
Chapter 5
Finite Volume Method—
Convection-Diffusion Problems

Abstract This chapter is an extension of the previous one on diffusion-convection.
The treatment is again using one dimensional finite volume method and closed form
solutions.

Keywords Convection-diffusion � Finite volume method

Fluid flow plays significant role in transporting heat and diffusing the same in the
flow (also to the surrounding solid—heat transfer in both the liquid and solid
simultaneously, called conjugate heat transfer; not considered here). The steady
convection-diffusion problem (neglecting time dependent terms) can be obtained
from the transport equation (4.7) for a general property /

divðq/uÞ ¼ divðC grad /Þþ Su ð5:1Þ

5.1 Steady State One-Dimensional Convection
and Diffusion

Let us consider the case with no source terms and confining to one-dimensional
problems as in Chap. 4, Eq. (5.1) is

d
dx

ðqu/Þ ¼ d
dx

ðC d/
dx

Þ ð5:2Þ

The continuity equation from (3.8) should also be satisfied, which for the
one-dimensional steady flow reduces to

dðquÞ
dx

¼ 0 ð5:3Þ
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Figure 4.2 gives the one-dimensional control volume around node P, with the
neighboring nodes W to the west and E to the east as shown in Fig. 5.1.

The right-hand side of Eq. (5.2) represents diffusive terms and the left-hand side
the convective terms. Upon integration over the control volume, Eqs. (5.2) and
(5.3) give

quA/ð Þe� quA/ð Þw¼ CA
d/
dx

� �
e
� CA

d/
dx

� �
w

ð5:4Þ

quAð Þe� quAð Þw¼ 0 ð5:5Þ

In the above qu is the convective mass flux per unit area F and C
dx is the diffusion

conductance D at the faces of the cell, i.e.,

F ¼ qu

D ¼ C
dx

ð5:6Þ

The values of F and D at the west face w and east face e are

Fw ¼ ðquÞw
Dw ¼ C

dx

� �
w

Fe ¼ ðquÞe
De ¼ C

dx

� �
e

ð5:7Þ

For a uniform cell along the length, Ae = Aw = A, Eqs. (5.4) and (5.5) reduce to

qu/ð Þe� qu/ð Þw ¼ C
d/
dx

� �
e
� C

d/
dx

� �
w
)

Fe/e � Fw/w ¼ De /E � /Pð Þ � DW /P � /Wð Þ
ð5:8Þ
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Fig. 5.1 One dimensional
control volume around node P

100 5 Finite Volume Method—Convection-Diffusion Problems

http://dx.doi.org/10.1007/978-3-319-46382-7_4


quð Þe� quð Þw ¼ 0 )
Fe � Fw ¼ 0

ð5:9Þ

The diffusion problem in Eq. (4.9) for a uniform bar is given by an ordinary
second order differential equation and is solvable to determine the two constants of
integration by using the boundary values. In the case of convection it is a coupled
problem with the velocity u and the transport property / as given in Eqs. (5.2) and
(5.3). If we are able to determine u in some manner we still need to calculate the
transport property /e and /w at the faces e and w, as required in (5.8). The simplest
thing is to adapt a linear variation of the transport property between W and E of the
cell in Fig. 5.1. We can then write the transport property values at e and w in terms
of the nodal values at W, P and E as

/e ¼
1
2

/P þ/Eð Þ

/w ¼ 1
2

/W þ/Pð Þ
ð5:10Þ

Equation (5.8) is now written for the nodal values of the transport property as

1
2
Fe /P þ/Eð Þ � 1

2
Fw /W þ/Pð Þ ¼ De /E � /Pð Þ � DW /P � /Wð Þ ð5:11Þ

Rearranging the above in terms of nodal values of transport property

/p Dw � 1
2Fw

� �þ De þ 1
2Fe

� �� � ¼ /w Dw þ 1
2Fw

� �þ/E De � 1
2Fe

� � )
/p Dw þ 1

2Fw
� �þ De � 1

2Fe
� �þ Fe � Fwð Þ� � ¼ /w Dw þ 1

2Fw
� �þ/E De � 1

2Fe
� �

ð5:12Þ

Rewriting

aP/p ¼ aW/W þ aE/E
where
aW ¼ Dw þ 1

2Fw
� �

aE ¼ De � 1
2Fe

� �
aP ¼ aW þ aE þ Fe � Fwð Þ

ð5:13Þ

The difference between the pure diffusion problem given in (4.17) and the above
convection-diffusion problem of (5.13) is the presence of additional terms con-
taining the convective mass flux per unit area F = qu.
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5.1.1 Exact Solution for Convection-Diffusion Problem

To satisfy Eq. (5.3), we notice u is constant, therefore Eq. (5.2) becomes

d
dx ðqu/Þ ¼ d

dx ðC d/
dxÞ )

d2/
dx2 � qu

C
d/
dx ¼ 0

ð5:14Þ

The auxiliary equation is

D2 � qu
C

D
� 	

/ ¼ 0 ð5:15Þ

Then

m2 � qu
C m

� � ¼ 0 )
m ¼ 0 and m ¼ qu

C
ð5:16Þ

)/ ¼ AþBe
qu
C x ð5:17Þ

Let /0 and /L be prescribed at x = 0 and x = L, then

AþB ¼ /0

AþBe
qu
CL ¼ /L

ð5:18Þ

i.e.,

Aþ /0 � Að Þequ
CL ¼ /L ) A 1� e

qu
CL

� � ¼ /L � /0e
qu
CL

)A ¼ /L�/0e
qu
C L

1�e
qu
C L

� � ð5:19Þ

B ¼ /0 �
/L � /0e

qu
CL

1� e
qu
CL

� � ) /0 � /L

1� e
qu
CL

� � ð5:20Þ

Therefore

/ ¼ /L�/0e
qu
C L

1�e
qu
C L

� � þ /0�/L

1�e
qu
C L

� � equ
C x )

/ 1� e
qu
CL

� � ¼ /0 �e
qu
CL þ e

qu
C x

� �þ/L 1� e
qu
C x

� � ð5:21Þ

/ 1� e
qu
CL

� � ¼ /0 �e
qu
CL � 1þ 1þ e

qu
C x

� �þ/L 1� e
qu
C x

� �
/�/0ð Þ
/L�/0ð Þ ¼

e
qu
C x�1

� �
e
qu
C L�1

� � ð5:22Þ
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5.1.2 Finite Volume Method for Convection-Diffusion
Problem

Consider the one dimensional domain in Fig. 5.2 80 cm long in which the property
/ is transported. /0 = 1 at x = 0 and /L = 0 at x = 0.8 m. q = 1 kg/m3,
u = 0.1 m/s and C = 0.1 kg/m/s; i.e., qu

C ¼ 1m�1.
The domain is discretized into 4 cells as shown with 4 nodes 1, 2, 3 and 4 with

dx = 0.2 m. From Eq. (5.7)

F ¼ qu ¼ 0:1
D ¼ C

dx

� � ¼ 0:1
0:2 ¼ 0:5

First, we notice that Eq. (5.13) is valid for mid nodes, 2 and 3. Therefore

aW2;3 ¼ Dþ 1
2
F

� �
¼ 0:55

aE2;3 ¼ D� 1
2
F

� �
¼ 0:45

aP2;3 ¼ aW þ aE þ Fe � Fwð Þ ¼ 1:0

ð5:23Þ

Therefore for cells 2 and 3

aP/p ¼ aW/W þ aE/E

/2 ¼ 0:55/1 þ 0:45/3

/3 ¼ 0:55/2 þ 0:45/4

ð5:24Þ

For end nodes 1 and 4, we have to develop appropriate relations. For cell 1,
/w = /A = 1, we make an approximation in the convective flux term with DA ¼
2C
dx ¼ 2D at this boundary in Eq. (5.11) as

A = 1 
B = 0 1 2 3 4 

x = 20 cm 

One D Cell at node point 2 

Fig. 5.2 One dimensional convection-diffusion problem
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1
2
Fe /P þ/Eð Þ � 1

2
Fw /W þ/Pð Þ ¼ De /E � /Pð Þ � DW /P � /Wð Þ )

1
2
Fe /P þ/Eð Þ � FA/A ¼ De /E � /Pð Þ � DA /P � /Að Þ

0:05 /1 þ/2ð Þ � 0:1 ¼ 0:5 /2 � /1ð Þ � /1 � 1ð Þ ¼ 0:5/2 � 1:5/1 þ 1

1:55/1 ¼ 0:45/2 þ 1:1

ð5:25Þ

Similarly for cell 4 with DB ¼ 2C
dx ¼ 2D

1
2
Fe /P þ/Eð Þ � 1

2
Fw /W þ/Pð Þ ¼ De /E � /Pð Þ � Dw /P � /Wð Þ )

FB/B � 1
2Fw /W þ/Pð Þ ¼ DB /B � /Pð Þ � Dw /P � /Wð Þ

0� 0:05 /3 þ/4ð Þ ¼ �/4 � 0:5 /4 � /3ð Þ ¼ �1:5/4 þ 0:5/3

1:45/4 ¼ 0:55/3 ) /4 ¼ 0:37931/3

ð5:26Þ

Using the above result in the third equation of (5.24)

/3 ¼ 0:6632/2

Substituting the above in the second equation of (5.24)

/2 ¼ 0:784/1

Now substitute the above in (5.25)

1:55/1 ¼ 0:45/2 þ 1:1 ) /1 ¼ 0:9188

Then

/1 ¼ 0:9188

/2 ¼ 0:7203

/3 ¼ 0:4777

/4 ¼ 0:1812

ð5:27Þ

The exact solution in (5.22) is

/ ¼ 1� ex � 1ð Þ
e0:8 � 1ð Þ ) 1:815966� 0:815966ex ð5:28Þ

Finite Volume Method solution Eq. (5.27) is compared with the Exact Solution
in (5.28) in Table 5.1 and Fig. 5.3. We note that the finite volume method agrees
closely with the exact solution.
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Exercises 5

5:1 Consider Eqs. (4.5) and (4.6) to derive a single general transport equation.
5:2 Simplify the general transport equation for the steady state case without any

viscous effects and without any source.
5:3 Explain convection and diffusion by imagining a / to represent some dye

made up of little particles suspended in the fluid. Discuss the convective term
as transport of this /, say temperature, due to the fluid motion and derive the
corresponding governing Eq.

5:4 Derive a numerical solution using one dimensional finite volume method for
the problem of diffusion (temperature) in a flow. You can also give a closed
for solution for a problem with just one cell.

5:5 In the diffusion equation if / represents a dye that is transported while dif-

fusing show that the coefficient of diffusion C is kg
ms. A 1 m long pipe carries

water at 10 cm/s. One unit of dye at x = 0 that vanishes at the end of 1 m. The
coefficient of diffusivity can be taken as 0.1 kg/m/s. Make a plot of the
transported dye as a function of length using three cells of the pipe.

5:6 Compare the result obtained in 5.5 from an exact solution.

Fig. 5.3 Comparison of finite
volume method with exact
solution

Table 5.1 Comparison of
finite volume solution with
exact values

Distance m FV solution Exact

0 1 1

0.1 0.9188 0.9141841

0.3 0.7203 0.7145271

0.5 0.4777 0.4706655

0.7 0.1812 0.1728123

0.8 0 0
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