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Abstract. A partial learner in the limit [16], given a representation of
the target language (a text), outputs a sequence of conjectures, where
one correct conjecture appears infinitely many times and other conjec-
tures each appear a finite number of times. Following [5,14], we define
intrinsic complexity of partial learning, based on reducibilities between
learning problems. Although the whole class of recursively enumerable
languages is partially learnable (see [16]) and, thus, belongs to the com-
plete learnability degree, we discovered a rich structure of incomplete
degrees, reflecting different types of learning strategies (based, to some
extent, on topological structures of the target language classes). We also
exhibit examples of complete classes that illuminate the character of the
strategies for partial learning of the hardest classes.

1 Introduction

In his seminal paper [8], E.M. Gold introduced the framework for algorith-
mic learning of languages in the limit from their representations (texts), which
became the standard for exploring learnability of languages in the limit (see,
for example [16]). In this model (we will refer to it as TxtEx), a learner out-
puts an infinite sequence of conjectures stabilizing on a correct grammar for
the target language. However, Gold himself was the first one to notice that the
TxtEx model has a strong limitation: whereas the class of all finite languages
is easily learnable within this framework, no class L containing just one infinite
language and all its finite subsets is TxtEx-learnable. In particular, the class of
all regular languages cannot be learnt in the limit just from positive data. To
capture the extent to which the aforementioned class L would still be learnable
from positive data, Osherson, Stob and Weinstein [16] introduced the concept
of partial learning in the limit: a learner outputs an infinite sequence of conjec-
tures, where one correct grammar of the target language occurs infinitely many
times, whereas all other conjectures occur at most a finite number of times. The
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aforementioned class L containing an infinite recursive language L and all its
finite subsets is easily learnable in this model by a simple strategy that, every
time when a new datum appears on the input, conjectures a grammar for L,
and conjectures some standard code for the input seen so far, otherwise. Yet,
as it was noted in [16], partial learning, without any other constraints, is very
powerful: the whole class of all recursively enumerable languages turns out to
be partially learnable — albeit by a much more complex strategy than the one
trivially learning the aforementioned class L.

Partial learning, under various natural constraints, has attracted a lot of
attention recently (see, for example, [6,7,9,10,15]). Though partial learning can
be done for the whole class of recursively enumerable sets, partial learning with
constraints gives interesting results. Although partial learning does not seem to
be as natural as Gold’s classical model of inductive inference, one can hope that
partial learning strategies for important classes of languages (like the class of
regular languages) not learnable within Gold’s framework can shed new light on
the general problem of learnability of such classes (and, perhaps, their impor-
tant subclasses) from positive data and, possibly, additional information. For
example, if a relatively simple partial learning strategy for the class of regu-
lar languages from positive data is found, one can try to look at what kind of
reasonable additional information could be sufficient for converting such partial
strategy to a more realistic learning strategy for this class (perhaps, it could be
different from Angluin’s classical strategy for learning regular languages from
membership queries and counterexamples to conjectures [2]). We hope that our
paper can be a start for this line of research.

One of the potential issues is to understand exactly how partial learning hap-
pens and what is involved in it, as, at no particular instant, one can say what is
the current “planned” hypothesis of the learner. To understand more about par-
tial learning, we consider reductions between different learning problems (classes
of languages). Reductions gave an interesting structure in explanatory learning
(see [4,5,12–14]), and we hope to be able to understand much more about partial
learning using reductions between different classes, which would, in some sense,
highlight the ease/difficulty of partial learning of various subsets of the full class
of all recursively enumerable languages.

Thus, our main goal in the current research is to find natural, yet non-TxtEx-
learnable, classes (in particular, indexed classes [1], with decidable membership
problem) and — whenever it would be possible — corresponding natural partial
learning strategies that would be simpler than that for the class of all recursively
enumerable languages. The concept of reducibility between partial learnability
problems that we introduce in this paper is based on similar models defined
first for learning in the limit of classes of recursive functions in [5] and then,
for TxtEx-learnability in [14] (see also [4] for a related but different concept of
complexity of learning).

A partial learnability problem (a class of languages L) is reducible to another
partial learning problem (a class of languages L′) if there exist two computable
operators, Θ and Ψ , such that (a) Θ translates every text for a language in L to a
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text for a language in L′ and (b) Ψ translates every sequence of conjectures where
a grammar for a language L′ ∈ L′ occurs infinitely many times and all other
conjectures occur at most a finite number of times (we will call such sequences
of conjectures admissible) back to an admissible sequence of conjectures for the
language L ∈ L such that some text for L is translated by Θ to a text for
L′. We make a distinction between strong reducibility, where Θ translates every
text for the same language in L to a text for the same language in L′ and weak
reducibility, where Θ may translate different texts of the same language L ∈ L to
texts of different languages in L′. Based on this concept of reducibility, one can
naturally define degrees of learnability and the complete degree (which contains
the class of all recursively enumerable languages).

Firstly, we found two relatively simple and transparent classes that are com-
plete for weak and, respectively, strong reducibilities — these classes illuminate
the character of the partial learning strategies for the hardest problems. We also
show (Theorem 13) that the class of all recursive languages is not strongly com-
plete. In particular, it means that all indexed classes, including the class of all
regular languages, are not strongly complete.

A major accomplishment of our research is the discovery of a rich structure of
incomplete classes under the degree of the class of all regular languages — based
on a number of classes representing certain natural partial learning strategies.
In particular, we define the class iCOINIT, which contains an infinite chain
L1, L2, . . . of infinite recursive subsets of a recursive infinite language, and all
their finite subsets, where, for every i, Li+1 ⊂ Li. The natural strategy to learn
this class, when choosing an infinite language as its conjecture, immediately
finds out an upper bound on the possible number of infinite languages that may
be conjectured in the future. We also define the counterpart of iCOINIT, the
class iINIT, which also contains an enumerable, but indefinitely growing chain
of infinite recursive languages and all their finite subsets. The natural learning
strategy for iINIT, when choosing an infinite language as its conjecture, also
faces a bound on the number of infinite languages that can be conjectured in the
future, but unlike the case of iCOINIT, this bound is not known to the learner.
We show that iCOINIT is weakly reducible to iINIT (Theorem 15), yet it is
not strongly reducible to iINIT (Theorem 16); also, iINIT is not even weakly
reducible to iCOINIT (Theorem 17).

We also introduce the class iRINIT, which contains an infinitely growing
chain of recursive languages and all their finite subsets, yet, unlike the case
of iINIT, the enumeration of members of the chain is based on the set of all
rational numbers between 0 and 1. In particular, for any two infinite languages
L,L′ ∈ iRINIT, L ⊂ L′, there is another language in iRINIT between L
and L′. We show that iRINIT is not weakly complete (Corollary 19), yet all
variants and generalizations formed using iINIT and iCOINIT (as defined in
this paper) are strongly reducible to iRINIT (Theorem 26), and iRINIT is
strongly reducible to none of them (Theorem26). On the other hand, iRINIT
itself turns out to be weakly reducible to iINIT (Theorem 22). iRINIT is also
strictly under the degree of all regular languages (Theorems 18 and 24).
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We also define a variant iCOINITk of iCOINIT, which, in addition to every
infinite language L in the chain, contains also all languages extending L by at
most k additional elements. A natural strategy learning an infinite target lan-
guage L ∈ iCOINITk, when a new datum appears on the input, first conjectures
an infinite language M ∈ iCOINIT, and when up to k new elements x /∈ M
appear on the input, conjectures appropriate finite variants of M , before moving
to the next M ′ in the chain when the number of new data not in M exceeds
k. Similarly the variant iINITk is defined for iINIT. Interestingly, though, all
classes iCOINITk, k ≥ 1 turn out to be strongly reducible to iCOINIT1 and,
respectively, all classes iINITk, k ≥ 1 are strongly reducible to iINIT1. Yet,
surprisingly, iINIT1 is not strongly reducible to iINIT and iCOINIT1 is not
even weakly reducible to iCOINIT (see Theorem 25). All these classes, though,
are weakly reducible to iINIT (as iRINIT is weakly reducible to iINIT, see
above).

Lastly, based on similar multidimensional classes of languages defined in [13],
one can define classes of “multidimensional” languages, where partial learning
of one “dimension” aids in learning next “dimension”. For example, one can,
using cylindrification, define the class (iINIT, iCOINIT), where the conjecture
that is output infinitely many times for the first “dimension” can be used to
partially learn the second “dimension”. We have extended this idea to any arbi-
trary sequence Q of iINIT and iCOINIT and have shown that if a sequence
Q is a proper subsequence of Q′, then the class corresponding to Q is strongly
reducible to the one corresponding to Q′, but not vice versa. Due to space con-
straints, results on multi-dimensional languages are not described in this paper
but will be given in the full paper.

Our result on the incompleteness of any indexed class suggests that there
may exist natural, relatively simple, strategies that can partially learn an indexed
class. This can shed a new light on the potential of learnability of many important
classes of languages from positive data.

2 Preliminaries

Any unexplained recursion theoretic notation is from [17]. N denotes the set of
natural numbers {0, 1, 2, . . .}. A language is any subset of N . We let ∅,⊆,⊂,⊇,⊃
denote empty set, subset, proper subset, superset and proper superset respec-
tively. AΔB denotes the symmetric difference of sets A and B, that is AΔB =
(A − B) ∪ (B − A). L = N − L denotes the complement of L. We let card(S)
denote the cardinality of a set S. For S ⊆ N , let max(S),min(S) respectively
denote maximum and minimum of a set S, where min(∅) = ∞ and max(∅) = 0.
We sometimes use sets of rational numbers. In this case, we use max(S) to denote
the least upper bound of the rational numbers in the set S.

A finite set S ⊆ N can be coded as code(S) =
∑

x∈S 2x. Di denotes the finite
set A with code(A) = i.

ϕ denotes a fixed standard acceptable numbering [17]. ϕi denotes the i-th
program in the acceptable numbering ϕ. Let Wi = domain(ϕi). Thus, Wi is
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the language/set enumerated by the i-th grammar in the acceptable program-
ming system W0,W1, . . .. Let Φ be a Blum complexity measure [3] for the ϕ
programming system. Let

ϕi,s(x) =

{
ϕi(x), if x < s and Φi(x) < s;
↑, otherwise

Let Wi,s = domain(ϕi,s). Intuitively, Wi,s+1 − Wi,s can be thought of as the
elements enumerated by Wi in (s + 1)-th step. For purposes of this paper, one
can assume without loss of generality that Wi,s+1 − Wi,s contains at most one
element.

R denotes the class of all recursive languages. E denotes the class of all
recursively enumerable sets.

An indexed family is a family (Li)i∈N of languages such that there exists a
recursive function f uniformly deciding the membership question for Li, that is,
for all i, x, f(i, x) = 1 iff x ∈ Li.

Let 〈·, ·〉 denote a fixed recursive bijection from N × N to N . 〈·, ·〉
can be extended to pairing of n-ary tuples by taking 〈x1, x2, . . . , xn〉 =
〈x1, 〈x2, . . . , xn〉〉. For notation convenience we let 〈x〉 = x. Let
πn

i (〈x1, x2, . . . , xn〉) = xi, where we drop the superscript in case n = 2.
Let pad(·, ·) be a 1–1 recursive function, increasing in both its arguments,

such that for all i and j, ϕpad(i,j) = ϕi. Note that there exists such a padding
function pad (see [17]).

RAT0,1 denotes the set of rational numbers between 0 and 1 (both inclusive).
Let ntor be a recursive bijection from N to RAT0,1. Let rton be the inverse of
ntor. Left r.e. real means a real number which is approximable from below using
rational numbers enumerated by a recursive procedure. That is, a real number
r is called a left r.e. real iff there exists a recursive function f mapping N to the
set of rational numbers such that: for all i, f(i) ≤ f(i + 1), and limi∈N f(i) = r.

We now give some concepts from language learning theory. Let # be a special
pause symbol. A finite sequence σ is a mapping from an initial segment of N
to (N ∪ {#}). Let Λ denote the empty sequence. SEQ denotes the set of all
finite sequences. A text is a mapping from N to (N ∪ {#}). Let |σ| denote the
length of sequence σ. Let T [n] denote the initial segment of length n of the text
T . For n ≤ |σ|, σ[n] denotes the initial segment of length n of the sequence
σ. The concatenation of sequences σ and τ is denoted by σ � τ . The content
of T , denoted content(T ), is the set of the numbers in the range of T , that is,
{T (n) : n ∈ N} − {#}. Let content(σ) be defined similarly. We say that T is a
text for a language L iff content(T ) = L.

A language learning machine is a partial computable function which maps
SEQ to N . We let M, with or without decorations, range over learning machines.

Definition 1. [16]

(a) M Part-learns L iff for all texts T for L,
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(i) for all n, M is defined on T [n],
(ii) there exists a unique p such that p = M(T [n]) for infinitely many n,

and
(iii) for p as in (ii) above, Wp = L.

(b) M Part-learns a class L iff it Part-learns each L ∈ L.
(c) Part = {L : (∃M)[M Part-learns L}.

It can be shown that E is Part-learnable [16]. If M Part-learns a class L
then we say that M witnesses Part-learnability of L. If an infinite sequence
p0p1 . . . satisfies the following two requirements:

(i) there exists a unique p such that p = pn for infinitely many n, and
(ii) for p as in (i) above, Wp = L,

then, we say that the sequence p0p1 . . . witnesses Part-learnability of L.
An enumeration operator (or just operator) Θ is an algorithm mapping from

SEQ to SEQ such that for all σ, τ ∈ SEQ, if σ ⊆ τ , then Θ(σ) ⊆ Θ(τ). We let
Θ(T ) =

⋃
n∈N Θ(T [n]).

We further assume that limn→∞ |Θ(T [n])| = ∞, that is texts are mapped to
texts by the operator Θ. Note that any operator Θ can be modified to satisfy
the above property without violating the content of its output on infinite texts.

We will also use Θ as an operator on languages (rather than individual texts
representing them, as above). Note that, in general, for different texts T, T ′ of a
language L, Θ may produce texts Θ(T ) and Θ(T ′) of different languages. Thus,
we define Θ(L) as a collection of languages: Θ(L) = {content(Θ(T )) : T is a
text for L}, and, accordingly, the image Θ(L) =

⋃
L∈L Θ(L). In the special case

(important for our strong reductions, defined below), when Θ(L) is a singleton
{L′}, we abuse notation and say simply Θ(L) = L′. (Note that if Θ(L) = {L′},
then L′ =

⋃
σ:content(σ)⊆L content(Θ(σ))).

We let Θ and Ψ range over operators, where for ease of notation, we assume
that for Ψ the input and output sequences contain only elements of N (and thus
do not contain #). We view Ψ as mapping sequences of grammars to sequences
of grammars. Again, as in the definition of operator Θ, we assume that Ψ maps
infinite sequences to infinite sequences. This can be easily done without changing
the set of grammars which appear infinitely often in the sequence.

The following two definitions are based on the corresponding reductions for
explanatory function learning [5] and explanatory language learning [14]. In these
definitions, we view operators Θ as mapping texts to texts, as well as mapping
languages to collections of languages (as discussed above).

Definition 2. We say that L ≤Weak
Part L′ iff there exist operators Θ and Ψ such

that

(a) for all L ∈ L, Θ(L) ⊆ L′.
(b) for all L ∈ L, for all L′ ∈ Θ(L), if p0p1 . . . is a sequence witnessing Part-

learnability of L′, then Ψ(p0p1 . . .) witnesses Part-learnability of L.
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Intuitively, Θ reduces a text for a language L ∈ L to a text for a language
L′ ∈ L′. Ψ then converts sequences witnessing Part-learnability of L′ to sequences
witnessing Part-learnability of L.

However, as we noted above, different texts for L may be mapped by Θ to
texts for different languages in L′. If we require that the mapping should be to
the texts of the same language, then we get strong reduction.

Definition 3. We say that L ≤Strong
Part L′, iff there exist operators Θ and Ψ such

that

(a) Θ and Ψ witness that L ≤Weak
Part L′ and

(b) for all L ∈ L, card(Θ(L)) = 1.

For ease of notation, when considering strong reductions, as discussed above, we
consider Θ as directly mapping languages to languages, rather than considering
it as a mapping from languages to a set containing just one language.

We say that L <Weak
Part L′ if L ≤Weak

Part L′ but L′ �≤Weak
Part L. Similarly, L ≡Weak

Part

if L ≤Weak
Part L′ and L′ ≤Weak

Part L.
Similarly, we can define L <Strong

Part L′ and L ≡Strong
Part L′.

Definition 4. We say that L is ≤Weak
Part -complete if

(a) L ∈ Part and
(b) For all L′ ∈ Part, L′ ≤Weak

Part L.

≤Strong
Part -completeness can be defined similarly.

We now define some languages and classes which are often used in the paper.
We used the names iINIT, iCOINIT, iRINIT for the classes defined below
as the infinite languages in these classes are obtained by cylindrification of the
languages in INIT , COINIT and RINIT used in the literature (the class
INIT contains languages {1, 2, . . . , i} and COINIT contains languages {i, i +
1, i + 2, . . .}; RINIT is similar to INIT and contains, for each r ∈ R0,1, the
language having (the representatives of) rational numbers below r). Additionally
the classes iINIT, iCOINIT, iRINIT contain all the finite languages. For i ∈
N, r ∈ RAT0,1,

(a) INIT i = {〈x, y〉 : x, y ∈ N and x ≤ i},
(b) COINIT i = {〈x, y〉 : x, y ∈ N and x ≥ i},
(c) RINIT r = {〈x, y〉 : x, y ∈ N and ntor(x) ≤ r},
(d) INIT i,s = Ds ∪ INIT i,
(e) COINIT i,s = Ds ∪ COINIT i,
(f) FIN = {L : L is finite},
(g) iINIT = {INIT i : i ∈ N} ∪ FIN ,
(h) iCOINIT = {COINIT i : i ∈ N} ∪ FIN ,
(i) iRINIT = {RINIT r : r ∈ RAT0,1} ∪ FIN ,
(j) iINITk = iINIT ∪ {INIT i,s : card(Ds) ≤ k, i ∈ N},
(k) iCOINITk = iCOINIT ∪ {COINIT i,s : card(Ds) ≤ k, i ∈ N}.
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A natural partial learning strategy for the languages in iINIT is as follows:
when a new datum 〈j, x〉, where j is larger than all m for all pairs 〈m, y〉 seen so
far, appears on the input, the learner, for the first time, outputs the conjecture
INIT j . Now, as long as no new (not previously seen) datum appears on the
input, the learner conjectures the finite set representing the input seen so far;
if a new datum (not previously seen) from INIT j appears on the input, the
learner repeats the conjecture INIT j . This continues as long as no datum outside
INIT j is seen. Clearly, the correct language INIT j or some finite input set is
the only one that will be conjectured infinite number of times. A similar strategy
works for iRINIT.

For iCOINIT a similar strategy chooses a new infinite conjecture COINIT j

when a new pair 〈j, x〉, where j is smaller than all m for all pairs 〈m, y〉 seen so far,
appears on the input. Otherwise, the strategy is identical to the one for iINIT.

For iINITk the above iINIT-learning strategy can be adjusted as follows:
the learner keeps track of the smallest j such that the set E = {〈x, y〉 : x > j and
〈x, y〉 is seen in the input so far} has at most k elements. Then, the strategy for
learning iINITk is similar to that of iINIT, except that whenever the strategy
for iINIT outputs an infinite conjecture, strategy for iINITk outputs an infinite
conjecture for INIT j,s, where Ds = E, where j, E are as described above. Similar
modification to the strategy for iCOINIT works for iCOINITk.

3 Basic Properties of Reductions

In this section, we establish a number of technical facts used in many proofs of
our results.

Lemma 5. Suppose Θ witnesses part (a) of Definition 2 for L ≤weak
Part L′. Sup-

pose F1, F2 are computable functions such that, for any L ∈ L and L′ ∈ Θ(L),
the following three properties hold:

(i) if L′ is finite, then F1(L′) is a grammar for L.
(ii) if L′ is infinite and p is a grammar for L′, then limt→∞ F2(p, t) exists and

is a grammar for L.
(iii) if L′ is infinite, then for any sequence of finite sets S1, S2, . . . such that

S0 ⊂ S1 ⊂ S2 . . . and
⋃

i∈N Si = L′, for all t, for all but finitely many t′,
F1(St) �= F1(St′).

Then, there exists a Ψ such that, for all L ∈ L, for any sequence of gram-
mars p0p1 . . . witnessing Part-learnability of L′ ∈ Θ(L), Ψ(p0p1 . . .) = q0q1 . . .
witnesses Part-learnability of L.

The above lemma is useful in simplifying the construction of Ψ in many of
the proofs: we can just give the relevant F1 and F2.

Proposition 6. There exists an operator Ψ such that for any sequence q0q1 . . .,
Ψ(q0q1 . . .) = q′

0q
′
1, . . . such that:
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(a) at most one grammar appears in q′
0q

′
1 . . . infinitely often,

(b) if q is the least grammar which appears infinitely often in q0q1 . . ., then q′

appears infinitely often in q′
0q

′
1 . . ., where Wq′ = Wq.

Proof. Let q′
i = pad(qi, j), where j = card({i′ : i′ ≤ i and qi′ < qi}). It is easy to

verify that the above sequence satisfies the requirements of the proposition. �

The above proposition is useful to simplify some of the constructions for Ψ
in our proofs.

Proposition 7. Suppose L ≤weak
Part L′ as witnessed by Θ and Ψ . Then, for all

distinct L,L′ ∈ L, Θ(L) ∩ Θ(L′) = ∅.

Proposition 8. For any operator Θ, if L ⊆ L′, Θ(L) = {X} and Θ(L′) =
{X ′}, then X ⊆ X ′.

Proposition 9. Suppose L is infinite and L contains L and all finite subsets of
L. Suppose further that L ≤weak

Part L′ as witnessed by Θ and Ψ . Then, for all finite
sets S such that S ⊆ L′ for some L′ ∈ Θ(L), there exists an infinite superset of
S in Θ(L) (in particular, Θ(L) contains an infinite language).

4 Complete Classes and the Class R
As E ∈ Part, we trivially have that E is ≤Strong

Part -complete. The following results
give some simple classes which are complete.

Let iCOINIT∗ = {COINIT i ∪ A : i ∈ N and A is finite}. We first show
that every text for every recursively enumerable language can be appropriately
“encoded” as a text for some language in iCOINIT∗ — thus showing that
iCOINIT∗ is weakly complete.

Theorem 10. iCOINIT∗ is ≤weak
Part -complete.

Proof. To show that E ≤weak
Part iCOINIT∗, define Θ and Ψ as follows.

Suppose T is a given text. Let Cp,T = max({t : Wp,t ⊆ content(T ) and
content(T [t]) ⊆ Wp}). Note that Cp,T can be approximated from below (that is,
there exists a recursive function f such that f(p, T [n]) ≤ f(p, T [n + 1]) ≤ Cp,T

and limn→∞ f(p, T [n]) = Cp,T .
Define Θ as follows. Θ(T ) = T ′ such that content(T ′) = {〈q, x〉 : (∃q′ ≤

q)[x ≤ Cq′,T ]}.
Now, suppose p is the least grammar for Wp, T is a text for Wp, and T ′ =

Θ(T ). Then, it is easy to verify that content(T ′) = COINIT p,s, for some s, as
Cp,T = ∞, but Cp′,T < ∞ for p′ < p.

We define Ψ ′ as follows.
Ψ ′(p0p1 . . .) = q0q1 . . ., where
qi = pad(j, pi), where, for some x, 〈j, x〉 is the last new element enumerated

in Wpi,k and k is the number of times pi appears in p0p1 . . . pi.
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Claim 11. Suppose L ∈ E, and L′ ∈ Θ(L).
If p0p1 . . . witnesses Part-learnability of L′, then q0q1 . . . is a sequence sat-

isfying:
there exists a minimal q such that q appears infinitely often in q0q1 . . . and

this q = pad(j, p), for minimal grammar j for L and some p.

To see the claim, suppose L′ ∈ Θ(L) and p0, p1 . . . is a sequence witnessing Part-
learnability of L′ and Ψ ′(p0p1 . . .) = q0q1 . . .. Suppose p is the only grammar
which appears infinitely often in p0p1 . . .. Then only qi with pi = p can possibly
appear infinitely often in the sequence q0q1 . . . as qi used pi in its padding.
Furthermore, pad(j, p), with j ≥ min({e : We = L}) appear infinitely often in
the sequence q0q1 . . .. The claim follows.

Now the theorem follows using Proposition 6. �
We now consider a ≤Strong

Part -complete class.
Let V (L) = 1

4 +
∑

x∈L 4−x−1.
Intuitively, V maps languages to real numbers where the mapping is

monotonic in L. Furthermore, if L �= L′ and min(LΔL′) ∈ L, then V (L) >
V (L′).

The reason for choosing the additive part “1
4” is just to make sure that V (L)

is non-zero.
Let Lr0,r1,...,rk

= {〈i, x〉 : i < k and ntor(x) < ri or i ≥ k and ntor(x) < rk}.
Let ST RCOMP = {Lr0,r1,...,rk

: k ∈ N, r0 ≤ r1 ≤ . . . ≤ rk, and
r0, r1, . . . , rk are left r.e. reals}.

ST RCOMP denotes “strong complete class”. The languages in ST RCOMP
can be thought of as follows: in the i-th cylinder we keep rational numbers < ri.
The ri’s are monotonically non-decreasing left r.e. real numbers and the sequence
r0, r1, . . . converges (that is, for some k, for all i ≥ k, ri = rk). We suggest the
reader to contrast this class with the previously defined class iRINIT (which,
in the sequel, will be shown to be incomplete).

Theorem 12. ST RCOMP is ≤Strong
Part -complete.

Proof. For any index i and any language L, let
Xi,L = {x

y : x, y ∈ N, y �= 0, x
y < V (Wi ∩L) and x, y ≤ min({t : Wi,t −L �= ∅})}.

Intuitively, sup(Xi,L) gives a value to how much Wi and L are similar to
each other:

(P1) If Wi = L, then sup(Xi,L) is V (L) (as min({t : Wi,t − L �= ∅}) is infinite).
(P2) If Wi �= L, then sup(Xi,L) < V (L). To see this note that if L �⊆ Wi, then

clearly V (Wi ∩ L) < V (L) and thus sup(Xi,L) ≤ V (Wi ∩ L) < V (L). On
the other hand, if Wi �⊆ L, then sup(Xi,L) < V (Wi ∩ L) ≤ V (L), as Xi,L

is a finite set and the supremum of a finite set of rational numbers < r is
< r for any positive real number r.

Note that Xi,L depends only on i and L and not on the particular presen-
tation of L. This allows us to construct Θ (and corresponding Ψ) which give a
strong reduction from E to ST RCOMP.
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Θ(L) =
⋃

i∈N [{〈i, y〉 : (∃i′ ≤ i)(∃s ∈ Xi′,L)[ntor(y) ≤ s]}].
Intuitively, Θ just collects all the members of Xi,L in the i-th cylinder and

then does an upward closure.
Note that Θ(L) can be enumerated from a text T for L. Moreover, Θ(L)

depends only on L and not on the particular presentation T , and thus the reduc-
tion is a strong reduction.

We say that m improves at time step j in the enumeration of Wp, if, for
some x, the following two conditions are satisfied:

(i) 〈m,x〉 gets enumerated at time step j in Wp.
(ii) Suppose j′ < j is the largest earlier time step when m improved, if any, in

the enumeration of Wp (take j′ = 0, if m did not improve earlier). Then, for
any y such that 〈m′, y〉 ∈ Wp,j′ , ntor(x) > ntor(y).

Note that for any grammar p for L′ = Lr0,r1,...,rk
, with r0 ≤ r1 ≤ r2 . . . ≤

rk−1 < rk, k improves at infinitely many steps j in the enumeration of Wp, but
0, 1, . . . , k − 1 improve only for finitely many steps j in the enumeration of Wp.

We define an operator Ψ ′ as follows. This can then be converted to the desired
Ψ using Proposition 6. Ψ ′(p0p1 . . .) = q0q1 . . ., where qi is defined below. Note
that if L ∈ E , Θ(L) = L′ and p0, p1, . . . witnessed Part-learning of L′, then we
want Ψ(p0p1 . . .) to witness Part-learning of L.

Without loss of generality assume that, for any k, Wk enumerates at most
one element at any step. For any fixed i, suppose pi appears j times in p0p1 . . . pi,
and mi improves at step j in the enumeration of Wpi

(if no such mi exists, then
take mi to be i + 1). Then, let qi = pad(mi, pi).

Now suppose L ∈ E and L′ = Θ(L) and i is the minimal grammar for L.
Then, by the properties (P1) and (P2), for all j < i, sup(Xi,L) > sup(Xj,L), and
for all j ≥ i, sup(Xi,L) ≥ sup(Xj,L). Thus, L′ is of the form Lr0,r1,...,ri

, where
r0 ≤ r1 ≤ ri−1 < ri.

Now, suppose p appears infinitely often in p0p1 . . ., which witnesses Part-
learnability of L′. Then for Ψ ′(p0p1 . . .) = q0q1 . . . only qj with pj = p could
possibly appear infinitely often in the sequence q0q1 . . . as qj used pj in its
padding. Furthermore, i is the minimal number which improves at infinitely
many steps in the enumeration of Wp. It follows that pad(i, p) is the minimal
element which appears infinitely often in the sequence q0q1 . . ..

Now Ψ ′ can be converted to the required Ψ using Proposition 6. The theorem
follows. �

Our next result states that the class R of all recursive languages is not strongly
complete. In particular, this means that all indexed classes of languages, includ-
ing the class of all regular languages, are incomplete. This opens a possibility of
creating partial learning strategies for these classes that would be simpler than
the general strategy for partial learning of all recursively enumerable languages.
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Theorem 13. R is not ≤Strong
Part -complete.

Proof. Suppose Θ (and Ψ) witness that E ≤Strong
Part R. Let K denote the halting

set {i : i ∈ N and ϕi(i) ↓}. Now, by Propositions 7 and 8, for all x, Θ(K) ⊂
Θ(K∪{x}). Let S = Θ(K). Note that, by assumption, S is recursive. Now, x ∈ K
iff Θ({x} ∪ K) ⊆ S. As S is recursive, this would imply that K is recursively
enumerable, which is in contradiction to a known fact that K is not recursively
enumerable [17]. �

5 Relationship Between iINIT, iCOINIT and iRINIT
Classes

In this section, we explore the relationships between the classes iINIT,
iCOINIT (and some of their variants), and iRINIT. We also establish that
their degrees are strictly under the degree of all regular languages.

Proposition 14. Fix n ∈ N . Suppose L ⊆ E contains only n infinite languages.
Then,

(a) L ≤Strong
Part iINIT.

(b) L ≤Strong
Part iCOINIT.

First, we explore the relationship between iINIT and iCOINIT. We begin
with establishing that iCOINIT is reducible to iINIT, but only weakly. Per-
haps, this fact and the fact that iINIT is not reducible to iCOINIT (see below)
are not surprising, as the chain of infinite languages in iINIT is growing indefi-
nitely, whereas every growing chain of infinite languages in iCOINIT is finite.

Theorem 15. iCOINIT ≤weak
Part iINIT.

Theorem 16. iCOINIT �≤Strong
Part iINIT.

On the other hand, iINIT is not reducible to iCOINIT even weakly.

Theorem 17. iINIT �≤weak
Part iCOINIT.

The class iRINIT is similar to iINIT in that it features an infinitely grow-
ing chain of infinite languages. However, unlike iINIT, between any two infi-
nite languages in iRINIT, there is always another language. We show that the
≤Strong

Part -degree of iRINIT is strictly above the degrees of the classes iINIT and
iCOINIT. However, first we show that iRINIT is not even weakly complete.
Let REG denote the class of all regular sets [11] (we assume some standard
recursive bijection between strings and N , so that regular sets can be consid-
ered as subsets of natural numbers). Topologically, REG is much more complex
than containing just one growing chain of infinite languages iRINIT (plus finite
sets), and this translates into greater complexity of partial learning of REG, as
the following theorem indicates.
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Theorem 18. REG �≤weak
Part iRINIT.

Proof. Suppose by way of contradiction that Θ and Ψ witness that REG ≤Weak
Part

iRINIT.
Inductively define σi as follows.
σ0 = Λ.
σi+1 is an extension of σi � i such that max({ntor(x) : 〈x, y〉 ∈ Θ(σi+1)}) >

max({ntor(x) : 〈x, y〉 ∈ Θ(σi)}).
If all σi+1 get defined, then for T =

⋃
i∈N σi, T is a text for N (which

is regular), but sup({ntor(x) : 〈x, y〉 ∈ content(Θ(T ))}) does not belong to
{ntor(x) : 〈x, y〉 ∈ content(Θ(T ))} (as if it belonged, then it would belong to
{ntor(x) : 〈x, y〉 ∈ content(Θ(σj))}, for some j, and that would violate the
definitions of σi’s).

If some σi+1 does not get defined, then let r = max({ntor(x) :
〈x, y〉 ∈ content(Θ(σi))}). Now, for all infinite regular languages L containing
content(σi), RINIT r ∈ Θ(L) (as Θ(L) contains an infinite language containing
〈rton(r), y〉, for some y, and σi+1 did not get defined). A contradiction to Propo-
sition 7, as there are infinitely many (in particular at least two) infinite regular
languages which contain content(σi). �

Corollary 19. iRINIT is not ≤weak
Part -complete.

Our next result shows that both iINIT and iCOINIT are strongly reducible
to iRINIT. Let 0 < r0, r1, . . . in RAT0,1 be a strictly increasing sequence of
rational numbers. {INIT i : i ∈ N} can be naturally embedded into iRINIT,
by mapping INIT i to RINIT ri

. Note that, by our convention on coding of finite
sets, Ds ⊂ Ds′ implies s < s′. For any s, let ks = max({x : 〈x, y〉 ∈ Ds}). Now,
mapping finite sets Ds to RINIT rks+(rks+1−rks )∗rs

ensures that iINIT ≤Strong
Part

iRINIT. A similar method works to show that iCOINIT ≤Strong
Part iRINIT.

Theorem 20.

(a) iINIT ≤Strong
Part iRINIT.

(b) iCOINIT ≤Strong
Part iRINIT.

Next we show that iRINIT is neither strongly reducible to iINIT, nor even
weakly reducible to iCOINIT. Yet, it is weakly reducible to iINIT. The latter
fact is quite interesting: every text for a language in iRINIT can be encoded as
a text for a language in iINIT, yet the corresponding languages in iINIT for
such texts may be different for different texts of the same language in iRINIT.

Theorem 21. iRINIT �≤Strong
Part iINIT.

Proof. Suppose by way of contradiction otherwise, as witnessed by Θ and Ψ .
Note that, by Proposition 9, Θ(RINIT 0.2) cannot be a finite set. Suppose
Θ(RINIT 0.2) = INIT k.

Then for two different values of r < 0.2, Θ(RINIT r) = INIT i, for same i,
as for all r < 0.2, Θ(RINIT r) ⊆ INIT k. A contradiction. �
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Theorem 22. iRINIT ≤weak
Part iINIT.

Proof. Let rS = max({ntor(x) : 〈x, y〉 ∈ S}). Define mT [n] as follows.

(i) mΛ = 〈rton(0), 0〉.
(ii) mT [n+1] = mT [n], if rcontent(T [n+1]) = rcontent(T [n]); otherwise mT [n+1] =

〈rton(rcontent(T [n+1])),mT [n] + 1〉.
Now, let Θ(T [n]) = {〈x, y〉 : x ≤ mT [n], y ≤ code(content(T [n]))}.
It is easy to verify that,

(1) For a finite set L, Θ(L) ⊆ {{〈x, y〉 : x ≤ i, y ≤ code(L)} : i ∈ N}.
(2) Θ(RINIT r) ⊆ {INIT 〈rton(r),w〉 : w ∈ N}.

We can define the operator Ψ for the reduction using Lemma5, where F1 and
F2 are defined as follows.

F1(S) = canonical grammar for Dw, where w = max({y : 〈0, y〉 ∈ S}).
F2(p, t) = canonical grammar for RINIT ntor(j), where, for some w, 〈j, w〉 =

max({x : 〈x, y〉 ∈ Wp,t}).
It is now easy to verify using Lemma 5 that Θ and Ψ (as given by Lemma 5)

witness that iRINIT ≤Weak
Part iINIT. �

Theorem 23. iRINIT �≤weak
Part iCOINIT.

The next result shows that iRINIT is strongly reducible to REG, the class
of all regular languages. As we noted above, REG is not reducible to iRINIT
(even weakly), thus, the degree of iRINIT is strictly below the degree of REG.

Theorem 24. iRINIT ≤Strong
Part REG.

Now we turn our attention to the classes iINITk and iCOINITk. The infi-
nite languages in these classes do not form simple strict chains, as, for every
infinite language L in the chain, both classes contain its variants having up to
k extra elements. Interestingly, though, it turns out that, whereas adding one
such extra element to infinite languages in the chain makes the partial learning
problem harder, the difficulty of the partial learning problem does not increase
when more elements are added.
Theorem 25. For all k > 0,
(a) iINITk ≤Strong

Part iINIT1.
(b) iCOINITk ≤Strong

Part iCOINIT1.
(c) iINIT1 �≤Strong

Part iINIT.
(d) iCOINIT1 �≤weak

Part iCOINIT.
(e) iINIT1 ≤weak

Part iINIT.

Theorem 26. For all k > 0,
(a) iINITk ≤Strong

Part iRINIT.
(b) iCOINITk ≤Strong

Part iRINIT.
(c) iRINIT �≤Strong

Part iINITk.
(d) iRINIT �≤weak

Part iCOINITk.
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