models are easier to produce. To mitigate the effect of order, the order
is assigned randomly to each subject. By having the same number of subjects
starting with the first treatment as with the second, the design is balanced [20].

3.2 Experiment Operation

Preparation. We continue following the same rationale of evaluation through
modeling scenarios. In particular, we have used same business process from Sce-
nario 2 used in [6] (i.e., the TIA clinical guideline) as a representative of unstruc-
tured business process and the X-Ray Medical Order (extracted from [17]) as
the representative of structured business process. The selection of both scenar-
ios as representatives of unstructured and structured business process has been
supported by BPM literature that positions clinical guidelines as unstructured
processes [7] and the X-Ray Medical Order as a structured process [17].

Next, a natural language description3 has been extracted from literature in
order to be applied on the subjects. Further, the corresponding Azzurra and
BPMN models have been built in advance for each scenario by the first author
with the purpose of ensuring that process models to be built in each scenario
indeed covered the core concepts of both modeling languages.

3 Scenario descriptions, experimental results and data analysis are available at https://
www.dropbox.com/s/8qlwd5svqbt3hmw/Empirical%20evaluation.zip?dl=0.

https://www.dropbox.com/s/8qlwd5svqbt3hmw/Empirical%20evaluation.zip?dl=0
https://www.dropbox.com/s/8qlwd5svqbt3hmw/Empirical%20evaluation.zip?dl=0

356 E. Cardoso et al.

Experiment execution. The experiment has been conducted in July 2015 with
master’s students in Computer Science in the scope of the Organizational Infor-
mation Systems Course at University of Trento. In total, 17 subjects participated
in this empirical test. The experiment has been structured in different parts:

– Introduction Phase (15min): General instructions about the experiment
and introduction to Azzurra modeling language and modeling tool together
with a presentation about BPMN. It is also important to note that students
had prior contact with BPMN along the course lectures;

– Experiment phase (40min, i.e., 20min for each language): Group 1
models the structured scenario using Azzurra and BPMN, whereas group 2
models the unstructured scenario using Azzurra and BPMN;

– Questionnaire phase (15min): General questions concerning the back-
ground of the subject and questions regarding the elaboration of models rel-
ative to scenario 1 and 2.

Data validation. The obtained data were checked for consistency and plausi-
bility. We discarded the inputs from two students due to incompleteness; thus,
we could employ data from 15 students in the data analysis.

3.3 Experiment Analysis and Interpretation

To report experimental results, Table 3 shows mean, median and standard devi-
ation values for precision and coverage by language and process type:

Table 3. Precision and coverage by language and process type

Azzurra BPMN

Mean Median Std. dev. Mean Median Std. dev.

Unstructured Precision 1.00 1.00 0.00 1.00 1.00 0.00

Coverage 0.89 1 0.18 0.34 0.36 0.07

Structured Precision 1.00 1.00 0.00 0.95 1.00 0.13

Coverage 0.82 0.75 0.19 0.82 0.75 0.19

Overall Precision 1.00 1.00 0.00 0.97 1.00 0.09

Coverage 0.85 1.00 0.18 0.60 0.50 0.28

We conducted statistical analysis to test whether the null hypothesis H0 can
be rejected, thereby allowing us to draw conclusions about our studied phenom-
enon: the modeling of structured and unstructured business processes.

For the selection of the statistical tests, we followed the guidelines prescribed
by Harvey [11, Chap. 37]. As the participants of our experiment applied both
methods, to test H0−1, we can use paired t-test or its non-parametric analog,

Modeling Structured and Unstructured Processes: An Empirical Evaluation 357

Wilcoxon test. However, the participants did not switch scenario type and, there-
fore, to test H0−2 we use unpaired t-test or its non-parametric analog, Mann-
Whitney (MW) test. Finally, to test H0−3 we need to investigate the difference
between the combination of two factors (type of language and type of process),
which requires ANOVA test or its non-parametric analog, Kruskal-Wallis (KW)
test [20]. We checked the normality of data by Shapiro-Wilk test which returned
p-value = 0.0013 for coverage and p-value = 6.8 · 10−11 for precision. Thus, we
used non-parametric tests for all three hypothesis. Further, for all statistical tests
we use a threshold of 5 % for α, the probability of committing Type-I error [20].

Null Hypothesis H0−1 (Azzurra vs. BPMN): The results of the Wilcoxon
test revealed a statistically significant difference between two modeling languages
with respect to coverage (test results: W = 7, Z = 2.09, p-value = 0.04, Cohen’s
d = 1.06) and no significant difference in precision (p-value = 0.32). The power
of the Wilcoxon test for coverage is 0.72. Therefore, we cannot reject the null
hypothesis both for coverage and precision. However, to achieve 80 % power
for coverage we would need a sample size of 16 participants, while we had 13
participants. For Azzurra, the overall mean coverage is 0.85, whereas for BPMN
the overall mean coverage is 0.6. As coverage describes the percentage of the
intended interpretations (according to the natural language description) that
are indeed captured by the model, a mean coverage of 0.85 means that 85 % of
all intended paths are captured in the model, whereas 15 % of them are not. In
fact, this is a reasonable advantage from Azzurra, once the language specifies
process paths in terms of correctness criteria, whereas BPMN requires a more
verbose style of specification, demanding exhaustive specification of all potential
process paths. It is natural that some intended process paths are not captured
in the BPMN representation. Observe also the significant difference in terms of
coverage between Azzurra (0.893) and BPMN (0.345) for unstructured processes.
As unstructured processes potentially have a large number of process paths,
this difference in terms of coverage between both languages becomes even more
evident for such kind of processes.

Null Hypothesis H0−2 (Structured vs. Unstructured): To test this
hypothesis, we should use MW test which assumes the equality of variance.
However, the Levene’s test for homogeneity of variance returned p-value = 0.37
for precision and p-value = 0.04 for coverage. Therefore, we cannot rely on the
results of the MW test for coverage. To mitigate this issue, we cross-validate the
results of MW test with KW test which does not require equal variance. The
MW test results did not reveal significant difference between two process types
both for precision (p-value = 0.35) and coverage (p-value = 0.11). The KW test
returned p-value = 0.11 for coverage, which supported the results of MW test. In
order to achieve statistically significant results for coverage with 80 % power we
would need a sample size of 54 participants. The results show that the process
type did not affect the performance of the participants. The null hypothesis H0−2

cannot be rejected for any of the variables.

Null Hypothesis H0−3 (Language and Process type): The results of KW
test revealed a statiscally significant effect of the combination of language and

358 E. Cardoso et al.

process type on coverage (χ2(3) = 15, p-value = 0.002) and no effect on precision
(p-value = 0.44). Therefore, the null hypothesis H0−3 can be rejected only for
coverage. A post-hoc test using MW test with Holm correction showed the sig-
nificant differences between coverage of the results produced by participants who
used BPMN on unstructured process and other participants who used BPMN
on structured process (MW test results: p-value = 0.002, Cohen’s d = 3.23)
or Azzurra on unstructured (p-value = 0.003, Cohen’s d = 4.02) and structured
process (p-value = 0.002, Cohen’s d = 3.23). It means that there is a significant
difference in terms of coverage between Azzurra and BPMN for unstructured
processes, as described above, whereas for structured processes both Azzurra
and BPMN have equal performance in terms of coverage.

3.4 Discussion

Our aim is to investigate the suitability of the Azzurra language for representing
unstructured processes and its superiority in terms of model quality in relation
to BPMN. In our approach, model quality is measured in terms of precision
and coverage, two metrics extracted from the field of Ontology Engineering for
the evaluation of ontology quality. Regarding our propositions introduced in
Sect. 2.2, our findings suggest that:

P1. The Azzurra modeling language is significantly better than BPMN in terms
of coverage for the representation of unstructured processes, but the power
of the test is not enough to completely reject null hypothesis H0−1 (see the
discussion of null hypothesis H0−1).

P2. No definite conclusion can be drawn, due to the absence of statistically
significant difference between the two modeling languages with respect to
precision (see the discussion of null hypothesis H0−1).

The superiority of Azzurra over BPMN in terms of coverage for unstruc-
tured processes can be explained by the representational style of Azzurra and
BPMN: Azzurra requires correctness criteria to be specified as commitment’s
consequents, whereas BPMN imposes the need of exhaustive specification of all
activities and paths. First, if we consider the advantage of Azzurra over BPMN
in terms of coverage—therefore measuring how many intended paths are indeed
captured by its corresponding representation—, an Azzurra representation “cov-
ers” more paths than its counterpart in BPMN, as Azzurra’s correctness criteria
captures all possible paths in an implicit way as opposed to explicitly captur-
ing all paths. Therefore, there is a higher chance that some paths are indeed
forgotten during the modeling process in a BPMN representation.

Second, considering Azzurra’s suitability for unstructured processes, these
processes are characterized by an “on-the-fly” creation of activities, lacking also a
pre-defined execution order among activities. Therefore, their textual description
allows several interpretations regarding the potential paths to be captured (e.g.,
for three activities A, B and C, it is possible to capture 3! paths). Azzurra’s fea-
tures can cope better than BPMN with both aspects of unstructured processes:

Modeling Structured and Unstructured Processes: An Empirical Evaluation 359

via commitments, modelers can specify obligations to be fulfilled and partici-
pants can dynamically select which activities to perform to fulfill such obliga-
tions at runtime. Further, a commitment-based representation also allows one
to specify lack of structure necessary for unstructured processes, refraining from
capturing a specific order to fulfill them. Differently, as we have noticed dur-
ing the evaluation of experiment’s results, students commonly captured only
the most trivial sequence of activities in BPMN, missing all the other possible
interpretations according to the natural language description.

Our experimental evaluation considered the metrics of precision and cov-
erage to determine the quality of models representations in terms of domain
faithfulness and language expressiveness, rather than the focusing on the mod-
elers’ perception. To overcome this issue, we distributed a questionnaire among
participants. In this survey, there is significant preference of BPMN in rela-
tion to Azzurra. This answer should be interpreted with care for two reasons.
First, the questionnaire revealed prior process modeling experience of subjects
in BPMN both in academia and industry. Second, imperative process modeling
has its roots in imperative and declarative computer programming languages
which have been used in computer science since the 50s and 60s. Third, there is
evidence that imperative languages are more understandable than declaratives
ones [15]. As familiarity is a very important aspect for the usability of modeling
languages, preference of BPMN seems to natural in this case.

Although we effectively conducted the experiment with a homogeneous group
of master’s students, some limitations must be considered. In particular, the rel-
atively low number of experimental subjects constitutes a limitation in terms
of statistically significance of our conclusions. Moreover, while BPMN models
have been produced on the basis of a professional tool, the usage of a proto-
typical implementation of the Azzurra modeling tool may be also considered a
disadvantage in relation to its respective counterpart in BPMN models.

4 Conclusion

In this paper, we empirically evaluated the Azzurra and BPMN modeling lan-
guages for the representation of structured and unstructured processes in terms
precision and coverage, two metrics used in the evaluation of ontology quality in
the field of Ontology Engineering. Our empirical results indicate that Azzurra
can be considered superior to BPMN for the representation of unstructured
processes. However, no further claims can be stated concerning the superiority
of BPMN over Azzurra for the representation of structured processes.

A very natural direction for our future work is the replication of our exper-
iment. In that respect, we first envision an experimental design that encom
passes a higher number os students in order to be able to validate some of our
hypothesis (e.g., the difference of structured and unstructured processes). Alter-
natively, we would be also interested in repeating the similar experiment with
BPM experts within an industrial setting. The adoption of industrial experts
would allow us to not only gain more statistical power in our analysis, but could

360 E. Cardoso et al.

be also instrumental for acquiring insights regarding the acceptance of Azzurra
within the industry. A second future work direction for our work concerns the
elaboration of modeling patterns and guidelines for process representation using
Azzurra, similarly as the existent ones for BPMN [14]. Finally, the usage of the
same dataset with different metrics for the evaluation of process models (as the
one proposed in [18]) could yield us different conclusions regarding the suitability
of both process languages.

Acknowledgement. The research leading this paper has been funded by ERC
advanced grant 267856 “Lucretius: Foundations for Software Evolution”, unfolding
during the period of April 2011 – March 2016. It has also received fundings from
the SESAR Joint Undertaking under grant agreement No 699306 under the European
Union’s Horizon 2020 research and innovation program.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: balanc-
ing between flexibility and support. Comput. Sci. Res. Dev. 23(2), 99–113 (2009)

2. van der Aalst, W.M.P.: Business process management: a comprehensive survey. In:
ISRN Software Engineering (2013)

3. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering. Wiley, New York (1994)

4. vom Brocke, J., Rosemann, M.: Handbook on Business Process Management 1:
Introduction, Methods, and Information Systems (2010)

5. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

6. Dalpiaz, F., Cardoso, E., Canobbio, G., Giorgini, P., Mylopoulos, J.: Social spec-
ifications of business processes with Azzurra. In: Proceedings of the International
Conference on Research Challenges in Information Science, pp. 7–18 (2015)

7. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29–57 (2015)

8. Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley,
New York (2005)

9. Guarino, N.: Formal ontology and information systems. In: Proceedings of Formal
Ontology in Information Systems (1998)

10. Harmon, P.: The State of Business Process Management 2016. Technical report,
BPTrends (2016)

11. Harvey, M.: Intuitive Biostatistics. Oxford University Press, New York (1995)
12. Hull, R.: Artifact-centric business process models: brief survey of research results

and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp.
1152–1163. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88873-4 17

13. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Springer, New York (2010)

14. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guide-
lines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

http://dx.doi.org/10.1007/978-3-540-88873-4_17

Modeling Structured and Unstructured Processes: An Empirical Evaluation 361

15. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imper-
ative versus declarative process modeling languages: an empirical investigation.
In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp.
383–394. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28108-2 37

16. Recker, J.: BPMN research: what we know and what we don’t know. In: Proceed-
ings of the International Workshop on Business Process Model and Notation, pp.
1–7 (2012)

17. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer, Heidelberg (2012)

18. Rozinat, A., De Medeiros, A.A., Günther, C.W., Weijters, A., van der Aalst, W.M.:
Towards an Evaluation Framework for Process Mining Algorithms. BPM Center
Report BPM-07-06, BPMcenter.org, p. 10 (2007)

19. Staab, S., Gomez-Perez, A., Daelemana, W., Reinberger, M.L., Noy, N.F.: Why
evaluate ontology technologies? Because it works! IEEE Intell. Syst. 19(4), 74–81
(2004)

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell (2000)

http://dx.doi.org/10.1007/978-3-642-28108-2_37
http://www.BPMcenter.org

Applications and Experiments of
Conceptual Modeling

MetaScience: An Holistic Approach
for Research Modeling

Valerio Cosentino1, Javier Luis Cánovas Izquierdo2(B), and Jordi Cabot2,3

1 AtlanMod Team, Inria, Mines Nantes, LINA, Nantes, France
valerio.cosentino@mines-nantes.fr

2 UOC, Barcelona, Spain
jcanovasi@uoc.edu

3 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Conferences have become primary sources of dissemination
in computer science research, in particular, in the software engineering
and database fields. Assessing the quality, scope and community of con-
ferences is therefore crucial for any researcher. However, digital libraries
and online bibliographic services offer little help on this, thus providing
only basic metrics. Researchers are instead forced to resort to the tedious
task of manually browsing different sources (e.g., DBLP, Google Scholar
or conference sites) to gather relevant information about a given venue.
In this paper we propose a conceptual schema providing a holistic view
of conference-related information (e.g., authors, papers, committees and
topics). This schema is automatically and incrementally populated with
data available online. We show how this schema can be used as a single
information source for a variety of complex queries and metrics to char-
acterize the ER conference. Our approach has been implemented and
made available online.

Keywords: Conference analysis · Data mining · MetaScience ·
Scientometrics

1 Introduction

Conferences play a key role in the research community specially in many areas
of Computer Science (CS) where they are the primary source for researchers
to present and discuss new results and ideas [1,2]. Availability of conference
analytics is therefore a fundamental information for both researchers, looking
for a venue to submit their work, and organizers (e.g., steering and program
committee chairs), in need of monitoring its health (e.g., evolution of papers
accepted and community).

Current analytics so far are mostly limited to assessment of basic common
indicators such as ranking, citation indexes and acceptance rates, usually avail-
able in digital libraries and bibliographic services. However, relevant information
on the author community (e.g., openness towards new researchers), author profil-
ing (e.g., most prolific authors, author clustering) or composition of the Program
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 365–380, 2016.
DOI: 10.1007/978-3-319-46397-1 28

366 V. Cosentino et al.

Committee (PC) are often not available or scattered thus forcing researchers to
perform tedious and manual browsing to get the information they need in a
process that does not scale.

In this paper we propose a conceptual schema that provides an holistic, homo-
geneous and detailed representation of all kinds of conference-related informa-
tion. A relational database is derived from our conceptual schema and populated
through an extraction mechanism that collects and integrates data from differ-
ent heterogeneous sources such as bibliographic metadata, conference websites,
quality indicator services and a number of digital libraries by applying a plethora
of extraction techniques (i.e., database import, web scraping and file processing)
tailored to the nature of each data source. Our approach incorporates an incre-
mental update mechanism that can be triggered at any moment to refresh and
keep the database updated with the latest information available online.

The obtained data can therefore be used to better understand how confer-
ences behave by automatizing the calculation of conference analytics. Thanks
to our homogeneous and integrated representation, we can perform this calcula-
tion at a massive scale (e.g., to compare conference results across subfields) and
going beyond pure publication analysis (e.g., studying publication patterns of
PC members when compared with non-PC members), something that was not
feasible until now. We illustrate some of the metrics on the ER conference itself.
Tool support for the whole process is provided and a web service focusing on
individual summary metrics is also available.

The remainder of the paper is organized as follows. Section 2 introduces our
approach together with the conceptual and database schemas. Section 3 describes
the data collection while Sect. 4 focuses on conference metrics. Section 5 discusses
implementation details. We conclude by presenting the related work in Sect. 6
and future research directions in Sect. 7.

2 Approach

We propose a conceptual schema to model all relevant aspects of research confer-
ences. This schema is materialized as a relational database and populated from a
variety of partial sources through an incremental update mechanism. The result-
ing database can then be queried to calculate a number of quality metrics for
the conferences (individually or to compare them). Figure 1 shows an overview
of our approach. Both layers can be easily extended to add new data sources
and metrics.

In the remainder of this section, we describe the conceptual schema and the
corresponding database schema, key components of our approach. Next sections
describe the other elements of the data collection and data analytics layers.

2.1 Conceptual Schema

Figure 2 shows the conceptual schema depicted as a UML class diagram. The
main concepts include: Researcher, Paper, Conference and ConferenceEdition.

MetaScience: An Holistic Approach for Research Modeling 367

Ranks
Domains Quality Indicator

Services

Researchers

Papers
Conferences

Authorships
Tracks

Bibliographic
Metadata

Profi les

Institutions

Abstracts
Citations Digital Libraries

Conference
Websites

Topics of Interest
Program Committee

Steering CommitteeMetaScience DB

MetaScience
Conceptual Schema

Data Collection

Data Analytics

ResearchersPapersTopics Communities

Fig. 1. Overview of MetaScience.

Researcher

name : String
aliases[*]:String
/ citations : int

Paper

title : String
abstract : String
pages : Integer
url : String
doi : String
updatedAt : Date

Topic

name : String

Category

name : String

Country

name : String
Domain

name : String

Rank

name : String

Conference

name : String
url : String

ConferenceEdition

name : String
year : Intenger
url : String
/ papersPerAuthor : double
/ authorsPerPaper : double

Institution

name : String

Authorship

position : Integer

*

category*
papers*

papers*
researcher

country

*

*

* institutions

authors

papers*

* topics

programCommitteeChair

steeringCommitteeMember

programCommitteeMember
*

*

*

programCommittee

steeringCommittee

programCommitteeChairs
*

*

*

institution

conferences *

1

1

conference1..*
conferenceEdition

0..1 rank

* conferences
*domain

conferences *

* topics

conferences
*

isCited* setic *

Pro file

url : String
source : String

publishedIn
1

papers *

researcher1

pro fi les

*

Track

name : String

institutions

1

track*
papers

hosts
*

isSatellite
0..1

isMergedTo 0..1 merges*

0..1

Fig. 2. MetaScience conceptual schema.

They represent respectively, individuals involved in a conference (publishing or
being part of committees), publications, conferences and the corresponding edi-
tions. The associations among these concepts allow representing the authors
of the publications (see papers association), where papers were published (see
publishedIn association), their citations (cites), the conference committees (pro-
gramCommitteeChairs, programCommittee and steeringCommittee) and the con-
ference editions (conferenceEdition).

The schema also models the order of the authors and their affiliation in each
paper (see Authorship association class). Researchers can also be identified with
different aliases (see aliases) and have several profiles (see Profile) like Google
Scholar or ResearchGate. Conference editions are organized by an institution
(see association between ConferenceEdition and Institution) and define a set
of topics of interest (see association between ConferenceEdition and Topic).
Conferences can be a satellite event of others (see association isSatellite) or the
result of merging two or more conferences (see association merges).

368 V. Cosentino et al.

Additionally, the schema embeds a set of concepts to facilitate the classifi-
cation of papers and conferences. The concepts Category, Topic, Track define
respectively the category of a paper (e.g., short paper, long paper), the topics
assigned to it, and the conference track where it was assigned. The concepts
Domain and Rank describe the domains and rank assigned to a conference.
Finally, concepts in the schema can be enriched with some calculated metrics,
expressed as derived attributes like the number of citations for researchers (see
the attribute citations) or the ratio of papers per author and authors per paper
for each conference edition (attributes papersPerAuthor and authorsPerPaper).

2.2 Database Schema

The database schema shown in Fig. 3 is derived from the conceptual schema
previously presented. In a nutshell, concepts/attributes in the conceptual schema
are mapped into tables/columns in the database schema and associations are
mapped into foreign keys (e.g., track in Paper concept is mapped to track id
foreign key in paper table) or new tables (e.g., topic paper table) depending
on the cardinality of the association, following the typical translation strategies.
Note that the association class has been mapped into a new table (see authorship
table).

calculate_num_of_pages

Parameters
IN

Returns
NUMERIC(5)

page_interval VARCHAR(10)

FUNCTION

get_coauthorship_info_for_conference

Parameters
IN target_conf_id BIGINT(20)

STORED PROCEDURE

IN span_time NUMERIC(2)

Functions & Stored Procedures
Views

view_n

conference_track

conference_edition_track

researcher_statistics

avg_authors_per_paper

distinct_authors

num_papers

avg_number_of_papers

avg_number_of_authors

FLOAT(10, 4)

FLOAT(10, 4)

INT(20)

INT(20)

FLOAT(10, 4)

FLOAT(10, 4)

conference_statistics

avg_papers_per_author

name VARCHAR(255)

researcher

id BIGINT(20)

res_id BIGINT(20) FK(researcher.id)

authorship

paper_id BIGINT(20) FK(paper.id)

position INT(11)

paper_is_cited BIGINT(20)

paper_citation

paper_cites BIGINT(20) FK(paper.id)

FK(paper.id)

res_id BIGINT(20) FK(researcher.id)

authorship_institution

paper_id BIGINT(20) FK(paper.id)

inst_id BIGINT(20) FK(institution.id)

name BIGINT(20)

institution

id BIGINT(20)

country_id BIGINT(20) FK(country.id)

name BIGINT(20)

country

id BIGINT(20)
name VARCHAR(255)

domain

id BIGINT(20)

name VARCHAR(255)

rank

id BIGINT(20)

name VARCHAR(255)

category

id BIGINT(20)

year INT(5)

conference_edition

id BIGINT(20)

name VARCHAR(255)

url VARCHAR(255)

conf_id BIGINT(20)

inst_id BIGINT(20) FK(institution.id)

FK(conference.id)

paper_id BIGINT(20)

topic_paper

topic_id BIGINT(20) FK(topic.id)

FK(paper.id)

alias VARCHAR(255)

researcher_aliases

res_id BIGINT(20) FK(researcher.id)

source VARCHAR(255)

pro fi le

res_id BIGINT(20) FK(researcher.id)

url BIGINT(20)

conf_edition_id BIGINT(20)

steering_committee

res_id BIGINT(20) FK(researcher.id)

FK(conference_edition.id)

name BIGINT(20)

topic

id BIGINT(20)

conf_edition_id BIGINT(20)

topic_conference_edition

BIGINT(20)topic_id FK(topic.id)

FK(conference_edItion.id)

conf_edition_id BIGINT(20)

program_committee

res_id BIGINT(20) FK(researcher.id)

FK(conference_edition.id)

isChair INT(1)

name VARCHAR(255)

track

id BIGINT(20)

paper_id BIGINT(20)

category_paper

cat_id BIGINT(20) FK(category.id)

FK(paper.id)

conf_id BIGINT(20)

conference_domain

domain_id BIGINT(20) FK(domain.id)

FK(conference.id)

Digital Libraries

DBLP

CORE portal

Conf. Websites

doi VARCHAR(255)

id BIGINT(20)

abstract VARCHAR(255)

pages INT(11)

url VARCHAR(11)

published_in BIGINT(20) FK(conference_edition.id)

update_at TIMESTAMP

track_id BIGINT(20) FK(track.id)

conference

id BIGINT(20)

name VARCHAR(255)

url VARCHAR(255)

rank_id BIGINT(20) FK(rank.id)

is_satellite BIGINT(20)

is_merged BIGINT(20) FK(conference.id)

FK(conference.id)
title VARCHAR(255)

paper

Tables

Fig. 3. MetaScience database schema.

MetaScience: An Holistic Approach for Research Modeling 369

Additionally, several views have been created in the database to store
the derived attributes (e.g., conference statistics view). Auxiliary methods
have been implemented as either functions or stored procedures (e.g. calcu-
late num of pages). These elements calculate basic aggregated data that will
be frequently accessed when defining more complex metrics. Full description of
these views and methods can be found in the repository hosting the tool.

3 Data Collection

The data collection layer includes several components to collect specific infor-
mation from different data sources. In particular, we consider (1) bibliographic
metadata, (2) conference websites, (3) digital libraries and (4) quality indicator
services. Bibliographic metadata includes information about papers, researchers,
authorship, conferences, their editions and tracks, obtained from DBLP1. Con-
ference websites are used to retrieve committee members (e.g., steering and pro-
gram committees) and topics of interest. Digital libraries are accessed to collect
data about paper abstracts and citations as well as researchers’ profiles and
affiliation institutions. Finally, conference ranking information and conference
domains can be derived, for instance, from the CORE Rankings portal2. In the
following we give details about the import process for each source.

3.1 DBLP

Figure 4 shows an overview of the extraction process for DBLP data. It con-
cerns both the DBLP database3 and website4 since the database dump does not
contain all information available in the website, e.g., conference tracks.

In a nutshell, the DBLP database includes a set of relational tables to store
information about publications and authors. Publication details are stored in
the table dblp pub new and include, among others, its type, title, page inter-
vals, year and the link to the DBLP web page where the publication is located.
Author tables keep track of their position in papers (table dblp author ref new),
their names (table dblp authorid ref new) and possible name aliases (table
dblp aliases new). In the following, we describe how information contained in
the DBLP database and website are processed and imported in our database.

Researchers, Papers and Authorship Data. Authors and their aliases
stored in the DBLP database are mapped into the tables researcher and
research alias of our database. A similar approach is followed to populate papers

1 DBLP is a popular online reference for open bibliographic information in computer
science with over 3M publication records.

2 CORE (http://www.core.edu.au/index.php/conference-portal) provides assessment
of conferences in computing disciplines according to a mix of indicators such as
citation and acceptance rates.

3 Dumps of the DBLP database are released periodically at http://dblp.l3s.de.
4 http://dblp.uni-trier.de.

http://www.core.edu.au/index.php/conference-portal
http://dblp.l3s.de
http://dblp.uni-trier.de

370 V. Cosentino et al.

conference conference_edition

paper categorycategory_paper

researcher_aliasesauthorship

DBLP

dblp_author_ref_new dblp_aliases_new

dblp_pub_new

researcher

dblp_authorid_ref_new

Database Website

www.

MetaScience
trackpaper

Fig. 4. Overview of the extraction process for DBLP.

and authorship details, thus filling the paper and authorship tables. Addition-
ally, at this stage, also the tables category and category paper are populated.
Currently, the papers are categorized according to their number of pages (e.g.,
less than 11 pages as short papers) since there is no explicit information about a
paper category in DBLP. This value can be configured to adapt to specific page
lengths for a given conference.

Conference Data. We rely on the analysis of the proceedings of each con-
ference in the DBLP database to fill the tables regarding the information for
conferences (conference, their editions conference edition) and conference rela-
tionships (attributes is satellite and is merged in table conference). The actual
name of the conference is retrieved by web scraping the conference page on the
DBLP website, since, surprisingly, this information is not present in the data-
base.

Tracks Data. Tracks assigned to papers are obtained by a web crawler visiting
the DBLP web page of the conference edition where the paper metadata is
located. For each paper, its position on the web page is retrieved according
to its title and then the name of the assigned track is collected by selecting
the first HTML header that precedes it. The obtained information is finally
stored in the table track and linked to the corresponding paper (attribute track id
in table paper), and then aggregated in the views conference edition track and
conference track.

3.2 Conference Websites

Topics of interest and committees (e.g., program and steering committees) are
listed on the conference website, but each website follows a different structure
(e.g., number of pages, content of each page, completeness of the data). Given
this heterogeneity we have devised a semi-automatic extraction process that
leverages on web scraping techniques and a Domain Specific Language (DSL) to
configure the scraping process.

MetaScience: An Holistic Approach for Research Modeling 371

Fig. 5. DSL attributes for HTML, TEXT-IN-HTML and TEXT modes.

Figure 5 shows an overview of the extraction process. It takes as input the
URL of the conference web page where the target information is located, and
additional information about the conference (i.e., its acronym and the edition
under analysis) and type of data to be extracted (e.g., topics, steering com-
mittee). Then, a set of heuristics based on text mining techniques generate an
instance of our DSL, i.e., an initial configuration. This configuration is then used
to (1) instruct a crawler to locate and return the topics/committee members in
the web page and (2) drive the insertion of the data obtained to our database.
Both the DSL instance and the data collected by the crawler can be manually
checked and tuned if needed by the user.

The current defined heuristics are able to locate the list of elements required
in the extraction process (i.e., topics or committee members) and isolate the
single elements by using a pattern-based search. The location of the target data is
achieved by searching for specific words that may precede (e.g., topic, committee,
PC) and follow it (e.g., important dates, submission). Then, the target data is
analyzed to determine the single elements and the contained relevant text by
leveraging on the most frequent HTML tags and non-alphanumeric symbols
used.

The DSL, shown in Fig. 5, can be executed in three different modes, namely,
HTML (when information is encoded in HTML format), TEXT (pure text) and
TEXT-IN-HTML (a mixture of both), depending on the availability of the target
information and how it is coded in the web page. Each mode is composed by a set
of parameters that can be mandatory, optional (see question marked attributes)
or specific to extract committee members (see bold attributes). These attributes
are grouped in 3 blocks: (1) selection block, which drives the location of the target
elements; (2) processing block, which defines text processing rules to remove extra
data that may appear together with the target elements; and (3) insertion block,
which specifies where to insert the elements to our database.

The selection block contains the link of the web page to analyze, the HTML
tag (member tag) enclosing the target elements and, optionally, other tags and
text used as delimiters (e.g., ol tags in enumerations) and/or a filter (e.g.,
to select HTML tags with a given id). The processing part defines regular
expressions applied to each single element to isolate the target information
(member remove before and member remove after). However, exceptions can be

372 V. Cosentino et al.

defined for elements for which the regular expression fails. When dealing with
committee members, the parameter role defines the type of role to retrieve (i.e.,
normal member or chair), the parameter inverted name is used when the first
and last names are inverted and the parameter mixed roles is used when nor-
mal members and chairs are listed together. On the other hand, the insertion
parameters are used to insert the selected elements in our database for a specific
venue, year and type (i.e., type of committee or topic).

This process is repeated at least twice for each conference website of a given
edition, one targeting the topics and the other targeting the PC. If available,
we can also used it to extract the Steering Committee (SC). When dealing with
the PC, an important step is the matching between the names in the web page
and researcher names in our database (stored in our database (researcher and
researcher alias tables). We use well-known identity matching/entity resolution
algorithms (e.g., [3,4]) for this.

3.3 Digital Libraries

Information about paper abstracts, institutions, citations and profiles can be
obtained by mining popular digital libraries. Our extraction process relies on
Google Scholar, a free public search engine for academic papers and literature.
For each paper, the platform provides links to the digital library hosting it, to
the papers citing it and to the author profiles on the platform. However, as the
platform does not provide any API to execute queries programmatically, we have
devised an extraction process based on web-scraping techniques as well though
using a different approach than for conference websites.

The extraction process takes as input a list of paper titles and their identifiers
from our database. A crawler then visits Google Scholar, sends each title as query
string and locates the corresponding hit by measuring the Levenshtein distance5

between the title hit and the input title. Once the title is matched, first the
attribute updated at of the paper being analyzed is set to the current timestamp
(this information will be used for the update process). Then, the links to
(1) the web page of the digital library hosting the paper, (2) the citations page
and (3) the profiles of the authors, are passed to three different processes together
with the paper identifier. Such processes, described below, collect the desired
information.

Paper Abstract and Institution. Abstracts and institutions are obtained by
launching a crawler able to deal with a battery of popular digital libraries (i.e.,
IEEE Xplore, Springer Link, ScienceDirect, IEEE Computer Society, ACM),
depending on the publishing source for the conference. The collected abstracts
are used to update the corresponding paper stored in the table paper. Affiliation
information is first assigned to the authors according to their position in the

5 The Levenshtein distance represents the minimum number of single-character
changes (i.e. insertions, deletions or substitutions) required to change one word into
the other.

MetaScience: An Holistic Approach for Research Modeling 373

paper, and then processed and inserted in the tables country, institution and
authorship institution.

Citations. The citation information is collected by a crawler that navigates
through the papers listed in the citations pages. The titles are matched with those
ones stored in our database by measuring their resulting Levenshtein distance.
For each match, the identifiers of the citing and cited papers are stored in the
table paper citation.

Profiles. The process to extract the Scholar profile relies on a crawler that
accesses the link passed as input and collects the name of the researcher visible
on his profiles. Next, the obtained name is used to retrieve the corresponding
identifier stored in our database, by relying on his position in the paper being
analyzed. The identifier and the link are then stored in the table profile. Addi-
tionally, the name collected from the web crawler is used to enrich the aliases in
our database (researcher alias table) if it has not been tracked before.

3.4 CORE Rankings Portal

CORE classifies over 1,700 conferences and workshops in computer science. No
conference rankings are perfect nor we claim CORE is the best one. But as the
most popular one we chose it as the input source to populate this section of the
database. Each venue is represented by a name and acronym and is associated to
a rank and one or more domains, also called fields of research. This information
can be exported as a CSV file. Thus, we have defined an extraction process
that processes this CSV to first match the conferences with those ones included
in the database based on equal acronyms and, if needed, on the Levenshtein
distance calculated between their names. The matched conferences with their
rank and domain information are serialized to a textual format to allow a manual
verification if so desired. Once the match has established, the rest of the CSV
data is used to populate the tables domain, rank, conference domain and the
attribute rank in the table conference.

3.5 Incremental Update Process

The goal of the update operation is two-fold: it refreshes the data concerning
paper citations and researcher profiles already stored in our database, and it
completes the database by adding information about new conference editions,
conferences and researchers. Due to lack of space we cannot describe herein the
details of the process but in a nutshell, for the synchronization of papers we use
the attribute update at of the table paper to know when that paper was updated
for the last time while for full conferences/editions we compare their identifiers
with those in DBLP to detect new elements to import, and then trigger the
process to recover all the related data for them.

374 V. Cosentino et al.

4 Data Analytics

In this section we illustrate how MetaScience can be used to (1) automate
the calculation of quality metrics that so far had to be manually processed, and
(2) enable more ambitious analysis that were not feasible before. Due to space
limitations, we show a variety of analysis that can be achieved with Meta-
Science, however by leveraging on the data stored in our database, the user is
free to compute any metric he/she wants.

In particular, we discuss four possible dimension analysis: (1) general,
(2) co-authorship, (3) program committee and (4) topics. Next we present how
each one may be addressed6 and illustrate them by applying the metrics to this
same Int. Conf. on Conceptual Modeling. It is worth noting that the same met-
rics can be replicated for any conference, and be used to compare conferences
each other.

4.1 General

We define four basic metrics to characterize essential information for each con-
ference edition, namely: Num papers (number of accepted papers); Num authors
(number of unique authors); Papers per Author (ratio of papers per author); and
Authors per Paper (ratio of authors per paper). The result of applying those
metrics on the 34 editions of ER is shown in Table 1. The table also includes
the trend of the metric value along the editions. To measure metric trends we
compute the Spearman correlation (ρ) between the value of the metric in each
edition and the time axis. Spearman correlation allows us to quantify monotone
trends: as the time axis is monotonically increasing, strong correlation indicates
presence of a trend in the metric. It is interesting to note the remarkable positive
trend for the metrics Num authors and Authors per Paper.

Among all possible general metrics, we believe the ones related to confer-
ence openness, measuring how easy is for new researchers to become part of
the community, are of special interest. For this, we use the metrics Newcomers
(percentage of authors who are new to the conference in each edition, an author

Table 1. Summary of the metric values.

Metric Min 1st Qu. Median Mean 3rd Qu. Max. SD (σ) Trend ρ

Num papers 25.00 34.00 40.00 40.79 47.00 75.00 10.14 0.37

Num authors 49.00 79.00 87.00 97.94 122.00 216.00 36.50 0.82

Papers per Author 1.00 1.03 1.06 1.07 1.01 1.16 0.04 0.30

Authors per Paper 1.70 2.18 2.43 2.54 3.00 3.50 0.54 0.88

Newcomers 55.95% 66.67% 70.73% 70.51% 75.00% 84.16% 7.19 −0.52

Newcomers papers 22.22% 38.46% 47.37% 46.81% 56.25% 66.67% 12.40 −0.74

Community papers 7.41% 12.00% 14.76% 14.76% 18.52% 29.73% 5.16 −0.19

Mixed papers 20.83% 25.00% 37.50% 38.43% 48.72% 62.96% 13.13 0.73

6 The queries to calculate the metrics for each dimension are available at the tool
website.

MetaScience: An Holistic Approach for Research Modeling 375

is new when she has not published a full paper in the previous 5 editions), New-
comer papers (papers authored by only newcomers), Community papers (papers
where no newcomer author participated) and Mixed papers (the rest). Last four
rows in Table 1 shows the summary statistics of the results of these metrics. The
moderate negative trend on the metric Newcomers and the positive trend for
the metric Mixed papers may reveal that new authors are joining the conference
with the help of community members.

4.2 Authorship Analysis

We propose to study the authorship relations among the authors by means of
building a global co-authorship graph with information from all the editions of
a conference. In this kind of graphs, authors who have published a paper in
the conference are represented as nodes while co-authorship is represented as an
edge between the involved author nodes. Weight of nodes and edges represent
the number of papers and number of coauthorship of the authors represented
by those nodes, respectively. Figure 6 shows the co-authorship graph for the ER
conference. The graph includes 2,158 nodes (i.e., unique authors) and 3,766 edges
(i.e., co-authorship relations).

Once we have this graph, a number of graph-based metrics can be calculated
to get a feeling of the collaboration patterns of the ER community. For instance,
the average degree is 3.49, the average path length is 8.042 and there are 460
connected components (each connected component identifies a sub-community of
authors that work together). Most of the components (394 in total) are composed
by 1 to 4 author nodes but there is one component (sub-graph with black-filled

2

3

1

Fig. 6. Co-authorship graph for all the editions of the ER conference. Numbered nodes
represent the three nodes with the highest betweenness centrality value: (1) John
Mylopoulos, (2) Juan Carlos Trujillo and (3) Veda C. Storey.

376 V. Cosentino et al.

nodes) that includes 828 author nodes (almost 40 % of the total number of
authors), thus revealing the main core of authors in the conference and showing
they tend to work together at least from time to time instead of ER being the
composition of a set of isolated groups.

To expand on this, we also calculated the betweenness centrality value for
each node, which measures the number of shortest paths between any two nodes
that pass through a particular node and allows to identify prominent authors
in the community that act as bridges between group of authors. The author
node with the highest betweenness centrality value is John Mylopoulos (largest
black node in the graph, tagged with the value (1), followed by Juan Carlos
Trujillo (node tagged with number (2) and Veda C. Storey (node tagged with
number (3). John Mylopoulos also has 5 as average distance to other authors
within its connected component. Finally, we also measured the graph density,
which is the relative fraction of edges in the graph, that is, the ratio between the
actual number of edges (actual collaboration values) and the maximum number
of possible edges in the graph (potential collaboration relationships). In our
graph, the graph density is 0.002, which is a very low value.

4.3 Program Committee Analysis

This is one of the least explored areas due to the challenges other authors found to
automatically collect PC information in the past (i.e., [5–7]). With our approach,
data regarding the PC can be leveraged to calculate PC evolution metrics like
(1) PC Size (size of the PC per conference edition) or (2) PC Age (number of
consecutive editions for which a researcher has been member of the PC). Table 2
shows the results for these metrics for the last 10 editions of the ER conference.
It is worth noting that the minimum and maximum sizes of the PC are 73
(in 2010) and 105 (in 2013), respectively. On the other hand, only 2 members
(i.e., Barbara Pernici and Il-Yeol Song) stayed as part of the PC for the last 10
editions.

MetaScience can also help in deciding who should become part of the
PC and choose the PC Chairs. For instance, we define the metrics (1) Inac-
tive Members (number of PC members that have not published a paper in the
previous 3 editions); and (2) Active Authors (counting the number of authors
who have published in each of the previous 3 conference editions and are not
yet PC members). When applying these metrics on the 2015 conference edition.
we have that Inactive Members reports that 60 out of the 99 members in the
PC from 2015 did not publish in the previous 3 editions (a high value, though

Table 2. Summary for the metrics PC Size and PC Age.

Metric Min 1st Qu. Median Mean 3rd Qu. Max. SD (σ) Trend ρ

PC Size 73.00 82.75 90.00 90.80 99.75 105.00 10.921 0.32

PC Age 1.00 1.00 1.33 1.94 2.46 10.00 1.38 N.A

MetaScience: An Holistic Approach for Research Modeling 377

Fig. 7. Comparison between the top 30 keywords extracted from (a) paper abstracts
and (b) topics of interest, for the last 10 editions of the ER conference.

some of them did publish in workshops or had other responsibilities). The metric
Active Authors tells us that only 7 researchers published constantly from 2012
to 2014 and from them only 3 were PC members in 2015, while the remaining 4
were not (but some of their co-authors were, which at least indicates that their
expertise was somehow represented).

4.4 Topics Analysis

Information regarding the topics of interest can be used to study the main work-
ing areas of a conference. We believe it is specially interesting to compare the
theoretical list of topics (those published in the call for papers) with the actual
list of topics (those addressed by accepted papers, inferred from the analysis of
their titles and abstracts). This information is useful to gauge the actual inter-
est of topics by the community and use that when deciding on the conference
evolution path (e.g., what topics to cover in the future).

Figure 7 shows a visual comparison between the tag clouds of keywords
extracted from (a) the paper abstracts published in the last 10 editions of ER
and (b) the topics of interests of the corresponding conference editions. For the
sake of clarity, the generated clouds include the top 30 keywords. As can be
seen, keywords such model, modeling and data, which can be considered part of
the core concepts of the conference, are representative for both clouds. Instead,
keywords process and business appear to be more relevant in actual papers than
they are in the call for papers, while keywords enterprise and reverse only appear
in the conference topics but no paper tackled them directly. This analysis reveals
a possible discrepancy between the conference topics and the actual trend in the
paper topics. Surprisingly enough, the relevance of the keywords ontology and
web seem to point out that the corresponding topics receive little attention from
both conference and papers.

5 Tool Support

All artifacts developed in this paper for the extraction process and the metrics
calculation are available in the MetaScience repository7. The steps to initial-
ize, enrich and update the database have been implemented in Python 2.7.6.
7 https://github.com/SOM-Research/metaScience.

https://github.com/SOM-Research/metaScience

378 V. Cosentino et al.

The crawlers rely on Selenium, a portable software testing framework tuned to
collect information from conference web pages and digital libraries, while the
database integrated in MetaScience uses MySQL. We also developed a free
online service8 that leverages part of the presented infrastructure to offer indi-
vidual research reports.

6 Related Work

There are several online services offering basic bibliographic data on CS con-
ferences and journals like DBLP, ACM Portal, CiteSeerX and IEEE Xplore.
Platforms such as ResearchGate and Academia.edu provide social networks that
allow researchers to disseminate their work and measure their impact according
to basic publication statistics (e.g., co-author index, citation count, publication
count). Other services provide more complex bibliometrics information. Arnet-
miner extracts and mines academic social networks, Google Scholar provides
bibliometric analysis of the research performance of individuals and papers, as
well as rating and ranking for journals and conferences, while Microsoft Academic
Search offers information about institutions and fields of study for researchers,
conferences and journals. However, each of them focuses on part of the infor-
mation that is required to perform a complete conference analysis (e.g., none of
them integrates information about program committees, topics of interest or its
core ranking) with different degrees of completeness.

Once the conference information is gathered, several authors have proposed
metrics to analyze the data. The most common form to assess a conference qual-
ity is through citation analysis [8–11]. Since exclusive focus on citation analysis
is controversial [12,13], other authors have proposed additional metrics taking
into account other aspects such as program committee members [6] and co-
authorship networks [14]. For instance, [5] determines the health of a small set
of software engineering conferences by combining several metrics such as open-
ness to new authors, introversion/inbreeding and program committee turnover.
Nevertheless, these analysis are limited in terms of the scope and the number
of metrics since they are forced to manually extract part of the data. In con-
trast, our infrastructure would make this analysis scalable and offer the chance
to quickly come up with new metrics combining richer data sources as shown in
the previous sections. A similar approach to ours with regard to the analysis of
conferences was presented in [15] but focused on the co-authorship graphs and
citations of the CAiSE conference, some of their metrics could be integrated in
our approach to make them available to any other conference.

7 Conclusion

In this paper we have presented a conceptual schema for the integrated analy-
sis of conference research activities. Based on this schema, we have devised a

8 http://som-research.uoc.edu/tools/metaScience.

http://som-research.uoc.edu/tools/metaScience

MetaScience: An Holistic Approach for Research Modeling 379

database-driven infrastructure incrementally populated with data coming from
different heterogeneous sources (DBLP, CORE rankings, web scraping on con-
ference websites, etc.). This information enables the definition of a variety of
complex metrics mixing the different sources information and their automatic
calculation on a large set of CS conferences. In particular, we have illustrated
these metrics via the analysis of this own ER conference to shed some light on
its co-authorship graph, PC membership and topics of interest.

As future work, we would like to extend this work to journal analysis and
integrate additional information sources (e.g., PubMed) to tackle areas outside
CS. This would enable comparing typical values of CS conferences (which them-
selves should also be compared based on their subfields) with, for instance, biol-
ogy ones. We will also work on the extension of our heuristics for web scraping
to increase their success rate (currently around 70 % on average of conference
websites we have tested can be automatically parsed, while the rest require small
tunings on the initial generated configuration), a better suppport for semantic
analysis when studying the topics and the use of other quality indicator services
(e.g., GII-GRIN9). Finally, we plan to use our data to conduct an exhaustive
study of research conferences and work with SC members to interpret the results
in order to (1) help them take corrective actions if needed and (2) consolidate a
set of metrics that we see useful across fields in order to use them as quick and
public summary of key performance indicators of conferences.

References

1. Patterson, D.A.: The health of research conferences and the dearth of big idea
papers. Commun. ACM 47(12), 23–24 (2004)

2. Chen, J., Konstan, J.A.: Conference paper selectivity and impact. Commun. ACM
53(6), 79–83 (2010)

3. Goeminne, M., Mens, T.: A comparison of identity merge algorithms for software
repositories. Sci. Comput. Program. 78(8), 971–986 (2013)

4. Christen, P.: A comparison of personal name matching: techniques and practical
issues. In: ICDM Conference, pp. 290–294 (2006)

5. Vasilescu, B., Serebrenik, A., Mens, T., van den Brand, M.G., Pek, E.: How healthy
are software engineering conferences? Sci. Comput. Program. 89, 251–272 (2014)

6. Zhuang, Z., Elmacioglu, E., Lee, D., Giles, C.L.: Measuring conference quality by
mining program committee characteristics. In: Digital Libraries Conference, pp.
225–234 (2007)

7. Vasilescu, B., Serebrenik, A., Mens, T.: A historical dataset of software engineering
conferences. In: MSR Conference, pp. 373–376 (2013)

8. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Natl.
Acad. Sci. USA 102(46), 16569–16572 (2005)

9. Amin, M., Mabe, M.: Impact factors: use and abuse. Int. J. Environ. Sci. Tech.
1(1), 1 (2004)

10. Martins, W.S., Gonçalves, M.A., Laender, A.H., Ziviani, N.: Assessing the quality
of scientific conferences based on bibliographic citations. Scientometrics 83(1), 133–
155 (2010)

9 http://valutazione.unibas.it/cs-conference-rating.

http://valutazione.unibas.it/cs-conference-rating

380 V. Cosentino et al.

11. Van Eck, N.J., Waltman, L.: CitNetExplorer: a new software tool for analyzing
and visualizing citation networks. J. Informetrics 8(4), 802–823 (2014)

12. Saha, S., Saint, S., Christakis, D.A.: Impact factor: a valid measure of journal
quality? J. Med. Libr. Assoc. 91(1), 42 (2003)

13. Bornmann, L., Daniel, H.D.: Does the H-index for ranking of scientists really work?
Scientometrics 65(3), 391–392 (2005)

14. Montolio, S.L., Dominguez-Sal, D., Larriba-Pey, J.L.: Research endogamy as an
indicator of conference quality. ACM SIGMOD Rec. 42(2), 11–16 (2013)

15. Jarke, M., Pham, M.C., Klamma, R.: Evolution of the CAiSE author commu-
nity: a social network analysis. In: Seminal Contributions to Information Systems
Engineering, 25 Years of CAiSE, pp. 15–33 (2013)

Comparison and Synergy Between
Fact-Orientation and Relation Extraction

for Domain Model Generation
in Regulatory Compliance

Sagar Sunkle(B), Deepali Kholkar, and Vinay Kulkarni

Tata Consultancy Services Research, 54B Hadapsar Industrial Estate,
Pune 411013, India

{sagar.sunkle,deepali.kholkar,vinay.vkulkarni}@tcs.com
http://www.tcs.com/

Abstract. Modern enterprises need to treat regulatory compliance in
a holistic and maximally automated manner, given the stakes and com-
plexity involved. The ability to derive the models of regulations in a given
domain from natural language texts is vital in such a treatment. Existing
approaches automate regulatory rule extraction with a restricted use of
domain models counting on the knowledge and efforts of domain experts.
We present a semi-automated treatment of regulatory texts by automat-
ing in unison, the key steps in fact-orientation and relation extraction.
In addition, we utilize the domain models in learning to identify rules
from the text. The key benefit of our approach is that it can be applied
to any legal text with a considerably reduced burden on domain experts.
Early results are encouraging and pave the way for further explorations.

Keywords: Regulatory compliance · Rule extraction ·
Fact-orientation · Relation extraction · Natural language processing ·
Machine learning

1 Introduction

Modern enterprises face an unprecedented regulatory regime. Non-compliance
often results in personal liability and risk for top management and to sharehold-
ers. Compliance management needs to be holistic in nature, because the same
regulations may vary based on geography and over time and different units of
an enterprise may have to be compliant with different regulations [12]. Equally
importantly, it needs to be automated to the extent possible, so that compliance
can be proved quickly, reliably, and maintained through time- and geography-
specific variations.

With a formal representation of regulatory rules, it becomes possible for
enterprises to check compliance with more reliable and thorough proofs/evidence
[22]. Significant literature exists focusing on formal compliance checking [13,20].
But these solutions presuppose existence of rules.
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 381–395, 2016.
DOI: 10.1007/978-3-319-46397-1 29

382 S. Sunkle et al.

Several approaches use natural language processing (NLP) and machine
learning (ML) techniques to extract the rules from legal NL texts in a semi-
automated manner. Even so, complexity of legal texts leads most of these
approaches to formulate targeted solutions. For instance, these approaches
require the domain experts to identify structural arrangements like chapters,
sections, paragraphs, etc., specific to legal texts [7], to simplify complex legal
sentences and making them amenable to analyses [3,14,25], and to annotate legal
texts to identify rules and various other aspects specific to given approaches [24].

Interestingly, many of these approaches either do not use a conceptual model-
ing method or it is done in a way that restricts its applicability to rule extraction.
We believe that the lack of a conceptual modeling method targeted at obtaining
domain-specific regulation model in a generic manner results in most of these
approaches being (a) specific to a regulation and specific to a given natural lan-
guage [2,16], and (b) not being able to scale due to continued reliance on the
domain experts in various activities.

We argue in this paper that a more generic approach that uses a conceptual
modeling method should drive the legal rule extraction. We present an automa-
tion of fact-orientation enhanced with relation extraction aimed at domain model
generation. We consider the automated rule extraction to be a 3-step process con-
sisting of (1) domain model generation, (2) rule identification using the domain
model, and (3) rule authoring based on identified rules. Our specific contribu-
tions with respect to the first 2 steps are as follows:

1. We compare fact-orientation and relation extraction for their suitability
toward regulatory domain model generation. Focusing on the commonality
between them that both utilize examples/instances of core concepts, we pro-
vide an interactive synergistic treatment for the same.

2. We use the domain model and the dictionary obtained thus to identify rules
in an automated manner.

We begin in Sect. 2 by reviewing related work and presenting the technical
overview of our approach. The focus of this paper is on the first 2 steps, which
are detailed in Sects. 3 and 4 respectively. The third step is similar to exist-
ing approaches but less reliant on domain experts. Results of an ongoing case
study are discussed along with key issues in Sect. 5. We present future work and
conclude the paper in Sect. 6.

Departing from most of the work in ontology learning as well as legal rule
extraction, we aim to obtain a simple list of domain concepts and as many
mentions of these concepts as possible. Once this list is available, we also use open
information extraction techniques to obtain relations. We do not focus on any
legal text-specific aspects such as segmentation, cross-referencing, identification
of modalities, types of provisions and so on. Our idea is to only obtain a domain
model and a dictionary with which to identify rules and defer the consideration
of legal text-specific aspects till we obtain the logical specifications which provide
appropriate level of abstraction at which to treat the aspects. Both the generation
of logical specification and treatment of legal text-specific aspects are out of the
scope of this paper.

Fact-Orientation and Relation Extraction for Domain Model Generation 383

2 Related Work and Technical Overview

Legal texts are unique from other NL texts mainly because legal texts are pre-
scriptive in nature [25] and present details of modalities like permissions, oblig-
ations, and prohibitions.

2.1 Complexity of Legal Texts

Legal texts are different from other NL texts in the following ways [24]:

– Legal NL texts contain long sentences with complex clauses with a number
of lists representing characteristics of norms and their applicability in specific
conditions.

– They use cross references such that various details of a norm may be found in
different chapters/sections/subsections.

– The changes to the definitions of norms over time in terms of exceptions, and
variety of repeals and amendments are often placed in supplementary annexes.

At the same time, some studies have found that specific kinds of provisions follow
typical sentential forms, at the least in a given regulation [15]. This peculiarity
can be exploited as in some ML-driven approaches which use patterns of sentence
structures in their learning techniques [16].

2.2 Current Approaches to Rule Extraction/Authoring

The complexity of legal NL texts has compelled the existing approaches in rule
extraction research to come up with targeted solutions. In particular the NL-
driven approaches use steps that include (a) identifying language patterns like
juridical natural language constructs as in [7] and coming up with specialized
parsing mechanisms for the same, (b) manually transforming statements in legal
NL texts to simplified form such as restricted natural language statements as
in [3] for easier processing, and (c) utilizing structural characteristics of legal
NL texts by identifying sections of text at varying granularity from phrases to
chapters and annotating cross references as in [25].

The approaches that do refer to a conceptual model use it in a restricted
sense. For instance, the approach in [25] uses a conceptual (meta) model of deon-
tic concepts. This model represents legally oriented concepts such as an actor, a
right, an obligation, an exception, and so on. It is used as a basis of the semantic
annotations, but is not a core artifact that drives the rule extraction process.
The approach in [11] is similar to the approach in [25] in that it uses what it
refers to as a governance extraction model, which again focuses on legal concepts
alone rather than business domain concepts.

Similar to NL-driven approaches, ML-driven approaches too focus on classi-
fying the sentences/paragraphs from the legal texts into different kinds of pro-
visions without informing the features of the classifiers with a representation of
domain model. For instance, approaches like [2] implemented in the context of

384 S. Sunkle et al.

Norme in Rete and [16] from the project E-POWER use classifiers based on
word frequency with a training set labeled by the domain expert. When such
features are used to train classifiers, the reason of classification remains hard to
understand and improve upon as demonstrated in [15,18].

Below, we describe how we enable generating a domain model of regulations
and a dictionary and how both are used in learning rules from the legal text. We
choose fact-orientation as a domain modeling method. This choice is influenced
to some extent by our previous work. We used a realization of fact-orientation
known as Semantics of Business Vocabulary and Rules (SBVR) to manually cre-
ate vocabulary of regulations which we use to generate NL explanations of proofs
of (non-) compliance [22]. Our previous work was in the context of Indian Know
Your Customer (KYC)1 regulations. KYC regulations aim to prevent money
laundering (ML) and financing of terrorism (FT). They require the financial
institutions like banks to take new customers following strict identity and address
checks while transactions of existing customers need to be monitored based on
their risk profiles. We use running examples from KYC henceforth. Note that
we use the principles of fact-orientation without aiming specifically to generate
SBVR formulations of the regulations.

2.3 Technical Overview

Our approach is illustrated in Fig. 1. As mentioned in Sect. 1, we consider the
semi-automated rule extraction to be a 3-step process.

We make no assumption about the legal text like NL-driven approaches as
described above, rather we use one peculiarity of legal texts that they contain
definitions of key concepts referred in the text. We use fact-orientation as an
overall modeling method. In step 1 , we implement relation extraction (RE) as
an adapted version of an RE technique called Dual Iterative Pattern Relation

Fig. 1. Technical overview

1 https://rbi.org.in/scripts/BS ViewMasCirculardetails.aspx?id=9848.

https://rbi.org.in/scripts/BS_ViewMasCirculardetails.aspx?id=9848

Fact-Orientation and Relation Extraction for Domain Model Generation 385

Extraction (DIPRE) [4]. We also use a recent cousin of RE called open infor-
mation extraction (open IE) implemented using Ollie tool [17]. Step 1 uses
sentences from legal NL text along with a seed domain model created from the
definitions and an initial dictionary.

Once we obtain an enhanced domain model and dictionary, in step 2 we use
them to inform the features of active learning, a semi-supervised ML technique
to classify legal NL text sentences into rules and non-rules rather than variety of
provisions. Once the classifier is trained with the required precision and recall,
in step 3 we can use a rule authoring environment along with all the artifacts
so far obtained to author the rules.

In the next section, we first review each of fact-orientation and relation
extraction and then describe how they are used in step 1 of our approach.

3 Fact-Orientation and Relation Extraction

While our familiarity with fact-orientation (FO) is one reason, the other more
substantial reason is the focus in FO on enabling the domain-expert to partake
in domain modeling.

3.1 Role of Fact-Orientation in Domain Model Generation

FO bears many advantages over entity relationship and object-orientation when
it comes to modeling the domain at conceptual level as enlisted below:

1. All ground assertions of interest are non-decomposable facts which are
instances of fact types. Fact types can be unary to n-ary. This attribute
free approach facilitates advantages such as semantic stability, an analysis
of which the interested reader is invited to refer in [9].

2. FO models are validated by domain experts in two ways: verbalization [6] and
population. It means that verbalization of fact types has to be agreed upon
by the domain expert using populations of the same from the NL texts. This
makes FO apt in the context of legal NL texts.

3. Being more generic, FO models can be transformed to other modeling formats
if required. For instance, the freeware NORMA tool enables exporting the
models in object role model specification to many other formats including
relational views and even Datalog [5].

The first step of the conceptual schema design procedure (CSDP) prevalent
in FO is that of (Gather and) Transform familiar information examples into
elementary facts (and apply quality checks). The second step applies population
check, meaning that the fact types indeed are valid with respect to examples from
NL texts. Step 3 to 7 refine the concept types and add constraints of various
kinds.

The first step essentially abstracts from examples to create fact types. In
general, the process of collecting population examples and abstracting from them
is manual. This is where we make use of relation extraction as described next.

386 S. Sunkle et al.

3.2 Role of Relation Extraction in Domain Model Generation

Relation extraction (RE) or traditional information extraction (IE) is the task
of discovering assertions of a particular relation between two or more concepts in
NL texts [1]. Supervised approaches to RE require completely labeled training
sets of sentences and unsupervised methods use trained named entity taggers to
identify concepts thereby being able to identify relations between more prevalent
pairs of concepts like persons and locations [1].

Since we wish to be able to identify relations specific to a domain, we are
interested in semi-supervised approaches which learn from a small set of tagged
seed instances or few hand-crafted extraction patterns. Given a known pair of
concepts and their handful of mentions, semi-supervised RE techniques like Dual
Iterative Pattern Relation Extraction (DIPRE) [4] enable finding the rest of the
mentions.

At this point, we bring to notice that FO and RE operate in opposite direc-
tions. Figure 2 illustrates this with concept types Bank, Customer, and Docu-
ment and population examples containing mentions of these types from KYC
text. While the first step in FO uses population examples to abstract to concept
types, RE enables finding all mentions of given related concept types and their
seed instances. For instance, given the known concept types Customer and Doc-
ument related through submits relation and a handful of mentions so related as
in Fig. 2, DIPRE can find other mentions with patterns induced from sentences
containing the known mentions.

To automate the first step of FO, we still need to take care of two more
aspects:

1. We need a way to find unknown concept types.
2. We need a way to find relations between all concept types found so far.

We describe in the following how we automate these two aspects in sync with
RE so that by the end of the processing the text for mentions and new concept
types, we generate a basic domain model and a dictionary that maps all concepts
to their mentions throughout the text thus automating the first step of FO.

Fig. 2. Comparative view of fact-orientation and relation extraction

Fact-Orientation and Relation Extraction for Domain Model Generation 387

3.3 Our Approach for Domain Model Generation

We use the LingPipe2 toolkit for processing text, which implements several algo-
rithms from computational linguistics.

Finding Unknown Mentions of Known Concept Types. In order to iden-
tify known mentions in the text, we use an implementation of approximate dictio-
nary chunker from [23] implemented in LingPipe. This chunker produces chunks
based on weighted edit distance of strings from entries of a dictionary in which
we store known pairs of concept types and their mentions. In order to seed this
dictionary, we refer to the definitions section of the legal text, in our case KYC.
This chunker forms an important module of our system, since it is used in both
finding unknown concept types and finding relations between all concept types.
It is also used in creating a specialized feature representation in learning to
identify rules in legal text as explained later in Sect. 4.

Finding Unknown Mentions of Unknown Concept Types. In order to
find concept types that could be part of the domain model but not yet known, we
again use mentions of concepts that we have so far found. We use a hypothesis
known as distributional semantics [10], which suggests that counting the contexts
that two words share improves the chance of correctly guessing whether they
express the same meaning, in other words, semantically similar expressions occur
in similar contexts (Fig. 3).

We cluster the contexts, i.e., n characters to the left and right of mentions of
each concept type so far known and then cluster these to suggest to the domain
expert, what looks like other possible mentions. This is illustrated in Fig. 4.

The domain expert either adds to the dictionary, a new mention of a known
concept type as in the case of A in Fig. 4 or as in the case of B has the
option to add a new concept type along with the mention(s), if she recognizes
that the mention(s) refers to different concept type not in the current set of

Fig. 3. Clustering of contexts around mentions

2 http://alias-i.com/lingpipe/index.html.

http://alias-i.com/lingpipe/index.html

388 S. Sunkle et al.

known concept types. In A , clustering the contexts of mentions of the concept
type Transaction reveals a mention cross border wire transfer which the domain
expert deems to be of the same concept type Transaction. In B , clustering the
contexts of mentions of the concept type Designated Officer reveals the mentions
partnership firm and proprietorship concern, which the domain expert adds along
with previously unknown type Reporting Entity of which they are mentions.

Finding Relations Between Known Concept Types. In order to find rela-
tions between concept types identified in the domain model, we use Ollie3, an
open IE implementation. Open IE differs from traditional RE in that open IE
systems extract a diverse set of relational tuples without requiring any relation-
specific human input. Whereas traditional RE like DIPRE requires concept type
pairs representing a relation as shown in Fig. 2, open IE works where target rela-
tions are not known in advance. Open IE systems identify relation phrases, i.e.,
phrases that denote relations in English sentences.

The implementation we use, Ollie, is able to avoid uninformative and inco-
herent extractions. As an example of the former, whereas other open IE systems
incorrectly extract made(Faust,deal) from the sentence “Faust made a deal with
the devil.”, Ollie (as successor of Reverb [8]) correctly extracts made a deal
with(Faust, the devil). Ollie is better than other open IE systems also because
it extracts relations mediated by nouns, adjectives, and other verbal structures
and a context-analysis step increases precision of relations extracted by including
contextual information from the sentence in the extractions [17].

We input the concept types and mentions found so far to Ollie along with all
the sentences in the legal text. Whenever existing mentions match with phrases
that Ollie has found to be in relation, that relation is considered to exist between
the concept types of the mentions.

Overall Approach to Domain Model Generation. We present the use of
RE, context clustering, and open IE in Algorithm1. The seed domain model
and dictionary are obtained from definitions section of the regulation. In most
of financial services regulations that we have encountered apart from KYC, we
have found that definitions of key concept types are provided along with their
subtypes and terms with which they are referred to in the text.

The procedure searchMentions implements semi-supervised RE. We imple-
mented an adaptation of DIPRE wherein instead of looking for mentions on the
web, we search the sentences for mentions to induce patterns using inducePat-
terns. Since compared to web, legal text is very small, the number of patterns
that can be induced is also small. Whenever searchMentions finds possible men-
tions in the same relation via apply-re-patterns, we ask the domain expert to
verify if the mentions are indeed in relation.

The procedure contextClustering implements clustering of contexts via apply-
Clustering around mentions of all known concepts. In our experiments, we use
length of 80 characters when capturing contexts via computeContexts to make
single link clusters. Examples shown in Fig. 4 show results where the underlined

3 https://github.com/knowitall/ollie.

https://github.com/knowitall/ollie

Fact-Orientation and Relation Extraction for Domain Model Generation 389

text is a context under consideration. We involve the domain expert to verify
and add to domain model and dictionary only the concepts and mentions she
knows to be relevant.

Finally, the procedure searchRelations implements open IE over sentences of
the text via runOpenIE. In our case, this is a call to Java wrapper around Ollie.
If mentions of two different concepts are found in the subject and object of IE
relation, then that relation is taken to exist between the two concepts.

Algorithm 1. Domain Model Generation

Input: Text, Seed Domain Model (DM), Dictionary of Mentions (DoM)
Output: DM, DoM

1 sentences ← sentenceDetection(text)
2 procedure searchMentions(Sentences sents, DM dm, DOM dom)
3 for each conceptPair cp in dm do
4 mentionPair ← mentionsOfConcept(cp, dom)
5 while apply-re-pattern(sents, re-Patterns) > 0 do
6 re-Patterns ← inducePatterns(sents,mentionPair)
7 de-Input ← apply-re-pattern(sents, re-Patterns)
8 dom ← dom + de-Input

1010 return dom ;

11 procedure contextClustering(Sentences sents, DM dm, DOM dom)
12 for each concept cn in dm do
13 for each conceptMention cm of cn in dom do
14 mentionContextList ← computeContexts(sents, cm)
15 de-Input ← applyClustering(mentionContextList)
16 dm ← dm + de-Input
17 dom ← dom + de-Input

1919 return dm, dom ;

20 procedure searchRelations(Sentences sents, DM dm, DOM dom)
21 for each sent in sents do
22 open-IE-Relation ← runOpenIE(sent)
23 for each conceptPair cp(cn1, cn2) in dm do
24 for each mentionPair mp of cp in dom do
25 if open-IE-Relation.subject contains mp.mention1 and

open-IE-Relation.object contains mp.mention2 then
26 dm ← open-IE-Relation.relation(cn1, cn2)

2828 return dm ;

29 while dm.hasChanged() or dom.hasChanged() do
30 dom ← searchMentions(sents, dm, dom)
31 dm, dom ← contextClustering(sents, dm, dom)

32 dm ← searchRelations(sents, dm, dom)
33 return dm, dom

390 S. Sunkle et al.

At this juncture, the domain model does not contain constraints or sub-types.
We revert back to fact-orientation and follow step 2 to 7. Step 2 of FO applies
population check. Since we take domain experts’ input on each of RE, clustering,
and IE stages in terms of mentions and concepts, step 2 of FO is implicitly
supported in our approach. We provide a view to the domain expert into the
sentences of the legal text, where a pair of concept is under consideration for
combining or sub-typing. Similarly, the domain expert refers to the occurrences
of concepts and their mentions in the text via specialized view to add and refine
constraints.

4 Regulatory Rule Identification

Active Learning. To automate manual rule identification, we use semi-
supervised active learning. Active learning techniques can learn from very less
number of labeled sentences, by querying the domain expert on possible classes
of a sentence. In our case, the classes are rule sentences and non-rule sentences.

The process of active learning involves taking a small set of labeled examples
(sentences) as input, as well as a larger set of unlabeled examples, and generating
a classifier and a relatively small set of newly labeled data. The learning process
aims at keeping the domain expert annotation effort to a minimum, only asking
for advice where the training utility of the result of such a query is high [21].

Representing Features based on Domain Model and Dictionary. We
intend to make the use of the domain model and the dictionary mimic the way
a domain expert actually identifies regulations in the text. We use a special-
ized FeatureExtractor4 from LingPipe called ChunkerFeatureExtractor. A feature
extractor provides a method of converting generic input objects into feature
vectors. A ChunkerFeatureExtractor implements a feature extractor for character
sequences based on a specified chunker. Here, we utilize the same approximate
dictionary chunker we referred to in Sect. 3.3. This arrangement helps us in
uniquely representing features in terms of concepts and their mentions from the
domain model and the dictionary respectively.

To implement an active learner for rule identification, we use LogisticRegres-
sionClassifier from LingPipe. It is a scored classifier that provides conditional
probability classifications of input objects. It uses an underlying logistic regres-
sion model and feature extractor which in our case is the ChunkerFeatureExtrac-
tor. We implement the prototypical active learning algorithm from [19].

5 Results and Discussion

We present the results of applying our approach from Algorithm1 to KYC text
as well as applying active learning to the task of identifying rules in KYC below
along with the discussion of key pointers.

4 http://alias-i.com/lingpipe/docs/api/com/aliasi/util/FeatureExtractor.html.

http://alias-i.com/lingpipe/docs/api/com/aliasi/util/FeatureExtractor.html

Fact-Orientation and Relation Extraction for Domain Model Generation 391

Applying RE, Clustering, and IE to KYC Text. We copy pasted the text of
KYC from the link shared earlier. We use LingPipe’s IndoEuropeanSentenceModel
to split the text into sentences. We obtained 525 sentences. From the definition
section, we obtained 4 concepts.

We get 4 more concepts and their mentions through contextual clustering.
Table 1 shows the mentions from definitions (#2) and from the application of
RE and clustering (#3). We only specify 5 mentions of concepts in the table for
the want of space. The column #4 indicates no. of sentences out of 525 where
mentions of concepts were found.

Figure 4 shows some of the relations discovered between concepts based on
the mentions that actually occurred in the corresponding sentences using Ollie.

Applying FO to Domain Model and Dictionary. Fig. 5 shows a fact-
oriented model of KYC regulations. We used NORMA5 tool to draw the object
role model displayed on the right in Fig. 5.

Figure 6 shows the verbalization of concept Bank as well as fact types verifies
and submitsForVerification generated automatically from the model. The relations
or the fact types were adapted in consultation with the domain expert from initial
set of relations from definitions sections and relations obtained from IE, a few
of which were shown in Fig. 4.

Using the Dictionary with the Active Learner. Out of 525 sentences, we
use 300 sentences to teach the active learner in a 10-fold cross validation setup
with 225 sentences to test the learner. We annotated 10 sentences as denoting
rules and 5 sentences as denoting non-rules before starting the learning sessions.

To identify how the use of domain model and dictionary affect recall and
precision, we show the feature representations (a) when dictionary is used, i.e.,
when the learner is informed, (b) when instead of the dictionary, only a feature
extractor based on n-gram tokenizer is used, i.e., the learner is uninformed, and
(c) when dictionary is used along with a feature extractor based on n-gram
tokenizer, i.e., the learner is semi-informed.

Fig. 4. Relations found with IE; mentions in [] brackets, concepts in bold, relations
in <>

We used InteractionFeatureExtractor from LingPipe which produces interac-
tion features between two feature extractors to create the combined extractor

5 https://www.ormfoundation.org/files/folders/norma the software/default.aspx.

https://www.ormfoundation.org/files/folders/norma_the_software/default.aspx

392 S. Sunkle et al.

Table 1. KYC concepts and mentions; #1: concept present in seed domain model,
#2: no. of seed mentions, #3: no. of total mentions found with RE and IE, #4: no. of
sentences where concept mention occurs

Sr. Concepts #1 #2 #3 Mentions #4

1 Reporting entity N 0 9 All India financial institutions, local
area banks, primary (urban)
co-operative banks, scheduled
commercial banks, state and
central co-operative banks

14

2 Bank N 0 1 Bank 257

3 Account N 0 2 Client accounts, small accounts 5

4 Customer Y 12 30 Foreign portfolio investors, politically
exposed persons, artificial juridical
person, association of persons,
body of individuals

123

5 Document Y 33 51 Certificate of incorporation,
certificate/licence issued by the
municipal authorities under shop
and establishment act, complete
income tax return,
licence/certificate of practice issued
in the name of the proprietary
concern by any professional body
incorporated under a statute

128

6 Transaction Y 15 17 Creating a legal person, cross-border
wire transfer, deposits, withdrawal,
fiduciary relationship

111

7 Risk category N 0 3 High, low, medium 23

8 Designated director Y 4 4 Managing partner, managing director,
managing trustee, whole-time
director

2

for case c. The value of an interaction feature is the product of the values of the
individual features.

We found that when we used domain model and dictionary exclusively to rep-
resent features, we obtained consistently higher recall than the other two extrac-
tors. On the other hand, using n-grams of lengths 3 to 5 exclusively, we obtained
higher precision than the other two extractors. Recall represents retrieval cover-
age. Because the dictionary captures mentions of concepts, the recall or coverage
of dictionary extractor is comprehensive.

In our case, the extractor based on n-grams consistently has higher precision,
which measures retrieval specificity but has correspondingly lower recall than the
dictionary extractor. These results may be attributed to capturing concepts via
dictionary of mentions against n-grams which do not make sense (ther, nci,

Fact-Orientation and Relation Extraction for Domain Model Generation 393

Fig. 5. KYC domain model using fact-orientation

Fig. 6. KYC verbalization using fact-orientation

nanci, cash, and so on). The combined extractor achieves recall of dictionary
extractor and reaches the precision of n-gram extractor. Our results indicate
that for rule identification, a semi-informed approach performs better.

Summary. Our initial foray using FO, RE, context clustering, and IE indi-
cates that we can do away with simplified paraphrasing of legal NL texts and
other annotations used in existing approaches while reliably generating a domain
model and a dictionary. The domain model and the dictionary can be used in
unison with extractors focused on precision to achieve a better combination of
precision and recall.

6 Future Work and Conclusion

We presented an approach and an algorithm to domain model generation using
fact-orientation (FO) and flavors of relation extraction (RE) based on how each
treats mentions of concepts in NL texts. In our ongoing experiments, we are
trying to create an integrated development environment that shows views of
FO, RE, context clustering, and open information extraction (IE) to the domain
expert. Further work also includes giving more immersive treatment to rule
authoring whereby knowledge latched so far can be utilized by the domain expert.

394 S. Sunkle et al.

We are also experimenting with MiFID II6 regulations, which presents more than
5000 sentences.

Our approach has shown to be generic in the sense that no regulation-specific
structuring, simplification, or annotation is needed to capture the domain model
and the rules. Also compared to existing approaches, it has the potential to scale
well.

References

1. Bach, N., Badaskar, S.: A review of relation extraction. Lit. Rev. Lang. Stat. II
(2007)

2. Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., Soria, C.: Automatic
semantics extraction in law documents. In: Sartor, G. (ed.) ICAIL, Italy, 6–11 June
2005, pp. 133–140. ACM (2015). http://doi.acm.org/10.1145/1165485

3. Breaux, T.D., Antón, A.I.: Deriving semantic models from privacy policies. In: 6th
Policy Workshop, Sweden, pp. 67–76. IEEE Computer Society (2005)

4. Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni,
P., Mendelzon, A., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183.
Springer, Heidelberg (1999). doi:10.1007/10704656 11

5. Curland, M., Halpin, T.: The NORMA software tool for ORM 2. In: Soffer, P.,
Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 190–204. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-17722-4 14

6. Curland, M., Halpin, T.: Enhanced verbalization of ORM models. In: Herrero, P.,
Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012. LNCS, vol. 7567, pp.
399–408. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33618-8 54

7. van Engers, T.M., van Gog, R., Sayah, K.: A case study on automated norm
extraction. In: Gordon, T. (ed.) The Seventeenth Annual Conference on Legal
Knowledge and Information Systems, JURIX 2004, pp. 49–58. Frontiers in Artificial
Intelligence and Applications. IOS Press, Amsterdam (2004)

8. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information
extraction. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP 2011, pp. 1535–1545. ACL, Stroudsburg (2011)

9. Halpin, T.A.: Fact-orientation and conceptual logic. In: Proceedings EDOC 2011,
Finland, pp. 14–19. IEEE Computer Society (2011)

10. Harris, Z.S.: Mathematical Structures of Language. Wiley, New York (1968)
11. Hassan, W., Logrippo, L.: Governance requirements extraction model for legal

compliance validation. In: RELAW 2009, USA, pp. 7–12 (2009)
12. Kaminski, P., Robu, K.: Compliance and control 2.0: emerging best practice model.

McKinsey Working Papers on Risk 33, October 2015
13. Kharbili, M.E., de Medeiros, A.K.A., Stein, S., van der Aalst, W.M.P.: Business

process compliance checking: current state and future challenges. In: MobIS. LNI,
vol. 141, pp. 107–113. GI (2008)

14. Kiyavitskaya, N., Zeni, N., Breaux, T.D., Antón, A.I., Cordy, J.R., Mich, L.,
Mylopoulos, J.: Automating the extraction of rights and obligations for reg-
ulatory compliance. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 154–168. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87877-3 13

6 http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
32014L0065&from=EN.

http://doi.acm.org/10.1145/1165485
http://dx.doi.org/10.1007/10704656_11
http://dx.doi.org/10.1007/978-3-642-17722-4_14
http://dx.doi.org/10.1007/978-3-642-33618-8_54
http://dx.doi.org/10.1007/978-3-540-87877-3_13
http://dx.doi.org/10.1007/978-3-540-87877-3_13
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014L0065&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014L0065&from=EN

Fact-Orientation and Relation Extraction for Domain Model Generation 395

15. de Maat, E., Krabben, K., Winkels, R.: Machine learning versus knowledge based
classification of legal texts. In: Proceedings of JURIX 2010, pp. 87–96. IOS Press,
Amsterdam (2010)

16. de Maat, E., Winkels, R.: Automatic classification of sentences in Dutch laws. In:
Proceedings JURIX 2008, pp. 207–216. IOS Press, Amsterdam (2008)

17. Mausam, S., M., Bart, R., Soderland, S., Etzioni, O.: Open language learning for
information extraction. In: Proceedings of EMNLP-CONLL (2012)

18. Moens, M.F., Boiy, E., Palau, R.M., Reed, C.: Automatic detection of arguments
in legal texts. In: ICAIL 2007, pp. 225–230. ACM, New York (2007)

19. Olsson, F.: A literature survey of active machine learning in the context of natural
language processing. Technical report, Kista, Sweden, April 2009

20. Racz, N., Weippl, E.R., Bonazzi, R.: IT governance, risk & compliance (GRC)
status quo and integration: an explorative industry case study. In: SERVICES
2011, USA, 4–9 July 2011, pp. 429–436. IEEE Computer Society (2011)

21. Settles, B.: Active learning literature survey. Computer Sciences Technical report
1648, University of Wisconsin-Madison (2009)

22. Sunkle, S., Kholkar, D., Kulkarni, V.: Explanation of proofs of regulatory
(non-)compliance using semantic vocabularies. In: Bassiliades, N., Gottlob, G.,
Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 388–
403. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21542-6 25

23. Tsuruoka, Y., Tsujii, J.: Boosting precision and recall of dictionary-based protein
name recognition. In: Proceedings of the ACL 2003 Workshop on Natural Language
Processing in Biomedicine, BioMed 2003, vol. 13, pp. 41–48. ACL, Stroudsburg
(2003)

24. Wyner, A., Peters, W.: On rule extraction from regulations. In: Atkinson, K. (ed.)
Legal Knowledge and Information Systems - JURIX, Vienna, Austria. Frontiers in
Artificial Intelligence and Applications, vol. 235, pp. 113–122. IOS Press (2011).
http://www.booksonline.iospress.nl/Content/View.aspx?piid=26386

25. Zeni, N., Kiyavitskaya, N., Mich, L., Cordy, J.R., Mylopoulos, J.: GaiusT support-
ing the extraction of rights and obligations for regulatory compliance. Requir. Eng.
20(1), 1–22 (2015)

http://dx.doi.org/10.1007/978-3-319-21542-6_25
http://www.booksonline.iospress.nl/Content/View.aspx?piid=26386

Development of a Modeling Language
for Capability Driven Development:
Experiences from Meta-modeling

Janis Stirna(&) and Jelena Zdravkovic

Department of Computer and Systems Sciences,
Stockholm University, Postbox 7003, 164 07 Kista, Sweden

{js,jelenaz}@dsv.su.se

Abstract. Changing business environments related to constant variations in
customers’ demand, situational conditions, regulations, emerging security threats,
etc. may be addressed by approaches that integrate organizational development
with information system development taking into account changes in the appli-
cation context. This paper presents experiences from Method Engineering of the
Capability Driven Development (CDD) methodology with a focus on the CDD
meta-model and the modeling activities that led to it. CDD consists of several
method components. Hence, a conceptual meta-model of CDD and a meta-model
of the modeling language based on the 4EM approach are presented together with
a number of lessons learned.

Keywords: Method engineering � Meta-modeling � Enterprise Modeling �
Capability driven development

1 Introduction

Modern Information System (IS) designs have to support dynamic adaptations because
new and unexpected business opportunities and threats arise, demands change drasti-
cally, as well as environmental and security risks increase. To respond to this challenge
of continuous adaptation, the EU FP7 project “Capability as a Service in digital
enterprises” (CaaS) [1] developed a methodology for capturing and analyzing the
influence of the business application context on the IS using the notion of capability.
Capability is generally seen as a fundamental abstraction to describe what a core
business does [2]. The methodology developed by CaaS is called Capability Driven
Development (CDD). It consists of a modeling language and a way of working. The
areas of modeling as part of CDD are Enterprise Modeling (EM), context modeling,
variability modeling, adjustment algorithms and patterns for capturing best practices.
The development of the CDD methodology followed the following principles, which
were defined during analysis of use case requirements and are documented in [3]:

– The CaaS project should not develop a single methodology mandatory for all
business cases, but a reference methodology for using in majority of cases and
pathways of extending the reference methodology to proprietary methodologies.

© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 396–403, 2016.
DOI: 10.1007/978-3-319-46397-1_30

– All types of concepts, i.e. patterns, context, process, and enterprise models should
be based on a same meta-model.

– The CDD methodology should not be a monolithic block but component-oriented to
allow flexible selection and use of method components depending on the organi-
zation’s intentions and a particular development situation.

– Integration of existing methods or method components should be given preference
before substituting them with new.

– The CDD methodology is to be supported by the CDD Environment, a part of
which is the Capability Design Tool (CDT) implemented in Eclipse.

Following these preconditions, one of the first steps of the CDD methodology
development was to seek approaches that would be useful for the modeling activities
that CDD needed to cover. One such activity was EM and specially Goal Modeling.
For this we selected the 4EM [4, 5] approach to be included in CDD. In this respect, the
objectives of this paper are (1) to present the CDD methodology development with a
particular focus on the meta-modeling activity that took place, and (2) to retrospec-
tively reflect on the experiences and lessons learned.

The research approach followed the principles of design science [6] consisting of
several design and evaluation cycles. The CDD methodology is the main design arti-
fact. It is composite because the methodology components, such as the meta-model, are
design artifacts in their own right. This paper presents experiences from the develop-
ment of the meta-model for the CDD methodology. It has been used and validated in
four use case companies of the CaaS project.

The rest of the paper is organized as follows. Section 2 gives background to
method development. Section 3 summarizes the CDD approach and outlines how it
was developed. Section 4 presents the meta-models created, while Sect. 5 summarizes
the lessons learned. Concluding remarks are given in Sect. 6.

2 Background to Method Development

Method engineering (ME) is the engineering discipline to design, construct and adapt
methods, techniques and tools for the development of information systems [7]. One of
the first efforts in modeling of modeling methods (meta-modeling) was proposed by [8]
and development of customizable tools for supporting various methods (meta-tools) by
[9]. A key activity of ME is designing method parts, denoted method chunks [10] or
method components [11], for supporting specific IS development activities. Develop-
ment of the CDD methodology concerned with correct identification of the main
method parts and their relevant concepts, which motivated the choice of [11] as the
approach for describing the CDD components in terms of the following aspects: pur-
pose, overview and relationships, method component in terms of semantics, notation
and language, as well as forms of cooperation.

The process of conceptualization of CDD was based on meta-modeling to specify
the modeling language in a declarative manner and to develop a tool for its support.
A key challenge was to base ME and tool development on common modeling con-
structs and structure. In this regard MOF meta-modeling architecture [12] defining four

Development of a Modeling Language 397

modeling layers, from M3 meta-meta model layer to M0 instance layer, proved useful.
Modeling languages are typically specified at M2 (meta-model layer). Once they are
used to describe models reflecting reality, M1 model layer is populated. When the
models at M1 level are instantiated M0 level is reached. The CDD methodology was
defined by an M2 model.

3 Background to Capability Driven Development

The motivation for the CDD methodology development was analyzed in the initial
requirements elicitation phase of the project. This was done by interviews with the use
case companies, survey with a large number of external companies, as well as by
several iterations of methodology development and capability designs for the four use
case companies in order to validate the initial versions of the modeling language. This
allowed us elaborating the overall goals (see Fig. 1) and requirements for the CDD
methodology, defining an initial conceptual meta-model for representing capability
designs, and outlining method components. Results of this work are reported in [3].

The CDD methodology defines both aspects that comprise a modeling methodol-
ogy, namely, (1) the modeling language in terms of concepts, relationships, and
notations used to represent the modeling product, i.e. the models of capability designs
created, and (2) the way of working, the procedures and tools used, in order to arrive at
a capability design of good quality i.e. the modeling process. The CDD methodology
consists of a number of interlinked method components [4] each of which is described
according to a framework presented in [11].

The CDD method components are divided into upper-level method components and
method extensions. Upper-level components describe modeling a certain part of the
capability design – Capability Design Process, EM, Context Modeling, Reuse of
Capability Designs, and Run-time Delivery Adjustments. Method extensions address
specific business challenges to which the CDD methodology can be applied. The
overall CDD process includes three cycles – capability design; capability delivery; and
capability refinement/updating [10].

The theoretical and methodological foundation for CDD is provided by the concep-
tual core capability meta-model (CMM). Simplified version is shown on Fig. 2; c.f. [4]

Fig. 1. A goal model fragment for the CDD methodology, adapted from [3]

398 J. Stirna and J. Zdravkovic

for full version with definitions. CMM was developed on the basis of requirements from
the industrial project partners, and related research on capabilities. CMM has three main
sections: (a) Enterprise model representing organizational designs with Goals, KPIs,
Processes (with concretizations as Process Variants) and Resources; (b) Context model
represented with Context Set for which a Capability is designed and Context Situation at
runtime that is monitored and according to which the deployed solutions should be
adjusted. Context Indicators are used for measuring the context properties (Measuring
Property); and (c) Patterns and variability model for delivering Capability by reusable
solutions for reaching Goals under different Context Situations. Each pattern describes
how a certain Capability is to be delivered in a certain Context Situation and what
Processes Variants and Resources are needed.

4 CDD Meta-model Development

The work started by iterative development of the CMM. It was validated by applying it
in four companies: SIV AG (Germany) for business processes outsourcing; FreshT Ltd.
(UK) for maritime compliance capability; CLMS Ltd (UK) for collaborative software
development using MDD; Everis (Spain) for service promotion capability and gov-
ernment SOA platform management capability.

During this process it became clear that capability design is based on EM and that
the CMM contains elements commonly used in EM. Hence, following the overall
stance of the project of preferring the use of existing methodology components, we
decided incorporating an existing EM approach for the CDD tasks with similar pur-
pose. The 4EM approach was chosen because of three main reasons: (1) it has six
interlinked sub-models addressing the key perspectives of an organizational design
(goals, business rules, processes, concepts, actors, and IS requirements), (2) the 4EM
meta-model is formally defined, and (3) two of its developers participated the project.

Fig. 2. The core capability meta-model (CMM) for supporting CDD [4].

Development of a Modeling Language 399

After the assessment of the suitability of 4EM for integration with CDD, we
investigated how the elements in the capability meta-model correspond to the elements
of the 4EM sub-models. On a conceptual level three strong similarity links were
identified suggesting which sub-models of CDD can be supported by 4EM.

Link-1 between 4EM Goals Model and the EM part of the CDD model: goals and
KPIs represent the intentional dimension of capability design and they correspond to
the Goals Model in 4EM. There are explicit components devoted to goal modeling in
4EM such as goal, problem, opportunity, cause, as well as supports, hinders, and AND
and OR refinement relationships, which are also needed for capability design.

Link-2 between 4EM Business Process Model and CDD Processes and Resources:
CDD business process, process variants and resources correspond to the operational
dimension of capability design. In 4EM there are two specific sub-models devoted to
this, namely Business Process Model and Actors and Resources Model, which might be
useful for capability design. Later it was decided to use BPMN instead of 4EM
Business Process Modeling because an existing Eclipse plugin was chosen for mod-
eling tool, which considerably reduced its implementation costs.

Link-3 between 4EM Concepts Model and CDD Context model: CDD modeling
constructs used for representing context, such as context element, context indicator, and
measurable property can be considered as the static aspects of the capability design in
the sense that they reflect properties of things and phenomena. Hence they can, in
principle, be modeled with the Concepts Model of 4EM. But since we observed that
specific modeling guidance is needed for each of these components because of their
purpose in the model, we decided to elaborate a specialized modeling component and a
distinct notation for context modeling, available in [4].

The main purpose of CMM is to present the various modeling components of CDD
and how they are related conceptually. It also implicitly includes the main integrity
constraints based on association multiplicities, e.g. that each capability is motivated by
exactly one goal. The CMM was extensively used in discussions with the use case
partners and within the methodology development team. It was the main reference
model for the development of the methodology steps.

This version of the meta-model, i.e. the CMM, is however insufficiently detailed for
developing a modeling language to the full extent as well as to develop a modeling
tool. Hence, the meta-model containing detailed components the modeling language
was created. Figure 3 shows a meta-model of the modeling language. Due to the lack
of space we have only presented 4EM Goal Model extended with the core components
of CDD (in grey). The main difference between the language meta-model in Fig. 3 and
the CMM in Fig. 2 is that associations and association roles are modeled as classes.
This is needed to specify which association types are permitted between which mod-
eling component types. It also allows specifying graphical symbols for the symbolic
association types, such as AND, OR, and AND/OR goal refinement associations. This
version of the meta-model was developed analytically – by considering the purpose of
each component in the CMM and how it could be represented by the modeling lan-
guage taking the constructs and notation of 4EM as a starting point. The resulting
meta-model proved to be useful in discussions between method and tool developers. It
was later implemented in the CDT and extended to represent information needed for
other parts of the CDD methodology, such as variables and calculations used for

400 J. Stirna and J. Zdravkovic

capability adjustment algorithms, which were not part of the modeling language but
were needed for capability monitoring.

5 Summary of Lessons Learned

The CMM was used throughout the project from setting the vision to iterative vali-
dation at the use case companies. The following experiences can be summarized.

Meta-modeling was an important ME activity designing method components with a
clear purpose and semantics. A notable property of CDD in comparison with other
methodologies is that the same CMM constructs were used by a fairly large number of
methodology components and extensions. E.g. context modeling constructs are used by
almost all CDD components. Other methodologies more often have dedicated method
components based on specific fragments of the meta-model, e.g. 4EM goals modeling
uses the meta-model of the Goals sub-model.

The CMM development went through many iterations. The initial version was
fine-tuned during the early requirements elicitation and validation phases, c.f. [3].
Further refinements were introduced during applications at the use case companies and
in interactions with the tool development team. The most frequent changes were
concerning multiplicities representing integrity constraints of the CDD methodology.

Some modeling constructs were difficult to understand by some method and tool
developers in the project and discussing them from the point of view of the CMM and
creating examples of capability models based on the meta-model proved useful.

The CMM represented integrity and quality constraints assumed to be useful in the
CDD methodology, e.g. each capability requires exactly one context set. This however
does not take into account temporal states of the model, i.e. the fact that once a
capability component is placed in a model it will exist without a link to a context set
until such a modeling component is created and association to it defined.

The meta-model on Fig. 3 represents the CDD (in grey) and 4EM language
components. It essentially served as the reference point for tool development. But it
was not useful for conceptual discussions, e.g., when developing the different method
components. For this purpose the CMM was used. Referring to the MOF levels, the
language meta-model (Fig. 3) followed the principles of M2 level, while Ecore
(meta-model of Eclipse Modeling Framework) provided M3 level components.

The meta-models were drawn using Vision and System Architect for the purpose of
documentation only. It was then manually transferred to Eclipse for implementation
into the tool. This process proved somewhat inefficient, and using a meta-tool such as
Troux Architect or MetaEdit + would have been more efficient.

The CDD methodology was developed iteratively – the initial version was vali-
dated and then refined and extended by additional method components in three
development-validation cycles. Development of all new method components started
with the inclusion of the new modeling components in the CMM, which included
certain restructuring and defining links to the existing components.

The parts of the meta-model related to runtime monitoring and adjustments were
supported by other components of the CDD environment. E.g., Capability Context
Platform was used for monitoring measurable properties and context elements, as well

Development of a Modeling Language 401

F
ig
.
3.

C
D
D

an
d
4E

M
go

al
m
od

el
la
ng

ua
ge

m
et
a-
m
od

el

402 J. Stirna and J. Zdravkovic

as Capability Navigation Application was used for performing calculations based on
context elements and KPI in order to execute capability adjustment algorithms.

6 Concluding Remarks

ME of the CDD methodology included meta-modeling of the modeling language with a
particular effort on integration with concepts of the 4EM approach and on supporting
the development of a modeling tool. The CDD methodology and environment have
been applied to real capability design projects at four use case companies as part of
design-evaluation cycles of the project. The validation results show that the method-
ology and the environment are useful for the companies for adjusting business designs
to context changes to address their business challenges.

References

1. EU FP7 CaaS Project: Capability as a service for digital enterprises, proj. no. 611351. http://
caas-project.eu/

2. Ulrich, W., Rosen, M.: The business capability map: building a foundation for business/it
alignment. Cutter Consortium for Business and Enterprise Architecture (2012)

3. Bērziša, S., Bravos, G., Gonzalez, T., Czubayko, U., España, S., Grabis, J., Henkel, M.,
Jokste, L., Kampars, J., Koc, H., Kuhr, J., Llorca, C., Loucopoulos, P., Juanes, R.,
Sandkuhl, K., Simic, H., Stirna, J., Zdravkovic, J.: Deliverable D1.4: requirements
specification for CDD. CaaS – Capability as a Service for Digital Enterprises, FP7 proj.
611351, Riga Technical University (2014). http://caas-project.eu/deliverables/

4. Bērziša, S., España, S., Grabis, J., Henkel, M., Jokste, L., Kampars, J., Koç, H., Sandkuhl,
K., Stirna, J., Valverde, F., Zdravkovic J.: Deliverable 5.2: the initial version of capability
driven development methodology, FP7 proj. 611351. CaaS – Capability as a Service in
digital enterprises, Stockholm University (2015). doi:10.13140/RG.2.1.2399.4965

5. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise Modeling – Tackling
Business Challenges with the 4EM Method. Springer, Heidelberg (2014). ISBN
978-3-662-43724-7S

6. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

7. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inform. Softw. Tech. 38(4), 275–280 (1996)

8. Smolander, K.: OPRR: a model for modelling systems development methods. In: Lyytinen,
K., Tahvanainen, V.-P. (eds.) Next Generation CASE tools. IOS Press, Amsterdam (1991)

9. Bergsten, P., Bubenko, J., Dahl, R., Gustafsson, M.R., Johansson, L.A.: RAMATIC - A
CASE Shell for Implementation of Specific CASE Tools. SISU, Stockholm (1989)

10. Ralyté, J., Backlund, P., Kühn, H., Jeusfeld, M.A.: Method chunks for interoperability. In:
Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 339–353. Springer,
Heidelberg (2006)

11. Goldkuhl, G., Lind, M., Seigerroth, U.: Method integration: the need for a learning
perspective. IEEE Proc. Softw. 145(4), 113–118 (1998)

12. OMG: OMG Meta Object Facility (MOF) Core Specification, Version 2.5 (2015). http://
www.omg.org/mof/

Development of a Modeling Language 403

http://caas-project.eu/
http://caas-project.eu/
http://caas-project.eu/deliverables/
http://dx.doi.org/10.13140/RG.2.1.2399.4965
http://www.omg.org/mof/
http://www.omg.org/mof/

Applying Conceptual Modeling to Better
Understand the Human Genome

José F. Reyes Román1,2(&), Óscar Pastor1, Juan Carlos Casamayor1,
and Francisco Valverde3

1 Research Center on Software Production Methods (PROS),
Universitat Politècnica de València, Valencia, Spain

{jreyes,opastor}@pros.upv.es, jcarlos@dsic.upv.es
2 Department of Engineering Sciences, Universidad Central del Este (UCE),

San Pedro de Macorís, Dominican Republic
3 Computer Science Department, Universitat de València, Valencia, Spain

girome@uv.es

Abstract. The objective of the work is to present the benefits of the application
of Conceptual Modeling (CM) in complex domains, such as genomics. This
paper explains the evolution of a Conceptual Schema of the Human Genome
(CSHG), which seeks to provide a clear and precise understanding of the human
genome. We want to highlighting all the advantages of the application of CM in
a complex domain such as Genomic Information Systems (GeIS). We show how
over time this model has evolved, thus we have discovered better forms of
representation. As we advanced in exploring the domain, we understood that we
should be extending and incorporating the new concepts detected into our
model. Here we present and discuss the evolution to reach the current version
(CSHG v2). A solution based on conceptual models gives a clear definition of
the domain with direct implications for the medical context.

Keywords: Conceptual modeling � CSHG � Evolution � GeIS � Human
genome

1 Introduction

Why is Conceptual Modeling (CM) [1] essential to design and develop correct infor-
mation systems? This is a fundamental question for the CM community, which is
interested in demonstrating that only through the use of CM techniques can the design
and development of quality of information systems be achieved. The need for such a
CM-based design and development strategy should be more evident, the greater the
complexity of the system under study.

Understanding the human genome is a good example of such an extremely complex
problem. Using CMs to provide a solution to deal with the human genome, it has been
initially explored in previous works (see for instance [2, 3]), but a holistic perspective
of the whole picture has still not been provided. The use of advanced information
system engineering approaches is required in this domain due to the huge amount of
biological information. An important part of modern Bioinformatics science is devoted

© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 404–412, 2016.
DOI: 10.1007/978-3-319-46397-1_31

to the management of genomic data, but because its continuous evolution it is difficult
to find convincing solutions.

However, we were surprised to discover that when we questioned our
bio-colleagues about their conceptual data models, the answer was—in the best case—
simply a relational logical design: a description located in the solution space with no
abstract or conceptual design perspective at all. Therefore, we suggested to our
bioinformatics colleagues to build a CSHG with the main goal of understanding how
life—as we understand it in our planet—works.

Our aim in this papers is thus to demonstrate the need for a CM:

• to share the understanding of the essential domain concepts—in our case the human
genome, and

• to guide the design and development of the corresponding databases, which nor-
mally support only a part of the CM. This means that using the CM only as a
holistic, conceptual DB, it will be possible to integrate different data sources that
represent different perspectives of genomic knowledge.

To report all the work done following this research line, we firstly introduce a first
conceptual representation of the relevant genomic knowledge, which we call Con-
ceptual Schema of the Human Genome version 1 (CSHG v1). In this paper we do not
focus on the details of the conceptual schema (CS), but on the conceptual architectural
decisions taken for building it. After this conceptual exercise, we show more in-depth
discussions about how to better represent basic concepts whose associated knowledge
is in constant evolution. The result of this work is the proposal of an alternative version
of the conceptual schema, which we call CSHG v2. We also discuss in this paper the
conceptual analysis that guided the design of a new version of the CS. The outcome is a
sound understanding of the relevant information to achieve more efficient data man-
agement policies.

The paper is divided into the following sections: Sect. 2 presents the initial
structure for the conceptual schema of the human genome. Section 3 shows the evo-
lution of our CSHG from v1 to v2. Finally, Sect. 4 contains the conclusions and
outlines future work.

2 An Initial Conceptual Schema for the Human Genome:
CSHG v1

One of the essential benefits of using CM is that it accurately represents the relevant
concepts of the analyzed domain. After performing an initial analysis of the problem
domain, the next step is to design a domain representation in the form of a CSHG. In
this first representation, important decisions are taken to adequately represent the
concepts that are basic to understanding the domain.

The first important decision is how to structure the representation of the analyzed
domain. Considering the complexity of the information contained in the human gen-
ome, we decided to divide the CS representation into three main parts, each one related
to a specific domain view:

Applying Conceptual Modeling to Better Understand 405

1. The Gene-Mutation view is focused on the gene [5] structure, together with its
possible, relevant variations and the determination of the data sources.

2. The Genome view is focused on how we go from the whole genome to its relevant
component (chromosomes) and the type of DNA segments they are made up.

3. The Transcription view is centered around the actors that participate in the essential
processes of transcription and translation, in order to identify the components that
guide the process of going from the DNA-based genotype, to the protein synthesis
that is related to the phenotype (external gene manifestation).

Next, we introduce the selected CSHG following in order these three views (you
can see the full view of this release in [11]).

2.1 The Gene-Mutation View

To represent the essential “Gene” concept, we assume that the different possible
variants—called “alleles”—for a gene, are associated to a primary Gene class through
using an “Allele” class that has two specializations: (1) One representing the sequence
considered of reference for the gene and (2) Another representing a possible variated
version of the previous one.

The sequence of reference contains an attribute “sequence” that gets the specificDNA
sequence for a Gene. The variated versions of the Gene that are included in the “Allelic
Variant” class use a derived attribute which represents a change in the sequence of
reference.What structure has an allele? Is it a sufficiently well-defined structure for it to
be included in our Conceptual Schema? The answer that we give to this question uses the
concept of “Transcription Unit”. This is represented through an association between the
selected allelic version of a Gene, and the set of DNA pieces that compose it—called
“Segments” in our model. Going further, the structure of a Segment contains the fol-
lowing components: (a) A promoter: describes the sequence of DNA that marks the
beginning of the transcription. (b) Transcribable sequences: is responsible for describing
the DNA sequence transcribed by RNA polymerase. (c) A terminator: describes the end
of the transcription process in the DNA sequence. (d) Regulatory sequence: describes an
allelic segment containing the nucleotide sequences of the regulatory functions of one or
more processes of transcription.

To characterize in detail, the possible variants, the conceptual schema introduces a
“Variation” class, where the changes to be applied to the reference sequence are
specified. The next important aspect is to identify the type of variations that are con-
sidered relevant. Summarizing what is currently known, we distinguish three main
types of variations:

• The first, focused on the effect that the variation has (it is either a mutation—
associated to a disease—or it is simply a neutral variation in the sense that it has no
bad effect in clinical terms—we refer to it as “Neutral Polymorphism” in biological
language.

• The second considers the location of the variation—i.e. if it is variation whose
scope is either the chromosome or the gene.

406 J.F. Reyes Román et al.

• The third considers whether the variation has a description associated with it. The
description could take two forms: (a) A “precise variation” when the structure and
the nucleotides that are involved are clearly known, or (b) if the variation structure
is not known, we talk about an “imprecise variation” whose effects are probably
still to be discovered.

It is important to fix how many precise variations do exist: insertions, deletions,
Indel and inversion [7].

In this version of our schema the concept of SNPs1 it was not explicitly represented
because it was considered as a normal variation. In the development of our CSHG v1
we detected an important point to consider: the use of reference sequences from
external sources. Unfortunately, gene identifiers sometimes depend on the external data
source. It is therefore important to represent in our CS the external data sources used for
the identification of a gene and an allele (represented in the CS using the “Gene Data
Bank Identification” and “Allele Data Bank Identification” classes respectively). It is
also important for this view to know the origin of the data considered as “relevant”,
because its health implications. The aim is to support this relevance with bibliographic
data and present a clear view about the knowledge source.

2.2 The Genome View

The next view is introduced with the goal of including individual genomes that could
be compared structurally with the previous gene-mutation view. This view provide a
general perspective related to the whole Genome notion, and characterizing its concrete
composition. In fact, the genome is composed of chromosomes—in the human’s case
23 pairs of chromosomes as is well-known. They are represented by the “Chromosome”
class in our CS. The sequences of chromosomes are long, and to manage them with
functional unity criteria, they are divide into, smaller “pieces” (components with a
functional identity). We will use the notion of “Segment” to account for this fact.
Introducing this element as a basic component of a global genomic sequence identifies
which specific parts of chromosomal DNA have an important meaning. The compo-
sition of all these chromosome segments represents the sequence of the entire
chromosome.

The segments of chromosomes can be of two types: “coding” and “non-coding”,
depending on whether or not they are associated with protein synthesis. In our CS we
label them as “GenicSegment” and “NonGenicSegment” respectively. Genic Segments
represent the coding parts that are traditionally considered most significant for the
chromosome and that are related to genes. But it is increasingly clear that the “non-
genic” DNA components also have vital functions in explaining the genomic operation.
This is why there is a need to distinguish between gene segments (related to a gene and

1 A single nucleotide polymorphism (SNP), is a variation at a single position in a DNA sequence
among individuals. Recall that the DNA sequence is formed from a chain of four nucleotide bases: A,
C, G, and T [Scitable by Nature Education].

Applying Conceptual Modeling to Better Understand 407

connected through the gene concept with the previous Gene-Mutation view) and
non-genic segments.

Similarly, it is necessary to distinguish between different types of non-genic seg-
ments. According to current knowledge, two types were identified: (a) intergenic
regions that represent the space between genes, and, (b) those that are part of the
chromosome elements structure. Among these chromosomal elements, we found three
elements considered of interest: centromere, telomere and ORI [4, 8]. This view thus
makes it feasible to represent complete genomes of individuals, and allows introducing
the information associated with two aspects: Research Centers responsible for
sequencing genomes and the final result of the sequencing process of a given sample
(represented in the CS by the “ResearchCenter” and “Genome” classes respectively).

2.3 The Transcription View

The main purpose of this view is to represent the process of “protein synthesis” [9], by
integrating a definition of the internal structure of the alleles in order to describe how
the aforementioned elements are involved in the process of DNA transcription.

The first aspect we studied was the representation of the transcribed RNA copy of
DNA from the transcriptable sequence (related to a “transcribable sequence” and thus
linked to the Gene-Mutation view). This RNA product that is obtained immediately
after transcription is known as “primary transcript” in the biological vocabulary. The
primary transcript is constituted by one or more partitions (represented as main com-
ponents of a class called “Primary Transcript Path”), and each partition has two types
of transcription elements: Exons and Introns [4].

The exons present different combinations for a certain partition of the primary
transcript. In the CS we represent the different combinations of exons by means of the
class “Spliced Transcript” (related to a “alelle” and hereby again connected with the
Gene-Mutation view). The process of “Splicing” is based on the elimination of introns
and union of exons on the mRNA before leaving the core. The results of this process
represented by the Splicing Transcript class can produce two different splicing results:
the mRNA and the alternative splicing (represented in the CS as “Others RNA”) [6].

The mRNA is then the result of the transcription of a gene and it carries the
information needed to synthesize a protein. To complete this transcription view, we
need to model the path from the mRNA to the resulting protein translation process.
Within the mRNA we found the open reading frames (ORF) ([4]). After finishing the
translation of an ORF, an amino acid chain is generated by the primary structure of the
protein (“Primary Polipeptide” class). The chemical transformations of the chain of
amino acids produce as final result a functional protein (represented in the CS as
“Protein”). The combination of these three views makes our first version of the CSHG.

3 From v1 to v2: CSHG v2

While applying in the real practice the initial version of the CSHG, we identified a set
of questions to address:

408 J.F. Reyes Román et al.

1. We were not sure about the suitability of mixing a Genome view related to the
storage of individual genomes—the so-called Genome view in v1, with a more
theoretical, structural Genomic view related to the Genome configuration and
characterization as a whole—the so-called Gene-Mutation and Transcription view.

2. Concerning the core concept of gene, it is not always feasible to describe DNA
structure in terms of genes as basic constructs. We concluded that the most suitable
structure is suing chromosome elements as the basic building blocks.

3. More relevant concepts were needed, for instance, the concept of SNPs.

The development of these three ideas led us to the evolution of the conceptual
schema CSHG v2 that we explain in detail below. (the full view of this schema is
available in [11]).

3.1 Removing Individual Genomes Data Bank

Reviewing the knowledge represented in our CSHG v1, the generic genome template—
which is the precise human genome structure and how to characterize it—and the
genome data bank perspective—how to store individual genomes that are to be ana-
lyzed—was mixed: the gene-mutation and transcription views appear together in the
conceptual schema.

For representing accurately, the domain knowledge, the generic properties of the
genome and the individual samples should be clearly distinguished. By separating the
individual sample of a patient from the genome template taken as reference, it would be
easier to find—for instance—significant variations related with diseases. The CSHG v2
thus omits the so-called Genome view, focusing on a more precise description of a
generic genome template to collect all the relevant genome information. We decided to
organize it in five mains “views” (see for instance [11]):

• Structural: describes the genome structure.
• Transcription: shows the components and concepts related to protein synthesis.
• Variation: describes the changes in the sequence of reference.
• Pathways (not analyzed in this work for reasons of space): describes information

about metabolic pathways.
• Bibliography and data bank view: describes where any given data comes from.

3.2 The Chromosome Elements as Basic Modeling Units

The use of chromosome elements as basic building DNA elements has a direct influ-
ence on the way in which variations and their DNA origin were represented in the CS.

In v1 the notion of allele was represented as an explicit derived notion—through
the class Allelic Variant. Additionally, all the variations were related to genic segments,
as it was not possible to register variations whose source were in other—non genic—
genome parts. To overcome this problem, our conceptual proposal is to directly relate a
variation with a specific DNA chromosome position, as this solution better represents

Applying Conceptual Modeling to Better Understand 409

the real genome structure. The benefit of not having the variation directly related to an
Allelic Variant is twofold:

• Firstly, it allows the variation to be defined with more precision, as it is associated
with a unique genome sequence where the variation occurs. The variation is not
dependent on the Allelic Variant and the corresponding many-to-many association
as was done in the previous v1.

• Secondly, the Allelic Variant concept is no longer needed explicitly. As we have no
individual genomes in the model, the absence of individual genomes eliminates the
need for managing Allelic Variants. As our knowledge of the genomic domain
increased, we wondered if reference Allelic Variants do really exist. This would
mean that there is a catalogue of well-determined variants whose structure and
behavior should be perfectly known. The introduction of this knowledge into the
model could be accomplished at any time. But while a precise answer for this
question does not exist, we conclude that omitting the Allelic Variant class provides
a clearer description, conceptually speaking.

In any case, it is possible to generate allele instances using the adequate combi-
nations of variations, because it can be seen as derived information obtained by
applying a set of selected variations on the source sequence of reference. To have
instances of an Allelic Variant class involves characterizing the specific set of varia-
tions that “create” the considered allele. We argue that this v2 representation is more
precise because the separation of these conceptual concerns is made explicit, the
conceptual schema is in a—semantically-speaking—clearer state, and it enables
incorporating new knowledge, as satisfactory answers to the open questions are pro-
vided by the progress in the genome understanding process. The representation of this
allelic knowledge is left out until the next version of the conceptual schema.

3.3 Modeling SNPs

In the initial version, a highly relevant genome concept as the SNP was not explicitly
represented in our conceptual definition. The specialization of different variations
accomplished in version 2 is more precise, as it distinguishes between two categories:
the frequency of the variation, and its known, precise or imprecise description.

Beyond this conceptual simplification, it is important to take into account how
SNPs are stored in current, widely-used data sources (as dbSNP [10]). Looking at their
current representations, we performed a reverse conceptual engineering exercise to
include in the CSHG a set of classes that represent this knowledge. We discovered that
an SNP is specified in this domain as a potential set of variations in which one
nucleotide changes into another one. This change is open, meaning that the notion of
variation in this case is that one position in the sequence of reference may have
different values depending on the studied population, and with a given frequency. This
fact has been addressed using a specialization hierarchy for SNPs.

This change leaded to a new discussion. Any precise variation is modeled as an
individual variation where the sequence of reference “suffers” a change. But the way in
which SNPs are treated is somewhat different: an SNP defines which nucleotide is

410 J.F. Reyes Román et al.

altered. It appears in the source reference sequence (through the attribute “allele” for
the homozygous case, “allele1” and “allele2” for the heterozygous case). This repre-
sentation preserves the way in which SNP data appears in real genomic settings. But
the view of SNPs as a set of individual variations suggests that a better representation
could be to model SNP as an aggregation of precise (indel) variations. This change will
better represent conceptually what an SNP is, but the change has to be carefully
analyzed because data management of current SNPs data repositories should be
properly adapted to the new data representation.

4 Conclusions and Future Work

Using conceptual modeling—CM—techniques is a basic strategy to design and
develop sound and efficient Genomic Information Systems (GeIS). This is the central
issue of our work. The CM applied to this type of environment facilitates the generation
of systems that support the decision making processes in the Bioinformatics domain.
The domain knowledge always required to be extended in order to meet with the new
needs that.

The initial version (v1) focused on modeling “Genotyping” then sought to create a
semantic and content description (on existing sources to “capture” and “represent”
good information data). The reality is that we faced and discussed multiple decisions
before moving on to our next CSHG v2. The version 2 of the CS is characterized by the
change in its central axis based on “genes” and takes as its axis the concept of
“Chromosome (and chromosome elements)”. This change was made to simplify the
schema and provide a more flexible approach to extend it according to the domain
evolution. This new version gives us greater precision, and allows us to manipulate
data in a more direct way.

Future research work is oriented to the integration of haplotypes and statistical
factors in our conceptual schema. We also contemplate the implementation of an ETL
process using our CS.

Acknowledgements. This work has been supported by the Ministry of Higher Education,
Science and Technology (MESCyT). Santo Domingo, Dominican Rep. and by Spanish Ministry
of Economy and Competitiveness under the project PI13/02247 cofinanced with ERDF.

References

1. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)
2. Bornberg-Bauer, E., Paton, N.W.: Conceptual data modelling for bioinformatics. Briefings

Bioinform. 3(2), 166–180 (2002)
3. Ram, S., Wei, W.: Modeling the semantics of 3D protein structures. In: Atzeni, P., Chu, W.,

Hongjun, L., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 696–708.
Springer, Heidelberg (2004)

4. Glossary of Genetic Terms: NHGRI (2016). http://www.genome.gov/glossary/
5. Rodden, R.T.: Genetics for Dummies, 2nd edn. Wiley Publishing, Inc., Indianapolis (2010)

Applying Conceptual Modeling to Better Understand 411

http://www.genome.gov/glossary/

6. Tazi, J., Bakkour, N., Stamm, S.: Alternative splicing and disease. Biochim. Biophys. Acta
(BBA) Mol Basis Dis. 1792(1), 14–26 (2009)

7. den Dunnen, J.T., Antonarakis, S.E.: Recommendations for the description of DNA seq.
variants - v2.0. Hum. Mutat. 15, 7–12 (2000)

8. Craig, N., Green, R., Greider, C., Cohen-Fix, O., Storz, G., Wolberger, C.: Molecular
Biology: Principles of Genome Function. Oxford University Press, Oxford (2014)

9. Spirin, A., Swartz, J.: Cell-Free Protein Synthesis: Methods and Protocols. Wiley, Weinheim
(2014). ISBN 9783527691502/9783527691500

10. Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M., Sirotkin, K.:
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29(1), 308–311 (2001)

11. Pastor, O., Reyes Román, J.F., Valverde, F.: Conceptual schema of the human genome
(CSHG). Technical report (2016). http://hdl.handle.net/10251/67297

412 J.F. Reyes Román et al.

http://hdl.handle.net/10251/67297

Schema Mapping

Data Analytics: From Conceptual Modelling
to Logical Representation

Qing Wang(B) and Minjian Liu

Research School of Computer Science,
Australian National University, Canberra, Australia

{qing.wang,minjian.liu}@anu.edu.au

Abstract. In recent years, data analytics has been studied in a broad
range of areas, such as health-care, social sciences, and commerce. In
order to accurately capture user requirements for enhancing communi-
cation between analysts, domain experts and users, conceptualising data
analytics tasks to provide a high level of modelling abstraction becomes
increasingly important. In this paper, we discuss the modelling of data
analytics and how a conceptual framework for data analytics applications
can be transformed into a logical framework that supports a simple yet
expressive query language for specifying data analytics tasks. We have
also implemented our modelling method into a unified data analytics
platform, which allows to incorporate analytics algorithms as plug-ins in
a flexible and open manner, We present case studies on three real-world
data analytics applications and our experimental results on an unified
data analytics platform.

Keywords: Data analytics · Conceptual modelling · Logical model ·
Query language

1 Introduction

Data analytics is rapidly growing in popularity, with a variety of applications
in many areas, e.g., health-care, social sciences, commerce, etc. This has led
to the recent development of a large number of data analytics tools and sys-
tems, most of which are built upon graph models, such as GraphLab [11] and
Pregel [12]. Nonetheless, in practice, many data analytics applications are still
conducted in an ad-hoc way, due to the lack of general principles to design,
develop and implement data analytics applications. For example, the decision
on choosing data models for data analytics applications often relies on individu-
als’ own expertise, rather than a systematic consideration of requirements. This
calls for a formal design paradigm that can provide a high level of modelling
abstraction to support users in understanding their data analytics requirements.
In particular, with the increasing complexity of data analytics applications, the

Q. Wang and M. Liu—Contributed equally to this work.

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 415–429, 2016.
DOI: 10.1007/978-3-319-46397-1 32

416 Q. Wang and M. Liu

need to explicitly represent data analytics requirements into a conceptual model
is pressingly required [6].

Recently, several methods for conceptually modelling data analytics applica-
tions have been reported [2,15,16]. A conceptual modelling paradigm for net-
work analytics applications, called the Network Analytics ER model (NAER),
was proposed in [15]. In a nutshell, the NAER model extends the concepts of
the traditional ER models [4] in three aspects: (a) the structural aspect - analyt-
ical entity and relationship types are added to represent first-class entities and
relationships from the data analytics perspective; (b) the manipulation aspect
- topological constructs are added to explicitly represent different topological
structures of interest; and (c) the integrity aspect - constraints are added for
governing integrity among different data analytics tasks. Based on this concep-
tual modelling paradigm, a set of design guidelines has further been provided in
[15], through which users can benefit from establishing a conceptual framework
that provides a coherent and comprehensive view on data analytics applications.
As depicted in Fig. 1, such a conceptual framework may consist of a core schema,
which has basic entity and relationship types to capture data requirements as in
the traditional ER modelling, topology schemas, which have analytical entity and
relationship types to capture query requirements of data analytics applications,
and query topics, which describe the structure of queries in query requirements
and are associated with both the core schema and the topology schemas.

Fig. 1. A general process of modelling data analytics applications

Nonetheless, how can we transform such a conceptual framework into a logi-
cal framework which is well suited to model the logical structure of data analytics
applications without ambiguities? Although basic entity and relationship types
in the core schema can be easily transformed into relation schemas following the
existing rules [14], it is not yet clear: (1) How can analytical entity and relation-
ship types be accurately defined at the logical level? (2) What logical structure
can topology schemas be translated into? (3) How can topological constructs be
specified using a query language, ideally in a declarative way? These questions

Data Analytics: From Conceptual Modelling to Logical Representation 417

are left unanswered in the previous works [15,16]. This paper aims to answer
these questions by exploring the connections between such a conceptual frame-
work for data analytics and its corresponding logical representation.

Contributions. We have the following contributions in this paper:

– We discuss how a conceptual framework for data analytics as introduced in
[15] can be effectively transformed into a logical framework.

– We introduce a novel query language for data analytics, which extends SQL
with the ability to query topological properties of interest.

– We have implemented our modelling method into a unified data analytics
platform, which allows to incorporate analytics algorithms as plug-ins in a
flexible and open manner.

– We present three real-world data analytics applications to illustrate the expres-
sive power and simplicity of our modelling method, and the experimental
results of evaluating the performance of our data analytics platform.

Outline. In the following, Sect. 2 discusses the modelling of data analytics and
Sect. 3 introduces our query language for data analytics. We discuss three data
analytics applications in Sect. 4, and present our experimental results in Sect. 5.
The paper is concluded in Sect. 6.

2 Modelling Data Analytics

In this section, we discuss data analytics from a modelling perspective. This
is because, in practice, many organisations are facing the challenges of manag-
ing data analytics tasks in a complex environment, and using modelling tech-
niques can bring in several advantages to addressing these challenges, including:
enhancing communications among multiple stakeholders, understanding connec-
tions among complex analysis requirements, and detecting design flaws earlier
and right from the start before implementing any code.

We first recall the Network Analytics ER (NAER) modelling method [15],
then elaborate on the transformation from a conceptual model into the logical
representation for data analytics applications.

Generally, the NAER modelling method supports two kinds of entities and
relationships [15]: (1) base entities and relationships which specify first-class
entities and relationships that should be stored in a database system from a
data management perspective, as in the traditional ER modelling; (2) analytical
entities and relationships which specify first-class entities and relationships used
for the data analytics purpose. In the NAER model, base types are the ground
from which analytical types can be derived, and the base types that define an
analytical type are called the support of the analytical type.

To conceptualise data analytics tasks, not only data requirements (i.e., what
kind of data is needed) but also query requirements (i.e., what kinds of queries are
used) are considered in the conceptual modelling process. Base entity and rela-
tionship types are used to capture data requirements, leading to a core schema,

418 Q. Wang and M. Liu

while analytical entity and relationship types are used to capture query require-
ments, which yields a number of topology schemas. That is, a core schema con-
tains a set of base types, and each topology schema contains a set of analytical
types, and the support of each analytical type in a topology schema is a sub-
set of base types in the core schema. In general, each conceptual framework
for data analytics applications contains a core schema which is relatively large,
and a number of topology schemas which are often small. Although being small,
topology schemas can be flexibly composed into larger schemas if needed [16].

After a conceptual framework has been established as previously discussed,
the question arising is: how can such a conceptual framework be transformed into
a logical framework? Although, in principle, it is possible to choose any logical
data model, e.g., the relational data model, a graph model or a combination of
several data models, data in many real-world applications is stored in relational
databases. Moreover, data analytics tasks often require sophisticated analysis on
both relational and topological properties of data. For these reasons, we develop
the following data model at the logical level:

– Transform basic entities and relationships in the core schema into a set of
relations for storage, as in the traditional ER modelling approach [14];

– Transform analytical entities and relationships in the topology schemas into a
set of entity-relationship (ER) graphs for analytics [9]. That is, one topology
schema corresponds to one type of ER graphs in which each vertex repre-
sents an analytical entity and each edge between two vertices represents an
analytical relationship between two analytical entities.

Relation

RelationRelation

ER-graph

ER-graph

Topology schemas

Graph schemas
ER-graph

ER-graph

Core schema

Relation schemas
Graph
mapper

Graph
mapper

Graph
mapper

Graph
mapper

Fig. 2. A hybrid data model at the logical level

Figure 2 illustrates a hybrid data model, in which a collection of ER graphs
are constructed on top of relations through graph mappers either on the fly or in a
materialized manner, as will be formally defined in Sect. 3. Accordingly, the core
schema and topology schemas in a conceptual model are transformed into a set of
relation schemas and graph schemas in a logical model. In practice, such a hybrid
data model can be easily built by applying the above transformation rules to a
conceptual model that describes data analytics tasks. Since data analytics tasks

Data Analytics: From Conceptual Modelling to Logical Representation 419

often require additional querying capability over graphs, for example, finding
paths, detecting communities, clustering, ranking, etc., in order to implement
such a hybrid data model at the logical level, we would need a query language
that can support joint analytics of relations and graphs.

3 A Query Language for Data Analytics

We present a SQL-like query language for data analytics, called RG-SQL, which
extends the standard SQL with new features to facilitate joint analytics of rela-
tions and graphs. More specifically, RG-SQL provides data definition statements
that can create graphs from relations in a flexible way, and data manipula-
tion statements to conduct various data analytics operations over relations and
graphs. In the following, we explain these new features of RG-SQL in detail.

Creating graphs. RG-SQL can create two types of graphs: undirected graphs
and directed graphs, through the specification on graph types using UNGRAPH and
DIGRAPH, respectively. Graphs can be created either on the fly or in a materialized
manner with the following syntax:

– Graphs on the fly
SELECT <attribute list>
FROM <relations | graphs>
WHERE <graph name> IS <graph type> AS (graph mapper);

– Materialized graphs
CREATE <graph type> <graph name> AS (graph mapper);

where <graph type> := UNGRAPH | DIGRAPH, and a graph mapper is a SQL query
that extracts an edge list (i.e., a list of edges of a graph, which is a common data
structure for representing a graph) from relations in the underlying databases
for graph construction.

Ranking. To assess the importance of vertices within a graph, RQ-SQL provides
a RANK operator with the following syntax:

RANK(<graph name>, <measure>)
<measure> := degree | indegree | outdegree | betweenness |

closeness | pagerank

A number of measures are available for determining the importance of vertices
[3]. One may choose the most suitable measure for a specific query based on
the type of the graph and desired properties. Each RANK(<graph name> ,
<measure>) yields a relation with two attributes: vertexid, and value.

Clustering. To explore the clustering structure of vertices over a graph, RG-
SQL provides a CLUSTER operator with the following syntax:

CLUSTER(<graph name>, <algorithm>)
<algorithm> := CC | SCC | GN | CNM | MC

420 Q. Wang and M. Liu

where CC refers to an algorithm of finding connected components, SCC an
algorithm of finding strongly connected components, and GN, CNM and MC
three algorithms for community detection, which respectively correspond to
Girvan-Newman algorithm [7], Clauset-Newman-Moore Algorithm [5] and
Peixoto’s modified Monte Carlo Algorithm [13]. Each CLUSTER(<graph name>,
<algorithm>) yields a relation with three attributes: clusterid, size and
members.

Path finding. To find paths among two or more vertices, RG-SQL provides a
PATH operator with the following syntax:

PATH(<graph name>, <path expression>)
<path expression> := . | V | <path expression>/ <path expression>|

<path expression>// <path expression>
where V is a vertex expression that imposes certain condition on the vertices of
a path, . is a do-not-care symbol indicating that any vertex is allowed in its
position, / represents one edge, and // represents any number of edges. A path
expression is valid if it contains a vertex expression in the first and last positions.
For example, an expression V1//V2 specifies a path between two vertices V1 and
V2, regardless of the length of the path. Each PATH(<graph name> , <path
expression>) yields a relation with three attributes: pathid, length and path.

3.1 Discussion

We now briefly discuss the expressive power of RG-SQL in comparison with the
relational query language SQL and the graph query language Cypher used in
Neo4j (http://neo4j.com). Since RG-SQL extends the standard SQL with the
additional operations, such as ranking, clustering and path finding, RQ-SQL
is strictly more expressive than SQL and has the expressive power beyond the
first order logic [1], for example, recursion in a path finding expression V1//V2
cannot be expressed by SQL but can be expressed by RG-SQL. For Cypher, it
is a query language designed to express graph patterns, which can nonetheless
be expressed by RG-SQL or its variations through a combination of path finding
operations. However, not all operations of RG-SQL can be expressed by Cypher,
e.g., ranking operations using betweenness and clustering operations using GN.

4 Data Analytics Applications

In this section we study data analytics tasks in three real-world applications and
explain how data analytics requirements can be conceptualized in our work.

4.1 ACM Digital Library

ACM Digital Library (http://dl.acm.org/) is a bibliographical network contain-
ing a collection of articles, authors, and publishers. Each article is written by one

http://neo4j.com
http://dl.acm.org/

Data Analytics: From Conceptual Modelling to Logical Representation 421

or more authors, one article may cite a number of other articles, and articles are
included in conference proceedings or journals published by publishers. Figure 3
depicts a conceptual schema for this data analytics application, which includes
the topology schemas Sa1 and Sa2 required by the following queries:

Q1: [Collaborative communities] Find the communities that consist of authors
who collaborate with each other to publish articles together.

Q2: [Influential articles] Find the top 3 most influential articles.

For Q1, we may use RQ-SQL to create a materialized coauthorship graph
for coauthorship over Sa1, then find the collaborative communities in the
coauthorship graph by applying the MC algorithm in CLUSTER.

CREATE UNGRAPH coauthorship AS
(SELECT w1.aid, w2.aid AS coaid
FROM WRITE AS w1, WRITE AS w2
WHERE w1.aid!=w2.aid AND w1.pid=w2.pid);

SELECT clusterid, size, members
FROM CLUSTER(coauthorship, MC);

For Q2, we may create a citation graph over Sa2 on the fly and then to
find influential articles in the citation graph using the measure betweenness.

SELECT vertexid, value
FROM RANK(citation, betweenness)
WHERE citation IS DIGRAPH AS (SELECT aid, citedaid FROM CITE)
LIMIT 3;

COAUTHOR
SHIP

CITATION

ARTICLE

CITE PROCEEDINGS

WRITE

JOURNAL

AUTHOR PUBLISH

JOURNAL* COCITATION

from

to

ARTICLE*AUTHOR*

Core Schema

Topology Schemas
Sa1 Sa2

Sa3

PUBLISHED
_BY

+

PUBLISHER

Fig. 3. A conceptual schema for ACM Digital Library

422 Q. Wang and M. Liu

4.2 Twitter

Twitter (https://twitter.com/) is a social network which enables users to post
tweets. Users may follow one another. A tweet can mention one or more users and
be labelled by one or more tags. Figure 4 depicts a conceptual schema for data
analytics in Twitter. Typical data analytics tasks in Twitter include to analyse
how users follow each other and to find the most followed people as described
by the following queries:

Q3: [Shortest path] Find the shortest path between Jack and Max.
Q4: [Most followed people] Find the most followed people who have posted at

least one tweet about ANU.

Firstly, the following graph over the topology schema St1 is created based
on entities of user∗ and their relationships in following. Then for Q3 we may
find the shortest path between Jack and Max using the following RG-SQL query:

SELECT *
FROM PATH(following, v1//v2)
WHERE v1 AS (SELECT uid FROM USER WHERE name = ‘Jack’)

AND v2 AS (SELECT uid FROM USER WHERE name = ‘Max’)
ORDER BY length ASC LIMIT 1;

For Q4, we need to not only find the most followed people in the following
graph but also people who have posted a tweet tagged by @ANU from the
relations over the core schema, as illustrated by the following RG-SQL query.

SELECT uid, value

FROM RANK(following, pagerank) AS p1, POST AS p2, LABELLED_BY AS l

WHERE p1.vertexid=p2.uid AND p2.twid=l.tid AND l.label=‘ANU’

ORDER BY value DESC;

4.3 Stack Overflow

Stack Overflow (http://stackoverflow.com/) is a collaboratively edited question
and answer site for programmers. Users may ask questions or post answers.
A question may have zero or more answers and be labelled by tags. For each
question, one answer can be accepted as the accepted answer. A conceptual
schema for data analytics in Stack Overflow is presented in Fig. 5.

Q5: [Python experts] Find top 10 Python experts in Stack Overflow (i.e. users
who often reply Python questions and their answers are often accepted).

Q6: [Most influential expert] Find the influential expert in Stack Overflow who
is involved in one of the top 3 largest question-answer communities.

Similarly, we first create the getting answers graph over the topology
schema Ss1. Then the RQ-SQL query for Q5 is follows:

https://twitter.com/
http://stackoverflow.com/

Data Analytics: From Conceptual Modelling to Logical Representation 423

Fig. 4. A conceptual schema for Twitter

SELECT * FROM RANK(getting_answers, pagerank) WHERE vertexid IN

(SELECT owner_id FROM ANSWER AS a, LABELLED_BY AS l, TAG AS t

WHERE a.parent_qid=l.qid AND l.tid=t.tid AND tag_label = ‘python’)

LIMIT 10;

For Q6, we have the following RQ-SQL query, in which both RANK and
CLUSTER operators are applied over two different graphs and their results can be
flexibly combined to support further analytics.

SELECT r.vertexid
FROM RANK(getting_answers, pagerank) AS r,

(SELECT members FROM CLUSTER(co-answering, MC)
ORDER BY size DESC LIMIT 3) AS c

WHERE r.vertexid=ANY(c.members);

5 Experiments

We have implemented our modelling method into a unified data analytics plat-
form, called Rogas, which allows to incorporate analytics algorithms as plug-ins
in a flexible and open manner [10]. To understand how well Rogas can perform
in comparison with other database systems, we have conducted experiments to
compare the expressive power of query languages and the time efficiency of query
execution in three different systems: PostgreSQL (http://www.postgresql.org/),
Neo4j (http://neo4j.com) and Rogas. These experiments were performed on a
Dell Optiplex 9020 desktop computer with the Intel(R) Core(TM) i7-4790 CPU
3.6 GHz 8 cores processor, 16 GB of memory and 256 GB disk. Rogas extends the
query engine of PostgreSQL 9.4.4, with additional functionalities implemented
using Python 2.7.6. The version of Neo4j we used is community 2.2.5.

http://www.postgresql.org/
http://neo4j.com

424 Q. Wang and M. Liu

Fig. 5. A conceptual schema for Stack Overflow

In our experiments, we used the data sets from the data analytics applications
discussed in Sect. 4: (1) ACM Digital Library (ACM DL) data set provided
by the ACM Digital Library (http://dl.acm.org/), (2) Stack Overflow data set
from the Stanford Network Analytics Platform (http://snap.stanford.edu/proj/
snap-icwsm/), and (3) Twitter data set provided by Haewoon Kwak (http://an.
kaist.ac.kr/traces/WWW2010.html). Table 1 presents more details about these
three data sets.

Table 2 depicts the queries used in our experiments, which can be generally
divided into three categories: (1) Q1–Q3 are relational queries including join,
sorting, and aggregate operations; (2) Q4–Q10 are queries about graph proper-
ties, including: triangle counting, pagerank centrality, path finding and commu-
nity detection; (3) Q11–Q12 are sophisticated queries that may combine several
graph properties, e.g., Q11 combines pagerank centrality with finding connected
components and Q12 combines pagerank centrality with path finding.

Our first experiment is to illustrate the expressive power of the three query
languages: PostgreSQL, RG-SQL and Cypher in terms of the queries Q1–Q12. As
shown in Table 3, PostgreSQL, RG-SQL and Cypher do have different expressive
powers. SQL cannot be used to specify Q6–Q12 and Cypher cannot be used to
specify Q10–Q12. Nonetheless, RG-SQL is expressive enough to specify all these
queries.

Our second experiment is to evaluate the time efficiency of query execu-
tion in Rogas, PostgreSQL and Neo4j. As not all queries can be expressed
by PostgreSQL and Neo4j, we have thus compared Q1-Q5 over the three sys-
tems, and Q6-Q9 only over Rogas and Neo4j. Note that, for Q6 and Q7, Neo4j
needs to use an extension, called Neo4j Mazerunner, to run graph analytics
algorithms at scale with Hadoop HDFS and Apache Spark (http://neo4j.com/
developer/apache-spark/#mazerunner), and is thus required to send an HTTP

http://dl.acm.org/
http://snap.stanford.edu/proj/snap-icwsm/
http://snap.stanford.edu/proj/snap-icwsm/
http://an.kaist.ac.kr/traces/WWW2010.html
http://an.kaist.ac.kr/traces/WWW2010.html
http://neo4j.com/developer/apache-spark/#mazerunner
http://neo4j.com/developer/apache-spark/#mazerunner

Data Analytics: From Conceptual Modelling to Logical Representation 425

Table 1. Three data sets used in our experiments

Data set Raw data size No of vertices in

graphs (Neo4j)

No of edges in

graphs (Neo4j)

No of records in relations

(PostgreSQL)

ACM DL 14.9 GB (XML) 1,128,243 2,488,849 publisher 50

journal 128

proceedings 6,421

article 337,006

author 784,638

write 932,400

cite 1,212,894

Stack Overflow 30.6 GB (XML) 21,713,109 31,747,662 question 7,990,787

answer 13,684,117

tag 38,205

labelled by 13,466,686

Twitter 29.7 GB (TXT) 13,250,196 264,368,797 tweet 10,762,104

tag 210,121

user 2,277,971

follow 259,602,970

mentioned in 3,108,776

labelled by 1,657,051

GET request to Neo4j Mazerunner. In such cases, the time of executing queries
in Neo4j includes the time for sending and receiving the requests. For each query,
we ran it 5 times in each system and took the average time for plotting. Figure 6
presents our experimental result. The key observations are as follows:

– For Q1–Q5, Rogas performed equally well with PostgreSQL, and better than
Neo4j in most queries except for Q4. This is because Q4 is about pattern
matching which requires to navigate hyper-connectivity on graphs, and Neo4j
has been particularly optimised for such queries whereas we have not yet
implemented any query optimisation techniques. For Q5, it is not surprising
that Rogas performed better than Neo4j since it handles the problem of trian-
gle counting, for which the study in [8] has also experimentally verified that
relational databases can perform the triangle counting task very efficiently
through expressing a three-way self-join.

– For Q6–Q7, as Neo4j needs to use Neo4j Mazerunner, it requires time on
sending and receiving the requests. Thus, Rogas performed better than Neo4j.
However, for Q8–Q9, similar to Q4, these queries need to navigate hyper-
connectivity on graphs and Neo4j performed better than Rogas.

In addition to Q1–Q12, we have also run several queries about closeness centrality
over Twitter using Rogas and Neo4j. Rogas can successfully complete the queries
and return the query results, while Neo4j failed and the system reported the
“OutOfMemory” error. The reason for this is that the graphs created in Twitter
are large so that processing these queries exceeded the memory limitation of
Neo4j.

426 Q. Wang and M. Liu

Table 2. Queries used in our experiments

Query Data set Query description

Join Operation + Sorting Operation

Q1
Stack

Overflow
Show the question id, the owner id and the tag label of top 10
questions that have the most view count.

Join Operation + Sorting Operation + Aggregate Operation

Q2
Stack

Overflow

Show the top 5 answerers and their latest reputation score in an
descending order based on the number of their answers that accepted
by questions.

Join Operation + Sorting Operation + Aggregate Operation

Q3
ACM
DL

Show the number of articles of each journal and proceeding along
with the journal name and the proceeding title in a descending order.

Pattern Matching

Q4 Twitter
Recommend 10 twitter users for Jack who currently does not follow
these users but Jack follows somebody who are following them.

Triangle Counting

Q5
ACM
DL

Count the number of triangles of the co-authorship network.

PageRank Centrality

Q6
ACM
DL

Find the top 10 influential authors according to the pagerank
centrality in the co-authorship network.

Connected Component

Q7
ACM
DL

Count the number of connected components of the co-authorship
network.

Path Finding

Q8
ACM
DL

Find paths with length less than 2, which connect two author V1 and
V2 in the co-authorship network where author V1 is affiliated at ANU
and author V2 is affiliated at UNSW.

Shortest Path

Q9
ACM
DL

Find a shortest paths between two authors Michael Norrish and Kevin
Elphinstone in the co-author network.

Community Detection

Q10
Stack

Overflow
Find a group of tags that they are often used together to label a
question.

PageRank Centrality + Connected Component

Q11
ACM
DL

According to the pagerank centrality, find the top 3 authors of the
biggest collaborative community in the co-authorship network.

PageRank Centrality + Path Finding

Q12
ACM
DL

According to the pagerank centrality, show how the top 2 authors
connect with each other in the co-authorship network.

Data Analytics: From Conceptual Modelling to Logical Representation 427

Table 3. Comparison on the expressive power of the query languages PostgreSQL,
RQ-SQL and Cypher over the queries Q1–Q12, where

√
and × indicate “expressible”

and “not expressible”, respectively

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

PostgreSQL
√ √ √ √ √ × × × × × × ×

RG-SQL
√ √ √ √ √ √ √ √ √ √ √ √

Cypher
√ √ √ √ √ √ √ √ √ × × ×

Fig. 6. Comparison on the time efficiency of query execution in Rogas, PostgreSQL
and Neo4j over the queries Q1–Q9

428 Q. Wang and M. Liu

6 Conclusions

In this paper, we have discussed how data analytics tasks can be conceptualised
by a conceptual model and then transformed into a logical model. We have also
proposed a query language for data analytics, and implemented the proposed
methods into a data analytics platform that can unify various data analytics
tasks and algorithms. This work was based on our case studies on several real-
world data analytics applications.

In the future, we plan to add query topics into our data analytics platform
and investigate the development of a query language at a higher level through
query topics. We will also study network dynamics and develop techniques to
analyse and visualise networks that dynamically change over time.

Acknowledgement. We thank the ACM Digital Library for providing the data set
of the ACM bibliographical network.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Bao, Z., Tay, Y., Zhou, J.: sonSchema: a conceptual schema for social networks.
In: Conceptual Modeling, pp. 197–211 (2013)

3. Brandes, U., Erlebach, T.: Network Analysis: Methodological Foundations.
Springer Science & Business Media, New York (2005)

4. Chen, P.: The entity-relationship model - toward a unified view of data. ACM
TODS 1(1), 9–36 (1976)

5. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Phys. Rev. E 70(6), 066111 (2004)

6. Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: Ng,
W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41924-9 1

7. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
PNAS 99(12), 7821–7826 (2002)

8. Jindal, A., Madden, S.: GRAPHiQL: a graph intuitive query language for relation-
aldatabases. In: IEEE International Conference on Big Data, pp. 441–450 (2014)

9. Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum, G.: Star: steiner-
tree approximation in relationship graphs. In: ICDE, pp. 868–879 (2009)

10. Liu, M., Wang, Q.: Rogas: a declaratice framework for network analysis. In: VLDB
(2016)

11. Low, Y., Gonzalez, J.E., Kyrola, A., Bickson, D., Guestrin, C.E., Hellerstein,
J.: Graphlab: a new framework for parallel machine learning. arXiv preprint
arXiv:1408.2041 (2014)

12. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: ACM SIGMOD,
pp. 135–146 (2010)

13. Peixoto, T.P.: Efficient Monte Carlo and greedy heuristic for the inference of sto-
chastic block models. Phys. Rev. E 89(1), 012804 (2014)

http://dx.doi.org/10.1007/978-3-642-41924-9_1
http://arxiv.org/abs/1408.2041

Data Analytics: From Conceptual Modelling to Logical Representation 429

14. Thalheim, B.: Entity-relationship Modeling: Foundations of Database Technology.
Springer Science & Business Media, New York (2013)

15. Wang, Q.: Network analytics ER model-towards a conceptual view of network
analytics. In: ER, pp. 158–171 (2014)

16. Wang, Q.: A conceptual modeling framework for network analytics. Data Knowl.
Eng. 99, 59–71 (2015)

UMLtoGraphDB: Mapping Conceptual
Schemas to Graph Databases

Gwendal Daniel1(B), Gerson Sunyé1, and Jordi Cabot2,3

1 AtlanMod Team, Inria, Mines Nantes, Lina, Nantes, France
{gwendal.daniel,gerson.sunye}@inria.fr

2 ICREA, Barcelona, Spain
3 Internet Interdisciplinary Institute, UOC, Barcelona, Spain

jordi.cabot@icrea.cat

Abstract. The need to store and manipulate large volume of (unstruc-
tured) data has led to the development of several NoSQL databases for
better scalability. Graph databases are a particular kind of NoSQL data-
bases that have proven their efficiency to store and query highly intercon-
nected data, and have become a promising solution for multiple applica-
tions. While the mapping of conceptual schemas to relational databases
is a well-studied field of research, there are only few solutions that tar-
get conceptual modeling for NoSQL databases and even less focusing on
graph databases. This is specially true when dealing with the mapping of
business rules and constraints in the conceptual schema. In this article we
describe a mapping from UML/OCL conceptual schemas to Blueprints,
an abstraction layer on top of a variety of graph databases, and Gremlin,
a graph traversal language, via an intermediate Graph metamodel. Tool
support is fully available.

Keywords: Database design · UML · OCL · NoSQL · Graph database ·
Gremlin

1 Introduction

NoSQL databases have become a promising solution to enhance scalability, avail-
ability, and query performance of data intensive applications. They often rely on
a schemaless infrastructure, meaning that their schemas are implicitly defined by
the stored data and not formally described. This approach offers great flexibility
since it is possible to use different representations of a same concept (non-uniform
data), but client applications still need to know (at least partially) how concep-
tual elements are stored in the database in order to access and manipulate them.
Acquiring this implicit knowledge of the underlying schema can be an important
issue, for example in data integration processes, where each data source has to
be inspected to find its underlying structure [13].

Graph databases are a particular type of NoSQL databases that represent
data as a set of vertices linked together by edges where both vertices and edges

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 430–444, 2016.
DOI: 10.1007/978-3-319-46397-1 33

UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases 431

can be labeled with a number of property values. Graph databases often pro-
vide advanced and expressive query languages that are particularly optimized
to compute traversals of highly interconnected data. Recently, the graph data-
base ecosystem is gaining popularity in several engineering fields such as social
network [11] or data provenance [1] analysis, and the leading graph database
vendor Neo4j1 is used in production by several companies [16].

In order to take full benefit of NoSQL solutions, designers must be able to
integrate them in current code-generation architectures to use them as target
persistence backend for their conceptual schemas. Unfortunately, while several
solutions provide transformations from ER and UML models to relational data-
base schemas, the same is not true for NoSQL databases as discussed in detail in
the related work. Moreover, NoSQL databases present an additional challenge:
data consistency is a big problem since the vast majority of NoSQL approaches
lack any advanced mechanism for integrity constraint checking [21].

To overcome this situation, we propose the UMLtoGraphDB framework, that
translates conceptual schemas expressed using the Unified Modeling Language
(UML) [24] into a graph representation, and generates database-level queries
from business rules and invariants defined using the Object Constraint Lan-
guage (OCL) [23]. The framework relies on a new GraphDB metamodel, as an
intermediate representation to facilitate the integration of several kinds of graph
databases. Enforcement of (both OCL and structural) constraints is delegated
to an intermediate software component (middleware) in charge of maintaining
the underlying database consistent with the conceptual schema. External appli-
cations can then use this middleware to safely access the database. This is illus-
trated in Fig. 1.

UML Class
Diagram

context B
inv validPrice : self.price > 0context A

inv myInvariant:
self.value > 0

OCL Constraints

Graph Database

Client Applications

Middleware
code generation

Fig. 1. Conceptual model to graph database

The rest of the paper is structured as follows: Sect. 2 presents the UML-
toGraphDB framework and its core components, Sect. 3 introduces the GraphDB
metamodel and details the model-to-model transformation which creates an
instance of it from a UML model. Section 4 presents the transformation that
creates graph database queries from OCL expressions, and Sect. 5 introduces
the code generator. Finally, Sect. 6 describes our tool support, Sect. 7 presents
the related works and Sect. 8 ends up with the conclusions and future work.
1 http://neo4j.com/.

http://neo4j.com/

432 G. Daniel et al.

2 UMLtoGraphDB Approach

UMLtoGraphDB is aligned with the OMG’s MDA standard [22], proposing a
structured methodology to systems development that promotes the separation
between a specification defined in a platform independent way (Platform Inde-
pendent Model, PIM), and the refinement of that specification adapted to the
technical constraints of the implementation platform (Platform Specific Model,
PSM). A model-to-model transformation (M2M) generates PSM models from
PIMs while a model-to-text transformation typically takes care of producing
the final code out of the PSM models. This PIM-to-PSM phased architecture
brings two important benefits: (i) the PIM level focuses on the specification
of the structure and functions, raising the level of abstraction and postponing
technical details to the PSM level. (ii) Multiple PSMs can be generated from
one PIM, improving portability and reusability. Moreover, using an intermediate
PSM model instead of a direct PIM-to-code approach allows designers to tune
the generation when needed and simplify the transformations by reducing the
semantic gap between their input and output artefacts.

In our scenario, the initial UML and OCL models would conform to the PIM
level. UMLtoGraphDB takes care of generating the PSM and code from them.
Figure 2 presents the different component of the UMLtoGraphDB framework
(light-grey box).

In particular, Class2GraphDB (1) is the first M2M of the UMLtoGraphDB
framework. It is in charge of the creation of a low-level graph representa-
tion (PSM) from the input UML class diagram (PIM). The output of the
Class2GraphDB transformation is a GraphDB Model (2), conforming to the
GraphDB metamodel (Sect. 3). This metamodel is defined at the PSM level,
and describes data structures in terms of graph primitives, such as vertices or
edges. The OCL2Gremlin transformation (3) is the second M2M in the UML-
toGraphDB framework. It is in charge of the translation of the OCL constraints,
queries, and business rules defined at the PIM level into graph-level queries. It
produces a Gremlin Model, conforming to the Gremlin language metamodel
that complements the previous GraphDB one.

The last step in MDA processes is a PSM-to-code transformation, which
generates the software artifacts (database schema, code, configuration files
. . .) in the target platform. In our approach, this final step is handled by
the Graph2Code (5) transformation (Sect. 5) that processes the generated
GraphDB and Gremlin models to create a set of Java Classes wrapping the
structure of the database, the associated constraints, and the business rules.
These Java classes compose the Middleware layer (6) presented in Fig. 1, and
contain the generated code to access the physical Graph Database (7).

To illustrate the different transformation steps of our framework we intro-
duce as a running example the conceptual schema presented in Fig. 3 repre-
senting a simple excerpt of an e-commerce application. This schema is specified
using the UML notation, and describes Client, Orders, and Products concepts. A
Client is an abstract class defined by a name and an address. PrivateCustomers
and CorporateCustomers are subclasses of Client. They contain respectively a

UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases 433

UML Class Diagram

context Client
inv validPrice : self.price > 0context Order

inv validOrder : self.
shipment < self.delivery

OCL Constraints

Class2GraphDB
Transformation GraphDB Model

OCL2Gremlin
Transformation

Gremlin Model

Graph2Code
Transformation

Graph Database

(1) (2)

(3) (4)

(5)

(7)
(6)

UML2GraphDB

Middleware

Fig. 2. Overview of the UMLtoGraphDB infrastructure

Fig. 3. Class diagram of a simple e-commerce application

cardNumber and a contractRef attribute. Clients own Orders, that are defined
by a reference, a shipmentDate, and a deliveryDate. In addition, an Order main-
tains a paid attribute, that is set to true if the Order has been paid. Products
are defined by their name, price, and a textual description and are linked to
Orders through the OrderLine association class, which records the quantity and
the price of each Product in a given Order.

In addition, the conceptual data model defines three textual OCL constraints
(presented in Listing 1), which represent basic business rules. The first one checks
that the price of a Product is always positive, the second one verifies that the
shipmentDate of an Order precedes its deliveryDate, and the last one ensures a
Client has less than three unpaid Orders.

context Product inv va l i dP r i c e : s e l f . p r i c e > 0
context Order inv val idOrder : s e l f . shipmentDate < s e l f . de l ive ryDate
context C l i en t inv maxUnpaidOrders :

s e l f . o rde r s → s e l e c t (o | not o . paid) → s i z e () < 3

Listing 1. Textual Constraints

434 G. Daniel et al.

3 Mapping UML Class Diagram to GraphDB

In this section we present the Class2Graph transformation, which is the ini-
tial step in the approach presented in Fig. 2. We first introduce the GraphDB
metamodel and then, we focus on the transformation itself.

3.1 GraphDB Metamodel

The GraphDB metamodel defines the possible structure of all GraphDB mod-
els. It is compliant with the Blueprints [26] specification, which is an interface
designed to unify NoSQL database access under a common API. Initially devel-
oped for graph stores, Blueprints has been implemented by a large number of
databases such as Neo4j, OrientDB, and MongoDB. The Blueprints API is, to
our knowledge, the only interface unifying several NoSQL databases2. Blueprints
is the base of the Tinkerpop stack: a set of tools to store, serialize, manipulate,
and query graph databases. Among other features, it provides Gremlin [27], a
traversal query language designed to query Blueprints databases.

Figure 4 presents the GraphDB metamodel. A GraphSpecification element
represents the top-level container that owns all the objects. It has a baseDB
attribute, that defines the concrete database to instantiate under the Blueprints
API. In our prototype, the baseDB can be either Neo4j or OrientDB, two well
known graph databases. GraphSpecification contains all the VertexDefinitions
and EdgeDefinitions through the associations vertices and edges.

A VertexDefinition can be unique, meaning that there is only one vertex in
the database that conforms to it. VertexDefinitions and EdgeDefinitions can be
linked together using outEdges and inEdges associations, meaning respectively
that a VertexDefinition has outgoing edges and incoming edges. In addition,
VertexDefinition and EdgeDefinition are both subtypes of GraphElement, which
can define a set of labels that describe the type of the element, and a set of Prop-
ertiesDefinition through its properties reference. In graph databases, properties
are represented by a key (the name of the property) and a Type. In the first
version of this metamodel we define four primitive types: Object, Integer, String,
and Boolean.

3.2 Class2GraphDB Transformation

Intuitively, the transformation consists of mapping UML Classes to VertexDe-
finitions, Associations to EdgeDefinitions, and AssociationClasses to new Ver-
texDefinitions connected to the ones representing the involved classes. The map-
ping also creates PropertyDefinitions for each Attribute in the input model, and
add them to the corresponding mapped element.

Note that GraphDB has no construct to represent explicitly inheritance, and
thus, the mapping has to deal with inherited attributes and associations. To han-
dle them, the translation finds all the attributes and associations in the parent

2 Implementation list is available at https://github.com/tinkerpop/blueprints.

https://github.com/tinkerpop/blueprints

UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases 435

Fig. 4. GraphDB metamodel

hierarchy of each class, and adds them to the mapped VertexDefinition. While
this creates duplicated elements in the GraphDB model, it is the more direct
representation to facilitate queries on the GraphDB model. In the following, we
describe this transformation in more detail.

A class diagram CD is defined as a tuple CD = (Cl,As,Ac, I), where Cl is
the set of classes, As is the set of associations, Ac is the set of association classes,
and I the set of pairs of classes such as (c1, c2) represents the fact that c1 is a
direct or indirect subclass of c2. Note that the first version of UMLtoGraphDB
transforms only a subset of the class diagram, for example enumerations and
interfaces supports are planned as future work.

A GraphDB diagram GD is defined as a tuple GD = (V,E, P), where V
is set of vertex definitions, and E the set of edge definitions, and P the set of
property definitions that compose the graph.

– R1: each class c ∈ Cl, not c.isAbstract is mapped to a vertex definition v ∈
V , where v.label = c.name ∪ cparents.name, with cparents ⊂ Cl and ∀p ∈
cparents, (c, p) ∈ I.

– R2: each attribute a ∈ (c ∪ cparents).attributes is mapped to a property defi-
nition p, where p.key = a.name, p.type = a.type, and added to the property
list of its mapped container v such as p ∈ v.properties.

– R3: each association as ∈ As between two classes c1, c2 ∈ Cl is mapped to an
edge definition e ∈ E, where e.label = as.name, e.tail = v1, and e.head = v2,
where v1 and v2 are the VertexDefinitions representing c1 and c2. Note that
e.tail and e.head values are set according to the direction of the association.
If the association is not directed, a second edge definitions eopposite is created,
where eopposite.label = as.name, eopposite.tail = v2, and eopposite.head = v1,
representing the second possible direction of the association. Aggregation asso-
ciations are mapped the same way, but their semantic is handled differently in
the generated code. In order to support inherited associations, EdgeDefinitions
are also created to represent associations involving the parents of c.

– R4: each association as ∈ As between multiple classes c1...cn ∈ Cl is mapped
to a vertex definition vasso such as vasso.label = as.name and a set of EdgeDe-
finitions ei.tail = vi and ei.head = vasso, associating the created vertex defi-
nition to the ones representing c1...cn.

436 G. Daniel et al.

– R5: each association class ac ∈ Ac between classes c1...cn is mapped like
an association between multiple classes using a vertex definition vac such as
vac.label = ac.name. As for a regular class, vac contains the properties corre-
sponding to the attributes ac.attributes, and a set of EdgeDefinitions ei ∈ E
where ei.tail = vi and ei.head = vac.

To better illustrate this mapping, we now describe how the GraphDB model
shown in Fig. 5 is created from the example presented in Fig. 3. Note that for
the sake of readability we only show an excerpt of the created GraphDB model.
To begin with, all the classes are translated into VertexDefinition instances fol-
lowing R1. This process generates the elements v1, v2, v3, and v4, with the
labels (Client, PrivateCustomer), (Client,CorporateCustomer), Order, and Prod-
uct. Then, R2 is applied to transform attributes into PropertyDefinitions. For
example, the attribute name of the class Client is mapped to the PropertyDefin-
ition p1, which defines a key name and a type String. These PropertyDefinition
elements are linked to their containing VertexDefinition using the properties
association. Once this first step has been done, R3 is applied on the association
orders, mapping it to the EdgeDefinitions e1 and e2, containing the name of the
association. VertexDefinitions representing PrivateCustomer and CorporateCus-
tomer classes are then linked to the one representing Order, respectively with
e1 and e2. Since the association orders is directed, the transformation puts v1
and v2 as the tail of the edge, and v3 as its head. Then, the association class
OrderLine is transformed by R5 to the VertexDefinition v5, and its attributes
productPrice and quantity are transformed into the PropertyDefinitions p6 and
p7. Finally, two EdgeDefinitions (e3 and e4) are also created to link the Ver-
texDefinition v3 and v4 to it.

Fig. 5. Excerpt of the mapped GraphDB model

UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases 437

These mapping rules have also been specified in ATL [14], which is a domain-
specific language for defining model-to-model transformations aligned with the
QVT standard [15]. ATL provides both declarative (rule-based) and imperative
constructs for transforming and manipulating models. As an example, Listing 2
shows the ATL transformation rule that maps a UML Class to a VertexDe-
finition. It is applied for each non-abstract Class element, excepted Associa-
tionClasses, which have a particular mapping, as explained in Sect. 3. The rule
creates a VertexDefinition element, and sets its label attribute with the name
of each Class in its parent hierarchy. The set of parent Classes is computed by
the helper getParentClassHierarchy, which returns a sequence containing all
the parents of the current Class. Finally, VertexDefinition properties are set, by
getting all the attributes from the parent hierarchy, and are transformed by the
abstract lazy rule GenericAttribute2Property. The full ATL transformation
is available in the project repository3.

r u l e C la s s2Ver t exDe f in i t i on {
from

c l a s s : UML! Class (not (c l a s s . oc lIsTypeOf (UML! As soc i a t i onC la s s)) and
not (c l a s s . ab s t r a c t))

to
ver tex : Graph ! Ver t exDe f in i t i on (
l a b e l s ← c l a s s . getParentClassHierarchy () → c o l l e c t (cc | cc . name)

−− Generate a property f o r each Att r ibute in the c l a s s h i e ra r chy
p r op e r t i e s ← c l a s s . getParentClassHierarchy ()

→ c o l l e c t (cc | cc . a t t r i bu t e)
→ c o l l e c t (a t t | thisModule . Gener icAttr ibute2Property (a t t))

)
}

Listing 2. Class2VertexDefinition ATL Transformation Rule

4 Translating OCL Expressions to Gremlin

Once the GraphDB model has been created, another transformation is performed
to translate the OCL expressions defined in the conceptual schema into a Gremlin
query model. The mapping presented in this Section is adapted from the one
presented in [8] dedicated to OCL query evaluation on NeoEMF, a scalable model
persistence framework designed to store models into graph databases [2]. In this
Section, we present the Gremlin language and describe how OCL expressions are
transformed into Gremlin queries according to the UML to GraphDB mapping.

4.1 The Gremlin Query Language

Gremlin is a Groovy domain-specific language built over Pipes, a data-flow
framework on top of Blueprints. We have chosen Gremlin as the target query
language for UMLtoGraphDB due to its adoption in several graph databases.

Gremlin is based on the concept of process graphs. A process graph is com-
posed of vertices representing computational units and communication edges
3 https://github.com/atlanmod/UML2NoSQL.

https://github.com/atlanmod/UML2NoSQL

438 G. Daniel et al.

which can be combined to create a complex processing flow. In the Gremlin
terminology, these complex processing flows are called traversals, and are com-
posed of a chain of simple computational units named steps. Gremlin defines four
types of steps: Transform steps that map inputs of a given type to outputs
of another type, Filter steps, selecting or rejecting input elements according
to a given condition, Branch steps, which split the computation into several
parallel sub-traversals, and side-effect steps that perform operations like edge
or vertex creation, property update, or variable definition or assignment.

In addition, the step interface provides a set of built-in methods to access
meta information: number of objects in a step, output existence, or first element
in a step. These methods can be called inside a traversal to control its execution
or check conditions on particular elements in a step.

4.2 OCL2Gremlin Transformation

Table 1 presents the mapping between OCL expressions and Gremlin concepts.
Supported OCL expressions are divided into four categories based on Gremlin
step types: transformations, collection operations, iterators, and general expres-
sions. Note that due to lack of space we only present a subset of the OCL
expressions which are supported by our approach. A complete version of this
mapping is available in previous work [8].

These mappings are systematically applied on the input OCL expression,
following a postorder traversal of the OCL Abstract Syntax Tree. As an example,
Listing 3 shows the Gremlin queries generated from the OCL constraints of the
running example (Sect. 2). The v variable represents the vertex that is being
currently checked, and the following steps are created using the mapping. Note
that generated expressions are queries that return a boolean value. These queries
are embedded in checking methods during the generation phase (Sect. 5).

v . property (” p r i c e ”) > 0 ; // va l i dP r i c e
v . property (” shipmentDate”) < s e l f . property (” de l ive ryDate ”) ; //

va l idOrder
v . outE (” orde r s ”) . inV . f i l t e r { i t . property (”paid ”)==f a l s e }

. count () < 3 ; // maxUnpaidOrders

Listing 3. Generated Gremlin Queries

5 Code Generation

Our code-generator relies on the Blueprints API for interacting with the graph
database in a vendor neutral way. We first briefly review this API and then
we show how we leverage it to enforce that any application aiming to query/s-
tore data through the created middleware does it so according to the its initial
UML/OCL conceptual schema.

UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases 439

Table 1. OCL to Gremlin mapping

OCL expression Gremlin step

Type “Type.name”

C.allInstances() g.V().hasLabel(“C.name”)

collect(attribute) property(attribute)

collect(reference) outE(‘reference’).inV

oclIsTypeOf(C) o.hasLabel(“C.name”)

col1→union(col2) col1.fill(var1); col2.fill(var2); union(var1, var2);

including(object) gather{it << object;}.scatter;

excluding(object) except([object]);

size() count()

isEmpty() toList().isEmpty()

select(condition) c.filter{condition}
reject(condition) c.filter{!(condition)}
exists(expression) filter{condition}.hasNext()

=, >,>=, <,<=, <> ==, >,>=, <,<=, ! =

+,−, /,%, ∗ +,−, /,%, ∗
and, or, not &&, ‖, !

variable variable

literals literals

5.1 Blueprints API

The Blueprints API is composed of a set of Java classes to manipulate graph
databases in a generic way. These classes are wrappers for database-level ele-
ments, such as vertices and edges, providing methods to access, update, and
delete them. A Blueprints database is instantiated using a GraphFactory, that
takes a configuration file containing the properties of the databases (type of the
underlying graph engine, allocated memory . . .) and creates the corresponding
graph store.

The Blueprints Vertex class provides the methods addEdge(String label,
Vertex otherEnd) and removeEdge(otherEnd) that allow to connect/discon-
nect two vertices by creating/deleting an edge between the current vertex
and otherEnd with the given label. Blueprints also defines the vertex method
property(String key), that retrieve the value of the vertex property defined
by the given key. In addition, the Blueprints API provides the traversal()
method, that allows to send Gremlin traversals to the database and return the
subgraph resulting from that query.

A complete reference of the Blueprints API is available in [26].

440 G. Daniel et al.

5.2 Graph2Code Transformation

The final step in our UMLtoGraphDB process is the database and code artifacts
generation. Figure 6 presents the infrastructure generated by the Graph2Code
transformation. In short, the generator processes the GraphDB model to retrieve
all the VertexDefinition elements and, for each one, it creates a corresponding
Java class with the relevant getters and setters for its attributes (derived from
the properties definitions linked to the vertex) and associations (derived from
the input/output edges of the vertex).

GraphDB Model

Gremlin Model

Graph2Code
Generator

Middleware

Graph
Database

Configuration
File

blueprints database creation
constraint execution
navigation

graph & database properties

Blueprints API

concrete database creation
native query execution

Fig. 6. Generated infrastructure

Listing 4 presents an excerpt of the Java class generated from the Client
element. Note that this class extends BlueprintsBean, which is a generic class
that we provide as part of the UMLtoGraphDB infrastructure. BlueprintsBean
provides auxiliary methods to connect the class with the Graph database via the
Blueprints API and facilitates the creation and management of graph elements.

Once this basic Java class structure is completed, the generator starts
processing the Gremlin Model to create additional methods. Each method is
in charge of checking one of the OCL constraints (or queries) in the con-
ceptual schema. As usual, checking methods return a boolean value (false if
the constraint is violated). As an example, Listing 4 includes the method
checkMaxUnpaidOrder executing the Gremlin traversal mapped from the
OCL expression self .orders→select (o | not o.paid)→size() < 3 (this mapping is
detailed in Sect. 4). The generated expression follows the syntax variant of the
Gremlin internal DSL and not the Groovy-based syntax, both versions can be
generated by our infrastructure. Note that the task of calling the generated
constraint-checking method is responsibility of the client application. Automatic
and incremental checking of these constraints is left for future work.

Finally, the Graph2Code generator creates a Configuration File that con-
tains the graph and database properties, and is used by the Blueprints API to
instantiate the concrete graph engine.

UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases 441

pub l i c c l a s s C l i en t extends BlueprintsBean {
pub l i c S t r ing getName () {

re turn (St r ing) t h i s . ve r tex . property (”name”) . va lue () ;
}
pub l i c S t r ing getAddress () {

re turn (St r ing) t h i s . ve r tex . property (” address ”) . va lue () ;
}
pub l i c void setName (St r ing newName) {

t h i s . ve r tex . property (”name” ,newName) ;
}
pub l i c void setAddress (S t r ing newAddress) {

t h i s . ve r tex . property (” address ” , newAddress) ;
}
pub l i c void addOrder (Order order) {

t h i s . ve r tex . addEdge (” orde r s ” , order . getVertex ()) ;
}
pub l i c void removeOrder (Order order) {

t h i s . ve r tex . removeEdge (order . getVertex ()) ;
}
pub l i c boolean checkMaxUnpaidOrders () {

re turn t h i s . graph . t r a v e r s a l () .V(t h i s . ve r tex) . outE (” orde r s ”)
. inV () . f i l t e r (v → v . get () .<Boolean>property (”paid ”) . va lue ())

. count () . i s (P . l t (3)) . hasNext () ;
}

}

Listing 4. Generated Client Java Class

6 Tool Support

UMLtoGraphDB has been implemented as a collection of open-source Eclipse
plugins, available on Github4. UMLtoGraphDB takes as input the UML and
OCL files (defined, for instance, using Eclipse-based UML editors such as
Papyrus5), that are then translated, respectively, by the Class2GraphDB and
OCL2Gremlin ATL transformations seen before. These transformations add
up to a total of 110 rules and helper functions.

The code-generator is implemented using the XTend programming lan-
guage [3]. Even if this language was initially designed as a template-based lan-
guage for generation tasks it has now evolved to a more general programming
language that provides syntactic sugar, lambda expressions and other useful
extensions on top of Java. The generator takes the GraphDB and Gremlin mod-
els and processes them as described in Sect. 5.

The time needed by the entire transformation chain to produce the Java code
from the input UML and OCL specifications is in the order of a few seconds for
the several examples we have tested. A precise analysis of the scalability of the
transformation performance according to the size of the input for very large
conceptual model is left for future work.

4 https://github.com/atlanmod/UML2NoSQL.
5 https://eclipse.org/papyrus/.

https://github.com/atlanmod/UML2NoSQL
https://eclipse.org/papyrus/

442 G. Daniel et al.

7 Related Work

Mapping conceptual schemas to relational databases is a well-studied field of
research [19]. A few works also cover schemas that include (OCL) constraints. For
example, Demuth and Hussman [9] propose a mapping from UML (augmented
with OCL constraints) to SQL that covers most of OCL and implement it via
a code generator [10] that automates the process. Brambilla et al. [4] propose a
methodology to implement integrity constraints into relational databases recom-
mending alternative implementations based on performance parameters. While
these approaches are well-suited for relational databases, they all rely on the
generation of database constraints. In a NoSQL environment, and especially for
graph databases, there is a lack of support for built-in constraint constructs, and
data validation must be delegated to the application layer as UMLtoGraphDB
does.

Li et al. proposed an approach to transform UML class diagrams into a HBase
data model [18], by mapping classes to tables, attributes to columns, and pro-
viding transformation rules for associations, compositions, and generalization.
Still, it is only applicable to column-based datastores, and does not support the
definition of custom OCL constraints and business rules.

More specific to NoSQL databases, the NoSQL Schema Evaluator [20] gen-
erates query implementation plans from a conceptual schema and workload def-
inition. For now, the approach is limited to Cassandra, but authors intend to
adapt it to different data models, such as key-values and document stores. How-
ever, this solution does not take into account constraints specified in the con-
ceptual model. Sevilla et al. [25] presented a tool to infer versioned schemas
from NoSQL databases. The resulting model is then used to automatically gen-
erate a viewer and validator for the schema but they do not aim to provide
support for a full-fledged application nor consider the addition of constraints on
the reversed schema. Bugiotti et al. [5] propose a database design methodology
for NoSQL databases. It relies on NoAM, an abstract data model that aims to
represent NoSQL systems in a system-independent way. NoAM models can be
implemented in several NoSQL databases, including key-value stores, document
databases, and extensible record stores. Instead, we focus on generating NoSQL
databases from higher-level UML models, and thus, designers do not need to
learn a new language/platform. Nevertheless, NoAM could be integrated in our
approach if we manage to extend it with constraint support. In that case, NoAM
could be seen as a PSM derived from UML models and OCL constraints, and
can be used to implement non-graph databases, which are not supported by our
approach for now.

8 Conclusion and Future Work

In this article we have presented the UMLtoGraphDB framework, a MDA-based
approach to implement (UML) conceptual schemas in graph databases, including
the generation of the code required to check the OCL constraints defined in the

UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases 443

schema. Our approach is specified as a chain of model transformations that use
a new intermediate GraphDB metamodel. This metamodel can also be regarded
as a kind of UML profile (and could be easily reexpressed as such) for graph
databases.

As future work, we plan to provide refactoring operations on top of the
GraphDB model to allow designers to tune the data representation according
to specific needs, such as query execution performance or memory consumption.
We also plan to extend our approach to cover reverse engineering scenarios,
by adapting existing work on schema extraction from relational databases [7]
to graph databases. Another ongoing work pursues adapting our framework to
cover multiple database types. More precisely, we aim to support conceptual
schema fragmentation between several databases (even mixing NoSQL and SQL
ones). This requires a mechanism to evaluate constraints over several persistence
solutions and query languages. Apache Drill [12] or Hibernate OGM [17] could
be reused for this.

Finally, we plan to reuse existing work on the integration of incremental
constraint checking [6] as part of the code-generation phase so that the scalable
performance of the graph database is not hampered by the constraint evaluation
phase.

References

1. Anand, M.K., Bowers, S., Ludäscher, B.: Techniques for efficiently querying scien-
tific workflow provenance graphs. In: EDBT, vol. 10, pp. 287–298 (2010)

2. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, a scal-
able persistence layer for EMF models. In: Cabot, J., Rubin, J. (eds.) ECMFA
2014. LNCS, vol. 8569, pp. 230–241. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-09195-2 15

3. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing Ltd., Birmingham (2013)

4. Brambilla, M., Cabot, J.: Constraint tuning and management for web applications.
In: Proceedings of the 6th ICWE Conference, pp. 345–352. ACM (2006)

5. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL
systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol.
8824, pp. 223–231. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12206-9 18

6. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. JSS 82(9), 1459–1478 (2009)

7. Chiang, R.H.L., Barron, T.M., Storey, V.C.: Reverse engineering of relational data-
bases: extraction of an EER model from a relational database. Data Knowl. Eng.
12(2), 107–142 (1994)

8. Daniel, G., Sunyé, G., Cabot, J.: Mogwäı: a framework to handle complex queries
on large models. In: Proceedings of the 10th RCIS Conference. IEEE (2016, to
appear). http://tinyurl.com/zx6cfam

9. Demuth, B., Hussmann, H.: Using UML/OCL constraints for relational database
design. In: France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 598–613.
Springer, Heidelberg (1999). doi:10.1007/3-540-46852-8 42

http://dx.doi.org/10.1007/978-3-319-09195-2_15
http://dx.doi.org/10.1007/978-3-319-09195-2_15
http://dx.doi.org/10.1007/978-3-319-12206-9_18
http://tinyurl.com/zx6cfam
http://dx.doi.org/10.1007/3-540-46852-8_42

444 G. Daniel et al.

10. Demuth, B., Hussmann, H., Loecher, S.: OCL as a specification language for
business rules in database applications. In: Gogolla, M., Kobryn, C. (eds.) UML
2001. LNCS, vol. 2185, pp. 104–117. Springer, Heidelberg (2001). doi:10.1007/
3-540-45441-1 9

11. Fan, W.: Graph pattern matching revised for social network analysis. In: Proceed-
ings of the 15th ICDT, pp. 8–21. ACM (2012)

12. Hausenblas, M., Nadeau, J.: Apache drill: interactive ad-hoc analysis at scale. Big
Data 1(2), 100–104 (2013)

13. Cánovas Izquierdo, J.L., Cabot, J.: Discovering implicit schemas in JSON Data.
In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68–83.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39200-9 8

14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
SCP 72(1–2), 31–39 (2008)

15. Jouault, F., Kurtev, I.: On the architectural alignment of ATL and QVT. In:
Proceedings of the 21st SAC Conference, pp. 1188–1195. ACM (2006)

16. Lal, M.: Neo4j Graph Data Modeling. Packt Publishing Ltd., Birmingham (2015)
17. Leonard, A.: Pro Hibernate and MongoDB. Apress, Berkeley (2013)
18. Li, Y., Gu, P., Zhang, C.: Transforming UML class diagrams into HBase based on

meta-model. In: Proceedings of the 4th ISEEE Conference, vol. 2, pp. 720–724.
IEEE (2014)

19. Marcos, E., Vela, B., Cavero, J.M.: A methodological approach for object-relational
database design using UML. SoSyM 2(1), 59–72 (2003)

20. Mior, M.J., Salem, K., Aboulnaga, A., Liu, R., NoSE: schema design for NoSQL
applications. In: 32nd ICDE Conference. IEEE (2016, accepted). http://tinyurl.
com/hqoxddx

21. Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., Abramov, J.: Security issues in
NoSQL databases. In: Proceedings of the 10th TrustCom Conference, pp. 541–
547. IEEE (2011)

22. OMG: MDA Specifications (2016). http://www.omg.org/mda/specs.htm
23. OMG: OCL Specification (2016). www.omg.org/spec/OCL
24. OMG: UML Specification (2016). www.omg.org/spec/UML
25. Sevilla Ruiz, D., Morales, S.F., Garćıa Molina, J.: Inferring versioned schemas from

NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle,
S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25264-3 35

26. TinkerPop: Blueprints API (2016). blueprints.tinkerpop.com
27. TinkerPop: The Gremlin Language (2016). gremlin.tinkerpop.com

http://dx.doi.org/10.1007/3-540-45441-1_9
http://dx.doi.org/10.1007/3-540-45441-1_9
http://dx.doi.org/10.1007/978-3-642-39200-9_8
http://tinyurl.com/hqoxddx
http://tinyurl.com/hqoxddx
http://www.omg.org/mda/specs.htm
www.omg.org/spec/OCL
www.omg.org/spec/UML
http://dx.doi.org/10.1007/978-3-319-25264-3_35
http://blueprints.tinkerpop.com
http://gremlin.tinkerpop.com

Facilitating Data-Metadata Transformation
by Domain Specialists in a Web-Based

Information System Using Simple
Correspondences

Scott Britell1(B), Lois M.L. Delcambre1, and Paolo Atzeni2

1 Department of Computer Science, Portland State University,
PO Box 751, Portland, OR 97207, USA
britell@cs.pdx.edu, lmd@pdx.edu

2 Dipartimento di Ingegneria, Università Roma Tre,
Via della Vasca Navale 79, 00146 Roma, Italy

atzeni@dia.uniroma3.it

Abstract. We seek to empower domain specialists and non-technical
web designers to be able to design and configure their system directly,
without necessarily requiring interaction with a software developer or DB
specialist. We observe that structured information shown on a web page
presents a conceptual model of the information shown; and, that such
web pages make a variety of choices regarding whether or not appli-
cation information is presented in the data (with or without schema
labels) or in the metadata (schema). Also, the same application may
present the same data in different schemas on different pages. In this
paper, we extend our earlier work—on providing generic widgets for
structured information that can be easily used and configured by domain
specialists—to also include data/metadata transformation. Thus, we put
data/metadata transformation (from one conceptual model to another)
in the hands of domain specialists without database expertise. The con-
tributions of this paper are: showing how our approach can be used to
support data/metadata transformation in both directions and demon-
strating this capability in a non-trivial case study. The paper also pro-
vides evidence that non-expert users can successfully provide simple cor-
respondences through the results of a small-scale user study.

1 Introduction

The overall goal of this research is to empower non-technical users to easily
configure their web-based information system without requiring a programmer
or DB/SQL expert. We believe that domain specialists understand the seman-
tics of their data and are in the best position to decide how to display and
manipulate their data. Modern content management systems (CMSs) share the
same goal; they typically allow the domain specialist to consider their data in an
entity-centric conceptual model where each entity has (single- or multi-valued)
attributes and outbound references/links. While a CMS may also offer view or
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 445–459, 2016.
DOI: 10.1007/978-3-319-46397-1 34

446 S. Britell et al.

template mechanisms that allow complex data structures to be displayed, they
offer somewhat limited flexibility and need to be modified by software developers.
We provide more sophisticated widgets, written in a generic fashion (by software
developers), that can be easily configured by domain specialists, on their own.
Our approach distinguishes the local schema (e.g., an entity-centric, conceptual
view of domain data typically offered by a CMS), a canonical structure (i.e., a
generic schema for widget developers), and a domain structure that sits between
the two.

Take, for example, the university personnel widgets shown in Fig. 1. The local
schemas are shown in the entity-centric tables on the left. For presentation on
the web page, the widget transforms data from the local schema into the form of
the domain structures (here represented as the schema of the table on the right).
In the example of a university we consider university staff and administrators as
specialists in this domain. The domain specialist provides correspondences (the
lines in Fig. 1) between the local schema and the domain structure. The widget
(shown below each set of tables) is built using a generic schema (the canonical
structure). Domain specialists should be able to easily provide correspondences
since they are working with their own local schema (which they are very familiar
with) and a domain structure (which they should be able to understand). (The
correspondences shown in the top of Fig. 1 are (almost trivially) straightforward.
Actual correspondences may be more complex/interesting.) We offer feedback
dynamically by displaying a preview of the widget as each correspondence is
defined. This may remove the delay or miscommunication that might occur when
a domain specialist must interact with a DB or software developer to make
changes to their site.

Our work to date has focused on generic widgets that display complex
structures [4] and on generic widgets that allow create/edit capability of the
underlying local data through the widgets [5]. The focus of this paper is on
allowing domain specialists to fluidly move data of interest in and out of the
schema, using what is typically called data/metadata transformation, including
the ability to pivot and unpivot data. The contributions of this paper are: (1)
showing how correspondences with domain and canonical structures can sup-
port data/metadata transformations, (2) presenting a case study that shows a
complex, faceted browse widget that uses data/metadata transformation, and
(3) extending our simple correspondences to include a condition in order to
support the classical DB pivot operation. This paper also provides evidence that
non-technical domain users can supply correspondences while using our mapping
tool (with dynamic widget previews) based on our user study.

The paper is organized as follows. Section 2 provides the motivation for our
focus on data/metadata transformation as well as a brief description of our
earlier work that provides the foundation for the work in this paper. Section 3
shows how we are able to support the classical unpivot operation (metadata to
data transformation) and presents our case study that shows how structured
information can be easily mapped to a domain structure that enables the use of
our faceted browse widget. Section 4 generalizes our correspondences to support

Facilitating Data-Metadata Transformation by Domain Specialists 447

Fig. 1. Local schemas (left tables above and below) are transformed into the domain
structures (schema of the right tables) via the shown correspondences (arrowed lines).
The transformed data is then used to populate widgets (shown below tables).

the classical pivot operation as well as other data to metadata transformations.
Section 5 evaluates this work by comparing it to the range of work from the
DB community to support data/metadata transformations including unpivot
and pivot. Section 5 also presents results from our user study that shows that
non-technical domain specialists can easily supply the correspondences that our
work depends on. Related work and conclusions with future work are presented
in Sects. 6 and 7, respectively.

2 Background

Motivation. The standard DB unpivot operation has been studied extensively
in relation to databases [6,18] and information/schema integration/exchange [11,
12,19]. The operation moves information from schema (metadata) to data as

448 S. Britell et al.

shown in Fig. 2, moving from top to bottom. The classical schema for an employee
table (simplified here) is on the top of the figure with attributes for id, name,
email, ext (extension), home (phone), and cell (phone). The unpivoted version
of this table is shown on the bottom of the figure; email, ext, home, and cell
(formerly attribute names) have been unpivoted and appear in the data. Each
employee row on the top has multiple rows on the bottom—one for each of
the non-null, unpivoted attributes. Conversely, the standard DB pivot operation
transforms data with a schema similar to the one on the bottom (consisting of
id, attribute name, attribute value triples) into data with a schema like the one
on the top, moving information from data to schema (metadata).

Fig. 2. Above, a standard schema; below, a schema where the email and phone number
attributes have been unpivoted into a single contact attribute and the metadata (i.e.,
attribute names) from the employee table is transformed into data in the contact type
attribute in the gen emp table.

We believe that structured information shown on a web page presents a con-
ceptual model of the data being displayed. Even for simple, structured data,
e.g., contact information on a public web site for employees at a university,
the conceptual model can vary based on the choices made with regard to data
vs. metadata. Consider the widgets from public web pages showing directory
information for university personnel in Fig. 1. The upper widget shows a clas-
sical conceptual model for an employee where the schema is shown as column
headers. The bottom widget in Fig. 1 shows a mix of classical, combined, and
unpivoted data. Notice that the attribute names Phone, Fax, and E-mail are
shown immediately preceding the data value rather than in a column header,
analogous to the DB unpivot operation followed by a nest operation. We also
see that the faculty name, and title have been combined into a single unnamed
attribute—with only the data values shown (without schema information).

These web pages suggest that these models, with varying amounts of com-
bined and unpivoted data, can be easily understood by end-users. One important
contribution of this paper is allowing domain specialists to easily transform data

Facilitating Data-Metadata Transformation by Domain Specialists 449

to metadata and metadata to data, to decide whether or not to include schema,
and to easily combine nesting, pivot, and unpivot operations.

Foundation. This paper builds on our prior work [3–5] called information
integration with local radiance1 comprised of four main parts: (1) canonical
structures (generic schema fragments), (2) domain structures (schema fragments
with appropriate names), (3) mappings comprised of simple correspondences
from local schemas to domain structures, and (4) a query algebra based on the
extended relational algebra [8] and the nested relational algebra [17].

Domain structures are (small) schema fragments consisting of entities,
attributes, and relationships with domain-appropriate names (like those shown
in the upper part of Figs. 4, 6, 9, and 10, later in the paper); we also use a
straightforward translation to the relational model to represent them (like those
shown in tabular form in Fig. 1).

Our query language extends the nested relational algebra (σ, π, ��, ν, . . . ,
plus γ for grouping [8]) with two new operators: apply (α) and type (τ) [3]. Our
apply operator (α(DT)) is the basis of every query in our system. The apply
operator uses correspondences between local schemas and a domain structure to
perform information integration/transformation. Given a domain entity type or
domain relationship type, from a domain structure, DT , apply will generate table
scan queries for all local structures that the domain type has been mapped to
and then take the union of the results. The apply operator is designed to work
with the underlying (local) schema of multiple databases and then integrate
the results in the form of a global schema (the domain structure). The result
of the apply operator is a set of relational tuples which can be passed to other
relational algebra operators to create more complex queries. Consider the bottom
half of Fig. 1, an apply operation on a domain structure (of the form of the
schema of the right table) will use the correspondences drawn to populate the
Picture, NameInfo, and the Value portion of the ContactInfo Columns. (The
apply operator does not perform the nest operation; the nest operator of the
nested relational algebra can be used subsequent to the apply). The local type
operator (τn(χ)) takes a domain structure component (n) and a query (χ) and
introduces an attribute into the query result containing the local structure names
to which the domain structure component (entity, attribute, or relationship)
was mapped. For example, in the bottom half of Fig. 1, the type information in
ContactInfo would be added using a query like τContactInfo(α(DT)), where we
first use our apply operator to populate the data then use τ to get the correct
local type.

A canonical structure is a generically named schema fragment used by a
widget developer. As an example, Fig. 3 shows the canonical structure that can
be used to build the widget shown in the top half of Fig. 1—a generically named
entity, an id attribute, and a number of generic attributes. The widget can then
be built by writing a query in our algebra against the canonical structure and
then writing code to display the results. A site developer can then instantiate
1 In our earlier papers, we called it local dominance.

450 S. Britell et al.

Fig. 3. A canonical struc-
ture used to build a wid-
get like that shown in the
top of Fig. 1.

Fig. 4. A local employee schema (below) is
mapped to perform an unpivot operation to
a generic employee domain structure (top).

the widget by specifying a domain structure to work with the widget, in this
example the structure for the table on the right side of Fig. 1. A widget may be
instantiated multiple times in a site using different domain structures. Once a
widget has been instantiated with a domain structure, a domain specialist can
map their local schema to the domain structure for use by the widget; where a
mapping consists of a set of simple correspondences from a local schema to the
domain structure (like the lines shown in Fig. 1).

3 Unpivot

To see how simple correspondences and domain structures used in our system can
support an unpivot operation, consider Fig. 4. The local schema, shown at the
bottom of the figure, has a classical structure with five descriptive attributes plus
the id attribute for the employee entity. The domain structure at the top shows a
generic employee entity (named gen emp) with an id and name attribute and an
attribute called contact. In this example, the local id and name attributes have
been mapped to the id and name attributes in the domain structure, respectively.
(Corresponding attributes in the local schema and domain structure need not
have the same name.) The email, ext, home, and cell attributes are all mapped
to the contact attribute in the domain structure. These four correspondences to
the contact attribute do part of the unpivot operation; they combine data from
the four local attributes into a single attribute in the domain structure.

The queries needed to transform the employee table based on these corre-
spondences are shown in Fig. 5. The apply (α) operator operates on the generic
employee entity in the domain structure (gen emp) to produce the intermediate
result shown in the middle of the figure. Here we see that the correspondences
have been used, as expected. The type operator (τ) is then applied to this inter-
mediate result with a parameter of contact to extract the local type (schema)
name from the local schema for the data values that appears in the contact
attribute. The final result is shown at the bottom of the figure.

Facilitating Data-Metadata Transformation by Domain Specialists 451

Fig. 5. An unpivot using our query operators and the correspondences and domain
structure shown in Fig. 4

3.1 Case Study: Ensemble and Faceted Browse

As part of the Ensemble2 project we helped develop a number of digital library
collections in the Ensemble portal. The portal was limited to standard browsing
and searching features. The bottom half of Fig. 6 shows the basic ER model
of collections in Ensemble (with a subset of the full attribute set). The por-
tal has two entities (collection and dublin core record) with the single contains
relationship.

A collection of digital library records is shown in the standard Ensemble hier-
archical navigation widget in Fig. 7 with the collection entity instance entitled
“The Beauty and Joy of Computing”3, a curriculum for introductory computer
science, with all of its educational resources. Given the simple ER structure in
the local schema, browsing resources was limited to a basic list of resources in a
collection (the circled 1).

To facilitate browsing of collections we leverage the combination and unpivot
features of IILR to implement a faceted browse widget—where the collection in
the hierarchical navigation widget can be partitioned at any level by any of
the attributes of the resources in the collection. Figure 8 shows the same col-
lection after it has been faceted by class week. The new symbol to the left of
the ± symbol is our facet symbol. After being faceted by week, we see that we
can now also facet each week by any of the remaining attributes that have been
mapped to the facet domain attribute (as shown in Fig. 6). For example, we see

2 http://computingportal.org.
3 http://computingportal.org/node/11172.

http://computingportal.org
http://computingportal.org/node/11172

452 S. Britell et al.

Fig. 6. The local schema (bottom) for collections in the Ensemble portal and the
domain structure (top) used for the faceted browse widget.

Fig. 7. An hierarchical navigation widget in the Ensemble portal without faceting.

Fig. 8. A faceted browse widget in the Ensemble portal where the collection has been
faceted by “Class Week” and then “Computational Thinking Practice”.

Facilitating Data-Metadata Transformation by Domain Specialists 453

that “WEEK 02” has been faceted by computational thinking practice. Each
level of the hierarchy is able to be faceted differently enabling users to quickly
see resources partitioned by any combination of facets. The “Abstracting” com-
putational thinking practice could be further faceted by the facets listed in the
drop down menu (the circled 2) shown in the figure, e.g., “Education Level”,
“Format”, etc.

We show how we can use the domain structure and correspondences from
Fig. 6 and our query language to build our faceted browsing interface. Note that
the query numbers shown on the right margin correspond to the circled numbers
shown in Figs. 7 and 8.

First, to build the original hierarchal browsing structure (Fig. 7) we return
all resources in the collection with id of id:

Resources = πresource id(σcollection id=id(α(Contains))) (1)

The apply operator on the Contains domain structure returns all resource ids
(the projection) in the correct collection (the selection).

Next, we find all facet types and values used in the collection with id id by
joining the Contains domain relationship4 with the Resource domain entity on
resource id for a collection with id id. This query gives us all the facet types
and values in the given collection using the τ operator.

Facets(id) = τFacet(α(Resource) ��resource id=resource id Resources (2)

Once we have all of the facet types and values (i.e., an unpivot) we create the
faceted browse interface in Fig. 8 using the extended relational algebra [8] to pop-
ulate the facet values and counts (the circled 3) and the resources corresponding
to each facet (the circled 4):

Facet Counts(id) = γFacet type,Count(Facet)

(σFacet type=ftype(Facets(id)))) (3)

FResources(id, ftype, fvalue) = πresource id(σFacet type=ftype
∧Facet=fvalue

(Facets(id)))

(4)

4 Pivot

In this section we show how our system can be used for the standard pivot
operation and more generally for data to metadata transformation. Figure 9
shows a transformation in the reverse direction from Sect. 3. We have a local
schema where all contact information is stored in the contact attribute and the
corresponding type is in the contact type attribute. We would like this data to
appear in a pivoted form where contact information is broken out into the email,
ext, home, and cell domain attributes.
4 We use a straightforward translation of the ER model of the domain structures into

the relational model.

454 S. Britell et al.

Fig. 9. An example of the pivot correspondence.

In order for this to work we must tell the system which data from the local
schema should end up in the ext domain attribute, for example. A traditional
correspondence in our system is of the form

C = (id, A,DA)

where each correspondence has an id, a local attribute A, and a corresponding
domain attribute DA.

A conditional correspondence adds a conditional predicate P to the corre-
spondence and has the form

C = (id, A,DA,P)

such that when the correspondence is used in an apply operation, data from
local attribute A will only be in the query result for domain attribute DA when
the predicate P evaluates to true.

We developed the visual syntax for (a limited form of) the predicate, shown
in Fig. 9; a regular correspondence (the solid line) is augmented by the dot
with a dotted line. This visual syntax is translated into a predicate for the
correspondence where data from the local attribute with the solid line will appear
in the domain attribute only when data in the local attribute with the dotted
line is equal to the name of the domain attribute. The correspondence shown in
Fig. 9 results in the predicate

P = (contact type = “ext′′)

In Fig. 10 we show the complete set of correspondences to pivot from the
local schema to the domain structure. The end-user can easily combine regular
correspondences and conditional (dotted) correspondences in a single mapping.
In this case the id and name attributes are mapped directly while the email,
ext, home, and cell attributes are pivoted from the local contact attribute.

Once mappings are created, an apply operation on the domain structure (as
shown in Fig. 11) will use the correspondences and can combine multiple tuples
in the source database into a single tuple in the query answer based on the
correspondences. For example, in the figure we see that four tuples for “Alice”
in the local emp table are combined to make one tuple in the output query; these
tuples are joined based on the id attribute.

Facilitating Data-Metadata Transformation by Domain Specialists 455

Fig. 10. The complete set of corre-
spondences to pivot the local schema
into the domain structure. A user can
create a regular correspondence and
then chose to add a condition (in this
case the specific pivot conditions) for
the contact attribute correspondences.

Fig. 11. The pivot operation, using
the local and domain structures from
Fig. 10 with example employee data.

5 Evaluation

Comparison to Other Systems. Table 1 shows a comparison of our our
system (IILR) to SchemaSQL [12], FIRA/FISQL [18,19], Clio [11], and the
unpivot/pivot operations supported in SQL (in systems like Oracle and SQL
Server).

Table 1. Comparison of data-metadata transformation systems

SQL SchemaSQL FIRA/FISQL CLIO IILR

Can perform Pivot/Unpivot ✓ ✓ ✓ ✓ ✓

Can perform arbitrary metadata-
data transformations

✗ ✓ ✓ ✓ ✓

Can perform arbitrary data-
metadata transformations

✗ ✓ ✓ ✓ ✓

Has a simple visual syntax ✗ ✗ ✗ ✓ ✓

Has a non-ambiguous result ✓ ✓ ✗ ✗ ✓

Has preview capability ✗ ✗ ✗ ✗ ✓

While all these systems can do pivot/unpivot operations, we see that SQL is
quite limited; the syntax is complex. The other three systems allow more general-
ized transformations and Clio provides a simple visual syntax. SQL, SchemaSQL,

456 S. Britell et al.

and our system produce a single non-ambiguous result, whereas FIRA and Clio
can potentially have ambiguous or non-intended results; FIRA relies on the opti-
mal tuple merge (which may not be unique) and Clio generates many different
mappings that may or may not be correct. Our system avoids the ambiguity
problem by limiting users to simple correspondences and maintaining ids. We
have also explicitly built in the preview mechanism for our system; while this
could be implemented on top of the other systems it is not by default.

User Study. We evaluated whether or not non-technical users can supply cor-
respondences (for our structured navigation widget) based on a small-scale user
study. The study consisted of three tasks. The first task was a training task,
where participants were shown how to use the mapping system and how to map
a simple hierarchical local schema to the hierarchical navigation widget. The sec-
ond task mirrored the first task but the local schema names were changed and
the participants were left to create mappings on their own. For the final task,
once again on their own, participants were given a complex university schema
with entities for colleges, departments, research labs, professors, and students
and then asked to create mappings as they saw fit. We did not require users to
create any specific mappings but, rather, were interested in seeing which map-
pings users would create.

Participants were also asked to complete: a pre-test survey about background
knowledge and technical experience; a task-specific survey after each of the non-
training tasks; and, a post-test survey at the end of the study. Table 2 shows
results of the survey. The first two rows show responses to the technical experi-
ence survey. Participants’ database experience ranged from less than 1 year to
over ten years while all had at least three years of web development experience.
In asking about database experience we include using spreadsheets or databases
as experience. While all respondents had at least some experience with data-
bases we did have a broad range of experience from non-expert to expert. The
task-specific survey asked participants to respond to statements using a five
point Likert scale with one being “Strongly Disagree” and five being “Strongly
Agree”. Tasks are indicated by T1 and T2 in Table 2.

Table 2 shows that all users found it easy to create mappings and all were
positive or neutral about the ability to preview mappings using widgets before
saving a mapping. Two of the users disliked using the tool and one user (who
reported liking the tool verbally) failed to complete the post-test survey (the
null cells in the last two rows of the table). There appears to be no correlation
between previous experience or technical knowledge and the ability to create
mappings; both experienced and non-experienced users reported liking and not
liking the tool.

6 Related Work

Like Clio [9], we want users to be able to create mappings by simply drawing
lines from local schemas to domain structures. Some users may map only small

Facilitating Data-Metadata Transformation by Domain Specialists 457

Table 2. User study results (T1/T2 indicate tasks; U1 etc. indicate users)

Question U1 U2 U3 U4 U5 U6 U7 Average

Years of DB experience 10+ <1 5 8 <1 4 10+

Years of Web development experience 10+ 3 5 10+ 3 5 10

“I consider myself an advanced Drupal
user”

3 1 3 1 2 3 5 2.57

T1 “When I created a mapping with
the tool, it was easy”

4 5 3 5 5 5 5 4.57

T1 “Seeing a preview of mapping
results helped me determine if the map-
pings were what I wanted”

2 5 5 5 5 3 2 3.86

T2 “When I created a mapping with
the tool, it was easy”

4 5 5 5 3 5 5 4.57

T2 “Seeing a preview of mapping
results helped me determine if the map-
pings were what I wanted”

3 5 5 3 5 2 5 4

“I enjoyed creating mappings” 2 2 4 4 5 5 3.67

“It would be useful to have mappings
and widgets in websites that I work
with regularly.”

2 2 5 4 5 4 3.67

parts of their local schema (enough for use within a widget) to (typically small)
domain structures. This is in contrast to the typical use case of schema/data
exchange [7,15] and model management systems [2], where an entire source
schema/model is mapped to a target/global schema/model. The flexibility of
our mappings is also inspired by pay-as-you-go data integration such as that
proposed by Madhavan [13].

While our conditional mappings add complexity to our system, we believe
that keeping them simple enough for non-technical users is important. While we
cannot meet the complexity provided by Fagin [7] we believe that the subset of
mappings we can provide is sufficient for what our users want to do.

Exploratory and faceted search [14] has been shown to be a popular method
for navigating digital libraries. A large number of hierarchical search interfaces
have been created [1,10,20] that allow facets to be chosen dynamically. Dynamic
taxonomies [16] can be used to update facets based on the corpora. But these
systems often focus on processing unstructured text. In contrast we focus on
structure; our facets may come from any attribute, from heterogeneously struc-
tured resources. These other systems require technical expertise to configure
and expand, while our widget can be updated by domain specialists by adding
or removing simple correspondences.

458 S. Britell et al.

7 Conclusion

We have shown how IILR can be extended to encompass standard pivot/unpivot
operations and how our system can used to perform a combination of these oper-
ations. We believe that the combination of feedback and easy-to-use systems will
allow non-technical users to take more responsibility for their data management.
We plan to extend this work by incorporating all of the new mapping syntax into
our mapping interface. In addition, we plan to provide a formal characterization
of pivot/unpivot using our system.

Acknowledgments. This work was supported in part by National Science Foundation
grants 0840668 and 1250340. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References

1. Allen, R.B.: Two digital library interfaces that exploit hierarchical structure. In:
Proceedings of DAGS 1995. Electronic Publishing and the Information Superhigh-
way (1995)

2. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2007, pp. 1–12. ACM, New York (2007)

3. Britell, S., Delcambre, L.M.L., Atzeni, P.: Flexible information integration with
local dominance. In: International Conference on Information Modelling and
Knowledge Bases, Kiel, Germany (2014)

4. Britell, S., Delcambre, L.M.L.: Mapping semantic widgets to web-based, domain-
specific collections. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol.
7532, pp. 204–213. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34002-4 16

5. Britell, S., Delcambre, L.M.L., Atzeni, P.: Generic data manipulation in a mixed
global/local conceptual model. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.)
ER 2014. LNCS, vol. 8824, pp. 246–259. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12206-9 20

6. Cunningham, C., Galindo-Legaria, C.A., Graefe, G.: Pivot and unpivot: optimiza-
tion and execution strategies in an RDBMs. In: VLDB 2004, pp. 998–1009. VLDB
Endowment (2004)

7. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

8. Gupta, A., Harinarayan, V., Quass, D.: Generalized projections: a powerful app-
roach to aggregation. In: Proceedings of 21st VLDB Conference, pp. 11–15 (1995)

9. Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: from
research prototype to industrial tool. In: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2005, pp. 805–810.
ACM, New York (2005)

10. Hearst, M.A.: Design recommendations for hierarchical faceted search interfaces.
In: Proceedings of SIGIR 2006 Workshop on Faceted Search (2006)

11. Hernández, M.A., Papotti, P., Tan, W.C.: Data exchange with data-metadata
translations. Proc. VLDB Endow. 1(1), 260–273 (2008)

http://dx.doi.org/10.1007/978-3-642-34002-4_16
http://dx.doi.org/10.1007/978-3-319-12206-9_20
http://dx.doi.org/10.1007/978-3-319-12206-9_20

Facilitating Data-Metadata Transformation by Domain Specialists 459

12. Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: SchemaSQL - a language for
interoperability in relational multi-database systems. In: VLDB 1996, pp. 239–250.
Morgan Kaufmann Publishers Inc., San Francisco (1996)

13. Madhavan, J., Jeffery, S.R., Cohen, S., Dong, X.L., Ko, D., Yu, C., Halevy, A.:
Web-scale data integration: you can only afford to pay as you go. World Wide
Web Internet Web Inf. Syst. 7, 342–350 (2007)

14. Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM 49(4), 41 (2006)

15. Papotti, P., Torlone, R.: Schema exchange: generic mappings for transforming data
and metadata. Data Knowl. Eng. 68(7), 665–682 (2009)

16. Sacco, G.: Dynamic taxonomies: a model for large information bases. IEEE Trans.
Knowl. Data Eng. 12(3), 468–479 (2000)

17. Schek, H.J., Scholl, M.H.: The relational model with relation-valued attributes.
Inf. Syst. 11(2), 137–147 (1986)

18. Wyss, C.M., Robertson, E.L.: A formal characterization of pivot/unpivot. In: Pro-
ceedings of the 14th ACM International Conference on Information and Knowledge
Management, CIKM 2005, pp. 602–608. ACM, New York (2005)

19. Wyss, C.M., Robertson, E.L.: Relational languages for metadata integration. ACM
Trans. Database Syst. 30(2), 624–660 (2005)

20. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search
and browsing. In: CHI 2003, p. 401, April 2003

Conceptual Modeling Guidance

Visualizing User Story Requirements at Multiple
Granularity Levels via Semantic Relatedness

Garm Lucassen(B), Fabiano Dalpiaz, Jan Martijn E.M. van der Werf,
and Sjaak Brinkkemper

Utrecht University, Utrecht, The Netherlands
{g.lucassen,f.dalpiaz,j.m.e.m.vanderwerf,s.brinkkemper}@uu.nl

Abstract. The majority of practitioners express software requirements
using natural text notations such as user stories. Despite the readabil-
ity of text, it is hard for people to build an accurate mental image of
the most relevant entities and relationships. Even converting require-
ments to conceptual models is not sufficient: as the number of require-
ments and concepts grows, obtaining a holistic view of the requirements
becomes increasingly difficult and, eventually, practically impossible. In
this paper, we introduce and experiment with a novel, automated method
for visualizing requirements—by showing the concepts the text references
and their relationships—at different levels of granularity. We build on
two pillars: (i) clustering techniques for grouping elements into coherent
sets so that a simplified overview of the concepts can be created, and
(ii) state-of-the-art, corpus-based semantic relatedness algorithms
between words to measure the extent to which two concepts are related.
We build a proof-of-concept tool and evaluate our approach by applying
it to requirements from four real-world data sets.

1 Introduction

Natural language (NL) is the most popular notation to represent software
requirements: around 60 % of practitioners employ NL as their main artifact
[12]. Moreover, the trend in agile development has boosted the adoption of the
semi-structured NL notation of user stories [11,14,31]: “As a 〈role〉, I want
〈goal〉, so that 〈benefit〉”. Recent research [14] shows that 90 % of practitioners
in agile development adopt user stories.

NL requirements are easy to read but have a major drawback: as their num-
ber increases, the quantity of the involved concepts grows rapidly, making it
increasingly harder for humans to construct an accurate mental model of those
concepts. A possible solution is the (semi-)automated generation of an explicit
conceptual model [6,10,19].

Inspired by these works, we have previously proposed the Visual Narrator
tool that automatically extracts conceptual models from sets of user stories with
satisfactory accuracy (80 %–90 %) [23]. However, our evaluation with practition-
ers indicated that the extracted models quickly become too large to be effectively
explored by analysts.
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 463–478, 2016.
DOI: 10.1007/978-3-319-46397-1 35

464 G. Lucassen et al.

The problem of model comprehensibility can be generalized to the conceptual
modeling field [3,17]: humans’ working-memory capacity restricts the ability to
read models and leads to cognitive overload when the same model includes too
many concepts.

To tackle this problem, we build upon Shneiderman’s visual information seek-
ing mantra: “overview first, zoom/filter, details on demand” [26]. We propose
and experiment with a mechanism for improving the visualization of conceptual
models that are generated by the Visual Narrator from user stories. We make use
of clustering techniques to group the concepts so to obtain an initial overview.

We go beyond existing clustering approaches in literature (see Sect. 5) by
leveraging on state-of-the-art, corpus-based semantic relatedness algorithms
based on neural networks to determine the similarity between concepts [8,28].
The significant improvements in accuracy of these recent approaches trigger our
experimentation of these techniques for guiding the clustering of the concepts in
user stories.

Our approach is novel in that it does not require additional documentation
about the system under development; indeed, it relies on publicly available cor-
puses of data from the Web. Moreover, we focus on conceptual models generated
from user stories, which have a limited expressiveness compared to full-fledged
conceptual models.

Specifically, this paper makes two contributions:

– We devise a method for creating an overview of the concepts in a conceptual
model by creating clusters that contain semantically related concepts;

– We propose a proof-of-concept tool for generating clusters and for zooming
them; we evaluate its feasibility by applying it to user story sets from 4 real-
world cases.

The rest of the paper is structured as follows. Section 2 outlines our back-
ground: the Visual Narrator, semantic similarity, and clustering techniques.
Section 3 presents our method. Section 4 applies our proof-of-concept tool to real-
world user story data sets. Section 5 reviews related work, and Sect. 6 presents
our conclusions and future directions.

2 Background

To ease constructing a mental image of a software system, we propose to take
requirements expressed as user stories and derive a conceptual model that
enables inspecting system functionality with different degrees of granularity. We
review the background work that will later be combined as part of our method
in Sect. 3.

2.1 From User Stories to Conceptual Models

User stories are a textual language for expressing requirements that uses a com-
pact template. A user story captures who the requirement is for, what it is

Visualizing User Story Requirements at Multiple Granularity Levels 465

expected from the system, and (optionally) why it is important [33]. Although
many different templates exist, 70 % of practitioners use the Connextra tem-
plate [14]: “As a 〈type of user〉, I want 〈goal〉, [so that 〈some reason〉]”. For
example: “As an Event Organizer, I want to receive an email when a contact
form is submitted, so that I can respond to it”.

In previous work, we created a tool that automatically extracts a conceptual
model from a set of user stories using NLP heuristics: the Visual Narrator. This
tool is itself built upon a conceptual model of user stories that distinguishes
between role, means and ends parts of a user story [13]. By parsing the user
stories with SpaCy’s part-of-speech tagging1 and applying eleven state-of-the-
art heuristics, the Visual Narrator creates conceptual models of a user story set
with up to 86 % recall and 81 % precision. The output of Visual Narrator is an
OWL 2 ontology or a Prolog program including the concepts and relationships
extracted from a set of user stories.

2.2 Novel Approaches to Semantic Similarity

As we aim to group concepts in order to facilitate comprehension, we need to
identify concepts that are similar or related to one another. We rely on the
semantic similarity (more precisely, semantic relatedness) of word pairs. This
is a number—typically in the [0,1] range—that captures the distance between
the two words, with 0 being no relatedness and 1 being full relatedness. For any
given word, this technique can be used to identify a list of similar words or to
calculate its semantic similarity score with a collection of words. If the process
is repeated for all words in a collection C, one obtains a matrix that defines the
pairwise similarity between all concepts in C.

Among the many approaches to calculating semantic similarity [9], we focus
on a family of novel, state-of-the-art algorithms: skip-gram by Google [16] and
GloVe by Stanford [20]. Both algorithms parse huge quantities of unannotated
text to generate word embeddings without requiring supervision. A word embed-
ding maps some attributes of a word to a vector of real numbers that can then
be used for a variety of tasks, similarity being one of them. Both skip-gram
and GloVe adhere to the distributional hypothesis: “linguistic items with similar
distributions have similar meanings”.

These techniques constitute the most accurate state-of-the-art and pro-
vide significant improvements even on other word embedding approaches [16,
20]. Moreover, the innovative vector-based approach of word2vec enables
basic “semantic arithmetics” on words: vector(“King”) - vector(“Man”) + vec-

tor(“Woman”) results in a vector which is most similar to vector(“Queen”). These
new methods have not yet been applied in the conceptual modeling and require-
ments engineering literature, while they are slowly but steadily being adopted
in industry, also thanks to their excellent performance.

1 https://spacy.io/.

https://spacy.io/

466 G. Lucassen et al.

2.3 Clustering Algorithms

Clustering refers to the process of taking a set of concepts and grouping them
so that concepts in the same group are similar and concepts in different groups
are different. We aim to adopt clustering in the context of user stories and on
the basis of the semantic similarity/relatedness between concepts. Since word
embeddings and semantic similarity scores are expressed as numbers, we can
easily use pre-existing tools to apply the existing variety of clustering algorithms.

The go-to algorithm for most clustering needs is k-means , but through exper-
imentation with many of the available algorithms we found it to be less applica-
ble for our use case. This is mostly due to the randomness of the algorithm: the
resulting clusters differentiate too much between runs.

Instead, we choose an algorithm that leads to similar accuracy results but
uses a consistent approach: Ward’s minimum variance method [32]. Ward’s algorithm
starts by assigning all concepts to their own cluster and then iterating over the
cluster collection until it finds the two clusters that, when merged, lead to a
minimum increase in within-cluster variance of the collection of clusters. It keeps
repeating this step until k clusters have been formed. Although Ward’s method
is slower than k-means, the impact is negligible for the relatively small data sets
that one extracts from a set user stories, and in extreme cases the clustering
over the entire data set can be executed once the tool starts.

3 Visualization Method for User Stories

We describe our approach to visualizing concepts and relationships between user
stories based on the theory introduced in Sect. 2. Our method features three
main functionalities: the generation of an overview (Sect. 3.1), zooming in and
out mechanisms (Sect. 3.2), and filtering techniques (Sect. 3.3). To illustrate, we
use a publicly available set of 104 user stories from the Neurohub project2, an
information environment for neuro-scientists developed by three British univer-
sities.

3.1 Overview Generation

The purpose of an overview is to “provide a general context for understanding
the data set” [5]. By abstracting from all the details of the data, filtering extra-
neous information and highlighting specific patterns and themes in the data, the
overview supports the end-user in understanding the information. To achieve
this goal for a user story set, we propose a 6-step process visualized in Fig. 1 and
elaborated below.

1. Extraction from User Stories. The Visual Narrator extracts a set of rel-
evant concepts C from the user stories and a set of relationships R ⊆ C × C
between those concepts. In our example, the output consists of 124 concepts

2 http://neurohub.ecs.soton.ac.uk/index.php/All User Stories.

http://neurohub.ecs.soton.ac.uk/index.php/All_User_Stories

Visualizing User Story Requirements at Multiple Granularity Levels 467

Fig. 1. Our method for generating the overview

in C and 144 relationships between these concepts in R as shown in the
following Prolog lines:
concept(’Neuroscience’).

concept(’Researcher’).

...

isa(concept(’Book Page’),concept(’Page’)).

rel(concept(’Researcher’),’Create’,concept(’Book Page’)).

2. Concept Similarity Calculation. We use the skip-gram implementation
word2vec3 to calculate the semantic similarity/relatedness scores—in the
range [0, 1]—for each concept with all other concepts in the list C. As
explained in Sect. 2, the use of skip-grams combines efficiency and accu-
racy. This step results in a similarity matrix SM of size |C| × |C| such that
∀i, j ∈ [0, |C|). SMi,j = skipgram(ci, cj). In the following example, it is pos-
sible to see how some couples of words are much more semantically related
than others: compare researcher and neuroscience (0.5134) with neuroscience and
booking (0.1667).

SM neuroscience researcher book booking . . .
neuroscience 1.0000 0.5134 0.3446 0.1667 . . .
researcher 0.5134 1.0000 0.3362 0.2055 . . .

book 0.3446 0.3362 1.0000 0.2301 . . .
booking 0.1667 0.2055 0.2301 1.0000 . . .

.

3. Concept Clustering. We utilize Ward’s clustering algorithm to group all
the concepts according to their similarity in SM . This results in a high-
level disjoint clustering WC that forms the basis for our visualization. In
our experimentation, inspired by the cognitive principles by Moody [18], we
generate nine clusters.

3 https://code.google.com/p/word2vec/.

https://code.google.com/p/word2vec/

468 G. Lucassen et al.

0: [’acceptance test’, ’acceptance’, ’analysis’, ’behaviour’, ’dependency’, ’description’, ’drug
response’, ’experiment description’, ’experiment’, ’input’, ’knowledge’, ’neurohub
dependency’, ’neuroscience’, ’paper’, ’provenance’, ’research paper’, ’research’, ’response
’, ’search result’, ’search’, ’southampton neuroscience’, ’test result’, ’test’, ’work’, ’worm
analysis’]

1: [’control system’, ’equipment booking’, ’equipment’, ’installation’, ’lts machine’, ’lts’, ’lab
administrator’, ’lab member’, ’lab’, ’mri operator’, ’mri’, ’neurohub installation’, ’
neurohub workspace’, ’spreadsheet’, ’system administrator’, ’system’, ’workspace’]

2: [’behaviour video’, ’calendar’, ’directory’, ’google calendar’, ’google’, ’inventory’, ’link’, ’log
’, ’machine’, ’meta’, ’reference’, ’script’, ’table’, ’tag’, ’type’, ’ups’, ’version’, ’video’, ’
web’, ’worm’, ’write ups’, ’write’]

3: [’browser’, ’client’, ’interface graphics/colour’, ’interface’, ’mendeley client’, ’neurohub
node’, ’node’, ’operator’, ’protocol’, ’user’, ’web browser’]

4: [’booking’, ’control’, ’cost’, ’drug’, ’event’, ’field’, ’forward’, ’minimal’, ’others’, ’period’, ’
release’, ’result’, ’run’, ’share’, ’sharing’, ’southampton’, ’time’, ’track’, ’what’]

5: [’data file’, ’data’, ’file type’, ’file’, ’html tag’, ’html’, ’information’, ’keywords’, ’meta data’
, ’metadata’, ’minimal information’, ’share data’, ’template’]

6: [’administrator’, ’engineer’, ’investigator’, ’member’, ’release engineer’, ’researcher’, ’
supervisor’]

7: [’graphics/colour’, ’mendeley’, ’neurohub’]
8: [’book entry’, ’book page’, ’book’, ’entry’, ’log book’, ’neurohub page’, ’page’]

Note how the clusters are of different sizes: for example, while cluster 0 has
size 25, cluster 7 has size 3. Also note how cluster 6 neatly relates roles/pro-
fessions such as administrator, engineer, etc. This is one of the key differences of
employing corpus-based similarity as opposed to looking at the graph struc-
ture.

4. Representative Term Selection. From each cluster ci in WC, we identify
the concept which is most similar to the collection of concepts in cluster ci. We
do so by using the analogy capabilities of skip-gram as introduced in Sect. 2.2:
we compute the sum of the word vectors swv of the concepts in a cluster;
then, we set the cluster label by choosing the name of concept in the cluster
whose vector model is most similar to the vector swv. For example, consider a
cluster with concepts administrator, visitor and individual. We compute the sum
vector swv = vector(“Administrator”) + vector(“Visitor”) + vector(“Individual”).
Among these concepts, the word whose vector is closest to the sum of the
vectors is individual. To avoid meaningless labels, we remove stop words—such
as he, a, from, . . . —before we execute this step. For the Neurohub case, we
obtain the following results:

0: analysis 1: lab 2: web 3: user 4: time

5: data 6: engineer 7: 8: book

Note that for cluster 7 no label could be assigned because word2vec does not
have any of the cluster’s terms in its dictionary.

5. Inter-cluster Relationships Matrix Generation. Since the concepts in
a cluster are represented by one term, intra-cluster relationships do not need
to be visualized. Starting from the list of relationships R, we derive a matrix
ICR of size |WC| × |WC| that determines the strength of the relationships
between the clusters by counting how many relationships exist between the
concepts in those clusters. Formally, ∀i, j ∈ [0, |WC|):

ICR(ci, cj) =

{
0, if i = j

|r(x, y)| ∈ R. (x ∈ ci ∧ y ∈ cj) ∨ (x ∈ cj ∧ y ∈ cx), else

Visualizing User Story Requirements at Multiple Granularity Levels 469

In our example, we obtain the following matrix:
ICR c0 c1 c2 c3 c4 c5 c6 c7 c8
c0 0 2 2 4 5 0 3 1 0
c1 2 0 2 3 3 1 5 2 0
c2 2 2 0 8 0 4 4 0 1
c3 4 3 8 0 7 10 1 3 2
c4 5 3 0 7 0 2 5 0 0
c5 0 1 4 10 2 0 14 0 0
c6 3 5 4 1 5 14 0 0 1
c7 1 2 0 3 0 0 0 0 1
c8 0 0 1 2 0 0 1 1 0

The remarkably large number of relationships between 5 and 6 is caused by
the concentration of role concepts in cluster 6 who perform an action on the
concepts related to data in cluster 5.

6. Visualization Drawing. Each cluster c ∈ WC becomes a vertex (a circle)
with the representative term as its label. The diameter of the circle increases
with the number of concepts in the cluster. Lines are drawn for each inter-
cluster relationship in ICR; the width of a link increases with the number
of relationships between the connected clusters. An example of the generated
overview is shown in Fig. 2.

3.2 Zooming

The purpose of zooming is to reduce the complexity of the data presentation by
having the user adjust the data element size and selection on the screen [5]. We
propose two zooming views that enable exploring distinct details of the overview;
these views are accessed by clicking on either (1) a concept or (2) a relationship.

When a user clicks on a concept, that concept will be zoomed in and the
steps outlined in Sect. 3.1 are re-run on the concepts within the cluster. The

Fig. 2. Example overview of the user stories from the Neurohub project

470 G. Lucassen et al.

Fig. 3. Zooming examples for Neurohub: concept zoom on the analysis cluster (on the
left), and relationship zoom between the analysis and the web clusters (on the right)

only difference is that we set the number of sub-clusters to the square root of
the number of elements within the cluster4. The outcome is a more granular
view of the concepts in the cluster and showing new inter-cluster relationships
that were previously hidden as intra-cluster relationships. See the left image of
Fig. 3 for an example. In case the number of concepts in that cluster is lower or
equal than 9 (see [18]), all concepts will be shown.

Clicking on a relationship will simultaneously zoom in on the two clusters
that the relationship connects, showing the same more granular view of the con-
cepts as when clicking on a concept. Furthermore, zooming in on the relation-
ship displays all underlying relationships individually and connects the smaller
underlying concept clusters on both sides. See the right image of Fig. 3 for an
example.

3.3 Filtering

The purpose of filtering is the same as zooming: reducing the complexity of the
presented data. However, instead of selecting a specific region, filtering controls
enable the user to change whether the data points with a given attribute are
visible [5]. In the context of user stories, we propose four filters that enable the
user to further simplify a data view or to further explore some specific details:

1. Relationships: by default any view is drawn with its relevant relationships.
Optionally, the user can turn this off the relationships clicking, allowing com-
plete focus on the concept clusters. Alternatively, it is possible to filter out
specific relationship types, e.g., visualizing only or hiding is-a relationships.

2. Role: a central and prominent aspect of user stories, roles are the most fre-
quently occurring concepts in any user story set. Indeed, 96 of the 123 rela-
tionships in the Neurohub example (78 %) connect a role to some concept.
We propose two ways of filtering roles: (i) removing all roles from the set of
concepts C, enabling the user to focus on relationships between other con-
cepts; (2) selecting a specific role to focus on, removing all concepts and
relationships that are not related to that role.

4 Determining the number of clusters is still a work-in-progress part of our approach.

Visualizing User Story Requirements at Multiple Granularity Levels 471

3. Search: users can query for concept terms to find the cluster related to that
concept. For example, searching for file will highlight the data cluster and its
relationships while slightly blurring all unrelated concepts and relationships.

4. Agile Artifacts: In agile software development, user stories are organized into
meaningful chunks: epics, themes and sprints. The user can select any combi-
nation of these in order to explore specific parts of the system (via epics and
themes) or to focus on certain development periods (sprints).

4 Prototype Demonstration

We demonstrate the feasibility of our approach by applying a prototype imple-
mentation to three real-world case studies. The prototype is available online
including the Neurohub user stories5. Unfortunately, we cannot release the con-
fidential case study user stories. For each case, we present four views of their user
story concepts and relationships: overview, concept zoom, relationship zoom and
a role filter. Finally, we evaluate and discuss the output.

4.1 Case 1: CMSCompany

The company developing this complex CMS product for large enterprises is
located in the Netherlands, serving 1̃50 customers with 120 employees. Their
supplied data consists of 32 syntactically correct user stories, which represents
a snapshot of approximately a year of development in 2011. Visual Narrator
extracted 96 concepts and 114 relationships, exemplifying that despite the small
size of the user story set, the use of long user stories with non-trivial sentence
structuring means many concepts and relationships are present.

Applying the prototype to CMSCompany ’s user stories results in Fig. 4. Upon
examination of the overview on the left, one thing immediately stands out: the
clusters are highly interrelated and none of them clearly has the majority of
relationships. This is likely a consequence of the long, non-trivial structuring
of these user stories. Furthermore, some of the representative terms are highly
relevant to the CMS domain: site, marketeer, text, business & analytics are
important aspects of CMSCompany’s product.

By contrast, the concept zoom of the result cluster has no intercluster rela-
tionships at all. In fact, none of the subclusters contain such a relationship.
Intuitively, the authors believed this to be a bad result but upon closer exam-
ination this phenomenon actually turns out to be the ideal situation. Indeed,
there actually are relationships between concepts in this subcluster but they are
all within their own subsubcluster, demonstrating that at this level the semantic
clustering approach is very effective at grouping related user story concepts.

5 https://github.com/gglucass/Semantic-Similarity-Prototype.

https://github.com/gglucass/Semantic-Similarity-Prototype

472 G. Lucassen et al.

Fig. 4. Overview for CMSCompany user stories and concept zoom on the result cluster

4.2 Case 2: WebCompany

This is a young Dutch company that creates tailor-made web applications for
businesses. The team consists of nine employees who iteratively develop appli-
cations in weekly Scrum sprints. WebCompany supplied 98 user stories covering
the development of an entire web application focused on interactive story telling
that was created in 2014. Although the data set is 3× as big as CMSCompany’s,
these user stories are very simple, concise and contain very few complex sentence
structures. Because of this, Visual Narrator extracts just 106 concepts and 123
relationships.

Fig. 5. Overview for WebCompany user stories and concept zoom of person cluster

In CMSCompany’s overview in Fig. 5 the person cluster clearly has the most
relationships with other clusters. This is a direct consequence of two factors:

Visualizing User Story Requirements at Multiple Granularity Levels 473

(1) the person clusters contains all roles defined in the user stories and (2)
because the user stories are simple, the majority of relationships in this set
are role(action, object). However, for this case not all representative terms are
meaningful. In particular, result is strongly related to merely 3 or 4 out of 22
concepts in that cluster. This exemplifies the approach’s weakness of selecting
very general terms for large, less coherent clusters because they are at least
somewhat related to many of the terms in the cluster.

In some cases, previously intracluster relationships do become intracluster
relationships when zooming in on a cluster. The subclusters in person are all
related to one another in some way. Because this user story concerns an entire
web application, this is to be expected. Indeed, if admin was not related to a
user a human analyst should be triggered to investigate if the user story set
is incomplete. This exemplifies a possible real-world use case of the prototype
output.

4.3 Case 3: SCMCompany

This case concerns stories from a company that delivers a leading Supply Chain
Management (SCM) suite for large companies in the logistics, healthcare, tech-
nology and consumer sectors. To support development in keeping up with double
digit revenue growth, the company has started to embrace user stories. This set
consists of 54 high quality user stories of moderate size and complexity. In total,
Visual Narrator extracted 91 concepts and 114 relationships.

Fig. 6. Overview for SCMCompany user stories and concept zoom of officer cluster

Nearly all of the representative terms in the overview in Fig. 6 are strongly
related to the SCM domain. Furthermore, the relationship between concepts
security and officer in the concept zoom is actually an accurate representation
of the relationship in the source data. Considering that the sub clusters contain

474 G. Lucassen et al.

multiple concepts, this example demonstrates a positive result of our approach
for selecting a representative term.

5 Related Literature

We review the relevant literature about RE visualization, clustering techniques
for generic conceptual models, and extraction of conceptual models from require-
ments.

5.1 RE Visualization

Requirements engineering visualization (REV) is concerned with creating effec-
tive visualizations of RE artifacts. Cooper et al. [4] review the papers appeared
in the REV workshops between 2006 and 2008. They distinguish between dif-
ferent types of visualizations: tabular, relational, sequential, hierarchical, and
metaphorical/quantitative. The most relevant categories for our work are the
relational—i.e., (hyper-)graphs—and hierarchical—decomposing a system into
its parts. While many relational approaches exist, very few focus on hierarchal
aspects, which are the key in our work.

We deliberately exclude from this section the vast body of literature on
requirements modeling languages: this important family of requirements visual-
ization approaches goes beyond the scope of our paper, as we aim at visualizing
the main concepts that can be extracted from NL requirements.

Reinhard et al. [22] propose an improved Fisheye zoom algorithm for the
visualization and editing of hierarchical requirements models. The most inter-
esting feature of their algorithm is that is guarantees stability of the adjusted
layouts and runs in linear time. We may exploit this algorithm in future work.
Gandhi and Lee [7] use visualizations in the context of requirements-driven risk
assessment. They extract a concept lattice that relates risk-related concepts such
as assets, threats, vulnerabilities and countermeasures. The lattice is a possible
criterion for a zoom-in/zoom-out mechanism.

To date, ReCVisu+ [21] is the most effective tool for requirements visual-
ization. ReCVisu+ supports different visual exploration tasks and, like our app-
roach, is based on clustering techniques and semantic similarity. While RecVisu+
determines similarity based on the frequency of co-occurrence in system docu-
mentation, we rely on corpus-based techniques that do not require the existence
of additional system documentation. Moreover, we do not consider only concepts
but also relationships.

5.2 Conceptual Modeling Clustering

The conceptual modeling and databases community is well aware that (E)ER
diagrams are often large and cluttered. Teorey et al. have studied this problem
already in the late 80s [27]: they proposed collapse/expand mechanisms that can

Visualizing User Story Requirements at Multiple Granularity Levels 475

be used to hide/view entities and relationships that are secondary to some pri-
mary entities; for example, ‘journal address’ and ‘journal note’ can be collapsed
into a cluster labeled ‘journal’.

Akoka and Comyn-Wattiau [1] propose automated clustering techniques that
can be used to realize Teorey’s vision and that derives non-overlapping clusters.
They experiment multiple distance indicators with different semantics (visual,
hierarchical, cohesive, etc.) and compare their strengths and weaknesses. Moody
and Flitman [18] combine and refine principles from previous work and include
cognitive aspects, such as the maximum size of a cluster being nine elements,
in order to facilitate human comprehension. Tzitzikas and Hainaut [29] use link
analysis from web searching to generate a smaller diagram that includes only the
major entity and relationships; they also propose an automated 2D visualization
that uses force-directed drawing algorithms.

Summarization techniques exist for database schemas. Yu and Jagadish [34]
formalize the notion of a schema summary and define its quality in terms of
complexity (number of elements), importance (inclusion of the most important
elements), and coverage (are all major chunks of the original schema repre-
sented?). Based on these notions, they propose algorithms that optimize each of
these quality criteria. Yuan et al. [35] go further by proposing elaborate metrics
to determine table similarity and importance.

All these techniques inspire our work. The main novelty of our proposal
is that we focus on conceptual models that represent requirements, and that
we use novel corpus-based techniques to determine similarity. The significant
advances that these algorithms provide make it possible for us to experiment
clustering based on the co-occurrence of words in corpora of data on the Web
with promising results.

5.3 Extracting Conceptual Models from Requirements

There is a long tradition in generating conceptual models from NL requirements.
Already in 1989, Saeki et al. [24] proposed a method for the automatic extraction
of verbs and nouns from NL. The ideas of this method were operationalized by
numerous (semi-)automated tools, including NL-OOPS [15], CM-Builder [10],
CIRCE [2], aToucan [36], and the tool by Sagar and Abirami [25].

All these approaches use NL processing algorithms such as tokenization,
part-of-speech tagging, morphological analysis and parsing. These tools show
promising precision and recall—comparable if not better than human experts—,
although they often require restricted NL to do so. In previous work [23], we
leveraged these tools and proposed an approach that is specifically suited for
requirements expressed as user stories.

6 Discussion, Conclusion and Future Work

This paper explored the potential of applying semantic relatedness algorithms
for visualizing user stories. After studying and experimenting with state-of-the-
art algorithms such as skip-gram, we presented a novel, automated method for

476 G. Lucassen et al.

visualizing user stories at different levels of granularity. We applied a prototype
implementation of this method to four real-world user story sets, studied the
output and observed that:

– The generated visualizations are capable of highlighting relevant information
classifications for the system. For example, the central role of the person cluster
in the WebCompany overview is easily recognizable.

– For the majority of clusters, the generated representative term is meaningful
and relevant within the application domain.

– When an intercluster relationship is present on the zoom level, it is generally
relevant within that (sub-)domain. The analysis subcluster of Neurohub for
example relates test, response and analysis.

– On the overview level, too many intercluster relationships are visible, effec-
tively rendering them useless for further human analysis.

– The prototype tends to select irrelevant common denominator terms for large
clusters with low internal coherence.

– Word2Vec does not include all words in meaningful clusters, resulting in resid-
ual clusters that cannot be assigned any label.

Based on these observations, we envision possible applications for our visual-
ization approach to include: (1) discovering missing relationships between clus-
ters that may result in further user stories; (2) teaching system functionality
by exploring simplified, manageable chunks; and (3) analyzing expected system
changes after introducing new sets of user stories (e.g., new epics). However,
further practitioner evaluation is necessary to confirm the validity of our obser-
vations and the potential of these applications.

In future work, we intend to experiment with these possible use cases as well
as investigate how to substantially improve the generated output. A necessary
next step is to combine and compare our work with existing state-of-the-art
clustering techniques that do not rely on semantic relatedness. Additionally,
future work should incorporate state-of-the-art group structure visualization
techniques [30]. We expect this to produce outputs that are even more usable
in real-world scenarios. Additionally, we are investigating the potential benefits
of applying machine learning to enhance the accuracy of semantic relatedness
scores for specific application domains.

References

1. Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object-oriented model auto-
matic clustering. Data Knowl. Eng. 20(2), 87–117 (1996)

2. Ambriola, V., Gervasi, V.: On the systematic analysis of natural language require-
ments with CIRCE. Autom. Softw. Eng. 13(1), 107–167 (2006)

3. Aranda, J., Ernst, N., Horkoff, J., Easterbrook, S.: A framework for empirical
evaluation of model comprehensibility. In: Proceedings of MiSE (2007)

4. Cooper Jr., J.R., Lee, S.W., Gandhi, R.A., Gotel, O.: Requirements engineering
visualization: a survey on the state-of-the-art. In: Proceedings of REV, pp. 46–55
(2009)

Visualizing User Story Requirements at Multiple Granularity Levels 477

5. Craft, B., Cairns, P.: Beyond guidelines: what can we learn from the visual infor-
mation seeking mantra? In: Proceedings of IV, pp. 110–118, July 2005

6. Du, S., Metzler, D.P.: An automated multi-component approach to extracting
entity relationships from database requirement specification documents. In: Kop,
C., Fliedl, G., Mayr, H.C., Métais, E. (eds.) NLDB 2006. LNCS, vol. 3999, pp.
1–11. Springer, Heidelberg (2006). doi:10.1007/11765448 1

7. Gandhi, R.A., Lee, S.W.: Discovering and understanding multi-dimensional corre-
lations among certification requirements with application to risk assessment. In:
Proceedings of RE, pp. 231–240 (2007)

8. Goldberg, Y., Levy, O.: Word2vec explained: deriving Mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

9. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic Similarity from Nat-
ural Language and Ontology Analysis. Morgan & Claypool Publishers, San Rafael
(2015)

10. Harmain, H., Gaizauskas, R.: CM-Builder: a natural language-based CASE tool
for object-oriented analysis. Autom. Softw. Eng. 10(2), 157–181 (2003)

11. Kassab, M.: The changing landscape of requirements engineering practices over
the past decade. In: Proceedings of EmpiRE (2015)

12. Kassab, M., Neill, C., Laplante, P.: State of practice in requirements engineering:
contemporary data. Innov. Syst. Softw. Eng. 10(4), 235–241 (2014)

13. Lucassen, G., Dalpiaz, F., van der Werf, J.M., Brinkkemper, S.: Improving agile
requirements: the quality user story framework and tool. Requir. Eng. 21, 383–403
(2016)

14. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M., Brinkkemper, S.: The use and effec-
tiveness of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ
2016. LNCS, vol. 9619, pp. 205–222. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30282-9 14

15. Mich, L.: NL-OOPS: from natural language to object oriented requirements using
the natural language processing system LOLITA. Nat. Lang. Eng. 2, 161–187
(1996)

16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, vol. 26, pp. 3111–3119 (2013)

17. Moody, D.: The “Physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

18. Moody, D.L., Flitman, A.: A methodology for clustering entity relationship mod-
els — a human information processing approach. In: Akoka, J., Bouzeghoub, M.,
Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp. 114–130.
Springer, Heidelberg (1999). doi:10.1007/3-540-47866-3 8

19. Omar, N., Hanna, J., McKevitt, P.: Heuristics-based entity-relationship modelling
through natural language processing. In: Proceedings of AICS, pp. 302–313 (2004)

20. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

21. Reddivari, S., Rad, S., Bhowmik, T., Cain, N., Niu, N.: Visual requirements ana-
lytics: a framework and case study. Requir. Eng. 19(3), 257–279 (2014)

22. Reinhard, T., Meier, S., Glinz, M.: An improved fisheye zoom algorithm for visu-
alizing and editing hierarchical models. In: Proceedings of REV. IEEE (2007)

23. Robeer, M., Lucassen, G., Van der Werf, J., Dalpiaz, F., Brinkkemper, S.: Auto-
mated extraction of conceptual models from user stories via NLP. In: Proceedings
of RE (2016)

http://dx.doi.org/10.1007/11765448_1
http://arxiv.org/abs/1402.3722
http://dx.doi.org/10.1007/978-3-319-30282-9_14
http://dx.doi.org/10.1007/978-3-319-30282-9_14
http://dx.doi.org/10.1007/3-540-47866-3_8

478 G. Lucassen et al.

24. Saeki, M., Horai, H., Enomoto, H.: Software development process from natural
language specification. In: Proceedings of ICSE, pp. 64–73. ACM (1989)

25. Sagar, V.B.R.V., Abirami, S.: Conceptual modeling of natural language functional
requirements. J. Syst. Softw. 88, 25–41 (2014)

26. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of VL, pp. 336–343 (1996)

27. Teorey, T.J., Wei, G., Bolton, D.L., Koenig, J.A.: ER model clustering as an aid
for user communication and documentation in database design. Commun. ACM
32(8), 975–987 (1989)

28. Trask, A., Michalak, P., Liu, J.: sense2vec-a fast and accurate method for word
sense disambiguation in neural word embeddings. arXiv preprint arXiv:1511.06388
(2015)

29. Tzitzikas, Y., Hainaut, J.-L.: How to tame a very large ER diagram (using link
analysis and force-directed drawing algorithms). In: Delcambre, L., Kop, C., Mayr,
H.C., Mylopoulos, J., Pastor, O. (eds.) ER 2005. LNCS, vol. 3716, pp. 144–159.
Springer, Heidelberg (2005). doi:10.1007/11568322 10

30. Vehlow, C., Beck, F., Weiskopf, D.: The state of the art in visualizing group struc-
tures in graphs. In: Borgo, R., Ganovelli, F., Viola, I. (eds.) Eurographics Confer-
ence on Visualization (EuroVis) - STARs. The Eurographics Association (2015)

31. Wang, X., Zhao, L., Wang, Y., Sun, J.: The role of requirements engineering prac-
tices in agile development: an empirical study. In: Zowghi, D., Jin, Z. (eds.) Require-
ments Engineering. CCIS, vol. 432, pp. 195–209. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-43610-3 15

32. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat.
Assoc. 58(301), 236–244 (1963)

33. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story
models. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y.,
Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 211–225.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-07881-6 15

34. Yu, C., Jagadish, H.: Schema summarization. In: Proceedings of VLDB, pp. 319–
330 (2006)

35. Yuan, X., Li, X., Yu, M., Cai, X., Zhang, Y., Wen, Y.: Summarizing relational
database schema based on label propagation. In: Chen, L., Jia, Y., Sellis, T., Liu,
G. (eds.) APWeb 2014. LNCS, vol. 8709, pp. 258–269. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11116-2 23

36. Yue, T., Briand, L.C., Labiche, Y.: aToucan: an automated framework to derive
UML analysis models from use case models. ACM Trans. Softw. Eng. Methodol.
24(3), 13:1–13:52 (2015)

http://arxiv.org/abs/1511.06388
http://dx.doi.org/10.1007/11568322_10
http://dx.doi.org/10.1007/978-3-662-43610-3_15
http://dx.doi.org/10.1007/978-3-319-07881-6_15
http://dx.doi.org/10.1007/978-3-319-11116-2_23

User Progress Modelling in Counselling Systems:
An Application to an Adaptive Virtual Coach

Nuria Medina-Medina(B), Zoraida Callejas, Kawtar Benghazi,
and Manuel Noguera

Department of Languages and Computer Systems, University of Granada,
Avda. Daniel Saucedo Aranda sn., 18071 Granada, Spain

{nmedina,zoraida,benghazi,mnoguera}@ugr.es

Abstract. Counselling systems such as recommendation systems and
virtual coaches assist users to gradually achieve their goals. For that pur-
pose, it is usual to devise a progression plan consisting of intermediate,
possibly interrelated, tasks or goals to be accomplished in order to guide
counselees from their current state to a (desirable) target state, whilst
taking into account their circumstances and needs. Users may also strive
to progress in several dimensions or aspects at the same time. However,
existing goal modelling proposals are mainly focused on processes and
object flows, and do not reflect the variable manner in which user pro-
gression may actually take place. In this paper, we propose a user-goal
oriented metamodel to represent progressions between user states that
serves as a knowledge basis for the construction of adaptive counselling
systems. The proposal is exemplified with the design of a virtual coach
to promote active ageing in which personalization plays a key role.

Keywords: Progression states · User adaptation · Virtual coach

1 Introduction

Modern Systems and Software Engineering (SSE) has widely recognized the
importance of specifying and representing goals and intentions in different types
of architectural models (i.e., enterprise, system and software models, etc.), so as
to improve the alignment of systems and software to be built with the objectives
of the organizations they support [10]. As a matter of fact, in the last years,
several approaches have appeared in order to specify the link of the entities of a
conceptual model with the purpose they were conceived for [13]. Likewise, it is
common to plan the achievement of goals and objectives in terms of a structured
sequence of steps and/or the occurrence of events. This point of view has resulted
in that most current modelling languages and approaches exhibit a process and
activity-centric nature and frequently they do not even provide specific con-
structs for representing goals [18]. This is also largely due to the increasing
popularity of business process management techniques and tools, which provide
organizations with tangible benefits in terms of process and activity flow analy-
sis, discovery, improvement, simulation, and prediction [8].
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 479–487, 2016.
DOI: 10.1007/978-3-319-46397-1 36

480 N. Medina-Medina et al.

Some examples of process modelling notations are UML Activity Diagrams
[12], BPMN [11], YAWL [3] and Map [15]. They have proven their appropri-
ateness for fully representing and structuring activities within processes and,
thus, conveying behavioural aspects of organizational environments [1,2]. How-
ever, there exist situations in which models can become more meaningful when
focusing on the structure and inter-dependencies between intermediate objec-
tives or user states to be reached, rather than on the specification of a prede-
fined sequence in which they should be achieved. This is because the particular
sequencing (1) may not be so relevant; (2) may take place in so many differ-
ent ways that, if specified, the model readability and understanding would be
reduced [14]; or (3) may even be unknown a priori. Other reasons that may dis-
courage the usage of rich process modelling notations in some contexts derive
from the complexity they introduce [17]. For example, most existing notations
allow information and object flows, as well as rich control flow gateways, to be
represented with specific constructs. However, when paying attention to sequenc-
ing the fulfilment of the intermediate goals, these constructs are not required in
most cases since such type of information and complex control flows are usually
not present [2]. Finally, sometimes it is needed to represent goals about perform-
ing the same activity, but an increasing (or decreasing) number of times, rather
than a sequenced list of different activities one after another.

This is the case of modelling the progression of a user (or a group of them)
to achieve a set of objectives that allows he/she to reach a desired state from
his/her current state. In these situations, the main interest is on the specification
of the starting point, the intermediate states or goals the progressing individual
is expected to go through, and his/her intended end point or general goal. The
general objective may encompass different partial objectives or dimensions of the
users and their context, but not in a strict, predefined order. Moreover, inter-
dependencies between goals in different dimensions and the circumstances that
rule the transitions between these partial objectives should be also reflected
when modelling user progressions. For example, the fulfilment of a goal in a
dimension may trigger or force the advancement of the progressing entity toward
the achievement of another goal in a different dimension.

Goal orientation is extensively addressed in the literature [6,9]. Examples of
goal oriented modelling and design approaches are the NFR [5], TROPOS [4]
and KAOS frameworks [7]. However, these approaches are focused on business
and information systems goals rather than on user goals, since goal specification
drives several activities related to systems requirements engineering processes
[16]. Thus, these approaches can be considered as system-goal oriented. A user-
goal modelling focus could be more appropriate for counselling systems, such as
coaching systems, where the adaptation to user objectives is usually required. In
this paper we present a user-goal oriented proposal for modelling the progressions
of users towards a desired objective in counselling systems. Section 2 describes a
user progression metamodel and Sect. 3 exemplifies its application to develop a
virtual coach for active ageing within the context of a Spanish National Project.
Finally, Sect. 4 presents conclusions and outlines ideas for future work.

User Progress Modelling in Counselling Systems 481

2 A Metamodel to Represent Progression in Counselling
Systems

We introduce a metamodel to represent the progression of users toward a desired
objective that can be used as a basis for adaptive counselling systems. Figure 1
illustrates our proposal, which includes two interrelated parts: a user state meta-
model and a progression metamodel. Users have a global objective/goal that can
be decomposed into partial objectives with associated progression lines. A par-
tial objective is a sub-objective that deals with a particular dimension or aspect
included in the global objective. A progression line is a series of steps or pro-
gression states that must be performed to achieve each partial objective. For
example, in an addiction counselling system the global objective may be to stop
unhealthy habits, one of the partial objectives may be smoking cessation, and
the corresponding progression line could be a sequence of six progression states
to gradually reduce the number of cigarettes to zero. Another partial objective
could be to control alcohol intake and it would have its own progression line.
The number of progression states may differ for different partial objectives.

Fig. 1. Metamodel proposed to represent the user progression

Each progression state represents a level of achievement of its corresponding
partial objective (e.g. the user smokes less than 20 cigarettes per day, the user
has stopped smoking, etc.) and there exist transitions between states that rep-
resent the order in which the states corresponding to a particular progression
line precede one another in order to achieve the partial objective (e.g. a reduc-
tion in the number of cigarettes smoked per day may determine the transitions).

482 N. Medina-Medina et al.

The transitions may be ruled by restrictions that take place between progres-
sion states that belong to different progression lines, that is, progression states
corresponding to different partial objectives. For instance, it may be required
to achieve a good handling of the urge to drink before starting to significantly
reduce the number of daily cigarettes. In this case, a state of the drinking pro-
gression line restricts a certain transition within the smoking progression line.
In some contexts, achieving a certain level in a partial objective may prevent or
advice against the transition to another particular progression state in another
progression line. Consequently, restrictions can establish a prerequisite or an
incompatibility between a source state and a target state in a progression line.

The metamodel differentiates between progression states and the specific
activities that can be performed to achieve them. For example, in the smok-
ing scenario a state may have different activities including “reducing by half
the cigarettes smoked in a week timespan” or “throwing away all cigarettes at
home today” depending on its position in the progression line. Each progres-
sion state must have at least one associated activity and there is no maximum
number of activities. Incompatibility and prerequisite restrictions are also per-
mitted between activities. Consequently, the metamodel defines a set of possible
progression states for each partial objective (an initial state, a final state and
one or several intermediate states), the activities to perform in order to achieve
these states, the transitions between them, and others relations between the pro-
gressions of different objectives. To model users, the metamodel defines the user
state as a set of progression states. It also includes a registry of all activities
completed by the user (annotated with their performance and satisfaction) as
well as the user restrictions that may prevent them from performing certain
activities.

Sample instance of the metamodel. Figure 2 shows an abstract instance
of the metamodel where the first progression line corresponds to an objective
“s” and the second to an objective “t”. Usually, progressing towards a certain
objective requires achieving a certain degree of completion of another objective,
e.g. the transition from state t1 to t2 requires that the user has achieved s2.

Fig. 2. A sample instance of the metamodel

User Progress Modelling in Counselling Systems 483

At an operational level, in a system built on top of an instance of the proposed
metamodel, it is necessary to establish the rules that determine user progression.
The transition between two successive states of the same progression line must
be enriched with: (a) a progression rule that sets the progression conditions; and
(b) a regression rule indicating under which circumstances the user returns to a
previous progression state, if applicable. Besides, an update rule associated with
each activity must be defined to compute the level of progression achieved by
the user after successfully completing the activity (progression factor).

At each time, the user state comprises a set of progression states representing
the degree to which the user has advanced towards each partial objective. It may
happen that the current state for each progression line is different (i.e. the user
has advanced faster in some partial objectives with respect to others). To allow
personalization, once the current user state has been specified (e.g. in the smok-
ing addiction domain, the initial state of the user may be computed from physical
addiction parameters), the following aspects could be subsequently adapted: (a)
target user state, the set of adapted progression states that a particular user
should achieve (e.g. it may not be desirable for very heavy smokers to aim for
total cessation); (b) set of activities to progress to the following state that may
differ between users; and (c) personalized update, progression, and regression
rules, e.g. the update rule that computes the progression factor may be more
relaxed with recent smokers compared to long-trajectory smokers.

3 Case Study: Designing a Virtual Coach for Active
Ageing

We have instantiated the proposed metamodel to design a virtual coach that aims
at fostering healthy habits for active ageing. The coach will offer advice about
nutrition, rest, locomotion, and training routines (although only the last two are
discussed in this paper). When targeting ageing populations there are specific
conditions and physical problems that must be considered and it is important
to account for their particularities when interpreting progresses and preferences.
Thus, adaptivity to users is key to success in this application domain. The adap-
tive architecture of the virtual coach comprises the three modules shown in
Fig. 3: (a) progression model, stores and manages the progression lines; (b) user
model, stores and manages the relevant user features; and (c) adaptation engine,
manages the adaptation rules and strategies used to personalize the advices.

As shown in Fig. 3, the adaptation rules are evaluated within an adapta-
tion engine whose inputs are the user model attributes. These rules generate
the adjustments that the progression model demands to personalize the rec-
ommendations. Both the progression model and the adaptation rules must be
specified initially by human experts. To make it easier, the progression model
is expressed in terms of routines (progression states) and exercises (activities),
which are frequent concepts in this domain. Similarly, the adaptive rules have
the structure: if <condition> then <action>, where the condition is built upon
user attributes and the action establishes a shift in the routines and exercises

484 N. Medina-Medina et al.

Fig. 3. Architecture for an adaptive virtual coach

of the progression model. Finally, each time the user follows the coach’s recom-
mendations, the user model is updated to reflect the progressions (update rules).
Progression rules determine whether the user can advance to the next routine
or requires further exercises in the current routine.

Following the metamodel, the virtual coach considers eight progression lines:
walk, run, go up/downstairs, resistance, strength, balance, speed and coordina-
tion. For each of them, there are a series of routines determined by a progression
factor in the range [1–100] indicating the degree of attainment of the partial
objective. We have established a lower number of progression states (10 routines
per line) considering ranges (walking progression 1 to 10, walking progression 11
to 20...) rather than specific values of progression.

Transitions connect consecutive progression states (e.g. “walking progres-
sion 1 to 10” with “walking progression 11 to 20”) within each progression line
(“walk”) and a set of progression and regression rules determine the execution of
these transitions (forwards or backwards respectively). At the same time, restric-
tions connect progression states from different progression lines to prevent the
execution of a routine until other routines are achieved. For example, the state
“running progression 1 to 10” cannot be started until the state “walking pro-
gression 31 to 40” has been achieved, that is, users cannot start running until
they have shown a certain expertise in walking.

Each routine is performed by means of a series of activities corresponding
to physical exercises that unambiguously define the steps to be followed. Each
exercise is tagged with a list of user restrictions that make it impracticable or
not recommended. For example, running with a prominent slope may be not
advisable for a user with an injured ankle.

Counselling systems must adapt their advices to their users and thus must
know all user aspects relevant to the counselling. In the case of our virtual coach,
the system manages a user model that registers the progression factor of the user
in each routine and for each type of exercise stores: satisfaction, duration, repe-
titions, intensity and frequency as well as a detailed log for each specific exercise

User Progress Modelling in Counselling Systems 485

performed. Additionally, illnesses and postural deficiencies are annotated. This
way, once the progression model and a set of adaptation rules have been defined,
they will guide the search for personalized routines according to three steps: (1)
filtering the general progression model according to the user’s physical condition
ignoring the exercises that are not recommendable; (2) identifying the current
user state querying the user model; and (3) selecting exercises corresponding to
the current user progression state considering the adaptation strategies (e.g. the
system may decide not to suggest exercises that have been frequently performed
before, or to foster the user’s preferred ones).

4 Conclusions and Future Work

Counselling systems are being increasingly used to provide medical, educational,
professional or psychological advise, among other purposes. These systems act as
an intermediary between professionals and those individuals who need guidance,
combining expert knowledge about the domain and the user. Thus, the functional
core of any counselling system is given by the objectives that the user intends
to achieve and it is expected that the user goes through a series of progression
stages before achieving their ultimate objective.

With the aim of facilitating the design of these systems, we present a meta-
model to represent and manage the progress of users that encompasses a dual
perspective through the combination of a progression and a user model. In our
metamodel, progression guidelines are defined through sets of progression states.
The connection of these successive states draws a line of progression for each par-
tial objective or dimension. Each progression state has several associated activi-
ties that, once completed, enable the user to advance to the next state. The user
model records the activities that the user performs over time, extracting perfor-
mance and satisfaction statistics that can be used for adaptation. It also stores
the general state of progression of users and their restrictions and preferences.

On the basis of instantiations of the proposed metamodel, adaptation engines
of counselling systems can generate personalized advice either locally (indicating
the activities that the user must perform in the next step) or globally (guiding
them from their current state to the desired one). With this purpose, two types
of adaptations are designed: those that are established by means of semantic
annotations on the progression model (restrictions between progression states
and restrictions on exercises) and those defined separately in adaptive rules that
set conditions on user attributes and derive actions on the progression model. As
a proof-of-concept we have presented a virtual coach to promote active ageing
that is based on the metamodel contributed and aims to assist users to achieve
their objectives of locomotion and training.

For future work, we plan to conduct user studies with the virtual coach.
This way, we will be able to evaluate the effectiveness of the adaptation engine
and validate the progression and user models. We also intend to implement a
module of unsupervised learning that extracts valuable information on possi-
ble improvements based on usage patterns. To facilitate the integration of the

486 N. Medina-Medina et al.

improvements discovered, we will study the possibility of developing an author-
ing tool that allows a consistent evolution of both the progression model and the
adaptive counselling strategies.

Acknowledgements. This research is supported by the project DEP2015-70980-R of
the Spanish Ministry of Economy and Competitiveness and European Regional Devel-
opment Fund (ERDF), the COST Action IC1303AAPELE and the Andalusian project
P11-TIC-7486.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow patterns put into context.
Softw. Syst. Model. 11(3), 319–323 (2012)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Work-
flow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

3. van der Aalst, W., ter Hofstede, A.: YAWL: yet another workflow language. Inf.
Syst. 30(4), 245–275 (2005)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: TROPOS:
an agent-oriented software development methodology. Auton. Agent. Multi-Agent
Syst. 8(3), 203–236 (2004)

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in
Software Engineering, vol. 5. Springer Science & Business Media, New York (2012)

6. Chung, L., Supakkul, S., Subramanian, N., Garrido, J.L., Noguera, M., Hurtado,
M.V., Rodŕıguez, M.L., Akhlaki, K.B.: Goal-oriented software architecting. In:
Avgeriou, P., Grundy, J., Hall, J.G., Lago, P., Mistŕık, I. (eds.) Relating Software
Requirements and Architectures, pp. 91–109. Springer, Heidelberg (2011)

7. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1), 3–50 (1993)

8. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

9. Neiger, D., Churilov, L.: Goal-oriented business process modeling with EPCS and
value-focused thinking. In: Proceedings of 2nd International Conference on Busi-
ness Process Management, BPM 2004, Potsdam, Germany, 17–18 June 2004, pp.
98–115 (2004)

10. Nurcan, S., Salinesi, C., Souveyet, C., Ralyté, J. (eds.): Intentional Perspectives
on Information Systems Engineering. Springer, Heidelberg (2010)

11. OMG: Business Process Model and Notation. http://www.bpmn.org/
12. OMG: Unified Modeling Language. http://www.omg.org/spec/UML/2.4.1
13. Poels, G., Decreus, K., Roelens, B., Snoeck, M.: Investigating goal-oriented require-

ments engineering for business processes. J. Database Manag. 24(2), 35–71 (2013)
14. Reijers, H.A., Mendling, J.: A study into the factors that influence the understand-

ability of business process models. IEEE Trans. Syst. Man Cybern. Part A Syst.
Hum. 41(3), 449–462 (2011)

15. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling.
Requirements Eng. 4(4), 169–187 (1999)

16. Rolland, C., Salinesi, C.: Modeling goals and reasoning with them. In: Aurum, A.,
Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp. 189–217.
Springer, Heidelberg (2005)

http://www.bpmn.org/
http://www.omg.org/spec/UML/2.4.1

User Progress Modelling in Counselling Systems 487

17. Salinesi, C., Wäyrynen, J.: A methodological framework for understanding IS adap-
tation through enterprise change. In: Bellahsène, Z., Patel, D., Rolland, C. (eds.)
OOIS 2002. LNCS, vol. 2425, pp. 211–222. Springer, Heidelberg (2002). doi:10.
1007/3-540-46102-7 26

18. Soffer, P., Rolland, C.: Combining intention-oriented and state-based process mod-
eling. In: Delcambre, L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O. (eds.)
ER 2005. LNCS, vol. 3716, pp. 47–62. Springer, Heidelberg (2005). doi:10.1007/
11568322 4

http://dx.doi.org/10.1007/3-540-46102-7_26
http://dx.doi.org/10.1007/3-540-46102-7_26
http://dx.doi.org/10.1007/11568322_4
http://dx.doi.org/10.1007/11568322_4

Stepwise Refinement of Software Development
Problem Analysis

Tsutomu Kobayashi1(B), Fuyuki Ishikawa2, and Shinichi Honiden1,2

1 The University of Tokyo, Tokyo, Japan
t-kobayashi@nii.ac.jp

2 National Institute of Informatics, Tokyo, Japan
{f-ishikawa,honiden}@nii.ac.jp

Abstract. The Problem Frames approach has attracted attention
because it enables developers to carefully analyze problems in a rea-
sonable manner. Despite that this approach decomposes a problem into
subproblems before the analysis is conducted, developers are still faced
with a complex analysis when they consider interactions between the
various subproblems. Moreover, progressive evolution of requirements is
important for flexible development. In this paper, we propose methods
to analyze multiple abstraction layers of a problem. Our methods help
developers to construct abstract versions of a problem and find rela-
tionships between abstract problems and concrete problems. Moreover,
our methods support refinement of arguments such that the properties
of the abstract problem are preserved in the concrete problem. There-
fore, our methods enable developers to divide up arguments into multiple
abstraction layers and thus mitigate the complexity of argumentation.
We carried out preliminary experiments on abstracting problems and
constructing reasonable arguments. Our methods are expected to enable
developers to analyze problems in a reasonable manner with less com-
plexity and thus make problem analysis easier.

1 Introduction

Much attention has been focused on the Problem Frames [1] approach to problem
analysis. At the beginning of the software development process, this approach
supports careful analysis of problems that should be solved with software.

In this paper, we use an example of a controller of traffic lights on the main-
land and a small island [2]. The two areas are connected with a one-way bridge,
and the traffic lights regulate cars that leave the mainland and the island (Fig. 1).
Cars move from the mainland or the island to the bridge (LeaveML, LeaveIL),
and vice versa (EnterML, EnterIL). The controller detects the number of cars
going left and right on the bridge (#L and #R, respectively) and number of
cars on the island (#I), and sends pulses according to the number of cars to the
traffic lights (PulseMTL, PulseITL) to change their colors (MLRed, MLGreen,
ILRed, ILGreen). The bridge and island together have a capacity (Cap). Thus,
the controller should prevent cars on the mainland from entering bridge when
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 488–495, 2016.
DOI: 10.1007/978-3-319-46397-1 37

Stepwise Refinement of Software Development Problem Analysis 489

the bridge and the island are full of cars (#I + #L + #R = Cap). It also should
ensure that all cars on the bridge go in the same direction (#L = 0 ∨ #R = 0).

The approach is based on problem diagrams, which shows the relationships of
problems and phenomena related to them. The problem diagram of our example
is shown on the left side of Fig. 1. The diagram describes the relationship between
the machine domain (controller) that represents the implementation, problem
domains (other rectangles) that represent related parts of the world, and problem
requirements (oval). Labeled lines between domains represent interfaces, which
are phenomena shared between domains. A prefix with an exclamation mark
indicates the domain that controls the interface. The goal of the analysis is to
construct a specification of the machine such that it satisfies the requirements.

In the Problem Frames approach, the constructed problem diagram is decom-
posed into subproblem diagrams, which are then matched to known diagram
forms (problem frames), and analyzed through arguments on the matched
frames. Argumentation involves constructing descriptions of the machine’s spec-
ifications, domains’ properties, and requirements. For example, the right side of
Fig. 1 is a snippet of a domain description of cars in the form of a state machine
diagram. It describes only the behavior of cars that are going toward the island.

Because software systems have become complex, mitigation of complexity is
a crucial consideration in analysis. Although there are a number of methods for
decomposing problems [1,3], they all provide decompositions at the same level
of abstraction, and they do not consider abstraction of phenomena. Abstraction
and refinement play a key role in widely used requirements engineering methods
[4,5], but abstraction of phenomena used in discussion of systems’ behavior has
not been proposed.

In this paper, we propose methods to support developers when they construct
and argue abstract versions of a problem that comprises abstract phenomena.
Henceforth, we consider several abstraction levels of the same problem, and we
call a problem at a higher abstraction level an abstract problem and one at a lower
abstraction level a concrete problem. We use terms such as abstract phenomena,
concrete phenomena, and so forth in the same manner.

By following our methods, developers can first argue an abstract problem,
and then gradually elaborate the abstract problem and construct concrete ones.
Our methods help developers to refine abstract problems such that the refine-
ment preserves their properties. They enable developers to avoid arguing about
abstract properties in concrete problems and divide the complexity of argumen-
tation into several steps.

2 Methods

2.1 Overview

An overview of our methods is depicted in Fig. 2. In the original Problem Frames
approach, developers construct a problem diagram before decomposing it into
subproblem diagrams and analyzing them. The diagram needs to be concrete
enough to include all phenomena that should be considered for construction of

490 T. Kobayashi et al.

Fig. 1. Problem diagram (left) and part of the domain descriptions (right) of the
example

Fig. 2. Overview of our methods

the machine. However, the arguments are often too complex because of con-
creteness. Our approach to dealing with complexity is analyzing the problem in
a stepwise manner. Moreover, it is twofold: method 2 is a process of stepwise
argumentation, while method 1 is a preparation for method 2.

By using method 2, developers can analyze an abstract version of the problem
first and analyze more concrete versions based on the analyses of the abstract
versions later. Method 2 is designed so that consistency between abstract argu-
ments and concrete arguments can be guaranteed.

In the Problem Frames approach, developers have a concrete understanding
of the problem and start their analysis by identifying concrete phenomena of
a problem in a diagram. Therefore, we chose a concrete problem diagram as
the input of our methods and devised a method to make abstract versions of
the input that are suitable for argumentation in abstract layers (method 1). In

Stepwise Refinement of Software Development Problem Analysis 491

method 1, developers find semantic relationships between an abstract problem
and a concrete problem, which is used for checking consistency in method 2.

A (concrete) problem diagram constructed using the original Problem Frames
approach is the input of our methods. First, developers progressively construct
abstract versions of the input with method 1. Then, they follow the original
Problem Frames approach to analyze the most abstract problem. After that,
they progressively make the arguments more concrete with method 2.

2.2 Method 1: Abstraction of Problem Diagrams

This method stepwisely constructs abstract versions of a given diagram by using
patterns. New information related to an abstraction is obtained in this process.
A possible abstraction of the traffic example is shown in Fig. 3. The intermediate
diagram shows that the controller directly informs cars about the number of cars
in the every area in intermediate problem. In the abstract diagram, #I, #L, and
#R are grouped as “the number of cars outside the mainland” (#O).

Fig. 3. Stepwise abstraction of a problem diagram

A pattern comprises a target, concrete phenomena, abstract phenomena, glu-
ing concerns, and diagram modifications. The target describes parts in a concrete
problem diagram that can be changed through an abstraction using the pattern.
Modifications made to the problem diagram using the pattern are described in
terms of phenomena, namely domains and interfaces. Through the abstraction,
developers can omit concrete phenomena and adds abstract phenomena. Rela-
tionships between abstract phenomena and concrete phenomena are described

492 T. Kobayashi et al.

in gluing concerns, which are instantiated as gluing descriptions. Modifications
made to the problem diagram through the abstraction are described in dia-
gram modifications. Developers need to convert requirements that refer to con-
crete phenomena into abstract requirements by considering gluing descriptions.
Abstract requirements can be equivalent to or weaker than their concrete ver-
sions, but cannot be stronger than the concrete version.

For example, a pattern named spatial grouping is defined as follows:

Target. Several domains of the same class.
Concrete phenomena. Domains in the target and their interfaces.
Abstract phenomena. A domain that is a combination of domains and
interfaces that are combinations of concrete interfaces of the same class.
Gluing concerns. For every abstract phenomenon a that represents combi-
nations of concrete phenomenon (ci), the value of a is equal to the (numerical,
set-theoretical, etc.) sum of values of (ci).
Diagram modifications. Concrete phenomena are replaced with abstract
phenomena. Domains that have interfaces with concrete domains become to
have interfaces with the abstract domain.

Figure 4 illustrates the application of spatial grouping pattern to the example.
First, the target domains (“Cars on the bridge” and “Cars on the island”) are
replaced with an abstract domain “Cars outside the mainland”. Moreover, con-
crete phenomena (#I, #L, and #R) are grouped as an abstract phenomenon
#O. By instantiating the gluing concern, a gluing description “#O = #I +
#L + #R” is obtained. Concrete phenomena EnterIL and LeaveIL are omitted,
because they are shared within the target domains. A requirement “#I + #L +
#R ≤ Cap” is abstracted as “#O ≤ Cap” by considering the gluing description.

Fig. 4. Application of spatial grouping pattern

We analyzed fourteen problems that comprise safety properties as their key
properties, and defined three patterns. Two other patterns are Temporal group-
ing, which is for grouping multiple sequential event phenomena as a single event
phenomenon, and Access cheating, for constructing an abstract problem without
a connection domain.

Stepwise Refinement of Software Development Problem Analysis 493

2.3 Method 2: Refinement of Arguments

Method 2 helps developers to augment abstract subproblem diagrams and con-
struct concrete subproblem diagrams that are consistent with abstract ones.

In this method, developers refine arguments such that they preserve the
properties of the abstract problem. Such refinements mitigate the complexity
of argumentation, since abstract properties do not need to be confirmed again
in the concrete problem. If a refinement adds state transitions that are not
described in an abstract problem, the abstract properties may no longer hold
in the concrete problem. Method 2 is designed to prevent such a refinement
and guarantee that concrete arguments respect abstract ones. In other words,
refinements using method 2 preserve abstract properties.

Specifically, every state transition that has its abstract version should sat-
isfy two conditions, namely guard strengthening and state change simulation.
Figure 5 describes part of the domain descriptions of cars in the abstract prob-
lem and intermediate problem. By considering the gluing concern (#O = #I +
#L + #R), state I0 can be viewed as the concrete version of A0. States I10-I12
are concrete versions of A1, and states I20-I22 are concrete versions of A2.

Fig. 5. Example of respectful refinement of the domain description

Guard strengthening. Guards of events in a concrete problem need to be
stronger than or equivalent to the corresponding abstract events’ guards. For
example, by considering the gluing concern (#O = #I + #L + #R) and state
(#I = #R = 0), the guard of the transition from I10 to I20 (#L = Cap − 1)
can be recognized as being equivalent to the guard of the transition from A1 to
A2 (#O = Cap − 1).

State change simulation. State changes through a concrete event should not
be contradictory with their abstract event’s state changes. For example, event

494 T. Kobayashi et al.

LeaveML causes a state change #O++ in the abstract problem. In the concrete
event, LeaveML causes a state change #L++, which, through the gluing concern
(#O = #I + #L + #R), is a limited version of #O++.

All abstract properties hold in the concrete problem when guard strength-
ening and state change simulation are guaranteed in a refinement. For instance,
in our example, developers first confirm the preservation of a property “#O ≤
Cap” in the abstract problem, and then confirm the concrete version “#L + #I
≤ Cap” in an implicit way by constructing descriptions in the concrete problem
that are consistent with the abstract problem.

3 Preliminary Experiments

We carried out preliminary experiments on three problems including the traffic
example described above. First, we described the problems and our methods
to four students who study computer science, and requested them to abstract
them while finding gluing descriptions. Although participants had never tried the
Problem Frames approach, they constructed abstract problems without being
puzzled. In addition, one of the authors referred to the documents of the target
problems and constructed arguments for problems by following method 2 accord-
ing to abstract problems and gluing descriptions obtained by the participants.
As a result, he succeeded in constructing reasonable arguments for problems at
multiple abstraction levels in all cases. Some of the target problems’ properties
were verified on abstract problems, inherited by concrete problems, and used as
lemmas in concrete argumentation. Thus, we consider that our methods make
argumentation easier. Our primary future work will be to conduct experiments
with larger-scale problems and carefully designed settings.

4 Related Work and Conclusion

Our methods attempt to make problem constituents abstract in a systematic
way and refine abstract arguments with abstract properties that are preserved in
concrete problems. They mitigate the complexity of argumentation by separating
it into multiple steps. As far as we know, this is the first study to tackle the
subject. Our methods complement other methods for decomposing problems.

In [6], the notion of problem transformation is proposed in a formal way.
Problem transformation is an operation to derive a problem P1 from another
problem P2 such that P1 describes the solution of P2 in a more detailed way.
Our methods can be viewed as a problem transformation over multiple levels of
abstraction. Integrating our methods into a problem transformation foundation
will be part of our future work.

Goal-oriented requirements engineering approaches such as NFR framework
[7], i* [4], and KAOS [5], have been widely studied. Although they effectively
use abstraction and refinement of goals to discuss goals, phenomena that are
related to systems’ behavior are not the subject of abstraction. Moreover, these

Stepwise Refinement of Software Development Problem Analysis 495

approaches do not focus on directly describing or analyzing the behavioral inter-
actions of the various components of a problem. An important aspect of such
methods is their effectiveness in analyzing the variability of systems [8]. Inte-
grating our methods with such methods would be an interesting future topic.

Stepwise refinement is a popular approach in the area of formal methods.
For example, the formal specification method called Event-B [2] supports users
who want to prove the consistency of models at different abstraction levels. Our
methods, which are inspired by the refinement mechanism of Event-B, enable
argumentation over abstract layers of problems in Problem Frames for the pur-
pose of conducting problem analysis.

We devised methods of constructing problems with abstract phenomena from
a concrete problem. By providing a way to construct consistent concrete prob-
lems, our methods enable developers to construct concrete problems that inherit
abstract properties. We believe that our methods can help software developers
through incremental and careful argumentation and that they should enable flex-
ible and comprehensible development. Our future work will include integrating
our approach into the formal foundation for Problem Frames [6], finding more
patterns of abstraction, and dealing with changing requirements.

References

1. Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, Harlow (2001)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

3. Laney, R., Barroca, L., Jackson, M., Nuseibeh, B.: Composing requirements using
problem frames. In: 12th IEEE International Requirements Engineering Confer-
ence, pp. 122–131. IEEE (2004)

4. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: The Third IEEE International Symposium on Requirements Engi-
neering, pp. 226–235 (1997)

5. Darimont, R., Delor, E., Massonet, P., van Lamsweerde, A.: GRAIL/KAOS: an
environment for goal-driven requirements engineering. In: 19th International Con-
ference on Software Engineering, pp. 612–613. ACM (1997)

6. Hall, J.G., Rapanotti, L., Jackson, M.: Problem-oriented software engineering.
Technical report, The Open University (2010)

7. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in
Software Engineering, vol. 5. Springer Science & Business Media, New York (2012)

8. Angelopoulos, K., Souza, V.E.S., Mylopoulos, J.: Capturing variability in adapta-
tion spaces: a three-peaks approach. In: Johannesson, P., Lee, M.L., Liddle, S.W.,
Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 384–398. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25264-3 28

http://dx.doi.org/10.1007/978-3-319-25264-3_28

Tailoring User Interfaces to Include
Gesture-Based Interaction with gestUI

Otto Parra1,3(&), Sergio España2, and Oscar Pastor3

1 Computer Science Department, Universidad de Cuenca, Cuenca, Ecuador
otpargon@upv.es

2 Department of Information and Computing Science, Utrecht University,
Utrecht, The Netherlands
s.espana@uu.nl

3 PROS Research Centre, Universitat Politècnica de València, Valencia, Spain
opastor@dsic.upv.es

Abstract. The development of custom gesture-based user interfaces requires
software engineers to be skillful in the use of the tools and languages needed to
implement them. gestUI, a model-driven method, can help them achieve these
skills by defining custom gestures and including gesture-based interaction in
existing user interfaces. Up to now, gestUI has used the same gesture catalogue
for all software users, with gestures that could not be subsequently redefined. In
this paper, we extend gestUI by including a user profile in the metamodel that
permits individual users to define custom gestures and to include gesture-based
interaction in user interfaces. Using tailoring mechanisms, each user can rede-
fine his custom gestures during the software runtime. Although both features are
supported by models, the gestUI tool hides its technical complexity from the
users. We validated these gestUI features in a technical action research in an
industrial context. The results showed that these features were perceived as both
useful and easy to use when defining/redefining custom gestures and including
them in a user interface.

Keywords: Gesture-based interaction �Model-driven development � Technical
action research � Custom gesture � User interface � Human-computer interaction

1 Introduction

User interface development with gesture-based interaction (GBI) is still a complicated
process because software engineers need to use tools (e.g. software development kits,
CASE tools) and related programming languages, typically third-generation languages,
to write code to recognize and respond to application-specific gestures [1]. As a
solution to this situation, some of the challenges can be tackled by using a
model-driven development (MDD) approach [2], which has been fairly popular in the
academic community [3] to develop different software proposals.

In the software development life cycle (SDLC) the requirements specification
involves the participation of the stakeholders (e.g. software engineers, end-users).
Software engineers usually consider a “representative user” to define the end-user’s

© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 496–504, 2016.
DOI: 10.1007/978-3-319-46397-1_38

interaction requirements [4]. However, the concept of the “representative user” does
not allow for the individuality and diversity of each user [5]. It is possible to define
customized interaction elements for each user on the same user interface (UI) instead of
defining the same interaction elements for all users. This decision provides an appro-
priate level of satisfaction when using the UI, as each user employs his interaction
elements to execute an action on the interface.

According to Won et al. [6], tailoring is any activity that modifies a software within
its context of use and can be a simple or complex activity. At higher levels of com-
plexity, users have more skills to redesign the interaction and functionality of a soft-
ware. At the most basic level, tailoring involves specifying parameters to an existing
software in a way that changes its behaviour at a high level of granularity [7]. Software
engineers should thus provide users with tools so that they can change the interaction
definition by modifying interaction elements on a UI.

In this paper we describe the extended version of gestUI [8] containing tailoring
mechanisms that allow users to define custom gestures and to modify this definition
during the execution stage. gestUI is a model-driven, iterative and user-centric method
of defining custom gestures and including GBI in UI by code generation. In this
context, each user decides the GBI elements at the beginning of the SDLC. The
software engineer then includes this specification in the UI, and when the UI is ready,
the user performs actions using the GBI. However, if the user wants to change the
initial specification of the gestures, then he needs the tools to consider the modification
of the gesture catalogue specification to improve the interaction process.

Since our purpose was to gather new knowledge and to design new artefacts
(method and tools), we used the design science methodology [9]. This methodology is
structured into regulative cycles to perform an initial problem investigation that
characterises the problem to be solved, to provide a solution design suitable for solving
the problem, and to verify whether the proposed solution satisfies the previously
analysed problem.

The contributions of this paper are two-fold. First, we extend gestUI to include
tailoring mechanisms in the process to obtain gesture-based interfaces. Secondly, we
validate these new features during the execution of a Technical Action Research
(TAR) [10] to validate gestUI in an industrial context.

2 The Importance of User-Based Tailoring: Related Work

In the existing literature on tailoring UIs, for instance, Zamborlin et al. [11] describe the
Gesture Interaction Designer, which allows users to design their own gestures, making
interaction more natural and also allowing the applications to be tailored to the user’s
requirements. Mayer et al. [12] provide a framework for designing and deploying UIs
that are tailored to a particular user group, considering a multi-step adaptation process.
Ghiani et al. [13] describe the design and implementation of a tool to allow people with
no programming experience to customize the functionality and UI of a multi-device
museum guide. González et al. [5] describe a UI management system able to design
different versions of a UI according to the cognitive, perceptive and motive skills of
each user of the application. They employ a tailoring mechanism to produce a UI

Tailoring User Interfaces to Include GBI with gestUI 497

according to the user’s interaction requirements, avoiding the specification of an “ideal
user”. Kristiansen [14] suggests a systematic way of defining what needs to be included
in the UI for one particular user, based on the user’s participation in the overall
workflow, using a combination of workflow models and models typically developed in
the field of model-based UI design. Won et al. [6] describe FLEXIBEANS, designed
specifically to develop highly flexible and tailorable applications. They employ com-
ponent technology in the design of tailorable systems by providing a complete set of
component-based tailoring operations that can be applied to already deployed appli-
cations. Maceli et al. [15] suggest some guidelines for designing in use, one of which
refers to adapting software to the user’s personal needs, employing a tailoring mech-
anism applied by the users.

This paper describes the extended version of gestUI, which permits users to define
custom gestures and include the GBI using a model-driven paradigm. A tailoring
mechanism is provided to redefine custom gestures and to include them in the
gesture-based software UI.

3 Basic Capabilities of gestUI

This section contains a short description of the improvements made to gestUI. More
information on the gestUI method can be found in [8]. gestUI is based on a
model-driven paradigm and comprises three layers containing a set of activities and
products.

gestUI can be inserted into an existing UI implementation method according to the
description included in [8]. By using gestUI, in the first step, a platform-independent
gesture catalogue is defined which is conforms to a metamodel defined in our work.
Model transformations are then employed to obtain platform-specific gesture specifi-
cation and the source code of the UI containing the GBI.

In order to verify the applicability of the proposed method, we implemented a tool
support using Eclipse and Java programming language. This tool requires an existing
UI source code as input and allows users to define custom gestures, to specify
action-gesture correspondence and to generate source code including GBI. Considering
the actions included in the UI and the previously defined custom gestures, we generate
a new version of the source code including GBI. In this version of gestUI, all the users
share the same definition of the gestures in a UI and it is not possible to redefine
gestures in the execution stage. New features which help to solve these problems are
described here.

4 Empowering Users with New gestUI Features

We opted to improve our method by considering two new features:
The first feature is related to the extended version of the gestUI metamodel (Fig. 1)

in order to include the user’s definition, which permits individual users to define their
own gesture catalogue to include GBI in the UI. In this metamodel, the UserInterface
class denotes the link to an existing UI metamodel containing an element related to the

498 O. Parra et al.

action to execute GBI. A UI can then be used by one or more users. Each user defines
his own catalogue containing one or more gestures; each gesture permits an action
contained in the UI to be executed. Each gesture is formed by one or more strokes
defined by postures, and in turn described by means of coordinates (X, Y). The
sequence of these strokes has an order of precedence. Each posture is related to a figure
(e.g. line, circle) with an orientation (up, down, left, right) and is qualified by a state
(initial, executing, final).

The second feature concerns the redefinition of gestures. We use the map repre-
sentation proposed by Rolland [16] to describe this process (Fig. 2). This process starts
when the user has logged in to the software and obtained a user identification
(UID) related to a previously defined gesture catalogue included in a UI to support
GBI. To redefine a gesture, the user selects it from the gesture catalogue and proceeds
with the redefinition. At the end, the redefined gesture must be included in the UI.

5 Implementing the New Features

In order to implement the first feature of gestUI, we added a module to define user
profiles containing information on each user to specify a UID that is used to relate a
gesture catalogue with a user, i.e. a customized gesture catalogue containing gestures
identified by the UID plus the name of the gesture.

Fig. 1. Extended version of the metamodel

Fig. 2. Map representation of gestUI, including redefinition feature

Tailoring User Interfaces to Include GBI with gestUI 499

As a demonstration of the implementation of this feature, Fig. 3 shows a gesture
catalogue included in a UI (DrawingDiagrams) with two users (User1 and User2). Each
one has a gesture catalogue containing custom gestures. Observe that each gesture is
formed by one or more strokes and has an action to execute. The second feature must
be included as an option in the software menu. In the case shown, this feature was
implemented using Java programming language. Some tool screenshots are included in
the next section, as part of the running example.

6 Validating gestUI in a Technical Action Research

gestUI’s new features were validated during the execution of a TAR, with the col-
laboration of Everis, a multinational firm offering business consulting and IT devel-
opment, maintenance and improvements. The TAR was performed in the context of the
CaaS Project (FP7 ICT Programme Collaborative Project no. 611351). The CaaS tools
include the Capability Design Tool (CDT) [17], a CASE tool that supports capability
modelling according to the CDD meta-model, which includes goal, context, process
and concept modelling.

In this paper, we report the results of applying gestUI’s tailoring mechanism to the
CDT. The first step in the process was to define the gesture catalogue. The users
defined the gesture catalogue (Table 1) containing the primitives to be used in the TAR
(a subset of the primitives of the CDT), the symbol included in its palette for these
primitives, and the gesture selected by the users. Each user defines custom gestures that
are stored in a repository. With the aim of defining the platform-independent gesture
catalogue, the user selects some of these gestures to be inserted in the model defined in
our work [8]. By applying a model transformation, we obtain the platform-independent
gesture catalogue for each user.

Fig. 3. Platform-independent gesture catalogue

Table 1. Excerpt of the gesture catalogue for CDT

Primitive Symbol Gesture Primitive Symbol Gesture

Context Set Capability

Context Element Goal

500 O. Parra et al.

This catalogue is transformed into the platform-specific gesture catalogue by
another model transformation. The relation between gesture and action contained in a
UI must be defined to specify the GBI required in this process. The users define the
gesture-action correspondence by specifying a pair (Gesture, Action). Finally, the
source code containing this type of interaction is generated. The target platform decides
the programming language to be used in generating the source code.

In order to include GBI in the CDT, we added options to the palette and the main
CDT menu and also some source code modules to support this interaction type on the
CDT. This process permits users to draw diagrams on the CDT using gestures (Fig. 4).
When using the CDT, the user sketches the previously defined gestures in the drawing
area to execute actions, in this case sketches gestures corresponding to primitives with
the aim of drawing diagrams.

If gestures are hard to remember or to draw, the software provides the option of
redefining them (Fig. 5). In this option, the user must select the gesture to be redefined.
By clicking the “Show it” button, the current gesture definition appears. On the
right-hand panel the user can redraw the previously selected gesture. When the gesture
definition agrees with the user’s preferences, he includes it in the catalogue by clicking
“Save”. At the end of this process, the user must reload the gesture catalogue to include
the new definition of the gestures in the software.

Fig. 4. CaaS project CDT with gesture-based interaction included

Fig. 5. Redefinition of gestures in CDT

Tailoring User Interfaces to Include GBI with gestUI 501

7 Discussion

In this paper we describe the extended version of gestUI with an extended metamodel
and implementing two new features to improve the process of obtaining gesture-based
interfaces considering tailoring mechanisms.

In a TAR we analysed the user experience (UE) of redefining custom gestures and
the inclusion of GBI in software UIs. Employing a UE Questionnaire (UEQ) [18] we
obtained an overall score of 81 % for the impression of the product for the gesture
redefinition feature. Regarding efficiency (46 %) and dependability (54 %), we think
that these lower values were probably due to the users’ lack of experience in using
gestures, as reported in the demographic questionnaire. Both scales consider factors
such as fast/slow, inefficient/efficient, impractical/practical, and organized/cluttered.
We also analysed the perceived ease of use (PEOU) and perceived usefulness (PU) of
gestUI using a MEM [19] post-task questionnaire with questions on a 7-point Likert
scale. We obtained a PEOU of 5.5 in the custom gesture definition/redefinition and a
PU of 5.4. We employed Microsoft Reaction Cards [20] to determine the users’ opinion
by means of positive and negative adjectives. The most frequent positive adjectives to
describe the UE with gestUI were: innovative, useful and simplistic, while some of the
more negative adjectives used by the participants were: too technical and slow.

8 Conclusions and Future Work

gestUI permits users to include GBI in existing UIs, using automatic transformations
that extend the interface source code. In this paper we describe the improved version of
gestUI, which includes tailoring mechanisms to redefine previously defined custom
gestures. Using these mechanisms, gestUI helps to improve the level of desirability of
the software, as the user employs custom gestures that he has defined himself. If the
users have problems when using gestures (e.g. they are difficult to remember or hard to
sketch on the touch-based screen) they can solve this situation by themselves by
redefining custom gestures. In general, the users considered gestUI’s ease of use and
usefulness as its main advantages for defining/redefining custom gestures and including
GBI in a UI. Some of the challenges to be solved in future work are: (i) to include
additional platforms (e.g. mobile platforms) as a target to produce gesture-based UIs
(currently we support desktop-computing); (ii) to include additional programming
languages as the target language to generate source code (currently we support Java) in
order to give support for GBI to other types of software.

Acknowledgments. This work has been supported by Universidad de Cuenca and SENESCYT
of Ecuador, and received financial support from Generalitat Valenciana under Project IDEO
(PROMETEOII/2014/039).

502 O. Parra et al.

References

1. Khandkar, S.H., Sohan, S.M., Sillito, J., Maurer, F.: Tool support for testing complex
multi-touch gestures. In: ACM International Conference on Interactive Tabletops and
Surfaces, ITS 2010, NY, USA (2010)

2. Rodrigues da Silva, A.: Model-driven engineering: a survey supported by the unified
conceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015)

3. Papotti, P.E., do Prado, A.F., de Souza, W.L., Cirilo, C.E., Pires, L.F.: A quantitative
analysis of model-driven code generation through software experimentation. In: Salinesi, C.,
Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 321–337. Springer,
Heidelberg (2013)

4. Schlobinski, S., Denzer, R., Frysinger, S., Güttler, R., Hell, T.: Vision and requirements of
scenario-driven environmental decision support systems supporting automation for end
users. In: Hřebíček, J., Schimak, G., Denzer, R. (eds.) Environmental Software Systems.
IFIP AICT, vol. 359, pp. 51–63. Springer, Heidelberg (2011)

5. González Rodríguez, M., Pérez Pérez, J.R., Paule Ruíz, M.P.: Designing user interfaces
tailored to the current user’s requirements in real time. In: Miesenberger, K., Klaus, J.,
Zagler, W.L., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp. 69–75. Springer,
Heidelberg (2004)

6. Won, M., Stiemerling, O., Wulf, V.: Component-based approaches to tailorable systems. In:
Lieberman, H., Paternò, F., Wulf, V. (eds.) End-User Development, pp. 115–141. Springer,
Heidelberg (2006)

7. Burnett, M.M., Scaffidi, C.: End-USer Development. The Encyclopedia of
Human-Computer Interaction, 2nd edn. The Interaction Design Foundation, Aarhus (2013)

8. Parra, O., España, S., Pastor, O.: GestUI: a model-driven method and tool for including
gesture-based interaction in user interfaces. Complex Syst. Inform. Model. Q. (CSIMQ) 6,
73–92 (2016)

9. Wieringa, R.: Design science as nested problem solving. In: DESRIST 2009, Malvern, PA,
USA (2009)

10. Wieringa, R., Moralı, A.: Technical action research as a validation method in information
systems design science. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST
2012. LNCS, vol. 7286, pp. 220–238. Springer, Heidelberg (2012)

11. Zamborlin, B., Bevilacqua, F., Gillies, M., D’inverno, M.: Fluid gesture interaction design:
applications of continuous recognition for the design of modern gestural interfaces. J. ACM
Trans. Interact. Intell. Syst. (TiiS) 3(4), 22:1–22:30 (2014)

12. Mayer, C., Zimmermann, G., Grguric, A., Alexandersson, J., Sili, M., Strobbe, C.: A
comparative study of systems for the design of flexible user interfaces. J. Ambient Intell.
Smart Environ. 8(2), 125–148 (2016)

13. Ghiani, G., Paternò, F., Spano, L.D.: Cicero designer: an environment for end-user
development of multi-device museum guides. In: Pipek, V., Rosson, M.B., de Ruyter, B.,
Wulf, V. (eds.) IS-EUD 2009. LNCS, vol. 5435, pp. 265–274. Springer, Heidelberg (2009)

14. Kristiansen, R., Atle Gulla, J., Troetteberg, H.: Use of tailored process models to support
ERP end-users. In: Information Systems Technology and Its Applications, 5th International
Conference, ISTA 2006, Klagenfurt, Austria (2006)

15. Maceli, M., Atwood, M.E.: “Human Crafters” once again: supporting users as designers in
continuous co-design. In: Dittrich, Y., Burnett, M., Mørch, A., Redmiles, D. (eds.) IS-EUD
2013. LNCS, vol. 7897, pp. 9–24. Springer, Heidelberg (2013)

Tailoring User Interfaces to Include GBI with gestUI 503

16. Rolland, C.: Capturing system intentionality with maps. In: Krogstie, J., Opdahl, A.L.,
Brinkkemper, S. (eds.) Conceptual Modelling in Information Systems Engineering,
pp. 141–158. Springer, Heidelberg (2007)

17. Sandkuhl, K., Stirna, J.: CaaS Base Methodology, UR (2014)
18. Schrepp, M., Hinderks, A., Thomaschewski, J.: Applying the user experience questionnaire

(UEQ) in different evaluation scenarios. In: Marcus, A. (ed.) DUXU 2014, Part I. LNCS,
vol. 8517, pp. 383–392. Springer, Heidelberg (2014)

19. Moody, D.L.: The method evaluation model: a theoretical model for validating information
systems design methods. In: Proceedings of the 11th European Conference on IS (ECIS),
pp. 1327–1336 (2003)

20. Merčun, T., Žumer, M.: Dimensions of user experience and reaction cards. In: The
Emergence of Digital Libraries - Research and Practices, 16th International Conference on
Asia-Pacific Digital Libraries, Chiang Mai, Thailand (2014)

504 O. Parra et al.

Unlocking Visual Understanding:
Towards Effective Keys for Diagrams

Nicolas Genon1(B), Gilles Perrouin1, Xavier Le Pallec2, and Patrick Heymans1

1 PReCISE, University of Namur, Namur, Belgium
{nicolas.genon,gilles.perrouin,patrick.heymans}@unamur.be

2 University of Lille, Villeneuve-d’Ascq, France
xavier.le-pallec@univ-lille1.fr

Abstract. Diagrams are (meant to be) effective communication sup-
ports to convey information to stakeholders. Being communication sup-
ports, they have to be quickly and accurately understood. To enable
immediateness, many disciplines such as cartography rely on keys, which
categorise diagram symbols and bind them to their meaning. Software
engineering extensively relies on visual languages such as UML to com-
municate amongst the many stakeholders involved in information sys-
tems’ life-cycle. Yet, keys are barely used in these diagrams, hindering
(immediate) understanding and limiting it to language experts. We pro-
vide a disciplined approach to design effective keys, by adapting graphic
semiology theory and cartographers’ know-how to software diagrams. We
illustrate our method on a UML class diagram. Designing effective keys
raises questions about the concerns and tasks to be addressed by the
diagram, and even, reveals issues about the language itself.

Keywords: Key · Caption · Legend · Diagram understandability ·
Visual immediacy · Visual effectiveness · Visual modelling language

1 Keys in Visual Languages

While understandability is a major preoccupation in Software Engineering (SE)
modelling, it still lacks a precise but consensual definition. Based on these ref-
erences [7,8,14], an understandable diagram is a diagram that provides all (and
only) the pieces of information the stakeholders look for, immediately percep-
tible and in a way suitable to the stakeholders’ questions or tasks. We propose
a definition of understandability that encompasses those notions but at a more
operational level. Understandability is thus a combination of accuracy and speed
at which the stakeholder processes the information conveyed by the diagram.
Relying on a visual modelling language does not automatically make diagrams
understandable or immediate. Understandability is a quality that requires dia-
grams to be designed in the appropriate way.

Over time, a series of theories about modelling language visual qualities have
emerged but only a handful of them goes beyond the stage of a collection of

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 505–512, 2016.
DOI: 10.1007/978-3-319-46397-1 39

506 N. Genon et al.

abstract guidelines. The two most complete theories so far are the Cognitive
Dimensions of Notations (CDs) [5] and the Physics of Notations (PoN) [10].
While the CDs provide a large set of high-level properties that help make visual
languages cognitively effective (and hence, more easily comprehensible), PoN
focusses on evidence-based principles formulated to address SE visual languages
in practice. However, both theories still lack a detailed procedure to apply their
properties/principles. Our work contributes to make up for this lack of support
by proposing a disciplined method to design effective diagramming keys.

Keys – also called legends or captions – are usually thought about to be anec-
dotal pieces of documentation. On the contrary, we argue that designing effective
keys is a real challenge that is worth the effort. Indeed, a key designed accord-
ing to the method described in this work allows (i) to identify the questions to
which the diagram can provide answers, (ii) to indicate the diagram context, and
(iii), to show how the components of the information are visually depicted. Soft-
ware engineers may consider keys unnecessary given their mastering of modelling
languages. However, it would restrict diagrams to information storage artefacts
only, whereas they are also communication supports to non-expert stakeholders.

While keys are present on various kinds of documents that we consult in
our every-day life, it is surprising that they are most of the time missing from
SE diagrams. We searched several sources (Google Scholar, Dblp) and dedicated
venues in computer visualisation (VL/HCC, VIS, EuroVIS, SIGGraph, and in
Journals like the IEEE Transactions on Visualization and Computer Graphics)
as well as cartographic domains. The searched keywords were: key, legend, cap-
tion, combined to the terms model understandability, diagram understandability,
model comprehensibility, diagram comprehensibility. We finally unearthed three
main articles, focussing on interactive environments. Interactive environments
are a sub-category of dynamic environments where visual representations con-
tain animations and the tool hosting the diagram is equipped with functions
allowing the user to directly interact on the diagram.

Dykes et al. elicit high-level guidelines to design keys for maps in a dynamic
environment [3]. These guidelines are driven by distinct strategies governing the
display of the key (e.g. embedding the key in the map itself, or revealing the
information on demand). Most of their guidelines involve dynamism, which is
not easily transferable to the diagrams we target. More importantly, they do not
cover fundamental constituents (such as shapes and colors), which are essen-
tial for a principled approach to keys design. Tudoreanu and Kraemer’s work
suffer from the same limitations, with a greater focus on user interaction [17].
Interaction is also the focus of cartographers ([9,12,15]).

Riche et al. [6] present and evaluate interactive keys by mentioning funda-
mental notions. They demonstrate how these notions can be used to empirically
assess keys in dynamic environments. In contrast, we use these notions to focus
on (static) key design, thus both works are complementary.

Towards Effective Keys for Diagrams 507

2 What Should Be in a Key?

What elements should appear on a diagramming key and how (or where) to place
these elements on the diagram are the true questions to be asked when designing
a key. Our approach is based on the Semiology of Graphics (SoG), a cartography
theory published in 1963 by Bertin [1]. In a nutshell, keys designed according to
the SoG make the stakeholder (i.e., the reader of the visual representation) able
to understand a map without any kind of prior learning (except for the notion
of coordinates conveyed by the map). We pursue the same objective but for SE
diagrams, independently of the visual modelling language.

Fig. 1. On the left, a map without any key – on the right, a map with a well designed
key

We introduce the elements that compose a key by referring to a (cartography)
map example. Considering Fig. 1(a) on its own, the stakeholder can recognize
the country under consideration (i.e., Japan). He can also identify distinct levels
of colour brightness that seem to express distinct values, but nothing can be cer-
tifiably inferred about the semantics of these values. Providing a key to the map
actually solves these issues. A key is the visual information added to a visual
representation that allows to perform the external and internal identifications.
The internal identification indicates the components and their categories. Cate-
gories are the distinct values depicted by visual artefacts on the representation.
As depicted by Fig. 1(b), the categories are the numeric ranges associated to
each level of colour brightness. In this example, all these ranges are related to a
common concern – the number of inhabitants per km2, which is called a com-
ponent. The external identification provides information about the context (i.e.,
the invariant) of the information conveyed by the visual representation and it
consists in wording (i.e., by providing a title to the representation). Referring
to the example, the context of Fig. 1(b) is the Japanese population density per
prefecture in 2009.

508 N. Genon et al.

Hereafter, we introduce the hypothesis that structures the relationships
among the three core notions. It states that the information conveyed by a visual
representation consists of a set of pieces of information. All pieces of information
(aka., tuples) are specific combinations of categories taken from the same set of
components. The components are defined for the entire visual representation in
the context of the given invariant and each combination has to be composed
of at least one category of each component. A component is defined by several
properties: a name which is a string denoting the concern that is modelled by
the component, a length, which is an integer indicating the number of categories
defined for this component, and a organizational level, which is a value from
the set {qualitative, ordered, quantitative} that means that the categories of
this component are not naturally ordered (i.e., qualitative), or that there exists
a natural order (i.e., ordered), or that it is ordered and the distance between
two categories is significant (i.e., quantitative). The categories are described by
exhaustively eliciting their values.

Referring to the Japan map, we can now define the properties of the compo-
nent and its categories. The component is labelled inhabitants/km2, has a length
of seven, and its organizational level is ordered. The categories for this compo-
nent are the ranges: [0–99], [100–199], [200–299], [300–399], [400–499], [500–999],
[1000–5514]. Every piece of information displayed in the Japan map (see Fig. 1)
is a tuple (coordinates, density range). This is a particularity of maps: the (x, y)
coordinates are part of the primary notation, even if they do not usually appear
in the key.

Components are visually depicted by visual variables. There are eight vari-
ables that belong to two distinct categories (Fig. 2): two planar variables and
six retinal variables. The planar variables locate any graphic artefact on the 2D
plane as a pair of two coordinates (x, y). The six retinal variables are: the shape,
the size, the colour, the orientation, the value, and the texture. Every variable is
characterised by three properties: steps, length, and level. We do not detail them
due to space limitation (see [1]).

Fig. 2. The 8 visual variables from Bertin [1]

Towards Effective Keys for Diagrams 509

The mapping of a component to a visual variable actually defines the primary
notation of the modelling language. Every step of the variables from the primary
notation is semantically meaningful. Hence, it is not allowed to introduce a new
step (or change current steps) of those bound variables to carry extra semantics
or perceptual attitudes. This is actually the purpose of the secondary notation.
It is composed of the visual variables that are not bound to any component.
These free variables are available to draw attention to certain locations of the
diagram, to annotate the diagram, or to add extra (i.e., not part of the modelling
language) concerns on the diagram.

3 Method

1. External identification. Wording the diagram (i.e., providing a title).
2. Internal identification. Performed after or in parallel with the external
identification. It is composed of three sub-stages:

(a) category elicitation: the visual artefacts depicted on the diagram are
elicited and those that are visually distinct (i.e., text excluded) are kept.

(b) component elicitation: the categories are gathered according to their
semantic proximity in order to form components. The components’ label,
length, and organizational level are also provided (as defined in Sect. 2).

(c) pre-mapping of visual variables: potentially appropriate visual variables
are elicited. The final choice is postponed to after secondary notation require-
ments elicitation.

3. Identification of secondary notation requirements. Visual techniques
(e.g., perceptual pop-out effect [13,16]) to support foreseen uses of the diagram
are elicited. Candidate visual variables are chosen according to their length and
level.
4. Mapping components to visual variables. Given the list of variables
eligible to the primary notation and the candidate secondary notation variables,
the designer selects the variables that constitute the primary notation.
5. Selection of the visual variables to be part of the secondary notation.
Using the outcome of Stages 3 and 4, the choice of variables for the secondary
notation is ratified.
6. Writing down the key onto the diagram. The component to visual vari-
able mapping is depicted on the diagram itself, because it is required to correctly
interpret the meaning of the conveyed information. It is visually structured in
this way: (i) each component is labelled; (ii) the categories and the steps of the
visual variable(s) to which each category is mapped are placed below or beside
the corresponding component (only those appearing on the diagram); (iii) the
secondary notation is added (i.e., the addressed concern(s), and below or beside,
its/their categories and steps).

510 N. Genon et al.

4 Running Example: SuperElectronicMarket

In this section, we give an overview of the result of applying our method. We
consider a UML class diagram representing an excerpt of the static domain of
the SuperElectronicMarket information system. There are four classes, Product,
Producer, Customer, Order, one association class, OrderDetail, two binary
associations and one composition. A Customer orders Products that are built
by a Producer. For each Order, there is a series of OrderDetails, each one cor-
responding to the purchase of a certain quantity of a given Product. Every Order
is at least composed of one OrderDetail. This example does not strive to be
realistic w.r.t. to an actual information system: we focus on visual representation
of the information, not its relevance.

Let’s now assume that we are free to change the UML class diagram concrete
syntax (but neither its semantics nor its abstract syntax). We detail each step
of our method:
Stage 1. The diagram is given a title: the invariant relate to the (static) concepts
of the SuperElectronicMarket domain.
Stage 2. As we do not afford to change the language semantics, this component
elicitation may be puzzling and lead to ill-formed components (e.g., a component
with a length of one, or a component whose categories are not mapped to the
same visual variable(s)). There are four categories and their associated steps:

– classes that are depicted with rectangles (visual variable: shape); Enumera-
tions are distinguished from classes by a textual annotation (i.e., � enumer-
ation �), which is not visually discriminant according to the SoG;

– associations that are depicted with plain lines (visual variable: shape);
– association classes that are depicted with a rectangle and a dashed line (visual

variable: shape);
– compositions that are depicted with plain lines with a diamond head at the

source of the relationship (visual variable: shape).

Grouping these four categories together is not allowed because (i) classes and
enumerations are implanted as a point on the diagram, while the relationship
types adopt a linear implantation (for details about implantation types, see [1]);
(ii) class diagrams are SoG networks, which implies that the existence of rela-
tionships prevails over nodes. Hence, we define two components: concept types,
which comprises the class and enumeration, and relationship types that gathers
the association, composition and association class relationships1.
Stage 3 (and 5). We choose to not use any secondary notation.
Stage 4. The concept types has a length of 2 and is qualitative. The shape variable
is suitable, but class and enumeration symbols are visually speaking identical.
Hence, we provide a new shape to the enumeration that is a rectangle whose
vertical sides are curved. We also add a special mark at the top left corner.
The rationale sustaining our choice is the following: rectangle with curved sides
1 According to the UML standard [11], association classes are associations with specific

properties.

Towards Effective Keys for Diagrams 511

Fig. 3. SuperElectronicMarket UML class diagram with a revised concrete syntax

suggests the meaning of a sheet of paper and the special mark denotes a list of
items. The relationship types is qualitative, and it counts three categories. Again,
any retinal variable could be appropriate. One of the major issues when reading
a class diagram is to distinguish between association types. Associations do not
carry any head, while compositions and aggregations have a black (respectively,
white) diamond. We choose to increase the discrimination of those association
types by using colour and by changing the step of the shape variable. Associations
are now red, compositions are blue and association classes are green. The shape
of the lines is changed this way: chain link shape for associations, diamond link
with a large diamond head at the source side for compositions, and a dashed line
for the association class. We have chosen to use two variables for the association
types because it allows to perform redundant coding.
Stage 6. We design the component to visual variable mapping as described in
Sect. 3. The resulting diagram is depicted in Fig. 3.

5 Discussion

In this paper, we presented a method to systematically design diagramming keys,
which gives concrete validation rules to ensure the diagram is SoG-compliant.
SoG is a theory to design visually effective representations in which the infor-
mation is understood accurately and (almost) immediately. Inspired by cartog-
raphy, we argue that it is useful for SE diagrams in which neophytes get accus-
tomed with the language concepts progressively and experts are given dedicated
reminders on complex notations (such as UML). We improved the concrete syn-
tax of UML class diagrams to make information quickly and accurately per-
ceptible (other examples: https://staff.info.unamur.be/nge/effective-keys). Full

https://staff.info.unamur.be/nge/effective-keys

512 N. Genon et al.

power of the SoG can be unleashed when designing a new language: in this con-
text, even abstract syntax (metamodel) will be impacted when performing the
internal identification. To empirically validate our method, we plan to set up
an experiment where participants would have to answer a series of questions or
perform some tasks by relying on a set of diagrams with their keys. A control
group would be asked the same actions but they would work with regular dia-
grams (i.e., without keys). Evaluation and empirical validation of visual concerns
have been shown feasible in the context of [2,4]. Additionally, CASE tools could
ensure the automatic validation of SoG’s constraints. Finally, diagram design
could be assisted by the use of interactive keys.

References

1. Bertin, J.: Sémiologie graphique: Les diagrammes - Les réseaux - Les cartes.
Gauthier-VillarsMouton & Cie (1973)

2. Caire, P., Genon, N., Heymans, P., Moody, D.: Visual notation design 2.0: towards
user comprehensible requirements engineering notations. In: RE 2013 (2013)

3. Dykes, J., Wood, J., Slingsby, A.: Re-thinking map legends with visualization.
IEEE Trans. Vis. Comput. Graph. 16(6), 890–899 (2010)

4. Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the
BPMN 2.0 visual notation. In: Proceedings of SLE 2010, vol. 6563, pp. 377–396
(2010)

5. Green, T., Blandford, A., Church, L., Roast, C., Clarke, S.: Cognitive dimensions:
achievements, new directions, and open questions. VLC 17, 328–365 (2006)

6. Riche, N.H., Lee, B., Plaisant, C.: Understanding interactive legends a comparative
evaluation with standard widgets. CGF 29(3), 1193–1202 (2010)

7. Houy, C., Fettke, P., Loos, P.: Understanding understandability of conceptual mod-
els - what are we actually talking about? In: Proceedings of ER, pp. 64–77 (2012)

8. ISO, IEC: ISO 9126. Software Engineering - Product Quality. ISO/IEC 9126 (2001)
9. Kraak, M., Edsall, R., MacEachren, A.: Cartographic animation and legends for

temporal maps: exploration and or interaction. In: Proceedings of ICC 1997, pp.
23–27 (1997)

10. Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving
the cognitive effectiveness of the i* visual notation. RE 15(2), 141–175 (2010)

11. OMG, Inc.: UML 2.4.1 Superstructure Specification, August 2011
12. Peterson, M.P.: Active legends for interactive cartographic animation. Int. J.

Geogr. Inf. Sci. 13(4), 375–383 (1999)
13. Quinlan, P.T.: Visual feature integration theory: past present and future. Psychol.

Bull. 129(5), 643–673 (2003)
14. Selic, B.: The pragmatics of MDD. IEEE Softw. J. 20(5), 19–25 (2003)
15. Sieber, R., Schmid, C., Wiesmann, S.: Smart legends - smart Atlas. In: Proceedings

of the 22nd International Cartographic Conference (ICC 2005), pp. 11–16 (2005)
16. Treisman, A., Gelade, G.: A feature integration theory of attention. Cogn. Psychol.

12(1), 97–136 (1980)
17. Tudoreanu, M.E., Kraemer, E.: Legends as a device for interacting with visualiza-

tions. Technical report WUCS-01-44 (2001)

Goal Modeling

MEMO GoalML: A Context-Enriched Modeling
Language to Support Reflective Organizational

Goal Planning and Decision Processes

Alexander Bock(B) and Ulrich Frank

Research Group Information Systems and Enterprise Modeling,
University of Duisburg-Essen, Essen, Germany
{alexander.bock,ulrich.frank}@uni-due.de

Abstract. Conceptual models of goal systems promise to provide an apt
basis for planning, analyzing, monitoring, and (re-)considering goals as
part of management processes in the organization. But although a great
deal of conceptual goal modeling languages are available, these take only
limited account of the organizational dimension of goals, including autho-
rization rights, responsibilities, resources, and, in particular, related deci-
sion processes. This paper presents a goal modeling language which is
integrated with a method for multi-perspective enterprise modeling, such
that context-enriched models of goal systems can be constructed. Aside
from organizational aspects, particular emphasis is placed on conceptu-
alizations that clearly distinguish different (meta) levels of abstraction.

Keywords: Goal modeling · Enterprise modeling · Organizational
goals · Organizational decision processes · Domain-specific modeling lan-
guage

1 Introduction

Goals are ordinarily regarded as a prerequisite for the management of the firm.
The formulation of organizational goals has been placed at the core of manage-
rial responsibilities for long [28,30], and goal orientation is key to the classical
economic theory of decision making [29]. At the same time, explicit goals have
often been found to be absent from organizational action [33], and the design of
goal systems has for decades been recognized as a challenging task (e.g., [14]).

In order to support organizations in reflectively setting and (re-)assessing
goals, conceptual models promise to provide an apt foundation. Explicit mod-
els of organizational goal systems may serve as a central reference for differ-
ent actors and related decision processes, contributing to organizational trans-
parency, consistency, and efficiency. To create goal models, numerous conceptual
goal modeling languages (e.g., [4,7,16,26,34,35]) have been brought forward in
recent decades. However, existing languages mostly aim to support requirements
analysis and largely abstract from organizational aspects of using goals:

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 515–529, 2016.
DOI: 10.1007/978-3-319-46397-1 40

516 A. Bock and U. Frank

– The managerial analysis of goals requires accounting for the context of goals,
including resources, organizational units, business processes, and IT infrastruc-
tures. Existing languages consider this context only to a limited extent.

– The organizational dimension of goal planning, including authorization rights
and fulfillment responsibilities, is widely omitted by existing languages.

– Goals are intimately related to decision making. Yet, many languages do not
include concepts to interrelate goals with organizational decision processes.

– The concept of a goal holds a variety of conceptual intricacies, considered only
partly by existing languages (e.g., decompositions of goal contents).

Against this background, the purpose of this paper is to present a domain-
specific modeling language (DSML), called MEMO Goal Modeling Language
(MEMO GoalML), which, compared to existing languages,

– enables a richer specification and analysis of goals because it integrates goal
models with multi-perspective enterprise models that represent the context of
goals, especially including organizational-regulatory aspects;

– offers a more elaborate conception of goals because, e.g., it permits to decom-
pose goal contents and distinguishes a larger number of goal relationships;

– provides support for analyzing and aligning goals and decisions because it is
integrated with a language to describe organizational decision processes;

– contributes to model consistency, reuse, and flexibility because its language
specification explicitly distinguishes between aspects on M1 and M0.

The proposed language is designed as part of a comprehensive, multi-perspec-
tive method for enterprise modeling (MEMO) [12]. Versions of GoalML have
been introduced before [19,24], which we here condense and augment, especially
in regard to decision processes, to provide a coherent modeling framework.

The paper proceeds as follows. First, we discuss the theoretical background
and synthesize requirements (Sect. 2). Then we present the enterprise modeling
method in which the language is embedded (Sect. 3). Meta models and graph-
ical notations of the language are introduced in Sects. 4 and 5. Finally, results
and related work are discussed (Sect. 6), and future research routes are outlined
(Sect. 7).

2 Theoretical Background, Aims, and Requirements

A research-based construction of a DSML requires a systematic design process,
while considering particularities of the artifact ‘modeling language’. To this end,
we applied a method to design DSMLs [11]. At a macro level, this method con-
sists of seven (iterative) phases [11]: (1) ‘Clarification of scope and purpose’, (2)
‘analysis of generic requirements’, (3) ‘analysis of specific requirements’, (4) ‘lan-
guage specification’, (5) ‘design of graphical notation’, (6) ‘development of mod-
eling tool’, and (7) ‘evaluation and refinement’. In this paper, we focus on the
most salient phases—(1), (3), (4), and (7). We start with an account of scope
and purpose (phase 1; Sect. 2.1) and specific requirements (phase 3; Sect. 2.2).

MEMO GoalML: A Context-Enriched Modeling Language 517

2.1 Aims and Assumptions: Theoretical Considerations

In long debates, the concept of a goal has become recognized as an example
of what Simon calls “value elements [...] in decision making” [31, pp. 59–60],
describing “states of affairs [that] ought to be” [31, p. 47]. This places goals
amidst what March has summarized as “one of the most elaborate terminologies
in the professional literature [including] ‘values’, ‘needs’, ‘wants’, ‘goods’, ‘tastes’,
‘preferences’, ‘utility’, ‘objectives’” [20, p. 254]. But in contrast to broader terms
such as ‘value’, goals are ordinarily construed as specific visions of desired future
states to guide decision making and problem solving (cf. [21, p. 315] [14, p. 45]).

From this vantage point, goals have been taken as part of the classical eco-
nomic conception of rationality, where a “rational” decision is one which max-
imizes goal measures such as expected utility (e.g., [29]). This view is reflected
in wide parts of decision theory (e.g., [25, pp. 33–73]) and in goal model analy-
sis techniques that maximize goal attainment (for a review, see [15]). However,
when considering goals in organizations, a different picture emerges. First of all,
organizations often do not explicate and maintain goal systems at all (e.g., [33]).
Second, even in case explicit goals have been defined, it has long been argued that
“optimal” alternatives, due to limited cognitive capacities and epistemological
issues, cannot be identified [29] [31, pp. 79–109]. Furthermore, many organiza-
tional goals, intendedly or unintendedly, are not formulated precisely enough to
permit clear evaluation, but rather serve as a broad orientation (e.g., high-level
goals related to profits [30, pp. 17, 21–22]) or “sense-making” and inspiration
(e.g., goals related to ‘social responsibility’, [28, p. 73]). Finally, although the
customary rhetoric often portrays goals as outcomes of an ubiquitous “organi-
zational mind” [6, p. 26], goals result from social (decision) processes involving
individual actors. Thus, it can be assumed that goal planning processes are not
only in need of coordinative measures, but that they will also often be affected
by hidden agendas and political maneuvering (see, e.g., [6] [30, pp. 11–12]).

Against this background, we do not assume that goal models are, or should
be, capable of controlling individual behavior in a mechanistic sense, or that
they can ensure “optimal” rational decisions. Instead, we assume that goal mod-
els can serve as a possible reference point, among many others, for individ-
ual and collaborative decision making in organizations. The main aim of the
desired language, then, is to support actors in formulating, discussing, critically
(re-)considering, and monitoring goals. As an outcome, the modeling language is
sought to contribute to organizational transparency (because selected premises
and assumptions of decision making can be made explicit), consistency (because
different actors can refer to, and communicate by means of, a common linguistic
structure and related models), and efficiency (because distributed goal planning
processes can be coordinated and documented by means of a central instrument).
In parallel to this main aim, the language specification is intended to support
the development of related software systems, including goal modeling tools and
enterprise systems, that are aware of, and which can monitor, corporate goals.

518 A. Bock and U. Frank

2.2 Specific Requirements

Having considered general assumptions and aims, we analyze specific require-
ments for the desired language in this section. The requirements are based on
two grounds. First, they result from the above-indicated extensive literature
review that has been conducted as part of a dissertation project [19, pp. 13–
100]. Second, in line with the method used to design the language [11], some
requirements are derived from considering application scenarios in which the
desired method should be applicable [19, pp. 121–130]. The following require-
ments emerged from considering four application scenarios (cf. [19, pp. 108–114]),
namely (1) goal system analysis (R1–R4, R8), (2) organizational goal planning
(R5, R6), (3) goal monitoring (R4, R6), and (4) coordinating decision processes
(R7, R8). Compared to the original requirements [19,24], application scenario 4
is new, and continues work from [2]. For space reasons, we discuss and illustrate
the scenarios together with the final specification of the language in Sects. 4
and 5.

R1—Goal content. A goal modeling language should enable to describe the
content (or ‘substance’) of a goal in detail. This can include decomposing the
real-world aspects referred to by a goal into different elements, distinguishing
between different kinds of aspects (e.g., qualitative and quantitative aspects),
and specifying what reaching the different parts of a goal content may imply.

R2—Goal functions. The language should allow to express the function a goal
is supposed to serve. At least, it should be possible to explicate whether a goal
is sought to specify a concrete, to-be-evaluated performance target for specific
actors or whether it aims at inspiration, information, and legitimization.

R3—Goal relationships. A goal modeling language should enable to clearly
differentiate between distinct kinds of relationships that can be recognized
between goals. For instance, it should be possible to distinguish between log-
ical (de-)composition, assumed causal dependencies between possible actions to
attain goals, and means-ends relationships expressing that certain goals have
been formulated exclusively to incite actions as a means to attain another goal.

R4—Goal abstraction levels. A language for goal modeling should sharply
differentiate different levels of abstraction. In particular, meaningful notions of
goal meta types (M2), types (M1), and instances (M0) need to be developed,
and the meta model of the language needs to prescribe accurately at which level
of abstraction (meta) model elements are to be instantiated. For elements at
all levels, the language specification should be oriented towards implementation
languages to support the development of modeling tools and software systems.

R5—Organizational context. A language to model organizational goals should
permit to interrelate goals with relevant parts of the organizational context. This
includes, but is not limited to, general reference points to help interpret a goal
(e.g., IT infrastructures or business processes assumed to be affected by goal-
related actions), resources allocated to reach a goal, organizational units that
formulate, evaluate, or work towards goals, and decision processes (see below).

R6—Organizational regulations. A modeling language to describe organi-
zational goals should provide conceptual means to capture the organizational

MEMO GoalML: A Context-Enriched Modeling Language 519

dimension of goals. In particular, this includes authorization regulations (describ-
ing what kind of goals a unit or position may release), goal ownerships (describing
which unit or position has formulated, and monitors, a goal), and goal attain-
ment responsibilities (describing who is responsible for reaching a goal).

R7—Interrelation with decision processes. A goal modeling language should
be integrated with concepts to describe organizational decision processes to
enable analyzing how goals are, or should be, considered in organizational deci-
sions. The language should differentiate between different kinds of relationships,
including, e.g., whether goals are subject of, or reference points for, decisions.

R8—Reflective use. A language to model organizational goals should promote
a reflective and critical stance towards the formulation, interpretation, and use
of goals for purposes of organizational decision making and managerial control.
For example, a language should help make explicit underlying (and perhaps
simplistic or otherwise problematic) assumptions of the modelers.

3 Context: Multi-perspective Enterprise Modelling

To clarify the foundation on which the GoalML is based, in this section, we first
give a brief overview of MEMO. Second, we introduce the MEMO meta modeling
language MEMO MML. For an in-depth discussion of MEMO, see [12].

Generic framework. Enterprise modeling is motivated by the insight that
analyzing and re-designing enterprises requires accounting for both the organi-
zational action system and the related information system. Accordingly, enter-
prise models integrate models of the organizational action system (e.g., busi-
ness process models) and models of information systems (e.g., models of the IT
infrastructure). This general idea is reflected in the design of MEMO. MEMO
includes a generic, yet adjustable framework to structure any kind of enterprise,
as well as a set of DSMLs to describe details of all parts of that framework.
The generic framework of MEMO offers three perspectives on an enterprise:
strategy, organization, and information system. A perspective corresponds to a
professional view and is represented by domain-specific concepts. Perspectives
can be further differentiated into aspects such as resources, structure, process,
and goals. This generic framework provides a “ballpark view” of an enterprise,
serving as a high-level starting point to identify more specific analysis areas.
In order to describe and analyze selected areas in detail, MEMO provides an
extensible set of integrated DSMLs. These include languages to model organiza-
tional structures and business processes (OrgML, [8,9]), a language to model IT
infrastructures (ITML, [18]), a language to model resources (ResML, [17]), and
a language to model business indicators (MetricML, [32]). More recent additions
include a language to model decision processes [2] and the GoalML presented
here. The integration of MEMO DSMLs is accomplished through a language
architecture that features a common meta modeling language (MEMO MML;
see below) and through common concepts shared by the DSMLs (as illustrated
in Sect. 4).

Meta modeling language. We decided to define our own meta modeling lan-
guage, MEMO MML [10], because existing languages such as the MOF [22] lack

520 A. Bock and U. Frank

concepts we regard as important. Two MEMO MML concepts are especially rel-
evant for the GoalML. First, modeling languages usually consist of meta types at
level M2, which will be instantiated into types at level M1. However, sometimes
it is also known at M2 what attributes are required for instances at M0. For
example, a language to model processes may include the meta type ‘Process’
(M2). For a ‘Process’, it is obvious that every instance (M0) has a start and
end date. But without dedicated meta concepts, it is not possible to define these
attributes at M2, because they would otherwise be instantiated at M1 rather
than M0. In MEMO MML, ‘intrinsic features’, similar to ‘power types’ [23] and
‘deep instantiation’ [1], enable to define entity types, attributes, and associa-
tions at M2 that are to be instantiated at M0 only. Second, using MEMO MML,
attributes of meta types can be marked as ‘derivable’. This expresses that an
attribute’s value may be calculated from the states or values of other model
elements. In meta models, intrinsic features are marked with a white ‘i’ on a
black square, while derivable attributes are marked with a black ‘d’ on a white
square. The use of these (meta) concepts is illustrated in the next section.

4 Language Specification

In this section, we discuss the design process of the GoalML (Sect. 4.1) and we
present the final specification of the GoalML (Sect. 4.2).

4.1 Design Process, Guidelines, and Design Decisions

In the method applied to design a DSML [11], ‘language specification’ comprises
several steps. First, the method advises to create a glossary of all concepts iden-
tified as relevant elements of the considered domain of discourse. Our resultant
glossary included numerous terms, such as ‘goal’, ‘symbolic goal’, ‘goal content’,
‘sales target’, and ‘key goal’. In a second step, it needs to be decided for each
concept in the glossary whether it should be part of the language or rather be
specified with the language [11, p. 146]. This decision cannot be made unam-
biguously. As an orientation, however, the method we followed provides a set of
criteria as guidelines (see [11, pp. 146–147]). For example, criterion Cra states
that language concepts should be expected to have widely the same meaning
within the desired application scope. When applying this criterion to a term
like ‘key goal’, it can be determined that this example would not qualify as a
language candidate, as in contrast to the more general term ‘goal’, it cannot be
assumed that there is a largely similar understanding of ‘key goal’ across differ-
ent enterprises. As another example, criterion Crc states that a meta type which
can be instantiated into types of little semantic difference only usually should
not become part of a language. When applying this criterion to a term such as
‘sales goal’, it becomes apparent that possible instantiations into types (e.g., ‘sell
x units’ or ‘sell units for a sum total of y M$’) appear too similar, discouraging
this term as a language concept. For all language concepts presented in the next
section (Sect. 4.2), the assessment of criteria indicated that they should become

MEMO GoalML: A Context-Enriched Modeling Language 521

part of the DSML (see [19, pp. 191–196]). In a following step [11, pp. 147–148],
the method advises to design a draft meta model that includes all selected con-
cepts. This step involves the decision whether or not to define a meta model
element as ‘intrinsic’. While this decision was relevant for all elements, it was
particularly significant with respect to time-related attributes [19, pp. 197–198].
For example, a goal type could already instantiate most time-related attributes.
This would permit to describe goals at a high level of detail at the type level
already (e.g., ‘Sell 25.000 units until March 31, 2018’). However, in this case,
there would be little reuse (as a similar goal like ‘Sell 25.000 units until March
31, 2019’ would result in another goal type). In consequence, it has been decided
to define most time-related attributes as ‘intrinsic’, to be instantiated at M0 at
model runtime only. Final outcomes of the last step of the method (revise and
evaluate the meta model; [11, pp. 148–150]) are presented in Sects. 4.2 and 6.

4.2 Final Language Specification

The language specification of the GoalML will be presented in three steps. First,
we present the meta model of the modeling language. Second, we provide a lan-
guage overview, and clarify the rationales underlying the main concepts. Third,
to offer a concise language summary, all language concepts, attributes, and rela-
tionships are explained in Tables 1 and 2. While we present a fully coherent,
current, and self-contained meta model of the GoalML, the list of language con-
straints (cf. top left in Fig. 1) as well as a few auxiliary concepts and attributes
cannot be presented here for space reasons. These are found in [19].

Meta model. Figure 1 shows the GoalML meta model, defined with MEMO
MML. To improve readability, the meta model has been divided into six areas.
As explained in Sect. 3, several attributes are marked with either an ‘i’ or a
‘d’, expressing that they are ‘intrinsic’ or ‘derivable’. Furthermore, small colored
squares are attached to several concepts. These concepts are part of other MEMO
languages, representing the aforementioned inter-language integration points.

Language overview. When taken together, the concepts from the six areas
shown in the meta model (Fig. 1) are intended to support the four key applica-
tion scenarios mentioned in Sect. 2, namely (1) goal system analysis, (2) orga-
nizational goal planning, (3) goal monitoring, and (4) coordinating decision
processes. First of all, the core concepts provide the basic way to describe goals in
detail (application scenario 1 and 3), offering numerous attributes, while explic-
itly distinguishing several levels of abstraction (by means of ‘intrinsic features’).
The two main goal concepts are called ‘EngagementGoal’ and ‘SymbolicGoal’
(see Table 1). Concepts found in the area goal content allow to define goal con-
tents (called ‘GoalMatter’) by decomposing them into any number of ‘Situa-
tionalAspects’ of varied nature (see the specializations). Furthermore, we pro-
pose several goal relationships. Beyond common relationships such as AND/OR
‘DecompositionRelations’, we distinguish at a nuanced level between various
related, but subtly different inter-goal relationships, explained in Table 2.

Next, of crucial importance, the GoalML enables to interlink goals with the
organizational context. This is accomplished by the meta model parts general

522 A. Bock and U. Frank

F
ig
.
1
.
G

o
a
lM

L
m

et
a

m
o
d
el

MEMO GoalML: A Context-Enriched Modeling Language 523

context, organizational regulations, and decision processes. Here, the GoalML is
integrated with concepts of various existing MEMO languages. First, goals can
be linked to ‘RessourceAllocations’, taken from MEMO ResML [17], describ-
ing resources such as monetary assets or production factors. Second, each
goal can be related to any number of ‘ReferenceObjects’ that may exist in a
MEMO enterprise model, including (but not limited to) ‘BusinessProcesses’ [9],
‘UnitsOfWork’ [8], and ‘InformationSystems’ [18]. Similarly, ‘ObjectAspects’
can be associated with ‘ReferenceObjects’, describing a goal content compo-
nent in more detail. More specifically, in the area organizational regulations,
the integration with ‘UnitOfWork’ [8] (an abstraction of entities like organiza-
tional units, positions, and boards) is intended to support organizational goal
planning processes (application scenario 2). In particular, the ‘InitiationRela-
tion’, ‘Accountability-Relation’, and ‘AuthorizationRelation’ can answer ques-
tions regarding different forms of responsibilities and regulations (see Table 2).
Finally, the conjoint analysis of decision processes and goals (application sce-
nario 4) is achieved through integration with a language to describe decision
processes [2]. This integration aids both analyses which take goals as reference
points for decisions (via ‘RelevanceRelation’) as well as outcomes of decisions
(via ‘ActionVariable’).

Concept description. Augmenting the general overview, a full description of
all GoalML concepts, attributes, and relationships is provided in Tables 1 and 2.
Obvious (e.g., ‘name’) and duplicate attributes (e.g., ‘justification’) are omitted.

5 Illustration of an Application Case

To illustrate how the GoalML can be applied, and also in order to introduce the
concrete syntax of the GoalML, an example application case is discussed in this
section. Furthermore, the case exemplifies the integration of the GoalML with
other MEMO DSMLs that have been mentioned in the previous sections.

Figure 2 shows an excerpt of an enterprise model of a fictious medium-sized
traveling company which offers escorted travel tours for individuals and groups.
The included goal model is presented at the center of the figure. In addition,
the goal model is integrated with partial models of the organizational structure
(using [8]; pt. 1), decision processes (using [2]; pt. 3), and a business process map
that includes business process types and their interrelations (using [9]; pt. 4).
All contents can be regarded as partial elements of a larger enterprise model,
ideally managed and navigable in a modeling tool (for a related tool, see [3]).

To begin, the goal model shows at a glance the use of the central concepts
introduced in Sect. 4. As can be found, both broad symbolic goals and more con-
crete engagement goals have been defined. All goal symbols are further enriched
by dynamic notational elements showing current values for selected attributes
(e.g., goal priorities). While most elements in the goal model are located at type
level, there are also examples related to the instance level (see the textbox at
the right-hand goal). Taking a wider perspective, it can also be noted how the
inter-model integration enables various domain-spanning analyses. For example,

524 A. Bock and U. Frank

Table 1. MEMO GoalML: Concept and attribute descriptions

Concepts and attributes Explanation

AbstractGoal Abstraction of the two specific goal kinds, summarizing common attributes.
.rofgnivirtshtrowsaneessilaogayhwyfitsujotreledomehtseriuqeRnoitacifitsuj

absolutePriority An ordinal goal priority.
avgAchievementExpectation A calculable average of ‘achievementExpectation’ of goal instances at M0.
previousInstancesAchieved A calculable aggregate of ‘result’ of goal instances at level M0.
valueDevelopment A calculable trend indicator for ‘value’ of target ‘SituationalAspects’.
stateOfInstance Lifecycle-related attribute to record the state of a goal instance.
achievement-Expectation An estimation of goal attainment success for a specific goal instance (where the ‘values’

of all linked ‘TargetSituationRelations’ represent the partial target values of a goal).
result Records whether or not a goal has been attained successfully; can be determined once

a goal instance has been terminated (i.e., once its evaluation date has been reached).
EngagementGoal Represents a goal which defines a concrete state of affairs to be achieved by particular

actors within a given time frame (e.g., ‘Negotiate 25 new contracts until May, 2016’).
lladluohsnehw,.e.i(delliflufeblaogehtdluohsnehWetaDeud ‘values’ be achieved)?

referencePeriod In what period must phenomena occur to be considered in goal attainment evaluation?
fulfillmentPeriod In what period may actions to reach the goal be performed?
evaluationDate When will the goal be evaluated?
SymbolicGoal Represents a goal which functions as a broad reference point for action, inspiration,

information, and legitimization (e.g., ‘Increase ecological sustainability’).
.detacinummoceblliwlaogehtmohwotsredlohekatsehtfonoitacifissalclareneGpuorGtegrat

targetGroupDescrip. Detailed description of the stakeholders to whom the goal will be communicated.
typeOfAnnouncement The way in which the goal should be communicated to the defined stakeholders.
GoalMatter Defines the goal content of a goal; composed of several ‘SituationalAspects’.
SituationalAspect Abstraction of any real-world aspect that may represent (a part of) a goal content.

arofeulavlevelecnatsninasenifeDeulav ‘SituationalAspect’ (e.g., ‘25 M$’ or ‘25.000 units’).
Indicator (from [32]) Describes a quantitative performance indicator representing a (part of a) goal content.
QualitativeAspect Represents (a part of) a goal content which cannot be measured quantitatively.
ObjectAspect Defines (a part of) a goal content that depends on the existence or properties of

selected real-world phenomena or ideas (as represented in an enterprise model).
GoalConfiguration Defines what sort of goals are in the scope of a defined ‘AuthorizationRelation’.

.noitarugifnoclaogaybdessapmocneeratahtsdniklaogehtsenifeDepyTlaog
.noitarugifnoclaogaybdessapmocneeratahtstnetnoclaogelbissopehtsenifeDrettaMlaog

DecisionProcess (from [2]) Represents an abstraction of similar recurring organizational decision processes.
DecisionPremise (from [2]) Auxiliary abstraction that describes any kind of assertion (or assumption) that may be

considered in the conduct of a decision process. This includes value-related and factual
assertions (for a classical discussion of the distinction, see, e.g., [31, pp. 4–5, 47ff.]).

FactualDecisionPremise ([2]) Describes non-value-related assertions considered in decision processes.
ValueDecisionpremise ([2]) Describes value-related assertions considered in decisions, an example being goals.
ActionVariable (from [2]) Describes factors that can be varied in a decision process (e.g., ‘Number of employees

to hire’). In goal setting decisions, goals will be referenced by an ‘ActionVariable’.

the model enables to analyze organizational regulations, answering questions
such as “Who is responsible for achieving a goal?” The answer to this question,
e.g., for the goal ‘Achieve 25 bonus activity contracts during a travel’, could
reveal that ‘Travel Attendants’ are responsible but have communicated only
a low level of commitment. Further analyses, then, could trace connections to
modeled reference objects, such as business process types (see the bottom-right
side), which MEMO would allow to further decompose into control flow dia-
grams. Beyond that, it can be analyzed and (re-)assessed how goals are related
to decision processes (pt. 3). For one thing, this may guide decisions of organiza-
tional actors (see, e.g., the ‘RelevanceRelation’ at the topmost decision process).
For another thing, the decision processes in which certain goals are determined
(e.g., the ‘performance targets’ for travel attendants; bottom-left in Fig. 2) can
be analyzed with respect to involved actors, basic assumptions, and available
information (as discussed in [2]). In sum, the GoalML provides a model-based
ground on which ample analyses of organizational goals and decision processes
can be done.

6 Discussion and Related Work

The field of conceptual modeling has brought forward a sizable set of goal mod-
eling languages in recent years, including i* [34,35], KAOS [7], Tropos [4],

MEMO GoalML: A Context-Enriched Modeling Language 525

Table 2. MEMO GoalML: Relationship descriptions

Relationship Explanation

GoalMatterSituationRelation Enables the detailed composition of one ‘GoalMatter’ from several ‘SituationalAspects’.
isFocalRelation Defines whether the given ‘SituationalAspect’ is the most important one of a ‘GoalMatter’.
AbstractSituationRelation A common abstraction of ‘TargetSituationRelation’ and ‘InitialSituationRelation’.

(tegrataseificepSeulav ‘TargetSituationRelation’) or an initial value (‘InitialSituationRelation’).
InitialSituationRelation Optional; may record the initial state of a ‘SituationalAspect’ when a goal is released.
dateOfRecording The date at which the initial state of a ‘SituationalAspect’ has been recorded.
TargetSituationRelation Specifies how a ‘SituationalAspect’ has to be qualified in order to consider it met.
valueForm States if the target value must, e.g., be ‘satisfied’, reached ‘exactly’, or ‘maintained’.
direction Indicates the general desired direction of change.
valueJustification Asks to justify why a target state is seen as adequate (e.g., reachable, yet ambitious).
resultValue Captures a final result value for a ‘SituationalAspect’, for documentation and analysis.
InitiationRelation Specifies the unit that has formulated a goal, and monitors and evaluates its progress.
satisfactionWithProgress Records the satisfaction of the monitoring unit with a ‘SituationalAspect’s’ current ‘value’.
AccountabilityRelation Enables to record which organizational unit or position is advised to reach this goal.
commitmentToGoalType Records a responsible unit’s stated commitment to a goal for accountability purposes.
commitmentToGoalInstance Parallel to the attribute above, but for a goal instance (and its specific details).
GoalAuthorizationRelation Enables to specify in detail the authorization rights of different units for certain goals.

First, this includes units and positions that are concerned with an authorization rule
(including the roles ‘may authorize’, ‘will be affected’, and ‘should be involved’). Second it is
related to a ‘GoalConfiguration’ concept to define the scope of authorization.

AbstractGoalRelation An abstraction of all possible goal relationships.
descriptionIfComplex If a relationship is assumed to have exceptional qualities, these should be explained.
AbstractDecompositionRelation Specifies that a goal can be decomposed logically and completely into at least two

distinct goals; includes the two specializations ‘AND-Relation’ and ‘OR-Relation’.
decompositionCriterion Defines the criterion by which a goal can be decomposed (e.g., ‘regional area’).
FinalRelation Expresses that a goal has been defined only as means to reach a more final other goal.
CausalRelation Expresses that actions to attain one goal are assumed to affect reaching another.

.’xelpmoc‘ro,’evitagen,’‘evitisop‘sitcapmidemussaehtrehtehwsenifeDtcapmi
.ycnednepedlasuacehtfohtgnertsdemussaehttnemucodotdesuebnaCytisnetni

levelOfReliance Meant to record the reliance of the assumption (e.g., on a scale from 1 to 10).
AbstractInterdependenceRelation An abstraction of all goal relationships that describe interdependencies between goals.
MathRelation States that value changes for one goal by definition (formally) change those of another.

ehtfonoitceridehtseificepSreifilauq ‘MathRelation’ (e.g., ‘positive’ or ‘negative’).
EffectRelation Expresses that actions to reach two goals will likely affect reaching a third goal.

.)’ylbitapmoc‘,.g.e(detceffasilaogdrihtehtfotnemniattaehtwohseificepSreifilauq
MeansRelation Expresses that actions to reach one goal will likely affect actions to reach another.

.rehtonafoesohthtiwerefretnilaogenohcaerotsnoitcahcihwniyawehtseificepSreifilauq
RelevanceRelation (from [2]) Specifies that a decision process is, or should be, oriented towards a specific goal.
considerationRequired Specifies whether the consideration of a goal is ‘optional’, ‘suggested’, or ‘required’.
hasBeenConsidered To record whether a goal has been considered in a specific decision process (instance).
considerationDetails To document (in detail) how a goal has been considered in a specific decision process.

URN [16], 4EM [27], and ARMOR [26]. Below, we discuss the GoalML and
related work in the light of the requirements elucidated in Sect. 2.2. The discus-
sion focuses on support for organizational goal planning. It does not account for
other application areas of goal modeling, such as requirements analysis.

Most languages are limited to specifying the goal content with a textual
description (e.g., [35, pp. 46–57] [26, p. 9]). In KAOS, a target state can be
defined with a formal description ‘FormalDef’, but this is not part of the meta
model (cf. [7, pp. 14, 32]). In contrast, the GoalML provides concepts to decom-
pose the goal content into distinct situational aspects of varied nature (R1).
Regarding goal functions (R2), all languages apart from 4EM provide at least
two goal concepts, similar to those proposed here, including, e.g., ‘SystemGoal’
and ‘PrivateGoal’ in KAOS, or ‘Goal’ and ‘Soft-Goal’ in i*, Tropos, and URN
[34, pp. 229–231] [4, p. 230] [16, pp. 23–24]. When it comes to inter-goal relation-
ships (R3), every language offers AND/OR decomposition relationships (e.g., [7,
p. 32] [26, p. 9]). In addition, i*, Tropos, and URN include ‘means-ends’ and
‘contribution’ (e.g., [35, pp. 46–57]), KAOS offers ‘conflicts’ [7, p. 32], and 4EM
includes ‘supports’, ‘hinders’, and ‘conflicts’ relationships [27, p. 91]. But no lan-
guage distinguishes possible goal relationships at a level of detail comparable to
that of the GoalML. With respect to abstraction levels (R4), as incorporated in

526 A. Bock and U. Frank

Fig. 2. An application case for the MEMO GoalML

the GoalML, extant work conveys an ambivalent picture. Although some publi-
cations discuss abstraction levels (e.g., [7, p. 9] [35, pp. 30–32] [4, pp. 227–228]),
no related meta model found in the literature contains details as to inter-level
instantiations (e.g., [7, p. 14] [35, pp. 29, 54] [27, pp. 88–91]). With regard to R5,
most languages permit to describe the goal context in a limited way. For example,
i* enables to link goals to ‘Actors’, ‘Tasks’, and ‘Resources’ [35, pp. 46–57], where
Tropos adds concepts like ‘Plan’ and ‘Capability’ [4, pp. 206–207]. URN allows
to integrate goals with ‘Use Case Maps’, including ‘Components’ like ‘Objects’,
‘Processes’ or ‘Actors’ [16, pp. 102–110]. ARMOR and 4EM allow to link goals
to varied concepts like ‘BusinessService’ and ‘BusinessProcess’ [26, pp. 9–10]
[27, pp. 142–145]. But the GoalML is the only language that enables to embed
goals in models created from an extensible set of comprehensive DSMLs. With
an eye on organizational regulations, most languages, aside from GoalML, offer
only indirect concepts. i*, Tropos, and URN permit to model actor dependencies

MEMO GoalML: A Context-Enriched Modeling Language 527

(e.g., [4, p. 229]), but these do not describe organizational responsibilities.
ARMOR uses generic links like ‘used by’ [26, pp. 9–10]. Only 4EM, but with-
out further attributes, offers the relations ‘defines’ and ‘is responsible for’ [27,
pp. 142–145]. Similarly, other languages only implicitly cover decision processes
(R7), e.g., by concepts like ‘Task’ in i* [35, pp. 46–57] or ‘Problem’ in 4EM [27,
p. 88]. Finally, several authors seek to convey a reflective account (R8) of the
social context of goals (e.g., [35]). But aside from an ‘assumptions’ attribute in
ARMOR [26, p. 10], the languages do not offer explicit means to stimulate a
reflective stance, as the GoalML intends, e.g., by attributes to record ‘justifica-
tions’ or causal assumptions.

7 Conclusions

In this paper, we presented a comprehensive goal modeling language, called
GoalML. The language is integrated with other DSMLs as part of a multi-
perspective enterprise modeling method, enabling to model organizational goal
systems at a level of detail that, to the best of our knowledge, goes beyond any
other language. Furthermore, the language places emphasis on a clear distinc-
tion of different (meta) levels of abstraction. A modeling tool that implements an
educational version of MEMO, including parts of GoalML, is freely available [3].
Future research is aimed at conceptual (enterprise) models, including models of
goals and decision situations, which can be used and modified at different levels
of abstraction at runtime [13]. For example, goal models could be used to enrich
enterprise systems, making them “aware” of their goals—and, at best, enabling
them to adapt to new goals in a flexible way. For this purpose, we use a (meta)
modeling environment, the XModeler [5], which enables an arbitrary number of
classification levels and a common representation of models and code.

Acknowledgments. We wish to acknowledge the major contribution of Christian
Köhling, who has developed the original version of the GoalML.

References

1. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation.
IEEE Softw. 20(5), 36–41 (2003)

2. Bock, A.: Beyond narrow decision models: toward integrative models of organiza-
tional decision processes. In: 17th IEEE Conference on Business Informatics (CBI
2015), pp. 181–190. IEEE Computer Society (2015)

3. Bock, A., Frank, U.: Multi-perspective enterprise modeling - conceptual foundation
and implementation with ADOxx. In: Karagiannis, D., Mayr, H.C., Mylopoulos,
J. (eds.) Domain-Specific Conceptual Modeling. Springer, Berlin (2016)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agent. Multi-Agent
Syst. 8(3), 203–236 (2004)

5. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling: A Foundation for
Language Driven Development (3rd edn.). ArXiv e-prints 1505.00149 (2015)

528 A. Bock and U. Frank

6. Cyert, R.M., March, J.G.: A Behavioral Theory of the Firm. Prentice-Hall,
Englewood Cliffs (1963)

7. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1–2), 3–50 (1993)

8. Frank, U.: MEMO organisation modelling language (1) - focus on organisational
structure. ICB Research report 48, University of Duisburg-Essen, Essen

9. Frank, U.: MEMO Organisation Modelling Language (2) - Focus on Business
Processes. ICB Research report 49, University of Duisburg-Essen, Essen

10. Frank, U.: The MEMO Meta Modelling Language (MML) and language architec-
ture: 2nd edn. ICB Research report 43, University of Duisburg-Essen, Essen

11. Frank, U.: Domain-Specific modeling languages: requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J.
(eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013)

12. Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects
and future research challenges. Softw. Syst. Model. 13(3), 941–962 (2014)

13. Frank, U.: Multilevel modeling: toward a new paradigm of conceptual modeling
and information systems design. Bus. Inf. Syst. Eng. 6(6), 319–337 (2014)

14. Heinen, E.: Grundlagen betriebswirtschaftlicher Entscheidungen: Das Zielsystem
der Unternehmung. Gabler, Wiesbaden (1966)

15. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction analysis
techniques. Requirements Eng. 18(3), 199–222 (2013)

16. ITU-T: User Requirements Notation (URN) – Language definition. Series ZZ.151
(2012). www.itu.int/rec/T-REC-Z.151/

17. Jung, J.S.: Entwurf einer Sprache für die Modellierung von Ressourcen im Kontext
der Geschäftsprozessmodellierung. Logos, Berlin (2007)

18. Kirchner, L.: Eine Methode zur Unterstützung des IT-Managements im Rahmen
der Unternehmensmodellierung. Logos, Berlin (2008)

19. Köhling, C.: Entwurf einer konzeptuellen Modellierungsmethode zur Unterstützung
rationaler Zielplanungsprozesse in Unternehmen. Cuvillier, Göttingen (2013)

20. March, J.G.: The technology of foolishness. In: March, J.G. (ed.) Decisions and
organizations, pp. 253–265. Blackwell, New York (1988)

21. Medin, D.L., Ross, B.H., Markman, A.B.: Cognitive Psychology, 4th edn. Wiley,
Hoboken (2005)

22. Object Management Group: Meta Object Facility (MOF) Core Specification: OMG
Available Specification Version 2.0. OMG Document formal/06-01-01

23. Odell, J.J.: Advanced Object-Oriented Analysis and Design Using UML.
Cambridge University Press and SIGS Books, Cambridge and New York (1998)

24. Overbeek, S.J., Frank, U., Köhling, C.: A language for multi-perspective goal mod-
elling: challenges, requirements and solutions. Comput. Stan. Interfaces 38, 1–16
(2015)

25. Parmigiani, G., Inoue, L.Y.T., Lopes, H.F.: Decision Theory: Principles and
Approaches. Wiley, Chichester (2009)

26. Quartel, D., Engelsman, W., Jonkers, H., van Sinderen, M.: A goal-oriented require-
ments modelling language for enterprise architecture. In: Proceedings of 13th IEEE
International EDOC Conference (EDOC 2009), pp. 3–13. IEEE, Piscataway (2009)

27. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise Modeling: Tackling
Business Challenges with the 4EM Method. Springer, Berlin (2014)

28. Shetty, Y.K.: New Look at Corporate Goals. Calif. Man. Rev. 2(2), 71–79 (1979)
29. Simon, H.A.: Theories of decision-making in economics and behavioral science.

Am. Econ. Rev. 49(3), 253–283 (1959)

www.itu.int/rec/T-REC-Z.151/

MEMO GoalML: A Context-Enriched Modeling Language 529

30. Simon, H.A.: On the concept of organizational goal. Adm. Sci. Q. 9(1), 1–22 (1964)
31. Simon, H.A.: Administrative Behavior: A Study of Decision-Making Processes in

Administrative Organization, 3rd edn. Free Press, New York (1976)
32. Strecker, S., Frank, U., Heise, D., Kattenstroth, H.: MetricM: a modeling method

in support of the reflective design and use of performance measurement systems.
Inf. Syst. E-Bus. Manage. 10(2), 241–276 (2012)

33. Weick, K.E.: The Social Psychology of Organizing, 2nd edn. McGraw-Hill, Reading
(1979)

34. Yu, E.S.: Towards modelling and reasoning support for early-phase require-
ments engineering. In: 3rd International Symposium on RE, pp. 226–235. IEEE,
Los Alamitos (1997)

35. Yu, E.S.: Modeling strategic relationships for process reengineering. In: Yu, E.S.,
Giorgini, P., Maiden, N., Mylopoulos, J. (eds.) Social Modeling for Requirements
Engineering, pp. 11–152. MIT Press, Cambridge (2011)

Can Goal Reasoning Techniques
Be Used for Strategic Decision-Making?

Elda Paja1(B), Alejandro Maté2, Carson Woo3, and John Mylopoulos1

1 University of Trento, Trento, Italy
elda.paja@unitn.it

2 University of Alicante, Alicante, Spain
3 University of British Columbia, Vancouver, Canada

http://disi.unitn.it/~paja/

Abstract. Business strategies aim to operationalize an enterprise’s mis-
sion and visions by defining initiatives and choosing among alternative
courses of action through some form of strategic analysis. However, exist-
ing analysis techniques (e.g., SWOT analysis, Five Forces Model) are
invariably informal and sketchy, in sharp contrast to the formal and
algorithmic counterparts developed in Conceptual Modeling and Soft-
ware Engineering. Among such techniques, goal models and goal reason-
ing have become very prominent over the past twenty years, helping to
model stakeholder requirements and the alternative ways these can be
fulfilled. In this work we explore the applicability of goal models to con-
ceptualize strategic business problems and capture viable alternatives in
support of formal strategic decision-making. We show through a compar-
ative study how analysis can be conducted on a realistic case adopted
from the literature using existing goal modeling techniques, and identify
their weaknesses and limitations that need to be addressed in order to
accommodate strategic business analysis.

Keywords: Business intelligence · Strategic decision-making · Require-
ments engineering · Goal modeling · Strategic analysis · Risk analysis

1 Introduction

Strategic decision-making is crucial in enterprises, as it results in decisions that
shape the future, and even the fate, of an enterprise [6]. Many economic and
managerial models exist that support strategic decision-making, such as cost-
benefit analysis [22], SWOT analysis [2], and Porter’s Five Forces Model [21],
in combination with data gathered and presented by Business Intelligence (BI)
systems [15]. Despite an increasing range of services, techniques and languages
available, managers still lack a systematic process for considering all their options
in assessing their firm’s situation with respect to its strategic objectives and the
business environment. Whether due to the difficulties of gathering and organizing
all necessary information or due to time constraints, they often end up with hand-
waving arguments and heavy use of intuition to make and justify their decisions
c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 530–543, 2016.
DOI: 10.1007/978-3-319-46397-1 41

Strategic Decision-Making 531

in picking the best alternative among different courses of action, resulting often
in wrong or sub-optimal solutions [3].

We propose to take a different perspective on strategic analysis by grounding
it on formal reasoning techniques based on goal models and goal reasoning [12],
both well known in Requirements Engineering (RE). These techniques are suit-
able for this task due to their conceptual proximity to the problem, they deal
with multiple goals and multiple courses of action that are evaluated relative to
objectives, such as cost, return-on-investment, etc. The evaluation is often qual-
itative in the absence of concrete numbers. In this paper we focus on existing
goal reasoning techniques, and conduct a study to evaluate their suitability for
strategic analysis on a realistic case study from the literature, in order to arrive
at a list of desiderata for formal strategic analysis over strategic goals.

In order to conduct our study, we have performed a review of existing goal
modeling and reasoning techniques [4,8,10] and select the most representative
and suitable ones by defining inclusion and exclusion criteria, to apply to the
case at-hand for comparison. Our selection criteria focuses on goal modeling
techniques which allow us to (i) capture decision points, (ii) provide reason-
ing, and (iii) allow the introduction of human judgment in the final decision.
We exclude techniques that belong to the same family (based on the same core
model) to avoid redundancies. As a result, we focus on existing goal models,
including i* [25], and a business goal modeling language, BIM (Business Intel-
ligence Model) [10], designed specifically for strategic decision-making within
an organizational setting. Our findings suggest that goal models do capture the
space of alternatives for fulfilling strategic objectives, while goal reasoning capa-
bilities are not sufficient by themselves to support decision-making in full depth
and breadth. Moreover, existing techniques provide only an abstract of the sit-
uations, aspects, or threats that might hinder the strategic objectives of the
company. Instead, a more concrete view is needed that takes into account spe-
cific business qualities, such as ones advocated by the Five Forces Model [21] or
the Balanced Scorecard [14].

With this paper we make the following contributions: (i) analyze the suit-
ability of existing goal modeling and reasoning techniques for strategic decision-
making by applying our inclusion and exclusion criteria to identify representa-
tive techniques; (ii) compare the said goal modeling and reasoning approaches
in terms of their modeling and analysis capabilities by means of a case study
from literature; (iii) derive a list of desiderata or needs for languages and formal
strategic analysis over strategic models.

The rest of the paper is organized as follows. Section 2 presents the moti-
vating case and the actual decision-making problem to be tackled. Section 3
presents existing work in both managerial and goal-modeling areas to support
decision-making before introducing our method in Sect. 4. Section 5 introduces
the comparative study. We performed step by step modeling and analysis with
various goal modeling and reasoning techniques, to lead to the identification of
limitations of existing work. Finally, Sect. 6 presents some remarks, and discusses
potential improvements and open needs for future work.

532 E. Paja et al.

2 The Royal Caribbean Cruise Ltd Case

Background. The Royal Caribbean Cruise Ltd (RCCL) [18] is a leisure cruise
company aiming at being competitive in the luxury leisure cruise business. Its
business strategy aims at (i) enhancing the customer travel and trade experience,
(ii) reducing costs, and (iii) increasing revenues. The core idea is that RCCL
customers pay a higher price, and in return they are provided with a unique
cruising and vacation experience.

However, over the years the company has encountered difficulties in achieving
its objectives due to a number of external factors combined with technical ones,
such as isolated corporate systems that are unable to provide timely information.

To address these issues, Tom Murphy, the RCCL CIO, proposed the Leapfrog
Project, which builts on three main pillars with respect to IT: supply chain,
employee system, and customer. Specifically, the first pillar calls for the automa-
tion of the shoreside purchasing and procurement process, with the intention
to reduce costs, leverage RCCL’s bargaining power with vendors to get better
prices, and improve inventory planning. The second pillar focuses on tracking
employees and having an automated and efficient Human Resources (HR) man-
agement tool that is able to handle a growing headcount. Finally, the third pillar,
customer, is concerned with building a web-enabled reservation system to give
the company a full picture of customer preferences and customer history.

Business problem. Murphy sets a five-year plan of the company through which
RCCL can develop fully integrated systems where authorized users can access
data anytime anywhere, and cuts costs by consolidating and simplifying existing
systems. But, the ambitious Leapfrog Project was negatively affected by the
9/11 tragedy, as the project was halfway through its implementation at the
time. When the market begins to turn around, RCCL finds itself with limited
budget and manpower, and Murphy faces the challenge of making a decision on
where to invest on IT for the short term.

The alternatives that confront him are [18]:

1. Do nothing beyond current expenditure levels;
2. Make an additional $8 million infrastructure investment in the next 12 months

to untangle the seven reservation systems as a step to rapidly developing a
single reservation system;

3. Introduce change quickly with a much sharper increase in budget than envi-
sioned in option 2.

Among these alternatives, Murphy has to make a decision that will help
preserve innovation while keeping in mind company objectives, ensuring that
the alternative chosen contributes to the achievement of the main RCCL goals.
However, the information about current projects, priorities, etc., is distributed
over different exhibits, and there are no guidelines as to how to integrate this
information for making a decision. Under these circumstances, a technique is
needed to organize and integrate information and facilitate decision-making.

Strategic Decision-Making 533

3 Related Work

There is a large and broad set of techniques designed to support decision-making
in different contexts. For the scope of this paper, we review managerial and
algorithmic techniques for decision-making, as well as goal-oriented requirements
engineering approaches.

Management frameworks for strategic decision-making. They are often
tailored towards specific types of decision-making and are generally informal
and non-algorithmic. Porter proposed several frameworks in this area, includ-
ing the generic strategies [20] and the Five Forces Model [21]. Generic strate-
gies [20] aim to help a company position itself in the market, while the Five
Forces Model [21] considers driving forces in the business environment where
the company operates. Similar to the Five Forces, Dynamic SWOT (Strengths,
Weaknesses, Opportunities, Threats) Analysis [5] links the firm’s capabilities to
its relevant competitive environment, allowing the company to potentially turn
weaknesses into strengths and threats into opportunities. Next, are the works
focused on strategic modeling and monitoring, including Strategy Maps [15]
and the Business Motivation Model [19]. Due to their informal nature, these
approaches do not support formal analysis, where a well-defined space of alter-
natives is searched for a solution. In addition, their concepts have been included
in the formal Business Intelligence Model framework (BIM) [10], which will be
introduced later on in the paper. Finally, there are several works that aim to
support decision-making based on performance management, the most promi-
nent being [14]. These approaches are based on measuring the performance of
the company, and cannot help in the case that data is not readily available.

Algorithmic techniques. They are designed to automatically select the best
alternative between two or more options based on multiple criteria. The largest
body of work is centered around MCDM (Multi-Criteria Decision-Making) [7,9,
23], where the Analytical Hierarchy Process is included [9], with multiple surveys
comparing the different techniques [7]. MCDM techniques have been applied to
quantitative, fuzzy, or qualitative alternative selection in various domains, such
as supplier assessment [9]. The basis for MCDM techniques consists in ranking
the alternatives according to a set of criteria and selecting the best alternative.
Their main drawback is that they can only explain the impact of the choice
based on the criteria and do not allow for exploration. For example, if RCCL
increases the budget for IT, what would be the impact on other business units?

Additionally, many MCDM techniques stem from the idea that all criteria
and relationships with respect to the alternatives at-hand are well known and
established, which is rarely true. To address this drawback, approaches like [16]
accommodate uncertainty and information value into the analysis. However, even
with the inclusion of uncertainty, the limitations on their exploratory capability
still remain.

Strategic Goal Modeling and Reasoning. Modeling, and especially goal
modeling, has a long tradition in requirements engineering (KAOS, i*, NFR,

534 E. Paja et al.

GRL, Tropos, see [24] for an overview). The importance of considering goals
in early requirements is acknowledged by numerous works [4], providing several
advantages including support in choosing among alternatives [24].

One of the features of goal-oriented models, independently of their approach,
is their goal reasoning capability, which is usually implemented on top of off-
the-shelf solvers, such as SAT solvers, model checkers and AI planners [8].

Horkoff et al. build on [8] to propose an iterative and interactive goal analy-
sis technique [13], which introduces human judgment in the reasoning process to
deal with conflicts. These works have shown that especially for real-world sce-
narios, it is crucial to follow such an iterative and incremental approach. Thus,
in Sect. 4 we do the same for modeling and reasoning over RCCL.

The Business Intelligence Model (BIM) [10] is a goal modeling language
expressly tailored for strategic modeling. BIM supports special forms of rea-
soning, extending the work in [13] to take into account situations and indicators
and helping analysts in choosing amongst alternative strategies. The resulting
hybrid reasoning procedure combines indicator and goal modeling approaches,
to allow an organization to answer strategic or monitoring questions, such as
“Which strategy is better to achieve these goals?”, “Which option is better for
maintaining revenue growth and reducing risks?”, etc. Answering such questions
requires evaluating alternative strategies, assessing an operational strategy, infer-
ring values for composite indicators, and so on, that cannot be captured in other
goal modeling languages.

Comparative studies. The reader interested in a broader survey of goal mod-
eling techniques may refer to [11], while an evaluation of goal-model satisfaction
analysis techniques is provided by [12].

4 Goal-Modeling and Analysis Techniques Selection

Our comparison follows the approach proposed in [12]. As such, we first define the
inclusion and exclusion criteria to select amongst the goal-oriented approaches
proposed in the literature. We are interested in techniques and methods that:

– allow us to perform goal modeling that captures decision points;
– provide reasoning support, required for selecting among alternatives;
– make use of human judgment, since decision-making cannot be a fully auto-

mated process, but rather should involve business experts to make the final
decision based on the information provided, even in the case of missing infor-
mation (real data).

Accordingly, we will exclude those techniques or methods that:

– do not provide any reasoning capability;
– are based on the same core or are a subset of another technique, in order to

avoid repetition as discussed in [12];
– provide extended models and perform extended analysis other than strategic,

such as for risks, trust or security, which are out of the scope of this study.

Strategic Decision-Making 535

Among the candidate techniques, we have GRL [1], Tropos [8], and i* [25]
in combination with the reasoning techniques proposed by [13]. Since all these
techniques share a common core, and they support the same kind of reasoning,
we choose i* as the representative due to (i) our expertise in i*, and (ii) tool
support, which is important for running automated reasoning.

We also include BIM in our comparison, because of its extended modeling
capabilities tailored for strategic decision-making. We will compare these tech-
niques using the RCCL case presented in Sect. 2, so that the modeling and
reasoning are performed over the same case and using the same information.

In order to apply these techniques we follow a process based on the standard
elicitation, modeling, analysis loop for decision-making in requirements engineer-
ing. We adopt it for assessing the goal modeling and analysis techniques in order
to try to determine their capabilities in capturing and deciding over the optimal
solution for the RCCL case.

We start with an analysis of the document describing the case to gather the
information (elicitation) for building the models. In analyzing RCCL’s case, we
were assisted in the process by a business analyst who has extensive knowledge of
the case study. The modeling phase is conducted on the basis of the information
gathered from elicitation. Through modeling we can compare how beneficial each
alternative is for RCCL by capturing how it relates to the rest of RCCL’s business
strategy (its main business objectives). Once the alternatives have been modeled,
we proceed to analyzing the ability of each technique to discriminate alternatives
and support the decision-making process. Automated analysis is run to identify
the viable alternatives, to then make a decision through discussion with the
business analyst (decision-making), who interprets the results, and in our case
played the role of the CIO too, to pick an alternative. Model improvements were
performed on the basis of this feedback.

5 The Study in Practice

We describe the process of modeling and reasoning over RCCL’s strategy along
two main threads, namely using (i) the i* modeling language, together with three
variations of goal reasoning techniques, and (ii) BIM modeling and analysis.

The techniques are evaluated on the basis of RQ. “Can goal reasoning tech-
niques be used for strategic decision-making?”, which we evaluate through two
criteria C1. “Can the analyst make a decision under the condition of lacking real
data?” and C2. “Can the analyst be confident about the decision?”.

5.1 Modeling and Reasoning with i*

We started the modeling and analysis of RCCL’s case with i*, a prominent goal-
oriented requirements modeling language developed by Eric Yu [25] to model
and reason about organizational environments and their information systems.
i* addresses the need to model and analyze the reasons behind stakeholder
requirements and interests during early phase requirements engineering. The

536 E. Paja et al.

Fig. 1. RCCL business strategy for the alternative maintaining the same budget

basic concept in i* is that of intentional actor, taking into consideration the
fact that actors in an organizational environment have to achieve goals, are
equipped with certain abilities, have beliefs, etc. The basic constructs offered by
this language are: actor—together with its associations, intentional elements—
goals, tasks, and resources, strategic dependencies, decomposition links, means-
end links, and contribution links among intentional elements.

i* reasoning techniques support iterative and interactive qualitative proce-
dures [13], qualitative with variables [17], and quantitative reasoning [1].

Modeling RCCL’s business strategy in i*. We model RCCL’s business
strategy starting from the main business objectives: reduce costs, increase rev-
enue, and enhance customer experience, Fig. 1 provides an excerpt and simplified
i* model of the RCCL case1. The model is the result of several iterations and
interactions among the business analyst (3rd author) and the modelers (the other
authors). Multiple initiatives are implemented to achieve these objectives. First,
the reduce costs objective is to be achieved by a combination of cost reductions in
the supply chain, IT, and shore-excursion programs. Next, the company aims to
increase revenue by redesigning the equipment loaded into ships, keeping up with
technology to be more cost-efficient, and offering improved services (for which
the customers pay more) in order to attract more customers. Finally, in order
to enhance customer experience, RCCL wishes to provide better trading expe-
rience, know customer preferences in order to serve them better, and enhance
their traveling experience.

Using this model as a baseline for reasoning, there are two ways to model
the alternatives available. First, we can represent the three alternatives of

1 Find the complete model at http://disi.unitn.it/∼paja/pdf/rccl-diagrams.pdf.

http://disi.unitn.it/~paja/pdf/rccl-diagrams.pdf

Strategic Decision-Making 537

investment as three mutually exclusive alternatives (via break relationships) in
the goal model, since only one of them will be chosen. Second, we can create a
separate model for each alternative (“as-is” and “to-be” models), representing
RCCL’s objectives in case the represented alternative solution had been chosen.
The former approach requires less effort, whereas the latter provides more clar-
ity. Although in practice we went for the second approach, here, due to space
constraints, the excerpt model contains all three alternatives, with alternative
one being selected as a possible solution for the what-if analysis [13].

Picking the best strategy with i* goal reasoning. Goal reasoning allows
analyzing if considering RCCL’s strategic goals alone, leads to the selection of one
alternative over the others. We explore three subtypes of analysis for comparison:

1. Qualitative: the results of the qualitative analysis for the alternative “To
maintain the same budget” are shown in Fig. 1. Maintaining the same budget
does not contribute directly to reducing costs since it does not help to reduce
neither IT nor supply chain costs. But, since it involves the continuous use
of legacy systems, it entails an increased maintenance cost which threatens
to break the system, as denoted in the RCCL case. Furthermore, the lack
of new developments in this alternative does not help to offer improved ser-
vices, nor does it contribute to attract more customers due to the lack of an
integrated web reservation or an integrated HR system. As such, if we pick
solution one (“To maintain the same budget” is fully satisfied, while the other
two alternatives are labeled with fully denied), the system is not sufficiently
integrated (domain assumption “System is sufficiently integrated” is not true,
hence fully denied label), and as a result the goal “To maintain current sys-
tem” is fully denied. The results of qualitative analysis are calculated through
label propagation following the rules in [13]. According to these results, we
can discard this alternative as it fails to meet any of the strategic goals set by
RCCL (fully denying reduce costs and enhancing customer experience, and
partially denying increase revenue). As far as the other two solutions are con-
cerned, qualitative analysis cannot differentiate between them (not shown in
the figure, both yielding to partial satisfaction of RCCL’s objectives increase
revenue and enhance customer experience), and thus, this reasoning cannot
help us pick the best option among the two.

2. Qualitative with variables: A variation of the qualitative analysis inspired
by the analytic hierarchy process for decision-making is the analysis with
variables [17]. In this kind of analysis, shown in Fig. 2, the process starts by
assigning variables that encode the impact of the alternatives to each high-
level goal to be pursued. Variables that differ in their qualitative value across
alternatives are further refined on each iteration into relationships towards
the next set of goals, whereas those variables and goals that do not allow for
discriminating between alternatives are discarded. In our case, we initially
assign up to three variables (e.g., a,d, and c for $8M) per alternative, captur-
ing their contribution to the overall goals. As we can see, To maintain same
budget (“As-is”, Fig. 2(1)) alternative only provides a negative contribution
to reduce costs, and thus is not an interesting alternative for us. According

538 E. Paja et al.

Fig. 2. Qualitative analysis with variables: “$8M” vs “All” (sharp budget increase)

to the description in the RCCL case [18], both remaining alternatives pro-
vide the same contribution to enhance customer experience. Thus, we need to
further refine the contribution to decide between RCCL’s objectives increase
revenue and reduce costs.

The refined model (Fig. 2(2)) shows how “sharp budget increase” contributes
to improved new services, whereas the alternative “invest $8M ” does not.
Moreover, it further contributes to RCCL keeping up with technology. The
only condition for choosing the alternative “invest $8M ” as opposed to “All”
(sharp budget increase) would be the difference between the IT cost of both
solutions (actual budget cost + unexpected expenses + maintenance cost of
the resulting system) outperforms the larger return of investment (ROI) of the
sharp budget increase. At this point, a manager with the required information
at-hand could make a decision. However, in the case of RCCL this information
is not provided, and as a result we cannot make a decision.

3. Quantitative: an alternative approach to qualitative analysis is the quanti-
tative analysis (proposed for GRL [1] and adoptable for i*), which introduces
exact values to evaluate the degree of satisfaction of goals. The disadvantage
of this approach is that it requires quantitative knowledge about the status of
leaf goals and the relationships across goals in the business strategy. For quan-
titative analysis, we assume that goals are satisfied with a degree between −1
and 1, which can be objectively captured by means of performance indicators
attached to the goals. This makes quantitative analysis ideal for companies
with scorecards and process indicators readily available. Since the RCCL case
only provides partial information about the benefits and costs of each alter-
native, we cannot run this kind of analysis over the RCCL model.

Results. i* allows to adequately represent RCCL’s objectives (its internal goals)
as well as the three alternatives to decide upon its strategy. However, i* modeling
focuses on a company’s goals, and not the external factors that might affect a
company’s strategy. Strategic goal reasoning shows that maintaining the same

Strategic Decision-Making 539

budget (“As-is” goal) is worse than the other two alternatives, but it cannot
differentiate between “invest $8M ” or “All” (sharp budget increase). Thus, i*
modeling and reasoning cannot provide an answer to our research question, that
is, it does not fulfil criteria C1 nor C2.

5.2 BIM Modeling and Analysis

Compared to i*, BIM was designed for strategic modeling, and offers a richer
structure of concepts, including goals, business processes, situations (representing
SWOT factors), and indicators that represent data and criteria used by the
company to monitor its goals. Thanks to these constructs, BIM supports various
types of reasoning [13], including (i) quantitative and qualitative goal reasoning
as in the case of i*, (ii) indicator-based reasoning with business-rules, both
with or without conversion factors by using the values of the indicators, and (iii)
hybrid-reasoning, where indicators and goals are intertwined and the propagation
alternates between goal satisfaction and indicator performance levels.

Since RCCL does not have any indicators defined, we cannot use indicator-
based reasoning techniques. However, goal-based reasoning with BIM does pro-
vide an advantage due to the underlying model for its richer and diverse set
of concepts, in particular the concepts of internal and external situations. For
the sake of simplicity, we will focus on the two alternatives that we could not
differentiate before, namely “invest $8M ” and “sharp budget increase”, and we
will omit the analysis of “to maintain same budget”.

Modeling RCCL’s business strategy in BIM . Modeling RCCL’s strategy
in BIM requires creating a separate model for each alternative. The reason is
that there are both alternative-independent and alternative-dependent SWOT
factors that help or hurt different goals and amplify or mitigate other factors
across the model and, thus, the model for each alternative will contain a different
set of situations. As in the case of i*, we built this model in an iterative way,
discovering SWOT factors on each iteration until the model was stable. An
excerpt of the model for the alternative “invest $8M ” can be seen in Fig. 3.

In this figure, there are both alternative-independent and alternative-
dependent factors. On the one hand, we have factors that affect the company as
a whole independently of the alternative chosen. For example, the company is
affected by heightened geopolitical uncertainties, which are increasing last minute
bookings that are harder to manage and reduce the capability of the company
to increase revenue. These factors are useful to determine if the company will
achieve its objectives or not, independently of the alternative chosen. On the
other hand, we can see the alternative “invest $8M ” being affected by the lack
of an integrated employee system, which may dampen the increase in revenue
and increase the maintenance costs due to the difficulties of managing a large HR
base. Second, there could be problems integrating the web reservation system
that have been unforeseen, thus affecting all the optimization goals of RCCL.
Third, the developed system may not be scalable enough to handle the expected
customer volume, thus affecting customer experience. Finally, another factor

540 E. Paja et al.

Fig. 3. Excerpt of BIM SWOT-based analysis for the $8M alternative

that affects this alternative is going over-budget. However, this is mitigated by
the factor strong RCCL’s R&D team (see negative contribution link from the
internal situation), making it less likely for RCCL to deviate from the initial
planing.

In comparison, the model for “sharp budget increase” (omitted due to space
constraints2) is affected by fewer but more prominent factors than the “invest
$8M ”. First, it is more likely to exceed the estimated budget before achieving its
mark than a project with a smaller scope, which is easier to estimate. Further-
more, it is likely to overestimate the ROI generated by the alternative. Finally,
there is an increase in the need of trained people to operate the new completely
overhauled system.

Picking the best strategy with BIM ’s goal reasoning. Goal reasoning in
BIM operates following the same label-propagation based logic as i*’s reasoning
discussed in Sect. 5.1. However, in this case, we have the added information of
situations coming into place. Situations behave in the same way as goals in terms
of the reasoning algorithm, but enable BIM SWOT analysis and provide us a
better informed result [10].

According to BIM’s goal reasoning, neither of the alternatives generates
a complete satisfaction of RCCL’s goals, which highlights the importance of
alternative-independent factors and the need to consider new measures to tackle
their effects. Among the alternatives available, the alternative “invest $8M ”
is less likely to fail since the associated factors have a lesser impact than in
the case of “sharp budget increase”. Using these results the CIO can already
make a choice on what alternative to select. However, it is noteworthy that
BIM SWOT analysis lacks any guidance to help analyzing the factors that affect
the business and the alternatives. In this way, the knowledge included within

2 See http://disi.unitn.it/∼paja/pdf/rccl-diagrams.pdf for the complete model.

http://disi.unitn.it/~paja/pdf/rccl-diagrams.pdf

Strategic Decision-Making 541

managerial frameworks could prove to be crucial for ensuring the completeness
of the exploratory process, and that critical factors are not overlooked.

Results. BIM allows a broader representation of the RCCL case, for it not only
captures the company’s strategic objectives in terms of goals, but it also allows
representing internal and external factors (via situations) affecting those objec-
tives. BIM does this following a fundamental aspect that influences decision-
making, the existence of internal and external factors that affect the outcome of
the business objectives and alter the expected contribution of each alternative.
This modeling supports strategic goal reasoning that considers SWOT factors
too. The advantage of SWOT analysis is that it can aid in evaluating risks while
having qualitative information only. Thus, the BIM reasoning indicates the less
risky alternative, helping to answer our research question partially, that is, ful-
filling the first criteria (C1), but not the second one (C2).

6 Discussion

We are exploring the possibility of using goal-based techniques to support strate-
gic decision-making. We performed a study to systematically evaluate existing
techniques with the help of a realistic case, namely RCCL. For this task, we
have iteratively and incrementally used different modeling and reasoning tech-
niques to pick one of the three alternative strategies. This process has involved
the presence and feedback of a business expert playing the role of the CIO.

Our findings show that goal modeling techniques are a good starting point
for strategic decision-making, since they provide a global view of the problem
at-hand and the alternative courses of action (business strategies). However,
the RCCL case shows that, although i*-based analyses allow us to evaluate the
alternatives in different ways, they are not able to reach a conclusive decision.
It is noteworthy to mention that due to the lack of real data we cannot perform
data-driven analysis. This is also true for BIM, which supports indicator-based
analysis apart from goal-based reasoning. Nevertheless, the extended modeling
language in BIM makes a significant difference when performing goal reasoning.
The representation of situations provides further information to the CIO to
distinguish among alternatives, favoring the selection of the second, although it
still does not provide all the information required for a definitive answer.

The difference in the results provided by i* and BIM denotes the importance
of modeling the context of the firm (done via situations in BIM). Depending on
the context, the optimal decision varies, making goal modeling alone insufficient
to reason and explain the best alternative to be followed. These results highlight
several desiderata or needs that must be taken into account in the quest for an
adequate solution for systematic strategic decision-making.

First, there is a need for a modeling language expressive enough to model not
only the firm and its objectives, but also how the context affects strategic goals.
As shown by the RCCL case, strategic goals and alternatives can be strongly
affected by the context. One can argue that this context may change or be present
only in a certain subset of areas where RCCL is operating. Thus, the desired

542 E. Paja et al.

approach should allow decision makers to model under what circumstances each
strategic goal will be successful, struggle, or fail, enabling them to make an
informed decision. Furthermore, it should also adapt and operationalize each
goal in a different way, accounting for the different contexts.

Second, there is a need for a detailed and comprehensive view of both inter-
nal and external factors that influence decision-making, which can be difficult
to obtain without a systematic exploration process. Therefore, a framework that
guides the exploration and evaluates all critical factors is required for achieving
a well-informed decision-making process. Such process should be based on well-
known management frameworks (Balanced Scorecard [14], Five Forces Model
[21], etc.) that encode the knowledge about business drivers (such as competi-
tiveness or differentiation), which go further than cost-benefit analysis, avoiding
overlooking factors that will determine the success or failure of strategic goals.

Third, the previous points provide evidence of the need for a flexible rea-
soning process, one that takes into account the different contexts (via a global
or probabilistic view of possible scenaria) and makes the optimal choices not
only considering a static model, but the potential evolution of multiple contexts
affecting different parts of the company. Such reasoning process would explain to
the users why each choice is more adequate for each context, as well as which
are the factors that determine the choice (e.g., lowering risks).

Threats to validity. Although our experience has been revealing, there are
some threats to validity to the comparative study. The results might be influ-
enced by the selected case (though the RCCL case is quite representative) and
the lack of real managers involved in the study. Hence, we plan to consider dif-
ferent cases in the future and test the final hypothesis of performing scenario or
context-based analysis and including more criteria to support a systematic and
comprehensive approach for strategic decision-making. We also intend to involve
actual managers to evaluate the envisioned comprehensive approach.

Specifically, in future work, we intend to augment one of the goal modeling
and analysis techniques (e.g., BIM) with a managerial model (e.g., Five Forces,
Value Chain, or Balanced Scorecards), in order to support a more systematic and
comprehensive strategic decision-making process. In this way we would test our
hypothesis that this comprehensive approach fares better, as discussed earlier
in terms of open needs. Another possible extension is to enable decision makers
to define trade-offs, fine-tuning the degree of satisfaction of strategic objectives.
This will allow decision makers to make compromises, where some goals can be
sacrificed in quantitative terms in order to excel in other priority goals.

Acknowledgements. This research was partially supported by the ERC advanced
grant 267856, ‘Lucretius: Foundations for Software Evolution’, www.lucretius.eu.
A. Maté is funded by Generalitat Valenciana (APOSTD/2014/064).

www.lucretius.eu

Strategic Decision-Making 543

References

1. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evalu-
ating goal models within the goal-oriented requirement language. In: IJIS (2010)

2. Blythe, J.: Principles & Practice of Marketing. Cengage Learning EMEA, Boston
(2006)

3. Carroll, P., Mui, C., Lessons, B.D.: What You Can Learn from the Most Inexcus-
able Business Failures of the Last Twenty-five Years. Penguin, New York (2008)

4. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1–2), 3–50 (1993)

5. Dealtry, R.: ‘Dynamic SWOT Analysis’: Developer’s Guide. IP (1992)
6. Eisenhardt, K.M., Zbaracki, M.J.: Strategic decision making. SMJ 13, 17 (1992)
7. Greco, S.: Multiple Criteria Decision Analysis: State of the Art Surveys, vol. 78.

Springer Science & Business Media, New York (2005)
8. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis

and reasoning in the tropos methodology. EAAI 18(2), 159–171 (2005)
9. Handfield, R., Walton, S.V., Sroufe, R., Melnyk, S.A.: Applying environmental

criteria to supplier assessment: a study in the application of the analytical hierarchy
process. Eur. J. Oper. Res. 141(1), 70–87 (2002)

10. Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos,
J.: Strategic business modeling: representation and reasoning. SSM 13, 1015–1041
(2014)

11. Horkoff, J., Yu, E.: Analyzing goal models: different approaches and how to choose
among them. In: ACM SAC, pp. 675–682. ACM (2011)

12. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction analysis
techniques. REJ 18(3), 199–222 (2013)

13. Horkoff, J., Yu, E.: Interactive goal model analysis for early requirements engineer-
ing. In: REJ, pp. 1–33 (2014)

14. Kaplan, R.S., Norton, D.P.: Putting the balanced scorecard to work. Performance
measurement, management, and appraisal sourcebook, vol. 66 (1995)

15. Kaplan, R.S., Norton, D.P.: Strategy Maps: Converting Intangible Assets into Tan-
gible Outcomes. Harvard Business Press, Boston (2004)

16. Letier, E., Stefan, D., Barr, E.T.: Uncertainty, risk, and information value in soft-
ware requirements and architecture. In: ICSE, pp. 883–894. ACM (2014)

17. Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J.: Integrating preferences
into goal models for requirements engineering. In: RE, pp. 135–144 (2010)

18. McFarlan, F.W., Massoni, V.: Royal Caribbean Cruises Ltd. HBS (2003)
19. Object Management Group. Business Motivation Model v1.3 specification (2015)
20. Porter, M.E.: Competitive Strategy: Techniques for Analyzing Industries and Com-

petition, vol. 300. Free Press, New York (1980)
21. Porter, M.E.: The five competitive forces that shape strategy (2008)
22. Robinson, R.: Economic evaluation and health care: cost-benefit analysis. Br. Med.

J. 307, 924–924 (1993)
23. Shyur, H.J., Sh Shih, H.: A hybrid MCDM model for strategic vendor selection.

Math. Comput. Model. 44(7), 749–761 (2006)
24. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:

ISRE, pp. 249–263 (2001)
25. Yu, E.: Towards modelling and reasoning support for early-phase requirements

engineering. In: ISRE, pp. 226–235. IEEE (1997)

Requirements Evolution and Evolution
Requirements with Constrained Goal Models

Chi Mai Nguyen(B), Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos

DISI, University of Trento, Trento, Italy
chimai.nguyen@unitn.it

Abstract. We are interested in supporting software evolution caused
by changing requirements and/or changes in the operational environ-
ment of a software system. For example, users of a system may want
new functionality or performance enhancements to cope with growing
user population (changing requirements). Alternatively, vendors of a sys-
tem may want to minimize costs in implementing requirements changes
(evolution requirements). We propose to use Constrained Goal Models
(CGMs) to represent the requirements of a system, and capture require-
ments changes in terms of incremental operations on a goal model. Evo-
lution requirements are then represented as optimization goals that min-
imize implementation costs or customer value. We can then exploit rea-
soning techniques to derive optimal new specifications for an evolving
software system. CGMs offer an expressive language for modelling goals
that comes with scalable solvers that can solve hybrid constraint and
optimization problems using a combination of Satisfiability Modulo The-
ories (SMT) and Optimization Modulo Theories (OMT) techniques. We
evaluate our proposal by modeling and reasoning with a goal model for
the meeting scheduling exemplar.

1 Introduction

We have come to live in a world where the only constant is change. Changes
need to be accommodated by any system that lives and operates in that world,
biological and/or engineered. For software systems, this is a well-known problem
referred to as software evolution. There has been much work and interest on
this problem since Lehman’s seminal proposal for laws of software evolution [3].
However, the problem of effectively supporting software evolution through suit-
able concepts, tools and techniques is still largely open. And software evolution
still accounts for more than 50 % of total costs in a software system’s lifecycle.

We are interested in supporting software evolution caused by changing
requirements and/or environmental conditions. Specifically, we are interested
in models that capture such changes, also in reasoning techniques that derive
optimal new specifications for a system whose requirements and/or environment

This research was partially supported by the ERC advanced grant 267856, ‘Lucretius:
Foundations for Software Evolution’ and by SRC GRC Research Project 2012-TJ-
2266 WOLF.

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 544–552, 2016.
DOI: 10.1007/978-3-319-46397-1 42

Requirements Evolution and Evolution Requirements 545

have changed. Moreover, we are interested in discovering new classes of evo-
lution requirements, in the spirit of [8] who proposed such a class for adaptive
software systems. We propose to model requirements changes through changes to
a goal model, and evolution requirements as optimization goals, such as “Mini-
mize costs while implementing new functionality”. Our research baseline consists
of an expressive framework for modelling and reasoning with goals called Con-
strained Goal Models (hereafter CGMs) [4]. The CGM framework is founded on
and draws much of its power from Satisfiability Modulo Theories (SMT) and
Optimization Modulo Theories (OMT) solving techniques [1,6].

The contributions of this paper include a proposal for modelling changing
requirements in terms of changes to a CGM model, but also the identification of
a new class of evolution requirements, expressed as optimization goals in CGM.
In addition, we show how to support reasoning with changed goal models and
evolution requirements in order to derive optimal solutions.1

2 Background: Constrained Goal Models

SMT(LRA) and OMT(LRA). Satisfiability Modulo the Theory of Linear
Rational Arithmetic (SMT(LRA)) [1] is the problem of deciding the satisfiabil-
ity of arbitrary formulas on atomic propositions and constraints in linear arith-
metic over the rationals. Optimization Modulo the Theory of Linear Rational
Arithmetic (OMT(LRA)) [6] extends SMT(LRA) by searching solutions which
optimize some LRA objective(s). Efficient OMT(LRA) solvers like OptiMath-
SAT [7] allow for handling formulas with thousands of Boolean and rational
variables [4,6].

A Working Example. We recall from [4] the main ideas of Constrained Goal
Models (CGM’s) and the main functionalities of our CGM-Tool through a
meeting scheduling example (Fig. 1). We call elements both goals and domain
assumptions. Labeled bullets at the merging point of the edges connect-
ing a group of source elements to a target element are refinements (e.g.,
(GoodParticipation,MinimalConflict) R20−−→ GoodQualitySchedule), while the Ris
denote their labels. The label of a refinement can be omitted when there is
no need to refer to it explicitly.

Intuitively, requirements represent desired states of affairs we want the
system-to-be to achieve (either mandatorily or possibly); they are progres-
sively refined into intermediate goals, until the process produces actionable goals

1 Note. This paper was reduced to the current size from its original 14-page length.
Accordingly, we have made available an extended version of [5] including (i) all fig-
ures of the examples which are described only verbally here, (ii) the formalization of
the problem of automatically handling CGM evolutions and evolution requirements
for CGMs, (iii) an overview of our tool implementing the presented approach, (iv)
an overview of related work, with a comparison wrt. previous approaches, (v) some
conclusions and description of future work.

546 C.M. Nguyen et al.

(tasks) that need no further decomposition and can be executed; domain assump-
tions are propositions about the domain that need to hold for a goal refinement
to work. Refinements are used to represent the alternatives of how to achieve an
element; a refinement of an element is a conjunction of the sub-elements that
are necessary to achieve it.

The main objective of the CGM in Fig. 1 is to achieve the require-
ment ScheduleMeeting, which is mandatory. ScheduleMeeting has only one
candidate refinement R1, consisting in five sub-goals: CharacteriseMeeting,
CollectTimetables, FindASuitableRoom, ChooseSchedule, and ManageMeeting.
Since R1 is the only refinement of the requirement, all these sub-goals must
be satisfied in order to satisfy it. There may be more than one way to refine an
element; e.g., CollectTimetables is further refined either by R10 into the single
goal ByPerson or by R2 into the single goal BySystem. The subgoals are further
refined until they reach the level of domain assumptions and tasks.

Some requirements can be “nice-to-have”, like LowCost, MinimalEffort,
FastSchedule, and GoodQualitySchedule (in blue in Fig. 1). They are requirements
that we would like to fulfill with our solution, provided they do not conflict with
other requirements. To this extent, in order to analyze interactively the possi-
ble different realizations, one can interactively mark [or unmark] requirements
as satisfied, thus making them mandatory (if unmarked, they are nice-to-have
ones). Similarly, one can interactively mark/unmark (effortful) tasks as denied,
or mark/unmark some domain assumption as satisfied or denied. More generally,
one can mark as satisfied or denied every goal or domain assumption. We call
these marks user assertions.

In a CGM, elements and refinements are enriched by user-defined con-
straints, which can be expressed either graphically as relation edges or tex-
tually as Boolean or SMT (LRA) formulas. We have three kinds of relation
edges. Contribution edges “Ei

++−−→ Ej” between elements (in green in Fig. 1),
like “ScheduleAutomatically

++−−→ MinimalConflicts”, mean that if the source ele-
ment Ei is satisfied, then also the target element Ej must be satisfied (but
not vice versa). Conflict edges “Ei

−−←→ Ej” between elements (in red), like
“ConfirmOccurrence

−−←→ CancelMeeting”, mean that Ei and Ej cannot be both
satisfied. Refinement bindings “Ri←→Rj” between two refinements (in purple),
like “R2←→R7”, are used to state that, if the target elements Ei and Ej of the
two refinements Ri and Rj , respectively, are both satisfied, then Ei is refined by
Ri if and only if Ej is refined by Rj . Intuitively, this means that the two refine-
ments are bound, as if they were two different instances of the same choice.

It is possible to enrich CGMs with logic formulas, representing arbitrary
logic constraints on elements and refinements. In addition to Boolean con-
straints, it is also possible to use numerical variables to express different numer-
ical attributes of elements (such as cost, worktime, space, fuel, etc.) and con-
straints over them. For example, in Fig. 1 we associate to UsePartnerInstitutions
and UseHotelsAndConventionCenters a cost value of 80AC and 200AC respectively,
and we associate “(cost < 100AC)” as a prerequisite constraint for the

Requirements Evolution and Evolution Requirements 547

F
ig
.
1
.
A

C
G

M
M

1
,
w

it
h

a
re

a
li
za

ti
o
n
µ
1

m
in

im
iz

in
g

le
x
ic

o
g
ra

p
h
ic

a
ll
y
:
th

e
d
iff

er
en

ce
P
en
al
ty

-R
ew

ar
d
,
w
or
kT

im
e,

a
n
d
co
st

.
N

o
ta

ti
o
n
a
ll
y,

ro
u
n
d
-c

o
rn

er
re

ct
a
n
g
le

s
(e

.g
.,
S
ch
ed
u
le
M
ee
ti
n
g
)

a
re

ro
o
t

g
o
a
ls

,
re

p
re

se
n
ti

n
g

st
a
k
eh

o
ld

er
re
qu

ir
em

en
ts

;
ov

a
ls

(e
.g

.
C
o
lle
ct
T
im

et
ab

le
s)

a
re

in
te
rm

ed
ia
te

go
a
ls
;
h
ex
a
go
n
s

(e
.g

.
C
h
ar
ac
te
ri
se
M
ee
ti
n
g
)

a
re

ta
sk
s,

i.
e.

n
o
n
-r

o
o
t

le
a
f
g
o
a
ls

;
re

ct
a
n
g
le

s
(e

.g
.,
P
ar
ti
ci
p
an

ts
U
se
S
ys
te
m
C
al
en
d
ar

)
a
re

d
o
m
a
in

a
ss
u
m
p
ti
o
n
s.

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

548 C.M. Nguyen et al.

nice-to-have requirement LowCost. Implicitly, this means that no realization
involving UseHotelsAndConventionCenters can realize this requirement.

We suppose now that ScheduleMeeting is asserted as satisfied (i.e. it is
mandatory) and that no other element is asserted. Then the CGM in Fig. 1
has more than 20 possible realizations. The sub-graph which is highlighted in
yellow describes one of them. Intuitively, a realization of a CGM under given
user assertions (if any) represents one of the alternative ways of refining the
mandatory requirements (plus possibly some of the nice-to-have ones) in com-
pliance with the user assertions and user-defined constraints. It is a sub-graph
of the CGM including a set of satisfied elements and refinements: it includes all
mandatory requirements, and [resp. does not include] all elements satisfied [resp.
denied] in the user assertions; for each non-leaf element included, at least one of
its refinement is included; for each refinement included, all its target elements
are included; finally, a realization complies with all relation edges and with all
constraints.

In general, a CGM under given user assertions has many possible realiza-
tions. To distinguish among them, stakeholders may want to express preferences
on the requirements to achieve, on the tasks to accomplish, and on elements
and refinements to choose. The CGM-Tool provides various methods to express
preferences, including:

– attribute rewards and penalties to nice-to-have requirements and tasks respec-
tively, so that to maximize the former and minimize the latter; (E.g., satisfying
LowCost gives a reward = 100, whilst satisfying CharacteriseMeeting gives a
penalty = 15.)

– introduce numerical attributes, constraints and objectives; (E.g., the numerical
attribute Cost not only can be used to set prerequisite constraints for require-
ments, like “(Cost < 100AC)” for LowCost, but also can be set as objectives to
minimize.)

The CGM-Tool provides many automated-reasoning functionalities on CGMs [4].

Search/enumerate minimum-penalty/maximum reward realizations. One can
assert rewards to the desired requirements and set penalties of tasks, then
the tool finds automatically the optimal realization(s).

Search/enumerate optimal realizations wrt. pre-defined/user-defined objectives.
One can define objective functions obj1, ..., objk over goals, refinements and
their numerical attributes; then the tool finds automatically realizations opti-
mizing them.

The above functionalities can be combined in various ways. For instance, the
realization of Fig. 1 is the one returned by CGM-tool when asked to minimize
lexicographically, in order, the difference Penalty-Reward, workTime, and cost.2

2 A solution optimizes lexicographically an ordered list of objectives 〈obj1, obj2, ...〉 if
it makes obj1 optimum and, if more than one such solution exists, it makes also obj2
optimum, ..., etc..

Requirements Evolution and Evolution Requirements 549

They have been implemented by encoding the CGM and the objectives into an
SMT(LRA) formula and a set of LRA objectives, which is fed to the OMT
tool OptiMathSAT [7]. We refer the reader to [4] for a much more detailed
description of CGMs and their automated reasoning functionalities.

3 Requirements Evolution and Evolution Requirements

Requirements Evolution. Constrained goal models may evolve in time: goals,
requirements and assumptions can be added, removed, or simply modified;
Boolean and SMT constraints may be added, removed, or modified as well;
assumptions which were assumed true can be assumed false, or vice versa.

Some modifications strengthen the CGMs, in the sense that they reduce the
set of candidate realizations. For instance, dropping one of the refinements of an
element (if at least one is left) reduces the alternatives in realizations; adding
source elements to a refinement makes it harder to satisfy; adding Boolean or
SMT constraints, or making some such constraint strictly stronger, restricts the
set of candidate solutions; changing the value of an assumption from true to false
may drop some alternative solutions. Vice versa, some modifications weaken the
CGMs, augmenting the set of candidate realizations: for instance, adding one of
refinement to an element, dropping source elements to a refinement, dropping
Boolean or SMT constraints, or making some such constraint strictly weaker,
changing the value of an assumption from false to true. In general, however,
since in a CGM the goal and/or decomposition graph is a DAG and not a
tree, and the and/or decomposition is augmented with relational edges and con-
straints, modifications may produce combinations of the above effects, possibly
propagating unexpected side effects which are sometimes hard to predict.

We consider the CGM in Fig. 1 (namely, M1) as our starting model, and we
assume that for some reasons it has been modified into the CGM M2 of Fig. 2
in [5] (see Sect. 1). M2 differs from M1 for the following modifications:

(a) two new tasks, SetSystemCalendar and ParticipantsFillSystemCalendar, are
added to the sub-goal sources of the refinement R13;

(b) a new source task RegisterMeetingRoom is added to R17, and the binding
between R16 and R17 is removed; the refinement R18 of the goal BookRoom
and its source task CancelLessImportantMeeting are removed;

(c) the alternative refinements R8 and R9 of ManageMeeting are also modified:
two new internal goals ByUser and ByAgent are added and become the single
source of the two refinements R8 and R9 respectively, and the two tasks
ConfirmOccurrence and CancelMeeting become respectively the sources of
two new refinements R21 and R22, which are the alternative refinements of
the goal ByUser; the new goal ByAgent is refined by the new refinement R23

with source task SendDecision.

Evolution Requirements. We consider the generic scenario in which a pre-
vious version of a CGM M1 with an available realization µ1 is modified into a
new CGM M2. As a consequence, µ1 typically is no more a valid realization of

550 C.M. Nguyen et al.

M2. E.g., we notice that µ1 in Fig. 2 in [5] does not represent a valid realiza-
tion of M2: not all source tasks of R13 are satisfied, BookRoom has no satisfied
refinement, and the new goal ByUser and refinement R21 are not satisfied. It is
thus necessary to produce a new realization µ2 for M2.

In general, when one has a sequence M1,M2, ...,Mi, ... of CGMs and must
produce a corresponding sequence µ1, µ2, ..., µi, ... of realizations, it is necessary
to decide some criteria by which the realizations µi evolve in terms of the evolu-
tion of the CGMs Mi. We call these criteria, evolution requirements. We describe
some possible criteria.

Recomputing Realizations. One possible evolution requirement is that of
always having the “best” realization µi for each Mi, according to some objective
(or lexicographic combination of objectives). Let M1, M2, and µ1 be as above.
One possible choice for the user is to compute a new optimal realization µ2

from scratch, using the same criteria used in computing µ1 from M1. In general,
however, it may be the case that the new realization µ2 is very different from
µ1, which may displease the stakeholders.

We consider now the realization µ1 of the CGM M1 highlighted in Fig. 1
and the modified model M2 of Fig. 2 in [5]. If we run CGM-Tool over M2

with the same optimization criteria as for µ1—i.e., minimize lexicographically,
in order, the difference Penalty-Reward, workTime, and cost—we obtain a novel
realization µlex

2 (Fig. 3 in [5]. The new realization µlex
2 satisfies all the require-

ments (both “nice to have” and mandatory) except MinimalEffort. It includes
the following tasks: CharateriseMeeting, EmailParticipants, GetRoomSuggestions,
UseAvailableRoom, RegisterMeetingRoom, ScheduleManually, ConfirmOccurrence,
GoodParticipation, and MinimalConflicts, and it requires one domain assumption:
LocalRoomAvailable. This realization was found automatically by our CGM-Tool
in 0.059 s on an Apple MacBook Air laptop.

Unfortunately, µlex
2 turns out to be extremely different from µ1.

This is due to the fact that the novel tasks SetSystemCalendar and
ParticipantsFillSystemCalendar raise significantly the penalty for R13 and thus for
R2; hence, in terms of the Penalty-Reward objective, it is now better to choose
R10 and R6 instead of R2 and R7, even though this forces ByPerson to be satis-
fied, which is incompatible with CollectionEffort, so that MinimalEffort is no more
achieved. Overall, for µ2 we have Penalty − Reward = −65, workTime = 4 h and
cost = 0AC.

In many contexts, in particular if µ1 is well-established or is already imple-
mented, one may want to find a realization µ2 of the modified CGM M2 which
is as similar as possible to the previous realization M1. The suitable notion
of “similarity”, however, may depend on stakeholder’s needs. In what follows,
we discuss two notions of “similarity” from [2], familiarity and change effort,
adapting and extending them to CGMs.

Maximizing Familiarity. In our approach, in its simplest form, the familiarity
of µ2 wrt. µ1 is given by the number of elements of interest which are common to
M1 and M2 and which either are in both µ1 and µ2 or are out of both of them;
this can be augmented also by the number of new elements in M2 of interest

Requirements Evolution and Evolution Requirements 551

(e.g., tasks) which are denied. In a more sophisticate form, the contribution of
each element of interest can be weighted by some numerical value (e.g., Penalty,
cost, WorkTime, . . .).

For example, if we ask CGM-Tool to find a realization which maximizes
our notion of familiarity, we obtain the novel realization µfam

2 (Fig. 4 in
[5]). µfam

2 satisfies all the requirements (both “nice to have” and mandatory
ones), and includes the following tasks: CharacteriseMeeitng, SetSystemCalendar,
ParticipantsFillSystemCalendar, CollectFromSystemCalendar, GetRoomSuggestions,
UseAvailableRoom, RegisterMeetingRoom, ScheduleAutomatically, ConfirmOccur-
rence, GoodParticipation, MinimalConflicts, CollectionEffort, and MatchingEffort;
µfam
2 also requires two domain assumptions: ParticipantsUseSystemCalendar and

LocalRoomAvailable.
Notice that all the tasks which are satisfied in µ1 are satisfied also in

µfam
2 , and only the intermediate goal ByUser, the refinement R21 and the

four tasks SetSystemCalendar, ParticipantsFillSystemCalendar, UseAvailableRoom,
and RegisterMeetingRoom are added to µfam

2 , three of which are newly-added
tasks. Thus, on common elements, µfam

2 and µ1 differ only on the task
UseAvailableRoom, which must be mandatorily be satisfied to complete the real-
ization. Overall, wrt. µlex

2 , we pay familiarity with some loss in the “quality” of
the realization, since for µfam

2 we have Penalty−Reward = −50, workTime = 3.5 h
and cost = 0AC. This realization was found automatically by our CGM-Tool in
0.067 s on an Apple MacBook Air laptop.

Minimizing Change Effort. In our approach, in its simplest form, the change
effort of µ2 wrt. µ1 is given by the number of newly-satisfied tasks, i.e., the
amount of the new tasks which are satisfied in µ2 plus that of common tasks
which were not satisfied in µ1 but are satisfied in µ2. In a more sophisticate form,
the contribution of each task of interest can be weighted by some numerical value
(e.g., Penalty, cost, WorkTime, . . .). Intuitively, since satisfying a task requires
effort, this value considers the extra effort required to implement µ2. (Notice
that tasks which pass from satisfied to denied do not reduce the effort, because
we assume they have been implemented anyway.)

For example, if we ask CGM-Tool to find a realization which mini-
mizes the number of newly-satisfied tasks, we obtain the realization µeff

2

(Fig. 5 in [5]). The realization satisfies all the requirements (both “nice to
have” and mandatory), and includes the following tasks: CharacteriseMeeitng,
SetSystemCalendar, ParticipantsFillSystemCalendar, CollectFromSystemCalendar,
UsePartnerInstitutions, ScheduleAutomatically, ConfirmOccurrence, GoodPartici-
pation, MinimalConflicts, CollectionEffort, and MatchingEffort; µeff

2 also requires
one domain assumption ParticipantsUseSystemCalendar.

Notice that, in order to minimize the number of new tasks needed to be
achieved, in µeff

2 , FindASuitableRoom is refined by R3 instead of R5. In fact, in
order to achieve R5, we would need to satisfy two extra tasks (UseAvailableRoom
and RegisterMeetingRoom) wrt. µ1, whilst for satisfying R3 we only need
to satisfy one task (UsePartnerInstitutions). Besides, two newly added tasks
SetSystemCalendar and ParticipantsFillSystemCalendar are also included in µeff

2 .

552 C.M. Nguyen et al.

Thus the total effort of evolving from µ1 to µeff
2 is to implement three new tasks.

Overall, for µeff
2 we have Penalty − Reward = −50, workTime = 3.5 h and cost =

80AC. This realization was found automatically by our CGM-Tool in 0.085 s on
an Apple MacBook Air laptop.

Combining Familiarity or Change Effort with Other Objectives. In our
approach, familiarity and change effort are numerical objectives like others, and
as such they can be combined lexicographically with other objectives, so that
stakeholders can decide which objectives to prioritize.

References

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability, Chap. 26, pp. 825–885. IOS Press, Amsterdam (2009)

2. Ernst, N.A., Borgida, A., Mylopoulos, J., Jureta, I.J.: Agile requirements evolution
via paraconsistent reasoning. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza,
S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 382–397. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31095-9 25

3. Lehman, M.M.: Programs, life cycles, and laws of software evolution. In: Proceed-
ings of the IEEE, pp. 1060–1076, September 1980

4. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi object reasoning
with constrained goal model. CoRR, abs/1601.07409 (2016, submitted). http://
arxiv.org/abs/1601.07409

5. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Requirements evolution
and evolution requirements with constrained goal models. CoRR, abs/1604.04716
(2016). http://arxiv.org/abs/1604.04716

6. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Logics 16(2) (2015)

7. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 27

8. Souza, V.E.S.: Requirements-based software system adaptation. Ph.D. thesis, Uni-
versity of Trento (2012)

http://dx.doi.org/10.1007/978-3-642-31095-9_25
http://arxiv.org/abs/1601.07409
http://arxiv.org/abs/1601.07409
http://arxiv.org/abs/1604.04716
http://dx.doi.org/10.1007/978-3-319-21690-4_27

RationalGRL: A Framework for Rationalizing
Goal Models Using Argument Diagrams

Marc van Zee1(B), Diana Marosin2, Floris Bex3, and Sepideh Ghanavati4

1 Computer Science and Communication, University of Luxembourg,
Esch-sur-Alzette, Luxembourg

marc.vanzee@uni.lu
2 Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg

diana.marosin@list.lu
3 Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands

f.j.bex@uu.nl
4 Texas Tech University, Lubbock, Texas, USA

sepideh.ghanavati@ttu.edu

Abstract. Goal modeling languages, such as i* and the Goal-oriented
Requirements Language (GRL), capture and analyze high-level goals
and their relationships with lower level goals and tasks. However, in
such models, the rationalization behind these goals and tasks and the
selection of alternatives are usually left implicit. To better integrate goal
models and their rationalization, we develop the RationalGRL framework,
in which argument diagrams can be mapped to goal models. Moreover,
we integrate the result of the evaluation of arguments and their counter-
arguments with GRL initial satisfaction values. We develop an interface
between the argument web tools OVA and TOAST and the Eclipse-based
tool for GRL called jUCMNav. We demonstrate our methodology with
a case study from the Schiphol Group.

Keywords: Goal modeling languages · Decision rationalization · Argu-
mentation theory · Argument diagrams

1 Introduction

The Goal-oriented Requirements Language (GRL) is part of the User Require-
ments Notation (URN), which is an ITU-T standard [8]. GRL [1] consists of
several intentional elements (such as softgoals, goals, tasks and resources) and
links between them. While GRL models, and goal models in general [19], are
useful tools for motivating architectural choices in enterprise and software archi-
tecture, they miss important parts of the architecture design rationalization. As
a result, GRL models are only the end product of a modeling process, and they
do not provide any insight on how the models were created, i.e., what reasons
were used to choose certain elements in the model and to reject the others and
what evidence was given as the basis of this reasoning.

c© Springer International Publishing AG 2016
I. Comyn-Wattiau et al. (Eds.): ER 2016, LNCS 9974, pp. 553–560, 2016.
DOI: 10.1007/978-3-319-46397-1 43

554 M. van Zee et al.

In this paper, we integrate various existing and newly developed interfaces
and algorithms into the RationalGRL framework. This framework facilitates argu-
ment construction and analysis on the one hand and the rationalization and
evaluation of goal models on the other hand. More specifically, RationalGRL
framework combines an existing argument diagramming tool1 [4] based on a
formal theory of practical (i.e. goal-driven) argumentation [2,10,16,17] with a
standardized goal modeling language and its tool support [1].

The core of RationalGRL is a concrete set of mapping rules from the for-
mal argumentation framework to a GRL model. The mapping rules allow for
the automatic translation of arguments and evidence about goals to GRL mod-
els. Furthermore, the formal semantics [5] of arguments and counterarguments
underlying the argumentation theory helps determining whether the elements
of a GRL model are acceptable given the potential contradictory evidence and
stakeholders’ opinions. In other words, we can compute the initial satisfaction
level of IEs in GRL based on the acceptability status of arguments for or against
IEs. RationalGRL framework is implemented as an online tool2.

The rest of this paper is structured as follows. In Sect. 2, we briefly introduce
the RationalGRL framework. Due to space constraints we omit technical details.
In Sect. 3, we evaluate the framework via a case study of the Schiphol Group.
First, we model the discussions about a change in the set of architecture princi-
ples of the Schiphol Group. Second, we evaluate the framework and the resulted
models with enterprise architects of the Group. In Sect. 4 we present the current
literature and the related work.

2 The RationalGRL Framework

The main components of the RationalGRL framework are shown in Fig. 1. The
four main parts of the framework, Argumentation, Translation, Goal Model-
ing, and Update, are numbered and depicted in bold. For each component, the
technology used to implement it, is marked in a filled rectangle. The last step
(Update) is out of the scope of this paper. We, now, briefly explain the process
of how a goal model is developed in the RationalGRL framework.

In Step 1 - Argumentation, stakeholders discuss the requirements of their
organization. In this process, stakeholders put forward arguments for or against
certain elements of the model (e.g. goals, tasks, ...). Arguments about why cer-
tain tasks can contribute to the fulfillment of goals and an evidence to support
a claim are also part of this process. Furthermore, stakeholders can challenge
claims by forming counterarguments. The complete set of claims, arguments
and counterarguments can be represented in an argument diagram.

In Step 2 - Translation, the argument diagram is translated to a goal
model, in our case GRL. In addition to the structure of arguments and counter-
arguments, this step also provides means to translate the evaluation of arguments
1 http://ova.arg-tech.org/.
2 All implementation details/sources as well as the case study descriptions and models

can be found on Github: http://github.com/RationalArchitecture/RationalGRL.

http://ova.arg-tech.org/
http://github.com/RationalArchitecture/RationalGRL

RationalGRL: A Framework for Rationalizing Goal Models 555

Fig. 1. Overview of the RationalGRL framework

in the argument diagrams to the initial satisfaction values of the GRL intentional
elements, which can be positive or negative. A positive evaluation indicates that
the element is supported by one or more arguments, while a negative evaluation
indicates that the element is not a good alternative in GRL.

In Step 3 - Goal Modeling, the goal model that is generated by the Trans-
lation process, is evaluated by the stakeholders. These models can be used as a
discussion means to investigate whether the goals in the model are in line with
the original requirements of the stakeholders. This allows a better rationaliza-
tion of the goal modeling process, with a clear traceability from the goals of the
organization to the arguments and evidence that were used in the discussions.

Step 4 - Update involves translating GRL models with its analysis back
into an argument diagram. This falls outside the scope of the current paper.

3 Evaluation

3.1 Case Study Description

Schiphol Group is the owner of an international airport and it operates on both
national and international scales. Schiphol Group started using enterprise archi-
tecture principles to drive their architecture program in 2003. Principles are
generally defined as “a family of guidelines (...) for design” [7] or “general rules
and guidelines, intended to be enduring and seldom amended, that inform and
support the way an organization fulfils its mission” [14]. In 2003, the principle
Adhere to the Corporate Data Model was advocating the use of a company-wide
defined data model, such that it provided a high level insight on all the data
that were used in the processes and applications. In 2007, the principles were
evaluated by a team of five architects and it was concluded that the principle was
not very successful, and was conceptually conflicting with another architecture
principle Package selection before custom development.

556 M. van Zee et al.

We use these principles as the base of our case study and we provide a pos-
teriori analysis of the discussions and evidence that were used in forming the
architecture principles and present the goal models generated using the Ratio-
nalGRL framework. In total, we formalized around 60 arguments and 30 infer-
ences/attack relation. Due to space constraints, we only provide a small subset
of the models in this paper.

3.2 Modeling the Case Study in RationalGRL

In 2003, the principle Adhere to the Corporate Data Model was advocating for
the use of a company-wide defined data model, such that it provided a high
level insight on all the data that is used in the processes and applications. The
IT department was assigned the task to define this data model. All applications
were supposed to be compatible to this data model. The main motivation for
adopting this principle was to obtain a clear and standard approach for infor-
mation handling. This could improve the way in which customers can be served
and to lower the costs.

In 2007, the principles were re-evaluated by a team of five architects. It
was concluded that the previous principle was not very successful. Some of the
arguments used in this discussion are shown in Fig. 2. An important issue with
the corporate data model - principle was the effort needed to be invested by
the ICT department to define this data model. Schiphol Group not only focuses
on aviation, but also on retail and security. These domains have different needs
when it comes to the data they use and their internal processes. In terms of
business objects and “on paper” definitions, the data model was agreed upon,
but it was never really implemented.

This situation is reflected in a simplified way in the argument diagram by
an attack from the argument [EVIDENCE] CorpDM is not defined on [TASK] ICT
department defines CorpDM. Two of the other attacks are direct consequences of
this issue. Since there was no corporate data model, the principle could not be
used ([EVIDENCE] Principle has been used minimally... use it now), and databases
between applications were seldom shared ([EVIDENCE] Databases seldom shared).

In addition, the principle was conceptually conflicting with another archi-
tecture principle Package selection before custom development. It was virtually
impossible to find third-party applications and vendor packages that comply
with the corporate data model. This is reflected in the argument diagram as
a bi-directional conflict between the principle and [TASK] Use data models of
packages applications instead of CorpDM. This task is a direct consequence of the
principle Package selection before custom development.

This set of arguments and the evaluation of the real-life situation made archi-
tects realize that the focus should be on the exchange of information between
applications, not on how the data is stored and managed centrally. This shift of
paradigm resulted in creating a new principle Adhere to the canonical data model.

We translate the final argument diagram of the situation in 2007 after intro-
ducing the new principle using RationalGRL framework. The result is presented
in Fig. 3. Based on the evaluation of GRL IEs, the new principle as well as goals

RationalGRL: A Framework for Rationalizing Goal Models 557

Fig. 2. Part of the argument diagram of the Schiphol Group principles 2007 (visualized
in the argument web)

such as Lower diversity and total cost of ownership, Clear and standard way of inter-
facing, Few dependencies between applications, and Faster time to market receive
a positive evaluation. Moreover, the old principle receives a negative evaluation,
together with its related goals and tasks. This conclusions can provide insights
on how to prioritize from a set of principles, or how to take better informed
design decisions when facing alternative solutions.

3.3 Evaluation with Schiphol Group Enterprise Architects

We evaluated our framework and its results with enterprise architects of the
Schiphol Group. We first discussed the argument diagrams in order to evaluate
whether they represent the situation at 2003 and 2007 correctly. The architects
found that argument diagrams are a useful tool to link and reason about argu-
ments. However, they noted that it may be easier to construct the arguments
and counterarguments a postiori than to do this a priori. They felt that it is
easier to look back on the process and to extract that relevant arguments, than
to do this while the process is still ongoing.

Next, we translated the argument diagrams to GRL models using the trans-
lation procedure and evaluated these GRL models with the architects. The
architects confirmed that the models are able to represent correctly part of the
problem at hand. However, they also noted that some parts were missing from
the models, which implies that beside the documents we gathered and used for
modeling, there were additional facts we did not consider. However, this partial
representation was found useful and the architects consider the usage of for-
mal methods (such as GRL and argumentation) beneficial for “sanity checks”,
alongside a better formulation of the principles.

558 M. van Zee et al.

Fig. 3. GRL diagram of the Schiphol Group principles in 2007

4 Related Work

There are several contributions that relate argumentation-based techniques with
goal modeling. The contribution most closely related to ours is the work by
Jureta et al. [9]. This work proposes “Goal Argumentation Method (GAM)” to
guide argumentation and justification of modeling choices during the construc-
tion of goal models. One of the elements of GAM is the translation of formal
argument models to goal models (similar to ours). In this sense, our Rational-
GRL framework can be seen as an instantiation and implementation of part of
the GAM. One of the main contribution of RationalGRL is that it also takes the
acceptability of arguments as determined by the argumentation semantics [5]
into account when translating from arguments to goal models. RationalGRL also
provides tool support for argumentation, i.e. Argument Web toolset, to which
OVA belongs [4], and for goal modeling, i.e. jUCMNav [12]. Finally, Rational-
GRL is based on the practical reasoning approach of [3], which itself is also a
specialization of Dung’s [5] abstract approach to argumentation. Thus, the spe-
cific critical questions and counterarguments based on these critical question
proposed by [3] can easily be incorporated into RationalGRL.

RationalGRL framework is also closely related to frameworks that aim to
provide a design rationale (DR) [13], an explicit documentation of the reasons
behind decisions made when designing a system or artefact. DR looks at issues,
options and arguments for and against the various options in the design of,
for example, a software system, and provides direct tool support for building

RationalGRL: A Framework for Rationalizing Goal Models 559

and analyzing DR graphs. One of the main improvements of RationalGRL over
DR approaches is that RationalGRL incorporates the formal semantics for both
argument acceptability and goal satisfiability, which allow for a partly automated
evaluation of goals and the rationales for these goals.

Arguments and requirements engineering approaches have been combined
by, among others, Haley et al. [6], who use structured arguments to capture and
validate the rationales for security requirements. However, they do not use goal
models, and thus, there is no explicit trace from arguments to goals and tasks.
Furthermore, like [9], the argumentative part of their work does not include for-
mal semantics for determining the acceptability of arguments, and the proposed
frameworks are not actually implemented. Murukannaiah et al. [11] propose Arg-
ACH, an approach to capture inconsistencies between stakeholders’ beliefs and
goals, and resolve goal conflicts using argumentation techniques.

Finally, our in previous empirical work we recognized shortcomings in the
current state of the art in EA decision rationalization [15]. One of the main
shortcomings is that the group decision process is often omitted. This contribu-
tion can be seen as way to meet this shortcoming, and in this sense improves on
existing EA decision rationalization frameworks. [18]

5 Conclusions and Future Work

There are many directions of future work. There are a large number of differ-
ent semantics for formal argumentation, that lead to different arguments being
acceptable or not. It would be very interesting to explore the effect of these
semantics on goal models. Jureta et al. develop a methodology for clarification
to address issues such as ambiguity, overgenerality, synonymy, and vagueness in
arguments. Atkinson et al. [2] define a formal set of critical questions that point
to typical ways in which a practical argument can be criticized. We believe that
critical questions are the right way to implement Jureta’s methodology, and our
framework would benefit from it. In addition, currently, we have not considered
the Update step of our framework (Fig. 1). That is, the translation from goal
models to argument diagrams is still missing. The Update step helps analysts
change parts of the goal model and analyze its impact on the underlying argu-
ment diagram. Finally, the implementation is currently a browser-based mapping
from an existing argument diagramming tool to an existing goal modeling tool.
By adding an argumentation component to jUCMNav, the development of goal
models can be improved significantly.

References

1. Amyot, D.: Introduction to the user requirements notation: learning by example.
Comput. Netw. 42(3), 285–301 (2003)

2. Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation
using action based alternating transition systems. Artif. Intell. 171(10), 855–874
(2007)

560 M. van Zee et al.

3. Atkinson, K., Bench-Capon, T.: Taking the long view: looking ahead in practical
reasoning. In: Computational Models of Argument: Proceedings of COMMA, pp.
109–120 (2014)

4. Bex, F., Lawrence, J., Snaith, M., Reed, C.: Implementing the argument web.
Commun. ACM 56(10), 66–73 (2013)

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

6. Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: Arguing security: validating
security requirements using structured argumentation. In: Proceedings of the Third
Symposium on RE for Information Security (SREIS 2005) (2005)

7. Hoogervorst, J.A.P.: Enterprise architecture: enabling integration, agility and
change. Int. J. Coop. Inf. Syst. 13(3), 213–233 (2004)

8. ITU-T. Recommendation Z.151 (11, 08): User Requirements Notation (URN) –
Language Definition (2008). http://www.itu.int/rec/T-REC-Z.151/en

9. Jureta, I.J., Faulkner, S., Schobbens, P.Y.: Clear justification of modeling decisions
for goal-oriented requirements engineering. Requir. Eng. 13(2), 87–115 (2008)

10. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artif. Intell. 195, 361–397 (2013)

11. Murukannaiah, P.K., Kalia, A.K., Telangy, P.R., Singh, M.P.: Resolving goal con-
flicts via argumentation-based analysis of competing hypotheses. In: 23rd Interna-
tional Requirements Engineering Conference, pp. 156–165. IEEE (2015)

12. Mussbacher, G.,Amyot, D.: Goal and scenario modeling, analysis, and transforma-
tion with jUCMNav. In: ICSE Companion, pp. 431–432 (2009)

13. Buckingham Shum, S.J., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B.,
Nuseibeh, B.: Hypermedia support for argumentation-based rationale. In: Dutoit,
A.H., McCall, R., Mistŕık, I., Paech, B. (eds.) Rationale Management in Software
Engineering, pp. 111–132. Springer, Heidelberg (2006)

14. The Open Group. TOGAF 9 - The Open Group Architecture Framework Version
9 (2009)

15. van der Linden, D., van Zee, M.: Insights from a study on decision making in
enterprise architecture. In: PoEM (Short Papers). CEUR Workshop Proceedings,
vol. 1497, pp. 21–30 (2015)

16. van Zee, M., Bex, F., Ghanavati, S.: Rationalization of goal models in GRL using
formal argumentation. In: Proceedings of RE: Next! Track at the Requirements
Engineering Conference 2015 (RE 2015), August 2015

17. van Zee, M., Ghanavati, S.: Capturing evidence and rationales with require-
ments engineering and argumentation-based techniques. In: Proceedings of the
26th Benelux Conference on Artificial Intelligence (BNAIC2014), November 2014

18. Van Zee, M., Plataniotis, G., van der Linden, D., Marosin, D.: Formalizing enter-
prise architecture decision models using integrity constraints. In: 2014 IEEE 16th
Conference on Business Informatics, vol. 1, pp. 143–150. IEEE (2014)

19. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on RE, pp.
226–235 (1997)

http://www.itu.int/rec/T-REC-Z.151/en

Author Index

Abelló, Alberto 50
Almquist, Christopher 212
Amaral, Vasco 149
Araújo, João 149
Asprino, Luigi 113
Atzeni, Paolo 445
Augusto, Adriano 313

Benghazi, Kawtar 479
Bex, Floris 553
Bock, Alexander 515
Borgida, Alexander 183
Brinkkemper, Sjaak 463
Britell, Scott 445
Brown, Pieta 164
Bruno, Giorgio 313

Cabot, Jordi 365, 430
Cai, Tengyuan 248
Calì, Andrea 260
Callejas, Zoraida 479
Cánovas Izquierdo, Javier Luis 365
Cardoso, Evellin 347
Casamayor, Juan Carlos 404
Cheng, Hongrong 248
Conforti, Raffaele 313
Cosentino, Valerio 365

Dalpiaz, Fabiano 347, 463
Daniel, Gwendal 430
Delcambre, Lois M.L. 445
Dumas, Marlon 313

Embley, David W. 212
Engiel, P. 233
España, Sergio 496

Frank, Ulrich 515

Gailly, Frederik 83
Ganesan, Jeeva 164
Gangemi, Aldo 113
Genon, Nicolas 505

Ghanavati, Sepideh 553
Ghose, Aditya 302
Giorgini, Paolo 347, 544
Goulão, Miguel 149
Gralha, Catarina 149

Herrero, Victor 50
Heymans, Patrick 505
Hinneburg, Alexander 65
Honiden, Shinichi 488

Ingolfo, S. 233
Ishikawa, Fuyuki 488

Jain, Himanshu 293
Jeusfeld, Manfred A. 198

Karlapalem, Kamalakar 293
Kholkar, Deepali 381
Kim, Tae Woo 212
Kobayashi, Tsutomu 488
Köhler, Henning 164
Kulkarni, Vinay 381
Kuss, Elena 279

La Rosa, Marcello 313, 330
Labunets, Katsiaryna 347
Lara, Paola 122
Le Pallec, Xavier 505
Le, Thuy Ngoc 3
Lee, Mong Li 3
Leopold, Henrik 279
Liddle, Stephen W. 212
Ling, Tok Wang 3
Link, Sebastian 133, 164
Liu, Minjian 415
Lodi, Giorgia 113
Lonsdale, Deryle W. 212
Lucassen, Garm 463
Luo, Jiaqing 248

Maaradji, Abderrahmane 330
Marosin, Diana 553
Martinenghi, Davide 260

Maté, Alejandro 73, 530
Medina-Medina, Nuria 479
Moreira, Ana 149
Mylopoulos, John 73, 233, 347, 530, 544

Nalchigar, Soroosh 35
Neumayr, Bernd 198
Nguyen, Chi Mai 544
Noguera, Manuel 479
Norrie, Moira C. 221
Nuzzolese, Andrea 113

Ostovar, Alireza 330

Paja, Elda 530
Parra, Otto 496
Pastor, Óscar 18, 404, 496
Peroni, Silvio 113
Perrouin, Gilles 505
Presutti, Valentina 113

Radha Krishna, P. 293
Ramani, Rajgopal 35
Regueiro, Manuel A. 269
Reijers, Hajo A. 279
Reinhartz-Berger, Iris 98
Reyes Román, José F. 404
Roblot, Tania K. 133
Romero, Oscar 50
Rosner, Frank 65
Roy, Suman 302

Sánchez, Mario 122
Santiputri, Metta 302
Sebastiani, Roberto 544
Seid, E.A. 233
Silva, Lyrene 149

Stasch, Christoph 269
Stirna, Janis 396
Stuckenschmidt, Heiner 279
Sunkle, Sagar 381
Sunyé, Gerson 430
Szymanek, Jakub 221

Taboada, José A. 269
ter Hofstede, Arthur H.M. 330
Toman, David 183
Torlone, Riccardo 260
Trujillo, Juan 73

Valverde, Francisco 404
van der Aa, Han 279
van der Werf, Jan Martijn E.M. 463
van Dongen, Boudewijn F.V. 330
van Zee, Marc 553
Verdonck, Michael 83
Villalobos, Jorge 122
Viqueira, José R.R. 269

Wand, Yair 98
Wang, Qing 415
Weber, David 221
Weddell, Grant 183
Woo, Carson 530
Woodfield, Scott N. 212

Yu, Eric 35

Zamansky, Anna 98
Zdravkovic, Jelena 396
Zeng, Zhong 3
Zeni, N. 233
Zhou, Shijie 248

562 Author Index

	Preface
	Organizing Committee
	Abstracts of the Keynotes
	Improving the Correctness of Some Database Research Using ORA-Semantics
	Conceptual Modeling of Life: Beyond the Homo Sapiens
	Towards Knowledge-Enabled Society
	Contents
	Keynotes
	Improving the Correctness of Some Database Research Using ORA-Semantics
	1 Introduction
	2 ER Model and ORA-Semantics
	3 Limitations of Relational Model
	3.1 FDs and MVDs
	3.2 Relational Database Design

	4 Limitations of XML Data Model
	4.1 XML DTD and XML Schema
	4.2 ORA-SS Data Model

	5 ORA-Semantics in Data and Schema Integration
	6 ORA-Semantics in Relational Keyword Search
	7 ORA-Semantics in XML Keyword Search
	8 Conclusion
	References

	Conceptual Modeling of Life: Beyond the Homo Sapiens
	Abstract
	1 Introduction
	2 Conceptual Modeling Fundamentals: What Are We Talking About
	2.1 Definitions for Conceptual Modeling/Conceptual Model
	2.2 Foundational Ontological Background

	3 Conceptual Modeling and Life: A Social View and a Biological View
	3.1 The Social Perspective: Conceptual Modeling for Understanding the World That Is Coming
	3.2 The Biological Perspective: Conceptual Modeling for Understanding the Human Genome

	4 Conclusions
	References

	Analytics and Conceptual Modeling
	A Conceptual Modeling Framework for Business Analytics
	1 Introduction
	2 An Illustration
	3 Metamodels
	3.1 Business View
	3.2 Analytics Design View
	3.3 Data Preparation View

	4 Cataloguing Analytics Design Knowledge
	5 Case Studies
	6 Related Work
	7 Conclusion
	References

	NOSQL Design for Analytical Workloads: Variability Matters
	1 Introduction
	2 Co-relational Models
	3 Motivating Use Case
	4 Design Method for Relational and Co-relational
	4.1 Phase I: Conceptual Schema
	4.2 Phase II: Logical Schema
	4.3 Phase III: Physical Schema

	5 Scrutinizing Our Method
	6 Related Work
	7 Conclusions
	References

	Translating Bayesian Networks into Entity Relationship Models
	1 Introduction
	2 Translation of Bayesian Networks in Plate Notation
	2.1 Construction of Atomic Plate Models
	2.2 Translation of APM to ERM
	2.3 Reduction of Translated Entity-Relationship Models

	3 Related Work
	4 Conclusion
	References

	Key Performance Indicator Elicitation and Selection Through Conceptual Modelling
	1 Introduction
	2 Related Work
	3 Eliciting and Selecting Business Indicators
	3.1 Business Modeling and Indicator Metamodel
	3.2 Analysis

	4 Case Study: Performance Indicators for Water Supply Management
	5 Conclusions and Future Work
	References

	Conceptual Modeling and Ontologies
	Insights on the Use and Application of Ontology and Conceptual Modeling Languages in Ontology-Driven Conceptual Modeling
	Abstract
	1 Introduction
	2 Research Methodology
	3 Systematic Mapping Study Results
	3.1 RQ1: Which Kinds of Phenomena Are Considered the Most in ODCM?
	3.2 RQ2: Which Type of Ontologies and CMLs Are Being Used in ODCM?
	3.3 RQ3: How Are Ontologies and CMLs Applied to Represent Phenomena?
	3.4 Additional Results

	4 Discussion
	5 Conclusion
	References

	An Ontological Approach for Identifying Software Variants: Specialization and Template Instantiation
	Abstract
	1 Introduction
	2 Related Work
	3 The Ontological Foundations
	3.1 Things, States, and Behaviors
	3.2 The Formal Framework for Representing Variability Mechanisms

	4 Identifying Variants Through Variability Mechanisms
	4.1 Basic Definitions and Notations
	4.2 Similarity-Based Relations
	4.3 Identifying Specialization and Template Instantiation

	5 Implementation and Preliminary Results
	6 Conclusions and Future Directions
	References

	The Role of Ontology Design Patterns in Linked Data Projects
	1 Introduction
	2 Extending eXtreme Design
	2.1 Approaches to Semantic Web Ontology Reuse
	2.2 Guidelines for Ontology Reuse
	2.3 UML Profile for Representing ODP-Based Ontologies

	3 Applying the XD Extensions in Linked Data Projects
	3.1 Cultural-ON: Cultural ONtologies
	3.2 FOOD: FOod in Linked Open Data

	4 Conclusions
	References

	Bridging the IT and OT Worlds Using an Extensible Modeling Language
	Abstract
	1 Introduction
	2 Enterprise Modeling and IT
	3 Operational Technologies - OT
	4 An ArchiMate Extension for OT
	4.1 Operational Layer
	4.2 Operational Application Extension Layer
	4.3 Operational Infrastructure Layer
	4.4 Relations with the IT and Business Dimensions

	5 Conclusion
	References

	Requirements Engineering
	Possibilistic Cardinality Constraints and Functional Dependencies
	1 Introduction
	2 Related Work
	3 Cardinality Constraints and Functional Dependencies
	4 Computational Problems and Their Solutions
	4.1 Using -Cuts
	4.2 Axiomatic Characterization
	4.3 Algorithmic Characterization

	5 Applications
	6 Armstrong Instances and Representations
	7 Conclusion and Future Work
	References

	Exploring Views for Goal-Oriented Requirements Comprehension
	1 Introduction
	2 Background
	3 Views for Requirements Exploration
	3.1 Conceptual Model
	3.2 Exploring i*
	3.3 Implementation
	3.4 Discussion and Challenges

	4 Related Work
	5 Conclusions and Future Work
	References

	Keys with Probabilistic Intervals
	1 Introduction
	2 Related Work
	3 Keys with Probabilistic Intervals
	4 Reasoning Tools
	4.1 Computational Problems
	4.2 Keys with Upper Bounds
	4.3 Keys with Probabilistic Intervals

	5 Tools for Acquiring Probabilistic Key Intervals
	5.1 Summarizing Abstract Sets of P-Keys as Armstrong PC-bases
	5.2 Discovery of P-Keys from Collections of PC-tables

	6 Experiments
	7 Conclusion and Future Work
	References

	Advanced Conceptual Modeling
	On Referring Expressions in Information Systems Derived from Conceptual Modelling
	1 Introduction
	2 Abstract Relational Databases
	3 Managing Identity
	4 Concrete Relational Databases and SQLpath
	5 Summary and Future Work
	References

	DeepTelos: Multi-level Modeling with Most General Instances
	1 Introduction
	1.1 Running Example

	2 Telos
	3 Most General Instances
	3.1 Linguistic Use of Most General Instances
	3.2 Ontological Use of Most General Instances

	4 Implementation
	5 Discussion and Related Work
	6 Conclusions
	References

	Pragmatic Quality Assessment for Automatically Extracted Data
	1 Introduction
	2 Application System
	2.1 Conceptualization
	2.2 Hard Constraints
	2.3 Soft Constraints

	3 Experimental Evaluation
	4 Concluding Remarks
	References

	UnifiedOCL: Achieving System-Wide Constraint Representations
	1 Introduction
	2 Background
	3 Approach
	4 Unified Constraint Representations
	5 Constraint Translations
	6 Evaluation
	7 Conclusions
	References

	Semantic Annotations
	Building Large Models of Law with NómosT
	1 Introduction
	2 Research Baseline
	3 NómosT
	3.1 Generation Process

	4 Evaluation of NómosT
	4.1 Italian Law Experiment
	4.2 German Law Experiment

	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

	An Efficient and Simple Graph Model for Scientific Article Cold Start Recommendation
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Similarity Computation
	3.2 Graph Construction
	3.3 Random Walk with Restart Based Recommendation

	4 Experiments
	4.1 Dataset
	4.2 Evaluation Scheme
	4.3 Baselines and Experimental Settings
	4.4 Computational Cost
	4.5 Effects of Tags' Information
	4.6 Further Analysis of User Networks and Article Relations

	5 Conclusions
	References

	Keyword Queries over the Deep Web
	1 Introduction
	2 Preliminaries and Problem Definition
	3 Detecting Non-answerable Queries
	3.1 Compatible Queries
	3.2 Answerable Queries

	4 Conclusions and Future Work
	References

	Sensor Observation Service Semantic Mediation: Generic Wrappers for In-Situ and Remote Devices
	1 Introduction
	2 Related Work
	3 In-Situ Sensor Observation Data Wrapper
	4 Remote Sensor Observation Data Wrapper
	5 Conclusion
	References

	Modeling and Executing Business Processes
	Probabilistic Evaluation of Process Model Matching Techniques
	1 Introduction
	2 Problem Illustration
	3 Probabilistic Evaluation of Process Model Matching
	4 Evaluation Experiments
	4.1 Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Context-Aware Workflow Execution Engine for E-Contract Enactment
	Abstract
	1 Introduction
	2 Context-Aware E-Contract Enactment Framework
	3 Context-Aware Workflow Execution Engine
	4 E-Government Contract – Tariff Payment
	5 Conclusions
	References

	Annotating and Mining for Effects of Processes
	1 Introduction
	2 A Semantic Annotation of Processes
	3 Effect Log Mining
	4 Conclusion
	References

	Business Process Management and Modeling
	Automated Discovery of Structured Process Models: Discover Structured vs. Discover and Structure
	1 Introduction
	2 Background and Related Work
	2.1 Automated Process Discovery Algorithms
	2.2 Quality Dimensions in Automated Process Discovery
	2.3 Structuring Techniques

	3 Approach
	3.1 Discovery and Cleaning
	3.2 Structuring

	4 Evaluation
	4.1 Datasets
	4.2 Results
	4.3 Threats to Validity

	5 Conclusion
	References

	Detecting Drift from Event Streams of Unpredictable Business Processes
	1 Introduction
	2 Related Work
	3 Drift Detection Method
	3.1 Intra-trace vs. Inter-trace
	3.2 Event Stream and + Relations
	3.3 Statistical Testing over Event Streams
	3.4 Adaptive Window

	4 Evaluation on Synthetic Logs
	4.1 Evaluation Design
	4.2 Execution Times
	4.3 Impact of Oscillation Filter
	4.4 Inter-drift Distance
	4.5 Comparison with Baseline per Process Change Pattern
	4.6 Comparison with Baseline over Different Log Variability Rates

	5 Evaluation on Real-Life Log
	6 Conclusion
	References

	Modeling Structured and Unstructured Processes: An Empirical Evaluation
	1 Introduction
	2 Baseline
	2.1 The Spectrum of Work in BPM
	2.2 Process Modeling Languages

	3 The Experiment Process
	3.1 Experiment Scoping and Planning
	3.2 Experiment Operation
	3.3 Experiment Analysis and Interpretation
	3.4 Discussion

	4 Conclusion
	References

	Applications and Experiments of Conceptual Modeling
	MetaScience: An Holistic Approach for Research Modeling
	1 Introduction
	2 Approach
	2.1 Conceptual Schema
	2.2 Database Schema

	3 Data Collection
	3.1 DBLP
	3.2 Conference Websites
	3.3 Digital Libraries
	3.4 CORE Rankings Portal
	3.5 Incremental Update Process

	4 Data Analytics
	4.1 General
	4.2 Authorship Analysis
	4.3 Program Committee Analysis
	4.4 Topics Analysis

	5 Tool Support
	6 Related Work
	7 Conclusion
	References

	Comparison and Synergy Between Fact-Orientation and Relation Extraction for Domain Model Generation in Regulatory Compliance
	1 Introduction
	2 Related Work and Technical Overview
	2.1 Complexity of Legal Texts
	2.2 Current Approaches to Rule Extraction/Authoring
	2.3 Technical Overview

	3 Fact-Orientation and Relation Extraction
	3.1 Role of Fact-Orientation in Domain Model Generation
	3.2 Role of Relation Extraction in Domain Model Generation
	3.3 Our Approach for Domain Model Generation

	4 Regulatory Rule Identification
	5 Results and Discussion
	6 Future Work and Conclusion
	References

	Development of a Modeling Language for Capability Driven Development: Experiences from Meta-modeling
	Abstract
	1 Introduction
	2 Background to Method Development
	3 Background to Capability Driven Development
	4 CDD Meta-model Development
	5 Summary of Lessons Learned
	6 Concluding Remarks
	References

	Applying Conceptual Modeling to Better Understand the Human Genome
	Abstract
	1 Introduction
	2 An Initial Conceptual Schema for the Human Genome: CSHG v1
	2.1 The Gene-Mutation View
	2.2 The Genome View
	2.3 The Transcription View

	3 From v1 to v2: CSHG v2
	3.1 Removing Individual Genomes Data Bank
	3.2 The Chromosome Elements as Basic Modeling Units
	3.3 Modeling SNPs

	4 Conclusions and Future Work
	Acknowledgements
	References

	Schema Mapping
	Data Analytics: From Conceptual Modelling to Logical Representation
	1 Introduction
	2 Modelling Data Analytics
	3 A Query Language for Data Analytics
	3.1 Discussion

	4 Data Analytics Applications
	4.1 ACM Digital Library
	4.2 Twitter
	4.3 Stack Overflow

	5 Experiments
	6 Conclusions
	References

	UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases
	1 Introduction
	2 UMLtoGraphDB Approach
	3 Mapping UML Class Diagram to GraphDB
	3.1 GraphDB Metamodel
	3.2 Class2GraphDB Transformation

	4 Translating OCL Expressions to Gremlin
	4.1 The Gremlin Query Language
	4.2 OCL2Gremlin Transformation

	5 Code Generation
	5.1 Blueprints API
	5.2 Graph2Code Transformation

	6 Tool Support
	7 Related Work
	8 Conclusion and Future Work
	References

	Facilitating Data-Metadata Transformation by Domain Specialists in a Web-Based Information System Using Simple Correspondences
	1 Introduction
	2 Background
	3 Unpivot
	3.1 Case Study: Ensemble and Faceted Browse

	4 Pivot
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Conceptual Modeling Guidance
	Visualizing User Story Requirements at Multiple Granularity Levels via Semantic Relatedness
	1 Introduction
	2 Background
	2.1 From User Stories to Conceptual Models
	2.2 Novel Approaches to Semantic Similarity
	2.3 Clustering Algorithms

	3 Visualization Method for User Stories
	3.1 Overview Generation
	3.2 Zooming
	3.3 Filtering

	4 Prototype Demonstration
	4.1 Case 1: CMSCompany
	4.2 Case 2: WebCompany
	4.3 Case 3: SCMCompany

	5 Related Literature
	5.1 RE Visualization
	5.2 Conceptual Modeling Clustering
	5.3 Extracting Conceptual Models from Requirements

	6 Discussion, Conclusion and Future Work
	References

	User Progress Modelling in Counselling Systems: An Application to an Adaptive Virtual Coach
	1 Introduction
	2 A Metamodel to Represent Progression in Counselling Systems
	3 Case Study: Designing a Virtual Coach for Active Ageing
	4 Conclusions and Future Work
	References

	Stepwise Refinement of Software Development Problem Analysis
	1 Introduction
	2 Methods
	2.1 Overview
	2.2 Method 1: Abstraction of Problem Diagrams
	2.3 Method 2: Refinement of Arguments

	3 Preliminary Experiments
	4 Related Work and Conclusion
	References

	Tailoring User Interfaces to Include Gesture-Based Interaction with gestUI
	Abstract
	1 Introduction
	2 The Importance of User-Based Tailoring: Related Work
	3 Basic Capabilities of gestUI
	4 Empowering Users with New gestUI Features
	5 Implementing the New Features
	6 Validating gestUI in a Technical Action Research
	7 Discussion
	8 Conclusions and Future Work
	Acknowledgments
	References

	Unlocking Visual Understanding: Towards Effective Keys for Diagrams
	1 Keys in Visual Languages
	2 What Should Be in a Key?
	3 Method
	4 Running Example: SuperElectronicMarket
	5 Discussion
	References

	Goal Modeling
	MEMO GoalML: A Context-Enriched Modeling Language to Support Reflective Organizational Goal Planning and Decision Processes
	1 Introduction
	2 Theoretical Background, Aims, and Requirements
	2.1 Aims and Assumptions: Theoretical Considerations
	2.2 Specific Requirements

	3 Context: Multi-perspective Enterprise Modelling
	4 Language Specification
	4.1 Design Process, Guidelines, and Design Decisions
	4.2 Final Language Specification

	5 Illustration of an Application Case
	6 Discussion and Related Work
	7 Conclusions
	References

	Can Goal Reasoning Techniques Be Used for Strategic Decision-Making?
	1 Introduction
	2 The Royal Caribbean Cruise Ltd Case
	3 Related Work
	4 Goal-Modeling and Analysis Techniques Selection
	5 The Study in Practice
	5.1 Modeling and Reasoning with i*
	5.2 BIM Modeling and Analysis

	6 Discussion
	References

	Requirements Evolution and Evolution Requirements with Constrained Goal Models
	1 Introduction
	2 Background: Constrained Goal Models
	3 Requirements Evolution and Evolution Requirements
	References

	RationalGRL: A Framework for Rationalizing Goal Models Using Argument Diagrams
	1 Introduction
	2 The RationalGRL Framework
	3 Evaluation
	3.1 Case Study Description
	3.2 Modeling the Case Study in RationalGRL
	3.3 Evaluation with Schiphol Group Enterprise Architects

	4 Related Work
	5 Conclusions and Future Work
	References

	Author Index

