
Ronald Ortner
Hans Ulrich Simon
Sandra Zilles (Eds.)

 123

LN
AI

 9
92

5

27th International Conference, ALT 2016
Bari, Italy, October 19–21, 2016
Proceedings

Algorithmic
Learning Theory

Lecture Notes in Artificial Intelligence 9925

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Ronald Ortner • Hans Ulrich Simon
Sandra Zilles (Eds.)

Algorithmic
Learning Theory
27th International Conference, ALT 2016
Bari, Italy, October 19–21, 2016
Proceedings

123

Editors
Ronald Ortner
Montanuniversität Leoben
Leoben
Austria

Hans Ulrich Simon
Ruhr-Universität Bochum
Bochum
Germany

Sandra Zilles
University of Regina
Regina, SK
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-46378-0 ISBN 978-3-319-46379-7 (eBook)
DOI 10.1007/978-3-319-46379-7

Library of Congress Control Number: 2016950899

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the papers presented at the 27th International Conference on
Algorithmic Learning Theory (ALT 2016). ALT 2016 was co-located with the 19th
International Conference on Discovery Science (DS 2016). Both conferences were held
during October 19–21 in the beautiful city of Bari, Italy.

The technical program of ALT 2016 had five invited talks (presented jointly to both
ALT 2016 and DS 2016) and 24 papers selected from 45 submissions by the ALT
Program Committee. ALT is dedicated to the theoretical foundations of machine
learning and provides a forum for high-quality talks and scientific interaction in areas
such as statistical learning theory, online learning, inductive inference, query models,
unsupervised learning, clustering, semi-supervised and active learning, stochastic
optimization, high-dimensional and non-parametric inference, exploration–exploitation
trade-off, bandit theory, reinforcement learning, planning, control, and learning with
additional constraints. ALT is furthermore concerned with the analysis of the theo-
retical properties of existing algorithms such as boosting, kernel-based methods, SVM,
Bayesian methods, graph- or manifold-based methods, methods for latent-variable
estimation or clustering, decision tree methods, and information-based methods.

The present volume of LNAI contains the text of the 24 papers presented at ALT
2016 as well as the abstracts of the invited talks:

– Avrim Blum (Carnegie Mellon University, Pittsburgh):
“Learning About Agents and Mechanisms from Opaque Transactions”
(Invited talk for ALT 2016)

– Gianluca Bontempi (Interuniversity Institute of Bioinformatics, Brussels):
“Perspectives of Feature Selection in Bioinformatics: From Relevance to
Causal Inference”
(Invited tutorial for DS 2016)

– Kristian Kersting (Technische Universität Dortmund):
“Collective Attention on the Web”
(Invited talk for DS 2016)

– Gábor Lugosi (Pompeu Fabra University, Barcelona):
“How to Estimate the Mean of a Random Variable”
(Invited tutorial for ALT 2016)

– John Shawe-Taylor (University College London):
“Margin-Based Structured Output Learning”
(Invited talk for ALT 2016 and DS 2016)

Since 1999, ALT has been awarding the E.M. Gold Award for the most outstanding
student contribution. This year, the award was given to Areej Costa for her paper “Exact
Learning of Juntas from Membership Queries” co-authored with Nader Bshouty.

ALT 2016 was the 27th meeting in the ALT conference series, established in Japan in
1990. The ALT series is supervised by its Steering Committee: Shai Ben-David
(University of Waterloo, Canada), Marcus Hutter (Australian National University,
Canberra, Australia), Sanjay Jain (National University of Singapore, Republic of
Singapore), Ronald Ortner (Montanuniversität Leoben, Austria), Hans U. Simon
(Ruhr-Universität Bochum, Germany), Frank Stephan (National University of
Singapore, Republic of Singapore), Csaba Szepesvári (University of Alberta, Edmon-
ton, Canada), Eiji Takimoto (Kyushu University, Fukuoka, Japan), Akihiro Yamamoto
(Kyoto University, Japan), and Sandra Zilles (Chair, University of Regina, Canada).

We thank the following people and institutions who contributed to the success of the
conference. Most importantly, we would like to thank the authors for contributing and
presenting their work at the conference. Without their contribution this conference
would not have been possible. We are very grateful to the Fondazione Puglia and to the
Consorzio Interuniversitario Nazionale per l’Informatica (National Interuniversity
Consortium for Informatics, CINI) for their financial support. We would also like to
acknowledge the support of the European Commission through the project MAESTRA
— Learning from Massive, Incompletely Annotated, and Structured Data (grant
number ICT-2013-612944).

ALT 2016 and DS 2016 were organized by the University of Bari A. Moro. We
thank the local arrangements chairs, Annalisa Appice, Corrado Loglisci, Gianvito Pio,
Roberto Corizzo, and their team for their efforts in organizing the two conferences.

We are grateful for the collaboration with the conference series Discovery Science.
In particular, we would like to thank the general chair of DS 2016 and ALT 2016,
Donato Malerba, and the DS 2016 Program Committee chairs, Toon Calders and
Michelangelo Ceci.

We are also grateful to EasyChair, the excellent conference management system,
which was used for putting together the program for ALT 2016. EasyChair was
developed mainly by Andrei Voronkov and is hosted at the University of Manchester.
The system is free of charge.

We are grateful to the members of the Program Committee for ALT 2016 and the
additional reviewers for their hard work in selecting a good program for ALT 2016.
Special thanks go to Frank Stephan from the National University of Singapore for
maintaining the ALT website. Last but not the least, we thank Springer for their support
in preparing and publishing this volume in the Lecture Notes in Artificial Intelligence
series.

July 2016 Ronald Ortner
Hans U. Simon
Sandra Zilles

VI Preface

Organization

Conference Chair

Donato Malerbo University of Bari A. Moro, Italy

Program Committee

Nir Ailon Israel Institute of Technology, Haifa, Israel
Dana Angluin Yale University, USA
Peter Bartlett UC Berkeley, USA and Queensland University

of Technology, Brisbane, Australia
Shai Ben-David University of Waterloo, Canada
Alina Beygelzimer Yahoo! Labs, New York, USA
Corinna Cortes Google Research, New York, USA
Malte Darnstädt Continentale Insurance Group, Dortmund, Germany
Sanjoy Dasgupta UC San Diego, USA
Rong Ge Duke University, Durham, USA
Steve Hanneke Princeton, USA
Kohei Hatano Kyushu University, Fukuoka, Japan
Jyrki Kivinen University of Helsinki, Finland
Wouter M. Koolen Centrum Wiskunde & Informatica, Amsterdam,

The Netherlands
Mehrdad Mahdavi Toyota Technical Institute, Chicago, USA
Eric Martin University of New South Wales, Sydney, Australia
Hanna Mazzawi Google Research, Mountain View, California, USA
Mehryar Mohri Courant Institute of Mathematical Sciences,

New York, USA
Ronald Ortner (Chair) Montanuniversität Leoben, Austria
Hans U. Simon (Chair) Ruhr-Universität Bochum, Germany
Frank Stephan National University of Singapore, Republic of Singapore
Gilles Stoltz GREGHEC: HEC Paris - CNRS, France
Csaba Szepesvári University of Alberta, Edmonton, Canada
Balázs Szörényi Israel Institute of Technology, Haifa, Israel
György Turán University of Illinois at Chicago, USA
Liwei Wang Peking University, China
Akihiro Yamamoto Kyoto University, Japan
Sandra Zilles University of Regina, Canada

Local Arrangements

Annalisa Appice University of Bari A. Moro, Italy
Roberto Corizzo University of Bari A. Moro, Italy
Corrado Loglisci University of Bari A. Moro, Italy
Gianvito Pio University of Bari A. Moro, Italy

Additional Reviewers

Giulia Desalvo
Christos Dimitrakakis
András György
Elad Hoffer
Prateek Jain
Pooria Joulani
Sumeet Katariya
Vitaly Kuznetsov
Tor Lattimore
Guillaume Lecué
Alan Malek

David Pal
Bernardo Ávila Pires
Lev Reyzin
Afshin Rostamizadeh
Vikas Sindhwani
Marta Soare
Daiki Suehiro
Ambuj Tewari
Scott Yang
Felix Yu
Huizhen Yu

Sponsoring Institutions

Fondazione Puglia
Consorzio Interuniversitario Nazionale per l’Informatica, CINI
European Commission through the project MAESTRA (Learning from Massive,
Incompletely Annotated, and Structured Data), Grant number ICT-2013-612944

VIII Organization

Abstract of Invited Talks

Learning about Agents and Mechanisms
from Opaque Transactions

Avrim Blum

School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213–3891, USA

avrim@cs.cmu.edu

In this talk I will discuss some learning problems coming from the area of algorithmic
economics. I will focus in particular on settings known as combinatorial auctions in
which agents have preferences over items or sets of items, and interact with an auction
or allocation mechanism that determines what items are given to which agents. We
consider the perspective of an outside observer who each day can only see which
agents show up and what they get, or perhaps just which agents’ needs are satisfied and
which are not. Our goal will be from observing a series of such interactions to try to
learn the agent preferences and perhaps also the rules of the allocation mechanism.

As an example, consider observing web pages where the agents are advertisers and
the winners are those whose ads show up on the given page. Or consider observing the
input-output behavior of a cloud computing service, where the input consists of a set of
agents requesting service, and the output is a partition of them into some whose
requests are actually fulfilled and the rest that are not—due to overlap of their resource
needs with higher-priority requests. From such input-output behavior, we would like to
learn the underlying structure. We also consider a classic Myerson single-item auction
setting, where from observing who wins and also being able to participate ourselves we
would like to learn the agents’ valuation distributions.

In examining these problems we will see connections to decision-list learning and
to Kaplan-Meier estimators from medical statistics.

This talk is based on work joint with Yishay Mansour and Jamie Morgenstern.

Perspectives of Feature Selection
in Bioinformatics: From Relevance

to Causal Inference

Gianluca Bontempi

Machine Learning Group, Interuniversity
Institute of Bioinformatics in Brussels (IB)2

Université libre de Bruxelles, Bld de Triomphe, 1050 Brussels, Belgium
mlg.ulb.ac.be

A major goal of the scientific activity is to model real phenomena by studying the
dependency between entities, objects or more in general variables. Sometimes the goal
of the modeling activity is simply predicting future behaviors. Sometimes the goal is to
understand the causes of a phenomenon (e.g. a disease). Finding causes from data is
particular challenging in bioinformatics where often the number of features (e.g.
number of probes) is huge with respect to the number of samples [5]. In this context,
even when experimental interventions are possible, performing thousands of experi-
ments to discover causal relationships between thousands of variables is not practical.
Dimensionality reduction techniques have been largely discussed and used in bioin-
formatics to deal with the curse of dimensionality. However, most of the time these
techniques focus on improving prediction accuracy, neglecting causal aspects. This
tutorial will introduce some basics of causal inference and will discuss some open
issues: may feature selection techniques be useful also for causal feature selection? Is
prediction accuracy compatible with causal discovery [2]? How to deal with Markov
indistinguishable settings [1]? Recent results based on information theory [3], and some
learned lessons from a recent Kaggle competition [4] will be used to illustrate the issue.

References

1. Bontempi, G., Flauder, M.: From dependency to causality: a machine learning approach.
JMLR 15(16), 2437–2457 (2015)

2. Bontempi, G., Haibe-Kains, B., Desmedt, C., Sotiriou, C., Quackenbush, J.: Multiple-input
multiple-output causal strategies for gene selection. BMC Bioinformatics 12(1), 458 (2011)

3. Bontempi, G., Meyer, P.E.: Causal filter selection in microarray data. In: Proceedings of
ICML (2010)

4. Bontempi, G., Olsen, C., Flauder, M.: D2C: predicting causal direction from dependency
features (2014). R package version 1.1

5. Meyer, P.E., Bontempi, G.: Information-theoretic gene selection in expression data. In:
Biological Knowledge Discovery Handbook. IEEE Computer Society (2014)

Margin Based Structured Output Learning

John Shawe-Taylor

Department of Computer Science, CSML,
University College London, London WC1E 6EA, UK

j.shawe-taylor@cs.ucl.ac.uk

Structured output learning has been developed to borrow strength across multi-
dimensional classifications. There have been approaches to bounding the performance
of these classifiers based on different measures such as microlabel errors with a fixed
simple output structure. We present a different approach and analysis starting from the
assumption that there is a margin attainable in some unknown or fully connected output
structure. The analysis and algorithms flow from this assumption but in a way that the
associated inference becomes tractable while the bounds match those attained were we
to use the full structure. There are two variants depending on how the margin is
estimated. Experimental results show the relative strengths of these variants, both
algorithmically and statistically.

Collective Attention on the Web

Kristian Kersting

Computer Science Department, TU Dortmund University,
44221 Dortmund, Germany

Kristian.Kersting@cs.tu-dortmund.de

It’s one of the most popular YouTube videos ever produced, having been viewed more
than 840 million times. Its hard to understand why this clip is so famous and actually
went viral, since nothing much happens. Two little boys, Charlie and Harry, are sitting
in a chair when Charlie, the younger brother, mischievously bites Harrys finger.
There’s a shriek and then a laugh. The clip is called “Charlie Bit My Finger–Again!”

Generally, understanding the dynamics of collective attention is central to an infor-
mation age where millions of people leave digital footprints everyday. So, can we capture
the dynamics of collective attention mathematically? Can we even gain insights into the
underlying physical resp. social processes? Is it for instance fair to call the video “viral” in
an epidemiological sense?

In this talk I shall argue that computational methods of collective attention are not
insurmountable. I shall review the methods we have developed to characterize, analyze,
and even predict the dynamics of collective attention among millions of users to and
within social media services. For instance, we found that collective attention to memes
and social media grows and subsides in a highly regular manner, well explained by
economic diffusion models [2, 4]. Using mathematical epidemiology, we find that so-
called viral videos show very high infection rates and, hence, should indeed be called
viral [1]. Moreover, the spreading processes may also be related to the underlying
network structures, suggesting for instance a physically plausible model of the distance
distributions of undirected networks [3]. All this favors machine learning and discovery
science approaches that produce physically plausible models.

This work was partly supported by the Fraunhofer ICON project SoFWIReD and
by the DFG Collaborative Research Center SFB 876 project A6.

References

1. Bauckhage, C., Hadiji, F., Kersting, K.: How viral are viral videos? In: Proceedings of the
Ninth International Conference on Web and Social Media (ICWSM 2015), pp. 22–30 (2015)

2. Bauckhage, C., Kersting, K., Hadiji, F.: Mathematical models of fads explain the temporal
dynamics of internet memes. In: Proceedings of the Seventh International Conference on
Weblogs and Social Media (ICWSM 2013) (2013)

3. Bauckhage, C., Kersting, K., Hadiji, F.: Parameterizing the distance distribution of undirected
networks. In: Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intel-
ligence (UAI 2015), pp. 121–130 (2015)

4. Bauckhage, C., Kersting, K., Rastegarpanah, B.: Collective attention to social media evolves
according to diffusion models. In: 23rd International World Wide Web Conference (WWW
2014), pp. 223–224 (2014)

Collective Attention on the Web XV

How to Estimate the Mean
of a Random Variable?

Gabor Lugosi

Department of Economics, Pompeu Fabra University,
Ramon Trias Fargas 25-27, 08005, Barcelona, Spain

gabor.lugosi@gmail.com

Given n independent, identically distributed copies of a random variable, one is interested
in estimating the expected value. Perhaps surprisingly, there are still open questions
concerning this very basic problem in statistics. In this talk we are primarily interested in
non-asymptotic sub-Gaussian estimates for potentially heavy-tailed random variables.
We discuss various estimates and extensions to high dimensions. We apply the estimates
for statistical learning and regression function estimation problems. The methods
improve on classical empirical minimization techniques.

This talk is based on joint work with Emilien Joly, Luc Devroye, Matthieu Lerasle,
Roberto Imbuzeiro Oliveira, and Shahar Mendelson.

Contents

Error Bounds, Sample Compression Schemes

A Vector-Contraction Inequality for Rademacher Complexities 3
Andreas Maurer

Localization of VC Classes: Beyond Local Rademacher Complexities 18
Nikita Zhivotovskiy and Steve Hanneke

Labeled Compression Schemes for Extremal Classes 34
Shay Moran and Manfred K. Warmuth

On Version Space Compression . 50
Shai Ben-David and Ruth Urner

Statistical Learning Theory, Evolvability

Learning with Rejection . 67
Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri

Sparse Learning for Large-Scale and High-Dimensional Data:
A Randomized Convex-Concave Optimization Approach 83

Lijun Zhang, Tianbao Yang, Rong Jin, and Zhi-Hua Zhou

On the Evolution of Monotone Conjunctions: Drilling for Best
Approximations . 98

Dimitrios I. Diochnos

Exact and Interactive Learning, Complexity of Teaching Models

Exact Learning of Juntas from Membership Queries 115
Nader H. Bshouty and Areej Costa

Submodular Learning and Covering with Response-Dependent Costs. 130
Sivan Sabato

Classifying the Arithmetical Complexity of Teaching Models 145
Achilles A. Beros, Ziyuan Gao, and Sandra Zilles

Inductive Inference

Learning Finite Variants of Single Languages from Informant 163
Klaus Ambos-Spies

http://dx.doi.org/10.1007/978-3-319-46379-7_1
http://dx.doi.org/10.1007/978-3-319-46379-7_2
http://dx.doi.org/10.1007/978-3-319-46379-7_3
http://dx.doi.org/10.1007/978-3-319-46379-7_4
http://dx.doi.org/10.1007/978-3-319-46379-7_5
http://dx.doi.org/10.1007/978-3-319-46379-7_6
http://dx.doi.org/10.1007/978-3-319-46379-7_6
http://dx.doi.org/10.1007/978-3-319-46379-7_7
http://dx.doi.org/10.1007/978-3-319-46379-7_7
http://dx.doi.org/10.1007/978-3-319-46379-7_8
http://dx.doi.org/10.1007/978-3-319-46379-7_9
http://dx.doi.org/10.1007/978-3-319-46379-7_10
http://dx.doi.org/10.1007/978-3-319-46379-7_11

Intrinsic Complexity of Partial Learning. 174
Sanjay Jain and Efim Kinber

Learning Pattern Languages over Groups . 189
Rupert Hölzl, Sanjay Jain, and Frank Stephan

Online Learning

The Maximum Cosine Framework for Deriving Perceptron Based Linear
Classifiers . 207

Nader H. Bshouty and Catherine A. Haddad-Zaknoon

Structural Online Learning . 223
Mehryar Mohri and Scott Yang

An Upper Bound for Aggregating Algorithm for Regression with Changing
Dependencies . 238

Yuri Kalnishkan

Things Bayes Can’t Do . 253
Daniil Ryabko

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting 261
Wojciech Kotłowski

A Combinatorial Metrical Task System Problem Under the Uniform Metric . . . 276
Takumi Nakazono, Ken-ichiro Moridomi, Kohei Hatano,
and Eiji Takimoto

Competitive Portfolio Selection Using Stochastic Predictions 288
Tuğkan Batu and Pongphat Taptagaporn

Bandits and Reinforcement Learning

Q(k) with Off-Policy Corrections. 305
Anna Harutyunyan, Marc G. Bellemare, Tom Stepleton,
and Rémi Munos

On the Prior Sensitivity of Thompson Sampling . 321
Che-Yu Liu and Lihong Li

Clustering

Finding Meaningful Cluster Structure Amidst Background Noise 339
Shrinu Kushagra, Samira Samadi, and Shai Ben-David

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-46379-7_12
http://dx.doi.org/10.1007/978-3-319-46379-7_13
http://dx.doi.org/10.1007/978-3-319-46379-7_14
http://dx.doi.org/10.1007/978-3-319-46379-7_14
http://dx.doi.org/10.1007/978-3-319-46379-7_15
http://dx.doi.org/10.1007/978-3-319-46379-7_16
http://dx.doi.org/10.1007/978-3-319-46379-7_16
http://dx.doi.org/10.1007/978-3-319-46379-7_17
http://dx.doi.org/10.1007/978-3-319-46379-7_18
http://dx.doi.org/10.1007/978-3-319-46379-7_19
http://dx.doi.org/10.1007/978-3-319-46379-7_20
http://dx.doi.org/10.1007/978-3-319-46379-7_21
http://dx.doi.org/10.1007/978-3-319-46379-7_21
http://dx.doi.org/10.1007/978-3-319-46379-7_22
http://dx.doi.org/10.1007/978-3-319-46379-7_23

A Spectral Algorithm with Additive Clustering for the Recovery
of Overlapping Communities in Networks . 355

Emilie Kaufmann, Thomas Bonald, and Marc Lelarge

Author Index . 371

Contents XIX

http://dx.doi.org/10.1007/978-3-319-46379-7_24
http://dx.doi.org/10.1007/978-3-319-46379-7_24

Error Bounds, Sample Compression
Schemes

A Vector-Contraction Inequality
for Rademacher Complexities

Andreas Maurer(B)

Adalbertstr. 55, 80799 Munich, Germany
am@andreas-maurer.eu

Abstract. The contraction inequality for Rademacher averages is
extended to Lipschitz functions with vector-valued domains, and it is also
shown that in the bounding expression the Rademacher variables can be
replaced by arbitrary iid symmetric and sub-gaussian variables. Exam-
ple applications are given for multi-category learning, K-means clustering
and learning-to-learn.

Keywords: Rademacher complexities · Contraction inequality

1 Introduction

The method of Rademacher complexities has become a popular tool to prove
generalization in learning theory. One has the following result [1], which gives a
bound on the estimation error, uniform over a loss class F .

Theorem 1. Let X be any set, F a class of functions f : X → [0, 1] and let
X,X1, . . . , Xn be iid random variables with values in X . Then for δ > 0 with
probability at least 1 − δ in X = (X1, . . . , Xn) we have for every f ∈ F that

Ef (X) ≤ 1
n

∑
f (Xi) +

2
n
E

[
sup
f∈F

n∑

i=1

εif (Xi) |X
]

+

√
9 ln 2/δ

2n
.

Here the ε1, . . . , εn are (and will be throughout this paper) independent
Rademacher variables, uniformly distributed on {−1, 1}. For any class F of
real, not necessarily [0, 1]-valued, functions defined on X , and any vector x =
(x1, ..., xn) ∈ X n, the quantity

E sup
f∈F

n∑

i=1

εif (xi)

is the Rademacher complexity of the class F on the sample x = (x1, ..., xn) ∈
X n. Here we omit the customary factor 2/n, as this will simplify most of our
statements below.

Most applications of the method at some point or another use the so-called
contraction inequality. For functions hi : R → R with Lipschitz constant L, the
scalar contraction inequality states that
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-46379-7 1

4 A. Maurer

E sup
f∈F

n∑

i=1

εihi (f (xi)) ≤ LE sup
f∈F

n∑

i=1

εif (xi) .

There are situations when it is desirable to extend this result to the case when
the class F consists of vector-valued functions and the loss functions are Lipschitz
functions defined on a more than one-dimensional space. Such occurs for example
in the analysis of multi-class learning, K-means clustering or learning-to-learn.
At present one has dealt with these problems by passing to Gaussian averages
and using Slepian’s inequality (see e.g. Theorem 14 in [1]). This is sufficient for
many applications, but there are two drawbacks: 1. the proof relies on a highly
nontrivial result (Slepian’s inequality) and 2. while Rademacher complexities are
tightly bounded in terms of Gaussian complexities, it is well known ([4,12]) that
bounding the latter in terms of the former incurs a factor logarithmic in the
number of variables, potentially resulting in an unnecessary weakening of the
results (see e.g. [13]).

In this paper we will prove the vector contraction inequality

E sup
f∈F

n∑

i=1

εihi (f (xi)) ≤
√

2LE sup
f∈F

n∑

i=1

K∑

k=1

εikfk (xi) , (1)

where the members of F take values in R
K with component functions fk (·), the

hi are L-Lipschitz functions from R
K (with Euclidean norm) to R, and the εik

are an n×K matrix of independent Rademacher variables. It is also shown that
the εik on the right hand side of (1) can be replaced by arbitrary iid random
variables as long as they are symmetric and sub-gaussian, and

√
2 is replaced by

a suitably chosen constant. Furthermore the result extends to infinite dimensions
in the sense that R

K can be replaced by the Hilbert space �2. The proof given
is self-contained and independent of Slepian’s inequality.

We illustrate applications of this inequality by showing that it applies to loss
functions in a variety of relevant cases. In Sect. 3 we discuss multi-class learning,
K-means clustering and learning-to-learn. We also give some indications of how
the vector-valued complexity on the right hand side of (1) may be bounded. An
example pertaining to the truly infinite dimensional case is given, generalizing
some bounds for least-squares regression with operator valued kernels ([5,19])
to more general loss-functions.

Inequality (1) is perhaps not the most natural form of a vector-contraction
inequality, and, since the right hand side is sometimes difficult to bound, one is
led to look for alternatives. An attractive conjecture might be the following.

Conjecture 1. Let X be any set, n ∈ N, (x1, ..., xn) ∈ Xn, let F be a class of
functions f : X → �2 and let h : �2 → R have Lipschitz norm L. Then

E sup
f∈F

∑

i

εih (f (xi)) ≤ cLE sup
f∈F

∥∥∥∥∥
∑

i

εif (xi)

∥∥∥∥∥ ,

where c is some universal constant.

A Vector-Contraction Inequality for Rademacher Complexities 5

This conjecture is false and will be disproved in the sequel.
A version of the scalar contraction inequality occurs in [12], Theorem 4.12.

There the absolute value of the Rademacher sum is used, and a necessary factor
of two appears on right hand side. With the work of Koltchinskii and Panchenko
[11] and Bartlett and Mendelson [1] Rademacher averages became attractive to
the machine learning community, there was an increased interest in contraction
inequalities and it was realized that the absolute value was unnecessary for most
of the new applications. Meir and Zhang [18] gave a nice and simple proof of the
scalar contraction inequality as stated above. Our proof of (1) is an extension of
their method.

2 The Vector-Contraction Inequality

All random variables are assumed to be defined on some probability space (Ω,Σ).
The space Lp (Ω,Σ) is abbreviated Lp. We use �2 to denote the Hilbert space of
square summable sequences of real numbers. The norm on �2 and the Euclidean
norm on R

K are denoted with ‖.‖.
A real random variable X is called symmetric if −X and X are identically

distributed. It is called sub-gaussian if there exists a constant b = b (X) such
that for every λ ∈ R

EeλX ≤ e
λ2b2

2 .

We call b the sub-gaussian parameter of X. Rademacher and standard normal
variables are symmetric and sub-gaussian.

The following is the main result of this paper.

Theorem 2. Let X be not a.s. equal to zero, symmetric and subgaussian. Then
there exists a constant C < ∞, depending only on the distribution of X, such
that for any countable set S and functions ψi : S → R, φi : S → �2, 1 ≤ i ≤ n
satisfying

∀s, s′ ∈ S, ψi (s) − ψi (s′) ≤ ‖φi (s) − φi (s′)‖
we have

E sup
s∈S

∑

i

εiψi (s) ≤ C E sup
s∈S

∑

i,k

Xikφi (s)k ,

where the Xik are independent copies of X for 1 ≤ i ≤ n and 1 ≤ k ≤ ∞, and
φi (s)k is the k-th coordinate of φi (s).

If X is a Rademacher variable we may choose C =
√

2, if X is standard
normal C =

√
π/2.

For applications in learning theory we can at once substitute a Rademacher
variable for X and

√
2 for C. For S we take a class F of vector-valued functions

f : X → �2, for the φi the evaluation functionals on a sample (x1, ..., xn), so
that φi (f) = f (xi) and for ψi we take the evaluation functionals composed
with Lipschitz loss function hi : �2 → R of Lipschitz norm L, scaled by 1/L. We
obtain the following corollary.

6 A. Maurer

Corollary 1. Let X be any set, (x1, ..., xn) ∈ X n, let F be a class of functions
f : X → �2 and let hi : �2 → R have Lipschitz norm L. Then

E sup
f∈F

∑

i

εihi (f (xi)) ≤
√

2LE sup
f∈F

∑

i,k

εikfk (xi) ,

where εik is an independent doubly indexed Rademacher sequence and fk (xi) is
the k-th component of f (xi).

Clearly finite dimensional versions are obtained by restricting to the subspace
spanned by the first K coordinate functions in �2.

3 Examples of Loss Functions

We give some examples of seemingly complicated loss functions to which Theo-
rem 2 and Corollary 1 can be applied. These examples are not exhaustive, in fact
it seems that many applications of Slepian’s inequality in the machine learning
literature can be circumvented by Theorem 2 (see also [6,7,17] for applications
to information retrieval and generalization of autoregressive models).

3.1 Multi-class Classification

Consider the problem of assigning to inputs taken from a space X a label
corresponding to one of K classes. We are given a labelled iid sample z =
((x1, y1) , ..., (xn, yn)) drawn from some unknown distribution on X×{1, ...,K},
where the points xi are inputs xi ∈ X and the yi are corresponding labels,
yi ∈ {1, ...,K}. Many approaches assume that there is class F of vector
valued functions f : X → R

K′
, where K ′ = O (K) (typically K ′ = K, for

1-versus-all classification, or K ′ = K − 1 for simplex coding [20]), a classifi-
cation rule c : RK′ → {1, ...,K}, and for each label k ∈ {1, ...,K} a loss function
�k : RK → R+. The loss function �k is designed so as to upper bound, or approxi-
mate the indicator function of the set

{
z ∈ R

K′
: c (z) 	= k

}
(see [9,13]). In most

cases the loss functions are Lipschitz on R
K relative to the euclidean norm, with

some Lipschitz constant L. The empirical error incurred by a function f ∈ F is

1
n

∑

i

�yi
(f (xi)) .

The Rademacher complexity, which would lead to the uniform bound on the
estimation error, is

E sup
f∈F

∑

i

εi�yi
(f (xi)) .

Using Corollary 1 with hi = �yi
we can immediately eliminate the loss functions

�yi

E sup
f∈F

∑

i

εi�yi
(f (xi)) ≤

√
2LE sup

f∈F

∑

i,k

εikfk (xi) .

A Vector-Contraction Inequality for Rademacher Complexities 7

How we proceed to further bound this now depends on the nature of the vector-
valued class F . Some techniques to bound the Rademacher complexity of vector
valued classes are sketched in Sect. 4 below.

3.2 K-Means Clustering

Let H be a Hilbert space and x = (x1, ..., xn) a sample of points in the unit ball
B1 of H. The algorithm seeks centers c = (c1, ..., cK) ∈ S = BK

1 to represent the
sample.

c∗ = arg min
(c1,...,cK)∈S

1
n

n∑

i=1

K
min
k=1

‖xi − ck‖2 .

The corresponding Rademacher average to bound the estimation error is

R (S,x) = E sup
c∈S

∑

i

εi

K
min
k=1

‖xi − ck‖2 = E sup
c∈S

∑

i

εiψi (c) ,

where we define ψi (c) = mink ‖xi − ck‖2 in preparation of an application of
Theorem 2. The next step is to search for an appropriate Lipschitz constant of
the ψi. We have, for c, c′ ∈ S,

ψi (c) − ψi (c′) = min
k

‖xi − ck‖2 − min
k

‖xi − c′
k‖2

≤ max
k

‖xi − ck‖2 − ‖xi − c′
k‖2

≤
(
∑

k

(
‖xi − ck‖2 − ‖xi − c′

k‖2
)2
)1/2

= ‖φi (c) − φi (c′)‖ .

Where we defined φi : S → R
K by φi (c) =

(
‖xi − c1‖2 , ..., ‖xi − cK‖2

)
. We can

now apply Theorem 2 with L = 1 and obtain

2−1/2R (S,x) ≤ E sup
c∈S

∑

i,k

εik ‖xi − ck‖2

≤ 2E sup
c∈S

∑

i,k

εik 〈xi, ck〉 + E sup
c∈S

∑

i,k

εik ‖ck‖2

≤ K

(
2E

∥∥∥∥∥
∑

i

εixi

∥∥∥∥∥+ E

∣∣∣∣∣
∑

i

εi

∣∣∣∣∣

)

≤ 3K
√

n.

Dividing by n we obtain generalization bounds as in [3] or [15]. In this simple
case it was very easy to explicitly bound the complexity of the vector-valued
class.

8 A. Maurer

3.3 Learning to Learn or Meta-Learning

With input space X suppose we have a class H of feature maps h : X → Y ⊆ R
K

and a loss class F of functions f : Y → [0, 1]. The loss class could be used for
classification or function estimation or also in some unsupervised setting. We
assume that every function f ∈ F is Lipschitz with Lipschitz constant L and
that F is small enough for good generalization in the sense that for some B < ∞

EY1,...,Yn

[
sup
f∈F

EY f (Y) − 1
n

n∑

i=1

f (Yi)

]
≤ B√

n
(2)

for any Y-valued random variable Y and iid copies Y1, ..., Yn. Such conditions
might be established using standard techniques, for example also Rademacher
complexities.

We now want to learn a feature map h ∈ H, such that empirical risk mini-
mization (ERM) with the function class F ◦ h = {x �→ f (h (x)) : f ∈ F} gives
good results on future, yet unseen, tasks. Of course this depends on the tasks
in question, and a good feature map h can only be chosen on the basis of some
kind of experience made with these tasks.

To formalize this Baxter [2] has introduced the notion of an environment η,
which is a distribution on the set of tasks, where each task t is characterized by
some distribution μt (e.g. on inputs and outputs). For each task t ∼ η we can
then also draw an iid training sample xt = (xt

1, ..., x
t
n) ∼ μn

t . In this way the
environment also induces a distribution on the set of training samples. Now we
can make our problem more precise.

Suppose we have T tasks and corresponding training samples x̄ =
(
x1, ...,xT

)

drawn iid from the environment η. For h ∈ H let

ψt (h) = min
f∈F

1
n

n∑

i=1

f
(
h
(
xt

i

))

be the training error obtained by the use of the feature map h. We propose to
use the feature map

ĥ = arg min
h∈H

1
T

T∑

t=1

ψt (h) .

To give a performance guarantee for ERM using F ◦ ĥ, we now seek to bound the
expected training error Et∼η [ψt (h)] for a new task drawn from the environment
(with corresponding training sample), in terms of the average of the observed
ψt (h), uniformly over the set of feature maps h ∈ H. Observe that, given the
bound on (2) such a bound will also give a bound on the expected true error
when using ĥ on new tasks in the environment η, a meta-generalization bound,
so to speak (for more details on this type of argument see [14] or [16]).

The Rademacher average in question is

R (H, x̄) = E sup
h∈H

T∑

t=1

εtψt (h) .

A Vector-Contraction Inequality for Rademacher Complexities 9

To apply Theorem 2 we look for a Lipschitz property of the ψt. For h ∈ H define
φt (h) ∈ R

K×n by [φt (h)]k,i = hk (xt
i). Then for h, h′ ∈ H

ψt (h) − ψt (h′) ≤ max
f∈F

1
n

n∑

i=1

f (h (xi)) − f (h′ (xi))

≤ L

n

n∑

i=1

‖h (xi) − h′ (xi)‖ ≤ L√
n

‖φt (h) − φt (h′)‖ ,

where the first inequality comes from the Lipschitz property of the functions in
F and the second from Jensen’s inequality. From Theorem 2 we conclude that

R (H, x̄) ≤ L√
n
E sup

h∈H

∑

tki

εtkihk

(
xt

i

)
.

How to proceed depends on the nature of the feature maps in H. Examples are
given in [14] or [16], but see also the next section.

4 Bounding the Rademacher Complexity of
Vector-Valued Classes

At first glance the expression

E sup
f∈F

∑

i,k

εikfk (xi)

appears difficult to bound. Nevertheless there are some general techniques which
can be used, such as the reduction to scalar classes, or the use of duality for linear
classes. We also give an example in a truly infinite dimensional setting.

4.1 Reduction to Component Classes

Suppose F1, ...,FK are classes of scalar valued functions and define a vector-
valued class

∏
k Fk with values in R

K by
∏

k

Fk = {x �→ (f1 (x) , ..., fK (x)) : fk ∈ Fk} .

Then, since the constraints are independent, the Rademacher average of the
product class

E sup
f∈∏k Fk

∑

i,k

εikfk (xi) =
∑

k

E sup
f∈Fk

∑

i

εif (xi) (3)

is just the sum of the Rademacher averages of the scalar valued component
classes. Now let F be any function class with values in R

K and for k ∈ {1, ...,K}
define a scalar-valued class Fk by

Fk = {x �→ fk (x) : f = (f1, ..., fk, ..., fK) ∈ F} .

10 A. Maurer

Then F ⊆∏k Fk, so by the identity (3)

E sup
f∈F

∑

i,k

εikfk (xi) ≤
∑

k

E sup
f∈Fk

∑

i

εif (xi) .

This is loose in many interesting cases, but for product classes it is unimprovable.

4.2 Linear Classes Defined by Norms

Let H be a separable real Hilbert-space and let B (H,RK
)

be the set of bounded
linear transformations from H to R

K . Then every member of B (H,RK
)

is char-
acterized by a sequence of weight vectors (w1, ..., wK) with wk ∈ H. Let ||| · |||
be a norm on B (H,RK

)
with dual norm ||| · |||∗. Fix some real number B, and

define a class F of functions from H to R
K by

F =
{
x �→ Wx : W ∈ B (H,RK

)
, |||W ||| ≤ B

}
.

Then

E sup
f∈F

∑

i,k

εikfk (xi) = E sup
|||(w1,...,wK)|||≤B

∑

k

〈
wk,

∑

i

εikxi

〉

= E sup
|||W |||≤B

tr (D∗W) ≤ B E|||D∗|||∗,

where D ∈ B (H,RK
)

is the random transformation

v �→
(〈

v,
∑

i

εi1xi

〉
, ...,

〈
v,
∑

i

εiKxi

〉)
.

The details of bounding E|||D∗|||∗ then depend on the nature of the norm ||| · |||.
The simplest case is the Hilbert-Schmidt or Frobenius norm, where

E|||D∗|||∗ = E

√√√√∑

k

∥∥∥∥∥
∑

i

εikxi

∥∥∥∥∥

2

≤
√

K
∑

i

‖xi‖2.

More interesting are mixed norms or the trace norm. A valuable reference for
this approach is [10].

4.3 Operator Valued Kernels

We give an example in a truly infinite dimensional setting and refer to the mech-
anism of learning vector valued functions as exposed in [19]. There is a generic
separable Hilbert space H and a kernel κ : X × X → L (H) satisfying certain
positivity and regularity properties as described in [19], where X is some arbi-
trary input space. Then there exists an induced feature-map Φ : X → L (�2,H)
such that the kernel is given by

κ (x, y) = Φ (x) Φ∗ (y)

A Vector-Contraction Inequality for Rademacher Complexities 11

and the class of H-valued functions to be learned is

{x �→ fw (x) = Φ (x) w : ‖w‖ ≤ B} ,

where also ‖fw (x)‖H = ‖w‖√κ (x, x). Then for any sample x = (x1, ..., xn) ∈
X n and L-Lipschitz loss functions hi : H → R we have

E sup
‖w‖≤B

∑

i

εihi (Φ (xi) w) ≤
√

2LE sup
‖w‖≤B

∑

i,k

εik 〈Φ (xi) w, ek〉

=
√

2LE sup
‖w‖≤B

〈
w,
∑

i,k

εikΦ (xi)
∗
ek

〉

≤
√

2LBE

∥∥∥∥∥∥

∑

i,k

εikΦ (xi)
∗
ek

∥∥∥∥∥∥

≤
√

2LB

⎛

⎝
∑

i,k

∥∥Φ (xi)
∗
ek

∥∥2
⎞

⎠
1/2

=
√

2LB

(
∑

i

tr κ (xi, xi)

)1/2

.

Here we used Corollary 1 in the first and Cauchy-Schwarz in the second inequal-
ity. Then we use Jensen’s inequality combined with orthonormality of the
Rademacher sequence. For the result to make sense we need the κ (xi, xi) to
be trace class. In the case H = R we obtain the standard result for the scalar
case, as in [1]. The bound above can be used to prove a non-asymptotic upper
bound for the algorithm described in [5], where vector-valued regression with
square loss and Tychonov regularization in ‖fw‖ = ‖w‖ is considered.

5 Proof of the Contraction Inequality

We start with some simple observations on subgaussian random variables.

Lemma 1. If X is subgaussian with subgaussian-constant b and v is a unit
vector in R

K then

Pr

{∣∣∣∣∣

K∑

k=1

vkXk

∣∣∣∣∣ > t

}
≤ 2e−t2/(2b2),

where X1, ...,XK are independent copies of X.

12 A. Maurer

Proof. For any λ ∈ R

E exp

(
λ
∑

k

vkXk

)
=
∏

k

E exp (λvkXk)

≤
∏

k

exp
(

λ2 b2

2
v2

k

)

= exp
(

λ2b2

2

)
.

The first line follows from independence of the Xi, the next because X is sub-
gaussian, and the last because v is a unit vector. It then follows from Markov’s
inequality that

Pr

{
∑

k

vkXk > t

}
≤ E exp

(
λ

(
∑

k

vkXk − t

))

≤ exp
(

λ2b2

2
− λt

)

= e−t2/(2b2),

where the last identity is obtained by optimizing in λ. The conclusion follows
from a union bound.

For the purpose of vector-contraction inequalities the crucial property of sub-
gaussian random variables is the following.

Proposition 1. Let X be nontrivial and subgaussian with subgaussian parame-
ter b and let X = (X1, ...,XK , ...) be an infinite sequence of independent copies
of X. Then

(i) For every v ∈ �2 the sequence of random variables YK =
∑K

i=1 Xkvk con-
verges in Lp for 1 ≤ p < ∞to a random variable denoted by

∑∞
k=1 Xkvk.

The map v �→∑∞
k=1 Xkvk is a bounded linear transformation from �2 to Lp.

(ii) There exists a constant C < ∞ such that for every v ∈ �2

‖v‖ ≤ CE

∣∣∣∣∣

∞∑

k=1

Xkvk

∣∣∣∣∣ .

The proof, given below, is easy and modeled after the proof of the Khintchine
inequalities in [12].

For Rademacher variables the best constant is C =
√

2 ([22], see also inequal-
ity (4.3) in [12] or Theorem 5.20 in [4]). In the standard normal case the inequal-
ity in (ii) becomes equality with C =

√
π/2. This is an easy consequence of the

rotation invariance of isonormal processes.

A Vector-Contraction Inequality for Rademacher Complexities 13

Proof (Proof of Proposition 1). Let X have subgaussian-constant b.
(i) Assume first that ‖v‖ = 1. For 1 ≤ p < ∞ it follows from integration by

parts that for any v ∈ �2

E

∣∣∣∣∣

K∑

k=1

vkXk

∣∣∣∣∣

p

= p

∫ ∞

0

tp−1 Pr

{∣∣∣∣∣

K∑

k=1

vkXk

∣∣∣∣∣ > t

}
dt

≤ 2p

∫ ∞

0

tp−1e−t2/(2b2)dt,

where the last inequality follows from Lemma 1. The last integral is finite and
depends only on p and b. By homogeneity it follows that for some constant B
and any v ∈ �2 (

E

∣∣∣∣∣

K∑

k=1

vkXk

∣∣∣∣∣

p)1/p

≤ B

(
K∑

k=1

v2
k

)1/2

which implies convergence in Lp. This proves existence and boundedness of the
map v �→∑∞

k=1 vkXk. Linearity is established with standard arguments.
(ii) Let C be the finite constant

C :=

(
8
∫∞
0

t3e−t2/(2b2)dt
)1/2

E [X2]3/2
.

It suffices to prove the conclusion for unit vectors v ∈ �2. From the first part we
obtain

E

∣∣∣∣∣
∑

k

vkXk

∣∣∣∣∣

4

≤ 8
∫ ∞

0

t3e−t2/(2b2)dt

Combined with Hölder’s inequality this implies

E
[
X2
]

= E

⎛

⎝
∣∣∣∣∣
∑

k

vkXk

∣∣∣∣∣

2
⎞

⎠ = E

⎛

⎝
∣∣∣∣∣
∑

k

vkXk

∣∣∣∣∣

4/3 ∣∣∣∣∣
∑

k

vkXk

∣∣∣∣∣

2/3
⎞

⎠

≤
⎛

⎝E

∣∣∣∣∣
∑

k

vkXk

∣∣∣∣∣

4
⎞

⎠
1/3(

E

∣∣∣∣∣
∑

k

vkXk

∣∣∣∣∣

)2/3

≤
(

8
∫ ∞

0

t3e−t2/(2b2)dt

)1/3
(
E

∣∣∣∣∣
∑

k

vkXk

∣∣∣∣∣

)2/3

.

Dividing by E
[
X2
]

and taking the power of 3/2 gives

1 ≤ CE

∣∣∣∣∣
∑

k

vkXk

∣∣∣∣∣ .

14 A. Maurer

To prove the main vector contraction result we first consider only a single
Rademacher variable ε and then complete the proof by induction.

Lemma 2. Let X be nontrivial, symmetric and subgaussian. Then there exists
a constant C < ∞ such that for any countable set S and functions ψ : S → R,
φ : S → �2 and f : S → R satisfying

∀s, s′ ∈ S, ψ (s) − ψ (s′) ≤ ‖φ (s) − φ (s′)‖
we have

E sup
s∈S

εψ (s) + f (s) ≤ CE sup
s∈S

∑

k

Xkφ (s)k + f (s) ,

where the Xk are independent copies of X for 1 ≤ k ≤ ∞, and φ (s)k is the k-th
coordinate of φ (s).

Proof. For C we take the constant of Proposition 1 and we let Y = CX and
Yk = CXk so that for every v ∈ �2

‖v‖ ≤ E

∣∣∣∣∣
∑

k

vkYk

∣∣∣∣∣ . (4)

Let δ > 0 be arbitrary. Then, by definition of the Rademacher variable,

2E sup
s∈S

(εψ (s) + f (s)) − δ

= sup
s1,s2∈S

ψ (s1) + f (s1) − ψ (s2) + f (s2) − δ

≤ ψ (s∗
1) − ψ (s∗

2) + f (s∗
1) + f (s∗

2) (5)
≤ ‖φ (s∗

1) − φ (s∗
2)‖ + f (s∗

1) + f (s∗
2) (6)

≤ E

∣∣∣∣∣
∑

k

Yk (φ (s∗
1)k − φ (s∗

2)k)

∣∣∣∣∣+ f (s∗
1) + f (s∗

2) (7)

≤ E sup
s1,s2∈S

∣∣∣∣∣
∑

k

Ykφ (s1)k −
∑

k

Ykφ (s2)k

∣∣∣∣∣+ f (s1) + f (s2) (8)

= E sup
s1∈S

∑

k

Ykφ (s1)k + f (s1) + E sup
s2∈S

−
∑

k

Ykφ (s2)k + f (s2) (9)

= 2

(
E sup

s∈S

∑

k

Ykφ (s)k + f (s)

)
. (10)

In (5) we pass to approximate maximizers s∗
1, s

∗
2 ∈ S, in (6) we use the assumed

Lipschitz property relating ψ and φ, and in (7) we apply inequality (4). In (8) we
use linearity and bound by a supremum in s1 and s2. In this expression we can
simply drop the absolute value, because for any fixed configuration of the Yk the
maximum will be attained when the difference is positive, since the remaining
expression f (s1)+f (s2) is invariant under the exchange of s1 and s2. This gives
(9). The identity (10) then follows from the symmetry of the variables Yk. Since
δ > 0 was arbitrary, the result follows.

A Vector-Contraction Inequality for Rademacher Complexities 15

Proof (Proof of Theorem 2). The constant C and the Yk are chosen as in the
previous Lemma. We prove by induction that ∀m ∈ {0, ..., n}

E sup
s∈S

∑

i

εiψi (s) ≤ E

⎡

⎣sup
s∈S

∑

i:1≤i≤m

∑

k

Yikφi (s)k +
n∑

i:m<i≤n

εiψi (s)

⎤

⎦ .

For m = n this is the desired inequality. The case m = 0 is an obvious identity.
Assume the claim to hold for fixed m − 1, with m ≤ n. We denote Em =
E [.| {εi, Yik : i 	= m}] and define f : S → R by

f (s) =
∑

i:1≤i<m

∑

k

Yikφi (s)k +
n∑

i:m<i≤n

εiψi (s) .

Then

E sup
s∈S

∑

i

σiψi (s) ≤ E

⎡

⎣sup
s∈S

∑

i:1≤i<m

∑

k

Yikφi (s)k +
n∑

i:m≤i≤n

εiψi (s)

⎤

⎦

= E Em sup
s∈S

(εmψm (s) + f (s))

≤ E Em sup
s∈S

∑

k

Ymkφm (s)k + f (s)

= E sup
s∈S

∑

i:1≤i≤m

∑

k

Yikφi (s)k +
∑

i:m<i≤n

εiψi (s) .

The first inequality is the induction hypothesis, the second is Lemma 2.

6 A Negative Result

Conjecture 1 can be refuted by a simple counterexample. Let X = �2 with
canonical basis (ei) and set xi = ei for 1 ≤ i ≤ n. Let F be the unit ball in the
set of bounded operators B (�2), and for h we take the function h : x ∈ �2 �→ ‖x‖,
which has Lipschitz constant equal to one.

If the conjecture was true then there is a universal constant c such that

E sup
T∈B(H):‖T‖∞≤1

∑

i

εi ‖Txi‖ ≤ cE sup
T∈B(H):‖T‖∞≤1

∥∥∥∥∥
∑

i

εiTxi

∥∥∥∥∥ . (11)

For any Rademacher sequence ε = (εi) we let Tε be the operator defined by
Tεei = ei if i ≤ n and εi = 1, and Tε = 0 in all other cases. Clearly Tε has norm
‖Tε‖∞ ≤ 1 (it is the orthogonal projection to the subspace spanned by the basis
vectors ei such that εi = 1). Then

n

2
= E |{i : εi = 1}| = E

∑

i

εi ‖Tεxi‖ ≤ E sup
T∈B(H):‖T‖∞≤1

∑

i

εi ‖Txi‖ .

16 A. Maurer

But on the other hand, the orthonormality of the Rademacher sequence implies
that

E sup
T∈B(H):‖T‖∞≤1

∥∥∥∥∥
∑

i

εiTxi

∥∥∥∥∥ ≤ E

∥∥∥∥∥
∑

i

εiei

∥∥∥∥∥ ≤ √
n.

With (11) we obtain n/2 ≤ c
√

n for some universal constant c, which is absurd.

References

1. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds
and structural results. J. Mach. Learn. Res. 3, 463–482 (2002)

2. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198
(2000)

3. Biau, G., Devroye, L., Lugosi, G.: On the performance of clustering in Hilbert
spaces. IEEE Trans. Inf. Theory 54(2), 781–790 (2008)

4. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. Oxford Univer-
sity Press, Oxford (2013)

5. Caponnetto, A., De Vito, E.: Optimal rates for regularized least-squares algorithm.
Found. Comput. Math. 7, 331–368 (2007)

6. Chapelle, O., Wu, M.: Gradient descent optimization of smoothed information
retrieval metrics. Inf. Retr. 13(3), 216–235 (2010)

7. Chaudhuri, S., Tewari, A.: Generalization bounds for learning to rank: does the
length of document lists matter? In: ICML 2015 (2015)

8. Ciliberto, C., Poggio, T., Rosasco, L.: Convex learning of multiple tasks and their
structure (2015). arXiv preprint: arXiv:1504.03101

9. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

10. Kakade, S.M., Shalev-Shwartz, S., Tewari, A.: Regularization techniques for learn-
ing with matrices. J. Mach. Learn. Res. 13, 1865–1890 (2012)

11. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the
generalization error of combined classifiers. Ann. Stat. 30(1), 1–50 (2002)

12. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and
Processes. Springer, Berlin (1991)

13. Lei, Y., Dogan, U., Binder, A., Kloft, M.: Multi-class SVMs: from tighter data-
dependent generalization bounds to novel algorithms. In: Advances in Neural Infor-
mation Processing Systems, pp. 2026–2034 (2015)

14. Maurer, A.: Transfer bounds for linear feature learning. Mach. Learn. 75(3), 327–
350 (2009)

15. Maurer, A., Pontil, M.: K-dimensional coding schemes in Hilbert spaces. IEEE
Trans. Inf. Theory 56(11), 5839–5846 (2010)

16. Maurer, A., Pontil, M., Romera-Paredes, B.: The benefit of multitask representa-
tion learning. J. Mach. Learn. Res. 17(81), 1–32 (2016)

17. McDonald, D.J., Shalizi, C.R., Schervish, M.: Generalization error bounds for sta-
tionary autoregressive models (2011). arXiv preprint: arXiv:1103.0942

18. Meir, R., Zhang, T.: Generalization error bounds for Bayesian mixture algorithms.
J. Mach. Learn. Res. 4, 839–860 (2003)

19. Michelli, C.A., Pontil, M.: On learning vector-valued functions. J. Mach. Learn.
Res. 6, 615–637 (2005)

http://arxiv.org/abs/1504.03101
http://arXiv.org/abs/1504.03101
http://arxiv.org/abs/1103.0942
http://arXiv.org/abs/1103.0942

A Vector-Contraction Inequality for Rademacher Complexities 17

20. Mroueh, Y., Poggio, T., Rosasco, L., Slotine, J.J.: Multiclass learning with simplex
coding. In: Advances in Neural Information Processing Systems, pp. 2789–2797
(2012)

21. Slepian, D.: The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J.
41, 463–501 (1962)

22. Szarek, S.: On the best constants in the Khintchine inequality. Stud. Math. 58,
197–208 (1976)

Localization of VC Classes: Beyond Local
Rademacher Complexities

Nikita Zhivotovskiy1,2(B) and Steve Hanneke3

1 Moscow Institute of Physics and Technology, Moscow, Russia
nikita.zhivotovskiy@phystech.edu

2 Institute for Information Transmission Problems, Moscow, Russia
3 Princeton, NJ 08542, USA
steve.hanneke@gmail.com

Abstract. In statistical learning the excess risk of empirical risk min-

imization (ERM) is controlled by
(

COMPn(F)
n

)α

, where n is a size of

a learning sample, COMPn(F) is a complexity term associated with a
given class F and α ∈ [1

2
, 1] interpolates between slow and fast learn-

ing rates. In this paper we introduce an alternative localization app-
roach for binary classification that leads to a novel complexity measure:
fixed points of the local empirical entropy. We show that this complex-
ity measure gives a tight control over COMPn(F) in the upper bounds
under bounded noise. Our results are accompanied by a novel minimax
lower bound that involves the same quantity. In particular, we practi-
cally answer the question of optimality of ERM under bounded noise for
general VC classes.

Keywords: PAC learning · Local metric entropy · Local Rademacher
process · Shifted empirical process · Offset Rademacher process ·
Empirical risk minimization · VC dimension · Star number · Alexander’s
capacity · Disagreement coefficient · Massart’s noise condition

1 Introduction

Since the early days of statistical learning theory understanding of the general-
ization abilities of empirical risk minimization has been a central question. In
1968, Vapnik and Chervonenkis [23] introduced the combinatorial property of
classes of classifiers which we now call the VC dimension, which plays a crucial
role not only in statistics but in many other areas of mathematics. By now it
is strongly believed that the VC dimension fully characterizes the properties of
the empirical risk minimization algorithm. But this appears to be true only in
the agnostic case, when no assumptions are made on the labelling mechanism.
It was noticed several times in the literature, that when considering bounded
noise VC dimension alone is not a right complexity measure of ERM [18,20].
Until now this phenomenon was discussed only for several specific classes. The
main aim of this paper is to present this yet unknown combinatorial complexity
measure.
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 18–33, 2016.
DOI: 10.1007/978-3-319-46379-7 2

Localization of VC Classes: Beyond Local Rademacher Complexities 19

In the last twenty years many efforts were made to understand the conditions
that imply fast 1

n convergence rates, instead of slow 1√
n

rates. At the beginning
of the 2000s, so-called localized complexities (Bartlett et al. [3], Koltchinskii [12])
were introduced to statistical learning and became popular techniques for prov-
ing 1

n rates in different scenarios. But in addition to better rates, localization
means that only a small vicinity of the best classifier really affects the learning
complexity. We still lack tight error bounds based on localization and expressed
in terms of intuitively-simple and calculable combinatorial properties of the class.
Existing approaches based on localization (mainly, via local Rademacher com-
plexities) are typically difficult to calculate directly, and the simpler relaxations
of these bounds in the literature use localization largely to gain improvements
due to the noise conditions, but fail to maintain the important improvements
due to the local structure of the function class (i.e., localization of the complex-
ity term in the bound). The present work explores this aspect of localization,
resulting in a complexity measure, which correctly captures the optimal rates
under bounded noise.

2 Notation and Previous Results

We define the instance space X and the label space Y = {1,−1}, and denote
Z = X × Y. We assume that the set Z is equipped with some σ-algebra and a
probability measure P on measurable subsets is defined. We also assume that
we are given a set of classifiers F . The risk of a classifier f is its probability
of error, denoted R(f) = P (f(X) �= Y). We denote the Bayes classifier by
f∗(x) = sign(η(x)), where η(x) = E[Y |X = x]. Symbol ∧ will denote minimum
of two real numbers, ∨ will denote maximum of two real numbers and 1[A] will
denote an indicator of the event A. For any subset B ⊆ F define the region of
disagreement as DIS(B) = {x ∈ X | ∃f, g ∈ B s. t. f(x) �= g(x)}. We will also
consider abstract real-valued function classes, which will usually be denoted by
G. We will slightly abuse the notation and by log(x) always mean truncated
logarithm: ln(max(x, e)). The notation f(n) � g(n) or g(n) � f(n) will mean
that for some universal constant c > 0 it holds that f(n) ≤ cg(n) for all n ∈ N.
Similarly, we introduce f(n) 	 g(n) to be equivalent to g(n) � f(n) � g(n).

A learner observes ((X1, Y1), . . . , (Xn, Yn)), an i.i.d. training sample from
an unknown distribution P . Also denote Zi = (Xi, Yi). By Pn we will denote
an empirical mean. Empirical risk minimization (ERM) refers to any learning
algorithm with the following property: given a training sample, it outputs a
classifier f̂ that minimizes Rn(f) = Pn1[f(X) �= Y] among all f ∈ F . At times
we also refer to a ghost sample, which is another n i.i.d. P -distributed samples,
independent of the training sample, and we denote by P ′

n the empirical mean
with respect to the ghost sample. We say a set {x1, . . . , xk} ∈ X k is shattered
by F if there are 2k distinct classifications of {x1, . . . , xk} realized by classifiers
in F . The VC dimension of F is the largest integer d such that there exists a set
{x1, . . . , xd} shattered by F [23]. We define the growth function SF (n) as the
maximum possible number of different classifications of a set of n points realized
by classifiers in F .

20 N. Zhivotovskiy and S. Hanneke

Definition 1 (Massart and Nédélec [18]). (P,F) is said to satisfy Massart’s
bounded noise condition if f∗ ∈ F and for some h ∈ [0, 1] it holds |η(X)| ≥ h
with probability 1. This constant h is referred to as the margin parameter.

For any F , the set of all corresponding distributions satisfying Massart’s bounded
noise condition will be denoted by P(h,F). The case h = 1 corresponds to the so-
called realizable case, where Y = f∗(X) almost surely, and h = 0 corresponds to
a well-specified agnostic case. The following result is classic [4]. Let F be a class
with VC-dimension d. For any empirical risk minimizer f̂ over n samples, for any

P ∈ P(0,F), we have E(R(f̂) − R(f∗)) �
√

d
n . Moreover, the following lower

bound exists for an output f̃ of any algorithm based on n samples: there exists

P ∈ P(0,F) such that E(R(f̃) − R(f∗)) �
√

d
n ∧ 1. Thus we know that the VC

dimension is the right complexity measure for empirical risk minimization, and
indeed for optimal learning, when no restrictions are made on the probability
distribution. Interestingly, this is not generally the case when h > 0. In this
paper, we find this yet unknown essentially correct complexity measure, when h
is bounded away from 0 and 1. But first, we review a refinement to the above
bound for the case h > 0, due to Giné and Koltchinskii [6]. Specifically, consider
the following definition.

Definition 2. For ε0 > 0 fix a set Fε0 =
{
f ∈ F : PX

(
f(X) �= f∗(X)

) ≤ ε0
}
.

For ε ∈ (0, 1] define τ(ε) = sup
ε0≥ε

(
ε−1
0 PX{x ∈ X : ∃f ∈ Fε0 s.t. f(x) �= f∗(x)}) .

This quantity was introduced to the empirical processes literature by Alexander
[1], and is referred to as Alexander’s capacity by Giné and Koltchinskii [6].
The same quantity appeared independently in the literature on active learning,
where it is referred to as the disagreement coefficient [7]. τ(ε) is a distribution-
dependent measure of the diversity of ways in which classifiers in a relatively
small vicinity of f∗ can disagree with f∗. Giné and Koltchinskii [6] gave the
following upper bound. Let F be a class of VC dimension d, and f̂ the classifier
produced by an ERM based on n training samples. For any probability measure
P ∈ P(h,F),

E(R(f̂) − R(f∗)) � d

nh
log

(
τ

(
d

nh2

))
. (1)

This bound is the best simple, easily calculable upper bound known so far for
ERM in the case of binary classification under Massart’s bounded noise condi-
tion. The proof of this bound is based on the analysis of the localized Rademacher
processes. Thus we may consider this result as the best known relaxation of the
local Rademacher analysis. Very recently, Hanneke and Yang [8] introduced a
distribution-free complexity measure, called the star number. It is defined as
follows.

Definition 3. The star number s is the largest integer such that there exist
distinct x1, . . . , xs ∈ X and f0, f1, . . . , fs ∈ F such that, for all i ∈ {1, . . . , s},
DIS({f0, fi}) ∩ {x1, . . . , xs} = {xi}.

Localization of VC Classes: Beyond Local Rademacher Complexities 21

Similar to Alexander’s capacity, the star number describes how diverse the small-
size disagreements with a fixed classifier f0 can be. One of the most interesting
results about this value is its connection with the worst case of Alexander’s
capacity. The paper of Hanneke and Yang contains the following equality:

sup
f∗∈F

sup
PX

τ(ε) = s ∧ 1
ε .

An immediate corollary of this and (1) is that, for any P ∈ P(h,F), E(R(f̂) −
R(f∗)) � d

nh log
(

nh2

d ∧ s
)

. Since s controls Alexander’s capacity with equality,
there is no room for any kind of improvement using the bound of Giné and
Koltchinskii if we consider distribution-free upper bounds.

3 Preliminaries from Empirical Processes

Given a function class G mapping Z to R, one may consider the following quan-
tity: sup

g∈G
(P − Pn) g. This random value plays in important role in statistical

learning theory. Since the pioneering paper of Vapnik and Chervonenkis [23], the
analysis of learning algorithms is usually performed by the tight uniform control
over the process (P − Pn) g for a special class of functions. The behaviour of the
supremum of this empirical process is controlled by a supremum of the so-called

Rademacher process: 1
nEε max

g∈G

(
n∑

i=1

εigi

)
, where gi denotes g(Zi), εi are inde-

pendent Rademacher variables taking values ±1 with equal probabilities, and Eε

denoted the expectation over the εi random variables (conditioning on the Zi

variables). We will instead consider different quantities, so-called shifted empir-
ical processes, introduced by Lecué and Mitchell [14]. Given c > 0, we consider
sup
g∈G

(P − (1 + c)Pn) g. The second important quantity is an expected supremum

of the offset Rademacher process, introduced recently by Liang, Rakhlin, and

Sridharan [16]: 1
nEε max

g∈G

(
n∑

i=1

εigi − c′g2i

)
. This quantity was introduced for the

analysis of a specific aggregation procedure under the squared loss and so far
has not been related to a shifted process. In this paper, we will investigate some
new properties of these processes and will show how they may be used in the
classification framework. The following short lemma appears in a more general
form in [16] (Lemma 5).

Lemma 1. Let V ⊂ {0, 1}n be a finite set of binary vectors of cardinality N .
Then for any c > 0,

1
n
Eε max

v∈V

(
n∑

i=1

εivi − cvi

)
≤ 1

2c

log(N)
n

.

22 N. Zhivotovskiy and S. Hanneke

Lemma 2 (Shifted Symmetrization in Expectation). Let G be a function
class and c ≥ 0 an absolute constant. Then

E sup
g∈G

((P − (1 + c)Pn)g) ≤ c + 2
n

EEε sup
g∈G

(
n∑

i=1

εig(Zi) − c

c + 2
g(Zi)

)
.

Proof. Denote g(Zi) by gi. Using the symmetrization trick and Jensen’s inequal-
ity,

E sup
g∈G

((P − (1 + c)Pn)g) ≤ E sup
g∈G

(P ′
ng − (1 + c)Png)

= E sup
g∈G

((1 + c/2)(P ′
ng − Png) − cP ′

ng/2 − cPng/2)

≤ EEε sup
g∈G

(
c+2
n

n∑

i=1

εigi − cPng

)
= (c + 2)EEε sup

g∈G

(
1
n

n∑

i=1

εigi − c

c + 2
Png

)
.

�
Let s be the star number of a class of binary classifiers F . Hanneke [9] recently

proved that EP (DIS(Vn)) ≤ s
n+1 , where Vn = {f ∈ F|Pn1[f(X) �= f∗(X)] = 0}

is a version space, and used this fact to bound the risk of ERM. In this same
spirit, this inequality will be important in our next theorem, one of the novel
contributions of the present work. Its proof is in the appendix.

Theorem 1. Let s be the star number of a class of binary classifiers F . In the
realizable case, for any ERM f̂ ,

ER(f̂) � log (SF (s ∧ n))
n

.

Example 1. Theorem 1 yields examples showing the gaps in the distribution-
free bound (1) in the realizable case. Specifically, suppose X = {x1, . . . , xs},
define class F1 as the classifiers on this X with at most d points classified 1,
and class F2 as the classifiers having at most d − 1 points classified 1 among
{x1, . . . , xd−1} and at most one point classified 1 among {xd, . . . , xs}. For both
F1 and F2, the VC dimension is d and the star number is s. However, for F1

Theorem 1 gives a bound of order
d log(s∧n

d)
n , but for F2 it gives a smaller bound

of order d+log(s∧n)
n . In both cases, these are known to be tight characterizations

of ERM in the realizable case [9,10]. It should be noted, however, that one can
also construct examples where Theorem 1 is itself not tight.

4 Local Metric Entropy

This section presents our main result. Toward this end, we introduce a new
complexity measure: the worst-case local empirical packing numbers. Given a set
of n points we fix some f ∈ F and construct a Hamming ball of the radius γ:

BH(f, γ, {x1, . . . , xn}) = {g ∈ F|ρH(f, g) ≤ γ},

Localization of VC Classes: Beyond Local Rademacher Complexities 23

where ρH(f, g) = |{i ∈ {1, . . . , n} : f(xi) �= g(xi)}|. When x1, . . . , xn are clear
from the context, we sometimes simply write BH(f, γ). We further introduce

Mloc
1 (F , γ, n, h) = max

x1,...,xn

max
f∈F

max
ε≥γ

M1(BH(f, ε/h, {x1, . . . , xn}), ε/2),

where M1(H, ε) denotes the size of a maximal ε-packing of H under ρH distance
(for the given x1, . . . , xn points). This quantity measures how one can pack a
ball in F by balls of smaller radius. For any h, h′ ∈ (0, 1], define

γloc
h,h′(n,F) = max{γ ∈ N : hγ ≤ log(Mloc

1 (F , γ, n, h′))}.

When F is clear from the context, we simply write γloc
h,h′(n) instead of γloc

h,h′(n,F).
The quantity γloc

h,h′(n) defines the fixed point of a local empirical entropy.
We note that, because 1 ≤ d < ∞ in this work, when h, h′ > 0 the set on the

right in this definition is finite and nonempty, so that γloc
h,h′(n) is a well-defined

strictly-positive integer. Indeed, for any h, h′ ∈ (0, 1], the value γ = � 1
h� satisfies

hγ ≤ 1, so that (because log(·) is the truncated logarithm) this γ is contained
in the set; in particular, this implies hγloc

h,h′(n,F) ≥ h� 1
h� ≥ 1

2 always. The next
theorem is the main upper bound of this paper. The rest of this section is devoted
to its proof.

Theorem 2. Fix any function class F ; denote its VC dimension d and star

number s. Fix any h ∈
(√

d
n , 1

]
and suppose γloc

h,h(n) > 0. If P ∈ P(h,F), then

for any ERM f̂ ,

E(R(f̂) − R(f∗)) �
γloc

h,h(n)
n

. (2)

Moreover,

d + log
(
nh2 ∧ s

)

h
� γloc

h,h(n) �
d log

(
nh2

d ∧ s
)

h
+

d log
(
1
h

)

h
. (3)

Our complexity term (3) is not worse than the upper bound of Giné and
Koltchinskii (1) when h is bounded from 0 by a constant. Another interesting
property is that the bound (2) involves neither the VC dimension nor the star
number explicitly. At the same time one can control the complexity term with
both of them from below and above. We should mention that the connection
between global covering numbers and VC dimension is well known [11].

Consider the excess loss class GY = {(x, y) → 1[f(x) �= y] − 1[f∗(x) �=
y] for f ∈ F} and the class Gf∗ = {x → 1[f(x) �= f∗(x)] for f ∈ F}, which
may be interpreted as an excess loss class in the realizable case. For any g ∈ GY
it holds g2(x, y) = 1[f(x) �= f∗(x)] = 1

2 |f(x) − f∗(x)| = 1
4 (f(x) − f∗(x))2. And

also for any g ∈ GY it holds g(x, y) = y(f∗(x)−f(x))
2 and R(f∗) ≤ 1

2 (1 − h) [5].

24 N. Zhivotovskiy and S. Hanneke

Lemma 3 (Contraction). Let GY be an excess loss class associated with a
given class F , and fix any h ∈ [0, 1]. For any c ∈ [0, 1] and any P ∈ P(h,F),

EEε sup
g∈GY

(
n∑

i=1

εig(Xi, Yi)−cg(Xi, Yi)

)
≤ 5

4
EEξ sup

g′∈Gf∗

(
n∑

i=1

ξig
′(Xi)− 4

5
hcg′(Xi)

)
,

where ξ1, . . . , ξn are r. v. conditionally independent given X1, . . . , Xn, with
E[ξi|X1, . . . , Xn] = 0 and E[exp(λξi)|X1, . . . , Xn] ≤ exp(λ2

2) for all λ.

Proof. We will denote g(Xi, Yi) by gi. First we notice that any g ∈ GY may be
defined by some f ∈ F . Then note that

EEε sup
g∈GY

(
n∑

i=1

εigi − cgi

)
= EEε sup

f∈F

(
n∑

i=1

1
2
εiYi(f(Xi) − f∗(Xi)) − cgi

)

= EEε sup
f∈F

(
n∑

i=1

1
2
εi(f(Xi) − f∗(Xi)) − cgi

)
=

1
4
EEε sup

g∈GY

(
n∑

i=1

εig
2
i − 4cgi

)
.

Now consider the term −
n∑

i=1

g(Xi, Yi). Denoting h′
i = 1 − 2P (f∗(Xi) �= Yi|Xi)

(an Xi-dependent random variable), we know that 1 ≥ h′
i ≥ h almost surely.

Furthermore, the event that f∗(Xi) �= Yi has conditional probability (given
Xi) equal 1

2 (1 − h′
i), and on this event we have g2(Xi, Yi) = −g(Xi, Yi).

Similarly, the event that f∗(Xi) = Yi occurs with conditional probabil-
ity (given Xi) equal 1

2 (1 + h′
i), and on this event we have g2(Xi, Yi) =

g(Xi, Yi). Thus, defining ξ
(h′)
i = h′

i + 1[f∗(Xi) �= Yi] − 1[f∗(Xi) = Yi], these
ξ
(h′)
1 , . . . , ξ

(h′)
n random variables are conditionally independent given X1, . . . , Xn,

with E[ξ(h
′)

i |X1, . . . , Xn] = 0. In particular, if h′
i = 0 for all i, these are

Rademacher random variables, while if h′
i = 1 these random variables are

equal to 0 with probability 1. Now note that, by the above reasoning about

these events −
n∑

i=1

gi = −
n∑

i=1

h′
ig

2
i +

n∑
i=1

ξ
(h′)
i g2i ≤ −(min

i
h′

i)
n∑

i=1

g2i +
n∑

i=1

ξ
(h′)
i g2i .

Therefore, denoting ξ′
i = εi + 4cξ

(h′)
i (which are also conditionally inde-

pendent over i given X1, . . . , Xn) and using the fact that h ≤ h′
i almost

surely, we have 1
4EEε sup

g∈GY

(
n∑

i=1

εig
2
i − 4cgi

)
≤ 1

4EEε sup
g∈GY

(
n∑

i=1

ξ′
ig

2
i − 4hcg2i

)
=

1
4EXEξ′ sup

g′∈Gf∗

(
n∑

i=1

ξ′
ig

′(Xi) − 4hcg′(Xi)
)

. Finally, because εi and ξ
(h′)
i both

have zero conditional mean, so does ξ′
i, and since we also have −5 + 4ch′

i ≤ ξ′
i ≤

5 + 4ch′
i, Hoeffding’s lemma ([5] Lemma 8.1) implies E[exp(λξ′

i)|X1, . . . , Xn] ≤
exp(25λ2/2). The lemma easily follows, taking ξi = ξ′

i/5. �
Lemma 4 (Localization). Let G be a set of functions taking binary values,
containing the zero function, and let c ∈ [0, 1

4] be a constant. Let ξ1, . . . , ξn be
any random variables conditionally independent given X1, . . . , Xn with

Localization of VC Classes: Beyond Local Rademacher Complexities 25

E[ξi|X1, . . . , Xn] = 0 and E[exp(λξi)|X1, . . . , Xn] ≤ exp(λ2

2) for all λ. Then if
cγloc

c,c (n,G) � 1,

1
n
Emax

g∈G

(
n∑

i=1

ξig(Xi) − 4cg(Xi)

)
�

γloc
c,c (n,G)

n
.

The proof of this lemma is deferred to the appendix.

Proof (Theorem 2). Let f̂ be an ERM and ĝ be a corresponding function in the
excess loss class GY . We obviously have E(R(f̂) − R(f∗)) = EP ĝ and Pnĝ ≤ 0.
Then ∀c > 0, E(R(f̂)−R(f∗)) ≤ E(P ĝ− (1+c)Pnĝ) ≤ E sup

g∈GY
(Pg− (1+c)Png).

Now using the symmetrization lemma (Lemma 2) we have

E sup
g∈GY

(Pg − (1 + c)Png) ≤ c + 2
n

EEε sup
g∈GY

(
n∑

i=1

εig(Xi, Yi) − c

c + 2
g(Xi, Yi)

)
.

Applying Lemma 3, we have c+2
n EEε sup

g∈GY

(
n∑

i=1

εig(Xi, Yi) − c
c+2g(Xi, Yi)

)
≤

5(c+2)
4n EEε sup

g′∈Gf∗

(
n∑

i=1

ξig
′(Xi) − 4ch

5(c+2)g
′(Xi)

)
. Now we are ready to apply the

localization lemma (Lemma 4). The conditions on the ξi variables required for
Lemma 4 are supplied by Lemma 3, and all functions in Gf∗ take only binary
values. Thus, for a fixed c,

5(c + 2)
4n

EEε sup
g∈Gf∗

(
n∑

i=1

ξig
′(Xi) − 4ch

5(c + 2)
g′(Xi)

)
�

γloc
h,h(n)

n
.

The following proposition finishes the proof of Theorem2. Its proof is in the
appendix.

Proposition 1. Let d be the VC-dimension and s be the star number of F . For
any h ∈ (0, 1], it holds

d + log
(
nh2 ∧ s

)

h
∧

√
dn � γloc

h,h(n) �
d log

(
nh2

d ∧ s
)

h
+

d log(1
h)

h
.

5 Minimax Lower Bound

In this section we prove that under Massart’s bounded noise condition, fixed
points of the local empirical entropy appear in minimax lower bounds. Results
are based on classic lower bound techniques from the literature [18,20,25], pre-
viously used only for specific classes.

Definition 4. Fix a class of classifiers F . Assume that there exists a positive
constant c ≥ 1 such that for any N the supremum with respect to the radius in
Mloc

1 (F , γloc
h,1(N), N, 1) is achieved at some εh(N) ≤ cγloc

h,1(N). This class will be
referred to as c-pseudoconvex.

26 N. Zhivotovskiy and S. Hanneke

Theorem 3. Let f̃ be the output of any learning algorithm. Fix any cF - pseudo-

convex class F and any h satisfying
√

d
n ≤ h ≤ 1. Then there exists a

P ∈ P(h,F) such that

E(R(f̃) − R(f∗)) � d

nh
+

1
cF

(1 − h)γloc
h,1

(
� ncF h
(1−h)�

)

n
. (4)

Conditions involving the constant cF can be relaxed in different ways. We
may remove the pseudoconvexity assumptions by redefining the local empirical
entropy (4) by removing the maximum with respect to the radius. Alternatively
one can remove the maximum by introducing certain monotonicity assumptions,
which were used implicitly in previous papers [6,20]. In both cases our lower
bound holds with cF = 1. Finally, we note that these monotonicity problems do
not appear for convex classes, as noted by Mendelson in [19]. The next lemma
is given in [17] (Corollary 2.18).

Lemma 5 (Birgé). Let {Pi}N
i=0 be a finite family of distributions defined on

the same measurable space and {Ai}N
i=0 be a family of disjoint events. Then

min
0≤i≤N

Pi(Ai) ≤ 0.71 ∨

N∑
i=1

KL(Pi‖P0)

N log(N + 1)
.

Proof (Theorem 3). First we consider the value Mloc
1 (F , γloc

h,1(N), N, 1). Recall
that the definition of this value considers suprema over f ∈ F and over
N -element subsets of X n. Without loss of generality we assume that these
suprema are achieved at some classifier g ∈ F , some εh(N) ∈ [γloc

h,1(N), N]
and at some particular set XN = {x1, . . . , xN}. Let ki define the number of
copies of xi in XN . We define PXN

({xi}) = ki

N . If all elements are distinct
this measure is just a uniform measure on XN . We introduce a natural para-
metrization: any classifier is represented by an N -dimensional binary vector
and two vectors (for classifiers g, f) disagree only on a set corresponding to
DIS({g, f})∩XN . The set of binary vectors corresponding to classifiers in F will
be denoted by B. For a given binary vector b define Pb = PXN × P b

Y |X , where

P b
Y =1|Xi

= 1+(2bi−1)h
2 . Let f̃b denote the classifier f̃ produced by the learning

algorithm when Pb is the data distribution, and let b̃ denote the binary vector
corresponding to f̃b; thus, b̃ is a random vector, which depends on the para-
meter b only through the n data points having distribution Pb. It is known [5]
that R(f̃) − R(f∗) = E(|η(X)|1[f̃(X) �= f∗(X)]|f̃) ≥ hP ((x, y) : f̃(x) �= f∗(x)),
when P ∈ P(h,F). Furthermore, when Pb is the data distribution, we have
Pb((x, y) : f̃b(x) �= f∗(x)) = ρH(b̃,b)

N . Thus, we have sup
P∈P(h,F)

E(R(f̃) − R(f∗)) ≥

max
b∈B

E

(
hPb((x, y) : f̃b(x) �= f∗(x))

)
≥ h

N max
b∈B

E(ρH(b̃, b)). Let b∗ be the binary

vector in B corresponding to the classifier g defined above, and fix a maximal sub-
set Bloc ⊂ B satisfying the properties that for any b′ ∈ Bloc we have ρH(b′, b∗) ≤

Localization of VC Classes: Beyond Local Rademacher Complexities 27

εh(N) and for any two b′, b′′ ∈ Bloc we have ρH(b′, b′′) > εh(N)/2. Next, define
b̆ as the minimizer of ρH(b̆, b̃) among Bloc. In particular, if b ∈ Bloc, we have
ρH(b̆, b̃) ≤ ρH(b, b̃), so that ρH(b̆, b) ≤ ρH(b̆, b̃)+ ρH(b̃, b) ≤ 2ρH(b̃, b). Therefore,
h
N max

b∈B
E(ρH(b̃, b)) ≥ h

N max
b∈Bloc

E(ρH(b̃, b)) ≥ h
2N max

b∈Bloc
E(ρH(b̆, b)). Recalling that

b̆ is a deterministic function of f̃ , which itself is a function of the n data points, we
may define disjoint subsets Ab of (X ×Y)n, for b ∈ Bloc, where Ab corresponds to
the collection of data sets that would yield b̆ = b. Now, from Markov’s inequality
and the fact that the vectors in Bloc are εh(N)

2 -separated, we have E(ρH(b̆, b)) ≥
εh(N)

2 P (b̆ �= b) = εh(N)
2 (1 − Pn

b (Ab)). Thus we have that h
2N max

b∈Bloc
E(ρH(b̆, b)) ≥

hεh(N)
4N

(
1 − min

b∈Bloc
Pn

b (Ab)
)

. We are interested in using Lemma 5 to upper-

bound min
b∈Bloc

Pn
b (Ab). Toward this end, note that for any b′, b′′ ∈ Bloc, simple

calculations show that KL(Pn
b′‖Pn

b′′) = n
N h ln

(
1+h
1−h

)
ρh(b′, b′′). Because for x > 0

we have ln(x + 1) ≤ x, it holds that h ln
(

1+h
1−h

)
≤ 2h2

1−h . Furthermore, for any

b′, b′′ ∈ Bloc we have ρH(b′, b′′) ≤ 2εh(N). Therefore, KL(Pn
b′‖Pn

b′′) ≤ 4nh2εh(N)
N(1−h) .

Thus, by Lemma 5, min
b∈Bloc

Pn
b (Ab) ≤ 0.71 ∨

4nh2εh(N)
N(1−h)

log(|Bloc|) . Noting that log(|Bloc|) =

log(Mloc
1 (F , εh(N), N, 1)) ≥ hγloc

h,1(N) ≥ hεh(N)/cF , choosing N =
⌈
6ncF h
(1−h)

⌉

yields 4nh2εh(N)
N(1−h) ≤ 2hεh(N)

3cF
≤ 2

3 log(|Bloc|), so that min
b∈Bloc

Pn
b (Ab) ≤ 0.71.

Finally, we have that for h < 1, sup
P∈P(h,F)

E(R(f̃) − R(f∗)) ≥ 0.29hεh(N)
4N ≥

0.29
48cF

(1−h)εh(N)
n ≥ 0.29

48cF
(1−h)γloc

h,1(N)

n . The term d
nh for h >

√
d
n is a part of the

classic lower bound of [18]. �

6 Discussion and Open Problems

Local entropies are well known in statistics since the early work of Le Cam [13].
Since then local metric entropies appear in minimax lower bounds. Simultane-
ously, the upper bounds are usually given in terms of global empirical entropies.
Interestingly, it is sometimes possible to recover optimal rates by considering
only global packings [21,25]. Generally, empirical covering numbers of classes in
statistics have two types of behaviour. There are parametric and VC-type classes
where the logarithm of covering numbers scales as log(1ε) and expressive nonpara-
metric classes where it scales as ε−p for some p > 0. It was proved in [25] that
for nonparametric classes local and global entropies are of the same order. Thus
for such classes localization of the class does not give any significant improve-
ment. We also note that questions similar to ours have been considered recently
by Mendelson [19] and by Lecué and Mendelson [15]. Both papers show that
in the convex regression setup for subgaussian classes distribution dependent

28 N. Zhivotovskiy and S. Hanneke

fixed points of particular local entropies give optimal upper and lower bounds.
However, the direct comparison with their results is problematic due to the fact
that in the VC case we do not have convexity assumptions: they are replaced by
noise assumptions and specifically used by our approach.

We have compared our bound with some of the best known relaxations of
the bounds based on local Rademacher processes (1). However, the title of our
paper demands also a direct comparison with the bounds based solely on local
Rademacher complexities. For this, we need the following result.

Theorem 4 (Sudakov Minoration for Bernoulli Process [22]). Let V ⊂
R

n be a finite set such that for any v1, v2 ∈ V if v1 �= v2 then ‖v1 − v2‖2 ≥ a for
some a > 0 and for any v ∈ V it holds ‖v‖∞ ≤ b for some b > 0. Then

Eε sup
v∈V

n∑

i=1

εivi � a
√

log |V | ∧ a2

b
. (5)

For simplicity, we will consider only the realizable case. However we note that
similar arguments will also work under bounded noise and general distributions
PX . Fix a sample x1, . . . , xn. Applying Corollary 5.1 from [3] we have ER(f̂) �

sup
x1,...,xn

r∗, where r∗ is a fixed point of the local empirical Rademacher complexity,

that is a solution of the following equality 1
nEε sup

g∈star(Gf∗),Png≤2r

n∑
i=1

εig(xi) = r,

where star(G) denotes the star-hull of a class G: that is, the class of functions
αg, where g ∈ G and α ∈ [0, 1]. Since star(Gf∗) is star-shaped, it can be simply
proven (see appropriate discussions in [19]) that local empirical entropies are
not increasing in its radius. Using this fact together with (5) it can be shown

Eε sup
g∈star(Gf∗),Png≤ 2γ

n

n∑
i=1

εig(xi) � √
γ
√

log(Mloc
1 (F , γ, n, 1)) ∧ γ. From this it

easily follows that γloc
1,1(n)

n � r∗. Thus our bounds are not generally worse than
the bounds based solely on the local Rademacher complexities.

There are still interesting questions and possible directions that are out of
the scope of this paper. At first, we are focusing on a distribution free analysis.
At the same time one may obtain a distribution dependent version of Theorem2.
Recently, Balcan and Long [2] have proved that for some special distributions
and classes of homogenous linear separators rates of convergence of ERM may be
faster than if we consider worst-case distributions. It will be interesting to gener-
alize our results using distribution dependent fixed points of the local empirical
entropy and also to miss-specified models, when f∗ /∈ F .

Acknowledgments. The authors would like to thank Sasha Rakhlin for his sug-
gestion to use offset Rademacher processes to analyze binary classification under
Tsybakov noise conditions and anonymous reviewers for their helpful comments. NZ
was supported solely by the Russian Science Foundation grant (project 14-50-00150).

Localization of VC Classes: Beyond Local Rademacher Complexities 29

Appendix

Proof (Theorem 1). Let DIS0 be a disagreement set of the version space of first
�n/2� instances of the learning sample. The random error set will be denoted
by E1 = {x ∈ X |f̂(x) �= f∗(x)}. Using symmetrization Lemmas 2 and 1 we have

EP (E1) = ER(f̂) ≤ E sup
g∈Gf∗

(Pg − (1 + c)Png) ≤ 2(1+ c
2)

2

c
log(SF (n))

n for c > 0.

We fix c = 2 and prove that for any distribution EP (E1) ≤ 4 log(SF (n))
n . Now we

use R(f̂) = P (E1|DIS0)P (DIS0). Let ξ = |DIS0 ∩ {X�n/2�+1, . . . , Xn}|. Condi-
tionally on the first �n/2� instances ξ has binomial distribution. Expectations
with respect to the first and the last parts of the sample will be denoted respect-
fully by E and E

′. Conditionally on {x1, . . . , x�n/2�} we introduce two events:
A1 : ξ < nP (DIS0)

4 and A2 : ξ > 3nP (DIS0)
4 . Using Chernoff bounds we have

P (A1) ≤ exp
(
−nP (DIS0)

16

)
and P (A2) ≤ exp

(
−nP (DIS0)

16

)
. Denote A = A1 ∪A2.

Then E
′P (E1|DIS0) = E

′
[
P (E1|DIS0)

∣∣∣A
]
P (A) +E

′
[
P (E1|DIS0)

∣∣∣A
]
P (A). For

the first term we have E
′
[
P (E1|DIS0)

∣∣∣A
]
P (A) ≤ 16 log

(
SF
(

3nP (DIS0)
4

))

nP (DIS0)
We can

directly prove for the second term that E
′
[
P (E1|DIS0)

∣∣∣A
]
P (DIS0)P (A) ≤ 12

n .

It easy to see, that for all natural k, r we have (SF (kr))
1
r ≤ SF (k). Finally,

ER(f̂) ≤ E

16 log

(

SF
(

3nP (DIS0)
4

))

n + 12
n ≤ 40 log(SF (s))

n + 12
n . �

Proof (Lemma 4). Once again, given X1, . . . , Xn, let V = {(g(X1), . . . , g(Xn)) :
g ∈ G} denote the set of binary vectors corresponding to the values of functions
in G. As above, for a fixed γ and fixed minimal γ-covering subset Nγ ⊆ V , for
each v ∈ V , p(v) will denote the closest vector to v in Nγ . We will denote by Eξ

the conditional expectation over the ξi variables, given X1, . . . , Xn. We follow
the decomposition proposed by Liang, Rakhlin, and Sridharan [16]:

1
n
Eξ max

v∈V

(
n∑

i=1

ξivi − cvi

)
≤ 1

n
Eξ max

v∈V

(
n∑

i=1

ξi(vi−p(v)i)

)

+
1
n
Eξ max

v∈V

(
n∑

i=1

c

4
p(v)i−cvi

)
+

1
n
Eξ max

v∈V

(
n∑

i=1

ξip(v)i− c

4
p(v)i

)
.

The first term is � γ
n by the γ-cover property and the fact that |ξi| � 1. Fur-

thermore it is easy to show that the second term is at most c
4

γ
n . Now we analyze

the last term carefully. First we use the standard peeling argument. Given a set
W of binary vectors we define W [a, b] = {w ∈ W |a ≤ ρH(w, 0) < b}.

30 N. Zhivotovskiy and S. Hanneke

Eξ max
v∈V

(
n∑

i=1

ξip(v)i − c

4
p(v)i

)
= Eξ max

v∈Nγ

(
n∑

i=1

ξivi − c

4
vi

)

≤ Eξ max
v∈Nγ [0,2γ/c]

(
ξivi − c

4
vi

)
+

∞∑

k=1

Eξ max
Nγ [2kγ/c,2k+1γ/c]

(
n∑

i=1

ξivi − c

4
vi

)

+

.

The first term is upper bounded by 2 log(Mloc
1 (V,γ,n,c))
cn by Lemma 1 and by noting

that |Nγ [0, 2γ/c]|≤M1(BH(0, (2γ)/c, {X1, . . . , Xn}), (2γ)/2) ≤ Mloc
1 (V, γ, n, c).

Now we upper-bound the second term. We start with an arbitrary summand.
For any λ > 0, we have

Eξ max
v∈{0}∪Nγ [2kγ/c,2k+1γ/c]

(
n∑

i=1

ξivi − c

4
vi

)

≤ 1
λ

ln

⎛

⎝
∑

v∈Nγ [2kγ/c,2k+1γ/c]

Eξ exp

{
n∑

i=1

λξivi − λc

4
vi

}
+ 1

⎞

⎠

≤ 1
λ

ln
(∣∣Nγ

[
2kγ/c, 2k+1γ/c

]∣∣ exp
{
2k−2γ(4λ2 − λc)/c

}
+ 1

)

≤ 1
λ

ln
((Mloc

1 (G, 2γ, n, c)
)2k+1

exp
{
2k−2γ(4λ2 − λc)/c

}
+ 1

)
.

Here we used that
∣∣Mγ

[
0, 2k+1γ/c

]∣∣ ≤ ∣∣Mloc
1 (G, 2γ, n, c)

∣∣2k+1

and that any
minimal covering is also a packing. We fix γ = Kγloc

c,c (n) for some K > 2. Observe
that local entropy is nonincreasing and Kγloc

c,c (n) > 2γloc
c,c (n) ≥ γloc

c,c (n)+1. Thus,

ln
(
exp

{
2k+1 log

(Mloc
1 (V, 2Kγloc

c,c (n), n, c)
)

+ 2k−2Kγloc
c,c (n)(4λ2 − λc)/c

}
+ 1

)

≤ ln
(
exp

{
2k+1c(γloc

c,c (n) + 1) + 2k−2Kγloc
c,c (n)(4λ2 − λc)/c

}
+ 1

)
.

Then we have for λ = c
8 ,

∞∑

k=1

8
c

ln
(
exp

(
2k+1 log

(Mloc
1 (G, 2Kγloc

c,c (n), n)
))

exp
(−2k−6Kcγloc

c,c (n)
)

+ 1
)

≤
∞∑

k=1

8
c

ln
(
exp

(
2k+2cγloc

c,c (n) − 2k−6Kcγloc
c,c (n)

)
+ 1

)
.

We set K = 29 and have
∞∑

k=1

ln
(
exp

(
2k+2cγloc

c,c (n) − 2k−6Kcγloc
c,c (n)

)
+ 1

) ≤ C,

where C > 0 is an absolute constant. Here we used that ln(x + 1) ≤ x for x > 0
and cγloc

c,c � 1. Combining with the first two terms we finish the proof. �
Proof (Proposition 1). The first part of the proof closely follows the proof of
Theorem 17 in [8], with slight modifications, to arrive at an upper bound on
Mloc

1 (F , γ, n, h). The suprema in the definition of local empirical entropy are

Localization of VC Classes: Beyond Local Rademacher Complexities 31

achieved at some set {x1, . . . , xn}, some function f ∈ F , and some ε ∈ [γ, n].
Letting r = ε/n, denote by Mr the maximal (rn/2)-packing (under ρH) of
BH(f, rn/h, {x1, . . . , xn}), so that |Mr| = Mloc

1 (F , γ, n, h). Also introduce a
uniform probability measure PX on {x1, . . . , xn} and fix m =

⌈
4
r log(|Mr|)

⌉
.

Let X1, . . . , Xm be m independent PX -distributed random variables, and let
A denote the event that, for all g, g′ ∈ Mr with g �= g′, there exists an
i ∈ {1, . . . , n} such that g(Xi) �= g′(Xi). For a given pair of distinct functions
g, g′ ∈ Mr, they disagree on some Xi with probability 1 − (1 − PX(g(X) �=
g′(X)))m > 1 − exp(−rm/2) ≥ 1 − 1

|Mr|2 . Using a union bound and summing
over all possible unordered pairs g, g′ ∈ Mr will give us that P(A) > 1

2 . On the
event A, functions in Mr realize distinct classifications of X1, . . . , Xm. For any
Xi /∈ DIS(BH(f, rn/h, {x1, . . . , xn}), all classifiers in Mr agree. Thus, |Mr| is
bounded by the number of classifications {X1, . . . , Xm}∩DIS(BH(f, rn/h)) real-
ized by classifiers in F . By the Chernoff bound, on an event B with P(B) ≥ 1

2 we
have |{X1, . . . , Xm}∩DIS(BH(f, rn/h))| ≤ 1+2ePX(DIS(BH(f, rn/h))m. Using
the definition of τ(·) (Definition 2) we have 1+2ePX(DIS(BH(f, rn/h)))m ≤ 1+
2eτ

(
r
h

)
r
hm ≤ 11eτ

(
r
h

) log(|Mr|)
h . With probability at least 1

2 , |{X1, . . . , Xm} ∩
DIS(BH(f, rn/h))| ≤ 11eτ

(
r
h

) log(|Mr|)
h . Using the union bound, we have that

with positive probability there exists a sequence of at most 11eτ
(

r
h

) log(|Mr|)
h

elements, such that all functions in Mr classify this sequence distinctly. By

the VC lemma [23], we therefore have that |Mr| ≤
(

11e2τ(r
h) log(|Mr|)

h

d

)d

.

Using Corollary 4.1 from [24] we have log(|Mr|) ≤ 2d log
(
11e2τ

(
r
h

)
1
h

)
. Using

τ
(

r
h

) ≤ s∧ h
r ≤ s∧ nh

γ (Theorem 10 in [8]) we finally have log(Mloc
1 (F , γ, n, h)) ≤

2d log
(
11e2

(
n
γ ∧ s

h

))
. Observe that hγloc

h,h(n) ≤ 2d log
(
11e2

(
n

γloc
h,h(n)

∧ s
h

))
.

We have γloc
h,h(n) ≤ 2d log(11e2 s

h)
h . If γ =

2d log(11e2 nh
d)

h , then hγ = 2d log
(
11e2 nh

d

)
,

but 2d log
(
11e2 n

γ

)
≤ 2d log

(
11e2 nh

d

)
if h > d

11en . Finally, we have γloc
h,h(n) ≤

2d log(11e2(nh
d ∧ s

h))
h . Now we prove the lower bound. From (2) established above,

we know that γloc
h,h(n)

n is, up to an absolute constant, a distribution-free upper
bound for E(R(f̂)−R(f∗)), holding for all ERM learners f̂ . Then a lower bound
on sup

P∈P(h,F)

E(R(f̂)−R(f∗)) holding for any ERM learner is also a lower bound

for γloc
h,h(n)

n . In particular, it is known [9,18] that for any learning procedure f̃ , if

h ≥
√

d
n , then sup

P∈P(h,F)

E(R(f̃) − R(f∗)) � d+(1−h) log(nh2∧s)
nh , while if h <

√
d
n

then sup
P∈P(h,F)

E(R(f̃) − R(f∗)) �
√

d
n . Furthermore, in the particular case of

ERM, [9] proves that any upper bound on sup
P∈P(1,F)

E(R(f̂)−R(f∗)) holding for

all ERM learners f̂ must have size, up to an absolute constant, at least log(n∧s)
n .

Together, these lower bounds imply γloc
h,h(n) � d+log(nh2∧s)

h ∧ √
dn. �

32 N. Zhivotovskiy and S. Hanneke

References

1. Alexander, K.S.: Rates of growth and sample moduli for weighted empirical
processes indexed by sets. Probab. Theory Relat. Fields 75, 379–423 (1987)

2. Balcan, M.F., Long, P.M.: Active and passive learning of linear separators under
log-concave distributions. In: 26th Conference on Learning Theory (2013)

3. Bartlett, P.L., Bousquet, O., Mendelson, S.: Local Rademacher complexities. Ann.
Stat. 33(4), 1497–1537 (2005)

4. Boucheron, S., Bousquet, O., Lugosi, G.: Theory of classification: a survey of recent
advances. ESAIM: Probab. Stat. 9, 323–375 (2005)

5. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Applications of Mathematics, vol. 31. Springer, New York (1996)

6. Giné, E., Koltchinskii, V.: Concentration inequalities and asymptotic results for
ratio type empirical processes. Ann. Probab. 34(3), 1143–1216 (2006)

7. Hanneke, S.: Theory of disagreement-based active learning. Found. Trends Mach.
Learn. 7(2–3), 131–309 (2014)

8. Hanneke, S., Yang, L.: Minimax analysis of active learning. J. Mach. Learn. Res.
16(12), 3487–3602 (2015)

9. Hanneke, S.: Refined error bounds for several learning algorithms (2015). http://
arXiv.org/abs/1512.07146

10. Haussler, D., Littlestone, N., Warmuth, M.: Predicting {0, 1}-functions on ran-
domly drawn points. Inf. Comput. 115, 248–292 (1994)

11. Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with
bounded Vapnik–Chervonenkis dimension. J. Combin. Theory Ser. A 69, 217–232
(1995)

12. Koltchinskii, V.: Local Rademacher complexities and oracle inequalities in risk
minimization. Ann. Stat. 34(6), 2593–2656 (2006)

13. Le Cam, L.M.: Convergence of estimates under dimensionality restrictions. Ann.
Statist. 1, 38–53 (1973)

14. Lecué, G., Mitchell, C.: Oracle inequalities for cross-validation type procedures.
Electron. J. Stat. 6, 1803–1837 (2012)

15. Lecué, G., Mendelson, S.: Learning subgaussian classes: upper and minimax bounds
(2013). http://arXiv.org/abs/1305.4825

16. Liang, T., Rakhlin, A., Sridharan, K.: Learning with square loss: localization
through offset Rademacher complexity. In: Proceedings of The 28th Conference
on Learning Theory (2015)

17. Massart, P.: Concentration Inequalties and Model Selection. Ecole dEtè de Prob-
abilités, Saint Flour. Springer, New York (2003)

18. Massart, P., Nédélec, E.: Risk bounds for statistical learning. Ann. Stat. 34(5),
2326–2366 (2006)

19. Mendelson, S.: ‘Local’ vs. ‘global’ parameters – breaking the Gaussian complexity
barrier (2015). http://arXiv.org/abs/1504.02191

20. Raginsky, M., Rakhlin, A.: Lower bounds for passive and active learning. In:
Advances in Neural Information Processing Systems 24, NIPS (2011)

21. Rakhlin, A., Sridharan, K., Tsybakov, A.B.: Empirical entropy, minimax regret
and minimax risk. Bernoulli (2015, forthcoming)

22. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes. Springer,
Heidelberg (2014)

23. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies
of events to their probabilities. Proc. USSR Acad. Sci. 181(4), 781–783 (1968).
English tranlation: Soviet Math. Dokl. 9, 915–918

http://arXiv.org/abs/1512.07146
http://arXiv.org/abs/1512.07146
http://arXiv.org/abs/1305.4825
http://arXiv.org/abs/1504.02191

Localization of VC Classes: Beyond Local Rademacher Complexities 33

24. Vidyasagar, M.: Learning and Generalization with Applications to Neural Net-
works, 2nd edn. Springer, Heidelberg (2003)

25. Yang, Y., Barron, A.: Information-theoretic determination of minimax rates of
convergence. Ann. Stat. 27, 1564–1599 (1999)

Labeled Compression Schemes for Extremal
Classes

Shay Moran1,2,3(B) and Manfred K. Warmuth4

1 Technion, Israel Institute of Technology, 32000 Haifa, Israel
shaymoran1@gmail.com

2 Microsoft Research, Herzliya, Israel
3 Max Planck Institute for Informatics, Saarbrücken, Germany

4 Computer Science Department, University of California,
Santa Cruz, USA
manfred@ucsc.edu

Abstract. It is a long-standing open problem whether there exists
a compression scheme whose size is of the order of the Vapnik-
Chervonienkis (VC) dimension d. Recently compression schemes of size
exponential in d have been found for any concept class of VC dimen-
sion d. Previously, compression schemes of size d have been given for
maximum classes, which are special concept classes whose size equals
an upper bound due to Sauer-Shelah. We consider a generalization of
maximum classes called extremal classes. Their definition is based on a
powerful generalization of the Sauer-Shelah bound called the Sandwich
Theorem, which has been studied in several areas of combinatorics and
computer science. The key result of the paper is a construction of a sam-
ple compression scheme for extremal classes of size equal to their VC
dimension. We also give a number of open problems concerning the com-
binatorial structure of extremal classes and the existence of unlabeled
compression schemes for them.

1 Introduction

Generalization and compression/simplification are two basic facets of “learning”.
Generalization concerns the expansion of existing knowledge and compression
concerns simplifying our explanations of it. In machine learning, compression
and generalization are deeply related: learning algorithms perform compression
and the ability to compress guarantees good generalization.

A simple form of this connection is how Occam’s Razor [5] is manifested
in Machine Learning: if the input sample can be compressed to a small num-
ber of bits which encodes a hypothesis consistent with the input sample, then
good generalization is guaranteed. A more sophisticated notion of compression is
given by “sample compression schemes” [20]. In these schemes the input sample
is compressed to a carefully chosen small subsample that encodes a hypothesis
consistent with the input sample. For example support vector machine can be

Supported by NSF grant IIS-1118028. See [25] for a slightly more detailed version.

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 34–49, 2016.
DOI: 10.1007/978-3-319-46379-7 3

Labeled Compression Schemes for Extremal Classes 35

seen as compressing the original sample to the subset of support vectors which
represent a maximum margin hyperplane that is consistent with the entire orig-
inal sample.

What is the connection to generalization? In the Occam’s razor setting, the
generalization error decreases with the number of bits that are used to encode the
output hypothesis. Similarly for compression schemes, the generalization error
decreases with the sample size.

A core question is what parameter of the concept class characterizes the
sample size required for good generalization? The Vapnik-Chervonenkis (VC)
dimension serves as such a parameter [4], where the exact definition of gener-
alization underlying our discussion is specified by the Probably Approximately
Correct (PAC) model of learning [32]. The size of the best compression scheme
is an alternate parameter and has several additional advantages: (i) Compres-
sion schemes frame many natural algorithms (e.g. support vector machines). (ii)
Unlike the VC dimension, the definition of sample compression schemes as well
as the fact that they yield low generalization error extends naturally to multi
label concept classes [29]. This is particularly interesting when the number of
labels is very large (or possibly infinite), because for that case there is no known
combinatorial parameter that characterizes the sample complexity in the PAC
model (See [9]).

Previous Work. In 1986, [20] defined sample compression schemes and showed
that the sample size required for learning grows linearly with the size of the
subsamples the scheme compresses to. They have also posed the other direction
as an open question: Does every concept class have a compression scheme of size
depending only on its VC dimension? Later [12,33], refined this question: Does
every class of VC dimension d have a sample compression scheme of size O(d).

[3] proved a compactness theorem for sample compression schemes. It essen-
tially says that existence of compression schemes for infinite classes follows1 from
the existence of such schemes for finite classes. Thus, it suffices to consider only
finite concept classes. [12] constructed sample compression schemes of size log |C|
for every concept class C. More recently [24] have constructed sample compres-
sion schemes of size exp(d) log log |C| where d = V Cdim(C). Finally, [26] have
constructed sample compression scheme of size exp(d), resolving Littlestone and
Warmuth’s question. Their compression scheme is based on an earlier compres-
sion scheme which was defined in the context of boosting (see [13]). This sample
compression scheme is of variable size: It compresses samples of size m to sub-
samples of size O(d log m).

For many natural and important families of concept classes, sample compres-
sion schemes of size equal the VC dimension were constructed (e.g. [3,8,21,28]).
However, the question whether there exists a compression scheme whose size is
equal or linear in the VC dimension remains open.

[12] observed that in order to prove the conjecture it suffices to consider
only maximal classes (A class C is maximal if no concept can be added without

1 The proof of that theorem is however non-constructive.

36 S. Moran and M.K. Warmuth

increasing the VC dimension). Furthermore, they constructed sample compres-
sion schemes of size d for every maximum class of VC dimension d. These classes
are maximum in the sense that their size equals an upper bound (due to Sauer-
Shelah) on the size of any concept class of VC dimension d. Later, [17,28] pro-
vided even more efficient sample compression schemes for maximum classes that
are called unlabeled compression schemes because the labels of the subsample
are not needed to encode the output hypothesis.

One possibility of making a progress on Floyd and Warmuth’s question is
by extending the optimal compression schemes for maximum classes to a more
general family. In this paper we consider a natural and rich generalization of
maximum classes which are known as extremal classes (or shattering extremal
classes). Similar to maximum classes, these classes are defined when a certain
inequality, which generalizes the Sauer-Shelah bound, and known as The Sand-
wich Theorem is tight. The Sandwich Theorem as well as extremal classes were
discovered several times and independently by several groups of researchers and
in several contexts such as Functional analysis [27], Discrete-geometry [18], Phy-
logenetic Combinatorics [2,11] and Extremal Combinatorics [6,7]. Even though
a lot of knowledge regarding the structure of extremal classes has been accumu-
lated, the understanding of these classes is still considered incomplete by several
authors [6,15].

Our Results. Our main result is a construction of sample compression scheme
of size d for every extremal class of VC dimension d. When the concept class is
maximum, then our scheme specializes to the compression scheme for maximum
classes given in [12]. Our generalized sample compression scheme for extremal
classes is still easy to describe. However its analysis requires more combinatorics
and heavily exploits the rich structure of extremal classes. Despite being more
general, the construction is simple. We also give explicit examples of maximal
classes that are extremal but not maximum (see Example 5).

We also discuss a certain greedy peeling method for producing an unla-
beled compressions scheme. Such schemes were first conjectured in [17] and later
proven to exist for maximum classes [28]. However the existence of such schemes
for extremal classes remains open. We relate the existence of such schemes to
basic open questions concerning the combinatorial structure of extremal classes.

Organization. In Sect. 2 we give some preliminary definitions and define extremal
classes. We also discuss some basic properties and give some examples of extremal
classes which demonstrate their generality over maximum classes. In Sect. 3 we
give a labeled compression scheme for any extremal class of VC dimension d.
Finally, in Sect. 4 we relate unlabeled compression schemes for extremal classes
with basic open questions concerning extremal classes.

Labeled Compression Schemes for Extremal Classes 37

2 Extremal Classes

2.1 Preliminaries

Concepts, Concept Classes, and the One-Inclusion Graph. A concept c is a map-
ping from some domain to {0, 1}. We assume that the domain of c (denoted by
dom(c)) is finite and allow the case that dom(c) = ∅. A concept c can also be
viewed as a characteristic function of a subset of dom(c), i.e. for any domain
point x ∈ dom(c), c(x) = 1 iff x ∈ c. A concept class C is a set of concepts
with the same domain (denoted by dom(C)). A concept class can be represented
by a binary table (see Fig. 1), where the rows correspond to concepts and the
columns to the elements of dom(C). Whenever the elements in dom(C) are clear
from the context, then we represent concepts as bit strings of length |dom(C)|
(See Fig. 1).

The concept class C can also be represented as a subgraph of the Boolean
hypercube with |dom(C)| dimensions. Each dimension corresponds to a partic-
ular domain element, the vertices are the concepts in C and two concepts are
connected with an edge if they disagree on the label of a single element (Hamming
distance 1). This graph is called the one-inclusion graph of C. Note that each
edge is naturally labeled by the single dimension/element on which the incident
concepts disagree (See Fig. 1).

x1x2x3x4x5x6

c1 0 0 0 0 0 0
c2 0 0 1 0 0 0
c3 0 1 0 0 0 0
c4 1 0 0 0 0 0
c5 0 0 1 0 1 0
c6 0 0 1 1 0 0
c7 1 0 1 0 0 0
c8 1 1 0 0 0 0
c9 0 0 1 0 1 1
c10 0 0 1 1 1 0
c11 0 0 1 1 0 1
c12 1 0 1 1 0 0
c13 1 1 1 0 0 0
c14 1 1 0 1 0 0
c15 0 0 1 1 1 1
c16 1 0 1 1 0 1
c17 1 1 1 1 0 0
c18 1 0 1 1 1 1

101000

001000

x1

100000
x3

000000

x3

x1

111100

101100

x2

111000
x4

110100

x3

x4

001100

x1

x2

110000
x3

x2

010000

x1

x2

x4

x4

001111

001101

x5
001110

x6

001011

x4

x6

x5

001010
x4

x5

x6

101111

x1

101101

x5

x6

x1

Fig. 1. The table and the one-inclusion graph of an extremal class C of VC dimension 2.
The reduction Cx2 = {00000, 10000, 11000, 11100} has the domain {x1, x3, x4, x5, x6}.
Notice that each concept in Cx2 corresponds to an edge labelled with x2. Similarly
C{x3,x4} consists of the single concept {1100} over the reduced domain {x1, x2, x5, x6}.
Notice that this concept corresponds to the single cube of C with dimension set {x3, x4}.

38 S. Moran and M.K. Warmuth

Restrictions and Samples. We denote the restriction/sample of a concept c onto
S ⊆ dom(c) as c|S. This concept has the restricted domain S and labels this
domain consistently with c. Essentially concept c|S is obtained by removing
from row c in the table all columns not in S. The restriction/set of samples
of an entire class C onto S ⊆ dom(C) is denoted as C|S. A table for C|S is
produced by simply removing all columns not in S from the table for C and
collapsing identical rows.2 Also the one-inclusion graph for the restriction C|S
is now a subgraph of the boolean hypercube with |S| dimensions instead of the
full dimension |dom(C)|. We also use C − S as shorthand for C|(dom(C) \ S)
(since the columns labeled with S are removed from the table). Note that the sub
domain S ⊆ dom(C) induces an equivalence class on C: Two concepts c, c′ ∈ C
are equivalent iff c|S = c′|S. Thus there is one equivalence class per concept of
C|S.

Cubes. A concept class B is called a cube if for some subset S of the domain
dom(B), the restriction B|S is the set of all 2|S| concepts over the domain S
and the class B − S contains a single concept. We denote this single concept
by tag(B). In this case, we say that S is the dimension set of B (denoted as
dim(B)). For example, if B contains two concepts that are incident to an edge
labeled x then B is a cube with dim(B) = {x}. We say that B is a cube of
concept class C if B is a cube that is a subset of C. We say that B is a maximal
cube of C if there exists no other cube of C which strictly contains B. When
the dimensions are clear from the context, then a concept is described as a bit
string of length dom(C). Similarly a cube, B, is described as an expression in
{0, 1, ∗}|dom(C), where the dimensions of dim(B) are the *’s and the remaining
bits is the concept tag(B).

Reductions. In addition to the restriction it is common to define a second opera-
tion on concept classes. We will describe this operation using cubes. The reduc-
tion CS is a concept class on the domain dom(C) \S which has one concept per
cube with dimensions set S

CS := {tag(B) : B is a cube of C such that dim(B) = S}.

The reduction with respect to a single dimension x is denoted as Cx. See Fig. 1
for some examples.

Shattering and Strong Shattering. We say that S ⊆ dom(C) is shattered by
C, if C|S is the set of all 2|S| concepts over the domain S. Furthermore, S is
strongly shattered by C, if C has a cube with dimensions set S. We use s(C) to
denote all shattered sets of C and st(C) to denote all strongly shattered sets,
respectively. Clearly, both s(C) and st(C) are closed under the subset relation,
and st(C) ⊆ s(C).

The following theorem is the result of accumulated work by different authors,
and parts of it were rediscovered independently several times [1,6,11,27].
2 We define c|∅ = ∅. Note that C|∅ = {∅} if C �= ∅ and ∅ otherwise.

Labeled Compression Schemes for Extremal Classes 39

Theorem 1 (Sandwich Theorem). For any concept class C, |st(C)| ≤ |C| ≤
|s(C)|.
This theorem has been discovered independently several times and has several
proofs (see [23] for more details).

The inequalities in this theorem can be strict: Let C ⊆ {0, 1}n be such that
C contains all boolean vectors with an even number of 1′s. Then st(C) contains
only the empty set and s(C) contains all subsets of {1, . . . , n} of size at most
n − 1. Thus in this example, |st(C)| = 1, |C| = 2n−1, and |s(C)| = 2n − 1.

The VC dimension [4] is defined as: V Cdim(C) = max{|S| : S ∈ s(C)}.
Clearly, s(C) ⊆ {S ⊆ dom(C) : |S| ≤ V Cdim(C)} and hence the cardinality
|C| ≤ ∑V Cdim(C)

i=0

(|dom(C)|
i

)
. Thus the Sandwich theorem implies the well-known

Sauer-Shelah Lemma [30,31].

2.2 Definition of Extremal Classes and Examples

Maximum classes are defined as concept classes which satisfy the Sauer-Shelah
inequality with equality. Analogously, extremal classes are defined as concept
classes which satisfy the inequalities3 in the Sandwich Theorem with equality:
A concept class C is extremal if for every shattered set S of C there is a cube of
C with dimension set S, i.e. s(C) = st(C).

Every maximum class is an extremal class. Moreover, maximum classes of
VC dimension d are precisely the extremal classes for which the shattered sets
consist of all subsets of the domain of size up to d. The other direction does
not hold - there are extremal classes that are not maximum. All the following
examples are extremal but not maximum.

Example 1. Consider the concept class C over the domain {x1, . . . , x6} given in
Fig. 1. In this example st(C) = s(C) =

{∅, {x1}, {x2}, {x3}, {x4}, {x5}, {x6},
{x1, x2}, {x1, x3}, {x1, x4}, {x1, x5}, {x1, x6},{x2, x3}, {x2, x4}, {x3, x4}, {x4, x5},
{x4, x6}, {x5, x6}

}
. This example also demonstrates the cubical structure of

extremal classes.

Example 2 (Downward-Closed Classes). A standard example of a maximum
class of VC dimension d is

C = {c ∈ {0, 1}n : the number of 1’s in c is at most d}.

This is simply the hamming ball of radius d around the all 0’s concept. A natural
generalization of such classes are downward closed classes. We say that C is
downward closed if for all c ∈ C and for all c′ ≤ c, also c′ ∈ C. Here c′ ≤ c
means that for every x ∈ dom(C), c′(x) ≤ c(x). It is not hard to verify that
every downward closed class is extremal.

3 There are two inequalities in the Sandwich Theorem, but every class which satisfies
one of them with equality also satisfies the other with equality (See Theorem 2).

40 S. Moran and M.K. Warmuth

Example 3 (Hyper-Planes Arrangements in a Convex Domain). Another
standard set of examples for maximum classes comes from geometry (see
e.g. [14]). Let H be an arrangement of hyperplanes in R

d. For each hyperplane
pi ∈ H, pick one of half-planes determined by pi to be its positive side and the
other its negative side. The hyperplanes of H cut R

d into open regions (cells).
Each cell defines a binary mapping with domain H:

c(pi) =

{
1 if c is in the positive side of pi

0 if c is in the negative side of pi.

It is known that if the hyperplanes are in general position, then the set C of all
cells is a maximum class of VC dimension d.

Consider the following generalization of these classes: Let K ⊆ R
d be a

convex set. Instead of taking the vectors corresponding to all of the cells, take
only those that correspond to cells that intersect K:

CK = {c : c corresponds to a cell that intersects K}.

CK is extremal. In fact, for CK to be extremal it is not even required that the
hyperplanes are in general position. It suffices to require that no d+1 hyperplanes
have a non-empty intersection (e.g. parallel hyperplanes are allowed). Figure 2
illustrates such a class CK in the plane. These classes were studied in [23].

Fig. 2. An extremal class that correspond to the cells of a hyperplane arrangement
of a convex set. An arrangement of 4 lines is given which partitions the plane to
10 cells. Each cell corresponds to a binary vector which specifies its location relative
to the lines. For example the cell corresponding to 1010 is on the positive sides of
lines 1 and 3 and on the negative side of lines 3 and 4. Here the convex set K is
an ellipse and the extremal concept class consisting of the cells the ellipse intersects
is CK = {1000, 1010, 1011, 1111, 1110, 0010, 0000, 0110} (the cells 0100, 0111 are not
intersected by the ellipse). The class CK here has VC dimension 2. Note that it’s
shattered sets of size 2 are exactly the pairs of lines whose intersection point lies in the
ellipse K.

Labeled Compression Schemes for Extremal Classes 41

Interestingly, extremal classes also arise in the context of graph theory:

Example 4 (Edge-Orientations Which Preserve Connectivity [16]). Let
G = (V,E) be an undirected simple graph and let

−→
E be a fixed reference orienta-

tion. Now an arbitrary orientation of E is a function d : E → {0, 1}: If d(e) = 0
then e is oriented as in

−→
E and if d(e) = 1 then e is oriented opposite to

−→
E . Now

let s, t ∈ V be two fixed vertices, and consider all orientations of E for which
there exists a directed path from s to t. The corresponding class of orientations
E → {0, 1} is an extremal concept class over the domain E.

Moreover, the extremality of this class yields the following result in graph theory:
The number of orientations for which there exists a directed path from s to t
equals the number of subgraphs for which there exists an undirected path from
s to t. For a more thorough discussion and other examples of extremal classes
related to graph orientations see [16].

Example 5 (General Construction of a Maximal Class that is Extremal
but not Maximum). Take a k-dimensional cube and glue to each of its vertices
an edge of a new distinct dimension. The resulting class has 2k+1 concepts and
n = 2k + k dimensions. Let C be the complement of that class.

Claim. C is an extremal maximal class of VC dimension n − 2 which is not
maximum.

A proof of this claim is given in the full version of this paper [25]. Note that
|C| = 2n − 2k+1 = 22

k+k − 2k+1 and maximum classes of VCdim d = n − 2 over
n dimensions have size 2n −n− 1 = 22

k+k − 2k − k − 1. So the maximum classes
of VCdim n − 2 are by 2k − k − 1 larger than the constructed extremal maximal
class of VCdim n − 2.

2.3 Basic Properties of Extremal Classes

Extremal classes have a rich combinatorial structure (See [23] and references
within for more details). We discuss some of parts which are relevant to com-
pression schemes.

The following theorem provides alternative characterizations of extremal
classes:

Theorem 2 ([2,6]). The following statements are equivalent:

1. C is extremal, i.e. s(C) = st(C).
2. |s(C)| = | st(C)|.
3. |st(C)| = |C|.
4. |C| = |s(C)|.
5. {0, 1}n \ C is extremal.

The following theorem shows that the property of “being an extremal class”
is preserved under standard operations. It was also proven independently by
several authors (e.g. [2,6]).

42 S. Moran and M.K. Warmuth

Theorem 3. Let C be any extremal class, S ⊆ dom(C), and B be any cube
such that dom(B) = dom(C). Then C − S and CS are extremal concept classes
over the domain dom(C) − S and B ∩ C is an extremal concept class over the
domain dom(C).

Note that if C is maximum then C −S and CS are also maximum, but B ∩C is
not necessarily maximum. This is an example of the advantage extremal classes
have over the more restricted notion of maximum classes.

Interestingly, the fact that extremal classes are preserved under intersecting
with cubes yields a rather simple proof (communicated to us by Ami Litman)
of the fact that every extremal class is “distance preserving”. This property also
holds for maximum classes [14], however the proof for extremal classes is much
simpler than the previous proof for maximum classes (given in [14]):

Theorem 4 [15]. Let C be any extremal class. Then for every c0, c1 ∈ C, the
distance between c0 and c1 in the one-inclusion graph of C equals the hamming
distance between c1 and c2.

The proof is given in the full version of this paper [25].
The following lemma brings out the special cubical structure of extremal

classes. We will use it to prove the correctness of the compression scheme given
in the following section. It shows that if B1 and B2 are two maximal cubes
of an extremal class C then their dimensions sets dim(B1) and dim(B2) are
incomparable.

Lemma 1. Given B1 and B2 are two cubes of an extremal class C. If B1 is
maximal, then

dim(B1) ⊆ dim(B2) =⇒ B1 = B2.

A proof is given in the full version of this paper [25].

3 A Labeled Compression Scheme for Extremal Classes

Let C be a concept class. On a high level, a sample compression scheme for
C compresses every sample of C to a subsample of size at most k and this
subsample represents a hypothesis on the entire domain of C that must be
consistent with the original sample. More formally, a labeled compression scheme
of size k for C consists of a compression map κ and a reconstruction map ρ.
The domain of the compression map consists of all samples from concepts in
C: For each sample s, κ compresses it to a subsample s′ of size at most k.
The domain of the reconstruction function ρ is the set of all samples of C of
size at most k. Each such sample is used by ρ to reconstruct a concept h with
dom(h) = dom(C). The sample compression scheme must satisfy that for all
samples s of C, ρ(κ(s)) |dom(s) = s. The sample compression scheme is said
to be proper if the reconstructed hypothesis h always belongs to the original
concept class C.

Labeled Compression Schemes for Extremal Classes 43

A proper labeled compression scheme for extremal classes of size at most the
VC dimension is given in Algorithm 1. Let C be an extremal concept class and s
be a sample of C. In the compression phase the algorithm finds any maximal cube
B of C|dom(s) that contains the sample s and compresses s to the subsample
determined by the dimensions set of that maximal cube. Note that the size of the
dimension set (and the compression scheme) is bounded by the VC dimension.

How should we reconstruct? Consider all concepts of C that are consistent
with the sample s:

Hs = {h ∈ C : h|dom(s) = s}.

Correctness means that we need to reconstruct to one of those concepts. Let
s′ be the input for the reconstruction function and let D := dom(s′). During
the reconstruction, the domain dom(s) of the original sample s is not known.
All that is known at this point is that D is the dimensions set of a maximal
cube B of C|dom(s) that contained the sample s. The reconstruction map of the
algorithm outputs a concept in the following set HB (Fig. 3):

{h ∈ C : h in cube B′ of C s.t. dim(B′) = dim(B) and h|dim(B) = s|dim(B)}.

For the correctness of the compression scheme it suffices to show that for all
choices of the maximal cube B of C|dom(s), HB is non-empty and a subset of
Hs. The following Lemma guarantees the non-emptiness.

Lemma 2. Let C be an extremal class and let D ⊆ dom(C) be the dimensions
set of some cube of C|dom(s). Then D is also the dimensions set of some cube
of C.

Proof. Clearly the dimension set D is shattered by C|dom(s) and therefore it is
also shattered by C. By the extremality of C, D is also strongly shattered by it,
and thus there exists a cube B of C with dimensions set D.

The second lemma show that for each choice of the maximal cube B, HB ⊆ Hs.

Algorithm 1. (Labeled compression scheme for any extremal classes C)
The compression map.

– Input: A sample s of C.
– Output: A subsample s′ = s| dim(B), where B is any maximal cube of C|dom(s)

that contains the sample s.

The reconstruction map.

– Input: A sample s′ of size at most V Cdim(C).
– Output: Any concept h which is consistent with s′ on dom(s′) and belongs to a

cube B of C with dimensions set dom(s′).

44 S. Moran and M.K. Warmuth

111100

110100

x3

111000

x4

101100 x2

110000

x4
100100

x2

110110

x5

010100

x1

010101

x6

000100 x2

010000

x4

000000

x4

x1

101000x2

x3

 x2

100000

x1

x3

 x2

x1

x4

x4

x3

110

100

x4

010

x2

111
x5

000

x2

x4

Fig. 3. The one-inclusion graph of an extremal concept class C is given on the left.

Consider the sample s =
x2
1

x4
1

x5
0 . There are 4 concepts c ∈ C consistent with this

sample (the octagonal vertices), i.e. Hs = {111100, 110100, 010100, 010101}. There
are 2 maximal cubes of C|dom(s) (graph on right) that contain the sample s (in grey)
with dimension sets {x5} and {x2, x4}, respectively. Let B be the maximal cube with
dimension set D = {x2, x4}. There are 3 cubes of C (on left) with the same dimension
set D. Each contains a concept h (shaded grey) that is consistent with the original

sample on D, i.e. h|D = s|D =
x2
1

x4
1 and therefore HB = {111100, 110100, 010100}.

For the correctness we need that HB (grey nodes on left) is non-empty and a subset
of Hs (octagon nodes on left). Note that in this case HB is a strict subset.

Lemma 3. Let s be a sample of an extremal class C, let B be any maximal cube
of C|dom(s) that contains s, and let D denote the dimensions set of B. Then
for any cube B′ of C with dim(B′) = D, the concept h ∈ B′ that is consistent
with s on D is also consistent with s on dom(s) \ D.

Proof. Since B is a cube with dimensions set D, B|(dom(s) \ D) contains the
single concept tag(B).

Let B′ be any cube of C with dim(B′) = D, and let h be the concept in B′

which is consistent with s on D. Now consider the cube B′|dom(s). We will show
that B′|dom(s) = B. This will finish the proof as it shows that both h|dom(s)
and s belong to B′|dom(s) = B which means that tag(B) = h|(dom(s) \ D) =
s|(dom(s) \ D). Moreover, by the definition of h, h|D = s|D, and therefore
h|dom(s) = s as required.

We now show that B′|dom(s) = B. Indeed, since B′ is a cube of C with
dimension set D ⊆ dom(s), the cube B′|dom(s) is a cube of C|dom(s) with
the same dimension set D. Thus the dimension set of B′|dom(s) contains the
dimension set of the maximal cube B of C|dom(s). Therefore, since C|dom(s) is
extremal (Theorem 3) it follows by Lemma 1 that B′|dom(s) = B.

Labeled Compression Schemes for Extremal Classes 45

4 Unlabeled Sample Compression Schemes and
Combinatorial Conjectures

Alternate “unlabeled” compression schemes have also been found for maximum
classes and a natural question is whether these schemes again generalize to
extremal classes. As we shall see there is an excellent match between the combi-
natorics of unlabeled compression schemes and extremal classes. The existence of
such schemes remains open at this point. We can however relate their existence
to some natural conjectures about extremal classes.

An unlabeled compression schemes compresses a sample s of the concept
class C to an (unlabeled) subset of the domain of the sample s. In other words,
in an unlabeled compression scheme the labels of the original sample are not
used by the reconstruction map. The size of the compression scheme is now
the maximum size of the subset that the sample is compressed to. Consider an
unlabeled compression scheme for C of size V Cdim(C). For a moment restrict
your attention to samples of C over some fixed domain S ⊆ dom(C). Each such
sample is a concept in the restriction C|S. Note that two different concepts in C|S
must be compressed to different subsets of S, otherwise if they were compressed
to the same subset, the reconstruction of it would not be consistent with one of
them. For maximum classes, the number of concepts in C|S is exactly the number
of subsets of S of size up to the VC dimension. Intuitively, this “tightness” makes
unlabeled compression schemes combinatorially rich and interesting.

Previous unlabeled compression schemes for maximum classes were based on
“representation maps”; these are one-to-one mappings between C and subsets
of dom(C) of size at most V Cdim(C). Representation maps were used in the
following way: each sample s is compressed to a subset of dom(s) which repre-
sents a consistent hypothesis with s, and each subset of size at most V Cdim(C)
of dom(C) is reconstructed to the hypothesis it represents. The key combina-
torial property that enabled finding representation maps for maximum classes
was a “non clashing” condition [17]. This property was used to show that for
any sample s of C there is exactly one concept c that is consistent with s
and r(c) ⊆ dom(s). This immediately implies an unlabeled compression scheme
based on non clashing representation maps: Compress to the unique subset of
the domain of the sample that represents a concept consistent with the given
sample.

The first representation maps for maximum classes were derived via a recur-
sive construction [17]. Alternate representation maps were also proposed in [17]
based on a certain greedy “peeling” algorithm that iteratively assigns a repre-
sentation to a concept and removes this concept from the class. The correctness
of the representation maps based on peeling was finally established in [28].

Representation Maps. For any concept class C a representation map is any one-
to-one mapping from concepts to subsets of the domain, i.e. r : C → P(dom(C)).
We say that c ∈ C is represented by the representation set r(c). Furthermore we
say that two different concepts c, c′ clash with respect to r if they are consistent

46 S. Moran and M.K. Warmuth

with each other on the union of their representation sets, i.e. c| (r(c) ∪ r(c′)) =
c′| (r(c) ∪ r(c′)). If no two concepts clash then we say that r is non clashing.

Example 6 (Non Clashing Representation Map for Distance Preserv-
ing Classes). Let C be a distance preserving class, that is for every u, v ∈ C,
the distance between u, v in the one-inclusion graph of C equals to their
hamming distance. For every c ∈ C, define degC(c) = {x ∈ dom(C) :
c is incident to an x-edge of C}. The representation map r(c) := degC(c) has
the property that for every c �= c′ ∈ C, c and c′ disagree on r(c). To see this,
note that any shortest path from c to c′ in C traverses exactly the dimensions
on which c and c′ disagrees. In particular, the first edge leaving c in this path
traverses a dimension x for which c(x) �= c′(x). By the definition of degC(c) we
have that x ∈ degC(c) and indeed c and c′ disagree on degC(c).

In fact, this gives a stronger property for distance preserving classes, which
is summarized in the following lemma. This lemma will be useful in our analysis.

Lemma 4. Let C be a distance preserving class and let c ∈ C. Then degC(c) is
a teaching set for c with respect to C. That is, for all c′ ∈ C, such that c′ �= c
there is x ∈ degC(c) such that c(x) �= c′(x).

Clearly the representation map r(c) = degC(c) is non clashing. The following
lemma establishes that certain non clashing representation maps immediately
give unlabeled compression schemes:

Algorithm 2. (Unlabeled compression scheme from a representation
map)

The compression map.

– Input: A sample s of C.
Let c ∈ C be the unique concept which satisfies c|dom(s) = s, and r(c) ⊆ dom(s).

– Output r(c).

The reconstruction map.

– Input: a set S′ ∈ st(C).
Since r is a bijection between C and st(C), there is a unique c such that r(c) = S′.

– Output c.

Lemma 5. Let r be any representation map that is a bijection between an
extremal class C and st(C). Then the following two statements are equivalent:
(i) r is non clashing. (ii) For every sample s of C, there is exactly one concept
c ∈ C that is consistent with s and r(c) ⊆ dom(s).

Labeled Compression Schemes for Extremal Classes 47

A proof is given in the full version of this paper [25].
Based on this lemma it is easy to see that a representation mapping r for an

extremal concept class C defines a compression scheme as follows (See Algorithm
2). For any sample s of C we compress s to the unique representative r(c) such
that c is consistent with s and r(c) ⊆ dom(s). Reconstruction is even simpler,
since r is bijective: If s is compressed to the set r(c), then we reconstruct r(c)
to the concept c.

Corner Peeling Yields Good Representation Maps. We now present a natural
conjecture concerning extremal classes and relate it to the construction of non
clashing representation maps. A concept c of an extremal class C is a corner
of C if C \ {c} is extremal. By Lemma 1 we have that for each S ⊆ dom(C)
there is at most one maximal cube with dimension set S and if S. Therefore
st(C \ {c}) = st(C) \ {dim(B) : B is maximal cube of C containing c}.

For C \{c} to be extremal, | st(C \{c})| must be |C|−1 (by Theorem 2) and
therefore c is a corner of an extremal class C iff c lies in exactly one maximal
cube of C.

Conjecture 1. Every non empty extremal class C has at least one corner.

A related conjecture for maximum classes was presented in [17]. For these latter
classes, the conjecture was finally proved in [28]. This conjecture also has been
proven for other special cases such as extremal classes of VC dimension at most
2 [19,22].

In fact [19] proved a stronger statement: For every two extremal classes C1 ⊆
C2 such that V Cdim(C2) ≤ 2 and |C2 \ C1| ≥ 2, there exists an extremal class
C such that C1 ⊂ C ⊂ C2 (i.e. C is a strict subset of C2 and a strict superset of
C1). Indeed, this statement is stronger as by repeatedly picking a larger extremal
class C1 ⊆ C2 eventually a c ∈ C2 is obtained such that C2 − {c} is extremal.
For general extremal classes this stronger statement also remains open.

Conjecture 2. For every two extremal classes C1 ⊆ C2 with |C2 \ C1| ≥ 2 there
exists an extremal class C such that C1 ⊂ C ⊂ C2.

How does Conjecture 1 yield a representation map? Define an order4

c1 . . . c|C| on the concept clase C such that for every i, ci is a corner of
Ci = {cj : j ≥ i}, and define a map r : C → st(C) such that r(ci) = dim(Bi)
where Bi is the unique maximal cube of Ci that ci belongs to. We claim that
r is a representation map. Indeed, r is a one-to-one mapping from C to st(C)
(and since C is extremal r is a bijection). To see that r is non clashing, note
that r(ci) = dim(Bi) = degCi

(ci). Ci is extremal and therefore distance preserv-
ing (Theorem 4). Thus, Lemma 4 implies that r(ci) is a teaching set of ci with
respect to Ci. This implies that r is indeed non clashing.

4 Such orderings are related to the recursive teaching dimension which was studied
by [10].

48 S. Moran and M.K. Warmuth

5 Discussion

We studied the conjecture of [12] which asserts that every concept classes has a
sample compression scheme of size linear in its VC dimension. We extended the
family of concept classes for which the conjecture is known to hold by showing
that every extremal class has a sample compression scheme of size equal to its
VC dimension. We demonstrated that extremal classes form a natural and rich
generalization of maximum classes for which the conjecture had been proved
before [12], and further related basic conjectures concerning the combinatorial
structure of extremal classes with the existence of optimal unlabeled compres-
sion schemes. These connections may also be used in the future to provide a
better understanding on the combinatorial structure of extremal classes, which
is considered to be incomplete by several authors [6,15].

Our compression schemes for extremal classes yield another direction of
attacking the general conjecture of Floyd and Warmuth: it is enough to show
that an arbitrary maximal concept class of VC dimension d can be covered by
exp(d) extremal classes of VC dimension O(d). Note it takes additional O(d)
bits to specify which of the exp(d) extremal classes is used in the compression.

Acknowledgements. We thank Micha�l Dereziński for a good feedback on the writing
of the paper and Ami Litman for helpful combinatorial insights.

References

1. Anstee, R., Rónyai, L., Sali, A.: Shattering news. Graphs Comb. 18(1), 59–73
(2002)

2. Bandelt, H., Chepoi, V., Dress, A., Koolen, J.: Combinatorics of lopsided sets. Eur.
J. Comb. 27(5), 669–689 (2006)

3. Ben-David, S., Litman, A.: Combinatorial variability of Vapnik-Chervonenkis
classes with applications to sample compression schemes. Discret. Appl. Math.
86(1), 3–25 (1998)

4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
Vapnik-Chervonenkis dimension. J. Assoc. Comput. Mach. 36(4), 929–965 (1989)

5. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf.
Process. Lett. 24(6), 377–380 (1987)

6. Bollobás, B., Radcliffe, A.J.: Defect Sauer results. J. Comb. Theory Ser. A 72(2),
189–208 (1995)

7. Bollobás, B., Radcliffe, A.J., Leader, I.: Reverse Kleitman inequalities. Proc. Lond.
Math. Soc. Ser. A (3) 58, 153–168 (1989)

8. Chernikov, A., Simon, P.: Externally definable sets and dependent pairs. Isr. J.
Math. 194(1), 409–425 (2013)

9. Daniely, A., Shalev-Shwartz, S.: Optimal learners for multiclass problems. In:
COLT, pp. 287–316 (2014)

10. Doliwa, T., Simon, H.U., Zilles, S.: Recursive teaching dimension, learning com-
plexity, and maximum classes. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T.
(eds.) ALT 2015. Lecture Notes in Artificial Intelligence (LNAI), vol. 6331, pp.
209–223. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16108-7 19

http://dx.doi.org/10.1007/978-3-642-16108-7_19

Labeled Compression Schemes for Extremal Classes 49

11. Dress, A.: Towards a theory of holistic clustering. DIMACS Ser. Discret. Math.
Theoret. Comput. Sci. 37, 271–289 (1997). (Amer. Math. Soc.)

12. Floyd, S., Warmuth, M.K.: Sample compression, learnability, and the Vapnik-
Chervonenkis dimension. Mach. Learn. 21(3), 269–304 (1995)

13. Freund, Y., Schapire, R.E.: Boosting: Foundations and Algorithms. Adaptive Com-
putation and Machine Learning. MIT Press, Cambridge (2012)

14. Gartner, B., Welzl, E.: Vapnik-Chervonenkis dimension and (pseudo-)hyperplane
arrangements. Discret. Comput. Geom. (DCG) 12, 399–432 (1994)

15. Greco, G.: Embeddings and the trace of finite sets. Inf. Process. Lett. 67(4), 199–
203 (1998)

16. Kozma, L., Moran, S.: Shattering, graph orientations, and connectivity. Electron.
J. Comb. 20(3), P44 (2013)

17. Kuzmin, D., Warmuth, M.K.: Unlabeled compression schemes for maximum
classes. J. Mach. Learn. Res. 8, 2047–2081 (2007)

18. Lawrence, J.: Lopsided sets and orthant-intersection by convex sets. Pac. J. Math.
104(1), 155–173 (1983)

19. Litman, A., Moran, S.: Unpublished results (2012)
20. Littlestone, N., Warmuth, M.: Relating data compression and learnability (1986,

Unpublished)
21. Livni, R., Simon, P.: Honest compressions and their application to compression

schemes. In: COLT, pp. 77–92 (2013)
22. Mészáros, T., Rónyai, L.: Shattering-extremal set systems of VC dimension at most

2. Electron. J. Comb. 21(4), P4.30 (2014)
23. Moran, S.: Shattering-extremal systems (2012). CoRR abs/1211.2980
24. Moran, S., Shpilka, A., Wigderson, A., Yehudayoff, A.: Teaching and compressing

for low VC-dimension. In: ECCC TR15-025 (2015)
25. Moran, S., Warmuth, M.K.: Labeled compression schemes for extremal classes

(2015). CoRR abs/1506.00165. http://arXiv.org/abs/1506.00165
26. Moran, S., Yehudayoff, A.: Sample compression schemes for VC classes. J. ACM

63(3), 21:1–21:10 (2016)
27. Pajor, A.: Sous-espaces ln1 des espaces de banach. Travaux en Cours. Hermann,

Paris (1985)
28. Rubinstein, B.I.P., Rubinstein, J.H.: A geometric approach to sample compression.

J. Mach. Learn. Res. 13, 1221–1261 (2012)
29. Samei, R., Yang, B., Zilles, S.: Generalizing labeled and unlabeled sample com-

pression to multi-label concept classes. In: Auer, P., Clark, A., Zeugmann, T.,
Zilles, S. (eds.) ALT 2015. Lecture Notes in Artificial Intelligence (LNAI), vol.
8776, pp. 275–290. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11662-4 20

30. Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13, 145–147
(1972)

31. Shelah, S.: A combinatorial problem; stability and order for models and theories
in infinitary languages. Pac. J. Math. 41, 247–261 (1972)

32. Valiant, L.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)
33. Warmuth, M.K.: Compressing to VC dimension many points. In: Schölkopf, B.,

Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 743–744.
Springer, Heidelberg (2003)

http://arXiv.org/abs/1506.00165
http://dx.doi.org/10.1007/978-3-319-11662-4_20

On Version Space Compression

Shai Ben-David1 and Ruth Urner2(B)

1 University of Waterloo, Waterloo, Canada
2 Max Planck Institute for Intelligent Systems, Stuttgart, Germany

ruth.urner@tuebingen.mpg.de

Abstract. We study compressing labeled data samples so as to main-
tain version space information. While classic compression schemes [11]
only ask for recovery of a samples’ labels, many applications, such as
distributed learning, require compact representations of more diverse
information which is contained in a given data sample. In this work,
we propose and analyze various frameworks for compression schemes
designed to allow for recovery of version spaces. We consider exact ver-
sus approximate recovery as well as compression to subsamples versus
compression to subsets of the version space. For all frameworks, we pro-
vide some positive examples and sufficient conditions for compressibility
while also pointing out limitations by formally establishing impossibility
of compression for certain classes.

1 Introduction

Sample compression schemes, introduced in [11], have received considerable
attention by the machine learning theory community throughout the past three
decades [3,6,9,13,14,16]. These “classic” compression schemes for fixed hypoth-
esis classes ask for a small size representation of a training sample that allows
recovery of all the labels of points in that sample. However, training samples
carry more information than that. Given a labeled sample S, one may want
to infer more generally which domain points’ labels are determined and which
points’ labels are not determined by S (given that the labeling belongs to some
known concept class H). Such extra information may well get lost in the classic
definition of compression.

In this work, we initiate the study of compressing such information of deter-
mined and undetermined labels. In other words, we wish to develop compact
representations of a sample S from which the induced version space [12] can be
recovered. The version space of a sample with respect to a class H is the set
of all hypotheses in H that are consistent with the labels in the sample. As a
motivating example, consider the class of initial segments on the real line. It is
easy to see that the full version space can be recovered from at most 2 sample
points (the rightmost positively and leftmost negatively labeled points). We are
interested in understanding when this type (or alternative types) of compression
can be extended to other concept classes.

An obvious application of such version space compression schemes is dis-
tributed parallel learning [1]. Version space compression provides a solution to
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 50–64, 2016.
DOI: 10.1007/978-3-319-46379-7 4

On Version Space Compression 51

learning when the training sample is distributed between several agents, and one
wishes to use that full training set for learning while controlling the volume of
between-agents communication. Other applications include various non-standard
learning settings such as active [8,20] and transfer learning.

Here, we propose and explore various frameworks for compressing version
space information, such as exact versus approximate compression, and com-
pression to subsamples versus compression to subsets of the version space. Our
conclusions are mixed. While we provide sufficient conditions and examples of
compressibility for all frameworks, we also formally establish some strong impos-
sibility results.

Outline of Results. We start by providing two natural definitions of exact
version space compression schemes. In Sect. 3, we introduce our notions of com-
pressing to subsamples and to subsets of the version space that allow for exact
recovery of version space information. We provide various examples and suffi-
cient conditions for when such exact compression and recovery is possible. In
the last part of that section however, we provide impossibility results for these
notions based on a new complexity measure of hypothesis classes. We also show
that our impossibility results apply to many natural classes.

In light of these impossibility results, we turn to investigate notions of approx-
imate version space compression in Sect. 4. That is, we consider notions, where
the recovery function is allowed a certain amount of error, or where the require-
ment for compressibility is relaxed to only hold with high probability over sam-
ples that are generated by some distribution. Here we provide some positive
approximate compression results employing schemes that incorporate additional
unlabeled data samples. Again, we also provide some impossibility results char-
acterizing situations of a “bad match” between a hypothesis class and the data
generating distribution.

We discuss related work in Sect. 5 and conclude with Sect. 6.

2 Definitions and Notation

We let X denote some domain set. A hypothesis is a binary function h : X →
{0, 1} over X and hypothesis class is a set H ⊆ {0, 1}X of hypotheses. We also
consider hypotheses as subsets of the domain, that is, we identify binary func-
tions h : X → {0, 1} with h−1(1). We use S ⊆ X×{0, 1} to denote a finite labeled
sample. Abusing notation, we also use the notation S for the samples’ projection
to the domain X, that is the set of elements without labels. A hypothesis h is
consistent with a sample S if h(x) = y for all (x, y) ∈ S.

The version space of a sample S with respect to a hypothesis class H is the
set of all hypotheses in H that are consistent with S, formally

VH(S) = {h ∈ H : ∀(x, y) ∈ S, h(x) = y}.

52 S. Ben-David and R. Urner

For a set H ′ of classifiers, we define their consensus recovery function as

consrec(H ′)(x) =

⎧
⎪⎨

⎪⎩

0 if ∀h ∈ H ′, h(x) = 0
1 if ∀h ∈ H ′, h(x) = 1
� otherwise

The version space of a sample S can now equivalently be viewed as its consensus
recovery function FH(S). That is, for all x, we set

FH(S)(x) = consrec(VH(S))(x)

Note that one can easily recover the set VH(S) and the function FH(S) from
each other and we use them interchangeably to refer to the version space of S.

In the statistical setup, we consider distributions D over X×{0, 1}. The error
of a hypothesis with respect to a distribution is errD(h) = E(x,y)∼DI[h(x) �= y].
We focus on the realizable case, that is we assume that there is a function h ∈ H
with errD(h) = 0. We also assume realizability of samples S throughout.

2.1 Hypothesis Classes

For ease of reference, we here provide notation for some specific hypothesis classes
that we frequently use as illustrating examples. We expect that the reader is
familiar with most of these classes, and do not formally define most them. When-
ever we consider classes defined by thresholds over a euclidean space, we allow
both open and closed upper and lower thresholds.

– H1
intrv intervals in R

1

– H1
init initial segments in R

1

– Hn
rec axis aligned rectangles in R

n

– Hn
lin linear halfspaces in R

n

– Hsing singletons over some infinite set
– Hn

dest decision stumps in R
n

– Hn
conj boolean conjunctions over {0, 1}n

– H≺
init initial segments with respect to a partial order ≺

– Hn
star the class of stars with n arms

Recall that a binary relation over X is a partial order if it is reflexive, anti-
symmetric and transitive. An initial segment with respect to a partial order ≺
is defined as all elements of X that are “smaller” than some element x, formally
Ix := {z ∈ X : z ≺ x}. Thus, we get H≺

init := {Ix : x ∈ X}.
To define the class Hn

star, consider the domain X that is a disjoint union of
n copies of R+, all sharing the same 0-element (“glued together at 0”). We call
the copies the arms of the domain X. Now a star is a union of initial segments
in each of the arms. Note that this class has VC-dimension n.

On Version Space Compression 53

3 Exact Version Space Compression (VSC)

In this section we discuss the most demanding framework. Given a hypothesis
class H and a sample S, we seek to compress the sample to a compact repre-
sentation (either in form of a small subsample or in form of a small subset of
the version space) from which the full version space can be exactly recovered.
We propose and analyze two notions of such exact version space compression
schemes. For both notions we provide some examples and sufficient conditions
for classes to admit such compression. However, we then proceed to show that
for many classes exact version space compression is too much to hope for by
providing formal impossibility results.

3.1 Definitions of Exact VSC

We start with what may be considered the most natural notion of version space
compression. For instance based version space compression we require compress-
ing a sample to a small subset of sample points, which contain the full infor-
mation about the samples’ version space. This notion is closest to the “classic”
sample compression schemes.

Definition 1 (Instance Based Exact VSC). We say that H admits instance
based (exact) version space compression (IBE-VSC) to size d if there exists a
function ρ from finite labeled samples to the set of subsets of H such that for
every finite labeled sample S ⊆ X × {0, 1}, there is C ⊆ S of size ≤ d such that
ρ(C) = VH(S).

Remark 1.

1. In some parts of the paper we use κ to denote the mapping of samples to
their compressed images. Thus, a version space compression scheme can be
defined as a pair of functions κ, ρ with κ(S) ⊆ S and ρ(κ(S)) = FH(S) for
all S.

2. It is natural to also allow the compressed image of a sample to contain some
side information rather than only sample points. That is, for a sample S,
κ(S) is a pair (C, b), where C ⊆ S and b is a binary string. The size of such
a compressed image is then defined as |C| + |b|.

3. Another natural variant are ordered version space compression schemes. Here
the compressed set is an ordered sequence of elements in S. Note that one can
turn an (unordered) compressed set of size d into an ordered one by adding
d log d bits of side information.

Alternatively to compressing a sample S to some subsample, one may consider
version space compression to a subset of the version space that encapsulates the
full version space. To rule out trivial encodings (via some bijection from the class
to version spaces), we enforce such a compressed set to encode the version space
in a specific manner.

Definition 2 (Span of a Subclass). Let H ′ ⊆ H be a subclass of some hypoth-
esis class H. Then the span of H ′ in H is defined as the maximal set H ′′ with

54 S. Ben-David and R. Urner

H ′ ⊆ H ′′ ⊆ H such that consrec(H ′) = consrec(H ′′). That is, the span of H ′

contains all functions in H that agree with H ′ on the agreement region of H ′.
Note that for all H,H ′,H ′′, if H ′′ ⊆ H ′, then spanH(H ′) ⊆ spanH(H ′′).

We now define concept based version space compression as follows:

Definition 3 (Concept Based Exact VSC). We say that H admits concept
based (exact) version space compression (CBE-VSC) to size d if for every finite
labeled sample S ⊆ X × {0, 1}, there exists HS ⊆ H such that |HS | ≤ d and
VH(S) = spanH(HS).

Example 1. It is easy to see that the class H1
init of initial segments on the real

line admits both IBE-VSC and CBE-VSC to size 2. Similarly, the class H1
intrv

of intervals on the real line admits IBE-VSC to size 4 and CBE-VSC to size 2,
for samples S that contain at least one positive example (we will see later that
for H1

intrv, samples containing only negative examples have no finite size VSC,
neither IBE-VSC nor CBE-VSC). The class H∞

star of stars with infinitely many
arms, admits CBE-VSC but not IBE-VSC to any finite size (as we will see later).

3.2 Existence of Exact VSC

In this subsection we provide some sufficient conditions for the existence of VSC
for hypothesis classes. The following condition allows a particularly simple case
of CBE-VSC.

Definition 4. We call a class H linearly consistent if for every h ∈ H and every
finite S ⊆ X, there exist functions hS , hS ∈ H such that both functions agree with
h on S and for every g ∈ H that agrees with h on S, we have g−1(1) ⊆ h

−1

S (1)
and g−1(0) ⊆ h−1

S (0).

Example 2. The class H1
init of initial segments on the real line is linearly consis-

tent. Further, the classes Hn
star of stars with n arms are linearly consistent. The

class H1
intrv is “almost” linear consistent - it satisfies the above requirement for

h on a set S, once for some x ∈ S, h(x) = 1.

Claim. If a class H is linearly consistent, then H admits CBE-VSC to size 2.

Next, we present a general condition that implies IBE-VSC.

Definition 5. We define the width w(H) of a class H as the maximum size
of a domain subset T ⊆ X such that {{t} : t ∈ T} ⊆ {h ∩ T : h ∈ H}.
The definition can be generalized by replacing the all zero base function by any
function f ∈ H. Namely wf (H) is the maximum size of a domain subset T such
that ∀t ∈ T∃h ∈ H such that {x ∈ T : h(x) �= f(x)} = {t}.
Example 3. The class H1

init of initial segments has width w(H1
init) = 1. The

classes Hn
star of stars with n arms, have width w(Hn

star) = n. For the class Hn
lin of

halfspaces, the class of singletons Hsing, and the class of axis aligned rectangles
Hn

rec, we have w(Hn
lin) = w(Hsing) = w(Hn

rec) = ∞.

On Version Space Compression 55

With this, we can provide a sufficient condition for the existence of VSCs.

Theorem 1. Classes H with VCdim(H) = 1 admit IBE-VSC to size 2w(H).

For the proof we need the following structural result characterizing classes of
VC-dimension 1. This result has appeared in [2]. We prove it for completeness.

A partial ordering ≺ over X is called a forest if for every x ∈ X the initial
segment Ix = {y : y ≺ x} that x induces, is linearly ordered by ≺.

Theorem 2 (Theorem 4 in [2]). A class H over any domain set X has VC
dimension at most 1 if and only if there exist a partial ordering of the domain
set X, which is a forest, and such that every set h ∈ H is a linearly ordered
initial segment under that ordering.

Proof (Proof of Theorem 2). First, it is not hard to verify that a class of linearly
ordered initial segments over some partial order has VC dimension 1.

For the other implication, let H be a class of binary functions, over some
domain set X, and fix some h0 ∈ H. Assume, w.l.o.g., that for every x �= y ∈ X,
there exists some h ∈ H so that h(x) �= h(y). We define a binary relation �H

over X × X by �H= {(x, y) : ∀h ∈ H, h(y) �= h0(y) ⇒ h(x) �= h0(x)}.
We now argue that �H is a partial ordering. Namely, it is reflexive, transitive

and anti symmetric: Being reflexive and transitive follows trivially from the
definition. For anti-symmetry, let x, y be such that both x �H y and y �H x
hold. It is easy to see that this implies that for all h ∈ H, h(x) = h(y).

Now, if VCdim(H) < 2 then, for every h ∈ H, Ah
def
= {x : h(x) �= h0(x)} is

a linearly ordered initial segment under �H . That is,

1. For every x, y ∈ Ah, either x �H y or y �H x.
2. If x ∈ Ah and y �H x then y ∈ Ah.

Note that the second point follows immediately from the definition of the relation
�H . As for the first, assume both x �H y and y �H x fail. Then there exist
h1, h2 ∈ H s.t. h1(x) �= h0(x) and h1(y) = h0(y) and h2(x) = h0(x) and h2(y) �=
h0(y). Since x, y ∈ Ah, we also have h(x) �= h0(x) and h(y) �= h0(y). It follows
that the set {h0, h, h1, h2} shatters {x, y}, contradicting the assumption that
VCdim(H) < 2. This completes the proof the other implication.

With this, we can proceed to prove our existence theorem for IBE-VSC.

Proof (of Theorem 1). To simplify the notation let us assume w.l.o.g. that the
all zero function (or the empty set) is a member of H and that for every x ∈ X
there is some h ∈ H such that h(x) = 1. We set this all-zero hypothesis to be h0

in the definition of the partial order �H in the proof of Theorem 2. Let T be a
maximal size domain subset such that {{t} : t ∈ T} ⊆ {h∩T : h ∈ H}. For each
t ∈ T , pick ht ∈ H such that ht∩T = {t}. For h ∈ H let Ah:={x : h(x) �= h0(x)}.
Given a finite labeled sample S, for every t ∈ T , let x+

t be the maximal (under
�H) 1- labeled point in S ∩ Aht

(if there exists a 1- labeled point in S ∩ Aht
),

and let x−
t be the minimal (under �H) 0-labeled point in S ∩Aht

(if there exists
a 0- labeled point in S ∩ Aht

).

56 S. Ben-David and R. Urner

Finally, let κ(S) = {x+
t : t ∈ T} ∪ {x−

t : t ∈ T}. For the decompression
function ρ, note that every point that is below some x+

t (w.r.t �H) should
be labeled 1 by FH(S), every point that is above some x−

t (w.r.t �H) should
be labeled 0 by FH(S), and any other point should be labeled � by FH(S).
Therefore the set κ(S) that we defined allows full reconstruction of FH(S) (and,
by construction, has size at most 2w(H)).

3.3 Closure Properties

In this section, we show that the existence of (instance and concept based)
exact version space compression is closed under certain set operations on the
hypothesis classes. Together with the existence results of the previous section,
these yield a significant family of classes that admit exact VSCs.

Unions and Intersections. Finite size exact VSC is closed under union and
intersections. Recall the notion of ordered VSC from Remark 1.

Lemma 1. Let H and H ′ be hypothesis classes over some domain X that admit
IBE-VSC (CBE-VSC) to size d and d′ respectively. Then the hypothesis class
H ∩ H ′ admits ordered IBE-VSC (CBE-VSC) to size d + d′, and the hypothesis
class H ∪ H ′ admits ordered IBE-VSC (CBE-VSC) to size d + d′.

Proof. Let κH and κH′ denote the compression functions of H and H ′ respec-
tively. Note that for every sample S, we have VH∪H′(S) = VH(S) ∪ V ′

H(S) and
VH∩H′(S) = VH(S)∩V ′

H(S). Thus, given S, use κH(S) and κH′(S) to recover the
two version spaces and then do union (or intersection) on those version spaces.

We may alternatively encode the order with (d+d′) log(d+d′) bits (Remark 1).

Corollary 1. For every n, the class of decision stumps Hn
dest over R

n admits
IBE-VSC to size ≤ 2n samples plus 2n log 2n bits.

Fixed Intersection c-Unions. We define the hypothesis class union (c-union
in short) of two classes H and H ′ as HcH ′ := {h ∪ h′ : h ∈ H and h′ ∈ H ′}.
We say that this is a fixed intersection c-union if for some A ⊆ X, h ∩ h′ = A
for all h ∈ H,h′ ∈ H ′. The family of classes that admit IBE-VSC (CBE-VSC)
is closed under fixed intersection c-unions.

Lemma 2. Let H and H ′ be hypothesis classes over some domain X that admit
IBE-VSC (CBE-VSC) to size d and d′ respectively. Then the hypothesis class
HcH ′ admits IBE-VSC (CBE-VSC) to size d+ d′ samples with d+ d′ bits if the
c-union has a fixed intersection.

Proof. First, note that if A is the fixed intersection of any pair of hypotheses
belonging to different classes, then A =

⋃{h ∈ H} ∩ ⋃{h ∈ H ′}. Let S be a
labeled sample consistent with HcH ′. Let h ∈ H and h′ ∈ H ′ be such that S is

On Version Space Compression 57

consistent with h ∪ h′. Note that any negative example in S would be labeled
negative by both h and h′. Furthermore, every positive example in S, is either
in the common intersection A of the two classes, in which case it is labeled
positively by both h and h′ or, if it is outside A is either in

⋃{h ∈ H} or in⋃{h ∈ H ′} but not in both. Therefore, we can determine samples S1, S2 ⊆ S
such that S1 is consistent with H and S2 is consistent with H ′ and VHcH′(S) =
VH(S1)cVH′(S2). By the assumption that both classes have compression schemes
of sizes d and d′ respectively, we can now form κ(S1) and κ(S2) (of sizes d and
d′ respectively), and recover VHcH′(S) from their union, again adding d+d′ bits
of side information to encode membership to the κ(Si)’s.

Projections. Let H be a hypothesis class over domain X, that is H ⊆ 2X . For
some subset S of X, we let HS denote the projection of H on S, that is

HS = {hS ⊆ S : ∃h ∈ H with hS = h ∩ S}.

The existence of both instance and concept based exact compression schemes is
closed under projections.

Lemma 3. Let H be a hypothesis class that admits IBE-VSC (CBE-VSC) of
size d and let S ⊆ X. Then HS admits IBE-VSC (CBE-VSC) of size d as well.

Proof. The claim of the lemma is obvious for IBE-VSC. We now argue that it
also holds for CBE-VSC. Fix a labeled sample S ⊆ X ×{0, 1} and consider some
subset A ⊆ S. Let (h1, . . . hd) be the compression of VH(A), the version space of
A with respect to the original class H. Then VH(A) = span(h1, . . . hd). Let hi

S

denote the projections of the functions in the compressed set to S. It suffices to
argue that VHS

(A) = span(h1
S , . . . hd

S).
Let h ∈ HS be consistent with A, that is h ∈ VHS

(A). Let hX denote a
preimage of h in H (that is h = hX ∩ S). Then we have hX ∈ VH(A), hence
hX ∈ span(h1, . . . hd). To see that h ∈ span(h1

S , . . . hd
S), let x ∈ S with h1

S(x) =
. . . = hd

S(x) =: y. This implies h1(x) = . . . = hd(x) = y, hence hX(x) = y (since
hX ∈ span(h1, . . . hd)) and hence h(x) = y. This completes the proof.

3.4 Impossibility Results for Exact VSC

In this section we prove that many natural simple classes fail to admit IBE-
VSCor CBE-VSC. Our impossibility results are based on the following complex-
ity measure for hypothesis classes.

Definition 6. We say that a labeled sample S is independent with respect to
a class H if for every subsample A ⊆ S and for every x ∈ S \ A there exist
h0, h1 ∈ VH(A) such that h0(x) �= h1(x).

Example 4.

– Let H2
rec be the class of axis aligned rectangles in R

2. Let S be a finite (or
discrete) set of points on a line with slope −1, for example S = {(x,−x) : x ∈
R}, all labeled 0. Then S is independent with respect to the class H2

rec.

58 S. Ben-David and R. Urner

– Let S be a finite (or discrete) set of points all on the same half of a sphere in
R

d and all having the same label (say, {(x1, . . . , xn) : x1 ≥ 0 and Σn
i=1x

2
i = 1}

all with the label 1). Then S is independent with respect to the class Hn
lin of

halfspaces in R
d.

– If T ⊆ X is a witness of the width of H w.r.t. some function, f (see Definition
5), than {(x, f(x)) : x ∈ T} is an independent set w.r.t. H.

Theorem 3. Let H be a hypothesis class and m ∈ N. If there exists a sample
of size at least m that is independent with respect to H, then H does not admit
an IBE-VSC of size smaller than m/ log(m).

Proof. Let H satisfy the above assumption and assume that (κ, ρ) is a instance
based exact VSC scheme of size d for H. Let S be a labeled sample of size m
that is independent with respect to H.

We now argue that the subsets of S have pairwise different version spaces:
Let A,A′ ⊆ S with A �= A′. Let x be in the symmetric difference of A and A′,
without loss of generality we assume x ∈ A \ A′. Since x /∈ A′, and since S is
independent with respect to H, there exist functions h and h′ in VH(A′) with
h(x) �= h′(x). Since x ∈ A, at least one of h and h′ is not consistent with A,
thus not a member of the version space of A. That is, for all A,A′ ⊆ S, we have
shown that A �= A′ implies VH(A) �= VH(A′).

Note that a d-size compressing function κ for H can take at most
∑d

i=1

(
m
i

)

many values over the union of all subsamples {A : A ⊆ S}. However, there are
2m sets of corresponding version spaces (since, as argued above every subset A
of S induces a unique version space). We therefore get Σd

i=0

(
m
i

) ≥ 2m, which
implies, by a simple calculation, that d ≥ m

log(m) . The claim of the theorem now
follows by invoking Lemma 3.

Corollary 2.

1. The classes Hn
rec of axis aligned rectangles in R

d, do not admit finite size
IBE-VSC.

2. The classes Hn
lin of linear half spaces in R

d do not admit finite size IBE-VSC.
3. The class Hn

conj of boolean conjunctions over the propositional (binary) vari-
ables p1 . . . , pn does not have an IBE-VSC of any size < 2n

n . (Just note that
the domain set X has size 2n and, since for every instance x ∈ {0, 1}{1,...,n},
there is a conjunction cx that only the assignment x satisfies, therefore the
set X is a witness that w(Hn

conj) = 2n. Now apply the third point in Example
4 above).

We now turn to proving a similar impossibility result for CBE-VSC. The
result applies to classes that have a finite VC-dimension. Recall that, by Sauers’
lemma (e.g. Theorem 6.10 in [18]) for classes of finite VC-dimension, the number
of behaviors of a class on some finite subset S ⊆ X is bounded as follows:

|HS | ≤ Σ
VCdim(H)
i=0

(|S|
i

)

On Version Space Compression 59

Theorem 4. Let H be a hypothesis class with a finite VC-dimension, v, and
m ∈ N. If there exists a sample of size at least m that is independent with respect
to H, then H does not admit an CBE-VSC of size smaller than m

v log(m) .

Proof. By Lemma 3, it suffices to argue that the projection of H on some domain
subset S ⊆ X does not admit finite size CBE-VSC.

Let S be an m-size independent sample with respect to H, project the class
to the domain of S and consider subsamples of S. Let HS denote the projected
class. As in the proof of Theorem 3, we consider subsamples A of S. We again
observe that there are 2m many such subsamples A, each with a unique version
space. However, since we consider only the domain of S, if two hypotheses in HS

agree on the domain of S, using one of them for the compression is equivalent
to using the other.

The claim follows now by applying Sauer’s lemma to bound the number of
possible fixed size sets of hypotheses (up to their behavior over the domain of S).
There are at most Σv

i=0

(
m
i

)
< mv functions in HS and thus, given a compression

size d, there are only mdv possible compressed sets (namely, subsets of cardinality
at most d of HS). We therefore get that mvd ≥ 2m, implying d ≥ m

v log(m) , and
then the claim of the theorem follows by invoking Lemma 3.

The next example shows that the assumption of bounded VC-dimension is
needed for the impossibility result for CBE-VSC.

Example 5. Let H∞
star be the class of stars with infinitely many arms. It has

infinite VC-dim and infinite width. However, it does admit CBE-VSC to size 2.

4 Approximate VSC

In view of the above negative results, we now investigate some relaxations of the
definition of exact VSC. The following subsection proposes two degrees such a
relaxation. First, we relax the requirement on the output on the decompression
to only be approximately correct, i.e. correct on most of the instance space (with
respect to the data generating distribution). We then further relax the require-
ment on compression to only hold for most data sets S, i.e. with high probability
over the data generation. The notions we propose are still strong enough to allow,
for example, for distributed parallelization of learning. The relaxed notions we
introduce here are for both instance based and concept based compression and
we phrase the definitions in general terms to apply to both settings.

4.1 Definitions of Approximate VSC

Recall that we use κ to denote the compression function (either to a subset of
S or a subset of H), and use ρ to denote the recovery function, from κ(S) to a
{0, 1, ∗}-valued predictor. Given a loss function for such three valued predictors
(see Definition 8 below), we can define approximate VSC as follows.

60 S. Ben-David and R. Urner

Definition 7 (Approximate VSC). A pair of functions, (κ, ρ), as described
above, is an ε-approximate compression scheme for a class H with respect and
a distribution D, if for every sample S that is realizable by H

LH
D(S, ρ(κ(S))) ≤ ε.

The loss LH
D can be specified as follows. Recall that FH(S) is the {0, 1, ∗}-

valued function reflecting the consensus of the version space of S.

Definition 8 (Version Space Loss). Given a class of binary valued functions
H, a binary labeled sample S realizable by H, a three valued h : X → {0, 1, �},
and non-negative parameters {a, b}. Define a loss pointwise for all x ∈ X:

�H(S, h, x) =

⎧
⎪⎨

⎪⎩

0 if FH(S)(x) = h(x)
a if FH(S)(x) = � and h(x) �= �

b if FH(S)(x) �= � and h(x) �= FH(S)(x)

This yields a loss with respect to a data distribution D over the domain set X:

LH
D(S, h) = Ex∼D�H(S, h, x),

where E denotes the expectation. For a finite subset U ⊆ X, we let LH
U (S, h)

denote the loss with respect to the uniform distribution over U . LH
U (S, h) can be

viewed as the empirical loss of h with respect to an unlabeled sample U .

Remark 2.

1. By setting a = 0 and a very high value (say, ∞) for b, one can guarantee that
any approximate version space compression scheme is a compression scheme
in the “classic” sense, namely, it provides exact recovery of all labels of the
input sample S, but there is no loss penalty on instances whose labels are not
determined by the sample S. With a = b = ∞, we recover the exact version
space compression of Sect. 3.

2. The parameters {a, b} could, be extended to a full 3×3 confusion matrix, with
different values for any possible type of misclassification of h with respect to
the behavior of FH(S). From now, we will focus on the case a = b = 1.

We now propose a natural statistical extension of the above definition, where
we require the approximate recovery of Definition 7 to only hold with high
probability over input samples.

Definition 9 (Statistical Approximate VSC). Let H,κ, ρ be as above and
D a probability distribution over the domain set X. A pair of functions, (κ, ρ) is
an (m, ε, δ)-approximate version space compression scheme for a class H with
respect to the distribution D, if for every labeling function h ∈ H, with probability
at least (1 − δ) over samples S of size m generated i.i.d. by D and labeled by h
we have

LD(S, ρ(κ(S))) ≤ ε.

On Version Space Compression 61

4.2 A Semi-supervised ERM Paradigm for Approximate VSC

We now present a compression paradigm for approximate, concept based version
space compression in the statistical setup.

Recall that for a set of classifiers H ′ = {h1, . . . , hT } their consensus recovery
function is denoted by consrec({h1, . . . , hT }). Note that as long as hi ∈ VH(S)
for all i, the only type of error that consrec({h1, . . . , hT }) may make is assigning
a label in {0, 1} to a point x for which FH(S)(x) = �.

We consider the case where we also have an unlabeled sample U , generated
i.i.d. by the underlying marginal distribution. We search for a set of hypotheses
H ′ = {h1, . . . hT } ⊆ VH(S), that minimize LH

D(S, consrec({h1, . . . , hT }). In other
words, minimize the weight (with respect to D) of the set of instances on which
some function in the version space of S disagree but all members of H ′ agree.
Namely, minimize the weight of

B(S,H ′) = {x : ∃h, h′ ∈ VH(S), h(x) �= h′(x), but ∀h, h′ ∈ H ′, h(x) = h′(x)}.

Since a learner does not have access to D, we will instead search for functions
{h1, . . . , hT } that minimizes the empirical loss LH

U (S, consrec({h1, . . . , hT }) with
respect to an unlabeled sample U . The following result provides a finite sample
size guarantee for this ERM approach:

Theorem 5. There is a constant C such that for every ε, δ > 0, every T ∈ N,
every class H, every probability distribution D over X, and every labeled S, if
U is an i.i.d. unlabeled sample generated by D of size

|U | ≥ mH(ε, δ, T,VCdim(H)) = C
T 4VCdim(H) + log(1/δ)

ε2
,

then with probability at least (1−δ) over sampling U , for every {h1, . . . hT } ⊆ H,

|LH
U (S, consrec({h1, . . . , hT })) − LH

D(S, consrec({h1, . . . , hT }))| ≤ ε.

Proof. First, note that

LH
U (S, consrec({h1, . . . , hT })) = |U ∩ ({x : FH(S)(x) = �} \

⋃

i,j≤T

hiΔhj)| / |U |,

and similarly,

LH
D(S, consrec({h1, . . . , hT })) = D({x : FH(S)(x) = �} \

⋃

i,j≤T

hiΔhj).

Consequently, it suffices to show that the U empirical estimates of each of the
sets hiΔhj and the set {x : FH(S) = �} are within ε

(T2)+1
of their true D

probabilities.
The statement of the theorem now follows by invoking Vapnik-Chervonenkis’

ε-approximation theorem [19]. That is, with probability larger (1 − δ), an i.i.d.
D-sample of that size is an ε

T 2 -approximation of HΔH with respect to D.

62 S. Ben-David and R. Urner

4.3 Impossibility Results for Approximate VSC

The previous subsection offers a paradigm for obtaining approximate, concept
based version space compression for marginal distributions that allow such com-
pression. However, we will show in this subsection that, for many natural concept
classes, there exist marginal distributions which are “hard for compression”. We
start by stating an impossibility result for the, rather artificial, class of single-
tons, and then show how it implies that for many natural classes there exist
marginal distributions with respect to which approximate VSC is impossible.

Theorem 6. Let X be a finite domain set and let HX
sing denote the class of

singletons HX
sing = {{x} : x ∈ X} over X. HX

sing does not have a finite size (inde-
pendent of |X|) 1/6-approximate VSC with respect to the uniform distribution
over X and the 0−−1 loss (neither concept based approximate VSC nor instance
based approximate VSC).

Proof. Let S, S′ be two samples in which all instances are labeled 0. Note that

LU (S, FH(S′)) = |SΔS′| / |X|,

where U denotes the uniform distribution over X and FH(S′) is the version
space function of a sample S′. Lemma 4 below shows that there exists a family
of size exponential in |X| of subsets of X such that each two of them have
symmetric difference of size ≥ |X|/3. For every S �= S′ in such a family, an
1/6-approximate compression (ρ, κ) will require that κ(S) �= κ(S′) (regardless of
whether this is a instance based compression or a concept based compression).
The proof is now established by invoking an argument similar to the ones in the
above impossibility results (Theorem 3 and Theorem 4).

Lemma 4 ([4]).For every n ∈ N there exists a family Wn ⊆ {0, 1}n such that
|Wn| = 2cn (for some constant c) and |Δ(A,B)| ≥ n/3 for every A �= B ∈ Wn.

Corollary 3. Let H be a concept class over some domain set X. Let T ⊆ X
be such that {h ∩ T : h ∈ H} ⊇ {{t} : t ∈ T}. Then H does not have a 1/6-
approximate version space compression scheme of size o(log(|T |)) for the uniform
distribution over T . In particular, neither the class of linear half spaces in R

2

nor the class of axis aligned rectangles in R
2 have a 1/6-approximate version

space compression scheme of size that is independent of the distribution with
respect to which the approximation is defined.

5 Related Work

Several earlier works have considered the task of algorithmically conveying not
just label predictions but also “awareness of lack of knowledge”. The earliest of
those is probably a study by Rivest and Sloan [15]. Later work in that direc-
tion was presented under the name of KWIK (knows what it knows) algorithms
[10,17,21]. There are several significant differences between that work and ours.

On Version Space Compression 63

First, those papers address the possibility of algorithms to be aware of their
uncertainties without addressing the issue of compressing that knowledge. Sec-
ondly, that body of work is focused on online learning, while we investigate batch
learning. Finally, we are considering the knowledge encapsulated in a training
sample rather than the knowledge derived by an algorithm.

Another related direction is that of distributed learning [1,5]. In that case,
the concern is compression size, as it effects the communication volume between
agents in a distributed learning scenario. However, those works allow iterations of
the communications between different parts of the data, while we are considering
“one time” compression.

Another notion related to this work is Teaching Dimension (TD). It has been
introduced in the context of exact learning [7]. A variant of teaching dimen-
sion has been introduced for the purpose of analyzing active learning paradigms
[8,20]. This notion of TD is equivalent to some notion of version space compres-
sion [8], the consistent variant of our instance based exact VSC. More precisely,
that study employs a notion of VSC where the recovery function ρ is restricted
to being the consensus recovery function. It also characterizes the size of such
compression by star number parameter. That parameter is closely related to our
notion of width of a class.

6 Discussion

In this work, we have introduced and analyzed a variety of formal frameworks
for version space compression schemes. Such schemes capture not only what a
sample labels but also the instances whose labels the sample does not deter-
mine. We prove positive results, including general families of classes for which
such compression schemes are possible, closure properties, as well as convergence
guarantees of a natural ERM paradigm that uses additional unlabeled samples.

On the other hand, we introduce some novel parameters of concept classes
that imply lower bounds on the size of such compressions as well as cases for
which no such compression is possible.

In view of various potential applications of such rich compression schemes,
we hope that our work may open a line of research that may be both theoreti-
cally rich and practically relevant. Possible directions for future research range
from exploring further alternative variants of compression notions, in particular
notions of version space compression that are more closely tied with a particular
application, to investigating algorithmic and computational complexity aspects.

References

1. Balcan, M.-F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communi-
cation complexity and privacy. In: Proceedings of the 25th Annual Conference on
Learning Theory (COLT), pp. 26.1–26.22 (2012)

2. Ben-David, S.: 2 notes on classes with Vapnik-Chervonenkis dimension 1 (2015).
CoRR arXiv:1507.05307

http://arxiv.org/abs/1507.05307
http://arXiv.org/abs/1507.05307

64 S. Ben-David and R. Urner

3. Ben-David, S., Litman, A.: Combinatorial variability of Vapnik-Chervonenkis
classes with applications to sample compression schemes. Discrete Appl. Math.
86(1), 3–25 (1998)

4. Ben-David, S.: Low-sensitivity functions from unambiguous certificates. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 23, no. 84 (2016)

5. Chen, S.-T., Balcan, M.-F., Chau, D.H.: Communication efficient distributed
agnostic boosting (2015). CoRR arXiv:1506.06318

6. Floyd, S., Warmuth, M.K.: Sample compression, learnability, and the Vapnik-
Chervonenkis dimension. Mach. Learn. 21(3), 269–304 (1995)

7. Goldman, S.A., Kearns, M.J.: On the complexity of teaching. J. Comput. Syst.
Sci. 50(1), 20–31 (1995)

8. Hanneke, S., Yang, L.: Minimax analysis of active learning. J. Mach. Learn. Res.
16, 3487–3602 (2015)

9. Kuzmin, D., Warmuth, M.K.: Unlabeled compression schemes for maximum
classes. J. Mach. Learn. Res. 8, 2047–2081 (2007)

10. Li, L., Littman, M.L., Walsh, T.J., Strehl, A.L.: Knows what it knows: a framework
for self-aware learning. Mach. Learn. 82(3), 399–443 (2011)

11. Littlestone, N., Warmuth, M.K.: Relating data compression and learnability (1986,
unpublished manuscript)

12. Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning.
In: Proceedings of the 5th International Joint Conference on Artificial Intelligence,
pp. 305–310 (1977)

13. Moran, S., Shpilka, A., Wigderson, A., Yehudayoff, A.: Compressing and teach-
ing for low VC-dimension. In: Proceedings of IEEE 56th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 40–51 (2015)

14. Moran, S., Warmuth, M.K.: Labeled compression schemes for extremal classes
(2015). CoRR arXiv:1506.00165

15. Rivest, R.L., Sloan, R.H.: Learning complicated concepts reliably and usefully. In:
Proceedings of the 7th National Conference on Artificial Intelligence, pp. 635–640
(1988)

16. Samei, R., Semukhin, P., Yang, B., Zilles, S.: Sample compression for multi-label
concept classes. In: Proceedings of The 27th Conference on Learning Theory
(COLT), pp. 371–393 (2014)

17. Sayedi, A., Zadimoghaddam, M., Blum, A.: Trading off mistakes and don’t-know
predictions. In: Advances in Neural Information Processing Systems 23: 24th
Annual Conference on Neural Information Processing Systems (NIPS), pp. 2092–
2100 (2010)

18. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning. Cambridge
University Press, Cambridge (2014)

19. Vapnik, V.N., Chervonenkis, A.J.: On the uniform convergence of relative frequen-
cies of events to their probabilities. Theor. Probab. Appl. 16(2), 264–280 (1971)

20. Wiener, Y., Hanneke, S., El-Yaniv, R.: A compression technique for analyzing
disagreement-based active learning. J. Mach. Learn. Res. 16, 713–745 (2015)

21. Zhang, C., Chaudhuri, K.: The extended littlestone’s dimension for learning with
mistakes and abstentions (2016). CoRR arXiv:1604.06162

http://arxiv.org/abs/1506.06318
http://arXiv.org/abs/1506.06318
http://arxiv.org/abs/1506.00165
http://arXiv.org/abs/1506.00165
http://arxiv.org/abs/1604.06162
http://arXiv.org/abs/1604.06162

Statistical Learning Theory, Evolvability

Learning with Rejection

Corinna Cortes1, Giulia DeSalvo2(B), and Mehryar Mohri1,2

1 Google Research, 111 8th Avenue, New York, NY, USA
2 Courant Institute of Mathematical Sciences,

251 Mercer Street, New York, NY, USA
desalvo@cims.nyu.edu

Abstract. We introduce a novel framework for classification with a
rejection option that consists of simultaneously learning two functions:
a classifier along with a rejection function. We present a full theoret-
ical analysis of this framework including new data-dependent learning
bounds in terms of the Rademacher complexities of the classifier and
rejection families as well as consistency and calibration results. These
theoretical guarantees guide us in designing new algorithms that can
exploit different kernel-based hypothesis sets for the classifier and rejec-
tion functions. We compare and contrast our general framework with
the special case of confidence-based rejection for which we devise alter-
native loss functions and algorithms as well. We report the results of
several experiments showing that our kernel-based algorithms can yield
a notable improvement over the best existing confidence-based rejection
algorithm.

1 Introduction

We consider a flexible binary classification scenario where the learner is given
the option to reject an instance instead of predicting its label, thereby incurring
some pre-specified cost, typically less than that of a random prediction. While
classification with a rejection option has received little attention in the past, it
is in fact a scenario of great significance that frequently arises in applications.
Incorrect predictions can be costly, especially in applications such as medical
diagnosis and bioinformatics. In comparison, the cost of abstaining from predic-
tion, which may be that of additional medical tests, or that of routing a call to
a customer representative in a spoken-dialog system, is often more acceptable.
From a learning perspective, abstaining from fitting systematic outliers can also
result in a more accurate predictor. Accurate algorithms for learning with rejec-
tion can further be useful to developing solutions for other learning problems
such as active learning [4].

Various problems related to the scenario of learning with a rejection option
have been studied in the past. The trade-off between error rate and rejection
rate was first studied by Chow [5,6] who also provided an analysis of the Bayes
optimal decision for this setting. Later, several publications studied an optimal
rejection rule based on the ROC curve and a subset of the training data [16,
26,29], while others used rejection options or punting to reduce misclassification
rate [2,15,20,24,27], though with no theoretical analysis or guarantee.
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 67–82, 2016.
DOI: 10.1007/978-3-319-46379-7 5

68 C. Cortes et al.

More generally, few studies have presented general error bounds in this area,
but some have given risk bounds for specific scenarios. Freund et al. [14] studied
an ensemble method and presented an algorithm that predicts with a weighted
average of the hypotheses while abstaining on some examples without incurring
a cost. Herbei and Wegkamp [18] considered classification with a rejection option
that incurs a cost and provided bounds for these ternary functions.

One of the most influential works in this area has been that of Bartlett
and Wegkamp [1] who studied a natural discontinuous loss function taking into
account the cost of a rejection. They used consistency results to define a convex
and continuous Double Hinge Loss (DHL) surrogate loss upper-bounding that
rejection loss, which they also used to derive an algorithm. A series of follow-up
articles further extended this publication, including [33] which used the same
convex surrogate while focusing on the l1 penalty. Grandvalet et al. [17] derived
a convex surrogate based on [1] that aims at estimating conditional probabilities
only in the vicinity of the threshold points of the optimal decision rule. They also
provided some preliminary experimental results comparing the DHL algorithm
and their variant with a naive rejection algorithm. Under the same rejection rule,
Yuan and Wegkamp [32] studied the infinite sample consistency for classification
with a reject option.

Using a different approach based on active learning, El-Yaniv and Wiener
[11] studied the trade-off between the coverage and accuracy of classifiers and,
in a subsequent paper [12] provided a strategy to learn a certain type of selective
classification, which they define as weakly optimal, that has diminishing rejection
rate under some Bernstein-type conditions. Finally, several papers have discussed
learning with rejection in the multi-class setting [3,10,28], reinforcement learning
[22], and in online learning [34].

There are also several learning scenarios tangentially related to the rejection
scenario we consider, though they are distinct and hence require a very different
approach. Sequential learning with budget constraints is a related framework
that admits two stages: first a classifier is learned, next the classifier is fixed
and a rejection function is learned [30,31]. Since it assumes a fixed predictor
and only admits the rejection function as an argument, the corresponding loss
function is quite different from ours. Another somewhat similar approach is that
of cost-sensitive learning where a class-dependent cost can be used [13]. One
could think of adopting that framework here to account for the different costs
for rejection and incorrect prediction. However, the cost-sensitive framework
assumes a distribution over the classes or labels, which, here, would be the set
{−1, 1, R©}, with R© the rejection symbol. But, R© is not a class and there is no
natural distribution over that set in our scenario.

In this paper, we introduce a novel framework for classification with a rejec-
tion option that consists of simultaneously learning a pair of functions (h, r):
a predictor h along with a rejection function r, each selected from a different
hypothesis set. This is a more general framework than that the special case
of confidence-based rejection studied by Bartlett and Wegkamp [1] and oth-
ers, where the rejection function is constrained to be a thresholded function of

Learning with Rejection 69

the predictor’s scores. Our novel framework opens up a new perspective on the
problem of learning with rejection for which we present a full theoretical analy-
sis, including new data-dependent learning bounds in terms of the Rademacher
complexities of the classifier and rejection families, as well as consistency and
calibration results. We derive convex surrogates for this framework that are real-
izable (H,R)-consistent. These guarantees in turn guide the design of a variety of
algorithms for learning with rejection. We describe in depth two different types
of algorithms: the first type uses kernel-based hypothesis classes, the second
type confidence-based rejection functions. We report the results of experiments
comparing the performance of these algorithms and that of the DHL algorithm.

The paper is organized as follows. Section 2 introduces our novel learning
framework and contrasts it with that of Bartlett and Wegkamp [1]. Section 3 pro-
vides generalization guarantees for learning with rejection. It also analyzes two
convex surrogates of the loss along with consistency results and provides margin-
based learning guarantees. In Sect. 4, we present an algorithm with kernel-based
hypothesis sets derived from our learning bounds. In Sect. 5, we further examine
the special case of confidence-based rejection by analyzing various algorithmic
alternatives. Lastly, we report the results of several experiments comparing the
performance of our algorithms with that of DHL (Sect. 6).

2 Learning Problem

Let X denote the input space. We assume as in standard supervised learning that
training and test points are drawn i.i.d. according to some fixed yet unknown
distribution D over X × {−1,+1}. We present a new general model for learning
with rejection, which includes the confidence-based models as a special case.

2.1 General Rejection Model

The learning scenario we consider is that of binary classification with rejection.
Let R© denote the rejection symbol. For any given instance x ∈ X , the learner
has the option of abstaining or rejecting that instance and returning the symbol
R©, or assigning to it a label ŷ ∈ {−1,+1}. If the learner rejects an instance, it
incurs some loss c(x) ∈ [0, 1]; if it does not reject but assigns an incorrect label,
it incurs a cost of one; otherwise, it suffers no loss. Thus, the learner’s output is
a pair (h, r) where h : X → R is the hypothesis used for predicting a label for
points not rejected using sign (h) and where r : X → R is a function determining
the points x ∈ X to be rejected according to r(x) ≤ 0.

The problem is distinct from a standard multi-class classification problem
since no point is inherently labeled with R©. Its natural loss function L is defined
by

L(h, r, x, y) = 1yh(x)≤01r(x)>0 + c(x)1r(x)≤0, (1)

for any pair of functions (h, r) and labeled sample (x, y) ∈ X × {−1,+1}, thus
extending the loss function considered by [1]. In what follows, we assume for
simplicity that c is a constant function, though part of our analysis is applicable

70 C. Cortes et al.

to the general case. Observe that for c ≥ 1
2 , on average, there is no incentive for

rejection since a random guess can never incur an expected cost of more than 1
2 .

For biased distributions, one may further limit c to the fraction of the smallest
class. For c = 0, we obtain a trivial solution by rejecting all points, so we restrict
c to the case of c ∈]0, 1

2 [.
Let H and R denote two families of functions mapping X to R. The learning

problem consists of using a labeled sample S = ((x1, y1), . . . , (xm, ym)) drawn
i.i.d. from Dm to determine a pair (h, r) ∈ H×R with a small expected rejection
loss R(h, r)

R(h, r) = E
(x,y)∼D

[
1yh(x)≤01r(x)>0 + c1r(x)≤0

]
. (2)

We denote by R̂S(h, r) the empirical loss of a pair (h, r) ∈ H×R over the sample
S and use (x, y) ∼ S to denote the draw of (x, y) according to the empirical
distribution defined by S: R̂S(h, r) = E(x,y)∼S

[
1yh(x)≤01r(x)>0 + c1r(x)≤0

]
.

2.2 Confidence-Based Rejection Model

Learning with rejection based on two independent yet jointly learned functions
h and r introduces a completely novel approach to this subject. However, our
new framework encompasses much of the previous work on this problem, e.g.
[1], is a special case where rejection is based on the magnitude of the value of
the predictor h, that is x ∈ X is rejected if |h(x)| ≤ γ for some γ ≥ 0. Thus, r
is implicitly defined in the terms of the predictor h by r(x) = |h(x)| − γ.

This specific choice of the rejection function r is natural when considering
the Bayes solution (h∗, r∗) of the learning problem, that is the one where the
distribution D is known. Indeed, for any x ∈ X , let η(x) be defined by η(x) =
P[Y = +1|x]. For a standard binary classification problem, it is known that
the predictor h∗ defined for any x ∈ X by h∗(x) = η(x) − 1

2 is optimal since
sign (h∗(x)) = max{η(x), 1 − η(x)}. For any x ∈ X , the misclassification loss
of h∗ is E[1yh(x)≤0|x] = min{η(x), 1 − η(x)}. The optimal rejection r∗ should
therefore be defined such that r∗(x) ≤ 0, meaning x is rejected, if and only if

min{η(x), 1 − η(x)} ≥ c⇔1 − max{η(x), 1 − η(x)} ≥ c

⇔max{η(x), 1 − η(x)} ≤ 1 − c

⇔max{η(x) − 1
2 , 1

2 − η(x)} ≤ 1
2 − c ⇔ |h∗(x)| ≤ 1

2 − c.

Thus, we can choose h∗ and r∗ as in Fig. 1, which also provides an illustration of
confidence-based rejection. However, when predictors are selected out of a limited

h∗(x) = η(x) − 1
2

and
r∗(x) = |h∗(x)| − (1

2
− c).

η(x)

x

h∗(x)>0
r∗(x)<0
c

Fig. 1. Mathematical expression and illustration of the optimal classification and rejec-
tion function for the Bayes solution. Note, as c increases, the rejection region shrinks.

Learning with Rejection 71

−−−− +++++−+− θη

Fig. 2. The best predictor h is defined by the threshold θ: h(x) = x − θ. For c < 1
2
,

the region defined by X ≤ η should be rejected. Note that the corresponding rejection
function r defined by r(x) = x − η cannot be defined as |h(x)| ≤ γ for some γ > 0.

subset H of all measurable functions over X , requiring the rejection function r to
be defined as r(x) = |h(x)|−γ, for some h ∈ H, can be too restrictive. Consider,
for example, the case where H is a family of linear functions. Figure 2 shows
a simple case in dimension one where the optimal rejection region cannot be
defined simply as a function of the best predictor h. The model for learning with
rejection that we describe where a pair (h, r) is selected is more general. In the
next section, we study the problem of learning such a pair.

3 Theoretical Analysis

We first give a generalization bound for the problem of learning with our rejec-
tion loss function as well as consistency results. Next, to devise efficient learning
algorithms, we give general convex upper bounds on the rejection loss. For sev-
eral of these convex surrogate losses, we prove margin-based guarantees that we
subsequently use to define our learning algorithms (Sect. 4).

3.1 Generalization Bound

Theorem 1. Let H and R be families of functions taking values in {−1,+1}.
Then, for any δ > 0, with probability at least 1 − δ over the draw of a sample S
of size m from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ R̂S(h, r) + Rm(H) + (1 + c)Rm(R) +

√
log 1

δ

2m
.

Proof. Let LH,R be the family of functions LH,R =
{
(x, y) 	→ L(h, r, x, y), h ∈

H, r ∈ R}
. Since the loss function L takes values in [0, 1], by the general

Rademacher complexity bound [19], with probability at least 1−δ, the following

holds for all (h, r) ∈ H × R: R(h, r) ≤ R̂S(h, r) + 2Rm(LH,R) +
√

log 1/δ
2m . Now,

the Rademacher complexity can be bounded as follows:

Rm(LH,R) = Eσ

[
sup

(h,r)∈H×R

1
m

m∑

i=1

σi1yih(xi)≤01r(xi)>0+σic 1r(xi)≤0

]

≤ Eσ

[
sup

(h,r)∈H×R

1
m

m∑

i=1

σi1h(xi) �=yi
1r(xi)=+1

]
+ cEσ

[
sup
r∈R

1
m

m∑

i=1

σi1r(xi)=−1

]
.

72 C. Cortes et al.

By Lemma 1 (below), the Rademacher complexity of products of indicator func-
tions can be bounded by the sum of the Rademacher complexities of each
indicator function class, thus, Eσ

[
sup(h,r)∈H×R

1
m

∑m
i=1 σi1h(xi) �=yi

1r(xi)=+1

] ≤
Eσ

[
suph∈H

1
m

∑m
i=1 σi1h(xi) �=yi

]
+ Eσ

[
supr∈R

1
m

∑m
i=1 σi1r(xi)=+1

]
. The proof

can be completed by using the known fact that the Rademacher complexity of
indicator functions based on a family of functions taking values in {−1,+1} is
equal to one half the Rademacher complexity of that family.
�

To derive an explicit bound in terms of H and R in Theorem 1, we make use
of the following lemma relating the Rademacher complexity of a product of two
(or more) families of functions to the sum of the Rademacher complexity of each
family, whose proof can be found in [9].

Lemma 1. Let F1 and F2 be two families of functions mapping X to [−1,+1].
Let F = {f1f2 : f1 ∈ F1, f2 ∈ F2}. Then, the empirical Rademacher complexities
of F for any sample S of size m are bounded: R̂S(F) ≤ 2

(
R̂S(F1) + R̂S(F2)

)
.

The theorem gives generalization guarantees for learning with a family of predic-
tors H and rejection function R mapping to {−1,+1} that admit Rademacher
complexities in O(1/

√
m). For such families, it suggests to select the pair (h, r)

to minimize the right-hand side. As with the zero-one loss, minimizing R̂S(h, r)
is computationally hard for most families of functions. Thus, in the next section,
we study convex upper bounds that lead to more efficient optimization problems,
while admitting favorable learning guarantees as well as consistency results.

3.2 Convex Surrogate Losses

We first present general convex upper bounds on the rejection loss. Let u 	→
Φ(−u) and u 	→ Ψ(−u) be convex functions upper-bounding 1u≤0. Since for any
a, b ∈ R, max(a, b) = a+b+|b−a|

2 ≥ a+b
2 , the following inequalities hold with α > 0

and β > 0:

L(h, r, x,y) = 1yh(x)≤01r(x)>0 + c 1r(x)≤0 = max
(
1yh(x)≤01−r(x)<0, c 1r(x)≤0

)

≤ max
(
1max(yh(x),−r(x))≤0, c 1r(x)≤0

)
≤ max

(
1 yh(x)−r(x)

2 ≤0
, c 1r(x)≤0

)

≤ max
(
1

α
yh(x)−r(x)

2 ≤0
, c 1βr(x)≤0

)

≤ max
(
Φ

(
α
2 (r(x) − yh(x))

)
, c Ψ(−βr(x))

)
(3)

≤ Φ
(

α
2 (r(x) − yh(x))

)
+ c Ψ(−βr(x)). (4)

Since Φ and Ψ are convex, their composition with an affine function of h and r
is also a convex function of h and r. Since the maximum of two convex functions
is convex, the right-hand side of (3) is a convex function of h and r. Similarly,
the right-hand side of (4) is a convex function of h and r. In the specific case
where the Hinge loss is used for both u 	→ Φ(−u) and u 	→ Ψ(−u), we obtain

Learning with Rejection 73

the following two convex upper bounds, Max Hinge (MH) and Plus Hinge (PH),
also illustrated in Fig. 3:

LMH(h, r, x, y) = max
(
1 + α

2 (r(x) − yh(x)), c (1 − βr(x)), 0
)

LPH(h, r, x, y) = max
(
1 + α

2 (r(x) − yh(x)), 0
)

+ max
(
c (1 − βr(x)), 0

)
.

Fig. 3. From the left, the figures show the rejection loss L, the convex surrogate loss
LMH, and the convex surrogate loss LPH as a function of yh(x) and r(x), for the cost
value c = 0.4. The convex surrogates have a steeper left surface reflecting the rejection
loss’s penalty of incorrectly classifying a point while their gentler right surface of the
surrogates reflects the lower cost c of abstaining. Also, the figures clearly show that
the surrogate loss LPH is an upper bound on LMH.

3.3 Consistency Results

In this section, we present a series of theoretical results related to the consistency
of the convex surrogate losses introduced. We first prove the calibration and
consistency for specific choices of the parameters α and β. Next, we show that the
excess risk with respect to the rejection loss can be bounded by its counterpart
defined via our surrogate loss. We further prove a general realizable (H,R)-
consistency for our surrogate losses.

Calibration. The constants α > 0 and β > 0 are introduced in order to cal-
ibrate the surrogate loss with respect to the Bayes solution. Let (h∗

M, r∗
M) be a

pair attaining the infimum of the expected surrogate loss E(x,y)(LMH(h, r, x, y))
over all measurable functions. Recall from Sect. 2, the Bayes classifier is denoted
by (h∗, r∗). The following lemma shows that for α = 1 and β = 1

1−2c , the loss
LMH is calibrated, that is the sign of (h∗

M, r∗
M) matches the sign of (h∗, r∗).

Theorem 2. Let (h∗
M, r∗

M) denote a pair attaining the infimum of the expected
surrogate loss, E(x,y)[LMH(h∗

M, r∗
M, x, y)] = inf(h,r)∈meas E(x,y)[LMH(h, r, x, y)].

Then, for β = 1
1−2c and α = 1,

1. the surrogate loss LMH is calibrated with respect to the Bayes classifier:
sign (h∗) = sign (h∗

M) and sign (r∗) = sign (r∗
M);

74 C. Cortes et al.

2. furthermore, the following equality holds for the infima over pairs of measur-
able functions:

inf
(h,r)

E
(x,y)∼D

[LMH(h, r, x, y)] = (3 − 2c) inf
(h,r)

E
(x,y)∼D

[L(h, r, x, y)].

Proof Sketch. The expected surrogate loss can be written in terms of η(x):
E(x,y)∼D[LMH(h, r, x, y)] = Ex[η(x)φ(−h(x), r(x))+(1−η(x))φ(h(x), r(x))], with
φ(−h(x), r(x)) = max(1 + 1

2 (r(x) − h(x)), c(1 − 1
1−2cr(x)), 0). Let the argu-

ment of the expectation, η(x)φ(−h(x), r(x))+(1−η(x))φ(h(x), r(x)), be denoted
by Lφ(η(x), h(x), r(x)). Since the infimum is over all measurable functions, to
determine (h∗

M, r∗
M) it suffices to determine, for any fixed x the minimizer of

(u, v) 	→ Lφ(η(x), u, v). For a fixed x, minimizing Lφ(η(x), u, v) with respect
to (u, v) is equivalent to minimizing seven LPs. One can check that the opti-
mal points of these LPs are in the set (u, v) ∈ {(0, (2c − 2)(1 − 2c)), (3 −
2c, 1 − 2c), (−3 + 2c, 1 − 2c)}. Evaluating Lφ(η(x), u, v) at these points, we find
that Lφ(η(x), 3 − 2c, 1 − 2c) = (3 − 2c)(1 − η(x)), Lφ(η(x),−3 + 2c, 1 − 2c) =
(3 − 2c)(η(x)), and Lφ(η(x), 0, (2c − 2)(1 − 2c)) = (3 − 2c)c. Thus, we can con-
clude that the minimum of Lφ(η(x), u, v) is attained at (3 − 2c)

[
η(x)1η(x)<c +

c1c≤η(x)≤1−c +
(
1 − η(x)

)
1η(x)>1−c

]
, which completes the proof.
�

Excess Risk Bound. Here, we show upper bounds on the excess risk in terms of
the surrogate loss excess risk. Let R∗ denote the Bayes rejection loss, that is R∗ =
inf(h,r) E(x,y)∼D[L(h, r, x, y)], where the infimum is taken over all measurable
functions and similarly let R∗

L denote inf(h,r) E(x,y)∼D[LMH(h, r, x, y)].

Theorem 3. Let RL(h, r) = E(x,y)∼D[LMH(h, r, x, y)] denote the expected sur-
rogate loss of a pair (h, r). Then, the surrogate excess of (h, r) is upper bounded
by its surrogate excess error as follows:

R(h, r) − R∗ ≤ 1
(1−c)(1−2c)

(
RL(h, r) − R∗

L

)
.

Proof Sketch. Let L∗(η(x)) denote the expected loss of the Bayes solution condi-
tioned on x, L∗(η(x)) = η(x)1η(x)<c + c1c≤η(x)≤1−c + (1 − η(x))1η(x)>1−c. Then

R(h, r) − R(h∗, r∗) = E
x

[
(η(x) − L∗(η(x)))1h(x)<0,r>(x)0 (5)

+ (1 − η(x) − L∗(η(x)))1h(x)≥0,r(x)>0 + (c − L∗(η(x)))1r(x)≤0].

Since L∗(η(x)) admits three values, we can distinguish three cases and give a
proof for each. When c ≤ η(x) ≤ 1 − c, L∗(η(x)) = c, that is r∗ ≤ 0 and
r∗
L ≤ 0, by calibration. In that case, Eq. 5 can be written as R(h, r)−R(h∗, r∗) =
Ex

(
(η(x)−c)1h(x)<0,r(x)>0+(1−η(x)−c)1h(x)≥0,r(x)>0

)
. Note that the indicator

functions on the right-hand side are mutually exclusive, thus, it suffices to show
that each component is bounded.
�
(H,R)-Consistency. The standard notion of loss consistency does not take
into account the hypothesis set H used since it assumes an optimization carried

Learning with Rejection 75

out over the set of all measurable functions. Long and Servedio [23] pro-
posed instead a notion of H-consistency precisely meant to take the hypoth-
esis set used into consideration. They showed empirically that using loss func-
tions that are H-consistent can lead to significantly better performances than
using a loss function known to be consistent. Here, we prove that our surro-
gate losses are realizable (H,R)-consistent, a hypothesis-set-specific notion of
consistency under our framework. The realizable setting in learning with rejec-
tion means that there exists a function that never rejects and correctly classifies
all points. A loss l is realizable (H,R)-consistent if for any distribution D over
X × Y and any ε > 0, there exists δ > 0 such that if

∣∣E(x,y)∼D [l(h, r, x, y)] −
inf(h,r)∈(H,R) E(x,y)∼D[l(h, r, x, y)]

∣∣ ≤ δ, then E(x,y)∼D[L(h, r, x, y)] ≤ ε.

Theorem 4. Let (u, v) 	→ Φ(−u,−v) be a non-increasing function upper-
bounding (u, v) 	→ 1u≤01v>0 + c1v≤0 such that for any fixed v,
limu→+∞ Φ(−u,−v) = 0 and for any fixed v, u 	→ Φ(−u,−v) is bounded over
R+. Let (H,R) be pair of families of functions mapping X to R where H is closed
under multiplication by a positive scalar (H is a cone). Then, the loss function
(h, r, x, y) 	→ Φ(−yh(x),−r(x)) is realizable (H,R)-consistent.

Proof. Let D be a distribution for which (h∗, r∗) ∈ (H,R) achieves zero error,
thus yh∗(x) > 0 and r∗(x) > 0 for all x in the support of D. Fix ε > 0 and
assume that

∣∣E
[
Φ

(− yh(x),−r(x)
)]−inf(h,r)∈(H,R) E

[
Φ

(− yh(x),−r(x)
)]∣∣ ≤ ε

for some (h, r) ∈ (H,R). Then, since 1u≤01v>0 + c1v≤0 ≤ Φ(−u,−v) and since
μh∗ is in H for any μ > 0, the following holds for any μ > 0:

E [L(h, r, x, y)] ≤ E
[
Φ

(− yh(x),−r(x)
)] ≤ E

[
Φ

(− μyh∗(x),−r∗(x)
)]

+ ε

≤ E
[
Φ

(− μyh∗(x),−r∗(x)
)|r∗(x) > 0

]
P[r∗(x) > 0] + ε.

Now, u 	→ Φ(−μyh∗(x),−r∗(x)) is bounded for yh∗(x) > 0 and r∗(x) > 0; since
limμ→+∞ Φ(−μyh∗(x),−r∗(x)) = 0, by Lebesgue’s dominated convergence the-
orem limμ→+∞ E[Φ(−μyh∗(x),−r∗(x))|r∗(x) > 0] = 0. Thus, E[L(h, r, x, y)] ≤ ε
for all ε > 0, which concludes the proof.
�
The conditions of the theorem hold in particular for the exponential and the
logistic functions as well as hinge-type losses. Thus, the theorem shows that the
general convex surrogate losses we defined are realizable (H,R)-consistent when
the functions Φ or Ψ are exponential or logistic functions.

3.4 Margin Bounds

In this section, we give margin-based learning guarantees for the loss function
LMH. Since LPH is a simple upper bound on LMH, its margin-based learning
bound can be derived similarly. In fact, the same technique can be used to derive
margin-based guarantees for the subsequent convex surrogate loss functions we
present.

For any ρ, ρ′ > 0, the margin-loss associated to LMH is given by
Lρ,ρ′
MH(h, r, x, y) = max

(
max

(
1 + α

2

(r(x)
ρ′ − yh(x)

ρ

)
, 0

)
,max

(
c
(
1 − β r(x)

ρ′
)
, 0

))
.

76 C. Cortes et al.

The theorem enables us to derive margin-based learning guarantees. The proof
requires dealing with this max-based surrogate loss, which is a non-standard
derivation.

Theorem 5. Let H and R be families of functions mapping X to R. Then, for
any δ > 0, with probability at least 1 − δ over the draw of a sample S of size m
from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[LMH(h, r, x, y)] + αRm(H) + (2βc + α)Rm(R) +

√
log 1

δ

2m
.

Proof. Let LMH,H,R be the family of functions defined by LH,R =
{
(x, y) 	→ min(

LMH(h, r, x, y), 1
)
, h ∈ H, r ∈ R}

. Since min(LMH, 1) is bounded by one, by the
general Rademacher complexity generalization bound [19], with probability at
least 1 − δ over the draw of a sample S, the following holds:

R(h, r) ≤ E
(x,y)∼D

[min(LMH(h, r, x, y), 1)] ≤ E
(x,y)∼S

[min(LMH(h, r, x, y), 1)]+

2Rm(LMH,H,R)+

√
log 1/δ

2m
≤ E
(x,y)∼S

[LMH(h, r, x, y)]+2Rm(LMH,H,R)+

√
log 1/δ

2m
.

Observe that we can express LMH as follows: max
(
max

(
1+ α

2 (r(x)−yh(x)), 0
)
,

max
(
c (1 − βr(x)), 0

))
. Therefore, since for any a, b ∈ R, min

(
max(a, b), 1

)
=

max
(
min(a, 1),min(b, 1)

)
, we can re-write min(LMH, 1) as:

max
(
min

(
max(1 + α

2 (r(x) − yh(x)), 0), 1
)
,min

(
max(c (1 − βr(x)), 0), 1

))

≤ min
(
max(1 + α

2 (r(x) − yh(x)), 0), 1
)

+ min
(
max(c (1 − βr(x)), 0), 1

)
.

Since u 	→ min
(
max(1 + αu

2 , 0), 1
)

is α
2 -Lipschitz and u 	→ min

(
max(c (1 −

βu), 0), 1
)

is cβ-Lipschitz, by Talagrand’s contraction lemma [21],

Rm(LMH,H,R) ≤ α
2Rm

({
(x, y) 	→ r(x) − yh(x)

})
+ βcRm

({
(x, y) 	→ r(x)

})

≤ α
2

(
Rm(R) + Rm(H)

)
+ βcRm(R) =

α

2
Rm(H) +

(
βc + α

2

)
Rm(R),

which completes the proof.
�
The following corollary is then a direct consequence of the theorem above.

Corollary 1. Let H and R be families of functions mapping X to R. Fix
ρ, ρ′ > 0. Then, for any δ > 0, with probability at least 1 − δ over the draw of
an i.i.d. sample S of size m from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[Lρ,ρ′
MH(h, r, x, y)] +

α

ρ
Rm(H) +

2βc + α

ρ′ Rm(R) +

√
log 1

δ

2m
.

Then, via [19], the bound of Corollary 1 can be shown to hold uniformly for all

ρ, ρ′ ∈ (0, 1), at the price of a term in O
(√

log log 1/ρ
m +

√
log log 1/ρ′

m

)
.

Learning with Rejection 77

4 Algorithms for Kernel-Based Hypotheses

In this section, we devise new algorithms for learning with a rejection option
when H and R are kernel-based hypotheses. We use Corollary 1 to guide the
optimization problems for our algorithms.

Let H and R be hypotheses sets defined in terms of PSD kernels K and K ′

over X :

H = {x → w · Φ(x) : ‖w‖ ≤ Λ} and R = {x → u · Φ′(x) : ‖u‖ ≤ Λ′},

where Φ is the feature mapping associated to K and Φ′ the feature mapping asso-
ciated to K ′ and where Λ,Λ′ ≥ 0 are hyperparameters. One key advantage of this
formulation is that different kernels can be used to define H and R, thereby pro-
viding a greater flexibility for the learning algorithm. In particular, when using
a second-degree polynomial for the feature vector Φ′, the rejection function cor-
responds to abstaining on an ellipsoidal region, which covers confidence-based
rejection. For example, the Bartlett and Wegkamp [1] solution consists of choos-
ing Φ′(x) = Φ(x), u = w, and the rejection function, r(x) = |h(x)| − γ.

Corollary 2. Let H and R be the hypothesis spaces as defined above. Then, for
any δ > 0, with probability at least 1 − δ over the draw of a sample S of size m
from D, the following holds for all (h, r) ∈ H × R:

R(h, r) ≤ E
(x,y)∼S

[Lρ,ρ′
MH(h, r, x, y)]+α

√
(κΛ/ρ)2

m + (2βc + α)
√

(κ′Λ′/ρ′)2

m +
√

log 1
δ

2m

where κ2 = supx∈X K(x, x) and κ′2 = supx∈X K ′(x, x).

Proof. By standard kernel-based bounds on Rademacher complexity [25], we

have that Rm(H) ≤ Λ
√

Tr[K]
m ≤

√
(κΛ)2

m and similarly Rm(R) ≤ Λ′
√

Tr[K′]
m ≤

√
(κ′Λ′)2

m . Applying this bounds to Corollary 1 completes the proof.
�
This learning bound guides directly the definition of our first algorithm based

on the LMH (see full version [7] for details) resulting in the following optimization:

min
w,u,ξ

λ

2
‖w‖2 +

λ′

2
‖u‖2 +

m∑

i=1

ξi subject to: ξi ≥ c(1 − β(u · Φ′(xi) + b′)),

and ξi ≥ 1 +
α

2
(
u · Φ′(xi) + b′ − yiw · Φ(xi) − b

)
, ξi ≥ 0,

where λ, λ′ ≥ 0 are parameters and b and b′ are explicit offsets for the linear
functions h and r. Similarly, we use the learning bound to derive a second algo-
rithm based on the loss LPH (see full paper [7]). We have implemented and tested
the dual of both algorithms, which we will refer to as CHR algorithms (short for
convex algorithms using H and R families). Both the primal and dual optimiza-
tion are standard QP problems whose solution can be readily found via both
general-purpose and specialized QP solvers. The flexibility of the kernel choice
and the QP formulation for both primal and dual are key advantages of the CHR
algorithms. In Sect. 6 we report experimental results with these algorithms as
well as the details of our implementation.

78 C. Cortes et al.

5 Confidence-Based Rejection Algorithms

In this section, we explore different algorithms for the confidence-based rejection
model (Sect. 2.2). We thus consider a rejection function r(x) = |h(x)| − γ that
abstains on points classified with confidence less than a given threshold γ.

The most standard algorithm in this setting is the DHL algorithm, which is
based on a double hinge loss, a hinge-type convex surrogate that has favorable
consistency properties. The double hinge loss, LDHinge, is an upper bound of
the rejection loss only when 0 ≤ γ ≤ 1 − c, making DHL algorithm only valid
for these restricted γ values. Moreover, it is important to note that the hinge
loss is in fact a tighter convex upper bound than the double hinge loss for
these possible values of γ. We have Lγ(h) ≤ LHinge(h) ≤ LDHinge(h) where
Lγ(h) = 1yh(x)≤01|h(x)|>γ + c(x)1|h(x)|≤γ is the rejection loss in this setting.
Thus, a natural alternative to the DHL algorithm is simply minimizing the
hinge loss. The DHL solves a QCQP optimization problem while the natural
alternative solve a standard SVM-type dual.

The aforementioned confidence based algorithms only apply for γ ∈ [0, 1− c]
but a robust surrogate should majorate the rejection loss Lγ for all possible val-
ues. In [7] we present an algorithm that upper-bounds the rejection error for all
values of γ ∈ [0, 1]. We provide further details of all these confidence-based algo-
rithm as well as report several experimental results in [7]. While the alternative
algorithms we described are based on tighter surrogate losses for the rejection
loss than that of DHL, empirical evidence suggests that DHL outperforms these
alternatives. Thus, in the experiments with our CHR algorithm, we will use DHL
as the baseline for comparison (Sect. 6).

6 Experiments

In this section, we present the results of several experiments comparing our CHR
algorithms with the DHL algorithm. All algorithms were implemented using
CVX [8]. We tested the algorithms on seven data sets from the UCI data repos-
itory, specifically australian, cod, skin, liver, banknote, haberman, and pima.
For each data set, we performed standard 5-fold cross-validation. We randomly
divided the data into training, validation and test set in the ratio 3:1:1. We then
repeated the experiments five times where each time we used a different random
partition.

The cost values ranged over c ∈ {0.05, 0.1, . . . , 0.5} and the kernels for both
algorithms were polynomial kernels of degree d ∈ {1, 2, 3} and Gaussian kernels
with widths in the set {1, 10, 100}. The regularization parameters λ, λ′ for the
CHR algorithms varied over λ, λ′ ∈ {10i : i = −5, . . . , 5} and the threshold γ for
DHL ranged over γ ∈ {0.08, 0.16, . . . , 0.96}.

For each fixed value of c, we chose the parameters with the smallest average
rejection loss on the validation set. For these parameter values, Table 1 shows
the corresponding rejection loss on the test set for the CHR algorithm based
on LMH and the DHL algorithm both with cost c = 0.25. The table also shows

Learning with Rejection 79

Table 1. For the DHL algorithm and the CHR algorithm of LMH with cost values
c = 0.25, we report the mean and standard deviations on the test set of the following
quantities: the left two columns contain the rejection loss, the next two columns the
fraction of points rejected, followed by two columns with the classification error on
the non-rejected points. The rightmost column provides the error on the non-rejected
points of the DHL algorithm if its rejection threshold is changed so it rejects the same
fraction of points as the CHR algorithm.

Rejection

loss

Rejection

loss

Fraction

rejected

Fraction

rejected

Non-

rejected

error

Non-

rejected

error

Non-

rejected err

(incr. thrh.)

Data sets DHL CHR DHL CHR DHL CHR DHL

cod 0.176± .030 0.098± .037 0.186± .055 0.024± .028 0.130± .043 0.092± .039 0.186± .033

skin 0.158± .041 0.043± .020 0.093± .033 0.052± .027 0.135± .037 0.030± .024 0.135± .041

bank 0.061± .022 0.030± .006 0.066± .016 0.036± .022 0.045± .018 0.021± .008 0.044± .016

haber 0.261± .033 0.211± .037 0.875± .132 0.439± .148 0.043± .027 0.102± .048 0.252± .110

pima 0.241± .025 0.171± .017 0.055± .007 0.700± .055 0.227± .025 0.043± .023 0.112± .060

australian 0.115± .026 0.111± .021 0.136± .008 0.172± .024 0.081± .025 0.068± .023 0.349± .100

liver 0.236± .040 0.248± .005 0.397± .047 0.980± .019 0.136± .044 0.003± .006 0.292± .120

the fraction of points rejected by each algorithm and the classification error
on non-rejected points (see full paper version [7] for similar tables for all cost
values). The rejection loss results of Table 1 show that the CHR algorithm yields
an improvement in the rejection loss over the DHL algorithm. These findings
are statistically significant at the 1 % level or higher with one-sided paired t–
test for all data sets except for the liver and australian data sets. Table 1
also reveals that the DHL algorithm rejects at a different rate than the CHR
algorithm and often predicts the wrong label on the non-rejected points at a
much higher rate. In order to level the playing field for the two algorithms, for
the optimal settings of the DHL algorithm, we changed the rejection threshold
till the fraction rejected by the DHL algorithm matched the fraction rejected by
the CHR algorithm and recorded the error on the remaining non-rejected points.
These results are included in the right-most column of Table 1 and demonstrate
that the CHR algorithm rejects the hard cases and obtains a significantly better
error rate on the remaining ones. In Fig. 4, we show the rejection loss as a function
of the cost for six of our data sets. These plots demonstrate that the difference
in accuracy between the two algorithms holds consistently for almost all values
of c across all the data sets.

We also analyzed the rejection regions of the two algorithms. Unlike the DHL
algorithm, we found that the CHR algorithms do not restrict their rejection
regions to only areas of low confidence. On the other hand, the DHL algorithm
only rejects around the boundary of the classification surface, see Fig. 5. In [7],
we further analyze the difference between the rejection functions found by the
two algorithms. We also provide more results for the CHR algorithm including
results for the CHR algorithm based on LPH. We find that on average the CHR
with LMH performs slightly better than the CHR with LPH as is expected since
the loss LPH is an upper bound of the loss LMH.

80 C. Cortes et al.

 0

 0.075

 0.15

 0.225

 0.3

0.05 0.15 0.25 0.35 0.45

R
ej

ec
tio

n
Lo

ss

Cost

0

0.06

0.12

0.18

0.24

0.05 0.15 0.25 0.35 0.45

R
ej

ec
tio

n
Lo

ss

Cost

 0

 0.075

 0.15

 0.225

 0.3

0.05 0.15 0.25 0.35 0.45

R
ej

ec
tio

n
Lo

ss

Cost

 0

 0.04

 0.08

 0.12

 0.16

0.05 0.15 0.25 0.35 0.45

R
ej

ec
tio

n
Lo

ss

Cost

 0

 0.05

 0.1

 0.15

 0.2

0.05 0.15 0.25 0.35 0.45

R
ej

ec
tio

n
Lo

ss

Cost

 0

 0.075

 0.15

 0.225

 0.3

0.05 0.15 0.25 0.35 0.45

R
ej

ec
tio

n
Lo

ss

Cost

Fig. 4. Average rejection loss on the test set as a function of cost c for the DHL
algorithm and the CHR algorithm for six datasets and polynomial kernels. The blue
line is the DHL algorithm while the red line is the CHR algorithm based on LMH.
The figures on the top starting from the left are for the cod, skin, and haberman data
set while the figures on the bottom are for banknote, australian and pima data sets.
These figures show that the CHR algorithm outperforms the DHL algorithm for most
values of cost, c, across all data sets.

Fig. 5. The left figure shows CHR’s classification of sample test points from the skin

dataset with respect to different feature vectors. The right figure shows their classifi-
cation by DHL and demonstrates how DHL rejects in areas of low confidence.

7 Conclusion

We presented a detailed study of the problem of learning with rejection, which
is a key question in a number of applications. We gave a general formulation of
the problem for which we provided a theoretical analysis, including generaliza-
tion guarantees, the derivation of different convex surrogates that are calibrated
and consistent, and margin bounds that helped us devise new algorithms. The
empirical results we reported demonstrate the effectiveness of our algorithms in
several datasets. Our general formulation can further inspire the design of other
algorithms as well as new theoretical insights and studies, one such a potential
area being active learning. Furthermore, a natural extension of our framework is
to include a constraint on the maximum fraction of points that can be rejected.
Such an additional constraint will require new algorithms and generalization
bounds.

Learning with Rejection 81

Acknowledgments. This work was partly funded by NSF IIS-1117591, CCF-
1535987, and DGE-1342536.

References

1. Bartlett, P., Wegkamp, M.: Classification with a reject option using a hinge loss.
JMLR 9, 1823–1840 (2008)

2. Bounsiar, A., Grall, E., Beauseroy, P.: Kernel based rejection method for supervised
classification. WASET 3, 312–321 (2007)

3. Capitaine, H.L., Frelicot, C.: An optimum class-rejective decision rule and its eval-
uation. In: ICPR (2010)

4. Chaudhuri, K., Zhang, C.: Beyond disagreement-based agnostic active learning.
In: NIPS (2014)

5. Chow, C.: An optimum character recognition system using decision function. IEEE
T. C. (1957)

6. Chow, C.: On optimum recognition error and reject trade-off. IEEE T. C. (1970)
7. Cortes, C., DeSalvo, G., Mohri, M.: Learning with rejection. In: arXiv (2016)
8. I. Cvx Research. CVX: Matlab software for disciplined convex programming, ver-

sion 2.0, August 2012
9. DeSalvo, G., Mohri, M., Syed, U.: Learning with deep cascades. In: Chaudhuri, K.,

Gentile, C., Zilles, S. (eds.) ALT 2015. LNCS, vol. 9355, pp. 254–269. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24486-0 17

10. Dubuisson, B., Masson, M.: Statistical decision rule with incomplete knowledge
about classes. Pattern Recognit. 26, 155–165 (1993)

11. El-Yaniv, R., Wiener, Y.: On the foundations of noise-free selective classification.
JMLR 11, 1605–1641 (2010)

12. El-Yaniv, R., Wiener, Y.: Agnostic selective classification. In: NIPS (2011)
13. Elkan, C.: The foundations of cost-sensitive learning. In: IJCAI (2001)
14. Freund, Y., Mansour, Y., Schapire, R.: Generalization bounds for averaged classi-

fiers. Ann. Stat. (2004)
15. Fumera, G., Roli, F.: Support vector machines with embedded reject option. In:

ICPR (2002)
16. Fumera, G., Roli, F., Giacinto, G.: Multiple reject thresholds for improving classi-

fication reliability. In: ICAPR (2000)
17. Grandvalet, Y., Keshet, J., Rakotomamonjy, A., Canu, S.: Suppport vector

machines with a reject option. In: NIPS (2008)
18. Herbei, R., Wegkamp, M.: Classification with reject option. Can. J. Stat. (2005)
19. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the

generalization error of combined classifiers. Ann. Stat. 30, 1–50 (2002)
20. Landgrebe, T., Tax, D., Paclik, P., Duin, R.: Interaction between classification

and reject performance for distance-based reject-option classifiers. PRL 27, 908–
917 (2005)

21. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and
Processes. Springer, New York (1991)

22. Littman, M., Li, L., Walsh, T.: Knows what it knows: a framework for self-aware
learning. In: ICML (2008)

23. Long, P.M., Servedio, R.A.: Consistency versus realizable H-consistency for multi-
class classification. In: ICML, vol. 3, pp. 801–809 (2013)

24. Melvin, I., Weston, J., Leslie, C.S., Noble, W.S.: Combining classifiers for improved
classification of proteins from sequence or structure. BMCB 9, 1 (2008)

http://dx.doi.org/10.1007/978-3-319-24486-0_17

82 C. Cortes et al.

25. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press, Cambridge (2012)

26. Pereira, C.S., Pires, A.: On optimal reject rules and ROC curves. PRL 26, 943–952
(2005)

27. Pietraszek, T.: Optimizing abstaining classifiers using ROC. In: ICML (2005)
28. Tax, D., Duin, R.: Growing a multi-class classifier with a reject option. Pattern

Recognit. Lett. 29, 1565–1570 (2008)
29. Tortorella, F.: An optimal reject rule for binary classifiers. In: ICAPR (2001)
30. Trapeznikov, K., Saligrama, V.: Supervised sequential classification under budget

constraints. In: AISTATS (2013)
31. Wang, J., Trapeznikov, K., Saligrama, V.: An LP for sequential learning under

budgets. In: JMLR (2014)
32. Yuan, M., Wegkamp, M.: Classification methods with reject option based on convex

risk minimizations. In: JMLR (2010)
33. Yuan, M., Wegkamp, M.: SVMs with a reject option. In: Bernoulli (2011)
34. Zhang, C., Chaudhuri, K.: The extended Littlestone’s dimension for learning with

mistakes and abstentions. In: COLT (2016)

Sparse Learning for Large-Scale and
High-Dimensional Data: A Randomized
Convex-Concave Optimization Approach

Lijun Zhang1(B), Tianbao Yang2, Rong Jin3, and Zhi-Hua Zhou1

1 National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

{zhanglj,zhouzh}@lamda.nju.edu.cn
2 Department of Computer Science, The University of Iowa, Iowa City 52242, USA

tianbao-yang@uiowa.edu
3 Alibaba Group, Seattle, USA
jinrong.jr@alibaba-inc.com

Abstract. In this paper, we develop a randomized algorithm and theory
for learning a sparse model from large-scale and high-dimensional data,
which is usually formulated as an empirical risk minimization problem
with a sparsity-inducing regularizer. Under the assumption that there
exists a (approximately) sparse solution with high classification accu-
racy, we argue that the dual solution is also sparse or approximately
sparse. The fact that both primal and dual solutions are sparse moti-
vates us to develop a randomized approach for a general convex-concave
optimization problem. Specifically, the proposed approach combines the
strength of random projection with that of sparse learning: it utilizes
random projection to reduce the dimensionality, and introduces �1-norm
regularization to alleviate the approximation error caused by random
projection. Theoretical analysis shows that under favored conditions, the
randomized algorithm can accurately recover the optimal solutions to the
convex-concave optimization problem (i.e., recover both the primal and
dual solutions).

Keywords: Random projection · Sparse learning · Convex-concave
optimization · Primal solution · Dual solution

1 Introduction

Learning the sparse representation of a predictive model has received consider-
able attention in recent years [4]. Given a set of training examples {(xi,yi)}n

i=1

with xi ∈ R
d and yi ∈ R, the optimization problem is generally formulated as

min
w∈Ω

1
n

n∑

i=1

�(yix�
i w) + γψ(w) (1)

where �(·) is a convex function such as the logistic loss to measure the empirical
error, and ψ(·) is a sparsity-inducing regularizer such as the elastic net [38]
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 83–97, 2016.
DOI: 10.1007/978-3-319-46379-7 6

84 L. Zhang et al.

to avoid overfitting [13]. When both d and n are very large, directly solving
(1) could be computationally expensive. A straightforward way to address this
challenge is first reducing the dimensionality of the data, then solving a low-
dimensional problem, and finally mapping the solution back to the original space.
The limitation of this approach is that the final solution, after mapping from
the low-dimensional space to the original high-dimensional space, may not be
sparse.

The goal of this paper is to develop an efficient algorithm for solving the
problem in (1), and at the same time preserve the (approximate) sparsity of the
solution. Our approach is motivated by the following simple observation:

If there exists a sparse model with high prediction accuracy, the dual
solution to (1) is also sparse or approximately sparse.

To see this, let us formulate (1) as a convex-concave optimization problem. By
writing �(z) in its convex conjugate form, i.e.,

�(z) = max
λ∈Γ

λz − �∗(λ),

where �∗(·) is the Fenchel conjugate of �(·) [27] and Γ is the domain of the dual
variable, we get the following convex-concave formulation:

max
λ∈Γ n

min
w∈Ω

γnψ(w) −
n∑

i=1

�∗(λi) +
n∑

i=1

λiyix�
i w. (2)

Denote the optimal solutions to (2) by (w∗,λ∗). By the Fenchel conjugate the-
ory [9, Lemma 11.4], we have

[λ∗]i = �′(yix�
i w∗).

Let us consider the squared hinge loss for classification [31], where �(z) =
max(0, 1 − z)2. Therefore, yix�

i w∗ ≥ 1 indicates that [λ∗]i = 0. As a result,
when most of the examples can be classified by a large margin (which is likely
to occur in large-scale and high-dimensional setting), it is reasonable to assume
that the dual solution is sparse. Similarly, for logistic regression, we can argue
the dual solution is approximately sparse.

Abstracting (2) slightly, in the following, we will study a general convex-
concave optimization problem:

max
λ∈Δ

min
w∈Ω

g(w) − h(λ) − w�Aλ (3)

where Δ ⊆ R
n and Ω ⊆ R

d are the domains for λ and w, respectively, g(·) and
h(·) are two convex functions, and A ∈ R

d×n is a matrix. The benefit of analyzing
(3) instead of (1) is that the convex-concave formulation allows us to exploit the
prior knowledge that both w∗ and λ∗ are sparse or approximately sparse. The
problem in (3) has been widely studied in the optimization community, and
when n and d are medium size, it can be solved iteratively by gradient based
methods [21,22].

Sparse Learning for Large-Scale and High-Dimensional Data 85

We assume the two convex functions g(·) and h(·) are relatively simple such
that evaluating their values or gradients takes O(d) and O(n) complexities,
respectively. The bottleneck is the computations involving the bilinear term
w�Aλ, which have O(nd) complexity in both time and space. To overcome this
difficulty, we develop a randomized algorithm that solves (3) approximately but
at a significantly lower cost. The proposed algorithm combines two well-known
techniques—random projection and �1-norm regularization in a principled way.
Specifically, random projection is used to find a low-rank approximation of A,
which not only reduces the storage requirement but also accelerates the com-
putations. The role of �1-norm regularization is twofold. One one hand, it is
introduced to compensate for the distortion caused by randomization, and on
the other hand it enforces the sparsity of the final solutions. Under mild assump-
tions about the optimization problem in (3), the proposed algorithm has a small
recovery error provided the optimal solutions to (3) are sparse or approximately
sparse.

2 Related Work

Random projection has been widely used as an efficient algorithm for dimension-
ality reduction [6,16]. In the case of unsupervised learning, it has been proved
that random projection is able to preserve the distance [11], inner product [3],
volumes and distance to affine spaces [18]. In the case of supervised learning, ran-
dom projection is generally used as a preprocessing step to find a low-dimensional
representation of the data, and thus reduces the computational cost of training.
For classification, theoretical studies mainly focus on examining the general-
ization error or the preservation of classification margin in the low-dimensional
space [5,24,28]. For regression, there do exist theoretical guarantees for the recov-
ery error, but they only hold for the least squares problem [19].

Our work is closely related to Dual Random Projection (DRP) [35,36] and
Dual-sparse Regularized Randomized Reduction (DSRR) [34], which also inves-
tigate random projection from the perspective of optimization. However, both
DRP and DSRR are limited to the special case that ψ(w) = ‖w‖22, which leads
to a simple dual problem. In contrast, our algorithm is designed for the case that
ψ(·) is a sparsity-inducing regularizer, and built upon the convex-concave for-
mulation. Similar to DSRR, our algorithm makes use of the sparsity of the dual
solution, but we further exploit the sparsity of the primal solution. A notice-
able advantage of our analysis is the mild assumption about the data matrix A.
To recover the primal solution, DRP assumes the data matrix is low-rank and
DSRR assumes it satisfies the restricted eigenvalue condition, in contrast, our
algorithm only requires columns or rows of A are bounded.

There are many literatures that study the statistical property of the sparse
learning problem in (1) [2,23,33,37]. For example, in the context of compressive
sensing [12], it has been established that a sparse signal can be recovered up to
an O(

√
s log d/n) error, where s is the sparsity of the unknown signal. We note

that the statistical error is not directly comparable to the optimization error

86 L. Zhang et al.

derived in this paper. That is because the analysis of statistical error relies on
heavy assumptions about the data, e.g., the RIP condition [8]. On the other
hand, the optimization error is derived under very weak conditions.

3 Algorithm

To reduce the computational cost of (3), we first generate a random matrix
R ∈ R

n×m, where m � min(d, n). Define Â = AR ∈ R
d×m, we propose to solve

the following problem

max
λ∈Δ

min
w∈Ω

g(w) − h(λ) − w�ÂR�λ + γw‖w‖1 − γλ‖λ‖1 (4)

where γw and γλ are two regularization parameters. The construction of the
random matrix R, as well as the values of the two regularization parameters γw

and γλ will be discussed later. The optimization problem in (4) can be solved
by algorithms designed for composite convex-concave problems [10,14].

Compared to (3), the main advantage of (4) is that it only needs to load Â and
R into the memory, making it convenient to deal with large-scale problems. With
the help of random projection, the computational complexity for evaluating the
value and gradient is reduced from O(dn) to O(dm+nm). Compared to previous
randomized algorithms [5,34,35], (4) has two new features: (i) the optimization
is still performed in the original space; and (ii) the �1-norm is introduced to
regularize both primal and dual solutions. As we will prove later, the combination
of these two features will ensure the solutions to (4) are approximately sparse.
Finally, note that in (4) RR� is inserted at the right side of A, it can also be put
at the left side of A. In this case, we have the following optimization problem

max
λ∈Δ

min
w∈Ω

g(w) − h(λ) − w�RÂλ + γw‖w‖1 − γλ‖λ‖1 (5)

where R ∈ R
d×m is a random matrix, and Â = R�A ∈ R

m×n.
Let (w∗,λ∗) and (ŵ, λ̂) be the optimal solution to the convex-concave opti-

mization problem in (3) and (4)/(5), respectively. Under suitable conditions, we
will show that

‖ŵ − w∗‖2 ≤ O

(√
‖w∗‖0‖λ∗‖0 log n

m

)
and

‖λ̂ − λ∗‖2 ≤ O

(√
‖w∗‖0‖λ∗‖0 log d

m

)

implying a small recovery error when w∗ and λ∗ are sparse. A similar recovery
guarantee also holds when the optimal solutions to (3) are approximately sparse,
i.e., when they can be well-approximated by sparse vectors.

4 Main Results

We first introduce common assumptions that we make, and then present theo-
retical guarantees.

Sparse Learning for Large-Scale and High-Dimensional Data 87

4.1 Assumptions

Assumptions About (3). We make the following assumptions about (3).

– g(w) is α-strongly convex with respect to the Euclidean norm. Let’s take the
optimization problem in (2) as an example. (2) will satisfy this assumption if
some strongly convex function (e.g., ‖w‖22) is a part of the regularizer ψ(w).

– h(λ) is β-strongly convex with respect to the Euclidean norm. For the problem
in (2), if �(·) is a smooth function (e.g., the logistic loss), then its convex
conjugate �∗(·) will be strongly convex [15,27].

– Either columns or rows of A have bounded �2-norm. Without loss of generality,
we assume

‖Ai∗‖2 ≤ 1, ∀i ∈ [d], (6)
‖A∗j‖2 ≤ 1, ∀j ∈ [n]. (7)

The above assumption can be satisfied by normalizing rows or columns of A.

Assumptions About R. We assume the random matrix R ∈ R
n×m has the fol-

lowing property.

– With a high probability, the linear operator R� : Rn 	→ R
m is able to pre-

serve the �2-norm of its input. In mathematical terms, we need the following
property.

Property 1. There exists a constant c > 0, such that

Pr
{
(1 − ε)‖x‖22 ≤ ‖R�x‖22 ≤ (1 + ε)‖x‖22

} ≥ 1 − 2 exp(−mε2/c)

for any fixed x ∈ R
d and 0 < ε ≤ 1/2.

The above property is widely used to prove the famous Johnson–
Lindenstrauss lemma [11]. Let R = 1√

m
S. Previous studies [1,3] have proved

that Property 1 is true if {Sij} are independent random variables sampled from
the Gaussian distribution N (0, 1), uniform distribution over {±1}, or the fol-
lowing database-friendly distribution

X =

⎧
⎨

⎩

√
3, with probability 1/6;

0, with probability 2/3;
−√

3, with probability 1/6.

More generally, a sufficient condition for Property 1 is that columns of R are
independent, isotropic, and subgaussian vectors [20].

4.2 Theoretical Guarantees

Sparse Solutions. We first consider the case that both w∗ and λ∗ are sparse.
Define

sw = ‖w∗‖0, and sλ = ‖λ∗‖0.
We have the following theorem for the optimization problem in (4).

88 L. Zhang et al.

Theorem 1. Let (ŵ, λ̂) be the optimal solution to the problem in (4). Set

γλ ≥ 2‖A�w∗‖2
√

c

m
log

4n

δ
, (8)

γw ≥ 2‖λ∗‖2
√

c

m
log

4d

δ
+

6γλ
√

sλ

β

(
1 + 7

√
c

m

(
log

4d

δ
+ 16sλ log

9n

8sλ

))
.

(9)

With a probability at least 1 − 3δ, we have

‖ŵ − w∗‖2 ≤ 3γw
√

sw

α
, ‖ŵ − w∗‖1 ≤ 12γwsw

α
, and

‖ŵ − w∗‖1
‖ŵ − w∗‖2 ≤ 4

√
sw

provided

m ≥ 4c log
4
δ

(10)

where c is the constant in Property 1.

Notice that ‖ŵ − w∗‖1/‖ŵ − w∗‖2 ≤ 4
√

sw indicates that ŵ − w∗ is approxi-
mately sparse [25,26]. Combining with the fact w∗ is sparse, we conclude that
ŵ is also approximately sparse.

Then, we discuss the recovery guarantee for the sparse learning problem in
(1) or (2). Since A�w∗ ∈ R

n, we can take ‖A�w∗‖2 = O(
√

n). Since ‖λ∗‖0 =
sλ, we can assume ‖λ∗‖2 = O(

√
sλ). According to the theoretical analysis of

regularized empirical risk minimization [17,29,32], the optimal γ, that minimizes
the generalization error, can be chosen as γ = O(1/

√
n), and thus α = O(γn) =

O(
√

n). When the loss �(·) is smooth, we have β = O(1). The following corollary
provides a simplified result based on the above discussions.

Corollary 1. Assume ‖A�w∗‖2 = O(
√

n), ‖λ∗‖2 = O(
√

sλ), α = O(
√

n), and
β = O(1). When m ≥ O(sλ log n), we can choose

γλ = O

(√
n log n

m

)
and γw = O

(√
sλ log d

m
+ γλ

√
sλ

)
= O

(√
nsλ log n

m

)

such that with a high probability

‖ŵ − w∗‖2 ≤ O

(
γw

√
sw√
n

)
= O

(√
swsλ log n

m

)
and

‖ŵ − w∗‖1
‖ŵ − w∗‖2 ≤ 4

√
sw.

A natural question to ask is whether similar recovery guarantees for λ̂ can
be proved under the conditions in Theorem1. Unfortunately, we are not able to
give a positive answer, and only have the following theorem.

Theorem 2. Assume γλ satisfies the condition in (8). With a probability at least
1 − δ, we have

‖λ̂ − λ∗‖2 ≤ 3γλ
√

sλ

β
+

2
β

(
1 + ‖RR� − I‖2

) ‖A�(ŵ − w∗)‖2

provided (10) holds.

Sparse Learning for Large-Scale and High-Dimensional Data 89

The upper bound in the above theorem is quite loose, because ‖RR� − I‖2 is
roughly on the order of n log n/m [30].

Due to the symmetry between λ and w, we can recover λ∗ via (5) instead of
(4). Then, by replacing w∗ in Theorem 1 with λ∗, ŵ with λ̂, n with d, and so
on, we obtain the following theoretical guarantee.

Theorem 3. Let (ŵ, λ̂) be the optimal solution to the problem in (5). Set

γw ≥ 2‖Aλ∗‖2
√

c

m
log

4d

δ
,

γλ ≥ 2‖w∗‖2
√

c

m
log

4n

δ
+

6γw
√

sw

α

(
1 + 7

√
c

m

(
log

4n

δ
+ 16sw log

9d

8sw

))
.

With a probability at least 1 − 3δ, we have

‖λ̂ − λ∗‖2 ≤ 3γλ
√

sλ

β
, ‖λ̂ − λ∗‖1 ≤ 12γλsλ

β
, and

‖λ̂ − λ∗‖1
‖λ̂ − λ∗‖2

≤ 4
√

sλ

provided (10) holds.

To simplify the above theorem, we can take ‖Aλ∗‖2 = O(
√

d) since Aλ∗ ∈
R

d. Because (1) has both a constraint and a regularizer, we can assume the
optimal primal solution is well-bounded, that is, ‖w∗‖2 = O(1). Finally, we
assume d ≤ O(n), and have the following corollary.

Corollary 2. Assume ‖Aλ∗‖2 = O(
√

d), ‖w∗‖2 = O(1), α = O(
√

n), β =
O(1), and d ≤ O(n). When m ≥ O(sw log d), we can choose

γw = O

(√
d log d

m

)
and γλ = O

(√
log n

m
+ γw

√
sw

n

)
≤ O

(√
sw log d

m

)

such that with a high probability

‖λ̂ − λ∗‖2 ≤ O (γλ
√

sλ) = O

(√
swsλ log d

m

)
and

‖λ̂ − λ∗‖1
‖λ̂ − λ∗‖2

≤ 4
√

sλ.

Approximately Sparse Solutions. We now proceed to study the case that
the optimal solutions to (3) are only approximately sparse.

With a slight abuse of notation, we assume w∗ and λ∗ are two sparse vectors,
with ‖w∗‖0 = sw and ‖λ∗‖0 = sλ, that solve (3) approximately in the sense that

‖∇g(w∗) − Aλ∗‖∞ ≤ ς, (11)

‖∇h(λ∗) + A�w∗‖∞ ≤ ς, (12)

for some small constant ς > 0. The above conditions can be considered as sub-
optimality conditions [7] of w∗ and λ∗ measured in the �∞-norm. After a similar
analysis, we have the following theorem.

90 L. Zhang et al.

Theorem 4. Let (ŵ, λ̂) be the optimal solution to the problem in (4). Assume
(11) and (12) hold. Set

γλ ≥ 2‖A�w∗‖2
√

c

m
log

4n

δ
+ 2ς,

γw ≥ 2‖λ∗‖2
√

c

m
log

4d

δ
+

6γλ
√

sλ

β

(
1 + 7

√
c

m

(
log

4d

δ
+ 16sλ log

9n

8sλ

))
+ 2ς.

With a probability at least 1 − 3δ, we have

‖ŵ − w∗‖2 ≤ 3γw
√

sw

α
, ‖ŵ − w∗‖1 ≤ 12γwsw

α
, and

‖ŵ − w∗‖1
‖ŵ − w∗‖2 ≤ 4

√
sw

provided (10) holds.

When ς is small enough, the upper bound in Theorem4 is on the same order as
that in Theorem 1. To be specific, we have the following corollary.

Corollary 3. Assume ‖A�w∗‖2 = O(
√

n), ‖λ∗‖2 = O(
√

sλ), α = O(
√

n),
β = O(1), and ς = O(

√
n log n/m). When m ≥ O(sλ log n), we can choose γλ

and γw as in Corollary 1 such that with a high probability

‖ŵ − w∗‖2 = O

(
γw

√
sw√
n

)
= O

(√
swsλ log n

m

)
and

‖ŵ − w∗‖1
‖ŵ − w∗‖2 ≤ 4

√
sw.

5 Analysis

Due to the limitation of space, we only provide proofs of Theorem1 and related
lemmas. The omitted proofs will be included in a supplementary.

5.1 Proof of Theorem1

To facilitate the analysis, we introduce a pseudo optimization problem

max
λ∈Δ

−h(λ) − w�
∗ ÂR�λ − γλ‖λ‖1

whose optimal solution is denoted by λ̃. In the following, we will first discuss
how to bound the difference between λ̃ and λ∗, and then bound the difference
between ŵ and w∗ in a similar way.

From the optimality of λ̃ and λ∗, we derive the following lemma to bound
their difference.

Lemma 1. Denote
ρλ =

∥∥(RR� − I)A�w∗
∥∥

∞ . (13)

By choosing γλ ≥ 2ρλ, we have

‖λ̃ − λ∗‖2 ≤ 3γλ
√

sλ

β
, ‖λ̃ − λ∗‖1 ≤ 12γλsλ

β
, and

‖λ̃ − λ∗‖1
‖λ̃ − λ∗‖2

≤ 4
√

sλ.

Sparse Learning for Large-Scale and High-Dimensional Data 91

Based on the property of the random matrix R described in Property 1, we
have the following lemma to bound ρλ in (13).

Lemma 2. With a probability at least 1 − δ, we have

ρλ =
∥∥(RR� − I)A�w∗

∥∥
∞ ≤ ‖A�w∗‖2

√
c

m
log

4n

δ

provided (10) holds.

Combining Lemma 1 with Lemma 2, we immediately obtain the following
lemma.

Lemma 3. Set

γλ ≥ 2‖A�w∗‖2
√

c

m
log

4n

δ
.

With a probability at least 1 − δ, we have

‖λ̃ − λ∗‖2 ≤ 3γλ
√

sλ

β
, ‖λ̃ − λ∗‖1 ≤ 12γλsλ

β
, and

‖λ̃ − λ∗‖1
‖λ̃ − λ∗‖2

≤ 4
√

sλ

provided (10) holds.

We are now in a position to formulate the key lemmas that lead to Theo-
rem 1. Similar to Lemma 1, we introduce the following lemma to characterize the
relation between ŵ and w∗.

Lemma 4. Denote

ρw =
∥∥A(I − RR�)λ∗

∥∥
∞ +

∥∥∥ARR�(λ∗ − λ̃)
∥∥∥

∞
. (14)

By choosing γw ≥ 2ρw, we have

‖ŵ − w∗‖2 ≤ 3γw
√

sw

α
, ‖ŵ − w∗‖1 ≤ 12γwsw

α
, and

‖ŵ − w∗‖1
‖ŵ − w∗‖2 ≤ 4

√
sw.

The last step of the proof is to derive an upper bound for ρw based on
Property 1 and Lemma 3.

Lemma 5. Assume the conclusion in Lemma 3 happens. With a probability at
least 1 − 2δ, we have

ρw ≤ ‖λ∗‖2
√

c

m
log

4d

δ
+

3γλ
√

sλ

β

(
1 + 7

√
c

m

(
log

4d

δ
+ 16sλ log

9n

8sλ

))

provided (10) holds.

92 L. Zhang et al.

5.2 Proof of Lemma 1

Notations. For a vector x ∈ R
d and a set D ⊆ [d], we denote by xD the vector

which coincides with x on D and has zero coordinates outside D.
Let Ωλ include the subset of non-zeros entries in λ∗ and Ω̄λ = [n]\Ωλ. Define

L(λ) = −h(λ) + min
w∈Ω

g(w) − w�Aλ,

λ̃(λ) = −h(λ) − w�
∗ ÂR�λ − γλ‖λ‖1.

Let v ∈ ∂‖λ∗‖1 be any subgradient of ‖ · ‖1 at λ∗. Then, we have1

u = −∇h(λ∗) − RR�A�w∗ − γλv ∈ ∂λ̃(λ∗).

Using the fact that λ̃ maximizes λ̃(·) over the domain Δ and h(·) is β-strongly
convex, we have

0 ≥ λ̃(λ∗) − λ̃(λ̃) ≥ 〈−(λ̃ − λ∗),u〉 +
β

2
‖λ∗ − λ̃‖22

=
〈
λ̃ − λ∗,∇h(λ∗) + RR�A�w∗ + γλv

〉
+

β

2
‖λ∗ − λ̃‖22.

(15)

By setting vi = sign(λ̃i), ∀i ∈ Ω̄λ, we have 〈λ̃Ω̄λ
,vΩ̄λ

〉 = ‖λ̃Ω̄λ
‖1. As a result,

〈λ̃ − λ∗,v〉 = 〈λ̃Ω̄λ
,vΩ̄λ

〉 + 〈λ̃Ωλ
− λ∗,vΩλ

〉 ≥ ‖λ̃Ω̄λ
‖1 − ‖λ̃Ωλ

− λ∗‖1. (16)

Combining (15) with (16), we have
〈
λ̃ − λ∗,∇h(λ∗) + RR�A�w∗

〉
+

β

2
‖λ∗ − λ̃‖22 + γλ‖λ̃Ω̄λ

‖1 ≤ γλ‖λ̃Ωλ
− λ∗‖1.

(17)
From the fact that λ∗ maximizes L(·) over the domain Δ, we have

〈∇L(λ∗),λ − λ∗〉 = 〈−∇h(λ∗) − A�w∗,λ − λ∗〉 ≤ 0, ∀λ ∈ Δ. (18)

Then,
〈
λ̃ − λ∗,∇h(λ∗) + RR�A�w∗

〉

=
〈
λ̃ − λ∗,∇h(λ∗) + A�w∗

〉
+

〈
λ̃ − λ∗, (RR� − I)A�w∗

〉

(18)

≥ − ‖λ̃ − λ∗‖1
∥∥(RR� − I)A�w∗

∥∥
∞

(13)
= − ρλ‖λ̃ − λ∗‖1 = −ρλ

(
‖λ̃Ω̄λ

‖1 + ‖λ̃Ωλ
− λ∗‖1

)
.

(19)

From (17) and (19), we have

β

2
‖λ̃ − λ∗‖22 + (γλ − ρλ)‖λ̃Ω̄λ

‖1 ≤ (γλ + ρλ)‖λ̃Ωλ
− λ∗‖1.

1 In the case that h(·) is non-smooth, ∇h(λ∗) refers to a subgradient of h(·) at λ∗. In
particular, we choose the subgradient that satisfies (18).

Sparse Learning for Large-Scale and High-Dimensional Data 93

Since γλ ≥ 2ρλ, we have

β

2
‖λ̃ − λ∗‖22 +

γλ

2
‖λ̃Ω̄λ

‖1 ≤ 3γλ

2
‖λ̃Ωλ

− λ∗‖1.

And thus,

β

2
‖λ̃ − λ∗‖22 ≤ 3γλ

2
‖λ̃Ωλ

− λ∗‖1 ≤ 3γλ
√

sλ

2
‖λ̃Ωλ

− λ∗‖2

⇒‖λ̃ − λ∗‖2 ≤ 3γλ
√

sλ

β
,

β

2sλ
‖λ̃Ωλ

− λ∗‖21 ≤ β

2
‖λ̃ − λ∗‖22 ≤ 3γλ

2
‖λ̃Ωλ

− λ∗‖1

⇒‖λ̃Ωλ
− λ∗‖1 ≤ 3γλsλ

β
,

γλ

2
‖λ̃Ω̄λ

‖1 ≤ 3γλ

2
‖λ̃Ωλ

− λ∗‖1

⇒‖λ̃Ω̄λ
‖1 ≤ 3‖λ̃Ωλ

− λ∗‖1 ⇒ ‖λ̃ − λ∗‖1 ≤ 12γλsλ

β
,

‖λ̃ − λ∗‖1
‖λ̃ − λ∗‖2

≤ 4‖λ̃Ωλ
− λ∗‖1

‖λ̃ − λ∗‖2
≤ 4

√
sλ‖λ̃Ωλ

− λ∗‖2
‖λ̃ − λ∗‖2

≤ 4
√

sλ.

5.3 Proof of Lemma 2

We first introduce one lemma that is central to our analysis. From the property
that R preserves the �2-norm, it is easy to verify that it also preserves the inner
product [3]. Specifically, we have the following lemma.

Lemma 6. Assume R satisfies Property 1. For any two fixed vectors u ∈ R
n

and v ∈ R
n, with a probability at least 1 − δ, we have

∣∣u�RR�v − u�v
∣∣ ≤ ‖u‖2‖v‖2

√
c

m
log

4
δ
.

provided (10) holds.

Let ej be the j-th standard basis vector of Rn. From Lemma 6, we have with
a probability at least 1 − δ,

∣∣∣
[
(RR� − I)A�w∗

]
j

∣∣∣ =
∣∣e�

j (RR� − I)A�w∗
∣∣ ≤ ‖A�w∗‖2

√
c

m
log

4
δ

for each j ∈ [n]. We complete the proof by taking the union bound over all
j ∈ [n].

94 L. Zhang et al.

5.4 Proof of Lemma 5

We first upper bound ρw as

ρw ≤ ∥∥A(I − RR�)λ∗
∥∥

∞︸ ︷︷ ︸
:=U1

+
∥∥∥A(λ∗ − λ̃)

∥∥∥
∞︸ ︷︷ ︸

:=U2

+
∥∥∥A(RR� − I)(λ∗ − λ̃)

∥∥∥
∞︸ ︷︷ ︸

:=U3

.

Bounding U1. From Lemma 6, we have with a probability at least 1 − δ,
∣∣[A(I − RR�)λ∗

]
i

∣∣ =
∣∣Ai∗(I − RR�)λ∗

∣∣

≤ max
i∈[d]

‖Ai∗‖2‖λ∗‖2
√

c

m
log

4
δ

(6)

≤ ‖λ∗‖2
√

c

m
log

4
δ

for each i ∈ [d]. Taking the union bound over all i ∈ [d], we have with a proba-
bility at least 1 − δ,

∥∥A(I − RR�)λ∗
∥∥

∞ ≤ ‖λ∗‖2
√

c

m
log

4d

δ
.

Bounding U2. From our assumption, we have

∥∥∥A(λ∗ − λ̃)
∥∥∥

∞
≤ max

i∈[d]
‖Ai∗‖2‖λ∗ − λ̃‖2

(6)

≤ ‖λ∗ − λ̃‖2.

Bounding U3. Notice that the arguments for bounding U1 cannot be used to
upper bound U3, that is because λ∗ − λ̃ is a random variable that depends on R
and thus we cannot apply Lemma6 directly. To overcome this challenge, we will
exploit the fact that λ∗ − λ̃ is approximately sparse to decouple the dependence.
Define

Kn,16sλ
= {x ∈ R

n : ‖x‖2 ≤ 1, ‖x‖1 ≤ 4
√

sλ} .

When the conclusion in Lemma 3 happens, we have

λ̃ − λ∗
‖λ̃ − λ∗‖2

∈ Kn,16sλ
(20)

and thus

U3 = ‖λ∗ − λ̃‖2
∥∥∥∥∥A(RR� − I)

λ∗ − λ̃

‖λ∗ − λ̃‖2

∥∥∥∥∥
∞

(20)

≤ ‖λ∗ − λ̃‖2 sup
z∈Kn,16sλ

∥∥A(RR� − I)z
∥∥

∞
︸ ︷︷ ︸

:=U4

.

Then, we will utilize techniques of covering number to provide an upper bound
for U4.

Sparse Learning for Large-Scale and High-Dimensional Data 95

Lemma 7. With a probability at least 1 − δ, we have

sup
z∈Kn,16sλ

∥∥A(RR� − I)z
∥∥

∞ ≤ 2(2 +
√

2)

√
c

m

(
log

4d

δ
+ 16sλ log

9n

8sλ

)
.

Putting everything together, we have

ρw

≤‖λ∗‖2
√

c

m
log

4d

δ

+ ‖λ∗ − λ̃‖2
(

1 + 2(2 +
√

2)

√
c

m

(
log

4d

δ
+ 16sλ log

9n

8sλ

))

≤‖λ∗‖2
√

c

m
log

4d

δ
+

3γλ
√

sλ

β

(
1 + 7

√
c

m

(
log

4d

δ
+ 16sλ log

9n

8sλ

))
.

6 Conclusion and Future Work

In this paper, a randomized algorithm is proposed to solve the convex-concave
optimization problem in (3). Compared to previous studies, a distinctive feature
of the proposed algorithm is that �1-norm regularization is introduced to control
the damage cased by random projection. Under mild assumptions about the
optimization problem, we demonstrate that it is able to accurately recover the
optimal solutions to (3) provided they are sparse or approximately sparse.

From the current analysis, we need to solve two different problems if our
goal is to recover both w∗ and λ∗ accurately. It is unclear whether this is an
artifact of the proof technique or actually unavoidable. We will investigate this
issue in the future. Since the proposed algorithm is designed for the case that
the optimal solutions are (approximately) sparse, it is practically important to
develop a pre-precessing procedure that can estimate the sparsity of solutions
before applying our algorithm. We plan to utilize random sampling to address
this problem. Last but not least, we will investigate the empirical performance
of the proposed algorithm.

Acknowledgments. This work was partially supported by NSFC (61333014,
61272217), JiangsuFS (BK20160658, BK20131278), NSF (1463988, 1545995), and the
Collaborative Innovation Center of Novel Software Technology and Industrialization of
Nanjing University.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with
binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

96 L. Zhang et al.

2. Agarwal, A., Negahban, S., Wainwright, M.J.: Fast global convergence of gradient
methods for high-dimensional statistical recovery. Ann. Stat. 40(5), 2452–2482
(2012)

3. Arriaga, R.I., Vempala, S.: An algorithmic theory of learning: robust concepts and
random projection. Mach. Learn. 63(2), 161–182 (2006)

4. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-
inducing penalties. Found. Trends Mach. Learn. 4(1), 1–106 (2012)

5. Balcan, M.F., Blum, A., Vempala, S.: Kernels as features: on kernels, margins, and
low-dimensional mappings. Mach. Learn. 65(1), 79–94 (2006)

6. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: appli-
cations to image and text data. In: Proceedings of the 7th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 245–250 (2001)

7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

8. Candès, E.J.: The restricted isometry property and its implications for compressed
sensing. C.R. Math. 346(9–10), 589–592 (2008)

9. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

11. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and lin-
denstrauss. Random Struct. Algorithms 22(1), 60–65 (2003)

12. Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to com-
pressed sensing (chap. 1). In: Compressed Sensing, Theory and Applications, pp.
1–64. Cambridge University Press (2012)

13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer, New York (2009)

14. He, Y., Monteiro, R.D.: An accelerated hpe-type algorithm for a class of compos-
ite convex-concave saddle-point problems. Technical report, Georgia Institute of
Technology (2014)

15. Kakade, S.M., Shalev-Shwartz, S., Tewari, A.: On the duality of strong convexity
and strong smoothness: learning applications and matrix regularization. Technical
report, Toyota Technological Institute at Chicago (2009)

16. Kaski, S.: Dimensionality reduction by random mapping: fast similarity computa-
tion for clustering. In: Proceedings of the 1998 IEEE International Joint Conference
on Neural Networks, vol. 1, pp. 413–418 (1998)

17. Koltchinskii, V.: Oracle Inequalities in Empirical Risk Minimization and Sparse
Recovery Problems. Springer, Heidelberg (2011)

18. Magen, A.: Dimensionality reductions that preserve volumes and distance to affine
spaces, and their algorithmic applications. In: Rolim, J.D.P., Vadhan, S.P. (eds.)
RANDOM 2002. LNCS, vol. 2483, pp. 239–253. Springer, Heidelberg (2002)

19. Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends
Mach. Learn. 3(2), 123–224 (2011)

20. Mendelson, S., Pajor, A., Tomczak-Jaegermann, N.: Uniform uncertainty principle
for Bernoulli and subgaussian ensembles. Constr. Approximation 28(3), 277–289
(2008)

21. Nemirovski, A.: Prox-method with rate of convergence O(1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM J. Optim. 15(1), 229–251 (2005)

22. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program.
103(1), 127–152 (2005)

Sparse Learning for Large-Scale and High-Dimensional Data 97

23. Omidiran, D., Wainwright, M.J.: High-dimensional variable selection with sparse
random projections: measurement sparsity and statistical efficiency. J. Mach.
Learn. Res. 11, 2361–2386 (2010)

24. Paul, S., Boutsidis, C., Magdon-Ismail, M., Drineas, P.: Random projections for
support vector machines. In: Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics, pp. 498–506 (2013)

25. Plan, Y., Vershynin, R.: One-bit compressed sensing by linear programming. Com-
mun. Pure Appl. Math. 66(8), 1275–1297 (2013)

26. Plan, Y., Vershynin, R.: Robust 1-bit compressed sensing and sparse logistic regres-
sion: a convex programming approach. IEEE Trans. Inf. Theor. 59(1), 482–494
(2013)

27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)
28. Shi, Q., Shen, C., Hill, R., van den Hengel, A.: Is margin preserved after ran-

dom projection? In: Proceedings of the 29th International Conference on Machine
Learning (2012)

29. Sridharan, K., Shalev-shwartz, S., Srebro, N.: Fast rates for regularized objectives.
Adv. Neural Inf. Process. Syst. 21, 1545–1552 (2009)

30. Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Com-
put. Math. 12, 389–434 (2012)

31. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–
1484 (2005)

32. Wu, Q., Zhou, D.X.: Svm soft margin classifiers: linear programming versus
quadratic programming. Neural Comput. 17(5), 1160–1187 (2005)

33. Xiao, L., Zhang, T.: A proximal-gradient homotopy method for the �1-regularized
least-squares problem. In: Proceedings of the 29th International Conference on
Machine Learning, pp. 839–846 (2012)

34. Yang, T., Zhang, L., Jin, R., Zhu, S.: Theory of dual-sparse regularized random-
ized reduction. In: Proceedings of the 32nd International Conference on Machine
Learning (2015)

35. Zhang, L., Mahdavi, M., Jin, R., Yang, T., Zhu, S.: Recovering the optimal solution
by dual random projection. In: Proceedings of the 26th Annual Conference on
Learning Theory (COLT), pp. 135–157 (2013)

36. Zhang, L., Mahdavi, M., Jin, R., Yang, T., Zhu, S.: Random projections for clas-
sification: a recovery approach. IEEE Trans. Inf. Theor. 60(11), 7300–7316 (2014)

37. Zhang, L., Yang, T., Jin, R., Zhou, Z.H.: A simple homotopy algorithm for com-
pressive sensing. In: Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics (2015)

38. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Series B (Stat. Methodol.) 67(2), 301–320 (2005)

On the Evolution of Monotone Conjunctions:
Drilling for Best Approximations

Dimitrios I. Diochnos(B)

Department of Computer Science, University of Virginia, Charlottesville, VA, USA
diochnos@virginia.edu

Abstract. We study the evolution of monotone conjunctions using local
search; the fitness function that guides the search is correlation with
Boolean loss. Building on the work of Diochnos and Turán [6], we gen-
eralize Valiant’s algorithm [19] for the evolvability of monotone conjunc-
tions from the uniform distribution Un to binomial distributions Bn.

With a drilling technique, for a frontier q, we exploit a structure theo-
rem for best q-approximations. We study the algorithm using hypotheses
from their natural representation (H = C), as well as when hypotheses
contain at most q variables (H = C≤q). Our analysis reveals that Un is
a very special case in the analysis of binomial distributions with para-
meter p, where p ∈ F = {2−1/k | k ∈ N

∗}. On instances of dimension

n, we study approximate learning for 0 < p < 2− 1
n−1 when H = C and

for 0 < p < n−1
√

2/3 when H = C≤q. Thus, in either case, approximate
learning can be achieved for any 0 < p < 1, for sufficiently large n.

Keywords: Evolution · Evolvability · PAC learning · Noise · Evolu-
tionary algorithms · Optimization · Local search · Distribution-specific
learning · Binomial distributions · Correlation · Boolean loss

1 Introduction

Valiant introduced in [19] a framework for analyzing evolution, called evolvability.
The purpose is to allow and explain the evolution of complex mechanisms in
realistic population sizes within realistic time periods. Evolution is treated as a
form of computational learning from examples (experiences) and is a restricted
form of the probably approximately correct (PAC) model of learning [18].

Noise was first studied in the framework of PAC learning by Angluin and
Laird [3] and many subsequent results have been obtained in the statistical
queries model which is due to Kearns [15]; see also [4,17]. Apart from classi-
fication noise, noise on the attributes has also been considered [12]. Noise is
natural in evolvability as the functionalities that evolve over time realize their
fitness through interaction with the environment (sampling); not by interpreting
tiny differences of the true fitness values given in some compact representation.
In fact, Feldman showed in [8] that evolvability is equivalent to learning with
correlational statistical queries [5]. However, as also pointed out by Feldman,
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 98–112, 2016.
DOI: 10.1007/978-3-319-46379-7 7

On the Evolution of Monotone Conjunctions 99

this translation is not necessarily the most efficient or intuitive method in gen-
eral. Hence, it is common to discuss distribution-specific results on the analysis
of intuitive algorithms in the framework of evolvability; e.g. [2,14,16]. Thus,
the study of simple and intuitive evolvability algorithms using Valiant’s original
Boolean loss is of interest for specific distributions. Our aim is to understand
better such algorithms in the framework of evolvability as well as in the broader
framework of optimization and evolutionary algorithms (EAs) [7,22].

Previous work in evolvability includes [2,8–11,13,14,16,19–21]. In [19]
Valiant introduced a swapping-type algorithm and proved the evolvability of
monotone conjunctions under the uniform distribution (Un). The analysis was
simplified by Diochnos and Turán in [6] and in fact it was shown that monotone
conjunctions are evolvable in O (log(1/ε)) generations. The result was strength-
ened to general conjunctions under Un by Kanade, Valiant and Vaughan in [14]
including target drift. Further, Feldman in [8] showed that conjunctions are
evolvable for any fixed distribution in Õ (n) generations, where Õ (·) ignores poly-
log factors. Kanade in [13] extended Valiant’s model to include genetic recom-
bination where it follows that conjunctions are evolvable in O

(
(log(n)/ε)2

)

generations. On the other hand, one open question from [13] was whether the
analysis of Diochnos and Turán could be generalized to distributions beyond Un.

In this paper we address this last question by considering binomial distri-
butions Bn with parameter p. We do so by exploiting a structure theorem for
best approximations with a drilling technique. Drilling improves our estimates
of the fitness function by increasing the sample size. In turn, we can discover
any important variable for targets up to a certain size beyond the frontier q of
our search. Hence, even if we have the power to form some targets precisely, the
evolutionary mechanism only forms a best approximation for them. This way,
targets with many variables are dealt in an easy way. Our analysis reveals the
family F = {2−1/k | k ∈ N

∗}, where Un is the first member and is obtained
for k = 1; i.e. p = 1

2 . As we consider larger values of p in the (0, 1) interval,
every time we encounter one more member of F , we drill deeper, thus allowing
evolution to identify variables from targets containing one more variable. Evolv-
ability follows for any fixed distribution in O

(
log 1

p
(1/ε)

)
generations; the setup

of [6] for Un is recovered as a special case. Our analysis reveals an interesting
non-trivial connection between the parameters, which is captured in Fig. 3.

The paper is structured as follows. Section 2 gives the definition of evolvabil-
ity and Sect. 3 preliminaries specific to our setup. Section 4 lays the foundations
for the evolvability of monotone conjunctions. Section 5 discusses adaptation.
Section 6 discusses the convergence. Section 7 analyzes the complexity. We con-
clude with further remarks in Sect. 8. Due to space limitations some proofs are
sketched or omitted in this version.

2 Definition of Evolvability

The truth values true and false are represented by 1 and −1 respectively. The
fitness function that guides the search is called performance. For a target c and

100 D.I. Diochnos

a fixed distribution Dn over {0, 1}n, the performance of a hypothesis h is

PerfDn
(h, c) =

∑

x∈{0,1}n

h(x) · c(x) · Prx∼Dn
(x) , (1)

called the correlation of h and c. Evolution starts with an initial hypothesis
h0, and produces a sequence of hypotheses using a local-search procedure in H.
Similarity between h and c in an underlying distribution Dn is measured by
the empirical performance function PerfDn

(h, c, |S|) which is evaluated approx-
imately by drawing a random sample S and computing PerfDn

(h, c, |S|) =
1

|S|
∑

x∈S h(x) · c(x). Valiant’s original definition of evolvability treated the con-
fidence parameter δ and the error parameter ε as one. Below, even if we draw
the definitions from [19], we modify them slightly to also include δ explicitly.

Definition 1 (Modified From [19]). For a polynomial p(·, ·) and a represen-
tation class R a p-neighborhood N on R is a pair M1,M2 of randomized poly-
nomial time Turing machines such that the numbers n (in unary), �1/ε� and
a representation r ∈ Rn act as follows: M1 outputs all the members of a set
NeighN (r, ε) ⊆ Rn, that contains r and may depend on random coin tosses of
M1, and has size at most p(n, 1/ε). If M2 is then run on this output of M1, it
in turn outputs one member of NeighN (r, ε), with member r1 being output with
a probability PrN (r, r1) ≥ 1/p(n, 1/ε).

Definition 2 (Modified From [19]). For confidence parameter δ, error para-
meter ε, positive integers n and s, an ideal function f ∈ Cn, a representation
class R with p(n, 1/ε)-neighborhood N on R, a distribution D, a representa-
tion r ∈ Rn and a real number t, the mutator Mu(f, p(n, 1/ε), R,N,D, s, r, t)
is a random variable that on input r ∈ Rn takes a value r1 ∈ Rn deter-
mined as follows: For each r1 ∈ NeighN (r, ε) it first computes an empirical
value of ν(r1) = PerfDn

(r1, f, s). Let Bene be the set {r1 | ν(r1) > ν(r) + t}
and Neut be the set difference {r1 | ν(r1) ≥ ν(r) − t} \ Bene. If Bene �= ∅
then output r1 ∈ Bene with probability PrN (r, r1) /

∑
r1∈Bene PrN (r, r1). Oth-

erwise (Bene = ∅), output an r1 ∈ Neut, the probability of a specific r1 being
PrN (r, r1) /

∑
r1∈Neut PrN (r, r1).

Definition 3 (Modified From [19]). For a mutator Mu(f, p(n, 1/ε), R,N,D,-
s, r, t) a t-evolution step on input r1 ∈ Rn is the random variable r2 = Mu(f,-
p(n, 1/ε), R,N,D, s, r1, t). We then say r1 → r2 or r2 ← Evolve(f, p(n, 1/ε), R,-
N,Dn, s, r1, t).

We say that polynomials t�(x, y) and tu(x, y) are polynomially related if for
some η > 1 for all x, y(0 < x, y < 1)(tu(x, y))η ≤ t�(x, y) ≤ tu(x, y).

Definition 4 (Modified From [19]). For a mutator Mu(f, p(n, 1/ε), R,N,D,-
s, r, t) a (t�, tu)-evolution sequence for r1 ∈ Rn is a random variable that takes
as values sequences r1, r2, r3, . . . such that for all i ri ← Evolve(f, p(n, 1/ε), R,-
N,D, s, ri−1, ti), where t�(1/n, ε) ≤ ti ≤ tu(1/n, ε), t� and tu are polynomially
related polynomials, and ti is the output of a TM T on input ri−1, n, ε and δ.

On the Evolution of Monotone Conjunctions 101

Definition 5 (Goal of Evolution; Modified From [19]). For polynomials
p(n, 1/ε), s(n, 1/ε, 1/δ), t�(1/n, ε) and tu(1/n, ε), a representation class R and
p(n, 1/ε)-neighborhood N on R, the class C is (t�, tu)-evolvable by (p(n, 1/ε), R,-
N, s(n, 1/ε, 1/δ)) over distribution D if there is a polynomial g(n, 1/ε, 1/δ) and a
Turing machine T , which computes a tolerance bounded between t� and tu, such
that for every positive integer n, every f ∈ Cn, every δ > 0, every ε > 0, and
every r0 ∈ Rn it is the case that with probability at least 1−δ, a (t�, tu)-evolution
sequence r0, r1, r2, . . ., where ri ← Evolve(f, p(n, 1/ε), R,N,Dn, s(n, 1/ε, 1/δ),-
ri−1, T (ri−1, n, ε)), will have PerfDn

(
rg(n,1/ε,1/δ), f

) ≥ 1 − ε.

The number of generations needed for evolution is upper bounded by g
(
n, 1

ε , 1
δ

)
.

Definition 6 (Modified From [19]). A class C is evolvable by (p(n, 1/ε), R,-
N, s(n, 1/ε, 1/δ)) over D iff for some pair of polynomially related polynomials
t�, tu, C is (t�, tu)-evolvable by (p(n, 1/ε), R,N, s(n, 1/ε, 1/δ)) over D.

Definition 7 (Modified From [19]). A class C is evolvable by R over D iff for
some polynomials (p(n, 1/ε) and s(n, 1/ε, 1/δ)), and some p

(
n, 1

ε

)
-neighborhood

N on R, C is evolvable by (p(n, 1/ε), R,N, s(n, 1/ε, 1/δ)) over D.

3 Preliminaries

Given a set of Boolean variables x1, . . . , xn, we assume that there is an unknown
target c ∈ C, a monotone conjunction of some of these variables. Let C be the
concept class of all possible conjunctions in their natural representation. For a
threshold q, let C≤q be the set of monotone conjunctions from C that contain at
most q variables. Further, let C>q = C \ C≤q be the set of conjunctions from C
that are not included in C≤q.

By Definition 2, the neighborhood is split in 3 parts by the increase in per-
formance that the hypotheses in the neighborhood offer. There are beneficial,
neutral, and deleterious mutations. Thus, we need an oracle for computing

Δ = PerfDn

(
h′, c

) − PerfDn
(h, c) , (2)

and hence, for a given t, determine the set where h′ ∈ N lies. Now let

h =
m∧

i=1

xi ∧
r∧

�=1

y� and c =
m∧

i=1

xi ∧
u∧

k=1

wk. (3)

The x’s are mutual variables, the y’s are called redundant and the w’s are called
undiscovered or missing. Variables in the target c are called good, otherwise
bad. With |h| we denote the size (or length) of a conjunction; the number of
variables that it contains. A binomial distribution over {0, 1}n is specified by the
probability p of setting each variable xi to 1. A truth assignment (a1, . . . , an) ∈
{0, 1}n has probability

∏n
i=1 pai · (1 − p)1−ai . We write Bn to denote a fixed

binomial distribution, omitting p for simplicity. On an instance of dimension

102 D.I. Diochnos

good bad

(a) U < 1/2

badgood

(b) U = 1/2

badgood

(c) U > 1/2

Fig. 1. Arrows pointing towards the nodes indicate addition of one variable and arrows
pointing away from a node indicate removal of one variable. This is consistent with
arrows indicating swapping a pair of variables. Thick solid lines indicate Δ > 0. Simple
lines indicate Δ = 0. Dashed lines indicate Δ < 0. Let U be the weight of the undis-
covered variables. Figure 1(a) holds when U < 1/2, Fig. 1(b) holds when U = 1/2 and
Fig. 1(c) holds when U > 1/2.

n we say that Bn has low density when 0 < p < 1
2 , medium density when

1
2 ≤ p ≤ 2− 1

n , high density when 2− 1
n < p < n

√
2/3, and very high density when

n
√

2/3 ≤ p < 1. Consider a target c and a hypothesis h as in (3). Then (1) gives

PerfBn
(h, c) = 1 − 2pm+r − 2pm+u + 4pm+r+u . (4)

Figure 1 presents the sign of Δ that guides the search. Note that while the
sign of an arrow may be fully determined, it is the value of the tolerance t that
defines the two sets of interest (Bene and Neut) that guide the search. Figure 1(a)
refers to the expansion phase, Fig. 1(b) to the identification phase and Fig. 1(c)
to the shrinking phase.

3.1 The Swapping Algorithm

The swapping algorithm for monotone conjunctions was introduced by Valiant
in [19] and was also analyzed in [6]. The neighborhood N of a conjunction h
is the set of conjunctions that arise by adding a variable (neighborhood N+),
removing a variable (neighborhood N−), or swapping a variable with another
one (neighborhood N+−), plus the conjunction itself1. Thus, N = N− ∪ N+ ∪
N+− ∪ {h}. As an example, let h = x1 ∧ x2, and n = 3. Then, N− = {x1, x2},
N+ = {x1∧x2∧x3}, and N+− = {x3 ∧x2, x1 ∧x3}. Note that |N | = O (n |h|) in
general. Algorithm 1 presents the mutator function for the swapping algorithm.

Compute-q uses Table 2 or (11) to set q depending on the hypothesis class
H that is used for evolution. (Table 2 used for Compute-q, already incorporates
a modified ε when needed.) Line 6 computes the minimum non-zero value A
of A(u) = |1 − 2pu| for u ∈ {0, . . . , n} using Table 1 from Sect. 4.1. Tolerance
t is normally t�; however, when H = C and |h| > q then t = tu. We discuss
tolerance in Sects. 4.2 and 7. Performance computes the empirical performance
of h w.r.t. c over the distribution Bn with parameter p, within εs of its true
value, with probability at least 1 − δs; see Sect. 7. SetWeight assigns the same
1 As h will be clear from the context, we write N instead of N(h).

On the Evolution of Monotone Conjunctions 103

Algorithm 1. Mutator function for a binomial distribution
Input: dimension n, p ∈ (0, 1), δ ∈ (0, 1), ε ∈ (0, 2), H ∈ {C≤q, C}, h ∈ H
Output: a new hypothesis h′

1 q ← Compute-q(p, ε, H); ϑ ←
⌊
log 1

p
(2)
⌋
;

2 if |h| > 0 then Generate N− else N− ← ∅;
3 if |h| < q then Generate N+ else N+ ← ∅;
4 if |h| ≤ q then Generate N+− else N+− ← ∅;
5 Bene ← ∅; Neutral ← {h};

6 A ← min �=0{|1 − 2pu|}; μ = min
{
2pq+ϑ , A

}
;

7 t� ← pq−1μ(1 − p); tu ← 4pq(1 − p);
8 if (H = C) and (|h| > q) then t ← tu; εs ← tu/4; δs ← δ/4 ;
9 else t ← t�; εs ← t�; δs ← δ/2 ;

10 SetWeight(h, h, N−, N+, N+−); νh ← Perf(p, h, εs, δs);
11 for x ∈ N+, N−, N+− do
12 SetWeight(x, h, N−, N+, N+−); νx ← Perf(p, x, εs, δs);
13 if νx > νh + t then Bene ← Bene ∪ {x} ;
14 else if νx ≥ νh − t then Neutral ← Neutral ∪ {x} ;

15 if Bene �= ∅ then return Select(Bene) else return Select(Neutral);

weight to all members of {h}∪N− ∪N+ so that they add up to 1
2 , and the same

weight to all the members of N+− so that they add up to 1
2 . Select computes

the sum of weights W of the conjunctions in the set passed as argument, and
returns a hypothesis h′ with probability wh′/W , where wh′ is the weight of h′.

4 Foundations for Evolvability

Let log 1
p
(x) be the logarithm of x in base 1

p . Given a size q and an extension ϑ,
a hypothesis h is called short when |h| ≤ q, medium when q < |h| ≤ q + ϑ and
long when |h| > q + ϑ. Given a target c and a size q, we will be interested in
the best size q approximation of c. The reason is Theorem 1 below, first proved
in [6] for Un. Note that the best approximation is not necessarily unique.

Definition 8 (Best q-Approximation). Let h be a hypothesis such that |h| ≤
q and ∀h′ �= h,

∣∣h′∣∣ ≤ q : PerfDn

(
h′, c

) ≤ PerfDn
(h, c) . We call h a best q-

approximation of c.

Theorem 1 (Best Approximations Under Binomial Distributions; [6]).
The best q-approximation of a target c is c if |c| ≤ q, or any hypothesis formed
by q good variables if |c| > q.

Lemma 1 (Performance Lower Bound, Medium Target). Let Bn be a
binomial distribution. Let c be a medium target. A best q-approximation h has
PerfBn

(h, c) > 1 − 2pq.

104 D.I. Diochnos

Lemma 2 (Performance Lower Bound, Long Target). Let Bn be a bino-
mial distribution. Let h be a hypothesis such that |h| ≥ q and consider a long
target c. Then, PerfBn

(h, c) > 1 − 2pq
(
1 + p1+ϑ

)
.

We now examine the difference Δ between the current hypothesis h and a
hypothesis h′ that is generated in each neighborhood.

Comparing h′ ∈ N+ with h. We introduce a variable z in the hypothesis h. If z
is good, Δ = 2p|h|(1 − p) > 0. If z is bad, Δ = 2p|h|(1 − 2pu)(1 − p).

Comparing h′ ∈ N− with h. We remove a variable z from the hypothesis h. If z
is good, Δ = −2p|h|−1(1 − p) < 0. If z is bad, Δ = −2p|h|−1(1 − 2pu)(1 − p).

Comparing h′ ∈ N+− with h. Replacing a good with a bad variable gives Δ =
−4p|h|+u(1 − p). Replacing a good with a good, or a bad with a bad variable
gives Δ = 0. Replacing a bad with a good variable gives Δ = 4p|h|+u−1(1 − p).

Our aim for short and medium targets is to have the ability to determine the
signs of the differences Δ in every case. For long targets, we want to determine the
signs of the Δ’s for the mutations that arise in the N+ and N− neighborhoods;
not necessarily for those in the N+− neighborhood. We denote

A (u) = |1 − 2pu| , u ∈ {0, . . . , n} . (5)

As A (u) appears in the Δ’s for the mutations in the N+ and N− neighborhoods,
we need to study the minimum non-zero value that A (u) can attain for u ∈
{0, 1, . . . , n} under an arbitrary Bn. The zeros of A (u) are found in the family

F =
{

2− 1
k

∣∣ k ∈ N
∗
}

. (6)

4.1 On the Minimum Non-zero Value of A (u), u ∈ {0, . . . , n}
Lemma 3. Consider the polynomials fk(p) = pk+1 + pk − 1 defined respectively
in the intervals Jk =

[
2−1/k, 2−1/(k+1)

]
with k ∈ N

∗. Then, each fk is monotone
increasing in Jk and has a (unique) root ξk in the open interval Jk.

Table 1 and Fig. 2 present min �=0 {A (u)} as p ranges in (0, 1).

4.2 On Tolerance and Design Requirements

The critical part of the evolution will be evolving short hypotheses. In this part
we want to identify swaps precisely for short and medium targets and thus
|Δ| ≥ 4p2q+ϑ−1(1 − p). Regarding additions and removals we want to be able to
identify the sign of Δ precisely, regardless of the target; thus, using (5), for the
non-zero values of Δ, |Δ| = 2p|h|−1 ·A (u)·(1−p) ≥ 2pq−1 ·min �=0 {A (u)}·(1−p).
Therefore, in order to determine the tolerance, we want to determine

2pq+ϑ < min
�=0

{A (u)} = min
�=0

{|1 − 2pu|} = A . (7)

On the Evolution of Monotone Conjunctions 105

Table 1. min �=0 {A (u)}, attained for specific u by some target c, as p ranges in (0, 1).
When 2−1/k < p < 2−1/(k+1), then ξk is the root from Lemma 3.

Density p min�=0 {A (u)} For u Obtained by target c

Low 0 < p < 1/2 1 − 2p 1 1 ≤ |c| ≤ min {n, q + 1}
Medium 2−1/k, with 1 ≤ k ≤ n − 1 1 − p k + 1 k + 1 ≤ |c| ≤ min {n, q + k + 1}

2−1/n (1 − p)/p n − 1 n − 1 ≤ |c| ≤ n

2−1/k < p ≤ ξk with

1 ≤ k =

⌊

log 1
p

(2)

⌋

≤ n − 1

2pk − 1 k k ≤ |c| ≤ min {n, q + k}

ξk ≤ p < 2−1/(k+1) with

1 ≤ k =

⌊

log 1
p

(2)

⌋

≤ n − 1

1 − 2pk+1 k + 1 k + 1 ≤ |c| ≤ min {n, q + k + 1}

(Very) high 2−1/n < p < 1 2pn − 1 n |c| = n

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

m
in

=
0

{A
(u

)}

p

Fig. 2. min �=0 {A (u)} for n = 8, as presented in Table 1.

We now let

μ = min
{

2pq+ϑ , min
�=0

{A (u)}
}

and t� = pq−1μ(1 − p). (8)

Tolerance is set by (8) when evolution takes place in C≤q. When H = C≤q,
t� = tu and this is a special case, fixed-tolerance evolvability. On the other hand,
if H = C = C≤q ∪ C>q, the approach in C>q relies on setting the tolerance tu
large enough so that a random walk can be performed and eventually form a
hypothesis in C≤q. The neighborhood in C>q is N− ∪{h}; see Algorithm 1. Thus,
|Δ| ≤ 2p|h|−1(1 − p) ≤ 2pq(1 − p) and tu is set to be tu = 2 · max{|Δ|}, that is,

tu = 4pq(1 − p). (9)

Thus, requiring (tu)η ≤ t� ≤ tu < 1 for some η > 1, we get the constraints

p ≤ 1
4

1
4 < p < 1

2 p = 1
2

1
2 < p

q ≥ 1 q ≥ 2 q > 1 q ≥ log 1
p
(2)

(10)

106 D.I. Diochnos

5 Adaptation

Corollary 1. q ≥ log 1
p

(
3
ε

)
, ϑ ≥ 0, |h| = q < |c| ≤ q+ϑ ⇒ PerfBn

(h, c) > 1− 2ε
3 .

Corollary 2. q ≥ log 1
p

(
3
ε

)
, ϑ ≥ log 1

p
(2p), |h| ≥ q, |c| > q+ϑ ⇒ PerfBn

(h, c) >

1 − ε.

5.1 Evolution When H = C
In light of Corollaries 1 and 2, setting q =

⌈
log 1

p

(
8
ε

)⌉
and ϑ =

⌊
log 1

p
(2)

⌋
would

also satisfy the requirements in (10) for every 0 < ε < 2. However, we can
improve the frontier q. Depending on p, let q and ϑ be defined from Table 2.

Table 2. Definition of q and ϑ depending on p when evolving on H = C = C≤q ∪ C>q.

p q ϑ

p ≤ 1
4

⌈
log 1

p
(3/ε)

⌉
0

1
4

< p < 1
2

max
{⌈

log 1
p

(3/ε)
⌉

, 2
}

0

p = 1
2

max
{⌈

log 1
p

(3/ε)
⌉

, 2
}

1

p > 1
2

max
{⌈

log 1
p

(3/ε)
⌉

,
⌈
log 1

p
(2)
⌉} ⌊

log 1
p

(2)
⌋

Learnability on a Fixed Dimension. Let λ > 0. Then, log 1
p

(
3
ε

) ≤ λ ⇒ ε ≥ 3pλ.

Approximate learning degenerates to exact, when log 1
p

(
3
ε

)
> n − 1, as due to

rounding q ≥ n. However, we also need to be able to achieve q = n for a value of
ε in the (0, 2) interval. Thus, on any fixed dimension n, it makes sense to discuss
about approximate learning (λ ≤ n− 1) when 0 < p < n−1

√
2/3 and about exact

(λ = n) when p < n
√

2/3. That is, when p ≥ n
√

2/3 then the dimension is too
low to allow even exact learning with our method. Regarding �log 1

p
(2)� from

Table 2, approximate learning can be done when 0 < p < 2− 1
n−1 and exact when

0 < p < 2− 1
n . Hence, on an instance of dimension n, we study approximate

learning when 0 < p < 2− 1
n−1 and exact learning when 0 < p < 2− 1

n .

Adaptation for Large Input Error. For 1
4 < p < 1

2 , when ε ≥ 3p, evolution will
reset ε to ε′ = 3p2 ≥ 3

16 . In the end it will return a hypothesis that has accuracy
1 − ε′ > 1 − ε but through a (t�, tu)-evolutionary sequence.

Let Ik = [2− 1
k , 2− 1

k+1). When p ∈ I1, if ε ≥ 3p, it will be reset to ε′ = 3p2 >
3
4 . When p ∈ Ik with �log 1

p
(2)� = k ∈ {2, . . . , n − 1}, if ε ≥ 3pk, then setting

ε′ = 3pk+1 ≥ 3 · 2− k+1
k > 1 implies q = �log 1

p
(3/ε′)� = �log 1

p
(2)� = k + 1 ≤ n.

Thus, we will treat q as if it is defined solely by q = �log 1
p

(
3
ε

)� in Table 2. If the
input ε is too large, evolution will adapt it to an appropriate constant.

On the Evolution of Monotone Conjunctions 107

5.2 Evolution When H = C≤q

Working strictly on H = C≤q, one need no longer respect the requirements in
(10) as we have fixed-tolerance evolvability; see Sect. 4.2. Hence, we let

q =
⌈
log 1

p
(3/ε)

⌉
and ϑ =

⌊
log 1

p
(2)

⌋
. (11)

By restricting the hypothesis class, on an instance of dimension n, evolution
can now take place even when p belongs to the high density region, contrasting
Sect. 5.1. Also, no adaptation is needed for any feasible (p, ε) pair.

5.3 Determining µ = min
{
2pq+ϑ,min �=0{A (u)}}

For a specific p, we need to identify the minimum qm such that 2pqm+ϑ < A.
Then, for ε < 3pqm−1 swaps are more expensive. Thus, qm satisfies2

qm > log 1
p
(2pϑ/A) = ζ . (12)

Fig. 3. H = C and n = 8. Along the line 3p, q = 1 for the lowest possible error at
every p. Similarly, the curves 3pn−1 and 3pn are also drawn. In the top part of the
plot, the triangle and the region with the jigsaw frontier that are shaded indicate (p, ε)
pairs where evolution needs to adapt a large input ε to a suitable smaller constant ε′;
see Sect. 5.1. The shaded region in the lower part of the plot, as well as the individual
spikes for the members of F , indicate (p, ε) pairs where swaps determine μ in (8).
(When p < 1

2
, the critical p’s are obtained by solving numerically 2pζ + 2p − 1 = 0

for ζ ∈ N
∗. For p ≥ 1

2
, we use stepsize Δp = 10−5 and for every such p we compute

the turning point ε; see Sect. 5.3.) Finally, the smooth boundary that is discussed in
Sect. 5.3 is also shown; the separation point for Un is

(
1
2
, 3
)

and it is not drawn.

2 As p ranges in (0, 1), a natural question in (12) is whether ζ ∈ Z; then qm = ζ +1,
otherwise qm = 	ζ
 < ζ +1. Equivalently, does 2pζ +ϑ − A = 0 hold for ζ ∈ Z? By
Table 1 and the definition of ϑ, for Un, ζ = 1. Hence, in Un, when 3

2
≤ ε < 3 then the

two quantities for μ in (8) have the same value for a range of ε values. Regardless
if there are additional integer solutions, qm can be computed efficiently.

108 D.I. Diochnos

A Smooth Frontier for μ = min
{
2pq+ϑ,min �=0{A (u)}}. As q involves round-

ing, 2pq+ϑ = 2p	log1/p(3/ε)
+�log1/p(2)� ≥ 2p1+log1/p(3/ε)+log1/p(2) = pε
3 . Thus, by

overestimating the required accuracy for swaps, determining μ can be reduced
to the simpler pε

3 < A ⇔ ε < 3A
p . In other words, μ could also be defined as

μ = min
{

pε
3 ,min �=0{A (u)}} in (8) and in line 6 of Algorithm1.

Figure 3 presents all the above relationships between p and ε.

6 Convergence

6.1 Short Initial Hypothesis and Short Target

If U < 1
2 , Fig. 1(a) applies. Beneficial mutations can only add or swap variables.

Swaps or additions of good variables increase m. Thus after at most |c| such
mutations and at most q − |h0| additions of bad variables, U ≥ 1

2 .
If U = 1

2 , Fig. 1(b) applies. U = 1
2 ⇒ p ∈ F for some k. Further, U = 1

2 ⇒
pu = 1

2 ⇒ u = log 1
p
(2) = k. Also, (k = u)∧(u ≤ |c|)∧(|c| ≤ q) ⇒ k ∈ {1, . . . , q}3.

In one step, the first beneficial swap or addition of good variable brings one more
good variable in the hypothesis and U > 1

2 .
When U > 1

2 , corresponding to Fig. 1(c), then beneficial mutations are those
that add potentially missing good variables, swap bad variables for good ones, or
finally delete bad variables. Each swap or addition increases the number of good
variables in the hypothesis and thus there can be |c| of those. Further, there can
be at most q removals of bad variables. After we get to the target, there are no
beneficial mutations; the only neutral mutation is the target itself.

In the above process, until we reach the target, the number m of good vari-
ables that appear in h is non-decreasing. Thus there can be at most |c| additions
of good variables and swaps combined. Further, there can be at most q + q = 2q
beneficial additions or deletions of bad variables. Hence, overall, after at most
|c| + 2q ≤ 3q steps the target will be identified and that formation is stable4.

3 A clarification comment is in order here. When H = C, by Table 2, q ≥
	log 1

p
(2)
 ≥ log 1

p
(2) = k always, and thus, on an instance of dimension n, as

p increases in F for successive values of k, then q increases at least that fast.
The above is not necessarily true when H = C≤q. By (11), when p ∈ F with

k ≥ 3 (i.e. p ∈ F and p ≥ 2−1/3), for input ε such that 2 > ε ≥ 3pk−1 = 3
2p

, then

q = 	log 1
p
(3

ε
)
 < �log 1

p
(2)� = log 1

p
(2) = k. However, these distributions and input

errors are irrelevant to our discussion as for |c| ≤ q, U = pu ≥ pq ≥ pk−1 = 1
2p

> 1
2
.

4 Diochnos and Turán in [6] gave a bound of 2q for Un. Un is once again special,
because p = 1

2
is the unique member of F where in the shrinking phase (Fig. 1(c)),

U > 1
2

⇒ U = 1 ⇒ u = 0; that is, one needs to argue only about specializations of
the target. For p < 1

2
, Fig. 1(b) never applies, Fig. 1(c) is again about specializations

of the target, and then we can match their 2q bound. However, we use 3q throughout
for uniformity in the analysis.

On the Evolution of Monotone Conjunctions 109

6.2 Short Initial Hypothesis and Medium Target

Medium targets make sense when p ≥ 1
2 and only when we perform approximate

learning. Hence, the input error satisfies ε ≥ 3pn−1 always. Also, for a medium
target, q < |c| = q+j ≤ q+ϑ, a hypothesis h is a best q-approximation if m = q.
Then, u = j ≤ ϑ ⇒ U = pu = pj ≥ pϑ = 1

2 .
Thus, starting with a hypothesis h such that U < 1

2 , we have that m ≤ q −1.
Hence, either |h| ≤ q − 1 ⇒ N+ �= ∅, or |h| = q ⇒ r ≥ 1. In either case, there
is at least one beneficial mutation in the neighborhood. As long as U < 1

2 , there
can be at most q beneficial additions of variables and at most q beneficial swaps.
Therefore, 2q generations are enough to form a hypothesis with U ≥ 1

2 .
If U = 1

2 , Fig. 1(b) applies. U = 1
2 ⇒ p ∈ F for some k. Further, U = 1

2 ⇒
pu = 1

2 ⇒ u = log 1
p
(2) = k = ϑ. In other words, as k increases, we drill deeper

and thus ϑ = k = u. We distinguish cases.

– If m = q, then a best q-approximation is already formed; by the selection of
tolerance this formation is stable. By Corollary 1, PerfBn

(h, c) > 1 − ε. This
case refers to the longest medium target; that is, |c| = q + ϑ. For all other
medium targets, m = q implies u < ϑ and thus, U = pu > pϑ = 1

2 .
• If H = C, as medium targets make sense only for approximate learning,

by Sect. 5.1, p < 2− 1
n−1 . If H = C≤q, then p ∈ F and p < 2− 1

n . To see
this, note that q = �log 1

p
(3ε)� ⇒ q ≥ 1 for any 0 < ε < 2. Hence, as

|c| = q + ϑ ≤ n, it follows that ϑ ≤ n − 1 and as a consequence p < 2− 1
n .

Note that p = 2− 1
n−1 can arise5,6 under Un, for ε ≥ 3

2 and |c| = n = 2.
– If m < q, since u = ϑ, we are dealing with targets such that |c| ∈ {q+1, . . . , q+

ϑ − 1}. Hence, this case can arise when p ∈ F for k ≥ 2. Since m < q, either
|h| = m ⇒ N+ �= ∅, or m < |h| ≤ q ⇒ r ≥ 1 ⇒ N+− �= ∅. In either case, in
one step, evolution will proceed to the case where U > 1

2 .
• If H = C, then again by Sect. 5.1, p < 2− 1

n . If H = C≤q, then p ≤ 2− 1
n ;

not even the full conjunction can achieve U = 1
2 for p > 2− 1

n .

If U > 1
2 , Fig. 1(c) applies. Beneficial mutations either increase good variables

with additions or swaps, or redundant bad variables are removed. However, there
can be at most q removals of bad variables. Further, the set of good variables
can be augmented at most q times through beneficial mutations. Thus, a best
q-approximation is formed within at most 2q generations.

5 This example reveals another aspect of our approach. There are cases where q+ϑ ≥
n, even when H = C. Then, our method is powerful enough to perform exact learning
(there are no long targets). However, only an approximation of the target will be
returned, satisfying PerfBn (h, c) > 1 − ε. On the other hand, one can improve the
definitions of ϑ in Table 2 and in (11) by setting ϑ = min{n− q, �log1/p(2)�}; we did
not do so for simplicity in the presentation.

6 Also, p can be arbitrarily close to 1. For k ∈ N
∗, p = 2− 1

k ⇒ ϑ = k. Let, ε = 3
4

⇒
q = 	log 1

p
(4)
 = 2k. Then, for n ≥ 3k, we look at the conjunction with size 3k.

110 D.I. Diochnos

As a summary, in the above process m is non-decreasing. Thus, there can be
at most q additions of good variables and swaps combined. Further, there can be
at most q+q = 2q beneficial additions or deletions of bad variables. Hence, after
at most q +2q ≤ 3q generations, a best q-approximation of a medium target will
be formed. That formation is stable. By Corollary 1, PerfBn

(h, c) > 1 − ε.

6.3 Short Initial Hypothesis and Long Target

ϑ = �log 1
p
(2)� ⇒ ϑ > log 1

p
(2p). For long targets, u ≥ 1 + ϑ ⇒ U = pu ≤ p1+ϑ <

plog1/p(2) = 1/2. Thus, we have U < 1
2 , corresponding to Fig. 1(a). Beneficial

mutations are additions of variables or swaps. As long as |h| < q, then N+ �= ∅.
Hence, after at most 2q generations a hypothesis of size q will be formed. By the
selection of tolerance, the mutations in N− are deleterious. Thus, evolution will
wander among hypotheses of size precisely q. By Corollary 2, PerfBn

(h, c) > 1−ε.

6.4 Medium or Long Initial Hypothesis

With Õ (·) we ignore polylogarithmic terms; however, we do not ignore q, as q
is the frontier of our search and the maximum size of the shortest explanation.
As long as |h| > q the neighborhood is N = N− ∪ {h}. Tolerance is tu from (9);
every hypothesis in the neighborhood is neutral. Thus, with probability at least
1 − δ/4, in Õ (n) generations we arrive at a hypothesis of size q.

7 Sketch of Complexity Analysis for Evolution

Evolution in C≤q. Evolution lasts for 3q generations. |N | = O (nq) ⇒ cnq2

queries are enough, for some c > 0. Table 1 computes A = min �=0{A (u)}; by
(8), μ = min{2pq+ϑ, A}. By (8), tolerance is t = t�. Requiring O (

1
t2 · ln(n/δ)

)

samples per hypothesis tested, it follows by Hoeffing’s bound and a union bound
argument that the performance of each hypothesis in this phase is computed
within εs = t of its exact value with probability at least 1 − δ/2.

Theorem 2. Let Bn be a binomial distribution with 0 < p < 1. Starting with
a short initial hypothesis and considering hypotheses in C≤q, the swapping algo-
rithm, using total sample size Õ (

nq2/t2�
)
, in at most 3q generations, will evolve

a hypothesis h such that PerfBn
(h, c) > 1 − ε, with probability at least 1 − δ/2.

Evolution in C>q. With a Chernoff bound argument, selecting from the neu-
tral set when all hypotheses are present there, for Õ (n) generations, then with
probability at least 1 − δ/4, evolution will form a hypothesis of size q.

On the other hand, by (9), tolerance t = tu. Requiring O (
1
t2 ln(n/δ)

)
samples

per hypothesis tested, with a combination of the Hoeffding bound and a union
bound argument, the performance of each hypothesis is computed within εs =
t/4 of its exact value, with probability at least 1 − δ/4.

On the Evolution of Monotone Conjunctions 111

Theorem 3. Let Bn be a binomial distribution with 0 < p < 1. Starting with a
long initial hypothesis and considering hypotheses in C, the swapping algorithm,
using total sample size Õ (

nq2/t2� + n2/t2u
)
, in Õ (n) generations, will evolve a

hypothesis h such that PerfBn
(h, c) > 1 − ε, with probability at least 1 − δ.

8 Further Remarks

With a drilling technique, we examined a local search algorithm for the evolution
of monotone conjunctions under binomial distributions. We identified differences
between H = C and H = C≤q that had to do with the sample size as well as with
the overall design and adaptation of the method. Also, on an instance of dimen-
sion n, using H = C≤q, we are able to cover a wider spectrum of distributions.

Our analysis assumed rational p but can be extended to any real value. We
outline the extension; details will be given in the full version. For example, let
p > 1

2 and p ∈ [l, r] ⊂ (2− 1
k , 2− 1

k+1), for rational l and r. Setting q = �log 1
r
(3/ε)�

and θ = �log 1
r
(2)� = k, Corollaries 1 and 2 hold for the p of the distribution. Con-

sidering H = C≤q, we need a lower bound for t� that works for all p ∈ [l, r]. Notice
that A = min �=0{A (u)} = min

{∣∣1 − 2lk
∣∣ ,

∣∣1 − 2lk+1
∣∣ ,

∣∣1 − 2rk
∣∣ ,

∣∣1 − 2rk+1
∣∣}.

Hence, μ in (8) is the minimum between A and 2pq+ϑ. Note also that l = rb for
b ≤ 1 + 1

k . Then, for any p ∈ [l, r], pq ≥ lq = rbq ≥ (
r ε
3

)b ≥ (
ε
6

)2 and pϑ ≥ lϑ =
rbϑ ≥ 2−b ≥ 1

4 . Thus, μ = min{ ε2

72 , A}. Further, t� ≥ lq−1μ(1− r) ≥ ε2

36lμ(1− r).
Similar arguments can be made if p ∈ F or if p < 1

2 thus treating uniformly all
real values of p in an appropriate interval with rational endpoints.

Concluding, Valiant’s model for evolution poses interesting questions even for
concept classes that have been studied extensively in learning theory. Perhaps
the most distinctive difference between evolvability on one hand and traditional
optimization and EAs on the other hand, is that the evolutionary mechanism has
access to fitness comparison oracles that have bounded and unbounded preci-
sion respectively. Such a distinction on comparison oracles can have independent
interest, as for example in [1]. In the case of evolvability, having bounded pre-
cision on the comparisons is an artifact of sampling. By trying to understand
evolution using local search when the fitness values are corrupted by noise, we
have additional results that we will explore in subsequent papers. Finally, study-
ing the method in different computation models or by restricting the parameters
on real algebraic numbers might be a problem of independent interest.

Acknowledgement. The author would like to thank György Turán for fruitful dis-
cussions on earlier versions of the paper. The author would also like to thank Yanjun
Qi and Elias Tsigaridas for some additional interesting discussions.

112 D.I. Diochnos

References

1. Ajtai, M., Feldman, V., Hassidim, A., Nelson, J.: Sorting and selection with impre-
cise comparisons. ACM Trans. Algorithms 12(2), 19 (2016)

2. Angelino, E., Kanade, V.: Attribute-efficient evolvability of linear functions. In:
ITCS, pp. 287–300 (2014)

3. Angluin, D., Laird, P.D.: Learning from noisy examples. Mach. Learn. 2(4), 343–
370 (1987)

4. Aslam, J.A., Decatur, S.E.: Specification and simulation of statistical query algo-
rithms for efficiency and noise tolerance. J. Comput. Syst. Sci. 56(2), 191–208
(1998)

5. Bshouty, N.H., Feldman, V.: On using extended statistical queries to avoid mem-
bership queries. J. Mach. Learn. Res. 2, 359–395 (2002)

6. Diochnos, D.I., Turán, G.: On evolvability: the swapping algorithm, product dis-
tributions, and covariance. In: SAGA, pp. 74–88 (2009)

7. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

8. Feldman, V.: Evolvability from learning algorithms. In: STOC, pp. 619–628 (2008)
9. Feldman, V.: Robustness of Evolvability. In: COLT, pp. 277–292 (2009)

10. Feldman, V.: Distribution-independent evolvability of linear threshold functions.
In: COLT, pp. 253–272 (2011)

11. Feldman, V.: A complete characterization of statistical query learning with appli-
cations to evolvability. J. Comput. Syst. Sci. 78(5), 1444–1459 (2012)

12. Goldman, S.A., Sloan, R.H.: Can PAC learning algorithms tolerate random
attribute noise? Algorithmica 14(1), 70–84 (1995)

13. Kanade, V.: Evolution with recombination. In: FOCS, pp. 837–846 (2011)
14. Kanade, V., Valiant, L.G., Vaughan, J.W.: Evolution with drifting targets. In:

COLT, pp. 155–167 (2010)
15. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. In: STOC,

pp. 392–401 (1993)
16. Michael, L.: Evolvability via the Fourier transform. Theor. Comput. Sci. 462, 88–

98 (2012)
17. Szörényi, B.: Characterizing statistical query learning: simplified notions and

proofs. In: ALT, pp. 186–200 (2009)
18. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
19. Valiant, L.G.: Evolvability. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS,

vol. 4708, pp. 22–43. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74456-6 5
20. Valiant, P.: Distribution free evolvability of polynomial functions over all convex

loss functions. In: ITCS, pp. 142–148 (2012)
21. Valiant, P.: Evolvability of real functions. ACM Trans. Comput. Theor. 6(3), 12:1–

12:19 (2014)
22. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Loeckx, J. (ed.)

ICALP 1974. LNCS, vol. 14, pp. 64–78. Springer, Heidelberg (2001). doi:10.1007/
3-540-48224-5 6

http://dx.doi.org/10.1007/978-3-540-74456-6_5
http://dx.doi.org/10.1007/3-540-48224-5_6
http://dx.doi.org/10.1007/3-540-48224-5_6

Exact and Interactive Learning,
Complexity of Teaching Models

Exact Learning of Juntas from Membership
Queries

Nader H. Bshouty and Areej Costa(B)

Department of Computer Science, Technion, 3200003 Haifa, Israel
{bshouty,areej.costa}@cs.technion.ac.il

Abstract. In this paper we study adaptive and non-adaptive exact
learning of Juntas from membership queries. We use new techniques
to find new bounds, narrow some of the gaps between the lower bounds
and upper bounds and find new deterministic and randomized algorithms
with small query and time complexities.

Some of the bounds are tight in the sense that finding better ones
either gives a breakthrough result in some long-standing combinatorial
open problem or needs a new technique that is beyond the existing ones.

1 Introduction

Learning from membership queries [1], has flourished due to its many applica-
tions in group testing, blood testing, chemical leak testing, chemical reactions,
electric shorting detection, codes, multi-access channel communications, mole-
cular biology, VLSI testing and AIDS screening. See many other applications
in [6–8,12,13,15]. Many of the new applications raised new models and new
problems and in many of those applications the function being learned can be
an arbitrary function that depends on few variables. We call this class of func-
tions d-Junta, where d is the number of relevant variables in the function. In
some of the applications non-adaptive algorithms are most desirable, where in
others adaptive algorithms with limited number of rounds are also useful. Algo-
rithms with high number of rounds can also be useful given that the number
of queries they ask is low. In all of the applications, one searches for an algo-
rithm that runs in polynomial time and asks as few queries as possible. In some
applications asking queries is very expensive, and therefore, even improving the
query complexity by a small non-constant factor is interesting.

In this paper we study adaptive and non-adaptive exact learning of Juntas
from membership queries. This problem was studied in [8–11]. In this paper,
we find new bounds, tighten some of the gaps between some lower bounds and
upper bounds and find new algorithms with better query and time complexities
both for the deterministic and the randomized case.

Since learning one term of size d (which is a function in d-Junta) requires
at least 2d queries and asking one query requires time O(n), we cannot expect
to learn the class d-Junta in time less than Ω(2d + n). We say that the class
d-Junta is polynomial time learnable if there is an algorithm that learns d-Junta
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 115–129, 2016.
DOI: 10.1007/978-3-319-46379-7 8

116 N.H. Bshouty and A. Costa

in time poly(2d, n). In this paper we also consider algorithms that run in time
nO(d), which is polynomial time for constant d, and algorithms that run in time
poly(dd, n), which is polynomial time for d = O(log n/ log log n).

1.1 Results for Non-adaptive Learning

A set S ⊆ {0, 1}n is called an (n, d)-universal set if for every 1 ≤ i1 < i2 < · · · <
id ≤ n and σ ∈ {0, 1}d there is an s ∈ S such that sij = σj for all j = 1, . . . , d.
Damaschke, [9], shows that any set of assignments that non-adaptively learns
d-Junta must be an (n, d)-universal set. This, along with the lower bound
in [14,21], gives result (1) in Table 1 for the deterministic case. It is not clear
that this lower bound is also true for the randomized case. We use the mini-
max technique, [20], to show that randomization cannot help reducing the lower
bound. See (2) in the table.

Table 1. Results for non-adaptive algorithms

Lower
bound

Upper
bound

Time nO(d) Time
poly(dd, n)

Time
poly(2d, n)

Deterministic

Previous (1)2d log n (3)d2d log n
+d22d

(6)d22d log n — (11)2d+O(log2 d) log2 n

Ours — (4)d2d log n (7)d2d log n (9)d32d log n (12)2d+O(log2 d) log n

Randomized

Previous — — — — —

Ours (2)2d log n (5)d2d log n (8)d2d log n (10)d32d log n (13)d22d(log n + log(1/δ))

Damaschke introduces a graph-theoretic characterization of non-adaptive
learning families, called d-wise bipartite connected families [9]. He shows that
for an (n, d)-universal set of assignments S, it can non-adaptively learn d-Junta
if and only if S is a d-wise bipartite connected family. He then shows, with a
non-constructive probabilistic method, that there exists such a family of size
O(d2d log n + d22d). See (3) in the table. Then, he shows that a d-wise bipartite
connected family of size O(d22d log n) can be constructed in nO(d) time [9]. This,
along with his deterministic learning algorithm presented in [9] gives result (6)
in the table. We further investigate the d-wise bipartite connected families and
show that there exists one of size O(d2d log n). We then use the technique in [16]
to construct one of such size in time nO(d). This gives results (4), (5), (7) and (8),
where the results for the randomized algorithms follow from the corresponding
deterministic algorithms. We then use the reduction of Abasi et. al in [2] to give
a non-adaptive algorithm that runs in poly(dd, n) time and asks O(d32d log n)
queries. This is result (9) in the table. Then, result (10) for the randomized case
follows.

Exact Learning of Juntas from Membership Queries 117

We also introduce a new simple non-adaptive learning algorithm and apply
the same reduction to this algorithm to get result (12) in the table. Result
(11) follows from a polynomial time learning algorithm for d-Junta given by
Damaschke in [10], which asks 2d+O(log2 d) log2 n queries. Finally, we give a new
Monte Carlo randomized polynomial time algorithm that learns d-Junta with
O((d2d log n+ d22d) log(1/δ)) queries. Then we present a new reduction for ran-
domized algorithms and apply it to this algorithm to get result (13) in the table.

The significant improvements over the previous results (see the table) are
results (2), (4), (9), (12) and (13).

We note here that any improvement in the upper bound would be a break-
through result since it would give a new result for the size of an (n, d)-universal
set, a longstanding open problem. We also believe that to improve the lower
bounds one needs a new technique that is beyond the existing ones.

1.2 Results for Adaptive Learning

We summarize here only our new main results for adaptive learning. A more
comprehensive presentation of previous and new results, comparison between
them (including a summarizing table) and proofs will be introduced in the full
version of this paper. The full paper will also include some improvements that
were proposed by one of the anonymous reviewers to some of the algorithms.

For deterministic learning we give a two-round algorithm that runs in time
poly(dd, n) and asks O(d32d log n) queries. For the randomized case, we present
a lower bound of Ω(d log n + 2d) queries. We also give three new Monte Carlo
algorithms. The three of them run in poly(2d, n, log 1/δ) time. The first one uses
O(d log n+d2d log d/δ) queries and runs in O(d log n) rounds. The second one uses
O(d22d(log n + log 1/δ)) queries and runs in d rounds. The third algorithms uses
O(d log n + d32d log 1/δ) queries and runs in two rounds. For poly(dd, n, log 1/δ)
time randomized algorithms, we refine a previous result of Damaschke and give a
two-round algorithm with a query complexity of O(d log n +(log d)d2d log 1/δ).

2 Definitions and Preliminary Results

In this section we give some definitions and preliminary results that will be used
throughout the paper.

Let n be an integer. We denote [n] = {1, . . . , n}. Consider the set of assign-
ments, also called membership queries or queries, {0, 1}n. A function f is said
to be a boolean function on n variables x = (x1, . . . , xn) if f : {0, 1}n → {0, 1}.
For an assignment a ∈ {0, 1}n, i ∈ [n] and ξ ∈ {0, 1} we denote by a|xi←ξ the
assignment (a1, . . . , ai−1, ξ, ai+1, . . . , an). We say that the variable xi is relevant
in f if there is an assignment a = (a1, . . . , an) such that f(a|xi←0) �= f(a|xi←1).
We say that the variable xi is irrelevant in f if it is not relevant in f .

Given a boolean function f on n variables x = {x1, . . . , xn} and an assign-
ment a ∈ {0, 1}n on the variables, we say that xi, for 1 ≤ i ≤ n, is sensitive in
f w.r.t. a if f(a|xi←0) �= f(a|xi←1).

118 N.H. Bshouty and A. Costa

For a boolean function on n variables f , a variable xi and a value ξ ∈ {0, 1}
we denote by f |xi←ξ the boolean function on n variables g(x1, . . . , xn) =
f(x1, . . . , xi−1, ξ, xi+1, . . . , xn). In addition, for a boolean variable x ∈ {0, 1}
we denote x1 := x and x0 := x̄, where x̄ is the negation of x.

For a class of boolean functions C we say that a set of assignment A ⊆ {0, 1}n

is an equivalent set for C if for every two distinct functions f, g ∈ C there is an
a ∈ A such that f(a) �= g(a). Obviously, an equivalent set A for C can be used
to non-adaptively learn C. Just ask all the the queries in A and find the function
f ∈ C that is consistent with all the answers. By the definition of equivalent set
this function is unique.

For integers n and d ≤ n we define the set d-Junta as the set of all functions
f : {0, 1}n → {0, 1} with at most d relevant variables.

A set S ⊆ {0, 1}n is called a d-wise independent set if for every 1 ≤ i1 <
i2 < · · · < id ≤ n and every ξ1, . . . , ξd ∈ {0, 1}, for a random uniform x =
(x1, . . . , xn) ∈ S we have Pr[xi1 = ξ1, . . . , xid = ξd] = 1/2d. Alon et al. show:

Lemma 1. [3] There is a construction of a d-wise independent set of size
O((2n)�d/2�).

2.1 Universal Sets and d-Wise Bipartite Connected Families

A set S ⊆ {0, 1}n is called an (n, d)-universal set if for every 1 ≤ i1 < i2 <
· · · < id ≤ n and σ ∈ {0, 1}d there is an s ∈ S such that sij = σj for all
j = 1, . . . , d. Denote by U(n, d) the minimum size of an (n, d)-universal set. It is
known, [14,21], that

U(n, d) = Ω(2d log n), U(n, d) = O(d2d log n). (1)

The following result is a folklore result. We give the proof for completeness

Lemma 2. Let be m = O(2d(d log n + log(1/δ))). Let be S = {s(1), . . . , s(m)}
where each s(i) is uniformly independently chosen from {0, 1}n. With probability
at least 1 − δ the set S is an (n, d)-universal set.

Proof. By the union bound and since s(i) are chosen uniformly independently,

Pr[S is not (n, d)-US] = Pr[(∃(i1, . . . , id)(∃a ∈ {0, 1}d)(∀j) s
(j)
i1

, . . . , s
(j)
id

�= a]

≤
(

n

d

)
2d

(
1 − 1

2d

)m

≤ δ.

�

This also implies the upper bound of O(d2d log n) in (1). Different deter-
ministic constructions for (n, d)-universal sets are useful especially for adaptive
learning. The best known constructions are stated in the following:

Lemma 3. [16,17] There is a deterministic construction for an (n, d)-universal
set of size s that runs in time T where

Exact Learning of Juntas from Membership Queries 119

1. T = poly(2d, n) and s = 2d+O(log2 d) log n.
2. T = poly(dd, n) and s = O(d32d log n). In particular, T = poly(n) for d =

O(log n/ log log n).
3. T = nO(d) and s = O(d2d log n). In particular, T = poly(n) for d = O(1).

Let A ⊆ {0, 1}n be a set of assignments. For non-negative integers d1, d2 such
that d = d1+d2 and for i = (i1, . . . , id2), j = (j1, . . . , jd1), k = (k1, . . . , kd2), with
entries that are distinct elements in [n] and z ∈ {0, 1}d1 , we define a bipartite
graph B := B(i, j, k, z, A) as follows. The set of vertices of the left side of the
graph is VL(B) := {0, 1}d2 × {L} and the set of vertices of the right side of the
graph is VR(B) := {0, 1}d2 × {R}. For a′, a′′ ∈ {0, 1}d2 , {(a′, L), (a′′, R)} is an
edge in B if and only if there is an assignment a ∈ A such that (ai1 , . . . , aid2

) = a′,
(ak1 , . . . , akd2

) = a′′ and (aj1 , . . . , ajd1
) = z.

We say that A is a d-wise bipartite connected family if for all d1, d2 such that
d = d1 + d2, and for all i = (i1, . . . , id2), j = (j1, . . . , jd1), k = (k1, . . . , kd2) and
z ∈ {0, 1}d1 as described above, the graph B(i, j, k, z, A) is connected. That is,
there is a path from any vertex in the graph to any other vertex. Obviously, any
d-wise bipartite connected family is an (n, d)-universal set. Just take d1 = 0 and
d2 = d.

In [9], Damaschke proves:

Lemma 4. [9] A is an equivalent set for d-Junta if and only if A is a d-wise
bipartite connected family.

3 Deterministic Non-adaptive Algorithms

In this section we study deterministic non-adaptive learning of d-Junta.

3.1 Lower and Upper Bound

For completeness sake, we give a sketch of the proof of the lower bound of
Ω(2d log n) on the number of queries in any deterministic adaptive algorithm.
This implies the same lower bound for any deterministic non-adaptive algorithm.

The idea of the lower bound is very simple. If the set of asked assignments A
is not an (n, d)-universal set and the adversary answers 0 for all the membership
queries in A, the learner can’t learn the function. This is because, if A is not
an (n, d)-universal set, then there are 1 ≤ i1 < i2 < · · · < id ≤ n and ξ1, . . . , ξd

such that no assignment a ∈ A satisfies (ai1 , . . . , aid) = (ξ1, . . . , ξd). Then, the
learner can’t distinguish between the zero function and the term xξ1

i1
· · · xξd

id
.

This is because xξ1
i1

· · · xξd
id

is also zero on all the assignments of A. Therefore,
the learner must ask at least U(n, d) queries which is Ω(2d log n) by (1).

As for the upper bound, Damaschke shows in [9] that a d-wise bipartite con-
nected family is an equivalent set for d-Junta and therefore this family is enough
for non-adaptive learning. He then shows that there exists a d-wise bipartite
connected family of size O(d2d log n + d22d). In this section we construct such
one of size O(d2d log n). In particular, we have:

120 N.H. Bshouty and A. Costa

Theorem 1. There is a deterministic non-adaptive algorithm that learns
d-Junta with O(d2d log n) queries.

Proof. We give an algorithmic construction of a d-wise bipartite connected family
of size O(d2d log n). To prove the result we start with a definition.

For every d1 and d2 where d = d1 + d2 and every i = (i1, . . . , id2), j =
(j1, . . . , jd1), k = (k1, . . . , kd2), with entries that are distinct elements in [n],
every z ∈ {0, 1}d1 and every set of assignments A ⊆ {0, 1}n, we define the
function Xi,j,k,z at A as follows. Xi,j,k,z(A) = t − 1 where t is the number
of connected components in B(i, j, k, z, A). Obviously, if Xi,j,k,z(A) = 0 then
B(i, j, k, z, A) is connected. Consider the function X(A) =

∑
i,j,k,z Xi,j,k,z(A).

The sum here is over all possible d1, d2, i, j, k and z as described above. Notice
that if X(A) = 0 then A is a d-wise bipartite connected family.

We construct A iteratively. At the beginning A = ∅ and each B(i, j, k, z, A)
has 2d2+1 connected components. Therefore, we first have

X(∅) =
∑

d1+d2=d

(
n

d2 d2 d1 n − d1 − 2d2

)
2d1(2d2+1 − 1) ≤ (2n)2d.

We show that for every A ⊂ {0, 1}n there is an assignment a ∈ {0, 1}n such that

X(A ∪ {a}) ≤ X(A)
(
1 − 1/2d+1

)
. (2)

This implies that there is a set A′ of size t = 2d2d+1 ln(2n) such that

X(A′) ≤ X(∅)
(
1 − 1/2d+1

)t ≤ (2n)2d
(
1 − 1/2d+1

)t
< (2n)2de−2d ln(2n) = 1.

Since X(A′) is an integer number we get X(A′) = 0, which implies that A′ is a
d-wise bipartite connected family of size t = O(d2d log n).

We now prove (2). Consider some i, j, k, z, A. Suppose that the number of
connected components in B := B(i, j, k, z, A) is t and therefore Xi,j,k,z(A) =
t − 1. Let C1, C2, . . . , Ct be the connected components of B and let si and ri be
the number of vertices of the component Ci in VL(B) and VR(B) respectively.
Consider a random uniform assignment a ∈ {0, 1}n. If (aj1 , . . . , ajd1

) = z then
B(i, j, k, z, A ∪ {a}) is the bipartite graph B(i, j, k, z, A) with an addition of a
uniform random edge. Therefore the probability that after adding a to A the
number of connected components in B reduces by 1 is equal to the probability
that (aj1 , . . . , ajd1

) = z and a uniform random edge in B connects two distinct
connected components. This probability is equal to

1
2d1

∑
i�=j sirj

22d2
=

(
∑

i si)
(∑

j rj

)
− ∑

i siri

2d122d2
=

1
2d1

−
∑

i siri

2d122d2
(3)

≥ 1
2d1

− 22d2 − (t − 1)2d2−1

2d122d2
=

t − 1
2d+1

. (4)

Equality (3) is true because
∑

i si =
∑

i ri = 2d2 . The inequality (4) is proved
later. Therefore Ea[Xi,j,k,z(A ∪ {a})] ≤ (t − 1)/2d+1 = Xi,j,k,z(A)

(
1 − 1/2d+1

)
.

Exact Learning of Juntas from Membership Queries 121

Since the expectation of a sum is the sum of the expectations, we have Ea[X(A∪
{a})] ≤ X(A)

(
1 − 1/2d+1

)
. Therefore, for every set A there exists an a such that

X(A ∪ {a}) ≤ X(A)
(
1 − 1/2d+1

)
.

It remains to prove (4). That is,

max
ri,si

t∑

i=1

siri ≤ 22d2 − (t − 1)2d2−1. (5)

First notice that since the graph B is a bipartite graph we have that siri = 0 if
and only if either si = 0 and ri = 1 or si = 1 and ri = 0. We first claim that the
maximum value in (5) occurs when risi = 0 for all i except for one. If, on the
contrary, the maximum value occurs where si1ri1 �= 0 and si2ri2 �= 0 for some
i1 �= i2 then by replacing si1 , ri1 by 0, 1 and si2 , ri2 by si1 + si2 , ri1 + ri2 − 1
we get a larger value and therefore we get a contradiction. Therefore we may
assume w.l.o.g that siri = 0 for all i = 1, . . . , t−1, rt = 2d2 − t1 and st = 2d2 − t2
for some t1 + t2 = t − 1. Then, since t ≤ 2d2+1,

max
ri,si

t∑

i=1

siri = max
t1+t2=t−1

(2d2 − t1)(2d2 − t2) = 22d2 − (t − 1)2d2 + max
t1+t2=t−1

t1t2

≤ 22d2 − (t − 1)2d2 + (t − 1)2/4 ≤ 22d2 − (t − 1)2d2−1.

�

3.2 Polynomial Time Algorithms

In this section we give three polynomial time algorithms for non-adaptive learn-
ing of d-Junta. The first algorithm asks O(d2d log n) queries and runs in time
nO(d) which is polynomial for constant d. This improves the query complex-
ity O(d22d log n) of Damaschke in [9]. The second algorithm asks O(d32d log n)
queries and runs in time poly(dd, n) which is polynomial for d = O(log n/

log log n). The third algorithm asks 2d+O(log2 d) log n queries and runs in polyno-
mial time. This improves the query complexity 2d+O(log2 d) log2 n of Damaschke
in [9].

We now present the first algorithm. In the next lemma we show how to
construct a d-wise bipartite connected family of size O(d2d log n) in time nO(d).
We construct a d-wise bipartite connected family A and non-adaptively ask all
the queries in A. Then, for every d variables xi1 , . . . , xid we construct a set
Mi1,...,id = {(ai1 , . . . , aid , f(a)) | a ∈ A}. We now look for a function g ∈ d-Junta
that is consistent with all the answers of the queries in A. If Mi1,...,id contains
two elements (a′, 0) and (a′, 1) for some a′ ∈ {0, 1}d then no consistent function
exists on those variables. Otherwise, there is a consistent function g and since
A is an equivalent set, g is unique and is the target function. After finding the
target function, we can then find the relevant variables in g from its truth table
if needed.

122 N.H. Bshouty and A. Costa

This algorithm runs in time nO(d). We now show that the construction time
of the d-wise bipartite connected family A is nO(d).

In the previous subsection we showed in Theorem 1 an algorithmic construc-
tion of a d-wise bipartite connected family of size O(d2d log n). We now show
that this construction can be performed in nO(d) time.

Lemma 5. There is an algorithm that runs in time nO(d) and constructs a
d-wise bipartite connected family of size O(d2d log n).

Proof. Let X(A) and Xi,j,k,z(A) be as in the proof of Theorem 1. Xi,j,k,z(A)
depends only on 2d2 +d1 entries of the assignments of A. Therefore, the proof of
Theorem 1 remains true if the new assignment a is chosen from a (2d2+d1)-wise
independent set S. By Lemma 1, such set exists and is of size nO(2d2+d1) = nO(d).

Since the number of iterations and the number of random variables Xi,j,k,z(A)
in the algorithm is at most (2n)2d and each Xi,j,k,z(A) can be computed in time
poly(2d2 , |A|) = poly(2d log n), the result follows. �

Remark. We note here that instead of using a (2d2 + d1)-wise independent
set, one can use a (1/2O(d))-almost (2d2 + d1)-wise independent set of size
poly(2d, log n), [5]. This is a set of assignments S ⊆ {0, 1}n such that for every
1 ≤ i1 < i2 < · · · < id ≤ n and every B ⊆ {0, 1}n, for a random uniform
x = (x1, . . . , xn) ∈ S we have |B|/2d − 1/2O(d) ≤ Pr[(xi1 , . . . , xid) ∈ B] ≤
|B|/2d + 1/2O(d). The algorithm still needs time nO(d) for computing X(A).

Another approach is the conditional probability method [20]. It follows from
the proof of Theorem 1 that for t = d2d+2 ln(2n) i.i.d. random uniform assign-
ments A = {a(1), . . . , a(t)} we have E[X(A)] < 1. We now construct the bits
of a(1), . . . , a(t) one at a time while maintaining the property E[X(A)| already
fixed bits] < 1. At the end all the bits are fixed, say A = A0, and then
X(A0) = E[X(A)|A0] < 1 which implies (you can see why in the proof of The-
orem 1) that A0 is a d-wise bipartite connected family of size t = d2d+2 ln(2n).
In this approach also the algorithm still needs time nO(d) for computing X(A).

Lemma 5 implies:

Theorem 2. There is a deterministic non-adaptive algorithm that learns
d-Junta in time nO(d) with O(d2d log n) queries.

For introducing the second algorithm, we start with presenting a result
from [2]. A class of boolean functions C is said to be closed under variable projec-
tion if for every f ∈ C and every function φ : [n] → [n] we have f(xφ(1), . . . , xφ(n))
∈ C. Obviously, d-Junta is closed under variable projection.

For the second algorithm we apply the reduction described in [2] to the above
algorithm. We first give the reduction:

Lemma 6. [2] Let C be a class of boolean functions that is closed under variable
projection. If C is non-adaptively learnable in time T (n) with Q(n) membership
queries, then C is non-adaptively learnable in time O(qd2n log n + d2 log n(T (q)
+Q(q)n)/ log(q/(d + 1)2)) with O

(
d2Q(q) log n/ log(q/(d + 1)2)

)
membership

queries, where d is an upper bound on the number of relevant variables in f ∈ C
and q is any integer such that q ≥ 2(d + 1)2.

Exact Learning of Juntas from Membership Queries 123

We now prove:

Theorem 3. There is a deterministic non-adaptive algorithm that learns
d-Junta in time poly(dd, n) with O(d32d log n) queries.

Proof. We apply the reduction in Lemma 6 on the result from Theorem 2 with
q = 2d(d + 1)2, Q(n) = O(d2d log n) and T (n) = nO(d). The time complexity is

O(2d(d+1)2d2n log n+(d2 log n/ log d)·((2d(d+1)2)O(d)+d2d log (2d(d + 1)2)n))

which is poly(dd, n), and the query complexity is

O(d2d2d log (2d(d + 1)2) log n/ log d) = O(d32d log n). �

We now present the third algorithm. We first give a simple algorithm that
runs in polynomial time and uses 2d+O(log2 d)n log n queries, and then we use the
reduction in Lemma 6.

The algorithm first constructs an (n, d)-universal set U . Then, the algorithm
replaces each assignment a ∈ U by a block of n + 1 assignments in the following
way: it keeps the original assignment. In addition, for each index 1 ≤ i ≤ n, it
adds the assignment a|ai←āi

. Denote the new set of assignments by U ′. After
asking U ′, we can find the set of relevant variables by comparing the value of
the target function f on the first assignment in each block with the value of f
on each one of the other assignments in the block. Since U is a universal set, we
can now find the function.

Now, we use a polynomial time construction of an (n, d)-universal set of size
2d+O(log2 d) log n, as described in Lemma 3, and apply the reduction in Lemma 6
to this algorithm for q = 2(d + 1)2. We get a new non-adaptive algorithm that
runs in polynomial time and asks 2d+O(log2 d) log n queries.

We now give a formal proof:

Theorem 4. There is a deterministic non-adaptive algorithm that learns
d-Junta in polynomial time with 2d+O(log2 d) log n queries.

Proof. Consider the above algorithm. Let f be the target function and let
xi1 , . . . , xid′ , d′ ≤ d, be the relevant variables. Then, we can write f = g(xi1 , . . . ,
xid′). For any 1 ≤ j ≤ d′, since xij is a relevant variable, there is an assign-
ment b ∈ {0, 1}d′

such that g(b) �= g(b|bij ←b̄ij
). Since U is an (n, d)-universal set,

there is an assignment a ∈ U such that (ai1 , . . . , aid′) = (bi1 , . . . , bid′). Therefore
f(a|aij

←āij
) = g(b|bij ←b̄ij

) �= g(b) = f(a). This shows that the above algorithm
can discover all the relevant variables after asking the set of assignments U ′.

Since U is an (n, d)-universal set, by looking at the entries of the relevant
variables in U we can find all the possible assignments for xi1 , . . . , xid′ . Therefore,
g, and consequently f , can be uniquely determined.

This algorithm asks 2d+O(log2 d)n log n queries and runs in polynomial time.
Finally, we use the reduction in Lemma 3 with q = 2(d+1)2, T (n) = poly(2d, n)
and Q(n) = 2d+O(log2 d)n log n, and this completes the proof. �

124 N.H. Bshouty and A. Costa

4 Randomized Non-adaptive Algorithms

In this section we study randomized non-adaptive learning of d-Junta.

4.1 Lower Bound

The lower bound for deterministic algorithms does not imply the same lower
bound for randomized algorithms. To prove a lower bound for randomized non-
adaptive algorithms we use the minimax technique. We prove:

Theorem 5. Let d < n/2. Any Monte Carlo randomized non-adaptive algo-
rithm for learning d-Junta must ask at least Ω(2d log n) membership queries.

Proof. Let A(s,Qf) be a Monte Carlo randomized non-adaptive algorithm that
learns d-Junta with success probability at least 1/2, where s ∈ {0, 1}∗ is the
random seed and Qf is the membership oracle to the target f . Since A(s,Qf)
is Monte Carlo it stops after some time T and therefore we may assume that
s ∈ {0, 1}T . Consider the random variable X(s, f) ∈ {0, 1} that is equal to 1 if
and only if the algorithm A(s,Qf) returns f . Then, Es[X(s, f)] ≥ 1/2 for all f .

Consider the set of functions F = {fξ,i := xξ1
1 · · · xξd−1

d−1 xi | ξ1, . . . , ξd−1 ∈
{0, 1}, n ≥ i ≥ d} and the uniform distribution UF over F . Then

max
s

EUF
[X(s, f)] ≥ Es [EUF

[X(s, f)]] = EUF
[Es[X(s, f)]] ≥ 1

2
.

Consider any seed s′ that maximizes EUF
[X(s, f)]. Then EUF

[X(s′, f)] ≥ 1/2.
Let As′ = {a(1), . . . , a(ms′)} be the queries asked by the algorithm when it uses
the seed s′. Note that since the algorithm is non-adaptive, ms′ is independent
of f . Since the query complexity of a Monte Carlo algorithm is the worst case
complexity over all s and f , we have that ms′ is a lower bound for the query
complexity. So it is enough to show that ms′ = Ω(2d log n).

Define for every vector ξ = (ξ1, . . . , ξd−1) ∈ {0, 1}d−1 the subset As′(ξ) =
{a ∈ As′ | (a1, . . . , ad−1) = ξ} ⊆ As′ . Notice that {As′(ξ)}ξ are disjoint sets.
Suppose that at least 3/4 fraction of ξ satisfy |As′(ξ)| ≤ log(n − d + 1) − 3.
Then, for a random uniform fξ′,i′ ∈ F (and therefore, random uniform ξ′), with
probability at least 3/4 we have |As′(ξ′)| ≤ log(n − d + 1) − 3. For any other
assignment a ∈ As′\As′(ξ′) we have fξ′,i′(a) = 0 so no information about i′ can
be obtained from these assignments. If |As′(ξ′)| ≤ log(n − d + 1) − 3 then there
are at most (n−d+1)/8 distinct values that any f ∈ {fξ′,j}j can take on As′(ξ′)
and therefore the probability to find i′ is at most 1/4. Therefore, if at least 3/4
fraction of ξ satisfy |As′(ξ)| ≤ log(n−d+1)− 3, then the probability of success,
EUF

[X(s′, f)], is at most 1 − (3/4)2 = 7/16 < 1/2. This gives a contradiction.
Therefore for at least 1/4 fraction of ξ we have |As′(ξ)| > log(n−d+1)−3. Then
ms′ = |As′ | =

∑
ξ∈{0,1}d−1 |As′(ξ)| ≥ (

2d−1/4
)
(log(n−d+1)−3) = Ω(2d log n).

�

Exact Learning of Juntas from Membership Queries 125

4.2 Upper Bound and Polynomial Time Algorithms

If randomization is allowed, for some cases the performance of our deterministic
non-adaptive algorithms is satisfying when comparing with algorithms that take
advantage of the randomization. This applies for nO(d) time algorithms, where
the algorithm from Lemma 5 gives good results. This algorithm provides also
the upper bound of O(d2d log n) queries for randomized non-adaptive learning.
In addition, for poly(dd, n) time algorithms, we can apply the algorithm from
Theorem 3 that asks O(d32d log n) queries.

But, this is not the case for poly(2d, n) time algorithms. In this case we can
improve over the deterministic result for certain values of the failure probability
δ. We next present a new Monte Carlo non-adaptive algorithm that runs in
poly(2d, log n, log (1/δ)) time.

We first prove:

Lemma 7. Let be 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n and B ⊆ {0, 1}d. If we ran-
domly uniformly choose 2d(ln |B| + ln(1/δ)) assignments A ⊆ {0, 1}n, then with
probability at least 1 − δ we have: for every b ∈ B there is an a ∈ A such that
(ai1 , . . . , aid) = b.

Proof. The probability of failure is at most |B|(1− 2−d)|A| ≤ |B|e−|A|/2d = δ. �

We say that the variable xi is sensitive in f with respect to an assignment
a if f(a|xi←0) �= f(a|xi←1). Obviously, if xi is relevant in f then there is an
assignment a where xi is sensitive in f with respect to a. If xi is irrelevant then
xi is not sensitive in f with respect to any assignment.

We now prove:

Lemma 8. Let f be a d-Junta function. Let a be an assignment that xj is
sensitive in f with respect to, and let xi be an irrelevant variable in f . Let b be
a random assignment where each entry b� ∈ {0, 1} is independently chosen to be
1 with probability 1/(3d). Then Prb[f(a + b) = f(a) and bi = 1] ≥ 0.2/d, and
Prb[f(a + b) = f(a) and bj = 1] ≤ 0.1/d.

Proof. If b� = 0 for all the relevant variables x� of f then f(a + b) = f(a).
Therefore Prb[f(a + b) = f(a) and bi = 1] is greater or equal to the probability
that b� = 0 for all the relevant variables x� of f and bi = 1. This probability is
at least (1 − 1/3d)d

/3d ≥ 0.2/d.
If xj is sensitive in f with respect to a then the probability that f(a + b) =

f(a) when bj = 1 is less or equal than the probability that b� = 1 for some other
relevant variable x� of f . Therefore Prb[f(a + b) = f(a) and bj = 1] = Pr[bj =

1]Pr[f(a + b) = f(a)|bj = 1] ≤ 1/3d ·
(
1 − (1 − 1/3d)d−1

)
≤ 0.1/d. �

From Chernoff bound it follows that:

Lemma 9. Let f be a d-Junta function. Let a be any assignment. There is an
algorithm that asks O(d(log n+log 1/δ)) membership queries and with probability
at least 1 − δ finds all the sensitive variables in f with respect to a (and maybe
other relevant variables of f as well).

126 N.H. Bshouty and A. Costa

Now we give the algorithm. We first choose t = O(2d(log d + log(1/δ))) ran-
dom uniform assignments A. To find the relevant variables we need for each one
an assignment that the variable is sensitive in f with respect to it. Therefore,
we need at most d such assignments. By Lemma 7, with probability at least
1 − (δ/3), for every relevant variable in f there is an assignment a in A such
that this variable is sensitive in f with respect to it. Now, by Lemma 9, for
each a ∈ A there is an algorithm that asks O(d(log n + log(t/δ))) membership
queries and with probability at least 1 − (δ/(3t)) finds all the variables that are
sensitive to it. Therefore, there is an algorithm that asks O(dt(log n + log(t/δ)))
membership queries and with probability at least 1 − (δ/3) finds every variable
that is sensitive in f with respect to some assignment in A. This gives all the rel-
evant variables of f . Now again by Lemma 7, with another O(2d(d + log(1/δ)))
assignments we can find, with probability at least 1 − (δ/3), the value of the
function in all the possible assignments for the relevant variables. At the end,
we can output the set of relevant variables and a representation of the target
function as a truth table.

This algorithm runs in time poly(2d, n, log (1/δ)) and asks

O(2d(log d + log(1/δ)) · d(log n + log(1/δ) + d) + 2d(d + log(1/δ)))

= O(d2d(log d + log(1/δ)) log n + d2d(d + log(1/δ))(log d + log(1/δ))).

membership queries. For δ = 1/d we have the complexity O((log d)d2d(log n+d)).
We can repeat this algorithm O(log(1/δ)/ log d) times (non-adaptively) to get a
success probability of at least 1 − δ and a query complexity of O((d2d log n +
d22d) log(1/δ)).

Notice that if δ = 1/poly(n) then the query complexity becomes quadratic
in log n. In the next section we solve this problem by giving a reduction that
changes the query complexity to O(d22d(log n + log(1/δ))).

4.3 A Reduction for Randomized Non-adaptive Algorithms

In this section we give a reduction for randomized non-adaptive algorithms.
Using this reduction we prove:

Theorem 6. There is a Monte Carlo randomized non-adaptive algorithm for
learning d-Junta in poly(2d, n, log (1/δ)) time that asks O(d22d(log n+log(1/δ)))
membership queries.

This result improves over the result from the previous subsection for values
of δ small enough.

We start with some definitions. Let C be a class of functions and let H
be a class of representations of functions. We say that C is a subclass of H if
for every function f in C there is at least one representation h in H. We say
that C is non-adaptively learnable from H if there is a non-adaptive learning
algorithm that for every function f ∈ C outputs a function h ∈ H that is
equivalent to the target function f . We say that C is closed under distinct variable
projection if for any function f ∈ C and any permutation φ : [n] → [n] we have
f(xφ(1), . . . , xφ(n)) ∈ C. We now prove (Fig. 1):

Exact Learning of Juntas from Membership Queries 127

Algorithm reduction
A(n, d, δ) is a non-adaptive learning algorithm for C from H .

A also outputs the set of relevant variables of its input.
A runs in time T (d, n, δ).

1) P ← Choose O(log(n/δ)) random hash functions h : [n] → [q].
2) For all h ∈ P in parallel

Run A(q, d, 1/8) to learn fh := f(xh(1), . . . , xh(n))
and find its relevant variables.

Stop after T (d, q, 1/8) time.
For processes that do not stop output the function 0,

and an empty set of relevant variables.
Let fh ∈ H be the output of A on fh.
Let Vh be the set of relevant variables that A outputs on fh.

3) Wh = {xi | xh(i) ∈ Vh}.
W ← Variables appearing in more than 1/2 of the {Wh}h∈P .

4) T ← All h ∈ H such that for each vi ∈ Vh there is
exactly one variable xj ∈ W for which h(j) = i.

5) For each h ∈ T : gh ← Replace each relevant variable vi in fh
by xj ∈ W where h(j) = i.

6) Output Popular({gh}h∈T).

Fig. 1. Algorithm reduction

Theorem 7. Let C be a class of boolean functions that is closed under distinct
variable projection. Let d be an upper bound on the number of relevant variables
in any f ∈ C. Let H be a class of representations of boolean functions. Let h1, h2

be functions in H with at most d relevant known variables each. Suppose there is
a deterministic algorithm B(d, n) that for such input h1 and h2 decides whether
the two functions are equivalent in time E(d, n).

Let A(d, n, δ) be a Monte Carlo non-adaptive algorithm that with failure prob-
ability at most δ, learns C from H and finds the set of relevant variables of the
input in time T (d, n, δ) with Q(d, n, δ) membership queries. Then, C is Monte
Carlo non-adaptively learnable from H in time O((T (d, q, 1/8)n+E(d, q)(log n+
log(1/δ)))(log n + log(1/δ))) with O(Q(d, q, 1/8) (log n + log(1/δ))) membership
queries, where δ is the failure probability and q is any integer such that q ≥ 8d2.

Proof. Let A(d, n, δ) and B(d, n) be as stated in the theorem above. Let f ∈ C
be the target function and suppose the relevant variables in f are xi1 , . . . , xid′
where d′ ≤ d. Let be I = {i1, . . . , id′}.

We first choose O(log(n/δ)) random hash functions h : [n] → [q] and put
them in P . For each hash function h ∈ P we define the following events. The
event Ah is true if h(I) := {h(i1), . . . , h(id′)} are not distinct. The event Bh,j ,
j ∈ [n]\I, is true if h(j) ∈ h(I). For any h ∈ P , the probability that Ah is true
is at most

∑d−1
i=1 i/q = d(d − 1)/(2q) ≤ 1/16. For any h ∈ P and j ∈ [n]\I, the

probability that Bh,j is true is at most d/q ≤ 1/8.

128 N.H. Bshouty and A. Costa

By Chernoff bound, with failure probability at most δ/(3n), we have that
at least 7/8 of {Ah}h∈P are false. Therefore, with failure probability at most
δ/(3n), at least 7/8 of {fh := f(xh(1), . . . , xh(n))}h∈P are still in C. This is true
because C is closed under distinct variable projection.

Let Vh be the set of relevant variables that A outputs when running with
the input fh. Since hashing can not raise the number of relevant variables in
the function, we can now for each h ∈ P run in parallel A(d, q, 1/8) to learn
fh and find Vh. Let S ⊆ P denote the set of h ∈ P where the corresponding
processes finish after T (d, q, 1/8) time. For each h ∈ S, denote the output of A
on fh by f ′

h. With failure probability at most δ/(3n), it holds that |S| ≥ 7/8|P |.
For any other h ∈ P , we stop its process and set f ′

h = 0, Vh = ∅. Applying
Chernoff bound on {f ′

h}h∈S yields that for at least 6/7 of them A succeeds, with
failure probability at most δ/(3n). Therefore, with failure probability at most
2δ/(3n) ≤ 2δ/3 we have that for at least 7/8 × 6/7 = 3/4 of h ∈ P it holds that
h(I) are distinct, f ′

h = fh and the set of relevant variables Vh is correct.
For each h ∈ P define the set Wh = {xi | xh(i) ∈ Vh} and let W be the set

of all the variables appearing in more than 1/2 of the {Wh}h∈P . We now find
the probability that a relevant variable of f is in Wh and compare it with the
probability that an irrelevant variable of f is in Wh. The probability that xi1 �∈
Wh is at most the probability that Ah is true or that A fails. This probability
is at most 1/16 + 1/8 = 3/16. Therefore the probability that a relevant variable
is in Wh is at least 13/16. The probability that an irrelevant variable xj , j �∈ I,
is in Wh is at most the probability that Ah or Bh,j is true or that A fails. This
is bounded by 1/16 + 1/8 + 1/8 = 5/16.

Therefore, by Chernoff bound, when running the algorithm for O(log(n/δ))
random hash functions, W contains all the relevant variables of the target func-
tion f and only them, with probability at least 1 − δ/3.

Let T be the set of all h ∈ H such that for each vi ∈ Vh there is exactly one
variable xj ∈ W for which h(j) = i. For each h ∈ T , let be Vh = {vi1 , . . . , vilh

},
where lh ≤ d′, and f ′

h := f ′
h(vi1 , . . . , vilh

). Define gh := f ′
h(xj1 , . . . , xjlh

) where
h(jk) = ik. Now, with failure probability at most 2δ/3 + δ/3 = δ, it holds that
at least 3/4 of {gh}h∈T are identical to the target function f . Therefore, at the
end we use B(d, q) to find Popular({gh}h∈T) and output it. �

Let C be d-Junta and let H be a class of representations of boolean functions
as truth tables. Let A be the algorithm described in the previous subsection. This
algorithm learns d-Junta from H and outputs the set of relevant variables. Let
B be the simple algorithm that given two functions in H with at most d known
relevant variables, decides if they are identical by comparing the values of the
two functions on the O(2d) relevant entries in the tables. This algorithm runs
in poly(2d, n) time. We can now apply the reduction and get the result from
Theorem 6.

Acknowledgments. We would like to thank the anonymous reviewers for their
insightful comments. Improvements to some algorithms have been suggested and they
will be included in the full version of this paper.

Exact Learning of Juntas from Membership Queries 129

References

1. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)
2. Abasi, H., Bshouty, N.H., Mazzawi, H.: Non-adaptive learning a hidden hipergraph.

In: ALT 2015, pp. 89–101 (2015)
3. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for

the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)
4. Blum, A.: Learning a function of r relevant variables. In: COLT 2003, pp. 731–733

(2003)
5. Bshouty, N.H.: Derandomizing Chernoff bound with union bound with an appli-

cation to k-wise independent sets. ECCC. TR16-083
6. Ciccalese, F.: Group testing. In: Ciccalese, F. (ed.) Fault-Tolerant Search Algo-

rithms. Monographs in Theoretical Computer Science. An EATCS Series 2013, pp.
139–173. Springer, Heidelberg (2013)

7. Biglieri, E., Gyorfi, L.: Multiple Access Channels: Theory and Practice. IOS Press,
Amsterdam (2007)

8. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

9. Damaschke, P.: Adaptive versus nonadaptive attribute-efficient learning. Mach.
Learn. 41(2), 197–215 (2000)

10. Damaschke, P.: Computational aspects of parallel attribute-efficient learning. In:
Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS,
vol. 1501, pp. 103–111. Springer, Heidelberg (1998)

11. Damaschke, P.: On parallel attribute-efficient learning. J. Comput. Syst. Sci. 67(1),
46–62 (2003)

12. Du, D., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World
Scientific Pub Co Inc., Hong Kong (2000)

13. Du, D., Hwang, F.K.: Pooling Design and Nonadaptive Group Testing: Important-
Tools for DNA Sequencing. World Scientific Pub Co Inc., Hong Kong (2006)

14. Kleitman, D.J., Spencer, J.: Families of k-independent sets. Discret. Math. 6(3),
255–262 (1972)

15. Ngo, H.Q., Du, D.-Z.: A survey on combinatorial group testing algorithms with
applications to DNA library screening. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science (2000)

16. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: FOCS 1995, pp. 182–191 (1995)

17. Bshouty, N.H.: Linear time constructions of some d-Restriction problems. In:
Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 74–88.
Springer, Heidelberg (2015)

18. Bshouty, N.H., Hellerstein, L.: Attribute-efficient learning in query and mistake-
bound models. In: COLT 1996, pp. 235–243 (1996)

19. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning juntas. In: STOC 2003, pp.
206–212 (2003)

20. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

21. Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits.
IEEE Trans. Inf. Theor. 34(3), 513–522 (1988)

22. Abasi, H., Bshouty, N.H., Mazzawi, H.: On exact learning monotone DNF from
membership queries. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT
2014. LNCS, vol. 8776, pp. 111–124. Springer, Heidelberg (2014)

Submodular Learning and Covering
with Response-Dependent Costs

Sivan Sabato(B)

Ben-Gurion University of the Negev, Beersheba, Israel
sabatos@cs.bgu.ac.il

Abstract. We consider interactive learning and covering problems, in
a setting where actions may incur different costs, depending on the
response to the action. We propose a natural greedy algorithm for
response-dependent costs. We bound the approximation factor of this
greedy algorithm in active learning settings as well as in the general
setting. We show that a different property of the cost function controls
the approximation factor in each of these scenarios. We further show
that in both settings, the approximation factor of this greedy algorithm
is near-optimal among all greedy algorithms. Experiments demonstrate
the advantages of the proposed algorithm in the response-dependent cost
setting.

Keywords: Interactive learning · Submodular functions · Outcome
costs

1 Introduction

We consider interactive learning and covering problems, a term introduced in [7].
In these problems, there is an algorithm that interactively selects actions and
receives a response for each action. Its goal is to achieve an objective, whose value
depends on the actions it selected, their responses, and the state of the world.
The state of the world, which is unknown to the algorithm, also determines the
response to each action. The algorithm incurs a cost for every action it performs.
The goal is to have the total cost incurred by the algorithm as low as possible.

Many real-world problems can be formulated as interactive learning and cov-
ering problems. These include pool-based active learning problems [2,12], max-
imizing the influence of marketing in a social network [7], interactive sensor
placement [4] and document summarization [11] with interactive user feedback.
Interactive learning and covering problems cannot be solved efficiently in gen-
eral [14,19]. Nevertheless, many such problems can be solved near-optimally
by efficient algorithms, when the functions that map the sets of actions to the
total reward are submodular. It has been shown in several settings, that a sim-
ple greedy algorithm pays a near-optimal cost when the objective function is
submodular (e.g., [1,4,7]). Many problems naturally lend themselves to a sub-
modular formulation. These include covering objectives, objectives promoting
diversity [13] and active learning [2,4,6,7].
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 130–144, 2016.
DOI: 10.1007/978-3-319-46379-7 9

Submodular Learning and Covering with Response-Dependent Costs 131

Interactive learning and covering problems have so far been studied mainly
under the assumption that the cost of the action is known to the algorithm
before the action is taken. In this work we study the setting in which the costs
of actions depend on the outcome of the action, which is only revealed by the
observed response. This is the case in many real-world scenarios. For instance,
consider an active learning problem, where the goal is to learn a classifier that
predicts which patients should be administered a specific drug. Each action in
the process of learning involves administering the drug to a patient and observing
the effect. In this case, the cost (poorer patient health) is higher if the patient
suffers adverse effects. Similarly, when marketing in a social network, an action
involves sending an ad to a user. If the user does not like the ad, this incurs a
higher cost (user dissatisfaction) than if they like the ad.

We study the achievable approximation guarantees in the setting of response-
dependence costs, and characterize the dependence of this approximation factor
on the properties of the cost function. We propose a natural generalization of
the greedy algorithm of [7] to the response-dependent setting, and provide two
approximation guarantees. The first guarantee holds whenever the algorithm’s
objective describes an active learning problem. We term such objectives learning
objectives. The second guarantee holds for general objectives, under a mild con-
dition. In each case, the approximation guarantees depend on a property of the
cost function, and we show that this dependence is necessary for any greedy algo-
rithm. Thus, this fully characterizes the relationship between the cost function
and the approximation guarantee achievable by a greedy algorithm. We further
report experiments that demonstrate the achieved cost improvement.

Response-dependent costs has been previously studied in specific cases of
active learning, assuming there are only two possible labels [15–18]. In [8] this
setting is also mentioned in the context of active learning. Our work is more
general: First, it addresses general objective functions and not only specific active
learning settings. Our results indicate that the active learning setting and the
general setting are inherently different. Second, it is not limited to settings with
two possible responses. As we show below, previous guarantees for two responses
do not generalize to tight guarantees for cases with more than two responses.
We thus develop new proof techniques that allow deriving these tighter bounds.

2 Definitions and Preliminaries

For an integer n, denote [n] := {1, . . . , n}. A set function f : 2Z → R is monotone
(non-decreasing) if ∀A ⊆ B ⊆ Z, f(A) ≤ f(B). Let Z be a domain, and let
f : 2Z → R+ be a set function. Define, for any z ∈ Z, A ⊆ Z, δf (z | A) :=
f(A∪{z})−f(A). f is submodular if ∀z ∈ Z, A ⊆ B ⊆ Z, δf (z | A) ≥ δf (z | B).

Assume a finite domain of actions X and a finite domain of responses Y. For
simplicity of presentation, we assume that there is a one-to-one mapping between
world states and mappings from actions to their responses. Thus the states of
the world are represented by the class of possible mappings H ⊆ YX . Let h∗ ∈ H
be the true, unknown, mapping from actions to responses. Let S ⊆ X × Y be a
set of action-response pairs.

132 S. Sabato

We consider algorithms that iteratively select a action x ∈ X and get the
response h∗(x), where h∗ ∈ H is the true state of the world, which is unknown
to the algorithm. For an algorithm A, let Sh[A] be the set of pairs collected by
A until termination if h∗ = h. Let Sh

t [A] be the set of pairs collected by A in
the first t iterations if h∗ = h. In each iteration, A decides on the next action
to select based on responses to previous actions, or it decides to terminate.
A(S) ∈ X ∪ {⊥} denotes the action that A selects after observing the set of
pairs S, where A(S) = ⊥ if A terminates after observing S.

Each time the algorithm selects an action and receives a response, it incurs
a cost, captured by a cost function cost : X × Y → R+. If x ∈ X is selected and
the response y ∈ Y is received, the algorithm pays cost(x, y). Denote cost(S) =∑

(x,y)∈S cost(x, y). The total cost of a run of the algorithm when the state of
the world is h∗, is thus cost(Sh∗

[A]). For a given H, define the worst-case cost
of A by cost(A) := maxh∈H cost(Sh[A]). Let Q > 0 be a threshold, and let
f : 2X×Y → R+ be a monotone non-decreasing submodular objective function.
We assume that the goal of the interactive algorithm is to collect pairs S such
that f(S) ≥ Q, while minimizing cost(A).

Guillory and Bilmes [7] consider a setting in which instead of a single global
f , there is a set of monotone non-decreasing objective functions FH = {fh :
2X×Y → R+ | h ∈ H}, and the value fh(S), for S ⊆ X × Y, represents the reward
obtained by the algorithm if h∗ = h. They show that obtaining fh∗(S) ≥ Q is
equivalent to obtaining F̄ (S) ≥ Q, where F̄ : 2X×Y → R+ is defined by

F̄ (S) :=
1

|H|
(
Q|H \ VS(S)| +

∑

h∈VS(S)

min(Q, fh(S))
)
. (1)

Here VS(S) is the version space induced by S on H, defined by VSH(S) = {h ∈
H | ∀(x, y) ∈ S, y = h(x)}. It is shown in [7] that if all the functions in FH are
monotone and submodular then so is F̄ . Thus our setting of a single objective
function can be applied to the setting of [7] as well.

Let α ≥ 1. An interactive algorithm A is an α-approximate greedy algorithm
for utility function u : X ×2X×Y → R+, if the following holds: For all S ⊆ X × Y,
if f(S) ≥ Q then A(S) = ⊥, and otherwise, A(S) ∈ X and u(A(S), S) ≥
1
α maxx∈X u(x, S). As shown below, consistently with previous works, (e.g. [4]),
competitive guarantees are better for α-approximate-greedy algorithms with α =
1 or α close to 1. However, due to efficiency of computation or other practical
considerations, it is not always feasible to implement a 1-greedy algorithm. Thus,
for full generality, we analyze also α-greedy algorithms for α > 1. Let OPT :=
minA cost(A), where the minimum is taken over all interactive A that obtain
f(S) ≥ Q at termination, for all for all possible h∗ ∈ H. If no such A exist,
define OPT = ∞.

In [7] it is assumed that costs are not response-dependent, thus cost(x, y) ≡
cost(x), and a greedy algorithm is proposed, based on the following utility func-
tion:

u(x, S) :=
δF̄ ((x, h(x)) | S)

cost(x)
. (2)

Submodular Learning and Covering with Response-Dependent Costs 133

It is shown that for integral functions, this algorithm obtains an integer Q with
a worst-case cost of at most GCC(ln(Q|H|) + 1) · OPT, where GCC is a lower
bound on OPT. In [4], a different greedy algorithm and analysis guarantees a
worst-case cost of α(ln(Q) + 1) · OPT for adaptive submodular objectives and
α-approximate greedy algorithms. It is well known that the factor of ln(Q) cannot
be substantially improved by an efficient algorithm, even for non-interactive
problems [3,19].

The results of [7] can be trivially generalized to the response-dependent cost
setting using the cost ratio of the problem:

rcost := max
x∈X

maxy∈Y cost(x, y)
miny∈Y cost(x, y)

.

Consider a generalized version of u:

u(x, S) :=
δF̄ ((x, h(x)) | S)
miny∈Y cost(x, y)

. (3)

Setting cost(x) := miny∈Y cost(x, y), we have cost ≤ rcost · cost. Using this fact,
it is easy to derive an approximation guarantee of rcost · OPT(ln(Q|H|) + 1), for
a greedy algorithm which uses the utility function in Eq. (3) with a response-
dependent cost, or rcost · α(ln(Q) + 1)OPT when applied to the setting of [4].
However, in this work we show that this trivial derivation is loose, since our new
approximation bounds can be finite even if rcost is infinite.

3 A Greedy Algorithm for Response-Dependent Costs

We provide approximation guarantee for two types of objective functions. The
first type captures active learning settings, while the second type is more general.
Our results show that objective functions for active learning have better approx-
imation guarantees than general objective functions. For both types of objective
functions, we analyze a greedy algorithm that selects an element maximizing (or
approximately maximizing) the following utility function:

uf (x, S) := min
h∈VS(S)

δmin(f,Q)((x, h(x)) | S)
cost(x, h(x))

.

Note that uF̄ is equal to the function u defined in Eq. (3). We employ the
following standard assumption in our results (see e.g. [5]):

Assumption 1. Let f : 2X×Y → R+, Q > 0, η > 0. Assume that f is submod-
ular and monotone, f(∅) = 0, and that for any S ⊆ X × Y, if f(S) ≥ Q − η
then f(S) ≥ Q.

In Sect. 3.1 we show an approximation guarantee for objectives meant for
active learning, which we term learning objectives. In Sect. 3.2 we consider general
monotone submodular objective functions. Our guarantees hold for objective
functions f that satisfy the following property, which we term consistency-aware.
This property requires that the function gives at least Q to any set of action-
response pairs that are inconsistent with H.

134 S. Sabato

Definition 1. A function f : 2X×Y → R+ is consistency-aware for threshold
Q > 0 if for all S ⊆ X × Y such that VSH(S) = ∅, f(S) ≥ Q.

Note that the definition is concerned with the value of f only on inconsistent sets
S, which the algorithm never encounters. Therefore, it suffices that there exist an
extension of f to these sets that is consistent with all the other requirements from
f . The function F̄ defined in Eq. (1) is consistency-aware. In addition, a similar
construction to F̄ with non-uniform weights for mappings is also consistency-
aware. Such a construction is sometimes more efficient to compute than the
uniform-weight construction. For instance, as shown in [6], non-uniform weights
allow a more efficient computation when the mappings represent linear classifiers
with a margin. In general, any objective f can be made consistency aware using
a simple transformation such as F̄ . Thus our results are relevant to a diverse
class of problems.

3.1 Guarantees for Learning Objectives

Active learning is an important special case of interactive learning. In active
learning, the only goal is to discover information on the identity of h∗. We term
functions that represent such a goal learning objectives.

Definition 2. A function f : 2X×Y → R+ is a learning objective for H if
f(S) = g(VSH(S)) where g is a monotone non-increasing function.

It is easy to see that all learning objectives S → f(S) are monotone non-
decreasing in S. In many useful cases, they are also submodular. In noise-free
active learning, where the objective is to exactly identify the correct mapping h∗,
one can use the learning objective f(S) := 1−|VS(S)|/|H|, with Q = 1− 1/|H|.
This is the version space reduction objective function [4,7]. In [5] noise-aware
active learning and its generalization to the problem of Equivalence Class Deter-
mination is considered. In this generalization, there is some partition of H, and
the goal is to identify the class to which h∗ belongs. The objective function pro-
posed by [5] measures the weight of pairs in VS(S) in which each mapping belongs
to a different class. This function is also a learning objective. In [1] the total gen-
eralized version space reduction function is proposed. This function is also a
learning objective. More generally, consider a set of structures G ⊆ 2H, where
the goal is to disqualify these structures from the version space, by proving that
at least one of the mappings in this structure cannot be the true h∗. In this case
one can define the submodular learning objective f(S) := w(G)−w(G ∩ 2VS(S)),
where w is a modular weight function on G, and Q = w(G). For instance, if G is
the set of pairs from different equivalence classes in H, this is the Equivalence
Class Determination objective. If G is a set of triplets from different equivalence
classes, this encodes an objective of reducing the uncertainty on the identity of
h∗ to at most two equivalence classes.

We show that for learning objectives, the approximation factor for a greedy
algorithm that uses uf depends on a new property of the cost function, which

Submodular Learning and Covering with Response-Dependent Costs 135

we term the second-smallest cost ratio, denoted by r
[2]
cost. For x ∈ X , let φ(x) be

the second-smallest value in the multiset {cost(x, y) | y ∈ Y}. Define

r
[2]
cost := max

x∈X ,y∈Y
cost(x, y)

φ(x)
.

Theorem 1. Let f : 2X×Y → R+, Q > 0, η > 0 such that Assumption 1 holds.
Let A be an α-approximate greedy algorithm for the utility function uf . If f is
a learning objective, then cost(A) ≤ r

[2]
cost · α(ln(Q/η) + 1)OPT.

The ratio between the trivial bound that depends on the cost ratio rcost,
mentioned in Sect. 2, and this new bound, is rcost/r

[2]
cost, which is unbounded

in the general case: for instance, if each action has one response which costs 1
and the other responses cost M � 1, then rcost = M but r

[2]
cost = 1. Whenever

|Y| = 2, r
[2]
cost = 1. Thus, the approximation factor of the greedy algorithm for

any binary active learning problem is independent of the cost function. This
coincides with the results of [17,18] for active learning with binary labels. If
|Y| > 2, then the bound is smallest when r

[2]
cost = 1, which would be the case

if for each action there is one preferred response which has a low cost, while
all other responses have the same high cost. For instance, consider a marketing
application, in which the action is to recommend a product to a user, and the
response is either buying the product (a preferred response), or not buying it,
in which case additional feedback could be provided from the user, but the cost
(user dissatisfaction) remains the same regardlesss of that feedback.

To prove Theorem 1, we use the following property of learning objectives:
For such objectives, there exists an optimal algorithm (that is, one that obtains
OPT) that only selects actions for which at least two responses are possible
given the action-response pairs observed so far. Formally, we define bifurcating
algorithms. Denote the set of possible responses for x given the history S by
YH(x, S) := {h(x) | h ∈ VSH(S)}. We omit the subscript H when clear from
context.

Definition 3. An interactive algorithm A is bifurcating for H if for all t and
h ∈ H, |YH(A(Sh

t [A]), Sh
t [A])| ≥ 2.

Lemma 1. For any learning objective f for H with an optimal algorithm, then
there exists a bifurcating optimal algorithm for f,H.

Proof. Let A be an optimal algorithm for f . Suppose there exists some t, h such
that Y(x0, S

h
t−1[A]) = {y0} for some y0 ∈ Y, where x0 := A(Sh

t−1[A]). Let A′ be
an algorithm that selects the same actions as A, except that it skips the action
x0 it if has collected the pairs Sh

t−1[A]. That is, A′(S) = A(S) for S � Sh
t−1[A],

and A′(S) = A(S ∪ {(x0, y0)}) for S ⊇ Sh
t−1. Since VS(S) = VS(S ∪ {(x0, y0)}),

and A is a learning objective, A′ obtains Q as well, at the same cost of A or less.
By repeating this process a finite number of steps, we can obtain an optimal
algorithm for H which is bifurcating. ��

136 S. Sabato

The following lemma is the crucial step in proving Theorem 1, and will also be
used in the proof for the more general case below. The lemma applies to general
consistency-aware functions. It can be used for learning objectives, because all
learning objectives with a finite OPT are consistency-aware: Suppose that f is
a learning objective, and let S ⊆ X × Y such that VSH(S) = ∅. For any h ∈ H,
denote Sh

∗ := {(x, h(x)) | x ∈ X}. We have VS(Sh
∗) ⊇ VS(S), therefore, since f

is a learning objective, f(S) ≥ f(Sh
∗). Since OPT is finite, f(Sh

∗) ≥ Q. Therefore
f(S) ≥ Q. Thus f is consistency-aware.

Lemma 2. Let f,Q, η which satisfy Assumption 1 such that f is consistency-
aware. Let A be an interactive algorithm that obtains f(S) ≥ Q at termination.
Let γ = r

[2]
cost if A is bifurcating, and let γ = rcost otherwise. then

∃x ∈ X s.t. uf (x, ∅) ≥ Q

γ · cost(A)
.

Proof. Denote for brevity δ ≡ δmin(f,Q). Define H̄ := YX . Consider an algorithm
Ā such that for any S that is consistent with some h ∈ H (that is VSH(S) �= ∅),
Ā(S) = A(S), and Ā(S) = ⊥ otherwise. Since f is consistency-aware, we have
f(Sh[Ā]) ≥ Q for all h ∈ H̄.

Consider a run of Ā, and denote the pair in iteration t of this run by (xt, yt).
Denote St = {(xi, yi) | i ≤ t}. Choose the run such that in each iteration t, the
response yt is in argminy∈Y δ(xt, y | St−1)/cost(xt, y). Let T be the length of the
run until termination. Denote ψ := maxh∈H̄ cost(Sh[Ā]), the worst-case cost of
Ā over H̄. We have

Q/ψ ≤ f(ST)/cost(ST) =

∑
t∈[T](f(St) − f(St−1))∑

t∈[T] cost(xt, yt)

=

∑
t∈[T] δ((xt, yt) | St−1)∑

t∈[T] cost(xt, yt)
≤ max

t∈[T]
(δ((xt, yt) | St−1)/cost(xt, yt)) ,

where we used f(∅) = 0 in the second line. Thus there exists some t ∈ [T] such
that Q/ψ ≤ δ((xt, yt) | St−1)/cost(xt, yt). Therefore

u(xt, ∅) = min
y∈Y

δ((xt, y) | ∅)/cost(xt, y) ≥ min
y∈Y

δ((xt, y) | St−1)/cost(xt, y)

= δ((xt, yt) | St−1)/cost(xt, yt) ≥ Q/ψ. (4)

The second line follows from the submodularity of f . The third line follows from
the definition of yt. To prove the claim, we have left to show that ψ ≤ r[2]·cost(A).
Consider again a run of Ā. If all observed pairs are consistent with some h ∈ H,
Ā and A behave the same. Hence cost(Sh[Ā]) = cost(Sh[A]). Now, consider
h ∈ H̄ \ H. By the definition of Ā, Sh[Ā] is a prefix of Sh[A]. Let T = |Sh[Ā]|
be the number of iterations until Ā terminates. Then Sh

T−1[Ā] is consistent with
some h′ ∈ H.

Let xT be the action that A and Ā select at iteration T , and let h′ ∈ H
which is consistent with Sh

T−1[Ā], and incurs the maximal possible cost in

Submodular Learning and Covering with Response-Dependent Costs 137

iteration T . Formally, h′ satisfies h′(xT) ∈ argmaxy∈YH(xT ,Sh
T−1[A]) cost(xT , y).

Now, compare the run of Ā on h to the run of A on h′. In the first T − 1
iterations, the algorithms observe the same pairs. In iteration T , they both
select xT . Ā observes h(xT), while A observes h′(xT). Ā terminates after iter-
ation T . Hence cost(Sh[Ā]) = cost(Sh

T−1[A]) + cost(xT , h(xT)) = cost(Sh′
T [A]) −

cost(xT , h′(xT)) + cost(xT , h(xT)). Consider two cases: (a) A is not bifurcating.
Then γ = r, and so cost(xT , h(xT)) ≤ γcost(xT , h′(xT)). (b) A is bifurcating.
Then there are at least two possible responses in YH(xT , Sh

T−1[A]). Therefore
cost(xT , h′(xT)) ≥ φ(xT). By the definition of r

[2]
cost, cost(xT , h(xT)) ≤ r

[2]
cost ·

φ(xT). Therefore cost(xT , h(xT)) ≤ rcostcost(xT , h′(xT))) = γcost(xT , h′(xT))).
In both cases, cost(xT , h(xT)) − cost(xT , h′(xT)) ≤ (γ − 1)cost(xT , h′(xT)).

Therefore cost(Sh[Ā]) ≤ cost(Sh′
T [A]) + (γ − 1)cost(xT , h′(xT)) ≤ γcost(Sh′

T [A]),
where the last inequality follows since cost(Sh′

T [A]) ≤ cost(Sh′
T [A]). Thus for all

h ∈ H̄, cost(Sh[Ā]) ≤ γ · cost(A), hence ψ ≤ γ · cost(A). Combining this with
Eq. (4), the proof is concluded. ��

In the proof of Theorem 1 we further use the following lemmas, which can be
proved using standard techniques (see e.g. [4,7]). The proofs are omitted due to
lack of space.

Lemma 3. Let β, α ≥ 1. Let f,Q, η such that Assumption 1 holds. If for all
S ⊆ X × Y, maxx∈X uf (x, S) ≥ Q−f(S)

βOPT , then for any α-approximate greedy
algorithm with uf , cost(A) ≤ αβ(log(Q/η) + 1)OPT.

Lemma 4. Let f,Q, η such that Assumption 1 holds and f is consistency-aware.
Let S ⊆ X × Y. Define f ′ : 2X×Y → R+ by f ′(T) := f(T ∪ S) − f(S). Let
Q′ = Q − f(S). Then

1. f ′ is submodular, monotone and consistency-aware, with f ′(∅) = 0.
2. Let A be an interactive algorithm for f ′, Q′. Let β ≥ 1. If maxx∈X uf ′

(x, ∅) ≥
Q′

βOPT′ , where OPT′ is the optimal cost for f ′, Q′, then for any S ⊆ X × Y,

maxx∈X uf (x, S) ≥ Q−f(S)
βOPT .

Proof (of Theorem 1). Let f ′, Q′,OPT′ as in Lemma 4, and let A∗ be an opti-
mal algorithm for f ′, Q′. Let A∗ be an optimal algorithm for f ′, Q′. Since f
is a learning objective, then so is f ′, and by Lemma 1 we can choose A∗ to
be bifurcating. Combining this with the first part of Lemma4, the conditions
of Lemma 2 hold. Therefore uf ′

(x, ∅) ≥ Q′/cost(A∗) ≥ Q′/(r[2]cost · OPT′). By
the second part of Lemma 4, ∀S ⊆ X × Y, uf (x, S) ≥ Q−f(S)

r
[2]
cost·OPT

. Therefore, by

Lemma 3, cost(A) ≤ α(log(Q/η) + 1) · r
[2]
cost · OPT. ��

Next, we show that a linear dependence of the approximation guarantee on
r
[2]
cost is necessary for any greedy algorithm. To show the lower bound, we must

exclude greedy algorithms that choose the utility function according to the set of
available actions X . Formally, define local greedy algorithms as follows. Assume

138 S. Sabato

there is a super-domain of all possible actions X̄ , and consider an algorithm
which receives as input a subset X ⊆ X̄ of available actions. We say that such
an algorithm is local greedy if it greedily selects the next action out of X using
a fixed utility function u : X̄ × 2X̄×Y → R+, which does not depend on X . The
following lower bound shows that there exists a learning objective such that the
approximation guarantee of any local greedy algorithm grows with r

[2]
cost or is

trivially bad.

Theorem 2. Let f be the version-space reduction objective function with the
corresponding Q = 1 − 1/|H| and η = 1/|H|. For any value of OPT, r

[2]
cost > 1,

and integer size of Q/η, there exist X̄ ,H, and cost such that cost(x, y) depends
only on y, and such that for any local greedy algorithm A, there exists an input
domain X ⊆ X̄ such that, for η as in Theorem1,

cost(A) ≥ min

(
r
[2]
cost

log2(Q/η)
,

Q/η

log2(Q/η)

)
· OPT.

Here cost(A) and OPT refer to the costs for the domain X .

Proof. Define Y = {1, 2, 3}. Let X̄ = {ai | i ∈ [k]} ∪ {bt
j | j ∈ [k], t ∈

[�log2(k − 2)�]}. Let cost(x, y) = cy for all x ∈ X , where c3 ≥ c2 > c1 = 0.
Set c2, c3 such that r

[2]
cost = c3/c2. Let H = {hi | i ∈ [k]}, where hi is defined as

follows: for aj ,

hi(aj) :=

{
1 i = j

2 i �= j.

For bt
j and i �= j, let li,j be the location of i in (1, . . . , j − 1, j + 1, . . . , k), where

the locations range from 0 to k − 2. Denote by lti,j the t’th most significant bit
in the binary expansion of li,j to �log2(k − 2)� bits. Define

hi(bt
j) :=

⎧
⎪⎨

⎪⎩

1 i �= j ∧ lti,j = 0
2 i �= j ∧ lti,j = 1
3 i = j

Fix an index n ∈ [k]. Let Xn = {ai | i ∈ [k]} ∪ {bt
n | t ∈ [�log2(k − 2)�]}. We now

show an interactive algorithm for Xn and bound its worst-case cost. On the first
iteration, the algorithm selects action an. If the result is 1, then VS(S) = {hn},
hence f(S) ≥ Q. In this case the cost is c1 = 0. Otherwise, the algorithm selects
all actions in {bt

n | t ∈ [�log2(k − 2)�}. The responses reveal the binary expansion
of lj,n, thus limiting the version space to the a single hi, hence f(S) ≥ Q. In this
case the total cost is at most c2�log2(k − 2)�.

Now, consider a local greedy algorithm. Let σ : [k] → [k] be a permutation
that represents the order in which a1, . . . , ak would be selected by the utility
function if only ai were available, and their response was always 2. Formally,
σ(i) = argmaxi∈[k] u(aσ(i), {(aσ(i′), 2) | i′ ∈ [i − 1]}).1

1 We may assume without loss of generality that u(x, S) = 0 whenever (x, y) ∈ S.

Submodular Learning and Covering with Response-Dependent Costs 139

Suppose the input to the algorithm is Xσ(k). Denote Si = {(aσ(i′), 2) | i′ ∈
[i − 1]}, and suppose h∗ = hσ(k). First, assume that maxt u(bt

σ(k), Si′−1) <

u(aσ(k), Sk−1). Then all of aσ(1), . . . , aσ(k−1) are selected before any of bt
σ(k), and

the version space is reduced to a singleton only after these k − 1 actions. There-
fore the cost of the run is at least c2(k−1). Second, assume that this assumption
does not hold. Then there exists an integer i′ such that maxt u(bt

σ(k), Si′−1) >

u(aσ(i), Si′−1). Let i′ be the smallest such integer. Then, the algorithm receives
2 on each of the actions aσ(1), . . . , aσ(i′−1), and its next action is bt

σ(k) for some
t. Hence the cost of the run is at least c3.

To summarize, the worst-case cost of every local greedy algorithm is at least
min{c3, c2(k − 1)} for at least one of the inputs Xn. The worst-case cost of the
optimal algorithm for each Xn is at most c2�log2(k − 2)�. The statement of the
theorem follows. ��

3.2 Guarantees for General Objectives

In the previous section we showed that for learning objectives, the achievable
approximation guarantee for greedy algorithms is characterized by r

[2]
cost. We now

turn to general consistency-aware objective functions. We show that the factor of
approximation for this class depends on a different property of the cost function,
which is lower bounded by r

[2]
cost. Define costmax := max(x,y)∈X×Y cost(x, y), and

let
φmin := min

x∈X
φ(x), gr

[2]
cost :=

costmax

φmin
.

We term the ratio gr
[2]
cost the Global second smallest cost ratio. As we show below,

the approximation factor is best when gr
[2]
cost is equal to 1. This is the case if

there is at most one preferred response for every action, and in addition, all the
non-preferred responses for all actions have the same cost.

Theorem 3. Let f : 2X×Y → R+, Q > 0, η > 0 such that Assumption 1 holds
and f is consistency-aware. Let A be an α-approximate greedy algorithm for the
utility function uf . Then cost(A) ≤ 2min(gr

[2]
cost, rcost) ·α · (log(Q/η)+1) ·OPT.

Like Theorem 1 for learning objectives, this result for general objectives is
a significant improvement over the trivial bound, mentioned in Sect. 2, which
depends on the cost ratio, since the ratio gr

[2]
cost/rcost can be unbounded. For

instance, consider a case where each action has one response with a cost of 1
and all other responses have a cost of M � 1. Then rcost = M but gr

[2]
cost = 1.

The proof of Theorem 3 hinges on two main observations: First, any interac-
tive algorithm may be “reordered” without increasing its cost, so that all actions
with only one possible response (given the history so far) are last. Second, there
are two distinct cases for the optimal algorithm: In one case, for all h ∈ H, the
optimal algorithm obtains a value of at least Q/2 before performing actions with
a single possible response. In the other case, there exists at least one mapping h
for which actions with a single possible response obtain at least Q/2 of the value.
We start with the following lemma, which handles the case where OPT < φmin.

140 S. Sabato

Lemma 5. Let f : 2X×Y → R+, Q > 0. Suppose that f is submodular, and
f(0) = ∅. If OPT < φmin, then maxx∈X uf (x, ∅) ≥ Q/OPT .

Proof. For every action x ∈ X there is at most a single y with cost(x, y) < φmin.
Denote this response by y(x). Let A be an optimal algorithm for f,Q. For any
value of h∗ ∈ H, A only receives responses with costs less than φmin. There-
fore for any x that A selects, it receives the response y(x), regardless of the
identity of h∗. In other words, for all h ∈ H, in every iteration t, A selects
an action x such that Y(x, Sh

t−1[A]) = {y(x)}. It follows that for all t, Sh
t [A]

is the same for all h ∈ H. Therefore, there is a fixed set of actions that A
selects during its run, regardless of h∗. Let X ′ ⊆ X be that set. Then for all
h ∈ H, x ∈ X ′, h(x) = y(x). For a set A ⊆ X , denote A[y(x)] = {(x, y(x)) |
x ∈ A}. We have f(X ′[y(x)]) ≥ Q and cost(X ′[y(x)]) = OPT. By the sub-
modulrity of f , and since f(∅) = 0, we have Q/OPT ≤ f(X ′[y(x)])/OPT ≤∑

x∈X ′ f((x, y(x)))/
∑

x∈X ′ cost(x, y(x)). Therefore there exists some x ∈ X ′

with f((x, y(x)))/cost(x, y(x)) ≥ Q/OPT. Moreover, for this x we have Y(x, ∅) =
{y(x)}. Therefore uf (x, ∅) = f((x, y(x)))/cost(x, y(x)) ≥ Q/OPT. ��

We now turn to the main lemma, to address the two cases described above.

Lemma 6. Let f : 2X×Y → R+, Q > 0. Suppose that f is submodular, and
f(0) = ∅. Assume that f is consistency-aware. There exists x ∈ X such that
uf (x, ∅) ≥ Q

2min(gr
[2]
cost,rcost)OPT

.

Proof. If OPT < φmin, the statement holds by Lemma 5. Suppose that OPT ≥
φmin. Let A∗ be an optimal algorithm for f,Q. We may assume without loss of
generality, that for any h∗ ∈ H, if A∗ selects an action that has only one possible
response (given the current version space) at some iteration t, then all actions
selected after iteration t also have only one possible response. This does not lose
generality: let t be the first iteration such that the action at iteration t has one
possible response, and the action at iteration t + 1 has two possible responses.
Consider an algorithm which behaves the same as A∗, except that at iteration
t it selects the second action, and at iteration t + 1 it selects the first action
(regardless of the response to the first action). This algorithm has the same cost
as A∗.

For h ∈ H, define val(h) := f(Sh
th

[A∗]), where th is the last iteration in which
an action with more than one possible response (given the current version space)
is selected, if h∗ = h. Consider two cases: (a) minh∈H val(h) ≥ Q/2 and (b)
∃h ∈ H, val(h) < Q/2. In case (a), there is a bifurcating algorithm that obtains
f(S) ≥ Q/2 at cost at most OPT: This is the algorithm that selects the same
actions as A∗, but terminates before selecting the first action that has a single
response given the current version space. We also have r

[2]
cost ≤ min(gr

[2]
cost, rcost).

By Lemma 2, there exists some x ∈ X such that uf (x, ∅) ≥ Q

2min(gr
[2]
cost,rcost)OPT

.

In case (b), let h ∈ H such that val(h) < Q/2. Denote St := Sh
t [A∗]. Let

(xt, h(xt)) be the action and the response received in iteration t if h∗ = h.
Then f(Sth) < Q/2. Let S′ = {(xt, h(xt)) | t > th}. Then f(Sth ∪ S′) ≥ Q.

Submodular Learning and Covering with Response-Dependent Costs 141

Since f(∅) = 0 and f is submodular, f(S′) = f(S′) − f(∅) ≥ f(Sth ∪ S′) −
f(Sth) ≥ Q − val(h) ≥ Q/2. In addition, f(S′) ≤ ∑

t>th
f({(xt, h(xt))}).

Hence Q
2OPT ≤ f(S′)

OPT ≤
∑

t>th
f({(xt,h(xt))})

∑
t>th

cost(xt,yt)
. Therefore there is some t′ such

that f({(xt′ ,h(xt′))})
cost(xt′ ,h(xt′)) ≥ Q

2OPT . Therefore,

uf (xt′ , ∅) = min
y∈Y(xt′ ,∅)

min{f({(xt′ , y)}), Q}/cost(xt′ , y)

≥ min{Q/costmax,min
y∈Y

f({(xt′ , y)})/cost(xt′ , y)}

≥ min{Q/costmax,
Q

2OPT
, min
y∈Y\{h(xt′)}

f({(xt′ , y)})/cost(xt′ , y)}.

Now, costmax ≤ gr
[2]
cost · φmin ≤ gr

[2]
cost · OPT, from our assumption that OPT ≥

φmin, and costmax ≤ rcostcost(xt′ , h(xt′)) ≤ rcost · OPT. Therefore

uf (xt′ , ∅) ≥ min

{
Q

2min(gr
[2]
cost, rcost)OPT

, min
y∈Y\{h(xt′)}

f({(xt′ , y)})
cost(xt′ , y)

}
.

We have left to show a lower bound on miny∈Y\{h(xt′)}
f({(xt′ ,y)})
cost(xt′ ,y) . By the

choice of t′, xt′ has only one possible response given the current version space,
that is |Y(xt′ , St′−1)| = 1. Since the same holds for all t > th, we have
VS(St′−1) = VS(Sth), hence also Y(xt′ , Sth) = {h(xt′)}. It follows that for
y ∈ Y \ {h(xt′)}, the set Sth ∪ {(xt′ , y)} is not consistent with any h ∈ H.
Since f is consistency-aware, it follows that f(Sth ∪ {(xt′ , y)}) ≥ Q. There-
fore f({(xt′ , y)}) = f({(xt′ , y)}) − f(∅) ≥ f(Sth ∪ {(xt′ , y)}) − f(Sth) ≥
Q − val(h) ≥ Q/2. Hence f({(xt′ ,y)})

cost(xt′ ,y) ≥ Q
2cmax

≥ Q

2min(gr
[2]
cost,rcost)OPT

. It follows

that uf (xt, ∅) ≥ Q
2cmax

≥ Q

2min(gr
[2]
cost,rcost)OPT

also in case (b). ��

Using the lemmas above, the proof of Theorem 3 is straight forward.

Proof (of Theorem 3). Let f ′, Q′,OPT′ as in Lemma 4, and let A∗ be an opti-
mal algorithm for f ′, Q′. Let A∗ be an optimal algorithm for f ′, Q′. From
the first part of Lemma 4, the conditions of Lemma 6 hold for f ′, Q′. There-
fore uf ′

(x, ∅) ≥ Q′

2min(gr
[2]
cost,rcost)OPT′ . By the second part of Lemma 4, ∀S ⊆

X × Y, uf (x, S) ≥ Q−f(S)

2min(gr
[2]
cost,rcost)OPT

. Therefore, by Lemma 3, cost(A) ≤
2α min(gr

[2]
cost, rcost)(log(Q/η) + 1) · OPT. ��

The guarantee of Theorem 3 for general objectives is weaker than the guaran-
tee for learning objectives given in Theorem1: The ratio min(gr

[2]
cost, rcost)/r

[2]
cost

is always at least 1, and can be unbounded. For instance, if there are two actions
that have two responses each, and all action-response pairs cost 1, except for
one action-response pair which costs M � 1, then rcost = 1 but gr

[2]
cost = M .

Nonetheless, the following theorem shows that for general functions, a depen-
dence on min(gr

[2]
cost, rcost) is essential in any greedy algorithm.

142 S. Sabato

Theorem 4. For any values of gr
[2]
cost, rcost > 0, there exist X̄ ,Y,H, cost with

|Y| = 2 and r
[2]
cost = 1, and a submodular monotone f which is consistency-aware,

with Q/η = 1, such that for any local greedy algorithm A, there exists an input
domain X ⊆ X̄ such that cost(A) ≥ 1

2 min(gr
[2]
cost, rcost) · OPT, where cost(A)

and OPT refer to the costs of an algorithm running on the domain X .

Proof. Define Y := {0, 1}. Let g, r > 0 be the desired values for gr
[2]
cost, rcost.

Let c1 > 0, c2 := c1 min(g, r). If g < r, define c3 := c1/r, c4 := c1. Otherwise,
set c4 := c3 := c2/g. Define k := �c2/c1� + 1. Let X̄ = {ai | i ∈ [k]} ∪ {bi |
i ∈ [k]} ∪ {c}. Let H̄ = {hi | i ∈ [k]} where hi is defined as follows: ∀i, j ∈
[k], hi(aj) = hi(bj), and equal to 1 if and only if i = j, and zero otherwise, and
∀i ∈ [k], hi(c) = i mod 2. Let the cost function be as follows, where c2 ≥ c1 > 0,
and c3, c4 > 0: cost(ai, y) = c1, cost(bi, y) = cy+1, and cost(c, y) = cy+3. Then
gr

[2]
cost = g, rcost = r as desired.
Define f such that ∀S ⊆ X × Y, f(S) = Q if there exists in S at least

one of (ai, 1) for some i ∈ [k] or (bi, y) for some i ∈ [k], y ∈ Y. Otherwise,
f(S) = 0. Note that (f,Q) is consistency-aware. Fix an index n ∈ [k]. Let
Xn = {ai | i ∈ [k]} ∪ {bn}. We have OPT = 2c1: An interactive algorithm
can first select an, and then, only if the response is y = 0, select bn. Now,
consider a local greedy algorithm with a utility function u. Let σ : [k] → [k] be
a permutation that represents the order in which a1, . . . , ak would be selected
by the utility function if only ai were considered, and their response was always
y = 0. Formally, σ(i) = argmaxi∈[k] u(aσ(i), {(aσ(i′), 0) | i′ ∈ [i − 1]}) (See
footnote 1).

Now, suppose the input to the algorithm is Xσ(k). Denote Si = {(aσ(i′), 0) |
i′ ∈ [i−1]}, and suppose that there exists an integer i′ such that u(bσ(k), Si′−1) >
u(aσ(i), Si′−1), and let i′ be the smallest such integer. Then, if the algorithm
receives 0 on each of the actions aσ(1), . . . , aσ(i′−1), its next action will be bσ(k).
In this case, if h∗ = hσ(k), then bσ(k) is queried before aσ(k) is queried and the
response y = 1 is received. Thus the algorithm pays at least c2 in the worst-
case. On the other hand, if such an integer i′ does not exist, then if h∗ = hσ(k),
the algorithm selects actions aσ(1), . . . , aσ(k−1) before terminating. In this case
the algorithm receives k − 1 responses 0, thus its cost is at least c1(k − 1).
To summarize, every local greedy algorithm pays at least min{c2, c1(k − 1)}
for at least one of the inputs Xn, while OPT = 2c1. By the definition of k,
min{c2, c1(k − 1)} ≥ c2. Hence the cost of the local greedy algorithm is at least
c2
2c1

OPT. ��
To summarize, for both learning objectives and general objectives, we have

shown that the factors r
[2]
cost and gr

[2]
cost, respectively, characterize the approxi-

mation factors obtainable by a greedy algorithm.

4 Experiments

We performed experiments to compare the worst-case costs of a greedy
algorithm that uses the proposed uf , to a greedy algorithm that ignores

Submodular Learning and Covering with Response-Dependent Costs 143

Table 1. Results of experiments. Left: Facebook dataset, right: GR-QC dataset

Test parameters Results: cost(A)

Test r
[2]
cost gr

[2]
cost uf uf

2 uf
3

f=edge users,
3 communities

5 5 52 255 157
100 100 148 5100 2722
1 100 49 52 2821

f=edge users,
10 communities

5 5 231 256 242
100 100 4601 5101 4802
1 100 50 52 2915

f=v. reduction,
3 communities

5 5 13 20 15
100 100 203 400 300
1 100 3 4 201

f=v. reduction,
10 communities

5 5 8 20 15
100 100 105 400 300
1 100 101 103 201

Test parameters Results: cost(A)

Test r
[2]
cost gr

[2]
cost uf uf

2 uf
3

f=edge users,
3 communities

5 5 51 181 123
100 100 147 3503 1833
1 100 51 53 2526

f=edge users,
10 communities

5 5 246 260 245
100 100 4901 5200 4900
1 100 49 52 3217

f=v. reduction,
3 communities

5 5 10 20 15
100 100 106 400 300
1 100 3 400 300

f=v. reduction,
10 communities

5 5 15 16 15
100 100 300 301 300
1 100 3 201 300

response-dependent costs, and uses instead variant of uf , notated uf
2 , that

assumes that responses for the same action have the same cost, which was
set to be the maximal response cost for this action. We also compared to
uf
3 , a utility function which gives the same approximation guarantees as given

in Theorem 3 for uf . Formally, uf
2 (x, S) := minh∈VS(S)

δmin(f,Q)((x,h(x))|S)

maxy∈Y cost(x,y) and

uf
3 (x, S) := minh∈VS(S)

δmin(f,Q)((x,h(x))|S)

min{cost(x,h(x)),φmin} . We tested these algorithms on a
social network marketing objective, where users in a social network are parti-
tioned into communities. Actions are users, and a response identifies the commu-
nity the user belongs to. We tested two objective functions: “edge users” counts
how many of the actions are users who have friends not from their community,
assuming that these users can be valuable promoters across communities. The
target value Q was set to 50. The second objective function was the version-
reduction objective function, and the goal was to identify the true partition into
communities out of the set of possible partitions, which was generated by consid-
ering several possible sets of “center users”, which were selected randomly. We
compared the worst-case costs of the algorithms under several configurations of
number of communities and the values of r

[2]
cost, gr

[2]
cost. The cost ratio rcost was

infinity in all experiments, obtained by always setting a single response to have
a cost of zero for each action. Social network graphs were taken from a friend
graph from Facebook2 [10], and a collaboration graph from Arxiv GR-QC com-
munity3 [9]. The results are reported in Table 1. We had |H| = 100 for all tests
with 3 communities, and |H| = 500 for all tests with 10 communities. The results
show an overall preference to the proposed uf .

Acknowledgements. This work was supported in part by the Israel Science Foun-
dation (grant No. 555/15).

2 http://snap.stanford.edu/data/egonets-Facebook.html.
3 http://snap.stanford.edu/data/ca-GrQc.html.

http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/ca-GrQc.html

144 S. Sabato

References

1. Cuong, N., Lee, W., Ye, N.: Near-optimal adaptive pool-based active learning with
general loss. In: 30th Conference on Uncertainty in Artificial Intelligence (2014)

2. Dasgupta, S.: Analysis of a greedy active learning strategy. In: NIPS 17, pp. 337–
344 (2004)

3. Feige, U.: A threshold of ln(n) for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

4. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active
learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)

5. Golovin, D., Krause, A., Ray, D.: Near-optimal bayesian active learning with noisy
observations. In: NIPS, pp. 766–774 (2010)

6. Gonen, A., Sabato, S., Shalev-Shwartz, S.: Efficient active learning of halfspaces:
an aggressive approach. J. Mach. Learn. Res. 14, 2487–2519 (2013)

7. Guillory, A., Bilmes, J.A.: Interactive submodular set cover. In: Proceedings of the
27th International Conference on Machine Learning (ICML), pp. 415–422 (2010)

8. Kapoor, A., Horvitz, E., Basu, S.: Selective supervision: guiding supervised learning
with decision-theoretic active learning. In: Proceedings of IJCAI (2007)

9. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Disc. Data (TKDD) 1(1), 2 (2007)

10. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems, pp. 539–547 (2012)

11. Lin, H., Bilmes, J.: A class of submodular functions for document summarization.
In: Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, HLT 2011, vol. 1, pp. 510–520 (2011)

12. McCallum, A.K., Nigam, K.: Employing em and pool-based active learning for text
classification. In: ICML (1998)

13. Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular
maximization: identifying representative elements in massive data. In: NIPS, pp.
2049–2057 (2013)

14. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions. Math. Program. 14(1), 265–294 (1978)

15. Sabato, S., Sarwate, A.D., Srebro, N.: Auditing: active learning with outcome-
dependent query costs. In: Advances in Neural Information Processing Systems 26
(NIPS) (2013)

16. Sabato, S., Sarwate, A.D., Srebro, N.: Auditing: active learning with outcome-
dependent query costs. arXiv preprint arXiv:1306.2347v4 (2015)

17. Saettler, A., Laber, E., Cicalese, F.: Trading off worst and expected cost in decision
tree problems and a value dependent model. arXiv preprint arXiv:1406.3655 (2014)

18. Saettler, A., Laber, E., Cicalese, F.: Approximating decision trees with value depen-
dent testing costs. Inf. Process. Lett. 115(68), 594–599 (2015)

19. Wolsey, L.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

http://arxiv.org/abs/1306.2347v4
http://arXiv.org/abs/1306.2347v4
http://arxiv.org/abs/1406.3655
http://arXiv.org/abs/1406.3655

Classifying the Arithmetical Complexity
of Teaching Models

Achilles A. Beros1, Ziyuan Gao2(B), and Sandra Zilles2

1 Department of Mathematics, University of Hawaii, Honolulu, USA
beros@math.hawaii.edu

2 Department of Computer Science, University of Regina,
Regina S4S 0A2, SK, Canada

{gao257,zilles}@cs.uregina.ca

Abstract. This paper classifies the complexity of various teaching mod-
els by their position in the arithmetical hierarchy. In particular, we
determine the arithmetical complexity of the index sets of the follow-
ing classes: (1) the class of uniformly r.e. families with finite teaching
dimension, and (2) the class of uniformly r.e. families with finite posi-
tive recursive teaching dimension witnessed by a uniformly r.e. teaching
sequence. We also derive the arithmetical complexity of several other
decision problems in teaching, such as the problem of deciding, given
an effective coding {L0,L1,L2, . . .} of all uniformly r.e. families, any e
such that Le = {Le

0, L
e
1, . . . , }, any i and d, whether or not the teaching

dimension of Le
i with respect to Le is upper bounded by d.

1 Introduction

A fundamental problem in computational learning theory is that of characteris-
ing identifiable classes in a given learning model. Consider, for example, Gold’s
[5] model of learning from positive data, in which a learner is fed piecewise
with all the positive examples of an unknown target language – often coded
as a set of natural numbers – in an arbitrary order; as the learner processes
the data, it outputs a sequence of hypotheses that must converge syntactically
to a correct conjecture. Of particular interest to inductive inference theorists
is the learnability of classes of recursively enumerable (r.e.) languages. Angluin
[1] demonstrated that a uniformly recursive family is learnable in Gold’s model
if and only if it satisfies a certain “tell-tale” condition. As a consequence, the
family of nonerasing pattern languages over any fixed alphabet and the family of
regular expressions over {0, 1} that contain no operators other than concatena-
tion and Kleene plus are both learnable in the limit. On the other hand, even a
relatively simple class such as one consisting of an infinite set L and all the finite
subsets of L cannot be learnt in the limit [5, Theorem I.8]. Analogous charac-
terisations of learnability have since been discovered for uniformly r.e. families
as well as for other learning models such as behaviourally correct learning [2,8].

Intuitively, the structural properties of learnable families seem to be related
to the “descriptive complexity” of such families. By fixing a system of describing
families of sets, one may wish to compare the relative descriptive complexities of
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 145–160, 2016.
DOI: 10.1007/978-3-319-46379-7 10

146 A.A. Beros et al.

families identifiable under different criteria. One idea, suggested by computabil-
ity theory and the fact that many learnability criteria may be expressed as first-
order formulae, is to analyse the quantifier complexity of the formula defining
the class of learnable families. In other words, one may measure the descriptive
complexity of identifiable classes that are first-order definable by determining
the position of their corresponding index sets in the arithmetical hierarchy. This
approach to measuring the complexity of learnable classes was taken by Brandt
[4], Klette [9], and later Beros [3]. More specifically, Brandt [4, Corollary 1]
showed that every identifiable class of partial-recursive functions is contained in
another identifiable class with an index set that is in Σ3 ∩ Π3, while Beros [3]
established the arithmetical complexity of index sets of uniformly r.e. families
learnable under different criteria.

The purpose of the present work is to determine the arithmetical complexity
of various decision problems in algorithmic teaching. Teaching may be viewed
as a natural counterpart of learning, where the goal is to find a sample efficient
learning and teaching protocol that guarantees learning success. Thus, in con-
trast to a learning scenario where the learner has to guess a target concept based
on labelled examples from a truthful but arbitrary (possibly even adversarial)
source, the learner in a cooperative teaching-learning model is presented with a
sample of labelled examples carefully chosen by the teacher, and it decodes the
sample according to some pre-agreed protocol. We say that a family is “teach-
able” in a model if and only if the associated teaching parameter – such as
the teaching dimension [6], the extended teaching dimension [7] or the recursive
teaching dimension [14] – of the family is finite. Due to the ubiquity of number-
able families of r.e. sets in theoretical computer science and the naturalness of
such families, our work will focus on the class of uniformly r.e. families. Our main
results classify the arithmetical complexity of index sets of uniformly r.e. families
that are teachable under the teaching dimension model and a few variants of the
recursive teaching dimension model.

From the viewpoint of computability theory, our work provides a host of
natural examples of complete sets, thus supporting Rogers’ view that many
“arithmetical sets with intuitively simple definitions . . . have proved to be Σ0

n-
complete or Π0

n-complete (for some n)” [12, p. 330]. From the viewpoint of
computational learning theory, our results shed light on the recursion-theoretic
structural properties of the classes of uniformly r.e. families that are teachable
in some well-studied models.

2 Preliminaries

The notation and terminology from computability theory adopted in this paper
follow in general the book of Rogers [12].

∀∞x denotes “for almost every x”, ∃∞x denotes “for infinitely many x”
and ∃!x denotes “for exactly one x”. N denotes the set of natural numbers,
{0, 1, 2, . . .}, and R (= 2N) denotes the power set of N. For any function f ,
ran(f) denotes the range of f . For any set A, 1A will denote the characteristic

Classifying the Arithmetical Complexity of Teaching Models 147

function of A, that is, 1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x /∈ A. For any sets
A and B, A × B = {〈a, b〉 : a ∈ A ∧ b ∈ B} and A ⊕ B, the join of A and B, is
the set {2x : x ∈ A} ∪ {2y + 1 : y ∈ B}. Analogously, for any class {Ai : i ∈ N}
of sets,

⊕
i∈N

Ai is the infinite join of the Ai’s. For any set A, A∗ denotes the set
of all finite sequences of elements of A. Given a sequence of families, {Fi}i∈N,
we define

⊔
i∈N

Fi =
⋃

i∈N

{
F ⊕ {i} : F ∈ Fi

}
. If there are only finitely many

families, F0, . . . ,Fn, we denote this by F0 � . . . � Fn. We call this the disjoint
union of F1, . . . ,Fn.

For any σ, τ ∈ {0, 1}∗, σ � τ if and only if σ is a prefix of τ , σ ≺ τ if and only
if σ is a proper prefix of τ , and σ(n) denotes the element in the nth position of
σ, starting from n = 0.

Let W0,W1,W2, . . . be an acceptable numbering of all r.e. sets, and let
D0,D1, D2, . . . be a canonical numbering of all finite sets such that D0 = ∅
and for any pairwise distinct numbers x1, . . . , xn, D2x1+...+2xn = {x1, . . . , xn}.
For all e and j, define Le

j = {x : 〈j, x〉 ∈ We} and Le = {Le
j : j ∈ N}. Le

j is the
jth column of We. Le

j,s denotes the sth approximation of Le
j which, without loss

of generality, we assume is a subset of {0, . . . , s}. Note that {Le : e ∈ N} is the
class of all uniformly r.e. (u.r.e.) families, each of which is encoded as an r.e. set.
Let coinf denote the index set of the class of all coinfinite r.e. sets, and let cof
denote the index set of the class of all cofinite r.e. sets. Let inf denote the index
set of the class of all infinite r.e. sets and fin denote the index set of the class
of all finite sets.

Definition 1. [12] A set A ⊆ N is in Σ0(= Π0 = Δ0) iff A is recursive. A is in
Σ0

n iff there is a recursive relation R such that

x ∈ B ↔ (∃y1)(∀y2) . . . (Qnyn)R(x, y1, y2, . . . , yn) (1)

where Qn = ∀ if n is even and Qn = ∃ if n is odd. A set A ⊆ N is in Π0
n

iff its complement A is in Σ0
n. (∃y1)(∀y2) . . . (Qnyn) is known as a Σ0

n prefix;
(∀y1)(∃y2) . . . (Qn, yn), where Qn = ∃ if n is even and Qn = ∀ if n is odd, is
known as a Π0

n prefix. The formula on the right-hand side of (1) is called a Σ0
n

formula and its negation is called a Π0
n formula. A set A is in Δ0

n iff A is in
Σ0

n and A is in Π0
n. Sets in Σ0

n (Π0
n, Δ0

n) are known as Σ0
n sets (Π0

n sets, Δ0
n

sets). For any n ≥ 1, a set A is Σ0
n-hard (Π0

n-hard) iff every Σ0
n (Π0

n) set B is
many-one reducible to it, that is, there exists a recursive function f such that
x ∈ B ↔ f(x) ∈ A. A is Σ0

n-complete (Π0
n-complete) iff A is definable with a

Σ0
n (Π0

n) formula and A is Σ0
n-hard (Π0

n-hard).

The following proposition collects several useful equivalent forms of Σ0
n or

Π0
n formulas (for any n).

Proposition 2

(i) For every Σ0
n+1 set A, there is a Π0

n predicate P such that for all x,

x ∈ A ↔ (∀∞a)P (a, x) ↔ (∃a)P (a, x).

(ii) For every Σ0
n+1 set B, there is a Π0

n predicate Q such that for all x,

x ∈ B ↔ (∃!a)Q(a, x) ↔ (∃a)Q(a, x).

148 A.A. Beros et al.

3 Teaching

Goldman and Kearns [6] introduced a variant of the on-line learning model
in which a helpful teacher selects the instances presented to the learner. They
considered a combinatorial measure of complexity called the teaching dimension,
which is the mininum number of labelled examples required for any consistent
learner to uniquely identify any target concept from the class.

Let L be a family of subsets of N. Let L ∈ L and T be a subset of N×{+,−}.
Furthermore, let T+ = {n : (n,+) ∈ T}, T− = {n : (n,−) ∈ T} and X(T) =
T+ ∪ T−. A subset L of N is said to be consistent with T iff T+ ⊆ L and
T− ∩ L = ∅. T is a teaching set for L with respect to L iff T is consistent with
L and for all L′ ∈ L \ {L}, T is not consistent with L′. If T is a teaching set
for L with respect to L, then X(T) is known as a distinguishing set for L with
respect to L. Every element of N × {+,−} is known as a labelled example.

Definition 3. [6,13] Let L be any family of subsets of N. Let L ∈ L be given.
The size of a smallest teaching set for L with respect to L is called the teaching
dimension of L with respect to L, denoted by TD(L,L). The teaching dimension
of L is defined as sup{TD(L,L) : L ∈ L} and is denoted by TD(L). If there is a
teaching set for L with respect to L that consists of only positive examples, then
the positive teaching dimension of L with respect to L is defined to be the smallest
possible size of such a set, and is denoted by TD+(L,L). If there is no teaching
set for L w.r.t. L that consists of only positive examples, then TD+(L,L) is
defined to be ∞. A teaching set for L with respect to L that consists of only
positive examples is known as a positive teaching set for L with respect to L.
The positive teaching dimension of L is defined as sup{TD+(L,L) : L ∈ L}.

Another complexity parameter recently studied in computational learning
theory is the recursive teaching dimension. It refers to the maximum size of
teaching sets in a series of nested subfamilies of the family.

Definition 4. (Based on [10,14]). Let L be any family of subsets of N. A
teaching sequence for L is any sequence TS = ((F0, d0), (F1, d1), . . .) where
(i) the families Fi form a partition of L with each Fi nonempty, and (ii) di =
sup{TD(L,L \ ⋃

0≤j<i Fj) : L ∈ Fi} for all i. sup{di : i ∈ N} is called the
order of TS, and is denoted by ord(TS). The recursive teaching dimension of L
is defined as inf{ord(TS) : TS is a teaching sequence for L} and is denoted by
RTD(L).

We shall also briefly consider the extended teaching dimension (XTD) of a
class. This parameter may be viewed as a generalisation of the teaching dimen-
sion; it expresses the complexity of unique specification with respect to a concept
class C for every concept (not just members of C) over a given instance space X.
As Hegedüs [7] showed, the extended teaching dimension of a concept class C is
closely related to the query complexity of learning C.

Definition 5. [7] Let L be a family of subsets of N, and let L be a subset of
N. A set S ⊆ N is a specifying set for L with respect to L iff there is at most

Classifying the Arithmetical Complexity of Teaching Models 149

one concept L′ in L such that L ∩ S = L′ ∩ S. Define the extended teaching
dimension (XTD) of L as inf{d : for every set L ⊆ N there exists an at most
d-element specifying set with respect to L}.

A set S ⊆ L is a positive specifying set for L with respect to L iff
there is at most one concept in L that contains S. Define the positive
extended teaching dimension (XTD+) of L as inf{d : for every set ∅ �= L ⊆
N there exists an at most d-element positive specifying set with respect to L}.
If there is a nonempty set L that does not have a positive specifying set w.r.t L,
define XTD+(L) = ∞.

The next series of definitions will introduce various subsets of N, each of
which is a set of codes for u.r.e. families that satisfy some notion of teachability.

(i) I∀
TD = {e : (∀L ∈ Le)[TD(L,Le) < ∞]}.

(ii) ITD = {e : TD(Le) < ∞}.
(iii) I∀∞

TD = {e : (∀∞L ∈ Le)[TD(L,Le) < ∞]}.
(iv) I∀

TD+ = {e : (∀L ∈ Lj)[TD+(L,Le) < ∞]}.
(v) ITD+ = {e : TD+(Le) < ∞}.
(vi) I∀∞

TD+ = {e : (∀∞L ∈ Le)[TD+(L,Le) < ∞]}.
(vii) IXTD = {e : XTD(Le) < ∞}.
(viii) IXTD+ = {e : XTD+(Le) < ∞}.

Owing to space constraints, many proofs will be omitted or sketched.

4 Teaching Dimension

In this section we study the arithmetical complexity of the class of u.r.e. families
with finite teaching dimension; several related decision problems will also be
considered.

Before proceeding with the main theorems on the arithmetical complexity of
the teaching dimension model and its variants, a series of preparatory results will
be presented. Theorem 7 addresses the question: how hard (arithmetically) is it
to determine whether or not, given e ∈ N and a finite set D, D can distinguish
an r.e. set Le

j ∈ Le from the other members of Le?

Definition 6. DS := {〈e, x, u〉 : (∀y)[Le
x �= Le

y → Le
x ∩ Du �= Le

y ∩ Du]}.1

Theorem 7. DS is Π0
2 -complete.

Proof. By the definition of DS, 〈e, x, u〉 ∈ DS ↔ (∀y)(∀t)(∃v > t)[[Le
x,v ∩

Du �= Le
y,v ∩ Du] ∨ (∀p)(∀a)(∃b > a)[1Le

x,b
(p) = 1Le

y,b
(p)]]. Thus DS has a Π0

2

description. Now, since inf is Π0
2 -complete [12], it suffices to show that inf is

many-one reducible to DS. Let g be a one-one recursive function with

Wg(e,i) =

{
N if i = 0 ∨ (∃j > i)[j ∈ We];
{0, 1, . . . , i} otherwise.

1 DS stands for “distinguishing set.”

150 A.A. Beros et al.

Let f be a recursive function such that Lf(e) = {Wg(e,i) : i ∈ N} and L
f(e)
0 =

Wg(e,0). Recall that D0 = ∅. It is readily verified that e ∈ inf ↔ 〈f(e), 0, 0〉 ∈
DS. �

The expectation that the arithmetical complexity of determining if a finite
D is a smallest possible distinguishing set for some Wx belonging to Le is at
most one level above that of DS is confirmed by Theorem 9.

Definition 8. MDS:={〈e, x, u〉 ∈ DS:(∀u′)[|Du′ | < |Du| → 〈e, x, u′〉 /∈ DS]}.2

Theorem 9. MDS is Π0
3 -complete.

Proof. (Sketch.) By the definition of MDS,

〈e, x, u〉 ∈ MDS ↔ 〈e, x, u〉 ∈ DS ∧ (∀u′)[(|Du′ | ≥ |Du|) ∨ 〈e, x, u′〉 /∈ DS].

By Theorem 7, DS has a Π0
2 description and DS has a Σ0

2 description. Thus
MDS has a Π0

3 description. We omit the proof that MDS is Π0
3 -hard. �

Another problem of interest is the complexity of determining whether or not
the teaching dimension of some Wx w.r.t. a class Le is upper-bounded by a given
number d. For d = 0, this problem is just as hard as DS (see Proposition 11); for
d > 0, however, the complexity of the problem is exactly one level above that of
DS (see Theorem 12). We omit the proofs.

Definition 10. TDDP := {〈e, x, d〉 : d ≥ 1 ∧ (∃u)[|Du| ≤ d ∧ 〈e, x, u〉 ∈ DS]}.3

Proposition 11. {〈e, x〉 : Le = {Le
x}} is Π0

2 -complete.

Theorem 12. TDDP is Σ0
3 -complete.

Our first main result states that the class of all u.r.e. families L such that
any finite subclass L′ ⊆ L has finite teaching dimension with respect to L is
Π4-complete.

Theorem 13. I∀
TD is Π0

4 -complete.

Proof. First, note the following equivalent conditions:

e ∈ I∀
TD ↔ (∀i)[TD(Le

i ,Le) < ∞)] ↔ (∀i)(∃u)[〈e, i, u〉 ∈ DS].

By Theorem 7, 〈e, i, u〉 ∈ DS may be expressed as a Π0
2 predicate, so I∀

TD is Π0
4 .

Now consider any Π0
4 unary predicate P (e); P (e) is of the form (∀x)[Q(e, x)],

where Q is a Σ0
3 predicate. Since cof is Σ0

3 -complete [12], there is a recursive
function g(e, x) such that P (e) ↔ (∀x)[Q(e, x)] ↔ (∀x)[g(e, x) ∈ cof] holds. For
each triple 〈e, x, i〉, define

H〈e,x,i〉 =

{
{〈e, x〉} ⊕ (Wg(e,x) ∪ {i}) if i > 0;
{〈e, x〉} ⊕ Wg(e,x) if i = 0

Let h be a recursive function such that for all e, Lh(e) = {H〈e,x,i〉 : x, i ∈ N}.
2 MDS stands for “minimal distinguishing set.”
3 TDDP stands for “Teaching dimension decision problem.”

Classifying the Arithmetical Complexity of Teaching Models 151

Case (i): P (e) holds. Then for all x, Wg(e,x) is cofinite. Thus for all x and each
i > 0 such that i /∈ Wg(e,x), H〈e,x,i〉 has the teaching set {(2〈e, x〉,+), (2i +
1,+)} with respect to Lh(e). Furthermore, for all x and each i such that either
i �= 0∧i ∈ Wg(e,x) or i = 0, H〈e,x,i〉 has the teaching set {(2〈e, x〉,+)}∪{(2j+
1,−) : j /∈ Wg(e,x) ∧ j > 0} with respect to Lh(e). Therefore TD(H〈e,x,i〉,
Lh(e)) < ∞ for every pair 〈x, i〉, so that h(e) ∈ I∀

TD.
Case (ii): ¬P (e) holds. Then Wg(e,x) is coinfinite for some x. Fix such an x.

Then Lh(e) contains L′ = {H〈e,x,i〉 : i ∈ N}. Furthermore, for each positive
i /∈ Wg(e,x), since {〈e, x〉} ⊕ (Wg(e,x) ∪ {i}) ∈ L′, any teaching set for H〈e,x,0〉
w.r.t. Lh(e) must contain (2i + 1,−). Hence TD(H〈e,x,0〉,Lh(e)) = ∞, so that
h(e) /∈ I∀

TD.

Thus I∀
TD is Π0

4 -complete. �

Extending I∀
TD to include u.r.e. families L for which there is a cofinite sub-

class L′ ⊆ L belonging to I∀
TD increases the arithmetical complexity of I∀

TD to
Σ0

5 .

Theorem 14. I∀∞
TD is Σ0

5 -complete.

Proof. (Sketch.) For any e, s, let g be a recursive function such that Lg(e,s) =
{Le

i : i > s}. Note that the expression for I∀∞
TD can be re-written as e ∈ I∀∞

TD ↔
(∃t)(∀s > t)[g(e, s) ∈ I∀

TD]. Since Le \ Lg(e,t) is finite, it follows that e ∈ I∀∞
TD.

By Theorem 13, the predicate g(e, s) ∈ I∀
TD has a Π0

4 description, so that I∀∞
TD

is definable with a Σ0
5 predicate.

Now let P be any Σ0
5 predicate. By Proposition 2 and the Σ0

3 -completeness of
cof [12], there is a recursive function h such that P (e) ↔ (∀∞a)(∀b)[h(e, a, b) ∈
cof] ↔ (∃a)(∀b)[h(e, a, b) ∈ cof] and (∃b)[h(e, a, b) ∈ coinf] ↔ (∃!b)[h(e, a, b)
∈ coinf]. Now let g be a one-one recursive function such that

Wg(e,a,b,i) =

{
{〈e, a, b〉} ⊕ (Wh(e,a,b) ∪ {i}) if i > 0;
{〈e, a, b〉} ⊕ Wh(e,a,b) if i = 0.

Let f be a one-one recursive function such that Lf(e) = {Wg(e,a,b,i) : a, b, i ∈ N}.
Note that for all a, b, i ∈ N, TD(Wg(e,a,b,i),Lf(e)) < ∞ ↔ h(e, a, b) ∈ cof. One
can show as in the proof of Theorem 13 that TD(L,Lf(e)) < ∞ holds for almost
all L ∈ Lf(e) iff P (e) is true. �

The next theorem shows that the index set of the class consisting of all u.r.e.
families with finite teaching dimension is Σ0

5 -complete.

Theorem 15. ITD is Σ0
5 -complete.

Proof. (Sketch.) From TD(Le) < ∞ ↔ (∃a)(∀b)[〈e, b, a〉 ∈ TDDP] and the fact
that TDDP is Σ0

3 -complete by Theorem 12 we have that ITD is Σ0
5 .

To prove that ITD is Σ0
5 -hard, consider any Σ0

5 predicate P (e). There is a
binary recursive function g such that P (e) → (∃a)(∀b)[g(e, a, b) ∈ cof] and

152 A.A. Beros et al.

¬P (e) → (∀a)(∀∞b)[g(e, a, b) ∈ coinf]. Now fix e, b ∈ N. For each a, let
{H〈a,0〉,H〈a,1〉,H〈a,2〉, . . .} be a numbering of the union of two u.r.e. families
{C〈a,0〉, C〈a,1〉, C〈a,2〉, . . .} and {L〈a,0〉, L〈a,1〉, L〈a,2〉, . . .}, which are defined as fol-
lows. (For simplicity, the notation for dependence on e and b is dropped.)

1. {C〈a,0〉, C〈a,1〉, C〈a,2〉, . . .} is a numbering of {X ⊆ N : |N \ X| = a}.
2. Let E〈a,0〉, E〈a,1〉, E〈a,2〉, . . . be a one-one enumeration of {X ⊆ N : |N \ X| <

∞ ∧ |N \ X| �= a}. Let f be a recursive function such that for all n, s ∈ N,
f(n, s) is the (n + 1)st element of N \ Wg(e,a,b),s. For all n, s ∈ N, define

L〈a,〈n,s〉〉 =

{
E〈a,n〉 if (∀t ≥ s)[f(n, s) = f(n, t)];
N if (∃t > s)[f(n, s) �= f(n, t)].

Note that {H〈a,0〉,H〈a,1〉,H〈a,2〉, . . .} �= ∅. Now construct a u.r.e. family
{G〈e,b,0〉, G〈e,b,1〉, . . .} with the following properties:

(i) For all s, G〈e,b,s〉 is of the form {b} ⊕ {s} ⊕
⊕

j∈N
H〈j,ij〉.

(ii) For every nonempty finite set {H〈c0,d0〉, . . . , H〈ck,dk〉} with c0 < . . . < ck,
there is at least one t for which G〈e,b,t〉 = {b} ⊕ {t} ⊕

⊕
i∈N

Ai, where Aci =
H〈ci,di〉 for all i ∈ {0, . . . , k} and Ai ∈ {H〈i,j〉 : j ∈ N} for all i /∈ {c0, . . . , ck}.
(iii) For every t such that G〈e,b,t〉 = {b} ⊕ {t} ⊕

⊕
j∈N

H〈j,ij〉, there are

infinitely many t′ �= t such that G〈e,b,t′〉 = {b} ⊕ {t′} ⊕
⊕

j∈N
H〈j,ij〉.

The family {G〈e,i,j〉 : i, j ∈ N} may be thought of as an infinite matrix M
in which each row represents a set parametrised by g(e, a, b) for a fixed b and a
ranging over N. Furthermore, if there exists an a such that Wg(e,a,b) is cofinite
for all b, then the ath column of M contains all cofinite sets with complement
of size a plus a finite number of other cofinite sets; if no such a exists then
every column of M contains all cofinite sets. Let h be a recursive function with
Lh(e) = {{b} ⊕

⊕
i∈N

∅ : b ∈ N} ∪ {G〈e,b,s〉 : b, s ∈ N}. Showing that P (e) iff

h(e) ∈ ITD proves ITD to be Σ0
5 -complete. �

To conclude our discussion on the general teaching dimension, we demon-
strate that the criterion for a u.r.e. family to have finite extended teaching
dimension is so stringent that only finite families have a finite XTD.

Theorem 16. IXTD is Σ3-complete.

Proof. We show XTD(Le) < ∞ ↔ |Le| < ∞. First, suppose Le = {L1, . . . , Lk}.
As Le is finite, TD(Li,Le) ≤ k − 1 for all i ∈ {1, . . . , k}. Consider any L /∈ Le.
For each i ∈ {1, . . . , k}, fix yi with 1L(yi) �= 1Li

(yi). Then {(yi,+) : 1 ≤ i ≤
k ∧ yi ∈ L} ∪ {(yj ,−) : 1 ≤ j ≤ k ∧ yj /∈ L} is a specifying set for L with respect
to Le of size k.

Second, suppose |Le| = ∞. Let T = {σ ∈ {0, 1}∗ : (∃∞L ∈ Le)(∀x <
|σ|)[σ(x) = 1L(x)]}. Note that |Le| = ∞ implies T is an infinite binary tree.

Classifying the Arithmetical Complexity of Teaching Models 153

Thus by König’s lemma, T has at least one infinite branch, say B. Then for
all n ∈ N, there exist infinitely many L ∈ Le such that 1B(x) = 1L(x) for
all x < n. Therefore B has no finite specifying set with respect to Le and so
XTD(Le) = ∞. Consequently, XTD(Le) < ∞ ↔ |Le| < ∞ ↔ (∃a)(∀b)(∃c ≤
a)(∀x)(∀s)(∃t > s)[1Le

b,t
(x) = 1Le

c,t
(x)]; as any two quantifiers, at least one

of which is bounded, may be permuted, it follows that the last expression is
equivalent to a Σ0

3 formula. To show that IXTD is Σ0
3 -hard, consider any Σ0

3

predicate P , and let g be a recursive function such that

P (e) ↔ g(e) ∈ cof.

Let f be a recursive function with Lf(e) equal to {Wg(e) ∪ D : N ⊇ |D| < ∞},
the class of all sets consisting of the union of Wg(e) and a finite set of natural
numbers. Then

P (e) ↔ g(e) ∈ cof ↔ |Lf(e)| < ∞ ↔ XTD(Lf(e)) < ∞,

and so IXTD is indeed Σ0
3 -complete. �

5 Positive Teaching Dimension

We now consider the analogues of the results in the preceding section for the
positive teaching dimension model. In studying the process of child language
acquisition, Pinker [11, p. 226] points to evidence in prior research that children
are seldom “corrected when they speak ungrammatically”, and “when they are
corrected they take little notice”. It seems likely, therefore, that children learn
languages mainly from positive examples. Thus, as a model for child language
acquisition, the positive teaching dimension model is probably closer to real-
ity than the general teaching dimension model in which negative examples are
allowed. The next two results are the analogues of Theorems 13 and 15 for the
positive teaching dimension model. It is noteworthy that I∀

TD and I∀
TD+ have

equal arithmetical complexity; that is to say, restricting the teaching sets of
each L ∈ Le with e ∈ I∀

TD to positive teaching sets has no overall effect on the
arithmetical complexity of I∀

TD.

Theorem 17. I∀
TD+ is Π0

4 -complete.

Proof. (Sketch.) Observe that

(∀L ∈ Le)[TD+(L,Le) < ∞] ↔ (∀i)(∃u)[(∃s)[Du ⊆ Le
i,s]

∧(∀j)[(∀x)(∀s)(∃t > s)[1Le
j,t

(x) = 1Le
i,t

(x)] ∨ ∀s′[Du �⊆ Le
j,s′]]],

Since the right-hand side simplifies to a Π0
4 predicate, we know that I∀

TD+ is Π0
4 .

For the proof that I∀
TD+ is Π0

4 -hard, take any Π0
4 predicate P , and let g be

a recursive function such that P (e) ↔ (∀a)[g(e, a) ∈ cof]. Define a u.r.e. family

154 A.A. Beros et al.

L = {Li}i∈N as follows. (For notational simplicity, the notation for dependence
on e is dropped.) For all a, i ∈ N,

L〈a,0〉 = {a} ⊕ Wg(e,a),

L〈a,i+1〉 =

{
{a} ⊕ Wg(e,a) if i ∈ Wg(e,a);
{a} ⊕ ({i} ∪ {x : x < i ∧ x ∈ Wg(e,a)}) if i /∈ Wg(e,a).

Let f be a recursive function for which Lf(e) = L. One can show that
TD+(L,Lf(e)) < ∞ holds for all L ∈ Lf(e) iff P (e) is true. �

Theorem 18. ITD+ is Σ0
5 -complete.

Proof. (Sketch.) For any e, one has TD+(Le) < ∞ ↔ (∃a)(∀b)[TD+(Le
b,Le) <

a] and
TD+(Le

b,Le) < a ↔ (∃u)(∀c)[(∃s′)[Du ⊆ Le
b,s′] ∧ |Du| < a

∧[(∀x)(∀s)(∃t > s)[1Le
b
(x) = 1Le

c
(x)] ∨ (∀t′)[Du �⊆ Le

c,t′]]].

Simplifying the last equivalence yields a Σ0
5 -predicate for TD+(Le) < ∞.

The proof that ITD+ is Σ0
5 -hard is similar to the earlier proof that ITD is

Σ0
5 -hard (but requires some additional ideas). Given any Σ0

5 formula P , let R be
a recursive predicate such that P (e) → (∃a)(∀b)(∀∞c)(∀d)(∃l)[R(e, a, b, c, d, l)]
and ¬P (e) → (∀a)(∀∞b)(∀c)(∃d)(∀l) [¬R(e, a, b, c, d, l)]. Now fix any e, b ∈ N. Let
(〈a0

0, b
0
0, c

0
0〉, . . . , 〈a0

k0
, b0k0

, c0k0
〉), (〈a1

0, b
1
0, c

1
0〉, . . . , 〈a1

k1
, b1k1

, c1k1
〉), . . . be a one-one

enumeration of all non-empty finite sequences of triples such that aj
0 < . . . < aj

kj

for all j ∈ N. Define the set (dropping the notation for dependence on e)

Sb := {i : (∃j ∈ {0, . . . , ki})[|Dbij
| �= ai

j + 1 ∧ (∃l)[R(e, ai
j , b, b

i
j , c

i
j , l)]]},

using our fixed numbering D0,D1,D2, . . . of all finite sets. For each b (with e
fixed), construct a u.r.e. family {G〈b,−1〉} ∪ ⋃

s∈N
{G〈b,s〉} as follows.

G〈b,s〉 = {b} ⊕ Sb ⊕
⊕

i∈N
N if s = −1 or s ∈ Sb.

If s /∈ Sb, set G〈b,s〉 = {b} ⊕ (Sb ∪ {s}) ⊕
⊕

i∈N
Hi, where

Hi =

{
∅ if i /∈ {as

0, . . . , a
s
ks

};
Dbsi

if i ∈ {as
0, . . . , a

s
ks

}.

Let f be a recursive function such that Lf(e) =
⋃

b∈N
({G〈b,−1〉}∪⋃

s∈N
{G〈b,s〉})

(note again that the notation for dependence on e in the definition of G〈b,s〉 has
been dropped). We omit the proof that P (e) holds iff TD+(Lf(e)) < ∞. �

Theorem 19. I∀∞
TD+ is Σ0

5 -complete.

Classifying the Arithmetical Complexity of Teaching Models 155

Proof. (Sketch.) The condition

(∀∞i)[TD+(Le
i ,Le) < ∞] ↔ (∃i)(∀j ≥ i)(∃a)[TD+(Le

j ,Le) < a)],

together with the fact that TD+(Le
j ,Le) < a is a Σ0

3 predicate (as shown in the
proof of Theorem 18), shows that I∀∞

TD+ is Σ0
5 . The proof that I∀∞

TD+ is Σ0
5 -hard

is very similar to that of Theorem 14. �

Finally, consider the positive extended teaching dimension. Like the u.r.e.
families with finite extended teaching dimension, those with finite positive
extended teaching dimension have a particularly simple structure.

Theorem 20. IXTD+ is Π0
2 -complete.

Proof. (Sketch.) One may verify directly that

XTD+(Le) < ∞ ↔ (∀i, j)[Le
i = Le

j ∨ Le
i ∩ Le

j = ∅].

Note that (∀i, j)[Le
i = Le

j ∨ Le
i ∩ Le

j = ∅] iff

(∀i, j)[(∀x, s)(∃t > s)[1Le
i,t

(x) = 1Le
j,t

(x)] ∨ (∀s′)[Le
i,s′ ∩ Le

j,s′ = ∅]],

and that the latter expression reduces to a Π0
2 predicate. Hence IXTD+ is Π0

2 .
To establish that IXTD+ is Π0

2 -hard, take any Π0
2 predicate P , and let g be

a recursive function such that P (e) ↔ g(e) ∈ inf. Let f be a recursive function
such that Lf(e) = {N, G}, where

G =

⎧
⎪⎨

⎪⎩

N if |Wg(e)| = ∞;
{0} ∪ {x : x < m} if m is the least number

such that (∀s ≥ m)[Wg(e),s = Wg(e),s+1].

Then P (e) ↔ g(e) ∈ inf ↔ XTD+(Lf(e)) < ∞. �

6 Recursive Teaching Dimension

Although the classical teaching dimension model is quite succinct and intuitive,
it is rather restrictive. For example, let L be the concept class consisting of the
empty set L0 = ∅ and all singleton sets Li = {i} for positive i ∈ N. Then
TD(Li,L) = 1 for all i ∈ N \ {0} but TD(L0,L) = ∞. Thus TD(L) = ∞ even
though the class L is relatively simple. One deficiency of the teaching dimension
model is that it fails to exploit any property of the learner other than the learner
being consistent. The recursive teaching model [10,14], on the other hand, uses
inherent structural properties of concept classes to define a teaching-learning
protocol in which the learner is not just consistent, but also “cooperates” with
the teacher by learning from a sequence of samples that is defined relative to the
given concept class. In this section, we shall consider the arithmetical complexity
of the index set of the class of all u.r.e. families that are teachable in some variants
of the recursive teaching model. The complexities of interesting problems relating
to the original recursive teaching model remain open.

156 A.A. Beros et al.

Definition 21. A positive teaching plan for L is is any sequence TP =
((L0, d0), (L1, d1), . . .) where (i) the families {Li} form a partition of L, and
(ii) di = TD+(Li,L \ ⋃

0≤j<i{Lj}) for all i. RTD+
1 (L) is defined to be inf

{ord(TS) : TS is a positive teaching plan for L}. Since this paper only considers
positive teaching plans, positive teaching plans will simply be called “teaching
plans”. Note that a positive teaching plan for L is essentially a teaching sequence
for L that employs only positive examples and partitions L into singletons.

We begin with a lemma; the proof is omitted.

Lemma 22. Let {Fi}i∈N be any sequence of families. If sup{RTD+
1 (Fi) : i ∈

N} < ∞, then sup{RTD+
1 (Fi) : i ∈ N} ≤ RTD+

1 (
⊔

i∈N
Fi) ≤ sup{RTD+

1 (Fi) :
i ∈ N} + 1; otherwise, RTD+

1 (
⊔

i∈N
Fi) = ∞.

Definition 23. We denote by R+
1 the set of codes for u.r.e. families, L, such

that RTD+
1 (L) is finite.

Theorem 24. R+
1 is Σ0

4 -complete.

Proof. To show that R+
1 is Σ0

4 , fix e, a code for a u.r.e. family, F . Given n ∈
N, whether or not RTD+

1 (F) ≤ n can be decided by executing the following
algorithm. Find the F ∈ F of least index such that TD+(F,F \ {F}) ≤ n and
call this set F0. Having defined F0, . . . , Fi, let Fi+1 be the set of least index
in F \ {F0, . . . , Fi} such that TD+(Fi+1,F \ {F0, . . . , Fi+1}) ≤ n. If there is
a teaching plan for F with order at most n, then the above algorithm will
produce such a teaching plan because RTD+

1 (F \{F0, . . . , Fi}) ≤ n for all i ∈ N.
Conversely, if there is no such teaching plan, then clearly the algorithm must
initiate a non-terminating search at some stage.

Observe that the statement TD+(Fi+1,F \{F0, . . . , Fi+1}) ≤ n is Σ0
2 , there-

fore RTD+
1 (F) ≤ n is Π0

3 . Finally, RTD+
1 (F) < ∞ is equivalent to (∃n)(

RTD+
1 (F) ≤ n

)
; hence, it is Σ0

4 . It remains to show that R+
1 is Σ0

4 -hard.
Every Σ0

4 predicate is of the form (∀∞n)
(
g(e, n) ∈ coinf

)
, where g is a

computable function. Fix such a predicate, P , and computable function g.
For k ∈ N, let fk : N → N be a uniformly computable sequence of functions

such that (1) Dfk(n) � [0, k], (2) (∀S � [0, k])(∃n)
(
Dfk(n) = S

)
and (3) (∀n ∈

ran(fk))
(|f−1

k (n)| = ∞)
. Define Lk =

{
[0, k] ⊕ ∅} ∪ {

Dfk(n) ⊕ {n} : n ∈ N

}
.

We will denote the members of Lk by Lk
i , where Lk

0 = [0, k] ⊕ ∅ and Lk
n+1 =

Dfk(n) ⊕{n}. Observe that RTD+
1 (Lk) = k +1. However, for any finite L′ ⊂ Lk,

RTD+
1 (L′) = 1.

Let m be a computable function such that m(a, n, s) is the number of t < s
such that the nth element of the complement of Wa,t differs from the nth element
of the complement of Wa,t+1. Define Ga,i =

⊔
n∈N

{
Li

j : (∃s)
(
j < m(a, n, s)

)}

and let Fe =
⊔

i∈N
Gg(e,i),i. By the construction, there is a computable function,

h, such that Wh(e) = Fe. We omit the proof that RTD+
1 (Fe) < ∞ iff P (e). �

Definition 25. Given σ ∈ N
∗ and S = {s0, . . . , sn} ⊂ N with s0 < · · · < sn <

|σ|, define σ[S] ∈ N
∗ by σ[S](i) = σ(si) for i ≤ n.

Classifying the Arithmetical Complexity of Teaching Models 157

We now consider a “semi-effective” version of the recursive teaching model
in which the teacher presents only positive teaching sets to the learner.

Definition 26. Let L be any family of subsets of N. A positive teaching sequence
for L is any sequence TS = ((F0, d0), (F1, d1), . . .) such that (i) the families Fi

form a partition of L with each Fi nonempty, and (ii) for all i and all L ∈ Fi,
there is a subset SL ⊆ L with |SL| = di < ∞ such that for all L′ ∈ ⋃

j≥i Fj , it
holds that SL ⊆ L′ → L = L′. sup{di : i ∈ N} is called the order of TS, and is
denoted by ord(TS). The positive recursive teaching dimension of L is defined
as inf{ord(TS) : TS is a positive teaching sequence for L} and is denoted by
RTD+(L).

We denote by R+
ure the set of codes for u.r.e. families, L, such that RTD+(L)

is finite and witnessed by a u.r.e. teaching sequence. In this section, a “teaching
sequence” will always mean a u.r.e. teaching sequence.

Our last major result is that R+
ure is Σ0

5 -complete, which we establish in the
following three theorems.

Theorem 27. R+
ure is Σ0

5 -hard.

Proof. Fix a Σ0
5 -predicate P . As in the proof of Theorem 4.4 from [3], let g be

computable such that P (e) → (∃x)
(
(∀x′ > x)(∀y)

(
g(e, x′, y) ∈ cof

) ∧ (∀x′ ≤
x)(∃≤1y)

(
g(e, x′, y) ∈ coinf

))
and ¬P (e) → (∀x)(∃!y)

(
g(e, x, y) ∈ coinf

)
.

As in the proof of Theorem 24, let {fk}k∈N be a uniformly computable
sequence of functions such that for all k, n ∈ N, (1) Dfk(n) � [0, k], (2)
(∀S � [0, k])(∃m)

(
Dfk(m) = S

)
and (3) (∀m ∈ ran(fk))

(|f−1
k (m)| = ∞)

.
Fix a, n ∈ N and σ ∈ N

∗. Define Ha(x, σ) = {〈σ, x〉} if x ∈ Wa and
Ha(x, σ) = ∅ otherwise. Using this notation, we define the set An =

⊕
j∈N

([0, n]

⊕∅) and the sets Aa,n
i,σ =

(
Dfn(σ(0))⊕Ha(i, σ)

)
⊕

(⊕
j<i([0, n]⊕∅)

)
⊕

(⊕
1≤j<|σ|

(Dfn(σ(j)) ⊕ {〈σ[{0} ∪ [j, |σ|)]〉})
)
. Using the above sets, we define the following

families: Ga,n
i =

{
Aa,n

i,σ : σ ∈ N
∗ ∧ |σ| ≥ 2

}
;Ga,n =

{
An

}
∪ ⋃

i∈N
Ga,n

i .

Suppose that a ∈ cof and let x0, . . . xk be an increasing enumeration of W a.
The following is a teaching sequence for Ga,n:

((⋃
i∈Wa

Ga,n
i , 1

)
,
(Ga,n

x0
, 1

)
, . . . ,

(Ga,n
xk

, 1
)
,
({

Aa,n
}
, 1

))
. Thus, RTD+(Ga,n) = 1. Now suppose that a ∈ coinf

and let x0, x1, . . . be an increasing enumeration of W a. Suppose TS = ((L0, d0),
(L1, d1), . . .) is a teaching sequence for Ga,n and ord(TS) ≤ n. Consider an
arbitrary Aa,n

xi,σ ∈ Ga,n
xi

for i ≥ 1. Aa,n
xi,σ �∈ L0, because n + 1 points are needed to

distinguish Aa,n
xi,σ from every member of Ga,n

x0
. Since Ga,n

x1
∩L0 = ∅, we know that

An �∈ L0. Now suppose that Ga,n
xk

⊆ ⋃
i≥k Li and An �∈ ⋃

i<k Li, then Lk cannot
contain any member of Ga,n

xi
for i ≥ k + 1 because n + 1 points are needed to

distinguish the members of Ga,n
xk

from the members of Ga,n
xi

. As before, this also
implies An �∈ Lk+1. By induction, we conclude that An �∈ Li for any i ∈ N. This
is a contradiction, so RTD+(Ga,n) ≥ n + 1. Since

158 A.A. Beros et al.

TS =
(({

An
}
, n + 1

)
,
(Ga,n

0 , 1
)
,
(Ga,n

1 , 1
)
, . . .

)

is a teaching sequence for Ga,n and ord(TS) = n + 1, we conclude that
RTD+(Ga,n) = n + 1. Finally, define

Fe,x =
⊔

y∈N

Gg(e,x,y),x and Fe =
⊔

x∈N

Fe,x.

We wish to prove that RTD+(Fe) < ∞ if and only if P (e). First, suppose
P (e). For all but finitely many x, g(e, x, y) ∈ cof for all y. This means that
RTD+(Fe,x) = 1 for all but finitely many x. For each x for which RTD+(Fe,x) �=
1 the dimension is still finite, hence, there is a uniform bound, n, on the recursive
teaching dimension of all the Fe,x. We conclude that RTD+(Fe) < ∞.

On the other hand, if ¬P (e), then for every x there is exactly one y such
that g(e, x, y) ∈ coinf. Hence, Fe is the disjoint union of families whose RTD is
unbounded. We have thus reduced an arbitrary Σ0

5 -predicate to R+
ure. �

Theorem 28. R+
ure is Σ0

5 .

Proof. Let {Sn}n∈N enumerate the u.r.e. teaching sequences, with Sn =
(
(Ln

0 ,

dn
0), (Ln

1 , dn
1), . . .

)
. Consider a u.r.e. family, F = {F0, F1, . . .} coded by e.

e ∈ R+
ure ↔ (∃a, n)

(
ord(TSa) ≤ n ∧ TSa is a teaching sequence for F

)

ord(TSa) ≤ n ↔ (∀i)
(
di ≤ n

)

To say that Sa is a teaching sequence for F is equivalent to (1) {L0,L1, . . .} is
a partition of F and (2) (∀i ∈ N, L ∈ Li)

(
TD+(L,

⋃
j≥i Lj) ≤ di

)
.

Since the statement TD+(L,
⋃

j≥i Lj) ≤ di is Σ0
3 , we know that the statement

(∀i ∈ N, L ∈ Li)
(
TD+(L,

⋃
j≥i Lj) ≤ di

)
is Π0

3 . The statement that {L0,L1, . . .}
is a partition of F is equivalent to

(∀i ∈ N, F ∈ Li)(∃F ′ ∈ F)
(
F = F ′

)
∧ (∀F ∈ F)(∃i ∈ N, F ′ ∈ Li)

(
F = F ′

)

∧(∀i, j ∈ N, F ∈ Li, F
′ ∈ Lj)

(
i �= j → F �= F ′

)
,

which is Π0
4 . Thus, e ∈ R+

ure is Σ0
5 . �

Theorem 29. R+
ure is Σ0

5 -complete.

7 Conclusion

This paper studied the arithmetical complexity of index sets of classes of u.r.e.
families that are teachable under various teaching models. Our main results are
summarised in Table 1. While u.r.e. families constitute a very special case of
families of sets, many of our results may be extended to the class of families of

Classifying the Arithmetical Complexity of Teaching Models 159

Table 1. Summary of main results on u.r.e. families. The notation TD(+) indicates
that the result holds for both TD and TD+.

Index set Arithmetical complexity

{e : (∀L ∈ Le)[TD(+)(L, Le) < ∞]} Π0
4 -complete (Theorems 13 and 17)

{e : TD(+)(Le) < ∞} Σ0
5 -complete (Theorems 15 and 18)

{e : XTD(Le) < ∞}; {e : XTD+(Le) < ∞} Σ0
3 -complete (Theorem 16); Π0

2 -complete (Theorem 20)

{e : RTD+
1 (Le) < ∞} Σ0

4 -complete (Theorem 24)

{e : RTD+
ure(Le) < ∞} Σ0

5 -complete (Theorem 29)

countably many sets; more precisely, if we define CX
j = {x : 〈j, x〉 ∈ X} and

CX = {CX
j : j ∈ N} for any X ⊆ N, it is not difficult to apply our results to

determine the position of {X : I(CX) < ∞} for different teaching parameters
I in the hierarchy of sets of sets [12, Sect. 15.1]. We also determined first-order
formulas with the least possible quantifier complexity defining some fundamental
decision problems in algorithmic teaching. Our work may be extended in several
directions. For example, it might be interesting to investigate the arithmetical
complexity of index sets of classes of general – even non-u.r.e. – families that
are teachable under the teaching models considered in the present paper. In
particular, it may be asked whether the arithmetical complexity of the class
of teachable families with one-one numberings is less than that of the class of
teachable families that do not have one-one numberings.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45(2), 117–135 (1980)

2. Baliga, G., Case, J., Jain, S.: The synthesis of language learners. Inf. Comput. 152,
16–43 (1999)

3. Beros, A.: Learning theory in the arithmetic hierarchy. J. Symbolic Logic 79(3),
908–927 (2014)

4. Brandt, U.: The position of index sets of identifiable sets in the arithmetical hier-
archy. Inf. Control 68, 185–195 (1986)

5. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
6. Goldman, S.A., Kearns, M.J.: On the complexity of teaching. J. Comput. Syst.

Sci. 50(1), 20–31 (1995)
7. Hegedüs, T.: Generalised teaching dimensions and the query complexity of learning.

In: Proceedings of the COLT, pp. 108–117 (1995)
8. de Jongh, D., Kanazawa, M.: Angluin’s theorem for indexed families of r.e. sets

and applications. In: Proceedings of the COLT, pp. 193–204 (1996)
9. Klette, R.: Indexmengen und Erkennung Rekursiver Funktionen. Z. Math. Logik

Grundlag. Math. 22, 231–238 (1976)
10. Mazadi, Z., Gao, Z., Zilles, S.: Distinguishing pattern languages with membership

examples. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2016. LNCS, vol. 9618, pp. 528–540. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-04921-2 43

http://dx.doi.org/10.1007/978-3-319-04921-2_43
http://dx.doi.org/10.1007/978-3-319-04921-2_43

160 A.A. Beros et al.

11. Pinker, S.: Formal models of language learning. Cognition 7, 217–283 (1979)
12. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT

Press, Cambridge (1987)
13. Shinohara, A., Miyano, S.: Teachability in computational learning. New Gener.

Comput. 8(4), 337–347 (1991)
14. Zilles, S., Lange, S., Holte, R., Zinkevich, M.: Models of cooperative teaching and

learning. J. Mach. Learn. Res. 12, 349–384 (2011)

Inductive Inference

Learning Finite Variants of Single Languages
from Informant

Klaus Ambos-Spies(B)

Institut für Informatik, Heidelberg University, 69120 Heidelberg, Germany
ambos@math.uni-heidelberg.de

Abstract. We show that the family S+
L = {L ∪ {x} : x ∈ ω} ∪ {L}

consisting of the languages obtained from a given language (i.e., com-
putably enumerable set) L by adding at most one additional element can
be explanatorily learned from informant (i.e., is InfEx-learnable) if and
only if L is autoreducible. Similarly, the subfamily Ŝ+

L = {L∪{x} : x �∈ L}
of S+

L consisting of the languages obtained from L by adding exactly one
additional element can be learned from informant without mind changes
(i.e., is InfFin-learnable) if and only if L is autoreducible.

1 Introduction

In the setting of Gold’s [8] model of learning languages (i.e., computably enumer-
able sets) in the limit, numerous natural learnability criteria have been studied.
Such a criterion is determined by the mode of representation of the languages to
be identified and by the mode of convergence of the hypotheses produced by the
learner. The most common way for representing a language L is either by text
(Txt) (i.e., by a – not necessarily effective – list of the elements of L; see [8]) or
by informant (Inf) (i.e., by the characteristic sequence L(0)L(1)L(2) . . . of L;
see [7]), where the former reveals only positive information on L to the learner
whereas the latter provides negative information too. The most common conver-
gence criterion is explanatory (Ex) learning [8] where the hypotheses produced
by the learner eventually converge to a fixed computably enumerable index of
L (w.r.t. some acceptable numbering of the family of c.e. sets). More restrictive
is the setting of finite (Fin) learning [3] where, once a hypothesis is produced,
the learner is not allowed to change its mind anymore; more relaxed is the set-
ting of behaviourally correct (BC) learning [2,5] where eventually all hypotheses
have to be indices of the language to be identified but not necessarily the same
index. For more background on the theory of inductive inference and for precise
definitions of the learnability criteria see e.g. the monograph [10] by Jain et al.
or Chap. 12 of Stephan’s lecture notes [14].

Though numerous interesting learnability criteria are studied in the literature
(see [10] and [14]), one may argue that the criteria TxtFin, TxtEx, TxtBC,
InfFin, InfEx, and InfBC obtained along these lines are the most fundamental
learnability criteria in the theory of inductive inference. It is well known that
these criteria are mutually different (and that – besides the trivial implications
among these concepts – the only nontrivial implication is InfFin ⊆ TxtEx).
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 163–173, 2016.
DOI: 10.1007/978-3-319-46379-7 11

164 K. Ambos-Spies

The goal of this note is to give a uniform separation for five of these six
classes. For this sake we consider, for a given language L, the class

S+
L = {L ∪ {x} : x ∈ ω} ∪ {L} (1)

consisting of the languages obtained by adding at most one element to L (note
that, for nonempty L, the second part in the definition may be omitted since
L ∈ {L ∪ {x} : x ∈ ω}); and, for any learning criterion given above, we specify
the languages L for which S+

L is identifiable under this criterion.
For the criteria TxtFin, TxtEx, TxtBC, InfFin and InfBC, these characteri-

zations are straightforward and well known. Still, for the sake of completeness,
we present these results in Sect. 2 below. The characterization of the languages
L for which the class S+

L can be InfEx-identified, however, is less straightfor-
ward. It turns out that, for some noncomputable languages L – for instance
for the halting problem K – the class S+

L can be InfEx-identified, but there are
also languages L for which this is not the case. A complete characterization of
the languages for which S+

L can be InfEx-identified is provided by Trahtenbrot’s
notion of autoreducibility [15] which was intensively studied in other areas of
computability theory but has not been previously linked to the theory of induc-
tive inference. This characterization, which is the main result of this note, is
presented in Sect. 3.

In Sect. 4 we look at learnability of the variant

Ŝ+
L = {L ∪ {x} : x �∈ L}

of S+
L consisting of the languages obtained by adding exactly one element to L.

Since Ŝ+
L is a subclass of S+

L , namely Ŝ+
L = S+

L \ {L}, the positive learnability
results for the classes S+

L carry over to the classes Ŝ+
L . In fact, since all languages

in Ŝ+
L are incomparable, we get stronger results here. In particular, for autore-

ducible L, the class Ŝ+
L can be InfFin-learned (not just InfEx-learned as in case

of S+
L).
Finally, in Sect. 5 we shortly summarize our results, and we give some

straightforward extensions as well as some directions for further research.
Our notation is standard. For unexplained notation and for the basic defin-

itions on inductive inference we refer the reader to the monograph [10] by Jain
et al. A general reference for basic facts and notation from computability theory
is Soare [13].

2 Learnability of the Classes S+
L : Basic results

For the learning criteria TxtFin, TxtEx, TxtBC, InfFin and InfBC, the charac-
terization of the languages L for which the classes S+

L (defined in (1) above) are
identifiable is straightforward and, probably, well known. (For instance, for the
case of learning from text, see Example 12.6 in [14] where it is shown that, for
noncomputable L, S+

L ∈ TxtBC \ TxtEx.)

Learning Finite Variants of Single Languages from Informant 165

Theorem 1 (Folklore)

(i) The class S+
L is TxtFin-learnable if and only if L = ω.

(ii) The class S+
L is TxtEx-learnable if and only if L is computable.

(iii) The class S+
L is TxtBC-learnable (hence InfBC-learnable) for all c.e.

sets L.
(iv) The class S+

L is InfFin-learnable if and only if L is cofinite.

Proof. In the following let L be a fixed language, let We0 = L, and let f be a
computable function such that Wf(x) = L ∪ {x}.

(i). First assume that L = ω. Then S+
L = {L}. So, since any singleton class

of c.e. sets is TxtFin-learnable, S+
L is TxtFin-learnable.

For the (contraposition of the) converse implication, assume that L �= ω,
say x0 �∈ L. Then, for L0 = L and L1 = L ∪ {x0}, L0, L1 ∈ S+

L and L0 ⊂ L1.
But, obviously, for any languages L0 and L1 such that L0 ⊂ L1 and for any
learner M which TxtFin-learns L0, M does not TxtFin-learn L1 since any finite
initial segment of a text for L0 can be extended to a text for L1. So, for L �= ω,
S+

L �∈ TxtFin.
(ii). First assume that L is computable. Then M TxtEx-learns S+

L where M
is defined by

M(σ) = e0

if content(σ) ⊆ L and

M(σ) = f(μ x (x ∈ content(σ) \ L))

otherwise.
For the converse implication assume that M TxtEx-learns S+

L . By Blum and
Blum [4] and by L ∈ S+

L , fix a locking sequence σ for M on L (i.e., a sequence
σ such that content(σ) ⊆ L, WM(σ) = L, and, for any τ with content(τ) ⊆ L,
M(στ) = M(σ)). Then, for any computable text T for L and for any x ∈ ω,

x �∈ L ⇔ ∃ n (M(σ x T (0) . . . T (n)) �= M(σ)).

(Note that the implication “⇒” follows from the fact that M TxtEx learns S+
L

since, for x �∈ L, σxT is a text for the language L∪{x}, while the (contraposition
of the) implication “⇐” holds by the fact that σ is a locking sequence.) So L is
c.e., hence L is computable.

(iii). Let {Ls}s≥0 be a computable enumeration of L. The learner M defined
by

M(σ) =

{
e0 if content(σ) ⊆ L|σ|
f(μ x (x ∈ content(σ) \ L|σ|)) otherwise

TxtBC-learns S+
L .

(iv). First assume that L is cofinite. If L = ω then S+
L is TxtFin-learnable (by

(i)) hence InfFin-learnable. So w.l.o.g. we may assume that L = {x0, . . . , xn}
where n ≥ 0 and x0 < x1 < · · · < xn. Then M InfFin-learns S+

L where M is
defined by

166 K. Ambos-Spies

M(i(0) . . . i(m)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

? if m < xn

e0 if m ≥ xn and i(xj) = 0 for all j ≤ n

f(xj) if m ≥ xn and j ≤ n is minimal
such that i(xj) = 1.

For the converse implication, assume that S+
L is InfFin-learnable. Fix M such

that M InfFin-learns S+
L . Then there are a unique number n0 and a unique index

e of L such that M(L(0) . . . L(n0)) = e and M(L � n) = ? for n ≤ n0. It follows
that L ⊆ {0, . . . n0}. (Namely, otherwise, fix n1 �∈ L such that n0 < n1. Then M
does not InfFin-learn L ∪ {n1}.)

This completes the proof of Theorem 1.

3 InfEx-Learnable Classes S+
L

The languages L for which the classes S+
L can be explanatorily learned from

informant are just the autoreducible languages. Here a language L is autore-
ducible if there is an effective procedure for deciding the membership problem
for any number x in L provided that the information about membership in L
for all other numbers is given.

Definition 1 (Trahtenbrot [15]). A set A ⊆ ω is autoreducible if there is a
Turing functional Ψ such that, for all x ∈ ω, A(x) = ΨA\{x}(x).

Theorem 2. Let L be a language. The following are equivalent.

(i) The class S+
L is InfEx-learnable.

(ii) L is autoreducible.

Proof. (i) ⇒ (ii). Assume that S+
L ∈ InfEx, and fix an InfEx-learner M of S+

L .
By L ∈ S+

L , M InfEx-learns L whence there are a number n0 and an index e0 of
L such that

∀ n ≥ n0 (M(L(0) . . . L(n)) = e0).

Since M InfEx-learns S+
L , it follows that, for all n ≥ n0,

L(n + 1) = 0 ⇔ ∃ n′ > n + 1
(

M(L(0) . . . L(n)1L(n + 2) . . . L(n′)) �= e0

)
(2)

holds. Using a computable enumeration {Ls}s≥0 of L this allows to compute
L(n + 1) from L \ {n + 1} for n ≥ n0 as follows. Find s > n + 1 minimal such
that n + 1 ∈ Ls or M(L(0) . . . L(n)1L(n + 2) . . . L(s)) �= e0 holds. By (2) such
an s must exist, and n + 1 ∈ L iff n + 1 ∈ Ls. So L is autoreducible.

(ii) ⇒ (i). Assume that L is autoreducible, let Ψ be a Turing functional
such that L(x) = ΨL\{x}(x) for all x ≥ 0, and let {Ls}s≥0 and {Ψs}s≥0 be
computable enumerations of L and Ψ , respectively. The definition of a learner
M which InfEx-identifies S+

L is based on the following observation.

Learning Finite Variants of Single Languages from Informant 167

Claim 1. Let L̂ ∈ S+
L and let x be any number. The following are equivalent.

(a) L̂ = L ∪ {x} and x �∈ L.
(b) There are numbers y and z such that x < y < z and the following hold.

(α) L̂(x) = 1.
(β) Lz(x) = 0.
(γ) Ψ

Lz\{x}
z (x) = 0 and the use of this computation (i.e., the greatest oracle

query in this computation) is less than y.
(δ) ∀x′ < y (x′ �= x ⇒ L̂(x′) = Lz(x′)).

Proof of Claim 1. (a) ⇒ (b). Assume that L̂ = L ∪ {x} and L(x) = 0.
Then (α) is immediate and (β) and (δ) hold for all sufficiently large numbers z.
Moreover, by choice of Ψ , 0 = L(x) = ΨL\{x}(x). It follows that, for the least
y > x which strictly bounds the oracle queries in the computation of ΨL\{x}(x),
(γ) holds for all sufficiently large z. (Namely, it suffices to choose z such that
ΨL\{x}(x) converges in ≤ z steps and Lz � y = L � y.) So there is a number
z > y such that (β), (γ) and (δ) hold.

(b) ⇒ (a). Fix numbers y and z such that x < y < z and (α)–(δ) hold.
Note that, by L̂ ∈ S+

L , L is a subset of L̂. Hence, for any numbers x′ and z,
Lz(x′) ≤ L(x′) ≤ L̂(x′). So, by (δ), Lz(x′) = L(x′) for all x′ < y with x′ �= x. It
follows, by (γ) and by the Use Principle, that ΨL\{x}(x) = 0. So, by choice of
Ψ , L(x) = 0. Finally, by L̂ ∈ S+

L and (α), this implies that L̂ = L ∪ {x}.
This completes the proof of Claim 1.
Now, given a c.e. index e0 of L and a computable function f such that

Wf(x) = L ∪ {x}

for all x ≥ 0, a learner M which InfEx-learns S+
L works as follows.

Given a finite binary sequence i(0) . . . i(n), for the value of M(i(0) . . . i(n))
distinguish the following two cases. If there are numbers x, y and z such that
x < y < z ≤ n and such that conditions (α)–(δ) in Claim 1 hold if we replace
L̂(0) . . . L̂(n) by i(0) . . . i(n) there, then, for the least such x, let

M(i(0) . . . i(n)) = f(x).

Otherwise, let
M(i(0) . . . i(n)) = e0.

For the correctness of M , fix L̂ ∈ S+
L . It suffices to show that the values

M(L̂(0) . . . L̂(n)) converge to an index of L̂ (for n → ∞). Distinguish the follow-
ing two cases. First assume that L̂ = L. Then, by Claim 1, there are no numbers
x, y and z such that x < y < z and (α)–(δ) hold. So M(L̂(0) . . . L̂(n)) = e0
for all n ≥ 0, where by choice of e0 and by assumption, We0 = L = L̂. Second,
assume that L̂ = L∪{x} where x �∈ L. Then, again by Claim 1, x is unique such
that there are numbers y and z satisfying x < y < z and the conditions (α)–(δ).
So, for the least n0 such that there are such numbers y and z with z ≤ n0,

M(L̂(0) . . . L̂(n)) = e0

168 K. Ambos-Spies

for n < n0 and
M(L̂(0) . . . L̂(n)) = f(x)

for n ≥ n0 and L̂ = Wf(x).
For later use note that the above shows that, for L̂ = L ∪ {x} ∈ S+

L \ {L},
M does not only converge to an index f(x) of L̂ but it changes its mind exactly
once: namely it switches from the hypothesis L (expressed by the fixed index
e0 of L) to the hypothesis L̂ = L ∪ {x} (expressed by the fixed index f(x)) at
stage n0.

This completes the proof of Theorem 2.

Note that any computable set is autoreducible. Moreover, for any noncom-
putable language (i.e., noncomputable c.e. set) L,

L ⊕ L = {2x : x ∈ L} ∪ {2x + 1 : x ∈ L}

is a noncomputable language and autoreducible. So there are noncomputable
autoreducible languages (in fact, any c.e. many-one degree – hence any c.e. Tur-
ing degree – contains a c.e. autoreducible set). Further obvious examples of
autoreducible sets are cylinders. Since any many-one complete set is a cylinder,
it follows that the halting set K is autoreducible. By Theorem2, these observa-
tions imply

{L : L is computable} ⊂ {L : S+
L ∈ InfEx} (3)

(where ⊂ denotes a strict inclusion) and S+
K ∈ InfEx.

On the other hand, Ladner [11] has shown that there are languages L which
are not autoreducible whence, by Theorem2,

{L : S+
L ∈ InfEx} ⊂ {L : L is c.e.}, (4)

By combining (3) and (4) we obtain

{L : L is computable} ⊂ {L : S+
L ∈ InfEx} ⊂ {L : L is c.e.}.

Together with Theorem 1 this implies

Corollary 1. {L : S+
L ∈ TxtEx} ⊂ {L : S+

L ∈ InfEx} ⊂ {L : S+
L ∈ TxtBC}.

Non-autoreducible sets and their (Turing) degrees have been extensively stud-
ied. Ladner [11] has shown that a language L is autoreducible if and only if L is
mitotic (where a language A, i.e., a c.e. set A, is mitotic if A is the disjoint union
of c.e. sets A0 and A1 which are Turing equivalent to A); and in [12] Ladner
has shown that there is a noncomputable c.e. Turing degree a such that all c.e.
sets in a are autoreducible. On the other hand, Ingrassia [9] has shown that the
non-autoreducible c.e. degrees, i.e., the c.e. degrees containing non-autoreducible
languages, are dense in the c.e. degrees. For more information on the distribu-
tion of the non-autoreducible c.e. degrees among all c.e. degrees see Downey and
Slaman [6].

Learning Finite Variants of Single Languages from Informant 169

4 Learnability of the Classes Ŝ+
L

We now consider the subclass Ŝ+
L = {L ∪ {x} : x �∈ L} of S+

L consisting of the
languages obtained by adding (exactly) one element to L, i.e., Ŝ+

L = S+
L \ {L},

and we characterize the languages L for which these classes can be identified
under the criteria considered here. In the following cases these characterizations
are straightforward.

Theorem 3 (Folklore)

(i) The class Ŝ+
L is TxtFin-learnable if and only if L is computable.

(ii) For any language L, the class Ŝ+
L is TxtEx-learnable (hence InfEx-, TxtBC-

and InfBC-learnable).

Proof. Let L be a fixed language, let We0 = L, and let f be a computable
function such that Wf(x) = L ∪ {x}.

(i). First assume that L is computable. We have to show that there is a learner
M which TxtFin-learns Ŝ+

L . For L = ω this is obvious (since Ŝ+
L is empty). So

w.l.o.g. we may assume that L �= ω. Then M TxtFin-learns Ŝ+
L where

M(σ) =

{
? if content(σ) ⊆ L

f(μx(x ∈ content(σ) \ L)) otherwise.

For the converse direction, assume that Ŝ+
L is TxtFin-learnable. We have to

show that L is computable. If L is cofinite then this is trivially true. So w.l.o.g.
we may assume that L is coinfinite. Fix a learner M which TxtFin-learns Ŝ+

L ,
and let T be a computable text for L. Then, for any x ≥ 0,

x �∈ L ⇔ ∃ n (M(x(T � n)) ↓). (5)

Namely, for a proof of the direction ⇒, assume that x �∈ L. Then xT is a text
of the language L ∪ {x} ∈ Ŝ+

L whence M outputs a fixed index of L ∪ {x} on
all sufficiently long initial segments of xT . For a proof of the direction ⇐, for a
contradiction assume that there are numbers n and e such that M(x(T � n)) = e
and x ∈ L. By coinfinity of L choose x′ �∈ L such that L ∪ {x′} �= We. Then
x(T � n)x′T is a text for L ∪ {x′} and M does not TxtFin-learn L ∪ {x′} from
this text. Since L ∪ {x′} is in the class Ŝ+

L , this contradicts the choice of M .
Now, by (5), the complement L of L is c.e., hence L is computable.
(ii). For L = ω, Ŝ+

L is empty hence TxtEx-learnable. So w.l.o.g. we may
assume that L �= ω. Then, given a computable enumeration {Ls}s≥0 of L, a
learner M which TxtEx-learns Ŝ+

L is as follows. If there is a number x such that
x ∈ content(σ) \ L|σ| then let M(σ) = f(x) for the least such x. Otherwise let
M(σ) = ?.

This completes the proof of Theorem 3.

Theorem 3 leaves open the case of InfFin-learnability which we settle here.

170 K. Ambos-Spies

Theorem 4. Let L be a language. The following are equivalent.

(i) The class Ŝ+
L is InfFin-learnable.

(ii) L is autoreducible.

Proof. The proof is a variant of the proof of Theorem2. So we refer to some of
the relevant facts established there.

(i) ⇒ (ii). Assume that Ŝ+
L ∈ InfFin. Since, for computable L, the claim is

trivial, w.l.o.g. we may assume that L is noncomputable (hence coinfinite). Let
M be an InfFin-learner of Ŝ+

L . It suffices to show that

L(n) = 0 ⇔ ∃ n′ > n

(
M(L(0) . . . L(n − 1)1L(n + 1) . . . L(n′)) �= ?

)
(6)

holds. Then, as in the proof of the corresponding direction of Theorem2, we may
argue that L is autoreducible.

Now, the implication ⇒ in (6) is immediate since, for n �∈ L,

L(0) . . . L(n − 1)1L(n + 1)L(n + 2)L(n + 3) . . .

is the characteristic sequence of the language L ∪ {n} ∈ Ŝ+
L . Since M InfFin-

learns Ŝ+
L – hence L∪{n} – it follows that M(L(0) . . . L(n−1)1L(n+1) . . . L(n′))

is an index of L ∪ {n} for all sufficiently large n′.
For a proof of the implication ⇐, for a contradiction assume that

M(L(0) . . . L(n − 1)1L(n + 1) . . . L(n′)) �= ?

for some n′ > n and that n ∈ L. Fix e such that

M(L(0) . . . L(n − 1)1L(n + 1) . . . L(n′)) = e,

and, by coinfinity of L, fix x > n′ such that x �∈ L and L ∪ {x} �= We. Then
L(0) . . . L(n − 1)1L(n + 1) . . . L(n′) is an initial segment of the characteristic
sequence of L ∪ {x}, and L ∪ {x} ∈ Ŝ+

L . So M does not InfFin-learn L ∪ {x}
hence does not InfFin-learn Ŝ+

L contrary to assumption.
(ii) ⇒ (i). Assume that L is autoreducible, and let M be the learner defined

in the second part of the proof of Theorem2, which InfEx-learns S+
L . As observed

there, on a language L̂ = L ∪ {x} �= L in S+
L , M makes just one mind change

switching from the hypothesis L (expressed by index e0) to the hypothesis L̂
(expressed by index f(x)). So M can be converted into a learner which learns
Ŝ+

L = S+
L \ {L} from informant without mind changes by replacing the clause

M(i(0) . . . i(n)) = e0 in the definition of M by M(i(0) . . . i(n)) = ?.
This completes the proof of Theorem 4.

Learning Finite Variants of Single Languages from Informant 171

5 Summary

The results of this note can be summarized as follows where L is assumed to
be a language (i.e., a c.e. set), S+

L is the class of languages obtained by adding
at most one element to L, and Ŝ+

L is the class of languages obtained by adding
(exactly) one element to L.

Criterion S+
L is learnable if and only if Ŝ+

L is learnable if and only if
TxtFin L = ω L is computable
TxtEx L is computable L is any language
TxtBC L is any language L is any language
InfFin L is cofinite L is autoreducible
InfEx L is autoreducible L is any language
InfBC L is any language L is any language

(7)

Since the class of autoreducible languages splits the class of the noncom-
putable languages, the results in the first column show that the major learning
criteria TxtFin, InfFin,TxtEx, InfEx and TxtBC (or InfBC in place of TxtBC)
can be pairwise distinguished by considering the languages L for which the classes

S+
L = {L ∪ {x} : x ≥ 0} ∪ {L} = {L̂ : L ⊆ L̂ & |L̂ \ L| ≤ 1}

can be learned under the respective criterion.
In fact, for the incomparable learnability criteria TxtBC and InfEx, the

classes S+
L provide a witness for the non-inclusion TxtBC �⊆ InfEx. The sep-

aration of the criteria TxtBC and InfBC is not witnessed by learnability of the
classes S+

L , however, whence, in particular, the non-inclusion InfEx �⊆ TxtBC
cannot be shown this way.

We obtain witnesses for these separations, however, by considering the dual
classes

S−
L = {L \ {x} : x ≥ 0} ∪ {L} = {L̂ : L̂ ⊆ L & |L \ L̂| ≤ 1}

consisting of the languages L̂ obtained from a given language L by omitting
at most one element. Namely, for infinite L, S−

L �∈ TxtBC. (This easily follows
from the fact that, for any learner M which TxtBC-learns L, there is a TxtBC-
locking sequence for M on L, i.e., a finite sequence σ such that content(σ) ⊆ L,
WM(σ) = L, and, for any finite sequence τ with content(τ) ⊆ L, WM(στ) = L; see
Exercise 6–9 in [10] for the existence of such sequences.) On the other hand, for
any language L, S−

L ∈ InfEx. (Namely, given a computable enumeration {Ln}n≥0

of L, a learner M which uses the following strategy InfEx-learns S−
L : given a finite

initial segment L̂ � n of the characteristic sequence of a language L̂, distinguish
the following two cases. If there is a number x < n such that x ∈ Ln and
(L̂ � n)(x) = 0 then, for the least such x, M guesses that L̂ = L\{x}. Otherwise,
M guesses that L̂ = L.) So, for any infinite language L, S−

L ∈ InfEx \ TxtBC
thereby giving the desired separation.

172 K. Ambos-Spies

More systematically, we obtain the following classification of the learnability
of classes S−

L and the corresponding classes

Ŝ−
L = {L \ {x} : x ∈ L} = {L̂ : L̂ ⊂ L & |L \ L̂| = 1}

consisting of the languages obtained by omitting (exactly) one element of a given
language L.

Criterion S−
L is learnable if and only if Ŝ−

L is learnable if and only if
TxtFin L = ∅ L is finite
TxtEx L is finite L is any language
TxtBC L is finite Lis any language
InfFin L is finite L is any language
InfEx L is any language L is any language
InfBC L is any language L is any language

(8)

We omit the proofs of the claims in (8) since they are standard.
There are obvious ways to extend our results. First, one may consider learn-

ability of the above classes under other learning criteria. Second, one may con-
sider other classes of finite variants of a single language L. Here we have con-
sidered only the cases where (at most) one element is added or (at most) one
element is deleted. For instance one may consider the case of finite extensions of
the given language L, i.e., the class

S̃+
L = {L ∪ F : F is finite}.

For these classes, one of the referees pointed out the following interesting result
on InfEx-learnability: the class S̃+

L can be InfEx-learned if and only if the lan-
guage L is “upward autoreducible” in the sense that there is a Turing functional
Ψ such that

L(x) = ΨL\{0,...,x}(x)

for all numbers x. (Note that any upward autoreducible set is autoreducible but
the converse is not true in general. For instance, for a non-autoreducible set A,
the selfjoin A ⊕ A of A is autoreducible but not upward autoreducible.)

Acknowledgements. We would like to thank Wolfgang Merkle for some very help-
ful discussions and one of the anonymous referees for his very useful comments and
suggestions.

Learning Finite Variants of Single Languages from Informant 173

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45(2), 117–135 (1980)

2. Barzdinš, Ja.M.: Two theorems on the identification in the limit of functions.
(Russian) Latviisk. Gos. Univ. Učen. Zap. 210 Teorija Algoritmov i Programm
No. 1, pp. 82–88 (1974)

3. Barzdinš, J., Freivalds, R.: On the prediction of general recursive functions. Sov.
Math. Doklady 13, 1224–1228 (1972)

4. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf.
Control 28, 125–155 (1975)

5. Case, J., Lynes, C.: Machine inductive inference and language identification.
Automata, Languages and Programming. LNCS, vol. 140, pp. 107–115. Springer,
Berlin (1982)

6. Downey, R.G., Slaman, T.A.: Completely mitotic R.E. degrees. Ann. Pure Appl.
Logic 41(2), 119–152 (1989)

7. Freivalds, R.V., Wiehagen, R.: Inductive inference with additional information.
Elektron. Informationsverarb. Kybernet. 15(4), 179–185 (1979)

8. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
9. Ingrassia, M.A.: P-genericity for recursively enumerable sets. Thesis (Ph.D.), Uni-

versity of Illinois at Urbana-Champaign, ProQuest LLC, Ann Arbor, MI, 162 p.
(1981)

10. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn, An Intro-
duction to Learning Theory, 2nd edn. The MIT Press, Cambridge (1999)

11. Ladner, R.E.: Mitotic recursively enumerable sets. J. Symb. Logic 38, 199–211
(1973)

12. Ladner, R.E.: A completely mitotic nonrecursive R.E. degree. Trans. Am. Math.
Soc. 184, 479–507 (1973, 1974)

13. Soare, R.I.: Recursively Enumerable Sets and Degrees. A Study of Computable
Functions and Computably Generated Sdets. Perspectives in Mathematical Logic.
Springer, Berlin (1987). xviii+437

14. Stephan, F.: Recursion Theory. National University of Singapore, Lecture Notes
(2012). http://www.comp.nus.edu.sg/∼fstephan/recursiontheory-pstopdf.pdf

15. Trahtenbrot, B.A.: Autoreducibility. (Russian). Dokl. Akad. Nauk SSSR 192,
1224–1227 (1970)

http://www.comp.nus.edu.sg/~fstephan/recursiontheory-pstopdf.pdf

Intrinsic Complexity of Partial Learning

Sanjay Jain1(B) and Efim Kinber2

1 School of Computing, National University of Singapore,
Singapore 117417, Singapore
sanjay@comp.nus.edu.sg

2 Department of Computer Science, Sacred Heart University,
Fairfield, CT 06432-1000, USA
kinbere@sacredheart.edu

Abstract. A partial learner in the limit [16], given a representation of
the target language (a text), outputs a sequence of conjectures, where
one correct conjecture appears infinitely many times and other conjec-
tures each appear a finite number of times. Following [5,14], we define
intrinsic complexity of partial learning, based on reducibilities between
learning problems. Although the whole class of recursively enumerable
languages is partially learnable (see [16]) and, thus, belongs to the com-
plete learnability degree, we discovered a rich structure of incomplete
degrees, reflecting different types of learning strategies (based, to some
extent, on topological structures of the target language classes). We also
exhibit examples of complete classes that illuminate the character of the
strategies for partial learning of the hardest classes.

1 Introduction

In his seminal paper [8], E.M. Gold introduced the framework for algorith-
mic learning of languages in the limit from their representations (texts), which
became the standard for exploring learnability of languages in the limit (see,
for example [16]). In this model (we will refer to it as TxtEx), a learner out-
puts an infinite sequence of conjectures stabilizing on a correct grammar for
the target language. However, Gold himself was the first one to notice that the
TxtEx model has a strong limitation: whereas the class of all finite languages
is easily learnable within this framework, no class L containing just one infinite
language and all its finite subsets is TxtEx-learnable. In particular, the class of
all regular languages cannot be learnt in the limit just from positive data. To
capture the extent to which the aforementioned class L would still be learnable
from positive data, Osherson, Stob and Weinstein [16] introduced the concept
of partial learning in the limit: a learner outputs an infinite sequence of conjec-
tures, where one correct grammar of the target language occurs infinitely many
times, whereas all other conjectures occur at most a finite number of times. The

S. Jain—Supported in part by NUS grant numbers C252-000-087-001 and R146-000-
181-112.
E. Kinber—Supported by URCG grant from Sacred Heart University.

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 174–188, 2016.
DOI: 10.1007/978-3-319-46379-7 12

Intrinsic Complexity of Partial Learning 175

aforementioned class L containing an infinite recursive language L and all its
finite subsets is easily learnable in this model by a simple strategy that, every
time when a new datum appears on the input, conjectures a grammar for L,
and conjectures some standard code for the input seen so far, otherwise. Yet,
as it was noted in [16], partial learning, without any other constraints, is very
powerful: the whole class of all recursively enumerable languages turns out to
be partially learnable — albeit by a much more complex strategy than the one
trivially learning the aforementioned class L.

Partial learning, under various natural constraints, has attracted a lot of
attention recently (see, for example, [6,7,9,10,15]). Though partial learning can
be done for the whole class of recursively enumerable sets, partial learning with
constraints gives interesting results. Although partial learning does not seem to
be as natural as Gold’s classical model of inductive inference, one can hope that
partial learning strategies for important classes of languages (like the class of
regular languages) not learnable within Gold’s framework can shed new light on
the general problem of learnability of such classes (and, perhaps, their impor-
tant subclasses) from positive data and, possibly, additional information. For
example, if a relatively simple partial learning strategy for the class of regu-
lar languages from positive data is found, one can try to look at what kind of
reasonable additional information could be sufficient for converting such partial
strategy to a more realistic learning strategy for this class (perhaps, it could be
different from Angluin’s classical strategy for learning regular languages from
membership queries and counterexamples to conjectures [2]). We hope that our
paper can be a start for this line of research.

One of the potential issues is to understand exactly how partial learning hap-
pens and what is involved in it, as, at no particular instant, one can say what is
the current “planned” hypothesis of the learner. To understand more about par-
tial learning, we consider reductions between different learning problems (classes
of languages). Reductions gave an interesting structure in explanatory learning
(see [4,5,12–14]), and we hope to be able to understand much more about partial
learning using reductions between different classes, which would, in some sense,
highlight the ease/difficulty of partial learning of various subsets of the full class
of all recursively enumerable languages.

Thus, our main goal in the current research is to find natural, yet non-TxtEx-
learnable, classes (in particular, indexed classes [1], with decidable membership
problem) and — whenever it would be possible — corresponding natural partial
learning strategies that would be simpler than that for the class of all recursively
enumerable languages. The concept of reducibility between partial learnability
problems that we introduce in this paper is based on similar models defined
first for learning in the limit of classes of recursive functions in [5] and then,
for TxtEx-learnability in [14] (see also [4] for a related but different concept of
complexity of learning).

A partial learnability problem (a class of languages L) is reducible to another
partial learning problem (a class of languages L′) if there exist two computable
operators, Θ and Ψ , such that (a) Θ translates every text for a language in L to a

176 S. Jain and E. Kinber

text for a language in L′ and (b) Ψ translates every sequence of conjectures where
a grammar for a language L′ ∈ L′ occurs infinitely many times and all other
conjectures occur at most a finite number of times (we will call such sequences
of conjectures admissible) back to an admissible sequence of conjectures for the
language L ∈ L such that some text for L is translated by Θ to a text for
L′. We make a distinction between strong reducibility, where Θ translates every
text for the same language in L to a text for the same language in L′ and weak
reducibility, where Θ may translate different texts of the same language L ∈ L to
texts of different languages in L′. Based on this concept of reducibility, one can
naturally define degrees of learnability and the complete degree (which contains
the class of all recursively enumerable languages).

Firstly, we found two relatively simple and transparent classes that are com-
plete for weak and, respectively, strong reducibilities — these classes illuminate
the character of the partial learning strategies for the hardest problems. We also
show (Theorem 13) that the class of all recursive languages is not strongly com-
plete. In particular, it means that all indexed classes, including the class of all
regular languages, are not strongly complete.

A major accomplishment of our research is the discovery of a rich structure of
incomplete classes under the degree of the class of all regular languages — based
on a number of classes representing certain natural partial learning strategies.
In particular, we define the class iCOINIT, which contains an infinite chain
L1, L2, . . . of infinite recursive subsets of a recursive infinite language, and all
their finite subsets, where, for every i, Li+1 ⊂ Li. The natural strategy to learn
this class, when choosing an infinite language as its conjecture, immediately
finds out an upper bound on the possible number of infinite languages that may
be conjectured in the future. We also define the counterpart of iCOINIT, the
class iINIT, which also contains an enumerable, but indefinitely growing chain
of infinite recursive languages and all their finite subsets. The natural learning
strategy for iINIT, when choosing an infinite language as its conjecture, also
faces a bound on the number of infinite languages that can be conjectured in the
future, but unlike the case of iCOINIT, this bound is not known to the learner.
We show that iCOINIT is weakly reducible to iINIT (Theorem 15), yet it is
not strongly reducible to iINIT (Theorem 16); also, iINIT is not even weakly
reducible to iCOINIT (Theorem 17).

We also introduce the class iRINIT, which contains an infinitely growing
chain of recursive languages and all their finite subsets, yet, unlike the case
of iINIT, the enumeration of members of the chain is based on the set of all
rational numbers between 0 and 1. In particular, for any two infinite languages
L,L′ ∈ iRINIT, L ⊂ L′, there is another language in iRINIT between L
and L′. We show that iRINIT is not weakly complete (Corollary 19), yet all
variants and generalizations formed using iINIT and iCOINIT (as defined in
this paper) are strongly reducible to iRINIT (Theorem 26), and iRINIT is
strongly reducible to none of them (Theorem26). On the other hand, iRINIT
itself turns out to be weakly reducible to iINIT (Theorem 22). iRINIT is also
strictly under the degree of all regular languages (Theorems 18 and 24).

Intrinsic Complexity of Partial Learning 177

We also define a variant iCOINITk of iCOINIT, which, in addition to every
infinite language L in the chain, contains also all languages extending L by at
most k additional elements. A natural strategy learning an infinite target lan-
guage L ∈ iCOINITk, when a new datum appears on the input, first conjectures
an infinite language M ∈ iCOINIT, and when up to k new elements x /∈ M
appear on the input, conjectures appropriate finite variants of M , before moving
to the next M ′ in the chain when the number of new data not in M exceeds
k. Similarly the variant iINITk is defined for iINIT. Interestingly, though, all
classes iCOINITk, k ≥ 1 turn out to be strongly reducible to iCOINIT1 and,
respectively, all classes iINITk, k ≥ 1 are strongly reducible to iINIT1. Yet,
surprisingly, iINIT1 is not strongly reducible to iINIT and iCOINIT1 is not
even weakly reducible to iCOINIT (see Theorem 25). All these classes, though,
are weakly reducible to iINIT (as iRINIT is weakly reducible to iINIT, see
above).

Lastly, based on similar multidimensional classes of languages defined in [13],
one can define classes of “multidimensional” languages, where partial learning
of one “dimension” aids in learning next “dimension”. For example, one can,
using cylindrification, define the class (iINIT, iCOINIT), where the conjecture
that is output infinitely many times for the first “dimension” can be used to
partially learn the second “dimension”. We have extended this idea to any arbi-
trary sequence Q of iINIT and iCOINIT and have shown that if a sequence
Q is a proper subsequence of Q′, then the class corresponding to Q is strongly
reducible to the one corresponding to Q′, but not vice versa. Due to space con-
straints, results on multi-dimensional languages are not described in this paper
but will be given in the full paper.

Our result on the incompleteness of any indexed class suggests that there
may exist natural, relatively simple, strategies that can partially learn an indexed
class. This can shed a new light on the potential of learnability of many important
classes of languages from positive data.

2 Preliminaries

Any unexplained recursion theoretic notation is from [17]. N denotes the set of
natural numbers {0, 1, 2, . . .}. A language is any subset of N . We let ∅,⊆,⊂,⊇,⊃
denote empty set, subset, proper subset, superset and proper superset respec-
tively. AΔB denotes the symmetric difference of sets A and B, that is AΔB =
(A − B) ∪ (B − A). L = N − L denotes the complement of L. We let card(S)
denote the cardinality of a set S. For S ⊆ N , let max(S),min(S) respectively
denote maximum and minimum of a set S, where min(∅) = ∞ and max(∅) = 0.
We sometimes use sets of rational numbers. In this case, we use max(S) to denote
the least upper bound of the rational numbers in the set S.

A finite set S ⊆ N can be coded as code(S) =
∑

x∈S 2x. Di denotes the finite
set A with code(A) = i.

ϕ denotes a fixed standard acceptable numbering [17]. ϕi denotes the i-th
program in the acceptable numbering ϕ. Let Wi = domain(ϕi). Thus, Wi is

178 S. Jain and E. Kinber

the language/set enumerated by the i-th grammar in the acceptable program-
ming system W0,W1, Let Φ be a Blum complexity measure [3] for the ϕ
programming system. Let

ϕi,s(x) =

{
ϕi(x), if x < s and Φi(x) < s;
↑, otherwise

Let Wi,s = domain(ϕi,s). Intuitively, Wi,s+1 − Wi,s can be thought of as the
elements enumerated by Wi in (s + 1)-th step. For purposes of this paper, one
can assume without loss of generality that Wi,s+1 − Wi,s contains at most one
element.

R denotes the class of all recursive languages. E denotes the class of all
recursively enumerable sets.

An indexed family is a family (Li)i∈N of languages such that there exists a
recursive function f uniformly deciding the membership question for Li, that is,
for all i, x, f(i, x) = 1 iff x ∈ Li.

Let 〈·, ·〉 denote a fixed recursive bijection from N × N to N . 〈·, ·〉
can be extended to pairing of n-ary tuples by taking 〈x1, x2, . . . , xn〉 =
〈x1, 〈x2, . . . , xn〉〉. For notation convenience we let 〈x〉 = x. Let
πn

i (〈x1, x2, . . . , xn〉) = xi, where we drop the superscript in case n = 2.
Let pad(·, ·) be a 1–1 recursive function, increasing in both its arguments,

such that for all i and j, ϕpad(i,j) = ϕi. Note that there exists such a padding
function pad (see [17]).

RAT0,1 denotes the set of rational numbers between 0 and 1 (both inclusive).
Let ntor be a recursive bijection from N to RAT0,1. Let rton be the inverse of
ntor. Left r.e. real means a real number which is approximable from below using
rational numbers enumerated by a recursive procedure. That is, a real number
r is called a left r.e. real iff there exists a recursive function f mapping N to the
set of rational numbers such that: for all i, f(i) ≤ f(i + 1), and limi∈N f(i) = r.

We now give some concepts from language learning theory. Let # be a special
pause symbol. A finite sequence σ is a mapping from an initial segment of N
to (N ∪ {#}). Let Λ denote the empty sequence. SEQ denotes the set of all
finite sequences. A text is a mapping from N to (N ∪ {#}). Let |σ| denote the
length of sequence σ. Let T [n] denote the initial segment of length n of the text
T . For n ≤ |σ|, σ[n] denotes the initial segment of length n of the sequence
σ. The concatenation of sequences σ and τ is denoted by σ � τ . The content
of T , denoted content(T), is the set of the numbers in the range of T , that is,
{T (n) : n ∈ N} − {#}. Let content(σ) be defined similarly. We say that T is a
text for a language L iff content(T) = L.

A language learning machine is a partial computable function which maps
SEQ to N . We let M, with or without decorations, range over learning machines.

Definition 1. [16]

(a) M Part-learns L iff for all texts T for L,

Intrinsic Complexity of Partial Learning 179

(i) for all n, M is defined on T [n],
(ii) there exists a unique p such that p = M(T [n]) for infinitely many n,

and
(iii) for p as in (ii) above, Wp = L.

(b) M Part-learns a class L iff it Part-learns each L ∈ L.
(c) Part = {L : (∃M)[M Part-learns L}.

It can be shown that E is Part-learnable [16]. If M Part-learns a class L
then we say that M witnesses Part-learnability of L. If an infinite sequence
p0p1 . . . satisfies the following two requirements:

(i) there exists a unique p such that p = pn for infinitely many n, and
(ii) for p as in (i) above, Wp = L,

then, we say that the sequence p0p1 . . . witnesses Part-learnability of L.
An enumeration operator (or just operator) Θ is an algorithm mapping from

SEQ to SEQ such that for all σ, τ ∈ SEQ, if σ ⊆ τ , then Θ(σ) ⊆ Θ(τ). We let
Θ(T) =

⋃
n∈N Θ(T [n]).

We further assume that limn→∞ |Θ(T [n])| = ∞, that is texts are mapped to
texts by the operator Θ. Note that any operator Θ can be modified to satisfy
the above property without violating the content of its output on infinite texts.

We will also use Θ as an operator on languages (rather than individual texts
representing them, as above). Note that, in general, for different texts T, T ′ of a
language L, Θ may produce texts Θ(T) and Θ(T ′) of different languages. Thus,
we define Θ(L) as a collection of languages: Θ(L) = {content(Θ(T)) : T is a
text for L}, and, accordingly, the image Θ(L) =

⋃
L∈L Θ(L). In the special case

(important for our strong reductions, defined below), when Θ(L) is a singleton
{L′}, we abuse notation and say simply Θ(L) = L′. (Note that if Θ(L) = {L′},
then L′ =

⋃
σ:content(σ)⊆L content(Θ(σ))).

We let Θ and Ψ range over operators, where for ease of notation, we assume
that for Ψ the input and output sequences contain only elements of N (and thus
do not contain #). We view Ψ as mapping sequences of grammars to sequences
of grammars. Again, as in the definition of operator Θ, we assume that Ψ maps
infinite sequences to infinite sequences. This can be easily done without changing
the set of grammars which appear infinitely often in the sequence.

The following two definitions are based on the corresponding reductions for
explanatory function learning [5] and explanatory language learning [14]. In these
definitions, we view operators Θ as mapping texts to texts, as well as mapping
languages to collections of languages (as discussed above).

Definition 2. We say that L ≤Weak
Part L′ iff there exist operators Θ and Ψ such

that

(a) for all L ∈ L, Θ(L) ⊆ L′.
(b) for all L ∈ L, for all L′ ∈ Θ(L), if p0p1 . . . is a sequence witnessing Part-

learnability of L′, then Ψ(p0p1 . . .) witnesses Part-learnability of L.

180 S. Jain and E. Kinber

Intuitively, Θ reduces a text for a language L ∈ L to a text for a language
L′ ∈ L′. Ψ then converts sequences witnessing Part-learnability of L′ to sequences
witnessing Part-learnability of L.

However, as we noted above, different texts for L may be mapped by Θ to
texts for different languages in L′. If we require that the mapping should be to
the texts of the same language, then we get strong reduction.

Definition 3. We say that L ≤Strong
Part L′, iff there exist operators Θ and Ψ such

that

(a) Θ and Ψ witness that L ≤Weak
Part L′ and

(b) for all L ∈ L, card(Θ(L)) = 1.

For ease of notation, when considering strong reductions, as discussed above, we
consider Θ as directly mapping languages to languages, rather than considering
it as a mapping from languages to a set containing just one language.

We say that L <Weak
Part L′ if L ≤Weak

Part L′ but L′ �≤Weak
Part L. Similarly, L ≡Weak

Part

if L ≤Weak
Part L′ and L′ ≤Weak

Part L.
Similarly, we can define L <Strong

Part L′ and L ≡Strong
Part L′.

Definition 4. We say that L is ≤Weak
Part -complete if

(a) L ∈ Part and
(b) For all L′ ∈ Part, L′ ≤Weak

Part L.

≤Strong
Part -completeness can be defined similarly.

We now define some languages and classes which are often used in the paper.
We used the names iINIT, iCOINIT, iRINIT for the classes defined below
as the infinite languages in these classes are obtained by cylindrification of the
languages in INIT , COINIT and RINIT used in the literature (the class
INIT contains languages {1, 2, . . . , i} and COINIT contains languages {i, i +
1, i + 2, . . .}; RINIT is similar to INIT and contains, for each r ∈ R0,1, the
language having (the representatives of) rational numbers below r). Additionally
the classes iINIT, iCOINIT, iRINIT contain all the finite languages. For i ∈
N, r ∈ RAT0,1,

(a) INIT i = {〈x, y〉 : x, y ∈ N and x ≤ i},
(b) COINIT i = {〈x, y〉 : x, y ∈ N and x ≥ i},
(c) RINIT r = {〈x, y〉 : x, y ∈ N and ntor(x) ≤ r},
(d) INIT i,s = Ds ∪ INIT i,
(e) COINIT i,s = Ds ∪ COINIT i,
(f) FIN = {L : L is finite},
(g) iINIT = {INIT i : i ∈ N} ∪ FIN ,
(h) iCOINIT = {COINIT i : i ∈ N} ∪ FIN ,
(i) iRINIT = {RINIT r : r ∈ RAT0,1} ∪ FIN ,
(j) iINITk = iINIT ∪ {INIT i,s : card(Ds) ≤ k, i ∈ N},
(k) iCOINITk = iCOINIT ∪ {COINIT i,s : card(Ds) ≤ k, i ∈ N}.

Intrinsic Complexity of Partial Learning 181

A natural partial learning strategy for the languages in iINIT is as follows:
when a new datum 〈j, x〉, where j is larger than all m for all pairs 〈m, y〉 seen so
far, appears on the input, the learner, for the first time, outputs the conjecture
INIT j . Now, as long as no new (not previously seen) datum appears on the
input, the learner conjectures the finite set representing the input seen so far;
if a new datum (not previously seen) from INIT j appears on the input, the
learner repeats the conjecture INIT j . This continues as long as no datum outside
INIT j is seen. Clearly, the correct language INIT j or some finite input set is
the only one that will be conjectured infinite number of times. A similar strategy
works for iRINIT.

For iCOINIT a similar strategy chooses a new infinite conjecture COINIT j

when a new pair 〈j, x〉, where j is smaller than all m for all pairs 〈m, y〉 seen so far,
appears on the input. Otherwise, the strategy is identical to the one for iINIT.

For iINITk the above iINIT-learning strategy can be adjusted as follows:
the learner keeps track of the smallest j such that the set E = {〈x, y〉 : x > j and
〈x, y〉 is seen in the input so far} has at most k elements. Then, the strategy for
learning iINITk is similar to that of iINIT, except that whenever the strategy
for iINIT outputs an infinite conjecture, strategy for iINITk outputs an infinite
conjecture for INIT j,s, where Ds = E, where j, E are as described above. Similar
modification to the strategy for iCOINIT works for iCOINITk.

3 Basic Properties of Reductions

In this section, we establish a number of technical facts used in many proofs of
our results.

Lemma 5. Suppose Θ witnesses part (a) of Definition 2 for L ≤weak
Part L′. Sup-

pose F1, F2 are computable functions such that, for any L ∈ L and L′ ∈ Θ(L),
the following three properties hold:

(i) if L′ is finite, then F1(L′) is a grammar for L.
(ii) if L′ is infinite and p is a grammar for L′, then limt→∞ F2(p, t) exists and

is a grammar for L.
(iii) if L′ is infinite, then for any sequence of finite sets S1, S2, . . . such that

S0 ⊂ S1 ⊂ S2 . . . and
⋃

i∈N Si = L′, for all t, for all but finitely many t′,
F1(St) �= F1(St′).

Then, there exists a Ψ such that, for all L ∈ L, for any sequence of gram-
mars p0p1 . . . witnessing Part-learnability of L′ ∈ Θ(L), Ψ(p0p1 . . .) = q0q1 . . .
witnesses Part-learnability of L.

The above lemma is useful in simplifying the construction of Ψ in many of
the proofs: we can just give the relevant F1 and F2.

Proposition 6. There exists an operator Ψ such that for any sequence q0q1 . . .,
Ψ(q0q1 . . .) = q′

0q
′
1, . . . such that:

182 S. Jain and E. Kinber

(a) at most one grammar appears in q′
0q

′
1 . . . infinitely often,

(b) if q is the least grammar which appears infinitely often in q0q1 . . ., then q′

appears infinitely often in q′
0q

′
1 . . ., where Wq′ = Wq.

Proof. Let q′
i = pad(qi, j), where j = card({i′ : i′ ≤ i and qi′ < qi}). It is easy to

verify that the above sequence satisfies the requirements of the proposition. �

The above proposition is useful to simplify some of the constructions for Ψ
in our proofs.

Proposition 7. Suppose L ≤weak
Part L′ as witnessed by Θ and Ψ . Then, for all

distinct L,L′ ∈ L, Θ(L) ∩ Θ(L′) = ∅.
Proposition 8. For any operator Θ, if L ⊆ L′, Θ(L) = {X} and Θ(L′) =
{X ′}, then X ⊆ X ′.

Proposition 9. Suppose L is infinite and L contains L and all finite subsets of
L. Suppose further that L ≤weak

Part L′ as witnessed by Θ and Ψ . Then, for all finite
sets S such that S ⊆ L′ for some L′ ∈ Θ(L), there exists an infinite superset of
S in Θ(L) (in particular, Θ(L) contains an infinite language).

4 Complete Classes and the Class R
As E ∈ Part, we trivially have that E is ≤Strong

Part -complete. The following results
give some simple classes which are complete.

Let iCOINIT∗ = {COINIT i ∪ A : i ∈ N and A is finite}. We first show
that every text for every recursively enumerable language can be appropriately
“encoded” as a text for some language in iCOINIT∗ — thus showing that
iCOINIT∗ is weakly complete.

Theorem 10. iCOINIT∗ is ≤weak
Part -complete.

Proof. To show that E ≤weak
Part iCOINIT∗, define Θ and Ψ as follows.

Suppose T is a given text. Let Cp,T = max({t : Wp,t ⊆ content(T) and
content(T [t]) ⊆ Wp}). Note that Cp,T can be approximated from below (that is,
there exists a recursive function f such that f(p, T [n]) ≤ f(p, T [n + 1]) ≤ Cp,T

and limn→∞ f(p, T [n]) = Cp,T .
Define Θ as follows. Θ(T) = T ′ such that content(T ′) = {〈q, x〉 : (∃q′ ≤

q)[x ≤ Cq′,T]}.
Now, suppose p is the least grammar for Wp, T is a text for Wp, and T ′ =

Θ(T). Then, it is easy to verify that content(T ′) = COINIT p,s, for some s, as
Cp,T = ∞, but Cp′,T < ∞ for p′ < p.

We define Ψ ′ as follows.
Ψ ′(p0p1 . . .) = q0q1 . . ., where
qi = pad(j, pi), where, for some x, 〈j, x〉 is the last new element enumerated

in Wpi,k and k is the number of times pi appears in p0p1 . . . pi.

Intrinsic Complexity of Partial Learning 183

Claim 11. Suppose L ∈ E, and L′ ∈ Θ(L).
If p0p1 . . . witnesses Part-learnability of L′, then q0q1 . . . is a sequence sat-

isfying:
there exists a minimal q such that q appears infinitely often in q0q1 . . . and

this q = pad(j, p), for minimal grammar j for L and some p.

To see the claim, suppose L′ ∈ Θ(L) and p0, p1 . . . is a sequence witnessing Part-
learnability of L′ and Ψ ′(p0p1 . . .) = q0q1 Suppose p is the only grammar
which appears infinitely often in p0p1 Then only qi with pi = p can possibly
appear infinitely often in the sequence q0q1 . . . as qi used pi in its padding.
Furthermore, pad(j, p), with j ≥ min({e : We = L}) appear infinitely often in
the sequence q0q1 The claim follows.

Now the theorem follows using Proposition 6. �
We now consider a ≤Strong

Part -complete class.
Let V (L) = 1

4 +
∑

x∈L 4−x−1.
Intuitively, V maps languages to real numbers where the mapping is

monotonic in L. Furthermore, if L �= L′ and min(LΔL′) ∈ L, then V (L) >
V (L′).

The reason for choosing the additive part “1
4” is just to make sure that V (L)

is non-zero.
Let Lr0,r1,...,rk

= {〈i, x〉 : i < k and ntor(x) < ri or i ≥ k and ntor(x) < rk}.
Let ST RCOMP = {Lr0,r1,...,rk

: k ∈ N, r0 ≤ r1 ≤ . . . ≤ rk, and
r0, r1, . . . , rk are left r.e. reals}.

ST RCOMP denotes “strong complete class”. The languages in ST RCOMP
can be thought of as follows: in the i-th cylinder we keep rational numbers < ri.
The ri’s are monotonically non-decreasing left r.e. real numbers and the sequence
r0, r1, . . . converges (that is, for some k, for all i ≥ k, ri = rk). We suggest the
reader to contrast this class with the previously defined class iRINIT (which,
in the sequel, will be shown to be incomplete).

Theorem 12. ST RCOMP is ≤Strong
Part -complete.

Proof. For any index i and any language L, let
Xi,L = {x

y : x, y ∈ N, y �= 0, x
y < V (Wi ∩L) and x, y ≤ min({t : Wi,t −L �= ∅})}.

Intuitively, sup(Xi,L) gives a value to how much Wi and L are similar to
each other:

(P1) If Wi = L, then sup(Xi,L) is V (L) (as min({t : Wi,t − L �= ∅}) is infinite).
(P2) If Wi �= L, then sup(Xi,L) < V (L). To see this note that if L �⊆ Wi, then

clearly V (Wi ∩ L) < V (L) and thus sup(Xi,L) ≤ V (Wi ∩ L) < V (L). On
the other hand, if Wi �⊆ L, then sup(Xi,L) < V (Wi ∩ L) ≤ V (L), as Xi,L

is a finite set and the supremum of a finite set of rational numbers < r is
< r for any positive real number r.

Note that Xi,L depends only on i and L and not on the particular presen-
tation of L. This allows us to construct Θ (and corresponding Ψ) which give a
strong reduction from E to ST RCOMP.

184 S. Jain and E. Kinber

Θ(L) =
⋃

i∈N [{〈i, y〉 : (∃i′ ≤ i)(∃s ∈ Xi′,L)[ntor(y) ≤ s]}].
Intuitively, Θ just collects all the members of Xi,L in the i-th cylinder and

then does an upward closure.
Note that Θ(L) can be enumerated from a text T for L. Moreover, Θ(L)

depends only on L and not on the particular presentation T , and thus the reduc-
tion is a strong reduction.

We say that m improves at time step j in the enumeration of Wp, if, for
some x, the following two conditions are satisfied:

(i) 〈m,x〉 gets enumerated at time step j in Wp.
(ii) Suppose j′ < j is the largest earlier time step when m improved, if any, in

the enumeration of Wp (take j′ = 0, if m did not improve earlier). Then, for
any y such that 〈m′, y〉 ∈ Wp,j′ , ntor(x) > ntor(y).

Note that for any grammar p for L′ = Lr0,r1,...,rk
, with r0 ≤ r1 ≤ r2 . . . ≤

rk−1 < rk, k improves at infinitely many steps j in the enumeration of Wp, but
0, 1, . . . , k − 1 improve only for finitely many steps j in the enumeration of Wp.

We define an operator Ψ ′ as follows. This can then be converted to the desired
Ψ using Proposition 6. Ψ ′(p0p1 . . .) = q0q1 . . ., where qi is defined below. Note
that if L ∈ E , Θ(L) = L′ and p0, p1, . . . witnessed Part-learning of L′, then we
want Ψ(p0p1 . . .) to witness Part-learning of L.

Without loss of generality assume that, for any k, Wk enumerates at most
one element at any step. For any fixed i, suppose pi appears j times in p0p1 . . . pi,
and mi improves at step j in the enumeration of Wpi

(if no such mi exists, then
take mi to be i + 1). Then, let qi = pad(mi, pi).

Now suppose L ∈ E and L′ = Θ(L) and i is the minimal grammar for L.
Then, by the properties (P1) and (P2), for all j < i, sup(Xi,L) > sup(Xj,L), and
for all j ≥ i, sup(Xi,L) ≥ sup(Xj,L). Thus, L′ is of the form Lr0,r1,...,ri

, where
r0 ≤ r1 ≤ ri−1 < ri.

Now, suppose p appears infinitely often in p0p1 . . ., which witnesses Part-
learnability of L′. Then for Ψ ′(p0p1 . . .) = q0q1 . . . only qj with pj = p could
possibly appear infinitely often in the sequence q0q1 . . . as qj used pj in its
padding. Furthermore, i is the minimal number which improves at infinitely
many steps in the enumeration of Wp. It follows that pad(i, p) is the minimal
element which appears infinitely often in the sequence q0q1

Now Ψ ′ can be converted to the required Ψ using Proposition 6. The theorem
follows. �

Our next result states that the class R of all recursive languages is not strongly
complete. In particular, this means that all indexed classes of languages, includ-
ing the class of all regular languages, are incomplete. This opens a possibility of
creating partial learning strategies for these classes that would be simpler than
the general strategy for partial learning of all recursively enumerable languages.

Intrinsic Complexity of Partial Learning 185

Theorem 13. R is not ≤Strong
Part -complete.

Proof. Suppose Θ (and Ψ) witness that E ≤Strong
Part R. Let K denote the halting

set {i : i ∈ N and ϕi(i) ↓}. Now, by Propositions 7 and 8, for all x, Θ(K) ⊂
Θ(K∪{x}). Let S = Θ(K). Note that, by assumption, S is recursive. Now, x ∈ K
iff Θ({x} ∪ K) ⊆ S. As S is recursive, this would imply that K is recursively
enumerable, which is in contradiction to a known fact that K is not recursively
enumerable [17]. �

5 Relationship Between iINIT, iCOINIT and iRINIT
Classes

In this section, we explore the relationships between the classes iINIT,
iCOINIT (and some of their variants), and iRINIT. We also establish that
their degrees are strictly under the degree of all regular languages.

Proposition 14. Fix n ∈ N . Suppose L ⊆ E contains only n infinite languages.
Then,

(a) L ≤Strong
Part iINIT.

(b) L ≤Strong
Part iCOINIT.

First, we explore the relationship between iINIT and iCOINIT. We begin
with establishing that iCOINIT is reducible to iINIT, but only weakly. Per-
haps, this fact and the fact that iINIT is not reducible to iCOINIT (see below)
are not surprising, as the chain of infinite languages in iINIT is growing indefi-
nitely, whereas every growing chain of infinite languages in iCOINIT is finite.

Theorem 15. iCOINIT ≤weak
Part iINIT.

Theorem 16. iCOINIT �≤Strong
Part iINIT.

On the other hand, iINIT is not reducible to iCOINIT even weakly.

Theorem 17. iINIT �≤weak
Part iCOINIT.

The class iRINIT is similar to iINIT in that it features an infinitely grow-
ing chain of infinite languages. However, unlike iINIT, between any two infi-
nite languages in iRINIT, there is always another language. We show that the
≤Strong

Part -degree of iRINIT is strictly above the degrees of the classes iINIT and
iCOINIT. However, first we show that iRINIT is not even weakly complete.
Let REG denote the class of all regular sets [11] (we assume some standard
recursive bijection between strings and N , so that regular sets can be consid-
ered as subsets of natural numbers). Topologically, REG is much more complex
than containing just one growing chain of infinite languages iRINIT (plus finite
sets), and this translates into greater complexity of partial learning of REG, as
the following theorem indicates.

186 S. Jain and E. Kinber

Theorem 18. REG �≤weak
Part iRINIT.

Proof. Suppose by way of contradiction that Θ and Ψ witness that REG ≤Weak
Part

iRINIT.
Inductively define σi as follows.
σ0 = Λ.
σi+1 is an extension of σi � i such that max({ntor(x) : 〈x, y〉 ∈ Θ(σi+1)}) >

max({ntor(x) : 〈x, y〉 ∈ Θ(σi)}).
If all σi+1 get defined, then for T =

⋃
i∈N σi, T is a text for N (which

is regular), but sup({ntor(x) : 〈x, y〉 ∈ content(Θ(T))}) does not belong to
{ntor(x) : 〈x, y〉 ∈ content(Θ(T))} (as if it belonged, then it would belong to
{ntor(x) : 〈x, y〉 ∈ content(Θ(σj))}, for some j, and that would violate the
definitions of σi’s).

If some σi+1 does not get defined, then let r = max({ntor(x) :
〈x, y〉 ∈ content(Θ(σi))}). Now, for all infinite regular languages L containing
content(σi), RINIT r ∈ Θ(L) (as Θ(L) contains an infinite language containing
〈rton(r), y〉, for some y, and σi+1 did not get defined). A contradiction to Propo-
sition 7, as there are infinitely many (in particular at least two) infinite regular
languages which contain content(σi). �

Corollary 19. iRINIT is not ≤weak
Part -complete.

Our next result shows that both iINIT and iCOINIT are strongly reducible
to iRINIT. Let 0 < r0, r1, . . . in RAT0,1 be a strictly increasing sequence of
rational numbers. {INIT i : i ∈ N} can be naturally embedded into iRINIT,
by mapping INIT i to RINIT ri

. Note that, by our convention on coding of finite
sets, Ds ⊂ Ds′ implies s < s′. For any s, let ks = max({x : 〈x, y〉 ∈ Ds}). Now,
mapping finite sets Ds to RINIT rks+(rks+1−rks)∗rs

ensures that iINIT ≤Strong
Part

iRINIT. A similar method works to show that iCOINIT ≤Strong
Part iRINIT.

Theorem 20.

(a) iINIT ≤Strong
Part iRINIT.

(b) iCOINIT ≤Strong
Part iRINIT.

Next we show that iRINIT is neither strongly reducible to iINIT, nor even
weakly reducible to iCOINIT. Yet, it is weakly reducible to iINIT. The latter
fact is quite interesting: every text for a language in iRINIT can be encoded as
a text for a language in iINIT, yet the corresponding languages in iINIT for
such texts may be different for different texts of the same language in iRINIT.

Theorem 21. iRINIT �≤Strong
Part iINIT.

Proof. Suppose by way of contradiction otherwise, as witnessed by Θ and Ψ .
Note that, by Proposition 9, Θ(RINIT 0.2) cannot be a finite set. Suppose
Θ(RINIT 0.2) = INIT k.

Then for two different values of r < 0.2, Θ(RINIT r) = INIT i, for same i,
as for all r < 0.2, Θ(RINIT r) ⊆ INIT k. A contradiction. �

Intrinsic Complexity of Partial Learning 187

Theorem 22. iRINIT ≤weak
Part iINIT.

Proof. Let rS = max({ntor(x) : 〈x, y〉 ∈ S}). Define mT [n] as follows.

(i) mΛ = 〈rton(0), 0〉.
(ii) mT [n+1] = mT [n], if rcontent(T [n+1]) = rcontent(T [n]); otherwise mT [n+1] =

〈rton(rcontent(T [n+1])),mT [n] + 1〉.
Now, let Θ(T [n]) = {〈x, y〉 : x ≤ mT [n], y ≤ code(content(T [n]))}.
It is easy to verify that,

(1) For a finite set L, Θ(L) ⊆ {{〈x, y〉 : x ≤ i, y ≤ code(L)} : i ∈ N}.
(2) Θ(RINIT r) ⊆ {INIT 〈rton(r),w〉 : w ∈ N}.

We can define the operator Ψ for the reduction using Lemma5, where F1 and
F2 are defined as follows.

F1(S) = canonical grammar for Dw, where w = max({y : 〈0, y〉 ∈ S}).
F2(p, t) = canonical grammar for RINIT ntor(j), where, for some w, 〈j, w〉 =

max({x : 〈x, y〉 ∈ Wp,t}).
It is now easy to verify using Lemma 5 that Θ and Ψ (as given by Lemma 5)

witness that iRINIT ≤Weak
Part iINIT. �

Theorem 23. iRINIT �≤weak
Part iCOINIT.

The next result shows that iRINIT is strongly reducible to REG, the class
of all regular languages. As we noted above, REG is not reducible to iRINIT
(even weakly), thus, the degree of iRINIT is strictly below the degree of REG.

Theorem 24. iRINIT ≤Strong
Part REG.

Now we turn our attention to the classes iINITk and iCOINITk. The infi-
nite languages in these classes do not form simple strict chains, as, for every
infinite language L in the chain, both classes contain its variants having up to
k extra elements. Interestingly, though, it turns out that, whereas adding one
such extra element to infinite languages in the chain makes the partial learning
problem harder, the difficulty of the partial learning problem does not increase
when more elements are added.
Theorem 25. For all k > 0,
(a) iINITk ≤Strong

Part iINIT1.
(b) iCOINITk ≤Strong

Part iCOINIT1.
(c) iINIT1 �≤Strong

Part iINIT.
(d) iCOINIT1 �≤weak

Part iCOINIT.
(e) iINIT1 ≤weak

Part iINIT.

Theorem 26. For all k > 0,
(a) iINITk ≤Strong

Part iRINIT.
(b) iCOINITk ≤Strong

Part iRINIT.
(c) iRINIT �≤Strong

Part iINITk.
(d) iRINIT �≤weak

Part iCOINITk.

Acknowledgements. We thank Frank Stephan and the referees for several helpful
comments, which improved the presentation of the paper.

188 S. Jain and E. Kinber

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45, 117–135 (1980)

2. Angluin, D.: Learning regular sets from queries and counter-examples. Inf. Comput.
75, 87–106 (1987)

3. Blum, M.: A machine-independent theory of the complexity of recursive functions.
J. ACM 14(2), 322–336 (1967)

4. Case, J., Kötzing, T.: Computability-theoretic learning complexity. Phil. Trans. R.
Soc. London 370, 3570–3596 (2011)

5. Freivalds, R., Kinber, E., Smith, C.: On the intrinsic complexity of learning. Inf.
Comput. 123(1), 64–71 (1995)

6. Gao, Z., Jain, S., Stephan, F.: On conservative learning of recursively enumerable
languages. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol.
7921, pp. 181–190. Springer, Heidelberg (2013)

7. Gao, Z., Jain, S., Stephan, F., Zilles, S.: A survey on recent results on partial
learning. In: Proceedings of the Thirteenth Asian Logic Conference, pp. 68–92.
World Scientific (2015)

8. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
9. Gao, Z., Stephan, F.: Confident and consistent partial learning of recursive func-

tions. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012.
LNCS, vol. 7568, pp. 51–65. Springer, Heidelberg (2012)

10. Gao, Z., Stephan, F., Zilles, S.: Combining models of approximation with partial
learning. In: Chaudhuri, K., Gentile, C., Zilles, S. (eds.) ALT 2015. LNSC (LNAI),
vol. 9355, pp. 56–70. Springer, Heidelberg (2015)

11. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Boston (1979)

12. Jain, S., Kinber, E., Papazian, C., Smith, C., Wiehagen, R.: On the intrinsic com-
plexity of learning recursive functions. Inf. Comput. 184(1), 45–70 (2003)

13. Jain, S., Kinber, E., Wiehagen, R.: Language learning from texts: degrees of intrin-
sic complexity and their characterizations. J. Comput. Syst. Sci. 63, 305–354 (2001)

14. Jain, S., Sharma, A.: The intrinsic complexity of language identification. J. Com-
put. Syst. Sci. 52, 393–402 (1996)

15. Jain, S., Stephan, F.: Consistent partial learning. In: Proceedings of the Twenty
Second Annual Conference on Learning Theory (2009)

16. Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge
(1986)

17. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York (1967). Reprinted by MIT Press in 1987

Learning Pattern Languages over Groups

Rupert Hölzl1, Sanjay Jain2(B), and Frank Stephan2,3

1 Institute 1, Faculty of Computer Science, Universität der Bundeswehr München,
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

r@hoelzl.fr
2 School of Computing, National University of Singapore,

Singapore 117417, Republic of Singapore
{sanjay,fstephan}@comp.nus.edu.sg

3 Department of Mathematics, National University of Singapore,
Singapore 119076, Republic of Singapore

Abstract. This article studies the learnability of classes of pattern lan-
guages over automatic groups. It is shown that the class of bounded
unions of pattern languages over finitely generated Abelian automatic
groups is explanatorily learnable. For patterns in which variables occur
at most n times, it is shown that the classes of languages generated by
such patterns as well as their bounded unions are, for finitely gener-
ated automatic groups, explanatorily learnable by an automatic learner.
In contrast, automatic learners cannot learn the unions of up to two
arbitrary pattern languages over the integers. Furthermore, there is an
algorithm which, given an automaton describing a group G, generates
a learning algorithm MG such that either MG explanatorily learns all
pattern languages over G or there is no learner for this set of languages
at all, not even a non-recursive one. For some automatic groups, non-
learnability results of natural classes of pattern languages are provided.

1 Introduction

Gold [10] introduced inductive inference, a model for learning classes of languages
L (a language is a subset of Σ∗ for some alphabet Σ) from positive data; this
model was studied extensively in the subsequent years [1,2,8,9,24]. Inductive
inference can be described as follows: The learner reads, one by one as input,
elements of a language L from a class L of languages; these elements are provided
in an arbitrary order and with arbitrarily many repetitions and pauses; such a
presentation of data is called a text for the language. While reading the data items
from the text, the learner conjectures a sequence of hypotheses (grammars), one
hypothesis at a time; subsequent data may lead to revision of earlier hypotheses.
The learner is considered to have learnt the target language L if the sequence

S. Jain is supported in part by NUS grants R146-000-181-112, R252-000-534-112 and
C252-000-087-001.
F. Stephan is supported in part by NUS grants R146-000-181-112 and R252-000-
534-112.

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 189–203, 2016.
DOI: 10.1007/978-3-319-46379-7 13

190 R. Hölzl et al.

of hypotheses converges syntactically to a grammar for L. The learner is said to
learn the class L of languages if it learns each language in L. The above model
of learning is often referred to as explanatory learning (Ex-learning) or learning
in the limit; see Sect. 2 for the formal details.

Angluin [2] introduced one important concept studied in learning theory,
namely the concept of (non-erasing) pattern languages, generated by patterns in
which variables can be replaced by non-empty strings. Shinohara [29] generalised
it to the concept of erasing pattern languages in which the variables are allowed to
be substituted by empty strings. Suppose Σ is an alphabet set (usually finite) and
X is an infinite set of variables. A pattern is a string over Σ ∪X. A substitution
is a mapping from X to Σ∗. Using different substitutions for variables, different
strings can be generated from a pattern. The language generated by a pattern is
the set of strings that can be obtained from the pattern using some substitution.
Angluin showed that when variables can be substituted by non-empty strings
then the class of pattern languages is Ex-learnable; Lange and Wiehagen [18]
provided a polynomial-time learner for non-erasing pattern languages. On the
other hand, Reidenbach [27] showed that if arbitrary strings (including empty
strings) are allowed for substitutions, then the class of pattern languages is not
Ex-learnable if the alphabet size is 2, 3 or 4. Shinohara and Arimura [30] consider
learning of unbounded unions of pattern languages from positive data.

This paper explores learnability of pattern languages over groups; pattern
languages and verbal languages (that are languages generated by patterns with-
out constants) have been used in group theory extensively, for example in the
work showing the decidability of the theory of the free group [14,15]. Miasnikov
and Romankov [20] studied when verbal languages are regular. In the follow-
ing, consider a group (G, ◦). The elements of G are then used as constants in
patterns and the substitutions map variables to group elements; for example,
if L(xax−1yyab) = {x ◦ a ◦ x−1 ◦ y ◦ y ◦ ab : x, y ∈ G} then letting x = b and
y = a−2 produces bab−1a−3b ∈ L(xax−1yyab). That is, concatenation in the
pattern is replaced by the group operation ◦, producing a subset of G. Note that
variables may be replaced by G’s identity element.

This paper considers when pattern languages over groups and their bounded
unions are Ex-learnable, where the focus is on automatic groups. Informally,
an automatic group or more generally an automatic structure can be defined
as follows (see Sect. 2 for formal details). Consider a structure (A,R1, R2, . . .),
where A ⊆ Σ∗ and R1, R2, . . . are relations over Σ∗ (an n-ary function can be
considered as a relation over n + 1 arguments — n inputs and one output). The
structure is said to be automatic if the set A is regular and each of the relations
is regular, where multiple arguments are given to the automata in parallel with
shorter inputs being padded by some special symbol to make the lengths of all
inputs the same. An automatic group is an automatic structure (A,R), where
A is a representation of G (that is, there exists a one-one and onto mapping
rep from G to A) and R = {(rep(x), rep(y), rep(z)) : x, y, z ∈ G and x ◦ y = z}.
Automatic groups in this paper follow the original approach by Hogdson [11,12]
and later by Khoussainov and Nerode [17] and Blumensath and Grädel [5,6];
they have also been studied by Nies, Oliver, Thomas and Tsankov [21–23,31].

Learning Pattern Languages over Groups 191

Some automatic groups allow to represent the class of all pattern languages
over the group or some natural subclass of it as an automatic family, (Le)e∈E ,
which is given by an automatic relation {(e, x) : e ∈ E∧x ∈ Le} for some regular
index set E. Automatic families allow to implement learners which are them-
selves automatic; such learners satisfy some additional complexity bound and
results in a restriction though many complexity bounds in learning theory are
not restrictive [7,13,26]. The use of automatic structures and families has the
further advantage that the first-order theory of these structures is decidable and
that first-order definable functions and relations are automatic [11,17]; see the
surveys of Khoussainov and Minnes [16] and Rubin [28] for more information.
Theorem 6 below strengthens Angluin’s characterisation [1] result on the learn-
ability of indexed families of languages by showing that for the class of pattern
languages over an automatic group to be learnable, it is already sufficient that
they satisfy Angluin’s tell-tale condition non-effectively (see Sect. 3 for definition
of the tell-tale condition). It follows from Angluin’s work that this non-effective
version of the tell-tale condition is necessary. Note that for general indexed fam-
ilies, this non-effective version of tell-tale condition is not sufficient and gives
rise only to a behaviourally correct learner [3].

Section 4 explores the learnability of the class of pattern languages when the
number of occurrences of variables in the pattern is bounded by some constant.
Let Patn(G) denote the class of pattern languages over group G where the
number of occurrences of the variables in the pattern is bounded by n. Then,
Theorem 7 shows that Pat1(G) is Ex-learnable for all automatic groups G,
though Pat2(G) is not Ex-learnable for some automatic group G. This group G
has infinitely many generators. Theorem 10 shows that Patn(G) is Ex-learnable
for all finitely generated automatic groups G (in fact, for any fixed m, even the
class of unions of up to m such pattern languages is Ex-learnable).

Sections 5 and 6 consider learnability of the class of all pattern languages.
Theorem 16 shows that for some automatic group G generated by two elements,
Pat(G), the class of all pattern languages over G, is not Ex-learnable. On the
other hand, Theorem 20 shows that for finitely generated Abelian groups G,
Pat(G) as well as the class of unions of up to m pattern languages over G is
Ex-learnable, for any fixed m. Theorem 14 shows that for the class of pattern
languages over finitely generated Abelian groups the learners can even be made
automatic using a suitable representation of the group and hypothesis space (see
Sect. 2 for the definition of automatic learners), though this hypothesis space can-
not in general be an automatic family. However, the class of unions of up to two
pattern languages over the integers with group operation + is not automatically
Ex-learnable (see Theorem 18).

2 Preliminaries

The symbol N denotes the set of natural numbers {0, 1, 2, . . .} and the symbol Z
denotes the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}. For any alphabet set Σ, Σ∗

denotes a set of strings over Σ. For the purpose of the study of algebraic groups,

192 R. Hölzl et al.

let Σ−1 denote the set of inverses of the elements of Σ. The length of a string w
is denoted by |w| and w(i) denotes the (i + 1)-th character of the string, that is
w = w(0)w(1)w(2) . . . w(|w|−1), where each w(i) is in Σ (or Σ∪Σ−1 depending
on the context).

The convolution of two strings u and v is defined as follows: Let m =
max({|u|, |v|}) and let ♦ �∈ Σ be a special symbol used for padding words.
If i < |u| then let u′(i) = u(i) else let u′(i) = ♦; similarly, if i < |v| then let
v′(i) = v(i) else let v′(i) = ♦. Now, conv(u, v) = w is the string of length m such
that, for i < m, w(i) = (u′(i), v′(i)). The convolution over n-tuples of strings is
defined similarly. The convolution is useful when considering relations with two
or more inputs like the graph of a function.

A function f is automatic if {conv(x, f(x)) : x ∈ dom(f)} is regular. An
n-ary relation R is automatic if {conv(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ R} is
regular. A structure (A,R1, R2, . . . , f1, f2, . . .) is said to be automatic if A is
regular and, for all i, fi is an automatic function from Aki to A for some ki and
Ri is an automatic relation over Ahi for some hi. A class L of languages over
alphabet Σ is said to be an automatic family if there exists a regular index set
I and there exist languages Lα, α ∈ I, such that L = {Lα : α ∈ I} and the
set {conv(α, x) : α ∈ I, x ∈ Σ∗, x ∈ Lα} is regular. For x, y ∈ Σ∗ for a finite
alphabet Σ, let x <ll y iff |x| < |y| or |x| = |y| and x is lexicographically before
y, where some fixed ordering among symbols in Σ is assumed. Let ≤ll, >ll and
≥ll be defined analogously. The relation <ll is called the length-lexicographical
order on Σ. The following fact is useful for showing that various relations or
functions are automatic.

Fact 1 (Blumensath and Grädel [6], Hodgson [11,12], Khoussainov and
Nerode [17]). Any relation or function that is first-order definable from existing
automatic relations and functions is automatic.

A group is a set of elements G along with an operation ◦ such that the following
conditions hold:

Closure: for all a, b ∈ G, a ◦ b ∈ G;
Associativity: for all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c);
Identity: there is an ε ∈ G such that for all a ∈ G, a ◦ ε = ε ◦ a = a;
Inverse: for all a ∈ G exists an a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = ε.

Often when referring to the group G, the group operation ◦ is implicit. A group
(G, ◦) is said to be Abelian if for all a, b ∈ G, a ◦ b = b ◦ a. When considering
groups, a string over G is identified with the element of G obtained by replacing
concatenation with ◦: thus for a, b, c ∈ G, ab−1c represents the group element
a ◦ b−1 ◦ c.

Σ is a set of generators for a group (G, ◦) if all elements of G can be written
as a finite string over elements of Σ and their inverses, where the concatenation
operation is replaced by ◦. Note that, in general, the set of generators may be
finite or infinite. An Abelian group (G, ◦) is said to be a free Abelian group
generated by a finite set {a1, a2, . . . , an} of generators iff

Learning Pattern Languages over Groups 193

G = {am1
1 ◦ am2

2 ◦ . . . ◦ amn
n : m1,m2, . . . ,mn ∈ Z}

and for each group element the choice of m1,m2, . . . ,mn is unique.
Usually a group (G, ◦) is represented using a set of representatives over a

finite alphabet Σ via a one-one function rep from G to Σ∗. Then, rep(α) is said
to be the representative of α ∈ G. For L ⊆ G, rep(L) = {rep(a) : a ∈ L}. Often
a group element is identified with its representative, and thus L ⊆ G is also
identified with rep(L).

A group (G, ◦) is said to be automatic if there exists a one-one function
rep from G to Σ∗, where rep(α) is the representative of α ∈ G, such that the
following conditions hold:

– A = {rep(α) : α ∈ G} is a regular subset of Σ∗;
– The function f(rep(α), rep(β)) = rep(α ◦ β) is automatic.

In this case (A, ◦) is called an automatic presentation of the group (G, ◦); in
the following, for the ease of notation, the groups are identified with their auto-
matic presentation. Note that the second clause above implies that the function
mapping α �→ α−1, computing inverses, is also automatic, as it can be defined
using a first order formula over automatic functions. Without loss of generality
it is assumed that ε ∈ Σ∗ is the representative of ε ∈ G. An example of an
automatic group is (Z,+), where + denotes addition. The representation used
for this automatic group is the reverse binary representation of numbers where
the leftmost bit is the least significant bit (the sign of the number can be repre-
sented using a special symbol). In the above group, the order given by < is also
automatic and so the entire automatic structure (Z,+, <) is often used.

Angluin [2] introduced the concept of pattern languages to the subject of
learning theory; the corresponding notions for pattern languages over a group
(G, ◦) are defined as follows. A pattern π is a string over G ∪ {x1, x2, . . .} ∪
{x−1

1 , x−1
2 , . . .}, where X = {x1, x2, . . .} is a set of variables. Sometimes the

symbols x, y, z are also used for variables. The elements of G appearing in a
pattern are called constants. A substitution is a mapping from X to G. Note
that the substitution of variables by ε is allowed. Let sub(π) denote the string
formed from π by using the substitution sub, that is, by replacing every variable
x by sub(x) and x−1 by (sub(x))−1 in the pattern π. The language generated
by π, denoted L(π), is the set L(π) = {sub(π) : sub is a substitution}. Two
patterns π1 and π2 are said to be equivalent (with respect to the group G) iff
L(π1) = L(π2). A pattern language (over a group G) is a language generated by
some pattern π. In case the pattern π does not contain any constants, then the
language L(π) generated by π is called a verbal language. Let Pat(G) denote
the class of all pattern languages over the group (G, ◦) and Patm(G) denote the
class of all unions of up to m pattern languages over the group G. Let Patn(G)
denote the class of pattern languages generated by patterns containing up to
n occurrences of variables or inverted variables and correspondingly Patm

n (G)
denote the class of all unions of up to m pattern languages generated by patterns
containing up to n occurrences of variables or inverted variables.

194 R. Hölzl et al.

Proposition 2. The classes Patn(G) and Patm
n (G) are automatic families for

all automatic groups (G, ◦) and m,n ∈ N.

Gold [10] introduced the model of learning in the limit which is described below.
Fix a group (G, ◦). A text T is a mapping from N to rep(G) ∪ {#}, where as
mentioned earlier elements of G are identified with rep(G), and thus a text can
be viewed as a sequence of elements of G ∪ {#}. A finite sequence is an initial
segment of a text. Let |σ| denote the length of sequence σ. The content of a text
T , denoted content(T), is the set of elements of G in the range of T , that is,
content(T)= {T (i) : T (i) �= #}. Similarly, the content of a finite sequence σ is
{σ(i) : i < |σ| and σ(i) �= #} and denoted by content(σ). Intuitively, #’s denote
pauses in the presentation of data. T is a text for L ⊆ G iff content(T)= L. Let
T [n] denote the initial segment of T of length n.

Intuitively, a learner reads from the input, one element at a time, some text
T for a target language L. Based on this new element, the learner updates its
memory and conjecture. The learner has some initial memory and conjecture
before it has received any data. Note that a text denotes only positive data
being presented to the learner; the learner is never given information about
what is not in the target language L. The learner uses some hypothesis space
H = {Hα : α ∈ J} for its conjectures. It is assumed for this paper that the
hypothesis space is uniformly recursive, that is, {(α, x) : α ∈ J, x ∈ Hα} is
recursive. More formally, a learner is defined as follows. Parts (d) to (f) of the
definition give a basic learning criterion called explanatory learning.

Definition 3 (Based on Gold [10]). Fix a group (G, ◦). Suppose I and J are
some index sets (regular sets of strings over some finite alphabet).

Suppose L = {Lα : α ∈ I} is a class to be learnt and H = {Hβ : β ∈ J} is a
hypothesis space, with Lα,Hβ ⊆ G for all α ∈ I and β ∈ J .

Suppose Δ is a finite alphabet used for storing memory by the learner and
? is a special symbol not in J ∪ Δ∗ used for the null hypothesis as well as for
null memory.

(a) A learner is a recursive mapping from the set (Δ∗ ∪ {?}) × (G ∪ {#}) to
the set (Δ∗ ∪ {?}) × (J ∪ {?}). It has initial memory mem0 ∈ Δ∗ ∪ {?} and
initial conjecture hyp0 ∈ J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. Suppose a text T for a language L ⊆ G is given.
– Let memT

0 = mem0 and hypT
0 = hyp0.

– Let (memT
n+1, hypT

n+1) = M(memT
n , T (n)).

Intuitively, memT
n+1 and hypT

n+1 denote the memory and conjecture of the
learner M after receiving input T [n + 1].

(c) M converges on T to a hypothesis hyp iff, for all but finitely many n,
hypT

n = hyp.
(d) M is said to Ex-learn a language L with respect to the hypothesis space H

iff for all texts T for L, M converges on T to a hypothesis hyp such that
Hhyp = L. Note that the memory of the learner need not converge.

Learning Pattern Languages over Groups 195

(e) M is said to Ex-learn a class L of languages with respect to the hypothesis
space H iff M Ex-learns each L ∈ L with respect to the hypothesis space
H. In this case M is said to be an Ex-learner for L.

(f) L is said to be Ex-learnable iff there exists a recursive learner M and a
hypothesis space H such that M Ex-learns L with respect to the hypothesis
space H.

The notation Ex in the above definition stands for “explanatory learning” and
was first introduced by Gold [10]. Often, reference to the hypothesis space H is
dropped and is implicit. Furthermore, in some cases when learning automatic
families, some automatic family is used as the hypothesis space.

A learner M makes a mind change [8,9] at T [n], if ? �= hypT
n �= hypT

n+1 as
defined in the above definition. A learner makes at most m mind changes on a
text T iff |{n : ? �= hypT

n �= hypT
n+1}| ≤ m.

A learner is said to be automatic if its updating function is automatic, that is,
if the relation {conv(mem, x,mem′, hyp) : M(mem, x) = (mem′, hyp)} is auto-
matic.

For ease of presentation of proofs, sometimes it is informally described how
the learner updates its memory and hypothesis when a new datum is presented.
Furthermore, sometimes a language is directly used as hypothesis rather than
an index; the index conjectured is implicit in such a case.

The following lemma by Gold is useful to show some of the results below.

Lemma 4 (Gold [10]). Suppose L0 ⊂ L1 ⊂ . . . and L =
⋃

i∈N
Li. Then the

class {L} ∪ {L0, L1, . . .} is not Ex-learnable.

3 A Characterisation

A tell-tale set [1] for a language L with respect to a class L, is a finite subset D
of L such that, for every L′ ∈ L, D ⊆ L′ ⊆ L implies L′ = L. A class L satisfies
Angluin’s tell-tale condition non-effectively iff every language L in L has a tell-
tale set with respect to L. A class L = {Li : i ∈ I} satisfies Angluin’s tell-tale
condition effectively iff for each i ∈ I, a tell-tale set D for Li with respect to L
can be enumerated effectively in i. Furthermore, L is called an indexed family
iff there exists an indexing L = {Li : i ∈ I}, where I is a recursive set, such that
{conv(i, x) : i ∈ I, x ∈ Li} is recursive.

Proposition 5 (Angluin [1]). An indexed family L is Ex-learnable iff it sat-
isfies Angluin’s tell-tale condition effectively.

Baliga, Case and Jain [3] gave a similar characterisation for behaviourally correct
learning (using an acceptable numbering as hypothesis space) for indexed fami-
lies satisfying Angluin’s tell-tale condition non-effectively. Behaviourally correct
learning, see [4,8,25], is a weaker learning notion where a successful learner for L
on text T for L is required to eventually only output grammars that produce L;
the learner is not required to converge to a single such grammar.

Angluin’s result is now used to obtain a characterisation for learnability of
Patm(G), for any automatic group G.

196 R. Hölzl et al.

Theorem 6. Given an automatic group G, if Patm(G) satisfies Angluin’s tell-
tale condition non-effectively, then Patm(G) is Ex-learnable. The learner can
be found effectively given m and the automaton describing G.

Thus, Patm(G) is Ex-learnable iff it satisfies Angluin’s tell-tale condition non-
effectively. The above result also holds when considering Patm

n (G) instead of
Patm(G). The above result implies that the Ex-learnability of Patm(G) or
Patm

n (G) does not depend on the automatic representation chosen for the group;
however, the learnability by an automatic learner might still depend on it.

4 Learning Patterns with up to n Variable Occurrences

In this section it is shown that the class Patm
n (G) is Ex-learnable for all finitely

generated automatic groups G. For other automatic groups, while Pat1(G) is
always Ex-learnable, in general Pat2(G) is not.

Theorem 7. For every automatic group (G, ◦), Pat1(G) can be Ex-learnt by an
automatic learner which makes at most one mind change. There is, however, an
automatic group (G, ◦) such that Pat2(G) cannot be Ex-learnt by any learner.

In the following, it will be shown that for finitely generated automatic groups,
for all n ∈ N, the class Patn(G) has an automatic learner. For this result, it is
necessary to recall some facts from group theory:

Oliver and Thomas [23] showed that a finitely generated group is automatic
iff it is Abelian by finite, that is, it has an Abelian subgroup of finite index. They
furthermore noted [23, Remark 3] that if any group has an Abelian subgroup of
finite index, then it also has an Abelian normal subgroup of finite index. Also
note that if a finitely generated group has a normal subgroup of finite index,
then this normal subgroup is finitely generated.

Thus, given an automatic finitely generated group (G, ◦), it can be assumed
without loss of generality that there is a finite subset H of G and genera-
tors b1, . . . , bm of a normal Abelian subgroup H ′ of G, such that every group
element of G is of the form a◦b�1

1 ◦b�2
2 ◦. . .◦b�m

m where a ∈ H and 	1, 	2, . . . , 	m ∈ Z.
Furthermore, for each a ∈ H and generator bi, there are ja,1, . . . , ja,m with

bi ◦ a = a ◦ b
ja,1
1 ◦ b

ja,2
2 ◦ . . . ◦ bja,m

m .

Therefore it can be assumed without loss of generality that the group is rep-
resented as a convolution of a ∈ H and 	1, . . . , 	m ∈ Z in some automatic
presentation of (Z,+, <). Then this allows to automatically carry out various
group operations such as ◦, testing membership in H ′, and finding, for any ele-
ment c of H ′ and any fixed group elements d1, . . . , dh that generate H ′, a tuple
(k1, . . . , kh) ∈ Z

h such that c = dk1
1 ◦ · · · ◦ dkh

h .
For G,H,H ′ as above, let S be a finite set of generators of H ′; note that for

each S′ ⊆ S, the set generated by the elements of S′ is a regular subset of H ′.
Furthermore, let R be a finite set of regular subsets of G with the property that

Learning Pattern Languages over Groups 197

for every U ∈ R and β, β′ ∈ H ′, either U ◦ β = U ◦ β′ or U ◦ β ∩ U ◦ β′ = ∅. Now
the following family is automatic for each constant n:

Qn(R,H ′) =
{

(U1 ◦ β1) ∪ . . . ∪ (Uh ◦ βh) :
h ≤ n and U1, . . . , Uh ∈ R

and β1, . . . , βh ∈ H ′

}
.

Here, an element of Qn(R,H ′) can be represented as follows. As R is finite,
its elements can be represented using finitely many symbols. Each pair (U, β)
can be represented using conv(u, β), where u is a single symbol representing the
element U of R and β is a representation of the corresponding group element.
Each element of Qn(R,H ′) can now be represented using a convolution of the
representation of up to n pairs (U, β).

Proposition 8. For every n, the class Qn(R,H ′) has an automatic Ex-learner
using Qn(R,H ′) as the hypothesis space.

Proof. The learner in its memory maintains a set of candidate conjectures, where
each candidate conjecture is of the form

(U1 ◦ β1) ∪ (U2 ◦ β2) ∪ . . . ∪ (Uh ◦ βh),

with h ≤ n, each Ui ∈ R and each βi ∈ H ′. It will be the case that the number of
candidates in the set is bounded by some constant c. The set of candidates can
be memorised using a convolution of the representation of each of the candidates.

The conjecture of the learner at any stage is the minimal candidate (subset-
wise) among all the candidates. In case of several minimal candidates, the candi-
date with the length-lexicographically smallest representation is used. Note that
the above is an automatic operation.

Initially the learner has only one candidate which is the empty union. At any
stage, when a new input w is processed, the following is done for each candidate in
the current set. If a candidate (U1 ◦ β1) ∪ (U2 ◦ β2) ∪ . . . ∪ (Uh ◦ βh) with h < n
does not contain w, then the candidate is replaced by a set of candidates of the
form

(U1 ◦ β1) ∪ (U2 ◦ β2) ∪ . . . ∪ (Uh ◦ βh) ∪ (Uh+1 ◦ βh+1),

which satisfy that Uh+1 is an element of R and that βh+1 exists and is the
length-lexicographically least element of H ′ such that w ∈ Uh+1◦βh+1. If no such
Uh+1, βh+1 exist, then (U1◦β1)∪(U2◦β2)∪ . . .∪(Uh ◦βh) is simply dropped from
the candidate set. Note that all the above operations are automatic. Furthermore,
note that for each replaced candidate, at most |R| new candidates are added in.
As none of these unions has more than n terms, the overall number of candidates
considered through the runtime of the algorithm is at most 1 + |R| + . . . + |R|n;
if c is chosen equal to this number then never more than c candidates need to
be memorised.

Now, suppose T is a text for L ∈ Qn(R,H ′). For all candidates which are
not supersets of the language L to be learnt, the learner will eventually see a
counter example and remove the candidate from the candidate set. Thus only

198 R. Hölzl et al.

candidates containing all elements of L will survive in the limit in the candidate
set maintained by the learner.

Suppose L = (U1 ◦ β1) ∪ . . . ∪ (Uh ◦ βh), where h ≤ n is minimal. With-
out loss of generality assume that, for each i ∈ {1, 2, . . . , h}, βi is the length-
lexicographically least element β′

i of H ′ such that Ui ◦βi = Ui ◦β′
i. Then eventu-

ally, (U1 ◦ β1) ∪ . . . ∪ (Uh ◦ βh) is added to the candidate set by the learner. This
can be shown by induction as follows. When the first datum different from #
is observed by the learner, it adds (Ui1 ◦ βi1) to the candidate set, for some
i1 ∈ {1, 2, . . . , h}. Now, suppose the learner has placed (Ui1 ◦βi1)∪. . .∪(Uik ◦βik)
in the candidate set with k < h and {i1, i2, . . . , ik} ⊂ {1, 2, . . . , h}. Then, even-
tually, it will add (Ui1 ◦ βi1) ∪ . . . ∪ (Uik+1 ◦ βik+1) to the candidate set where
{i1, . . . , ik} ⊂ {i1, . . . , ik, ik+1} ⊆ {1, 2, . . . , h}. This happens as soon as the
learner is first presented some w ∈ L − [(Ui1 , βi1) ∪ . . . ∪ (Uik , βik)]. Thus, by
induction the learner will eventually put (U1 ◦ β1) ∪ . . . ∪ (Uh ◦ βh), in the can-
didate set. As (U1, β1) ∪ . . . ∪ (Uh, βh) is never dropped from the candidate set,
eventually the learner only outputs the length-lexicographically least correct con-
jecture among the conjectures in its candidate set. Thus, it Ex-learns L. As L
was arbitrary in Qn(R,H ′), it follows that the learner Ex-learns Qn(R,H ′). ��
Proposition 9. Every automatic finitely generated group (G, ◦) has a normal
Abelian subgroup H ′ of finite index such that, for each n, there is a set R of
finitely many regular languages and an n′ such that Patn(G) ⊆ Qn′(R,H ′).

Note that if an automatic learner can learn an automatic family L using L as the
hypothesis space and L′ ⊆ L is an automatic subfamily, then there is another
automatic learner which learns L′ using L′ as the hypothesis space. This holds
as there is an automatic function which translates any index in L for a language
L ∈ L′ into an index for L in L′ (see [13]); furthermore the domain of this
function is regular, as a finite automaton can determine whether an index of an
element of L is for a language in L′. Thus Propositions 8 and 9 give the following
theorem.

Theorem 10. Let (G, ◦) be a finitely generated automatic group. Then, for each
n, there is an automatic Ex-learner for the class Patn(G). Furthermore, for
each m,n ∈ N, there is an automatic Ex-learner for the class Patm

n (G) using
Patm

n (G) itself as the hypothesis space.

5 Automatic Learning of All Patterns

If (G, ◦) is Abelian automatic group, then, in some cases, the class of all pat-
tern languages is learnable by an automatic learner. For this, sometimes a non-
automatic family must be considered as the hypothesis space, as the class of
pattern languages may not always form an automatic family.

Example 11. The group (Z,+) does not have any presentation (A,+) in which
the family {Ai : i ∈ I} of Pat(A) is automatic.

Learning Pattern Languages over Groups 199

The following two propositions will be crucial in this and the subsequent section.

Proposition 12. Suppose L is a pattern language over an Abelian group (G, ◦).
Then L is generated by a pattern of the form αxn for some α ∈ G and n ∈ N.
Furthermore, α can be chosen as any element of L.

Proposition 13. Suppose L is a pattern language over a finitely generated free
Abelian group and β1, β2 are two distinct elements of L. Then, effectively from
β1 and β2, a finite set of patterns can be found, one of which generates L.

In the case that a group is finite, the class of its pattern languages is obviously
Ex-learnable simply by maintaining a list of all elements observed. So for the
following result, only the case where the group is infinite is interesting.

Theorem 14. Let (G, ◦) be a finitely generated Abelian automatic group. Then
the class Pat(G) of its pattern languages has, in a suitable representation of the
group, an automatic Ex-learner which uses a suitable hypothesis space.

In the above theorem, if another hypothesis space or representation of the group
G is chosen, then the learner might fail to be automatic.

Remark 15. Note that the learning algorithm of Theorem 14 works for every
automatic Abelian group of the form (Z,+) × (A, •), independently of what the
second part of the direct product is. This gives a more general learning algorithm
which covers many automatic groups, but not all of them; for example, the Prüfer
group is not of this form. Furthermore, for some Abelian groups like

({
m
n : n > 0 and no prime factor of n occurs twice

}
,+

)
,

the class of pattern languages is not learnable. However, it is unknown whether
this group is automatic; most likely, this group is not automatic.

Theorem 16. There exists an automatic group G generated by two elements
such that Pat(G) is not Ex-learnable.

Proof. Consider the group with two generators a, b and the following equations
for the group operation ◦:

– a ◦ b = b−1 ◦ a;
– a ◦ a = ε.

Thus every group element is either of the form bi or abi for some i ∈ Z. Further-
more, consider the pattern languages

L(x1ax−1
1 a) = {b2i : i ∈ Z};

L(bx1b
−1x−1

1) = {ε, b2};
Li = L(b−2i ◦ (bx1b

−1x−1
1) ◦ . . . ◦ (bx2ib

−1x−1
2i))

= {b−2i, b−2i+2, . . . , b−2, ε, b2, . . . , b2i−2, b2i}.

It is easy to see that L1 ⊂ L2 ⊂ L3 ⊂ . . . and
⋃

i∈N
Li+1 = L(x1ax−1

1 a). Thus,
Pat(G) is not Ex-learnable by Lemma 4. ��

200 R. Hölzl et al.

The class of verbal languages over the group used in the above theorem is Ex-
learnable, however for some group G, the class of verbal languages is not Ex-
learnable.

Proposition 17. There is a finitely generated automatic group where the class
of verbal languages is not Ex-learnable.

6 Learning Bounded Unions of Patterns

Recall that the Prüfer group is the group of all rationals of the form m/2n

with 0 ≤ m < 2n and the rule that when x + y ≥ 1 for group elements, one
identifies this number with x+ y − 1. In the Prüfer group, all patterns are either
singletons or the full group; thus the bounded unions of the pattern languages
have an automatic learner. In contrast to this, the automatic learnability of
unions of two pattern languages fails already for the group of the integers.

Theorem 18. Consider the group (Z,+). The class Pat2(Z) of unions of up to
two pattern languages over the integers does not have an automatic Ex-learner
for any automatic representation of the group.

Though there is no automatic Ex-learner for unions of two pattern languages
over Z, the next results will show that for finitely generated Abelian groups,
there is a recursive (non-automatic) Ex-learner for unions of pattern languages.

Theorem 19. Suppose G is a finitely generated free Abelian group. Then the
class Patk(G) is Ex-learnable.

Proof. Let Σ be the finite set of generators for G. Suppose T is a text for
L ∈ Patk(G). Let PG be a set of at most k patterns such that L =

⋃
π∈PG

L(π).
Without loss of generality assume that the number of patterns in PG generating
at least two elements is minimised. The learner M keeps the following memory:

(a) the full input sequence T [n] seen so far and
(b) a finite labeled tree; the labels on the nodes of the tree are patterns that

generate at least two elements of G, except for the root which has an empty
label; the tree is finitely branching and has depth of at most k.

For any leaf z in the tree, the language Sz associated with the leaf is the union
of the languages generated by the labels on the nodes in the simple path from
the root to z (excluding the root, but including z if it is not the root).

Initially, the tree in the memory of the learner M has only one node, the
root. On input T (n), the learner updates the tree as described in (A).

(A) For any leaf z in the tree, let Xz = content(T [n + 1]) − Sz. If z is at depth
r < k, where the root is at depth 0, and card(Xz) ≥ k − r + 1, then using
Proposition 13 find the finite number of possible patterns which contain a
pattern equivalent to any pattern that generates at least two elements of
Xz. Each of these finitely many patterns is added as a child of z in the tree.

Learning Pattern Languages over Groups 201

As the tree in the memory of the learner is of bounded depth, has a finite
branching degree and only leaf nodes can be expanded, the tree stabilizes as n
goes to infinity. The learner’s conjecture is computed as follows:

(B) For the tree as above after receiving T [n+1], define the language Yz for any
leaf z at depth r of the tree as follows. Let Xz = content(T [n + 1]) − Sz.
Let Yz = Sz ∪ Xz, if card(Xz) ≤ k − r. Otherwise, Yz = Σ∗ (in this case,
Yz can be considered spoiled).

(C) Conjecture the minimal Yz where z is a leaf of the tree (minimal is taken
subset wise, as observed for strings in Σ0 ∪ Σ1 ∪ . . . ∪ Σn). Here a minimal
language Yz is not computable, so the learner just considers each language
Yz on strings (over Σ) of length at most n, and then chooses the minimal
based on this. In case of multiple such minimal Yz, choose the z which is
leftmost in the tree. Note that the set of at most k patterns generating the
language Yz can be correspondingly computed.

To see that M Ex-learns Patk(G), note that, by induction, for each n, after
seeing input T [n + 1], for each leaf z in the tree, for r, Yz,Xz as defined in (B):

(i) content(T [n + 1]) ⊆ Yz;
(ii) if card(Xz) > k − r, then the depth of z is k (as otherwise, children would

have been added to the leaf z in (A));
(iii) the pattern labels on the simple path from the root to z generate pairwise

distinct languages;
(iv) for some leaf z′, the simple path from the root to z′ (excluding the root) is

labeled only using patterns equivalent to some patterns in PG.

Thus, for large enough n, for z′ as given by item (iv) above, Yz′ ⊆ L ⊆ Yz′ . It
follows that, for large enough n, the conjecture of M is L. ��
As every finitely generated Abelian group has a normal divisor of the form
(Zm,+) of finite index, the following theorem can be shown.

Theorem 20. Consider any finitely generated Abelian group, not necessarily the
free Abelian group. Then this group has an automatic presentation (G,+) such
that Patm(G) is Ex-learnable for all m using some suitable hypothesis space.

7 Conclusions

In this paper the learnability of pattern languages over groups was studied. It
was shown that for every finitely generated automatic group G, the class of
pattern languages over G generated by patterns having a bounded number of
variable occurrences is Ex-learnable. The same holds for bounded unions of such
languages. Furthermore, for finitely generated Abelian groups G, the class of all
pattern languages over G (and their bounded unions) is Ex-learnable. However,
for some non-Abelian automatic group G generated by two elements, the class
of pattern languages over G is not Ex-learnable. Similarly, for some infinitely

202 R. Hölzl et al.

generated group G, even the class of pattern languages over G generated by
patterns having at most two occurrences of variables is not Ex-learnable.

Wiehagen [32] called a learner iterative if its memory is identical to the most
recent hypothesis. Proposition 8, Theorems 10, 14, 19 and 20 can be shown
using iterative learners which use class-preserving hypothesis spaces [19]. It is
an open question whether for every automatic group it holds that if the class of
all pattern languages over this group is Ex-learnable then it is also iteratively
learnable.

Acknowledgements. The authors would like to thank the referees for detailed com-
ments that helped to improve the presentation of this article.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45, 117–135 (1980)

2. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci.
21, 46–62 (1980)

3. Baliga, G., Case, J., Jain, S.: The synthesis of language learners. Inf. Comput. 152,
16–43 (1999)

4. Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: Theory of
Algorithms and Programs, vol. 1, pp. 82–88. Latvian State University (1974). (in
Russian)

5. Blumensath, A.: Automatic structures. Diploma thesis, RWTH Aachen (1999)
6. Blumensath, A., Grädel, E.: Automatic structures. In: Fifteenth Annual IEEE

Symposium on Logic in Computer Science, Santa Barbara, LICS 2000, pp. 51–62.
IEEE Computer Society Press, Los Alamitos (2000)

7. Case, J., Jain, S., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learners with
feedback queries. J. Comput. Syst. Sci. 80, 806–820 (2014)

8. Case, J., Lynes, C.: Machine inductive inference and language identification. In:
Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115.
Springer, Heidelberg (1982). doi:10.1007/BFb0012761

9. Case, J., Smith, C.: Comparison of identification criteria for machine inductive
inference. Theor. Comput. Sci. 25, 193–220 (1983)

10. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
11. Hodgson, B.R.: Théories décidables par automate fini. Ph.D. thesis, University of

Montréal (1976)
12. Hodgson, B.R.: Décidabilité par automate fini. Ann. Sci. Math. Qué. 7(1), 39–57

(1983)
13. Jain, S., Ong, Y.S., Shi, P., Stephan, F.: On automatic families. In: Proceedings

of the Eleventh Asian Logic Conference in Honour of Professor Chong Chi Tat on
his Sixtieth Birthday, pp. 94–113. World Scientific (2012)

14. Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups.
J. Algebra 302(2), 451–552 (2006)

15. Kharlampovich, O., Myasnikov, A.: Definable subsets in a hyperbolic group. Int.
J. Algebra Comput. 23(1), 91–110 (2013)

16. Khoussainov, B., Minnes, M.: Three lectures on automatic structures. In: Pro-
ceedings of Logic Colloquium 2007, Lecture Notes in Logic, vol. 35, pp. 132–176
(2010)

http://dx.doi.org/10.1007/BFb0012761

Learning Pattern Languages over Groups 203

17. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995).
doi:10.1007/3-540-60178-3 93

18. Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages.
New Gener. Comput. 8, 361–370 (1991)

19. Lange, S., Zeugmann, T.: Incremental learning from positive data. J. Comput.
Syst. Sci. 53, 88–103 (1996)

20. Myasnikov, A., Romankov, V.: On rationality of verbal subsets in a group. Theory
Comput. Syst. 52(4), 587–598 (2013)

21. Nies, A.: Describing groups. Bull. Symb. Log. 13, 305–339 (2007)
22. Nies, A., Thomas, R.M.: FA-presentable groups and rings. J. Algebra 320, 569–585

(2008)
23. Oliver, G.P., Thomas, R.M.: Automatic presentations for finitely generated groups.

In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31856-9 57

24. Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to
Learning Theory for Cognitive and Computer Scientists. Bradford - The MIT
Press, Cambridge (1986)

25. Osherson, D., Weinstein, S.: Criteria for language learning. Inf. Control 52, 123–
138 (1982)

26. Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P.
(ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989). doi:10.
1007/3-540-51734-0 50

27. Reidenbach, D.: A non-learnable class of E-pattern languages. Theor. Comput. Sci.
350, 91–102 (2006)

28. Rubin, S.: Automata presenting structures: a survey of the finite string case. Bull.
Symb. Log. 14, 169–209 (2008)

29. Shinohara, T.: Polynomial time inference of extended regular pattern languages.
In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS
Symposium on Software Science and Engineering 1982. LNCS, vol. 147, pp. 115–
127. Springer, Heidelberg (1983). doi:10.1007/3-540-11980-9 19

30. Shinohara, T., Arimura, H.: Inductive inference of unbounded unions of pat-
tern languages from positive data. In: Arikawa, S., Sharma, A.K. (eds.) ALT
1996. LNCS, vol. 1160, pp. 256–271. Springer, Heidelberg (1996). doi:10.1007/
3-540-61863-5 51

31. Tsankov, T.: The additive group of the rationals does not have an automatic
presentation. J. Symb. Log. 76(4), 1341–1351 (2011)

32. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
J. Inf. Process. Cybern. (EIK) 12(1–2), 93–99 (1976)

http://dx.doi.org/10.1007/3-540-60178-3_93
http://dx.doi.org/10.1007/978-3-540-31856-9_57
http://dx.doi.org/10.1007/3-540-51734-0_50
http://dx.doi.org/10.1007/3-540-51734-0_50
http://dx.doi.org/10.1007/3-540-11980-9_19
http://dx.doi.org/10.1007/3-540-61863-5_51
http://dx.doi.org/10.1007/3-540-61863-5_51

Online Learning

The Maximum Cosine Framework for Deriving
Perceptron Based Linear Classifiers

Nader H. Bshouty1 and Catherine A. Haddad-Zaknoon2(B)

1 Department of Computer Science, Technion, Haifa, Israel
2 Department of Computer Science, University of Haifa, Haifa, Israel

catherin.haddad@gmail.com

Abstract. In this work, we introduce a mathematical framework, called
the Maximum Cosine Framework or MCF, for deriving new linear clas-
sifiers. The method is based on selecting an appropriate bound on the
cosine of the angle between the target function and the algorithm’s. To
justify its correctness, we use the MCF to show how to regenerate the
update rule of Aggressive ROMMA [5]. Moreover, we construct a cosine
bound from which we build the Maximum Cosine Perceptron algorithm
or, for short, the MCP algorithm. We prove that the MCP shares the
same mistake bound like the Perceptron [6]. In addition, we demonstrate
the promising performance of the MCP on a real dataset. Our experi-
ments show that, under the restriction of single pass learning, the MCP
algorithm outperforms PA [1] and Aggressive ROMMA.

Keywords: Online learning · Linear classifiers · Perceptron

1 Introduction

Large-scale classification problems are characterized by huge datasets, high
dimension and sparse examples. Moreover, the feature space is normally
unknown to the learner. Therefore, an efficient learning algorithm should com-
ply with two main requirements: (1) single pass over the examples dataset such
that, for each example x, the time complexity for processing the example and
adapting the algorithm hypothesis is linear in number of the non-zero features
in x, and (2) space complexity is linear in the number of the relevant features.
Consequently, in real world applications, classification via linear classifiers has
gained a lot of attention due to their efficiency in time and memory.

The roots of many papers discussing linear classifiers date back to the Per-
ceptron algorithm [6]. The Perceptron algorithm gained its popularity due to its
efficiency in time and space as well as its polynomial mistake bound. The percep-
tron update rule complies naturally with the space and time requirements. Many
algorithms introduced later followed the perceptron update paradigm including
ALMA [3], NORMA [4] and PA [1].

In this work, we introduce a mathematical framework, called the Maximum
Cosine Framework or MCF, for deriving new algorithms that follow the percep-
tron update scheme. That is, the algorithm observes examples in a sequence of
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 207–222, 2016.
DOI: 10.1007/978-3-319-46379-7 14

208 N.H. Bshouty and C.A. Haddad-Zaknoon

rounds. On round i, it constructs its classification hyperplane wi incrementally
each time the online algorithm makes a prediction mistake or its confidence in
the prediction is inadequately low. It updates its classification scheme using an
update rule of the form wi+1 = wi + yiλiai, where ai is the current observed
example and λi is a parameter. To calculate the parameter λi, we formulate an
upper bound on the cosine of the angle between the target hyperplane and the
algorithm’s one. Then we choose λi to be the value that optimizes the cosine
bound. We argue that the tighter the cosine bound is, the closer we progress
towards the target function. To justify the usefulness of the method, we use the
MCF to regenerate the update rule of Aggressive ROMMA. In addition, using
the MCF, we build a new linear classifier called the Maximum Cosine Percep-
tron or MCP for binary classification. We prove that the MCP shares the same
mistake bound like the Perceptron. In addition, we demonstrate the promising
performance of the MCP on a real dataset. Our experiments show that, under the
restrictions of memory and single pass learning, the MCP algorithm outperforms
PA and Aggressive ROMMA.

This paper is organized as follows. In Sect. 2 we bring a formal definition for
the classification problem via linear classifiers. Moreover, we define the cosine
bound concept and develop some preliminaries and useful lemmas that will be
used along the discussion on algorithm construction under the MCF. In Sect. 3,
we use the MCF to develop another algorithm called New Aggressive ROMMA
(NAROMMA). We prove equivalence of NAROMMA to the well known Aggres-
sive ROMMA in terms of the cosine of the angle between the target hyperplane
and the algorithm’s hypothesis. Section 4 outlines in details the construction
of the local cosine bound from which the MCP algorithm generates its update
rule. Furthermore, we discuss the mistake bound of the MCP algorithm and
prove formally that it has the same mistake bound like the Perceptron, PA and
Aggressive ROMMA. In Sect. 5 we describe the experiments we made to compare
the performance of the MCP vs. the well known PA and Aggressive ROMMA.

2 The Maximum Cosine Framework

2.1 Problem Settings

In the binary classification setting, a linear classifier is an n-dimensional hyper-
plane that splits the space into two, where the points on the different sides corre-
spond to the positive and negative labels. The target hyperplane is described by
an n-dimensional vector called the weight vector and denoted by w ∈ Rn. Along
the discussion we assume that ‖w‖2 = 1. Our goal is to learn a prediction func-
tion, normally denoted by an n-dimensional vector wi ∈ Rn, from a sequence
of training examples {(a1, y1), · · · , (aT , yT)} where ai ∈ Rn and ‖ai‖2 ≤ R for
some R > 0. In addition, yi ∈ {−1,+1} is the class label assigned to ai. In
the online learning model, the learning process proceeds in trials. On trial i,
the learning algorithm observes an example ai and predicts the classification
ŷi ∈ {−1,+1} such that ŷi = sign(wT

i · ai). We say that the algorithm made a

The Maximum Cosine Framework for Deriving Perceptron 209

mistake if ŷi �= yi. The magnitude |wT
i ai| is interpreted as the degree of confi-

dence in the prediction. We refer to the term yi(wT
i ai) as the (signed) margin

attained at round i. Let γ > 0, and let S be a set of binary labeled examples.
We say that w seperates S with margin γ, if for all a ∈ S, |wTa| ≥ γ. The mar-
gin γ is unknown to the algorithm. An online learning algorithm is conservative
if it updates its weight vector wi only on mistake, and non-conservative if it
performs its update when the margin did not achieve a predefined threshold.

Let A be some online algorithm for binary classification that is introduced
to some examples set. We say that A follows the perceptron algorithm scheme,
if it maintains some hypothesis hi = sign(wT

i x) initialized to some value w1,
normally chosen to be 0. On each example ai, the algorithm decides to update
its hypothesis according to some predefined condition using the following update
rule wi+1 = wi + λi(yiai).

From now on, we will use the terms perceptron-like algorithm and perceptron
algorithm alternately to point the fact that the algorithm follows the perceptron
algorithm scheme.

Along the discussion in this paper, we restrict our analysis to the case where
the algorithm uses 0 bias hypothesis. That is, the target hypothesis is of the
form w + θ where we assume θ = 0. It is well known in the literature that, for
the variable bias case, we can get analogues theorems to the ones we prove in
this work that are a constant factor worse than the original bounds [2].

2.2 The Cosine Bound

Let θi be the angle between the target hypothesis w and wi. Recall that ‖w‖2 =
1. Our target is to choose λi such that

αi+1 � cos θi+1 =
wTwi+1

‖wi+1‖2 (1)

is maximal. The incentive of this choice is that we want to choose wi+1 to be
as close as possible to w. We start by choosing w1 = cy0a0 for some c > 0.
Under the separability assumption, this choice will guarantee that α1 > 0. Since
the target hypothesis is unknown to the algorithm, it is obviously clear that we
cannot find an accurate value for λi that maximizes the expression in (1). Instead,
we will formulate a lower bound for cos θi that we will call the cosine bound on
which optimality can be achieved. Then, we find the value of λi that maximizes it.
The optimal value of λi defines the algorithm’s update on each trial. It is needless
to say that choosing different cosine bounds will derive different update rules,
namely different algorithms. To achieve a better classifier, we aim to maximize
the value of αi at each round i. For that purpose, we will start with some
lemmas that will assist us develop cosine bounds from which we can derive new
perceptron-like algorithms. For clarity, we bring the proofs of the following three
lemmas in Appendix A.

Lemma 1. Let {(a0, y0), · · · , (aT , yT)} be a sequence of examples where ai ∈ Rn

and yi ∈ {−1,+1} for all 0 ≤ i ≤ T . Let γ > 0 and w ∈ Rn with ‖w‖2 = 1,

210 N.H. Bshouty and C.A. Haddad-Zaknoon

such that for all 0 ≤ i ≤ T , |wTai| ≥ γ. Let w1 = ca0 for any constant c > 0.
Let λi > 0 and wi+1 = wi + λi(yiai) be the update we use after the ith example.
Let

xi =
λi

‖wi‖2 ≥ 0. (2)

Then,

αi+1 ≥ αi + γxi√
1 + ‖ai‖22x2

i + 2yi(wT
i ai)

‖wi‖2
xi

. (3)

The following two lemmas will assist us in optimizing the value of λi.

Lemma 2. Let
Φ(x) =

r + p · x√
s + q · x2

, (4)

where s, q > 0. If r �= 0 the optimal (maximal or minimal) value of Φ(x) is in
x∗ = (ps)/(rq) and is equal to

sign(r)

√
r2

s
+

p2

q
. (5)

The point x∗ is minimal if r < 0 and maximal if r > 0. If r = 0, the function
Φ(x) is monotone increasing if p > 0 and monotone decreasing if p < 0.

Lemma 3. Let
Φ(x) =

r + p · x√
s + q · x2 + 2tq · x

(6)

where s + q · x2 + 2tq · x > 0 for all x. Let Φ∗ be the maximal value of Φ(x) over
R+, i.e., Φ∗ = maxx∈R+ Φ(x). Then we have the following cases,

1. If r − pt = 0 and p > 0 then, Φ∗ = Φ(∞) = p/
√

q.
2. If r − pt = 0 and p < 0 then, Φ∗ = Φ(0) = r/

√
s.

3. If r − pt > 0 and ps − rtq ≥ 0, let x∗ = (ps − rtq)/(rq − ptq) ≥ 0. Then,
Φ∗ = Φ(x∗) =

√
(r − pt)2/(s − qt2) + p2/q.

4. If r − pt > 0 and ps − tqr < 0 then, Φ∗ = Φ(0) = r/
√

s.
5. If r − pt < 0 and ps − tqr ≥ 0 then, Φ∗ = Φ(∞) = p/

√
q.

6. If r − pt < 0 and ps − tqr < 0 then,
Φ∗ = max (Φ(∞), Φ(0)) = max

(
p/

√
q, r/

√
s
)
.

3 New Aggressive ROMMA

We use the MCF to construct a non-conservative algorithm - the NAROMMA
algorithm. We start by formulating a local cosine bound from which we derive
the best choice of λi at each trial. Along the discussion in this section and Sect. 4,
we assume that the prerequisites of Lemma 1 apply, that is, for a sequence of
examples {(a0, y0), · · · , (aT , yT)} there is γ > 0 and a separating hyperplane
w ∈ Rn with ‖w‖2 = 1 such that |wTai| > γ for all i.

The Maximum Cosine Framework for Deriving Perceptron 211

3.1 The Local Cosine Bound for the NAROMMA Algorithm

In this algorithm, w1 = y0a0 where a0 is the first example received by the
algorithm, and the update follows the perceptron paradigm, that is wi+1 =
wi + λi(yiai). Let

γi =
yi(wT

i ai)
‖wi‖2 (7)

which is the projection of yiai on the direction of wi. Let

δi � cos(θi)
γ

=
wTwi

γ‖wi‖2 =
αi

γ
, (8)

where αi is as defined in (1). Then, by Lemma 1 we have,

δi+1 ≥ δi + xi√
1 + ‖ai‖22x2

i + 2γixi

(9)

for all xi ≥ 0. Since we cannot find an accurate evaluation for δi, we will look
alternatively for some lower bound �i for δi, which will act as a local cosine
bound for the algorithm, such that

δi ≥ �i (10)

for all i. We start by choosing �1,

δ1 =
cos(θ1)

γ
=

y0(wTa0)
γ‖a0‖2 ≥ 1

‖a0‖2 = �1. (11)

Assuming that δi ≥ �i for some i, then by (9) we get,

δi+1 ≥ �i + xi√
1 + ‖ai‖22x2

i + 2γixi

. (12)

Inequality (12) formulates a local cosine bound for the NAROMMA algorithm.
Therefore, since it holds for all xi ≥ 0, our next step is to find x∗

i that maximizes
the right-hand side of (12) and get an optimal lower bound for δi. To achieve
this, we start by the following lemma.

Lemma 4. Let {(a0, y0), · · · , (aT , yT)} be a sequence of examples where ai ∈ Rn

and yi ∈ {−1,+1} for all 0 ≤ i ≤ T . Let γ > 0 and w ∈ Rn with ‖w‖2 = 1,
such that for all 0 ≤ i ≤ T , |wTai| ≥ γ. Let,

�i+1(xi, �i) � �i + xi√
1 + ‖ai‖22x2

i + 2γixi

, (13)

and
x∗

i (�i) � arg max
xi≥0

�i + xi√
1 + ‖ai‖22x2

i + 2γixi

(14)

212 N.H. Bshouty and C.A. Haddad-Zaknoon

and finally,
�∗
i+1 � �i+1(x∗

i (�
∗
i), �

∗
i), (15)

where �∗
1 = �1 = 1

‖a0‖2
. Then for all i ≥ 1,

δi ≥ �∗
i . (16)

Proof. We prove by induction. For i = 1 we have, δ1 = cos(θ1)
γ = y0(w

T a0)
γ‖a0‖2

≥
1

‖a0‖2
= �1 = �∗

1. Assume that the lemma holds for i = j, i.e. δj ≥ �∗
j , we

prove for i = j + 1. By (9) and the induction assumption we get for all xj ≥ 0,

δj+1 ≥ �∗
j+xj√

1+‖aj‖2
2x2

j+2γjxj
. Specifically, the above inequality holds for xj = x∗

j (�
∗
j).

Using (13) and (15) we get, δj+1 ≥ �∗
j+x∗

j (�
∗
j)√

1+‖aj‖2
2x∗

j (�
∗
j)

2+2γjx∗
j (�

∗
j)

= �∗
j+1, which

proves our lemma. 	

The above discussion implicitly assumes that (13) and (14) are well defined for
all xi ≥ 0, and that, given some �∗

i , we can easily determine x∗
i (�

∗
i) by solving

the optimization problem implied by (14). Therefore, for completeness of the
discussion, we first need to show that 1 + ‖ai‖22x2

i + 2γixi > 0. Second, we need
to propose some direct solution from which the optimal x∗

i can be obtained. By
calculating the discriminant of 1+ ‖ai‖22x2

i +2γixi, one can conclude that it has
a negative value for all xi ≥ 0 when |wT

i ai|/(‖wi‖2‖ai‖2) < 1. It is evident that
|wT

i ai|/‖wi‖2‖ai‖2 = 1 if and only if ai and wi are linearly dependent. However,
in this case the update will not change the direction of wi+1 regardless of the
choice of λi and hence such examples will be disregarded by the algorithm. The
following lemma provides a direct way to calculate �∗

i and x∗
i for all i.

Lemma 5. Let {(a0, y0), · · · , (aT , yT)} be a sequence of examples where ai ∈ Rn

and yi ∈ {−1,+1} for all 0 ≤ i ≤ T . Let γ > 0 and w ∈ Rn with ‖w‖2 = 1,
such that for all 0 ≤ i ≤ T , |wTai| ≥ γ. Let Φ(xi) = �∗

i +xi√
1+‖ai‖2

2x2
i+2γixi

, and let

x∗
i = arg maxxi≥0 Φ(xi). If γi > 0 then,

x∗
i =

⎧
⎪⎨

⎪⎩

∞ , �∗
i ≤ γi

‖ai‖2
2

1−�∗
i γi

�∗
i ‖ai‖2

2−γi
, 1

γi
> �∗

i > γi

‖ai‖2
2

0 , �∗
i ≥ 1

γi

. (17)

If γi ≤ 0 then,

x∗
i =

1 − �∗
i γi

�∗
i ‖ai‖22 − γi

. (18)

Also,

�∗
i+1

2 =

⎧
⎪⎨

⎪⎩

1
‖ai‖2

2
, x∗

i = ∞
�∗
i
2 , x∗

i = 0
�2i + (1−�∗

i γi)
2

‖ai‖2
2−γ2

i
, otherwise

(19)

where �∗
1 = 1/‖a0‖2.

The Maximum Cosine Framework for Deriving Perceptron 213

Proof. We use Lemma 3. Let r = �∗
i , p = s = 1, q = ‖ai‖22 and t = γi/‖ai‖22.

Then r − pt = �∗
i − γi

‖ai‖2
2
, and ps − rtq = 1 − �∗

i γi. If γi ≤ 0 then both r − pt and
ps−rtq are positive, and, by Lemma 3 (case 3), we get that the optimal value is in
x∗

i = (ps−rtq)
(rq−ptq) = 1−�∗

i γi

�∗
i ‖ai‖2

2−γi
. Now, suppose γi > 0. Since γi = yi(wT

i ai)/‖wi‖2 >

0, then γi/‖ai‖2 = yi(wT
i ai)/‖wi‖2‖ai‖2 ≤ 1 and hence, we get γi < ‖ai‖2.

Since γi < ‖ai‖2, we have γi/‖ai‖22 < 1/‖ai‖2 < 1/γi. Therefore, we have the
following three cases for �∗

i :

Case I. �∗
i ≤ γi/‖ai‖22. Then, r−pt = �∗

i −γi/‖ai‖22 ≤ 0 and, ps−rtq = 1−�∗
i γi >

0. By cases 1 and 5 in Lemma 3, we get x∗
i = ∞ and �∗

i+1 = 1/‖ai‖2.
Case II. 1/γi > �∗

i > γi/‖ai‖22. Then, r−pt = �∗
i −γi/‖ai‖22 > 0 and, ps−rtq =

1 − �∗
i γi > 0. Hence, by case 3 in Lemma 3 we get x∗

i = 1−�∗
i γi

�∗
i ‖ai‖2

2γi
and

�∗
i+1 = �i+1(x∗

i , �
∗
i) =

�∗
i + x∗

i√
1 + ‖ai‖22x∗

i
2 + 2γix∗

i

. (20)

By applying the value of x∗
i into (20) the result follows.

Case III. 1/γi ≤ �∗
i . Since 1/γi > γi/‖ai‖22 then, r − pt = �∗

i − γi/‖ai‖22 > 0
and ps − rtq = 1 − �∗

i γi ≤ 0. Therefore, using case 4 in Lemma 3 we get the
result.

	

Recall the definition of xi from (2). The implication of taking xi to ∞ in the
above update is to change the orientation of wi to be the same as ai. That is, in
case of x∗

i = ∞ we get, wi+1 = yiai and �∗
i+1 = 1/‖ai‖2. We have just proved,

Lemma 6. Let {(a0, y0), · · · , (aT , yT)} be a sequence of examples where ai ∈ Rn

and yi ∈ {−1,+1} for all 0 ≤ i ≤ T . Let γ > 0 and w ∈ Rn with ‖w‖2 = 1,
such that for all 0 ≤ i ≤ T , |wTai| ≥ γ. Let w1 = y0a0, �∗

1 = 1/‖a0‖2 and

wi+1 =

⎧
⎪⎨

⎪⎩

wi , γi ≥ 1
�∗
i
,

yiai , 1
�∗
i

> γi ≥ ‖ai‖22�∗
i

wi + (1−�∗
i γi)‖wi‖2

�∗
i ‖ai‖2

2−γi
(yiai) , γi < min{�∗

i ‖ai‖22, 1
�∗
i
}.

(21)

and

�∗
i+1

2 =

⎧
⎪⎨

⎪⎩

�∗
i
2 , γi ≥ 1

�∗
i
,

1
‖ai‖2

2
, 1

�∗
i

> γi ≥ ‖ai‖22�∗
i

�∗
i
2 + (�∗

i γi−1)2

‖ai‖2
2−γ2

i
, γi < min{�∗

i ‖ai‖22, 1
�∗
i
}.

(22)

and γi is as in (7). Then after the ith update the cosine of the angle between wi

and w is at least
cos(θi) = γδi ≥ γ�∗

i .

Figure 1 summarizes the NAROMMA algorithm.

214 N.H. Bshouty and C.A. Haddad-Zaknoon

The NAROMMA algorithm

1. Get (a0, y0); w1 ← (y0a0); i ← 1; �∗
1 ← 1

‖a0‖2
.

2. Get (x, y).
3. γi ← y(wT

i x)/‖wi‖2.
4. If |(wT

i x)|/(‖wi‖2‖x‖2) = 1, go to 8.
5. If γi ≥ 1/�∗

i , then,
5.1. ai ← x; yi ← y; wi+1 ← wi; �∗

i+1 ← �∗
i .

6. If 1
�∗
i

> γi ≥ ‖ai‖2
2�

∗
i , then,

6.1. ai ← x; yi ← y; wi+1 ← yiai; �∗
i+1 ← 1/‖ai‖2.

7. If γi < min{�∗
i ‖ai‖2

2,
1
�∗
i
}, then,

7.1. ai ← x; yi ← y;

7.2. wi+1 ← wi +
(1−�∗

i γi)‖wi‖2
�∗
i ‖ai‖2

2−γi
(yiai); �

∗
i+1 ←

√
�∗
i
2 +

(�∗
i γi−1)2

‖ai‖2
2−γ2

i
.

8. i ← i + 1; Go to 2.

Fig. 1. The NAROMMA algorithm for binary classification.

3.2 Equivalence to Aggressive ROMMA

To prove that NAROMMA is equivalent to Aggressive ROMMA, it is enough to
show that the algorithms’ vectors have the same orientation after each update.

Theorem 1. Let ui denote the algorithm hypothesis used by algorithm Aggres-
sive ROMMA after the ith update. Let u1 = (y0/‖a0‖22)a0. Let vi be the hypoth-
esis of the NAROMMA algorithm, and let v1 = y0a0, �1 = 1/‖a0‖2. Then for
all i,

1. ‖ui‖2 = �∗
i .

2. There exists some τi > 0 such that, ui = τivi.

Proof. We prove by induction on i. For i = 1, the theorem trivially holds.
Assume that the theorem holds for i = t, that is,

‖ut‖2 = �∗
t (23)

and,
ut = τtvt (24)

for some τt > 0. To ease our discussion, we rewrite Aggressive ROMMA update
as proposed in [5] as detailed in Table 1,
where

ci =
‖ai‖22‖ui‖22 − yi(uT

i ai)
‖ai‖22‖ui‖22 − (uT

i ai)2
(25)

and

di =
‖ui‖22(yi − (uT

i ai))
‖ai‖22‖ui‖22 − (uT

i ai)2
. (26)

The Maximum Cosine Framework for Deriving Perceptron 215

In the same fashion, Table 2 summarizes the NAROMMA update rule.
Let i = t + 1. Let ût and v̂t denote the unit vectors in the directions of ut and
vt, respectively. According to (23) and (24), we get that

ut = ‖ut‖2ût = ‖ut‖2v̂t = �∗
t v̂t.

Hence, since �∗
t > 0 and using (7) we get,

yt(uT
t at) = yt�

∗
t (v̂

T
t at) = yt�

∗
t

1
‖vt‖2 (vT

t at) = �∗
t γt. (27)

We divide our discussion into three cases according to the update types.

Case I. Assume that Aggressive ROMMA does not perform any update on the
example at (update of type I). Then, according to Table 1, yt(uT

t at) ≥ 1.
Using (27) and the fact that �∗

t > 0 we can conclude,

yt(uT
t at) ≥ 1 ⇔ γt ≥ 1/�∗

t . (28)

Equation (28) implies that NAROMMA performs an update of type I if
and only if Aggressive ROMMA performs an update of type I. Hence, the
theorem holds for this case.

Case II. If Aggressive ROMMA performs an update of type II, then by Table 1
we get that 1 > yt(uT

t at) ≥ ‖at‖22‖ut‖22. Therefore, since �∗
t > 0 and by (23),

(24) and (27) we get,

1 > yt(uT
t at) ≥ ‖at‖22‖ut‖22 ⇔ 1 > �∗

t γt ≥ ‖at‖22�∗2
t ⇔ 1/�∗

t > γt ≥ ‖at‖22�∗
t .

(29)
That is, as in the first case, Aggressive ROMMA and NAROMMA will make
their type II update simultaneously. Hence, we get that vt+1 = ytat, �∗

t+1 =
1/‖at‖2 and ut+1 = (yt/‖at‖22)at. Therefore, the theorem trivially follows.

Case III. From the discussion in the previous two cases, it follows that Aggres-
sive ROMMA makes an update of type III if and only if NAROMMA per-
forms a type III update. By Table 1 we get for this case,

‖ut+1‖22 = c2t ‖ut‖22 + d2t ‖at‖22 + 2ctdt(uT
t at). (30)

Since yt ∈ {−1, 1} and using (23), (24), (25), (26) and (27) we get that,

‖ut+1‖22 = �∗2
t +

(�∗
t γt − 1)2

‖at‖22 − γ2
t

= �∗2
t+1. (31)

Moreover, by choosing τt+1 = (ct‖ut‖2)/‖vt‖2, and using the induction
assumption we can easily conclude that τt+1vt+1 = ut+1. Hence, the the-
orem holds for this case too.

	

216 N.H. Bshouty and C.A. Haddad-Zaknoon

Table 1. Aggressive ROMMA update summary

Type Condition ui+1

I yi(u
T
i ai) ≥ 1 ui

II 1 > yi(u
T
i ai) ≥ ‖ai‖2

2‖ui‖2
2

yi

‖ai‖2
2
ai

III yi(u
T
i ai) < min{‖ai‖2

2‖ui‖2
2, 1} ciui + diai

Table 2. NAROMMA update summary

Type Condition vi+1 �∗
i+1

I γi ≥ 1/�∗
i ; vi; �∗

i ;

II 1/�∗
i > γi ≥ ‖ai‖2

2�
∗
i ; yiai;

1
‖ai‖2

;

III γi < min{�∗
i ‖ai‖2

2, 1/�∗
i }; vi +

‖vi‖2(1−�∗
i γi)

�∗
i ‖ai‖2

2−γi
yiai; �∗2

i +
(�∗

i γi−1)2

‖ai‖2
2−γ2

i
;

4 The Maximum Cosine Perceptron Algorithm

We will use the MCF to generate the update rule of the MCP algorithm. The
MCP algorithm is non-conservative, i.e. it updates its hypothesis on margin
violation. We start our discussion by formulating a conservative algorithm, the
Conservative Maximum Cosine Perceptron (CMCP) algorithm. By Lemma 1 we
have,

αi+1 ≥ αi + γxi√
1 + ‖ai‖22x2

i + 2yi(wT
i ai)

‖wi‖2
xi

, (32)

where xi = λi/‖wi‖2. The CMCP is a conservative algorithm hence, it makes
an update when yi(wT

i ai) ≤ 0. Then, from (32) we can write,

αi+1 ≥ αi + γxi√
1 + ‖ai‖22x2

i

. (33)

Assuming that αi ≥ γ�i for some �i we have,

αi+1 ≥ γ
�i + xi√

1 + ‖ai‖22x2
i

. (34)

Inequality (34) formulates a local cosine bound for the CMCP algorithm. It holds
for all xi ≥ 0, hence, by maximizing its right hand side we get an optimal lower
bound for αi. By Lemma 2, optimality is obtained in xi = 1/(�i‖ai‖22) and then,

αi+1 ≥ γ

√
�2i +

1
‖ai‖22

. (35)

The Maximum Cosine Framework for Deriving Perceptron 217

Let w1 = y0a0 and �1 = 1/‖a0‖2, we get that, α1 = wTw1
‖w1‖2

= |wT a0|
‖a0‖2

≥ γ 1
‖a0‖2

=
γ�1. And hence, by choosing

�2i+1 = �2i +
1

‖ai‖22
=

i∑

j=0

1
‖aj‖22

(36)

we can conclude,

αi ≥ γ

√√√√
i−1∑

j=0

1
‖aj‖22

= γ�i. (37)

We have just proved,

Lemma 7. Let {(a0, y0), · · · , (aT , yT)} be a sequence of examples where ai ∈ Rn

and yi ∈ {−1,+1} for all 0 ≤ i ≤ T . Let γ > 0 and w ∈ Rn with ‖w‖2 = 1,
such that for all 0 ≤ i ≤ T , |wTai| ≥ γ. Let w1 = y0a0, �1 = 1/‖a0‖2 and

wi+1 =

{
wi + ‖wi‖2

�i‖ai‖2
2
(yiai) , yi(wT

i ai) ≤ 0
wi , otherwise

(38)

be the update we use in the ith example, and

�2i+1 = �2i +
μi

‖ai‖22
, (39)

μi =
{

1 , yi(wT
i ai) ≤ 0

0 , otherwise.
(40)

Then, after the ith example, αi is at least γ�i.

To convert the CMCP algorithm to a non-conservative one, we use the same
update rule not only on mistakes but also when the example is close to the
algorithm’s hyperplane, according to the following update rule,

wi+1 =

{
wi + ‖wi‖2

�i‖ai‖2
2
(yiai) , yi(wT

i ai) ≤ ‖wi‖2
2�i

wi , otherwise.
(41)

Moreover, the value of �i is updated as follows,

�2i+1 =

{
�2i + 1−2ηi

‖ai‖2
2

, yi(wT
i ai) ≤ ‖wi‖2

2�i

�2i , otherwise
(42)

where for yi(wT
i ai) ≤ ‖wi‖2

2�i
,

ηi =

{
0 , yi(wT

i ai) ≤ 0
yi(w

T
i ai)�i

‖wi‖2
, 0 < yi(wT

i ai) ≤ ‖wi‖2
2�i

.
(43)

Notice that when ai is a counterexample, it contributes 1/‖ai‖22 to �2i . Otherwise,
it contributes 1 − 2ηi/‖ai‖22, which is always positive because of the update rule
condition in (41). Figure 2 summarizes the algorithm.

218 N.H. Bshouty and C.A. Haddad-Zaknoon

The MCP algorithm

1. Get (a0, y0); w1 ← (y0a0); i ← 1; �1 ← 1
‖a0‖2

.

2. Get (x, y).

3. If y(wT
i x) ≤ ‖wi‖2

2�i
, then,

3.1. ai ← x; yi ← y; wi+1 ← wi +
‖wi‖2

�i‖ai‖2
2
(yiai).

3.2. If yi(w
T
i ai) ≤ 0, Then, ηi ← 0.

3.3. Else, ηi ← yi(w
T
i ai)�i

‖wi‖2
.

3.4. �i+1 =
√

�2i + 1−2ηi

‖ai‖2
2
.

4. Else, wi+1 ← wi; �i+1 ← �i.
5. i ← i + 1; Go to 2.

Fig. 2. The MCP algorithm for binary classification.

Lemma 8. Let {(a0, y0), · · · , (aT , yT)} be a sequence of examples where ai ∈ Rn

and yi ∈ {−1,+1} for all 0 ≤ i ≤ T . Let γ > 0 and w ∈ Rn with ‖w‖2 = 1, such
that for all 0 ≤ i ≤ T , |wTai| ≥ γ. Let w1 = y0a0 and �1 = 1/‖a0‖2. Let wi+1

and �i+1 be updated as defined in (41) and (42) respectively, after each example
ai. Then after the ith example, αi is at least γ�i.

Proof. We prove by induction on i, the index of the current example. For i = 1,
α1 = wTw1

‖w1‖2
= |wT a0|

‖a0‖2
≥ γ/‖a0‖2 = γ�1. We assume the lemma holds for i = k,

that is, αk ≥ γ�k, and prove for i = k + 1. We consider three cases,

Case I. if yk(wT
k ak) > ‖wk‖2/(2�k), then, by (41) and (42) no update happens

for wk or �k and hence, the lemma is true for this case.
Case II. If yk(wT

k ak) ≤ 0, then, by Lemma 1, the induction assumption and
(41), (42), (43) and using xk = 1/(�k‖ak‖22) we can write,

αk+1 ≥ αk + γxk√
1 + ‖ak‖22x2

k + 2yk(wT
k ak)

‖wk‖2
xk

≥
γ

(
�k + 1

�k‖ak‖2
2

)

√
1 + 1

�2k‖ak‖2
2

≥

≥ γ

√
�2k +

1
‖ak‖22

≥ γ�k+1.

Case III. If 0 < yk(wT
k ak) ≤ ‖wk‖2/(2�k), then, by Lemma 1, the induction

assumption, (41), (42) and (43) we can write,

αk+1 ≥ αk + γxk√
1 + ‖ak‖22x2

k + 2yk(wT
k ak)

‖wk‖2
xk

≥

The Maximum Cosine Framework for Deriving Perceptron 219

≥
γ�k

(
1 + 1

�2k‖ak‖2
2

)

√
1 + 1

�2k‖ak‖2
2

+ 2
�2k‖ak‖2

2

(
yk(wT

k ak)�k
‖wk‖2

) ≥

≥ γ�k

1 + 1
�2k‖ak‖2

2√
1 + 1+2ηk

�2k‖ak‖2
2

≥ γ�k

√
1 +

1 − 2ηk

�2k‖ak‖22
= γ�k+1.

	

Lemma 8 motivates the choice of the update condition of the MCP algorithm.
Let ai be the current example examined by the algorithm, and let us assume
without loss of generality that yi = +1. When yi(wT

i ai) > ‖wi‖2/(2�i), by (41)
no update happens. Let θi be the angle between the target hyperplane and the
algorithm hyperplane. Let γi be as defined in (7). By Lemma 8 we get that,
γi > 1

�i
> γ

2αi
= 1

2
γ

cos θi
> γ

2 which implies that the example has the right label
and is at distance of at least γ/2 from wi and therefore no update occurs.

Theorem 2. Let S = (a0, y0), · · · , (ak, yk) be a sequence of examples where
ai ∈ Rn, yi ∈ {−1,+1} and ‖ai‖2 ≤ R for all 0 ≤ i ≤ k. Let w be some
separating hyperplane for S, that is, there exists some γ > 0 such that for all
i such that 0 ≤ i ≤ k, |wTai| ≥ γ. And let ‖w‖2 = 1. Let t be the number of
mistakes the MCP algorithm makes on S, then, t ≤ (R/γ)2.

Proof. Let M ⊆ S denote the set of examples on which the MCP algorithm made
a mistake. Similarly, let N be the set of examples on which the MCP algorithm
made an update. Clearly, M ⊆ N . By (42) and (43) we get that 1 − 2ηi > 0 for
all i. Hence, we can conclude,

�2k =
∑

i:ai∈N

1 − 2ηi

‖ai‖22
≥

∑

i:ai∈M

1
‖ai‖22

≥
∑

i:a∈M

1
R2

=
t

R2
. (44)

From Lemma (8) we get that,

1 ≥ αk ≥ γ�k ≥ γ

√
t

R2
. (45)

By combining (44) and (45) we get the result. 	

5 Experiments

In this section we present experimental results that demonstrate the perfor-
mance of the MCP algorithm vs. the well known algorithms PA and Aggressive
ROMMA on the MNIST OCR database1. Every example in the MNIST data-
base has two parts, the first is 28 × 28 matrix which represents the image of the

1 See http://yann.lecun.com/exdb/mnist/ for information on obtaining this dataset.

http://yann.lecun.com/exdb/mnist/

220 N.H. Bshouty and C.A. Haddad-Zaknoon

Fig. 3. Single label classifier mistake rates of MCP, PA, A-ROMMA on MNIST dataset.

corresponding digit. Each entry in the matrix takes values from {0, · · · , 255}.
The second part is a label taking values from {0, · · · , 9}. The dataset consists
of 60000 training examples and 10000 test examples. In the experiments we
trained the algorithms for single preselected label l. When training on this, we
replaced each labeled instance (ai, yi) by the binary-labeled instance (ai, y

∗
i),

where y∗
i = 1 if yi = l and y∗

i = −1 otherwise. We have divided the training
set to 60 buckets of examples each containing 1000 examples. For each label,
we first chose a random permutation of the examples buckets, then we trained
the algorithm via single pass over the training dataset according to the selected
permutation. Then, we tested it on the test dataset. We repeated that for 20
random permutations for each label. At the end of the process, to calculate
the mistake rates of each classifier, we took the average of the mistakes over
the 20 rounds. Figure 3 summarizes the number of mistakes made by the three
algorithms for all the ten labels on the test data. Actually it shows that MCP
practically performs better than the other two algorithms under the restrictions
of single dataset pass and hypothesis size that is linear in the number of the
relevant features.

A Proofs of Sect. 2

Proof. (Lemma 1).

αi+1 =
wTwi+1

‖wi+1‖2 =
‖wi‖2αi + ‖wi‖2xi|wTai|√

‖wi‖22 + λ2
i ‖ai‖22 + 2λiyi(wT

i ai)
≥

≥ αi + γxi√
1 + x2

i ‖ai‖22 + 2xi
yi(wT

i ai)

‖wi‖2

.

This implies the result. 	

The Maximum Cosine Framework for Deriving Perceptron 221

Proof. (Lemma 2). From solving ∂Φ(x)/∂x = 0 and checking the sign of ∂Φ(x)
∂x

we get the result. 	

Proof. (Lemma 3). We write Φ(x) in the following manner

Φ(x) =
(r − pt) + p(x + t)√
(s − qt2) + q(x + t)2

≡ r′ + p′x′
√

s′ + q′x′2
, (46)

where r
′
= r−pt, p

′
= p, x

′
= x+t, s

′
= s−qt2 and q

′
= q. Since s+q·x2+2tq·x >

0 for all x, we have q > 0 and Δ = 4t2q2 − 4sq < 0 which implies q′ > 0 and
s′ > 0. Now by Lemma 2, if r

′
= r − pt �= 0, the optimal value of Φ(x) is in

x0 = x′
0 − t =

p′s′

r′q′ − t =
p(s − qt2)
q(r − pt)

− t =
ps − rtp

q(r − pt)
, (47)

and is equal to Φ(x0) = sign(r′)
√

r′2
s′ + p′2

q′ = sign(r − pt)
√

(r−pt)2

s−qt2 + p2

q . This
point is minimal if r − pt < 0 and maximal if r − pt > 0. If r′ = r − pt = 0 then
the function Φ(x) is monotone increasing if p′ = p > 0 and monotone decreasing
if p′ = p < 0. Now we have six cases:

Case 1. If r′ = r − pt = 0 and p > 0 then the function is monotone increasing,
and therefore, Φ∗ = Φ(∞) = p/

√
q.

Case 2. If r′ = r − pt = 0 and p < 0 then the function is monotone decreasing,
and therefore, Φ∗ = Φ(0) = r/

√
s.

Case 3. If r′ = r − pt > 0 and ps − rtq ≥ 0 then by (47) we get x0 = (ps −
rtq)/q(r − pt) > 0 and is a maximal point. Therefore, Φ∗ = Φ(x0).

Case 4. If r′ = r − pt > 0 and ps − rtq < 0 then by (47) we get x0 < 0 and is a
maximal point. Therefore, the function is monotone decreasing for x > 0; hence,
Φ∗ = Φ(x0).

Case 5. If r′ = r − pt < 0 and ps − rtq ≥ 0 then by (47) we get x0 ≤ 0
and is a minimal point. Therefore, Φ(x) is monotone increasing for x > 0 and
Φ∗ = Φ(∞) = p/

√
q.

Case 6. If r′ = r − pt < 0 and ps − rtq < 0 then by (47) we get x0 > 0 and is a
minimal point. Therefore, Φ∗ = max(Φ(∞), Φ(0)) = max

(
p√
q , r√

s

)
. 	

References

1. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

2. Cristianni, N., Shawe-Taylor, J.: Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press, Cambridge (2000)

3. Gentile, C.: A new approximate maximal margin classification algorithm. J. Mach.
Learn. Res. 2, 213–242 (2001)

222 N.H. Bshouty and C.A. Haddad-Zaknoon

4. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE
Trans. Signal Process. 52(8), 2165–2176 (2002)

5. Li, Y., Long, P.M.: The relaxed online maximum margin algorithm. Mach. Learn.
46(1–3), 361–387 (2002)

6. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65, 386–407 (1958). (Reprinted in Neuro-
computing (MIT Press, 1988))

Structural Online Learning

Mehryar Mohri1,2 and Scott Yang2(B)

1 Google Research, 111 8th Avenue, New York, NY 10011, USA
mohri@cs.nyu.edu

2 Courant Institute, 251 Mercer Street, New York, NY 10012, USA
yangs@cims.nyu.edu

Abstract. We study the problem of learning ensembles in the online
setting, when the hypotheses are selected out of a base family that may
be a union of possibly very complex sub-families. We prove new theo-
retical guarantees for the online learning of such ensembles in terms of
the sequential Rademacher complexities of these sub-families. We also
describe an algorithm that benefits from such guarantees. We further
extend our framework by proving new structural estimation error guar-
antees for ensembles in the batch setting through a new data-dependent
online-to-batch conversion technique, thereby also devising an effective
algorithm for the batch setting which does not require the estimation of
the Rademacher complexities of base sub-families.

1 Introduction

Ensemble methods are powerful techniques in machine learning for combining
several predictors to define a more accurate one. They include notable methods
such as bagging and boosting [4,11], and they have been successfully applied to
a variety of scenarios including classification and regression.

Standard ensemble methods such as AdaBoost and Random Forests select
base predictors from some hypothesis set H, which may be the family of boosting
stumps or that of decision trees with some limited depth. More complex base
hypothesis sets may be needed to tackle some difficult modern tasks. At the
same time, learning bounds for standard ensemble methods suggest a risk of
overfitting when using very rich hypothesis sets, which has been further observed
empirically [10,17].

Recent work in the batch setting has shown, however, that learning with
such complex base hypothesis sets is possible using the structure of H, that
is its decomposition into subsets Hk, k = 1, . . . , p, of varying complexity. In
particular, in [8], we introduced a new ensemble algorithm, DeepBoost, which we
proved benefits from finer learning guarantees when using rich families as base
classifier sets. In DeepBoost, the decisions in each iteration of which classifier
to add to the ensemble and which weight to assign to that classifier depend on
the complexity of the sub-family Hk to which the classifier belongs. This can
be viewed as integrating the principle of structural risk minimization to each
iteration of boosting.
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 223–237, 2016.
DOI: 10.1007/978-3-319-46379-7 15

224 M. Mohri and S. Yang

This paper extends the structural learning idea of incorporating model selec-
tion in ensemble methods to the online learning setting. Specifically, we address
the question: can one design ensemble algorithms for the online setting that
admit strong guarantees even when using a complex H? In Sect. 3, we first
present a theoretical result guaranteeing the existence of a randomized algo-
rithm that can compete against the best ensemble in H efficiently when this
ensemble does not rely too heavily on complex base hypotheses. Motivated by
this theory, we then design an online algorithm that benefits from such guaran-
tees, for a wide family of hypotheses sets (Sect. 4). Finally, in Sect. 5, we further
extend our framework by proving new structural estimation error guarantees for
ensembles in the batch setting through a new data-dependent online-to-batch
conversion technique. This also provides an effective algorithm for the batch set-
ting which does not require the estimation of the Rademacher complexities of
base hypothesis sets Hk.

2 Notation and Preliminaries

Let X denote the input space and Y the output space. Let Lt : Y → R+ be a loss
function. The online learning framework that we study is a sequential prediction
setting that can be described as follows. At each time t ∈ [1, T], the learner (or
algorithm A) receives an input instance xt which he uses to select a hypothesis
ht ∈ H ⊆ YX and make a prediction ht(xt). The learner then incurs the loss
Lt(ht(xt)) based on the loss function Lt chosen by an adversary. The objective
of the learner is to minimize his regret over T rounds, that is the difference
of his cumulative loss

∑T
t=1 Lt(ht(xt)) and that of the best function in some

benchmark hypothesis set F ⊂ YX:

RegT (A) =
T∑

t=1

Lt(ht(xt)) − min
h∈F

T∑

t=1

Lt(h(xt)).

In what follows, F will be assumed to coincide with H, unless explicitly stated
otherwise. The learner’s algorithm may be randomized, in which case, at each
round t, the learner draws hypothesis ht from the distribution πt he has defined
at that round. The regret is then the difference between the expected cumulative
loss and the expected cumulative loss of the best-in-class hypothesis: RegT (A) =∑T

t=1 E[Lt(ht(xt))] − minh∈H

∑T
t=1 E[Lt(h(xt))].

Clearly, the difficulty of the learner’s regret minimization task depends on
the richness of the competitor class H. The more complex H is, the smaller the
loss of the best function in H and thus the harder the learner’s benchmark. This
complexity can be captured by the notion of sequential Rademacher complexity
introduced by [16]. Let H be a set of functions from X to R. The sequential
Rademacher complexity of a hypothesis H is denoted by Rseq

T (H) and defined by

Rseq
T (H) =

1
T

sup
x

E

[
sup
h∈H

T∑

t=1

σth(xt(σ))
]
, (1)

Structural Online Learning 225

where the supremum is taken over all X-valued complete binary trees of depth
T and where σ = (σ1, . . . , σT) is a sequence of i.i.d. Rademacher variables, each
taking values in {±1} with probability 1

2 . Here, an X-valued complete binary tree
x is defined as a sequence (x1, . . . , xT) of mappings where xt : {±1}t−1 → X. The
root x1 can be thought of as some constant in X. The left child of the root is
x2(−1) and the right child is x2(1). A path in the tree is σ = (σ1, . . . , σT−1). To
simplify the notation, we write xt(σ) instead of xt(σ1, . . . , σt−1). The sequen-
tial Rademacher complexity can be interpreted as the online counterpart of the
standard Rademacher complexity widely used in the analysis of batch learning
[1,13]. It has been used by [16] and [15] both to derive attainability results for
some regret bounds and to guide the design of new online algorithms.

3 Theoretical Guarantees for Structural Online Learning

In this section, we present learning guarantees for structural online learning in
binary classification. Hence, for any t ∈ [1, T], the loss incurred at each time t
by hypothesis h is Lt(h(xt)) = 1{yth(xt)<0}, with yt ∈ Y = {±1}.

A randomized player strategy π = (π1, . . . , πT) for a sequence of length T is
a sequence of mappings πt : (X × Y)t−1 → PH, t ∈ [T], where PH is the family
of distributions over H. Thus, πt((x1, y1), . . . , (xt−1, yt−1)) is the distribution
according to which the player selects a hypothesis h ∈ H at time t and which
also depends on the past sequence (x1, y1), . . . , (xt−1, yt−1) played against the
adversary.

The following shows the existence of a randomized strategy that benefits
from a margin-based regret guarantee in the online setting. This can be viewed
as the counterpart of the classical margin-based learning bounds in the batch
setting given by [13].

Theorem 1 (Proposition 25 [16]). For any function class H ⊂ R
X of func-

tions bounded by one, there exists a randomized player strategy given by π such
that for any sequence z1, . . . , zT played by the adversary, zt = (xt, yt) ∈ X×{±1},
the following inequality holds:

E

[
1
T

T∑

t=1

E
ht∼πt

[1{ytht(xt)<0}]

]

≤ inf
γ>0

{
inf

h∈H

1
T

T∑

t=1

1{yth(xt)<γ} +
4
γ
R

seq
T (H) +

1√
T

(
3 + log log

1
γ

)}
.

We are not explicitly indicating the dependency of πt on (x1, y1), . . . , (xt−1, yt−1)
to alleviate the notation. The theorem gives a guarantee for the expected error
of a randomized strategy in terms of the empirical margin loss and the sequential
Rademacher complexity of H scaled by γ for the best choice of h ∈ H and the
best confidence margin γ. As with standard margin bounds, this is subject to a
trade-off: for a larger γ the empirical margin loss is larger, while a smaller value

226 M. Mohri and S. Yang

of γ increases the complexity term. The result gives a very favorable guarantee
when there exists a relatively large γ for which the empirical margin loss of the
best h is relatively small.

While this result is remarkable for characterizing learnability against the
best-in-class hypothesis, it does not identify and take advantage of any struc-
ture in the hypothesis set. The structural margin bound that we prove next
specifically provides a guarantee that exploits the scenario where the hypothesis
set admits a decomposition H = ∪p

k=1Hk. For any q ∈ N, we will denote by Δq

the probability simplex in R
q and by conv(H) the convex hull of H.

Theorem 2. Let H ⊂ [−1, 1]X be a family of functions admitting a decomposi-
tion H =

⋃p
k=1 Hk. Then, there exists a randomized player strategy given by π

on conv(H) such that for any sequence ((xt, yt))t∈[T] in X× {±1}, the following
inequality holds:

E

[
1
T

T∑

t=1

E
ft∼πt

[
1{ytft(xt)<0}

]
]

≤ inf
γ>0

{
inf

f=
∑q

i=1αihi∈ conv(H)
α∈Δq,hi∈Hk(hi)

1
T

T∑

t=1

1{ytf(xt)<γ}

+
6
γ

q∑

i=1

αiR
seq
T (Hk(hi)) + Õ

(
1
γ

√
log p

T

)}
,

where k(hi) ∈ [1, p] is defined to be the smallest index k such that hi ∈ Hk and
q ∈ N so that f is an arbitrary element in the convex hull.

The theorem extends the margin bound of Theorem1 given for a single hypoth-
esis set to a guarantee for the convex hull of p hypothesis sets. Observe
that, remarkably, the complexity term depends on the mixture weights αi and
hypotheses hi defining the the best-in-class hypothesis f =

∑q
i=1 αihi. The com-

plexity term is an α-average of the sequential Rademacher complexities. Thus,
the theorem shows the existence of a randomized strategy π that achieves a
favorable guarantee so long as the best-in-class hypothesis f ∈ conv(H) admits
a decomposition for which the complexity term is relatively small, which directly
depends on the amount of mixture weight assigned to more complex Hks versus
less complex ones in the decomposition of f .

From a proof standpoint, it is enticing to use the fact that the sequential
Rademacher complexity of a hypothesis set does not increase upon taking the
convex hull. While this property yields an interesting result itself, it is not suffi-
ciently fine for deriving the result of Theorem2: in short, the resulting guaran-
tee is then in terms of the maximum of the sequential Rademacher complexities
instead of their α-average.

Proof. Fix n ≥ 1. For any p-tuple of non-negative integers N = (N1, . . . , Np) ∈
N

p with |N| =
∑p

k=1 Nk = n, consider the following family of functions:

GH,N =

⎧
⎨

⎩
1
n

p∑

k=1

Nk∑

j=1

hk,j

∣∣∣∣∀(k, j) ∈ [1, p] × [Nk], hk,j ∈Hk

⎫
⎬

⎭ .

Structural Online Learning 227

By the sub-additivity of the supremum operator, the sequential Rademacher
complexity of H can be upper bounded as follows:

Rseq
T (GH,N) =

1
T

sup
x

E
σ

⎡

⎣ sup
h∈GH,N

T∑

t=1

1
n

p∑

k=1

Nk∑

j=1

hk,j(xt(σ))σt

⎤

⎦

≤ 1
T

1
n

p∑

k=1

Nk∑

j=1

sup
x

E
σ

[
sup

hk,j∈Hk

T∑

t=1

hk,j(xt(σ))σt

]
=

1
n

p∑

k=1

NkR
seq
T (Hk).

In view of this inequality and the margin bound of Proposition 1, for any GH,N,
there exists a player strategy πN such that

1
T

E

[
T∑

t=1

E
ft∼πN

t

[1{ytft(xt)<0}]

]

≤ inf
γ>0

{
inf

g∈GH,N

1
T

T∑

t=1

1{ytg(xt)<γ} +
4
γ

1
n

p∑

k=1

NkR
seq
T (Hk) +

3 + log log 1
γ√

T

}
.

Now, let πexp denote a randomized weighted majority strategy πexp with the πN

strategies serving as experts [14]. Since there are at most pn p-tuples N with
|N| = n, the regret of this randomized weighted majority strategy is bounded
by 2

√
T log(pn) (see [6]). Thus, the following guarantee holds for the strategy

πexp:

E

[
T∑

t=1

E
ft∼πexp

t

[1{ytft(xt)<0}]

]
≤ inf

|N|=n
E

[
T∑

t=1

E
ft∼πN

t

[1{ytft(xt)<0}]

]
+
√

4Tn log p.

In view of that, we can write

1
T

E

[
T∑

t=1

E
ft∼πexp

t

[1{ytft(xt)<0}]

]

≤ inf
γ>0

⎧
⎪⎨

⎪⎩
inf

g∈GH,N

|N|=n

1
T

T∑

t=1

1{ytg(xt)<γ} +
4
γ

1
n

p∑

k=1

NkR
seq
T (Hk)

⎫
⎪⎬

⎪⎭
(2)

+
3 + log log 1

γ√
T

+ 2

√
n log p

T

= inf
γ>0

⎧
⎪⎨

⎪⎩
inf

g= 1
n

∑q
i=1nihi

hi∈Hk(hi)

1
T

T∑

t=1

1{ytg(xt)<γ} +
4
γ

1
n

q∑

i=1

niR
seq
T (Hk(hi))

⎫
⎪⎬

⎪⎭

+
3 + log log 1

γ√
T

+ 2

√
n log p

T
. (3)

228 M. Mohri and S. Yang

Now, fix (h1, . . . , hq). Any α ∈ Δq defines a distribution over h1, . . . , hq. Sam-
pling according to α and averaging leads to functions g of the form g =
1
n

∑q
i=1 nihi for some q-tuple n = (n1, . . . , nq) with |n| = n. Let f =

∑q
i=1 αihi

for some α ∈ Δq. By the union bound, we can write, for any γ > 0 and (xt, yt),

E
n∼α

[
1ytg(xt)<γ

]
= Pr

n∼α

[
ytg(xt) < γ

]
= Pr

n∼α

[
ytg(xt) − ytf(xt) + ytf(xt) < γ

]

≤ Pr
n∼α

[
ytg(xt) − ytf(xt) < −γ

2

]
+ Pr

n∼α

[
ytf(xt) < 3γ

2

]

= Pr
n∼α

[
ytg(xt) − ytf(xt) < −γ

2

]
+ 1ytf(xt)<

3γ
2

.

For any γ > 0 and (xt, yt), by Hoeffding’s inequality, the following holds:

Pr
n∼α

[
ytg(xt) − ytf(xt) < −γ

2

] ≤ e
−nγ2

8 .

Plugging this inequality back into the previous one gives:

E
n∼α

[
1ytg(xt)<γ

] ≤ e
−nγ2

8 + 1ytf(xt)<
3γ
2

. (4)

Fix γ > 0 and h1 ∈ Hk(h1), . . . , hq ∈ Hk(hq) in inequality 2. Then, taking the
expectation over α of both sides of the inequality and using inequality 4 com-
bined with E[ni

n] = αi, we obtain that for any γ > 0, any h1 ∈ Hk(h1), . . . , hq ∈
Hk(hq), and any α ∈ Δq, the following holds for f =

∑q
i=1 αihi:

1
T

E

[
T∑

t=1

E
ft∼πexp

t

[1{ytft(xt)<0}]

]
≤ 1

T

T∑

t=1

1ytf(xt)<
3γ
2

+
4
γ

q∑

i=1

αiR
seq
T (Hk(hi))

+ e
−nγ2

8 +
3 + log log 1

γ√
T

+ 2

√
n log p

T
.

Thus, this inequality holds for any γ > 0, any n ≥ 1, and any f =
∑q

i=1 αihi ∈
conv(H). Choosing n =

⌈
4
γ2 log γ2T

16 log p

⌉
and replacing 3γ

2 by γ yields

1
T

E

[
T∑

t=1

E
ft∼πexp

t

[1{ytft(xt)<0}]

]

≤ inf
γ>0

{
inf

f=
∑q

i=1αihi∈ conv(H)
α∈Δq,hi∈Hk(hi)

1
T

T∑

t=1

1ytf(xt)<γ +
6
γ

q∑

i=1

αiR
seq
T (Hk(hi))

+ 6

√
log p

γ2T
+ 6

√⌈
1
γ2

log
[

γ2T
36 log p

]⌉ log p

T
+

3 + log log 3
2γ√

T

}
,

which completes the proof. ��

Structural Online Learning 229

4 Algorithms for Structural Online Learning

While Theorem 2 proves the existence of a randomized strategy with favorable
structural learning guarantees, it does not explicitly define one. In this section,
we give a general algorithm that benefits from the structural online learning
bound above.

In what follows, we will fix an arbitrary decomposition of the function class:
H = ∪p

k=1Hk. Moreover, we will assume that this decomposition (Hk)p
k=1

is structurally online linear-learnable in the sense that for any subset Hk ⊂
H, k ∈ [1, p], there exists an online learning algorithm Ak such that for
any time horizon T and every sequence (xt, Lt)T

t=1 where Lt is a linear loss
function bounded by 1, Ak selects a sequence of functions (ht)T

t=1 satisfying∑T
t=1 Lt(ht(xt))−minh∈H

∑T
t=1 Lt(h(xt)) = RegHk,T (Ak) = o(T). For instance,

if H is finite, every decomposition is structurally online linear-learnable, which
can be seen by applying a potential-based algorithm [6]. Note that the notion
of structural online linear-learnability is a slight generalization of the concept
introduced by [2].

We will also follow in this section the standard method of using a convex
surrogate for the zero-one loss function. The will enable us to design algorithms
that are both deterministic and can be used to achieve new structural PAC
guarantees in the batch setting (the latter will be seen in Sect. 5). Let Φ : R →
R be any convex loss function upper bounding the zero-one loss. We further
assume that Φ is G-Lipschitz. One standard example is the hinge loss, Φ(x) =
(1 − x)1{x≤1}, which is 1-Lipschitz. Our goal is to design algorithms A that
guarantee structural upper bounds on the following regret term: RegT (A) =
maxh∈conv(H)

∑T
t=1 Φ(ytht(xt))−Φ(yth(xt)). For any x, we will denote by Φ′(x)

an arbitrary element of the subgradient of Φ at x.

4.1 SOL.Boost Algorithm

At first glance, the structural learning bound of Theorem2 seems unwieldy since
the convex combination of the best-in-class hypothesis is not necessarily well-
ordered with respect to the decomposition of the hypothesis set. Moreover, the
proof of Theorem 2 is based on the existence of online learning algorithms for
different subclasses of functions to which a meta-algorithm for learning with
experts is applied. This is instructive, but it is also computationally infeasible
because there are exponentially many experts in the proof.

Addressing the well-ordering issue and the computational problem will be
essential to our algorithmic design. Towards the first point, we can “re-organize”
the best-in-class hypothesis by writing:

q∑

i=1

α∗
iRT (Hk(i∗)) =

q∑

i=1

p∑

k=1

1{k(i∗)=k}α∗
iRT (Hk(i∗))

=
p∑

k=1

q∑

i=1

1{k(i∗)=k}α∗
iRT (Hk) =

p∑

k=1

γ∗
kRT (Hk).

230 M. Mohri and S. Yang

. HpH1 Hk

ht

Fig. 1. Illustration of SOL.Boost Algorithm. The algorithm incorporates a meta-
algorithm that measures the progress of each base algorithm. Note from the pseudo-
code that the base algorithms are not assigned their true losses, but instead new hal-
lucinated losses.

This suggests that learning against the convex hull of a hypothesis class with a
structural decomposition can be equivalently cast as learning against each of its
individual substructures along with some new set of convex weights. We will use
this observation by applying an (efficient) experts-type algorithm to learn these
new weights instead of the original weights from the best convex combination.

However, learning against each of the individual substructures proves to be
a challenge in and of itself, since typical online learning algorithms, such as the
weighted majority algorithm [14], are able to provide guarantees against only the
single “best-in-class” hypothesis. Direct application of the experts algorithm on
top of typical online learning algorithms for each Hk will only produce a regret
guarantee against comparators of the form

∑p
k=1 α∗

kh∗
k, h∗

k ∈ Hk, α∗ ∈ Δp. On
the other hand, Theorem2 guarantees the existence of an algorithm that can
attain a structural regret bound against arbitrary convex combinations in H,
including those that contain multiple base hypotheses from a single substructure
Hk. To attain this type of guarantees, we will linearize the loss and hallucinate
different losses for each of the base online linear learning algorithms so that they
learn well against the convex hull of each subclass.

Our algorithm, SOL.Boost, incorporates these two ideas to produce a guar-
antee in the form of the one given in Theorem2. Figure 1 presents an illustration
of the algorithm.

Theorem 3. Let H ⊂ [−1, 1]X be a hypothesis set admitting the decomposition
H = ∪p

k=1Hk that is structurally online linear-learnable. For each k ∈ [1, p],
let Ak be an online algorithm that can minimize the regret of linear loss func-
tions against Hk, with regret RegHk,T (Ak) over T rounds. Let Φ : R → R be a
G-Lipschitz convex upper bound on the zero-one loss. Then, SOL.Boost, initial-

ized with η <
√

log p
T , outputs a sequence of hypotheses (ht)T

t=1 that satisfies the
following regret bound for any (xt, yt)T

t=1:

T∑

t=1

Φ(ytht(xt)) ≤ inf
f=
∑q

i=1 αihi∈conv(H)

α∈Δq,hi∈Hk(hi)

{ T∑

t=1

Φ(ytf(xt))

+
q∑

i=1

αiRegHk(hi),T
(Ak(hi)) +

√
G2T log(p)

}
.

Structural Online Learning 231

Algorithm 1. SOL.Boost
1: Input: Online linear learning algorithms (Ak)p

k=1 for (Hk)p
k=1, (Nk)p

k=1 boosting
stages, η > 0 learning rate, G Lipschitz constant for Φ.

2: Initialize: w1,k = 1, ∀k ∈ [1, p].
3: for t = 1, . . . , T : do
4: Receive: feature xt.
5: for k = 1, . . . , p do
6: Query: algorithm Ak for hypothesis ht,k and prediction ht,k(xt).
7: Set: γt,k =

wt,k∑p
j=1 wt,j

.

8: end for
9: Set: predictor ht =

∑p
k=1 γt,kht,k and predict ht(xt).

10: Receive: label yt.
11: for k = 1, . . . , p do
12: Attribute: loss lt(ytht,k(xt)) to each Ak, where lt is the linear function

lt : z �→ Φ′(ytht(xt)
)
ytz.

13: end for
14: for k = 1, . . . , p do
15: Update: weight wt+1,k = wt,k

(
1 − η lt

(
ytht,k(xt)

))
16: end for
17: end for

Proof. Let α∗ ∈ Δq and (h∗
i)

q
i=1 ⊂ H be such that

∑q
i=1 α∗

i h
∗
i ∈ conv(H). For

any i ∈ [q] and k ∈ [1, p], define h∗
k,i = 1{k(h∗

i)=k}h∗
i . Then, it follows that

q∑

i=1

α∗
i h

∗
i =

q∑

i=1

p∑

k=1

1{k(h∗
i)=k}α∗

i h
∗
i =

p∑

k=1

q∑

i=1

1{k(h∗
i)=k}α∗

i 1{k(h∗
i)=k}h∗

i

=
p∑

k=1

⎛

⎝
q∑

j=1

1{k(h∗
j)=k}

⎞

⎠
[

q∑

i=1

1{k(h∗
i)=k}α∗

i∑q
j=1 1{k(h∗

j)=k}
h∗

k,i

]
=

p∑

k=1

γ∗
k

q∑

j=1

β∗
k,jh

∗
k,i,

where h∗
k,i = 1{k(h∗

i)=k}h∗
i , γ∗

k =
∑q

j=1 1{k(h∗
j)=k}, β∗

k,j =
∑q

i=1

1{k(h∗
i
)=k}α∗

i
∑q

j=1 1{k(h∗
j
)=k}

.

By convexity of the loss function Φ, we can write

T∑

t=1

Φ (ytht(xt)) − Φ

⎛

⎝yt

p∑

k=1

γ∗
k

q∑

j=1

β∗
k,jh

∗
k,j(xt)

⎞

⎠

≤
T∑

t=1

p∑

k=1

Φ′ (ytht(xt)) ytht,k(xt) [γt,k − γ∗
k]

+
p∑

k=1

γ∗
k

T∑

t=1

Φ′ (ytht(xt)) yt

⎡

⎣ht,k(xt) −
q∑

j=1

β∗
k,jh

∗
k,j(xt)

⎤

⎦ .

232 M. Mohri and S. Yang

The first term in the last expression is bounded because the algorithm applies the
Prod(η) algorithm [7] to the hallucinated losses above. Specifically, we can use
the potential function P (wt) = log (

∑p
k=1 wt,k) to track the algorithm’s progress

against these surrogate losses and compute:

log

(∑p
k=1 wt+1,k∑p

j=1 w1,j

)
= log

(
t∏

s=1

∑p
k=1 ws+1,k∑p

j=1 ws,j

)
=

t∑

s=1

log

(∑p
k=1 ws+1,k∑p

j=1 ws,j

)

=
t∑

s=1

log

(
1 − η

p∑

k=1

γs,kΦ′ (ytht(xt)) ytht,k(xt)

)

≤
t∑

s=1

−η

p∑

k=1

γs,kΦ′ (ytht(xt)) ytht,k(xt),

using the inequality log(1 + x) ≤ x for x ≥ −1
2 . We can also write, for any

k ∈ [1, p],

log

(∑p
i=1 wt+1,i∑p
j=1 w1,j

)
≥ log

(
wt+1,k∑p
j=1 w1,j

)
= − log

⎛

⎝
p∑

j=1

w1,j

⎞

⎠ + log (wt+1,k)

≥ − log

⎛

⎝
p∑

j=1

w1,j

⎞

⎠ −
t∑

s=1

ηΦ′ (yshs(xs)) yshs,k(xs)

−
t∑

s=1

(ηΦ′ (yshs(xs)) yshs,k(xs))
2
,

in view of log(1 + x) ≥ x − x2 for all x ≥ − 1
2 , and the constraint on η. By

concavity of the logarithm, this implies that for the γ∗ ∈ Δp chosen above,

log

(∑p
i=1 wt+1,i∑p
j=1 w1,j

)
≥ log

(∑p
k=1 γ∗

kwt+1,k∑p
j=1 w1,j

)
≥

p∑

k=1

γ∗
k log

(
wt+1,k∑p
j=1 w1,j

)

≥
p∑

k=1

γ∗
k

[
− log

⎛

⎝
p∑

j=1

w1,j

⎞

⎠ +
t∑

s=1

−ηΦ′ (yshs(xs)) yshs,k(xs)

− (ηΦ′ (yshs(xs)) yshs,k(xs))
2
]
.

Combining these calculations yields the inequality:

T∑

t=1

p∑

k=1

Φ′
(
ytht(xt)

)
ysht,k(xt)(γt,k − γ∗

k)

≤
T∑

t=1

p∑

k=1

γ∗
kη
(
Φ′
(
ytht(xt)

)
ysht,k(xt)

)2

+
1
η

log (p) ,

Structural Online Learning 233

since w1,k = 1 ∀k ∈ [1, p].
For the second term, notice that if for each k ∈ [1, p] we attribute

the loss lt(ytht,k(xt)) to Ak, where lt is the linear function lt : z →
Φ′(ytht(xt)

)
ytz, then the fact that lt is linear implies that Ak attains

some sublinear regret RegHk,T (Ak) against Hk: maxh∗
k∈Hk

∑T
t=1 lt(ht,k(xt)) −

∑T
t=1 lt(h∗

k(xt)) ≤ RegHk,T (Ak). Since lt is a linear loss, this directly
implies that the regret guarantee RegHk,T (Ak) extends to the convex hull of
Hk: max

h∗
k∈conv(Hk)

∑T
t=1 lt(ht,k(xt)) − ∑T

t=1 lt(h∗
k(xt)) ≤ RegHk,T (Ak). It now fol-

lows that:
T∑

t=1

Φ
(
ytht(xt)

)
− Φ

(
yt

p∑

k=1

γ∗
k

q∑

j=1

β∗
k,jh

∗
k,j(xt)

)

≤
p∑

k=1

γ∗
kη

T∑

t=1

(
Φ′
(
ytht(xt)

)
ysht,k(xt)

)2

+
1
η

log (p) +
p∑

k=1

γ∗
kRegHk,T (Ak).

Moreover, we can rewrite the convex combination of the regret quantities in
terms of the original convex combination weights of the comparator hypothesis:

p∑

k=1

γ∗
kRegHk,T (Ak) =

p∑

k=1

γ∗
k

q∑

i=1

β∗
k,iRegHk,T (Ak)

=
p∑

k=1

⎛

⎝
q∑

j=1

1{k(h∗
j)=k}

⎞

⎠
[

q∑

i=1

1{k(h∗
i)=k}α∗

i∑q
j=1 1{k(h∗

j)=k}
RegHk,T (Ak)

]

=
p∑

k=1

⎛

⎝
q∑

j=1

1{k(h∗
j)=k}

⎞

⎠
[

q∑

i=1

1{k(h∗
i)=k}α∗

i∑q
j=1 1{k(h∗

j)=k}
RegHk(h∗

i
),T

(Ak(h∗
i)

)

]

=
p∑

k=1

q∑

i=1

1{k(h∗
i)=k}α∗

i RegHk(h∗
i
),T

(Ak(h∗
i)

) =
q∑

i=1

α∗
i RegHk(h∗

i
),T

(Ak(h∗
i)

).

Choosing η =
√

log(p)
GT satisfies the conditions and yields the desired result. ��

One remarkable aspect of SOL.Boost is that it does not require knowledge of
Rseq

T (Hk) for any Hk. As can be seen in Theorem 3, these complexity terms
are replaced by the regret of each algorithm and are attained automatically.
This is a significant advantage over the structural ensemble algorithms in the
batch setting (e.g. DeepBoost [8]), which require the learner to either compute
or estimate these quantities.

Moreover, the bound accompanied by SOL.Boost can vastly improve upon
bounds that ignore the structural decomposition. The former realizes an average
of all the regrets, and the latter is based upon the maximum regret among all
base algorithms.

SOL.Boost updates all p base algorithms at each step. To improve the per-
round computational cost, we can sample and query only a single base algorithm

234 M. Mohri and S. Yang

Algorithm 2. Structural OTB
1: Input: Online algorithms (Ak)p

k=1 for decomposition H = ∪p
k=1Hk, I family of

contiguous intervals in [1, T]
2: for t = 1, . . . , T : do
3: Receive: feature xt

4: Query: algorithm Ak for hypothesis ht,k

5: Receive: label yt and losses L(ht,k(xt), yt) for k ∈ [1, p]
6: Set: kt = argmink∈[1,p] L(ht,k(xt), yt)
7: end for
8: Set: Jout = argminJ∈I

1
|J|
∑

t∈J L(ht,kt(xt), yt) +
√

2C2 log(|I|/δ)

|J|1/2

9: Output: hJout = 1
|Jout|

∑
t∈Jout

ht,kt

using techniques from the bandit literature (see e.g. [6]). This will come at the
price of an extra

√
p factor in the last term on the right-hand side of Theorem3.

While it might be tempting to compare SOL.Boost to the work of [3], the
algorithm presented here actually solves a regression problem, and it is more
proper to compare it to the work of [2]. In fact, this is why we build upon the
concept of online linear-learnability introduced in the latter paper.

The work of [12] may also seem related to the problem we consider, but it is in
fact quite different since the hypothesis sets for online multiple kernel learning
and online ensemble learning are distinct. Moreover, the guarantees procured
there do not admit arbitrary structural decompositions as in Theorem3 and are
only in terms of the best base algorithm.

5 Online-to-Batch Conversion

In this section, we design an effective online-to-batch conversion technique
for structural learning. Here, we assume that the learner receives a sample
((x1, y1), . . . , (xT , yT))T

t=1 in X × Y drawn i.i.d. according to a distribution D.
The objective is to determine a hypothesis h based on a sequence of hypothe-
ses h1, . . . , hT output by an online learning algorithm that admits a favorable
generalization error R(h) = E(x,y)∼D [L(xt, yt)].

We show that one can design algorithms whose generalization bounds account
for the structure of the hypothesis set. Moreover, these are the first known struc-
tural generalization bounds in the batch setting that are in terms of the best-
in-class hypothesis and can be viewed as an estimation error extension of the
theoretical bounds in [8].

We consider a single static loss function L : Y × Y → R and assume that
the difference between rounds is simply the label: Lt(ht(xt)) = L(ht(xt), yt).
For convenience, we also assume that L is convex in its first argument. Note
that any convex surrogate used in Sect. 4 will satisfy this. The online-to-batch
conversion technique that we present is data-dependent and can be viewed as a
structural extension of the method of [9]. At a high level, finding the subpath with
the smallest cumulative loss will ensure small empirical estimation error, and

Structural Online Learning 235

Fig. 2. Illustration of Structural OTB. The algorithm chooses the best a posteriori
sub-path of hypotheses among all algorithms.

penalizing shorter paths will guarantee that the output will generalize well. This
is not immediately obvious nor necessarily intuitive, since greedy optimization
of empirical error without regularization does not lead to good generalization in
many cases.

Theorem 4 presents the guarantee of our method. Figure 2 illustrates our
algorithm, which benefits from the following guarantee.

Theorem 4. Let ((x1, y1), . . . , (xT , yT)) be an i.i.d. sample drawn from a dis-
tribution D over X× Y. Assume that the loss function L : Y× Y → R is bounded
by a constant C and that each base online algorithm in the input of Structural
OTB admits the following regret guarantee: for any k ∈ [1, p], h∗

k ∈ Hk, and
contiguous subset J ⊂ [1, T]:

∑
t∈J L(ht,k(xt), yt) − L(h∗(xt), yt) ≤ RegJ(Ak).

Then, with probability at least 1 − δ, each of the following guarantees holds for
Structural OTB:

E
(x,y)∼D

[L(hJout
(x), y)] ≤ min

J∗∈I,α∗∈Δp,h∗
k∈Hk

{ p∑

k=1

α∗
k

1
|J∗|

∑

t∈J∗
L(h∗

k(xt), yt)

+
p∑

k=1

α∗
kRegJ∗(Ak) +

√
2C2 log(|I|/δ)

|J∗|
}

,

E
(x,y)∼D

[L(hJout
(x), y)] ≤ min

J∗∈I,α∗∈Δp,h∗
k∈Hk

{ p∑

k=1

α∗
k E
(x,y)∼D

[L(h∗
k(x), y)]

+
p∑

k=1

α∗
kRegJ∗(Ak) +

√
2C2 log(p/δ)

T
+

√
2C2 log(|I|/δ)

|J∗|
}

.

Proof. Let J ⊂ [1, T] be any subset, and denote hJ = 1
|J|

∑
t∈J ht,kt

.
Notice that by convexity of L in the first coordinate, E(x,y)∼D [L(hJ (x), y)] ≤
1

|J|
∑

t∈J E(x,y)∼D [L(ht,kt
(x), y)] .

Now for any t ∈ J , define Mt = 1
|J|

(
L(ht,kt

(·), ·) − E(x,y)∼D [L(ht,kt
(x), y)]

)
.

By design, (Mt)t∈J is a sequence of martingale differences over J , such that if
we reindex J = [1, TJ], then E[Ms|M1, . . . ,Ms−1] = 0 for every s ∈ [1, TJ].

Furthermore, by Azuma’s inequality, we can guarantee that with probability

at least 1−δ, E(x,y)∼D [L(ht,kt
(x), y)] ≤ 1

|J|
∑

t∈J L(ht,kt
(xt), yt)+

√
2C2 log(1/δ)

|J| .

By applying a union bound over all J ∈ I, then with probability at least 1 − δ,
the following bound holds for every J ∈ I:

E
(x,y)∼D

[L(ht,kt
(x), y)] ≤ 1

|J |
∑

t∈J

L(ht,kt
(xt), yt) +

√
2C2 log(|I|/δ)

|J | .

236 M. Mohri and S. Yang

Thus, it follows that

E
(x,y)∼D

[L(hJout(x), y)] ≤ min
J∗∈I

1
|J∗|

∑

t∈J∗
L(ht,kt

(xt), yt) +

√
2C2 log(|I|/δ)

|J∗| .

By the choice of kt, we can further say that L(ht,kt
(xt), yt) ≤ L(ht,k(xt), yt) ∀k ∈

[1, p]. In particular, this means that for any J ∈ I,

1
|J |

∑

t∈J

L(ht,kt
(xt), yt) ≤ min

α∗∈Δp

1
|J |

∑

t∈J

p∑

k=1

α∗
kL(ht,k(xt), yt)

≤ min
α∗∈Δp,h∗

k∈Hk

p∑

k=1

α∗
k

(
1

|J |
∑

t∈J

L(h∗
k(xt), yt) + RegJ(Ak)

)
.

Combining the above two inequalities yields the first result.
Furthermore, we can use Hoeffding’s inequality over the best-in-class clas-

sifier’s guarantee for each of the p subclasses and apply a union bound to say
that

E
(x,y)∼D

[L(hJout(x), y)] ≤ min
J∗∈I,α∗∈Δp,h∗

k∈Hk

{ p∑

k=1

α∗
k E(x,y)∼D [L(h∗

k(x), y)]

+
p∑

k=1

α∗
kRegJ∗(Ak) +

√
2C2 log(p/δ)

T
+

√
2C2 log(|I|/δ)

|J∗|
}

.

��
Note that one natural choice of I, as discussed by [9], is the set of all suffixes

of [1, T]: {[1, T], [2, T], . . . , [T, T]}. This was shown empirically to outperform the
“data-independent” online-to-batch conversion methods of [5]. With this specific
choice of I, |I| = T , and the logarithmic dependence on |I| is mild.

6 Conclusion

We presented a series of theoretical and algorithmic results for structural online
learning. Our theory and algorithms can be further extended to cover other learn-
ing settings, including multi-class classification, regression and general online
learning. In contrast with the batch algorithms for structural learning, our algo-
rithms do not require the estimation of the Rademacher complexities in the
decomposition of the hypothesis set. Moreover, our online-to-batch conversion
algorithm provides an efficient alternative to the current structural ensemble
methods used in the batch setting.

Acknowledgements. This work was partly funded by the NSF awards IIS-1117591
and CCF-1535987 and was also supported by the National Science Foundation Grad-
uate Research Fellowship under Grant No. DGE 1342536.

Structural Online Learning 237

References

1. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds
and structural results. J. Mach. Learn. Res. 3, 463–482 (2002)

2. Beygelzimer, A., Hazan, E., Kale, S., Luo, H.: Online gradient boosting. In: Pro-
ceedings of NIPS, pp. 2449–2457 (2015)

3. Beygelzimer, A., Kale, S., Luo, H.: Optimal and adaptive algorithms for online
boosting. In: ICML, volume 37 of JMLR Proceedings (2015)

4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
5. Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line

learning algorithms. IEEE Trans. Inf. Theor. 50(9), 2050–2057 (2004)
6. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-

versity Press, New York (2006)
7. Cesa-Bianchi, N., Mansour, Y., Stoltz, G.: Improved second-order bounds for pre-

diction with expert advice. Mach. Learn. 66(2–3), 321–352 (2007)
8. Cortes, C., Mohri, M., Syed, U.: Deep boosting. In: Proceedings of ICML (2014)
9. Dekel, O., Singer, Y.: Data-driven online to batch conversions. In: NIPS, pp. 267–

274 (2005)
10. Dietterich, T.G.: An experimental comparison of three methods for constructing

ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn.
40(2), 139–157 (2000)

11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

12. Jin, R., Hoi, S.C.H., Yang, T.: Online multiple kernel learning: algorithms and
mistake bounds. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT
2010. LNCS, vol. 6331, pp. 390–404. Springer, Heidelberg (2010)

13. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the
generalization error of combined classifiers. Ann. Stat. 30, 1–50 (2002)

14. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput.
108(2), 212–261 (1994)

15. Rakhlin, A., Shamir, O., Sridharan, K.: Relax, randomize: from value to algorithms.
In: NIPS, pp. 2150–2158 (2012)

16. Rakhlin, A., Sridharan, K., Tewari, A.: Online learning: random averages, com-
binatorial parameters, and learnability. In: Proceedings of NIPS, pp. 1984–1992
(2010)

17. Rätsch, G., Onoda, T., Müller, K.-R.: Soft margins for adaboost. Mach. Learn.
42(3), 287–320 (2001)

An Upper Bound for Aggregating Algorithm
for Regression with Changing Dependencies

Yuri Kalnishkan(B)

Computer Learning Research Centre and Department of Computer Science,
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

Yuri.Kalnishkan@rhul.ac.uk

Abstract. The paper presents a competitive prediction-style upper
bound on the square loss of the Aggregating Algorithm for Regression
with Changing Dependencies in the linear case. The algorithm is able to
compete with a sequence of linear predictors provided the sum of squared
Euclidean norms of differences of regression coefficient vectors grows at
a sublinear rate.

1 Introduction

We consider the on-line learning scenario with signals. The following events are
repeated for t = 1, 2, The learner sequentially reads a signal xt ∈ R

n, makes
a prediction γt ∈ R on the basis of the signal and past observations, and sees the
true outcome yt ∈ [−Y, Y]. The quality of the learner’s predictions are assessed
using a loss function λ(γ, y), which is (γ − y)2 in this paper.

We want to develop strategies for the learner making sure it suffers low cumu-
lative loss Loss(T) =

∑T
t=1 λ(γt, yt) over T steps. We approach this task within

the competitive on-line prediction framework. According to this framework, no
mechanism (probabilistic or other) generating the signals and outcomes is pos-
tulated. Instead we take a pool of prediction strategies and aim to build one that
suffers loss not much worse than any strategy from the pool on every possible
sequence of signals and outcomes.

In [Vov01,AW01] a prediction strategy is built that competes against the pool
of all linear predictors outputting γt = θ′xt for a fixed θ ∈ R

n. (Unless otherwise
stated, all vectors in this paper are column vectors and M ′ is the transpose of a
matrix or vector M .) The strategy called Aggregating Algorithm for Regression
(AAR; also known as Vovk-Azoury-Warmuth predictor) suffers loss satisfying

LossAAR(T) ≤ inf
θ∈Rn

(
(θ′xt − yt)2 + a‖θ‖2) + nY 2 ln

(
TB2

an
+ 1

)
(1)

on every sequence (x1, y1), (x2, y2), . . . , (xT , yT), where B = maxt=1,2,...,T ‖xt‖
and Y = maxt=1,2,...,T |yt|, T = 1, 2, . . ., and the number a > 0 is the parameter
of the strategy. (In this paper, ‖x‖ denotes the Euclidean norm.) AAR does not
need to know either B, Y , or the time horizon T from the start.

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 238–252, 2016.
DOI: 10.1007/978-3-319-46379-7 16

An Upper Bound for AARCh 239

Intuitively, AAR covers the situation when we need to learn the ‘right’ θ

on the fly, while making predictions. The extra term nY 2 ln
(

TB2

an + 1
)

grows
logarithmically in T , which is a very small price to pay for not knowing the ‘right’
θ from the start. One may want to generalise the result to the situation when θ
changes with time. Consider a prediction strategy using a sequence θ1, θ2, . . . to
predict in the following way. On step t it predicts γt = u′

txt, where ut =
∑t

i=1 θi.
Clearly, aiming to do as well as any such sequence is hopeless. To every sequence
(x1, y1), (x2, y2), . . . one can fit a sequence u1, u2, . . . suffering zero loss, provided
xt �= 0. However, one can hope to compete with a sequence of slowly changing ut.
If

∑T
t=1 ‖θt‖ = ‖θ1‖2 +

∑T
t=2 ‖ut − ut−1‖2 grows slowly, can we have a strategy

with an upper bound on the loss similar to (1)?
This problem has been approached using a variety of techniques. In [HW01]

an algorithm based on Bregman divergence and gradient descent-type methods
was proposed. The bounds obtained in [HW01] have multiplicative constants
in front of the competitors’ losses. In [BK07a] an algorithm called Aggregat-
ing Algorithm for Regression with Changing Dependencies (AARCh) based on
Vovk’s Aggregating Algorithm and extending the construction of AAR from
[Vov01] was proposed. The bounds form [BK07a] have no multiplicative con-
stant, but the final result is rather week. A recent paper [MVC15] has proposed
a strategy LASER based on the last-step min-max approach of [For99]. The
strategy takes a function v(T) = O(T) and a > 0 as parameters and suffers loss
satisfying

LossLASER(T) ≤ inf
u1,u2,...,uT ∈R

n:
∑T

t=2 ‖ut−ut−1‖2≤v(T)

(
T∑

t=1

(u′
txt − yt)2 + a‖u1‖2

)

+ nY 2 ln
(

TB2

an
+ 1

)
+ O((v(T))1/3T 2/3). (2)

The bound is far superior to that from [BK07a].
In this paper we improve the upper bound for AARCh from [BK07a] to

achieve an extra term O((v(T))1/3T 2/3) matching that of (2). The multiplicative
constant in the extra term exhibits better dependency on the dimension, n1/3

instead of n2/3 in [MVC15].
As with LASER, in order to achieve this, AARCh should be optimised from

the start using the prior knowledge of the time horizon T , the value of v(T), B,
and Y . Applying the Aggregating Algorithm allows one to dispense with some
prior knowledge (with a notable exception of Y) but complicates the strategy.

One may note that the problem of competing with a sequence of us can be
thought of as an extension to the regression framework of the problem of com-
peting against switching experts in prediction with expert advice; see [AKCV12]
for a comparison of bounds given by different approaches.

240 Y. Kalnishkan

2 Preliminaries

2.1 Games and Prediction Strategies

A game G is a triple of an outcome space Ω, prediction space Γ and a loss
function λ : Γ × Ω → [0,+∞].

A prediction strategy S for a game G working with signals from a signal space
X is a mapping S : (X × Ω)∗ × X → Γ . Intuitively, S supplies predictions for
the learner acting according to this protocol:

Protocol 1
(1) FOR t = 1, 2, . . .
(2) the learner reads signal xt ∈ X
(3) the learner produces γt ∈ Γ
(4) the learner sees yt ∈ Ω
(5) END FOR

On a sequence (x1, y1), (x2, y2), . . . , (xT , yT) the learner using the strategy S
suffers cumulative loss

LossS(T) =
T∑

t=1

λ(γt, yt) =
T∑

t=1

λ(S(x1, y1, . . . , xt−1, yt−1, xt), yt).

The index S will be dropped if it is clear from the context.
We will be considering square-loss games with Ω ⊆ R, Γ = R and λ(γ, y) =

(γ − y)2. For Ω we take different subsets of R. Strictly speaking the theory
of the Aggregating Algorithm (see [Vov01]) applies to the bounded game with
Ω = [−Y, Y]. However it often happens that the algorithm does not need to
know Y in advance and Y only appears in the bound. Then we can say the
algorithm applies to the case Ω = R.

2.2 Aggregating Algorithm for Regression with Changing
Dependencies

The Aggregating Algorithm for Regression with Changing Dependencies
(AARCh) was introduced in [BK07a] (see also [BK07b] for numerical experi-
ments).

AARCh is a prediction strategy for a game with real outcomes and predic-
tions and signals from R

n. It takes as parameters a sequence a1, a2, . . . > 0 and
on step T predicts γT = ỹ′(K̄ + I)−1k̄, where

ỹ =

⎛

⎜⎜⎜⎜⎜⎝

y1
y2
...

yT−1

0

⎞

⎟⎟⎟⎟⎟⎠
, k̄ =

⎛

⎜⎜⎜⎜⎜⎝

1
a1

x′
1xT(

1
a1

+ 1
a2

)
x′
2xT

...(
1
a1

+ 1
a2

+ · · · + 1
aT

)
x′

T xT

⎞

⎟⎟⎟⎟⎟⎠
,

An Upper Bound for AARCh 241

and

K̄ =

⎛

⎜⎜⎜⎜⎜⎝

1
a1

x′
1x1

1
a1

x′
1x2 . . . 1

a1
x′
1xT

1
a1

x′
2x1

(
1
a1

+ 1
a2

)
x′
2x2 . . .

(
1
a1

+ 1
a2

)
x′
2xT

...
...

. . .
...

1
a1

x′
T x1

(
1
a1

+ 1
a2

)
x′

T x2 . . .
(

1
a1

+ · · · + 1
aT

)
x′

T xT

⎞

⎟⎟⎟⎟⎟⎠

(this is the dual form given in Sect. 3.3 of [BK07a]).
The algorithm is obtained by applying the Aggregating Algorithm in the

bounded square loss game to a particular set of experts.

3 Main Result

In this section we formulate and discuss upper bounds on the cumulative square
loss of AARCh.

Theorem 1. For every sequence (x1, y1), (x2, y2), . . . , (xT , yT) ∈ R
n × R, the

square loss of the learner using AARCh with positive parameters a1, a, . . . , a
satisfies

Loss(T) ≤ inf
u1,...,uT ∈Rn

(
T∑

t=1

(u′
txt − yt)2 + a1‖u1‖2 + a

T∑

t=2

‖ut − ut−1‖2
)

+

nY 2 ln
(

1 +
TB2

a1n

)
+ Y 2B

(
T − 1

2

)√
n

a
− nY 2 ln 2 + α(T, a), (3)

where Y = maxt=1,...,T |yt|, B = maxt=1,...,T ‖xt‖, and

α(T, a) = nY 2

(
1 +

B2

2an
−

√
B4

4a2n2
+

B2

an

)2(T−1)

≤ nY 2. (4)

Clearly, the bound only makes sense if the terms on the right, apart from∑T
t=1(u

′
txt − yt)2, are not too large. If the outcomes yt are bounded, |yt| ≤ Y ,

then it is too easy to get loss not exceeding Y 2T by predicting 0 consistently.
Thus an extra term growing faster than O(T) makes little sense and O(T) can
only be useful if the constant is small. On the other hand, competing with
sequences of ut such that ‖ut−ut−1‖ is large is futile: as pointed out in [MVC15],
the sequence ut = xtyt/‖xt‖2 leads to zero loss as long as xt �= 0. Thus one
may want to obtain an extra term of the order O(T) and, if possible, o(T), by
restricting the variability of ut.

Let us find a optimising the sum a ·∑T
t=2 ‖ut −ut−1‖2+Y 2B(T −1/2)

√
n
a . If

Y , B, T , and the order v(T) of the growth of the sum
∑T

t=2 ‖ut−ut−1‖2 (cf. V (2)

in [MVC15]) are known in advance, we can find the optimal a as follows.

Lemma 1. For all positive v and c the minimum mina>0

(
av + c√

a

)
is achieved

at a =
(

c
2v

)2/3 and equals 3
22/3 c2/3v1/3.

242 Y. Kalnishkan

Proof. As a → 0 or a → +∞, the expression tends to +∞. We get the minimum
by equating to zero the derivative

∂

∂a

(
av +

c√
a

)
= v − c

2a3/2
.

�
Corollary 1. For every function v : {2, 3, . . .} → (0,+∞) and every sequence
(x1, y1), (x2, y2), . . . , (xT , yT) ∈ R

n × R such that ‖xt‖ ≤ B and |yt| ≤ Y for
t = 1, 2, . . . , T , the square loss of the learner using AARCh with parameters
a1, a, . . . , a, where a1 > 0 and

a = a(T) =
Y 4/3B2/3n1/3

22/3
· (T − 1/2)2/3

(v(T))2/3
, (5)

satisfies

Loss(T) ≤ inf
u1,...,uT ∈R

n

∑T
t=2 ‖ut−ut−1‖2≤v(T)

(
T∑

t=1

(u′
txt − yt)2 + a1‖u1‖2

)

+ nY 2 ln
(

TB2

a1n
+ 1

)
+

3
22/3

Y 4/3B2/3n1/3

(
T − 1

2

)2/3

(v(T))1/3

− nY 2 ln 2 + α(T, a(T)), (6)

where α(T, a(T)) ≤ nY 2 is given by (4).
If, moreover, v(t) = o(T) and 1/v(T) = o(T 2) as T → +∞, then

α(T, a(T)) ≤ nY 2e
−2

B(T −1)√
a(T)n

(

1− B

2
√

a(T)n

)

→ 0 (7)

as T → +∞.

Proof. It is easy to see that

0 < 1 +
b

2
−

√
b2

4
+ b ≤ 1 +

b

2
−

√
b

for all b ≥ 0. Applying the inequality ln(1 + x) ≤ x yields upper bound (7).
Since v(t) = o(T), we get (T − 1/2)/v(T) → +∞ and thus a(T) → +∞ as

T → +∞. The condition 1/v(T) = o(T 2) implies T/
√

a → +∞. Therefore the
power in the term on the right-hand side tends to −∞ and the term itself tends
to 0 as T → +∞.
�
The main component of the extra term in the bound has the same order of
growth in T , namely, T 2/3(v(T))1/3, as in the bound for LASER in Corollary 12
of [MVC15]. If v(T) = o(T) as T → +∞, the order of growth is sublinear.

An Upper Bound for AARCh 243

However, the multiplicative coefficient differs and we get 3
22/3 Y 4/3B2/3n1/3

instead of 3 · 21/3Y 4/3B2/3n2/3. Our term is smaller by the factor of 2n1/3. See
Remark 2 below for a discussion of the power1 of n.

Having to know the time horizon T in advance to choose a is annoying. This
problem can be eliminated by applying the Aggregating Algorithm. Suppose
we know Y , B, and v(T). Then we can apply the Aggregating Algorithm to a
countable number of instances of AARCh, each using a from (5), T = 2, 3, . . .
Let us assign to the instance corresponding to T a prior p0(T) = 6

π2(T−1)2 ,
T = 2, 3, . . . and apply the AA. Bound (10) with η = 1/(2Y 2) and C(η) = 1 give
us the following corollary.

Corollary 2. For Y > 0, B > 0, a1 > 0 and a function v : {2, 3, . . .} → (0,+∞)
there is a prediction strategy S that on every sequence (x1, y1), . . . , (xT , yT) ∈
R

n × R such that ‖xt‖ ≤ B and |yt| ≤ Y for all t = 1, 2, . . . , T suffers square
loss

LossS(T) ≤ inf
u1,...,uT ∈R

n

∑T
t=2 ‖ut−ut−1‖2≤v(T)

(
T∑

t=1

(u′
txt − yt)2 + a1‖u1‖2

)
+

nY 2 ln
(

TB2

a1n
+ 1

)
+

3
22/3

Y 4/3B2/3n1/3

(
T − 1

2

)2/3

(v(T))1/3+

2Y 2 ln T + 2Y 2 ln
π2

6
− nY 2 ln 2 + αY,B,v(T), (8)

where αY,B,v(T) ≤ nY 2 and tends to zero as T → +∞ provided v(T) = o(T)
and 1/v(T) = o(T 2).

While the Aggregating Algorithm provides a way of computing S, the proce-
dure is complicated. Arguing in a similar way, we can eliminate the dependency
on B and reduce the dependency on the order of growth of v(t) at a price of
making the strategy even more complicated. The dependency on Y cannot be
overcome this way though as the Aggregating Algorithm assumes Y is finite and
known. (As Y grows to infinity, the maximum value η = 1/(2Y 2) such that the
game is mixable vanishes and renders bound (10) useless.)

In the rest of the paper we prove Theorem1. Section 4 covers the steps done in
[BK07a], Sect. 5 presents the original material, and Sect. 6 contains some remarks
on the proof.

4 Deriving the Upper Bound on AARCh

In this section we review the derivation of the upper bound on AARCh from
[BK07a] starting with the basics of prediction with expert advice and Vovk’s
Aggregating Algorithm after [Vov98,Vov01].
1 The fact that the powers of n and T sum to 1 makes the straightforward kernelisa-

tion of the bound based on the representer theorem useless. This observation may
potentially lead to a lower bound.

244 Y. Kalnishkan

4.1 Prediction with Expert Advice

The goal of prediction with expert advice is constructing prediction strategies
competitive with other strategies from a pool can be addressed within the frame-
work of prediction with expert advice.

Suppose we have a pool of experts Θ. Predictions output by experts at any
moment in time can be described by a function Θ → Γ . Let E ⊆ ΓΘ be a set
of such functions that we allow (e.g., measurable functions). Prediction with
expert advice is concerned with building merging strategies M : (E ×Ω)∗ ×E →
Γ . Intuitively, M supplies predictions for the learner acting according to this
protocol:

Protocol 2
(1) FOR t = 1, 2, . . .
(2) the learner reads experts’ predictions γθ

t , θ ∈ Θ
(3) the learner produces γt ∈ Γ
(4) the learner sees yt ∈ Ω
(5) END FOR

Over T steps expert θ suffers loss Lossθ(T) =
∑T

t=1 λ(γθ
t , yt). Prediction with

expert advice looks for merging strategies making sure that the cumulative loss
of the learner is not much greater than the loss of every expert θ ∈ Θ.

4.2 Aggregating Algorithm

The Aggregating Algorithm (AA) was proposed in [Vov90,Vov98]. It is a rather
general merging strategy.

The Aggregating Algorithm takes as parameters η > 0, a (prior) distribution
P0 on Θ, and a substitution rule, which will be defined later. On step t it forms
the generalised prediction, which is a function gt : Ω → [0,+∞] given by

gt(y) = −1
η

ln

∫
Θ

e−ηλ(γθ
t ,y)e−η Lossθ(t−1)P0(dθ)∫

Θ
e−η Lossθ(t−1)P0(dθ)

.

The generalised prediction is then converted to a prediction γt such that
λ(γt, y) ≤ C(η)gt(y) for all y ∈ Ω. Here C(η) is the minimum constant per-
mitted for the game. It is shown in Sect. 2.4 of [Vov01] that for the bounded
square-loss game with Ω = [−Y, Y] we can take C(η) = 1 for η ≤ 1/(2Y 2)
(as can be seen from (10) below, in such situations one wants to maximise η,
so η = 1/(2Y 2) is used). A substitution rule maps generalised predictions into
predictions. A convenient substitution rule leads to simple algorithms.

The Aggregating Algorithm ensures that the learner’s loss satisfies

LossAA(T) ≤ −C(η)
η

ln
∫

Θ

e−η Lossθ(T)P0(dθ) (9)

(this can be checked by induction). This inequality holds for all possible
sequences of outcomes. If the pool is finite or countable, the integral reduces

An Upper Bound for AARCh 245

to the sum and by dropping from the sum all terms except for one we obtain
the inequality

LossAA(T) ≤ C(η) Lossθ(T) +
C(η)

η
ln

1
P0(θ)

(10)

for every expert θ. If the pool is not countable, as it is below, this general trick
does not apply and we need to upper bound (9) for the particular case.

4.3 Constructing the Bound for AARCh

AARCh is obtained by applying AA in the context of a bounded square-loss
game with the outcome space Ω = [−Y, Y] and the signal space X = R

n to the
following experts. Fix a positive integer T and let Θ = (Rn)T . We can consider
elements of Θ as vectors of nT real components or sequences of T vectors from
R

n, θ = (θ1, θ2, . . . , θT). On step t expert θ predicts γθ
t = (

∑t
i=1 θi)′xt.

Take η = 1/(2Y 2); as mentioned above, we get C(η) = 1 for the bounded
square-loss game. On Θ we consider the Gaussian prior with the density

p0(θ) =
T∏

t=1

[(ηat

π

)n/2

e−ηat‖θt‖2
]

=

(
T∏

t=1

a
n/2
t

)(η

π

)Tn/2

e−η
∑T

t=1 at‖θt‖2
,

where a1, a2, . . . , aT > 0 are the parameters of AARCh.
We will omit the derivation of the formulas for AARCh given in Sect. 2.2,

but give the derivation of the upper bound. Bound (9) ensures that

LossAARCh(T) ≤ −1
η

ln
∫

RnT

e−η Lossθ(T)p0(θ)dθ. (11)

The loss of expert θ equals

Lossθ(T) =
T∑

t=1

⎛

⎝
(

t∑

i=1

θi

)′

xt − yt

⎞

⎠
2

=
T∑

t=1

(θ′wt − yt)
2
,

where θ is interpreted as a column vector and

w′
t = (x′

t, . . . , x
′
t︸ ︷︷ ︸

t times

, 0, . . . , 0︸ ︷︷ ︸
(T−t)n zeros

)′.

This is a quadratic form in θ. Multiplying e−η Lossθ(T) by p0(θ) adds a quadratic
term to the power. The integral can be evaluated using the following proposition.

Proposition 1. For a quadratic form Q(θ), θ ∈ R
m, with the quadratic part

θ′Aθ, where A is a symmetric positive definite (m × m)-matrix, we get
∫

Rm

e−Q(θ) = e−Q0
πm/2

√
det A

,

where Q0 = minθ∈Rm Q(θ).

246 Y. Kalnishkan

The proof of the proposition is essentially by completing the square and
integration by substitution.

The matrix of the quadratic part of the negation of the form in the power in
(11) is

ηA = η

T∑

t=1

wtw
′
t + η

⎛

⎜⎝
a1I 0

. . .
0 aT I

⎞

⎟⎠ .

It is easy to see that A is positive definite.

Proposition 2

LossAARCh(T) ≤ inf
θ1,...,θT ∈Rn

(
Lossθ1,...,θT

(T) +
T∑

t=1

at‖θt‖2
)

+ Y 2 ln
det A

∏T
t=1 an

t

,

where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑T
t=1 xtx

′
t + a1I

∑T
t=2 xtx

′
t

∑T
t=3 xtx

′
t

... xT x′
T

∑T
t=2 xtx

′
t

∑T
t=2 xtx

′
t + a2I

∑T
t=3 xtx

′
t

... xT x′
T

∑T
t=3 xtx

′
t

∑T
t=3 xtx

′
t

∑T
t=3 xtx

′
t + a3I

... xT x′
T

· · · · · · · · · . . .
...

xT x′
T xT x′

T xT x′
T · · · xT x′

T + aT I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It remains to upper bound the determinant of A.

5 Upper Bounding the Determinant

By Theorem 7 of Sect. 2.10, [BB61], the determinant of a positive definite matrix
does not exceed the product of determinants of the minors. Hence

det A ≤ det

(
T∑

t=1

xtx
′
t + a1I

)
det A2, (12)

where

A2 =

⎛

⎜⎜⎜⎜⎜⎝

∑T
t=2 xtx

′
t + a2I

∑T
t=3 xtx

′
t

... xT x′
T

∑T
t=3 xtx

′
t

∑T
t=3 xtx

′
t + a3I

... xT x′
T

· · · · · · . . .
...

xT x′
T xT x′

T · · · xT x′
T + aT I

⎞

⎟⎟⎟⎟⎟⎠
.

Proposition 3 [CBCG05]. For every positive integer T , all vectors
x1, x2, . . . , xT ∈ R

n such that ‖xt‖ ≤ B, t = 1, 2, . . . , T , and all a > 0 we
have

1
an

det

(
T∑

t=1

xtx
′
t + aI

)
≤

(
TB2

an
+ 1

)n

.

An Upper Bound for AARCh 247

The proof is by Proposition 5 given below.
We will now simplify the structure of A2. From every block row, except for

the last, we subtract the next row. We start from the first row and do this from
top to bottom. Then from every block column, except for the last, we subtract
the next block column, going right to left. This results in a block tridiagonal
matrix Ã2 given by
⎛
⎜⎜⎜⎜⎜⎝

x2x
′
2 + (a2 + a3)I −a3I 0

−a3I x3x
′
3 + (a3 + a4)I −a4I

. . .
. . .

. . .

−aT−1I xT−1x
′
T−1 + (aT−1 + aT)I −aT I

0 −aT I xTx
′
T + aT I

⎞
⎟⎟⎟⎟⎟⎠

Subtracting block row j from block row i amounts to multiplication on the
left by a block elementary matrix Lij with determinant 1. Subtracting block
column j from block row i amounts to multiplication on the right by L′

i,j . Thus

Ã2 = LT−1,T LT−2,T−1 · · · L1,2A2L
′
1,2 · · · L′

T−2,T−1L
′
T−1,T

and therefore Ã2 is still symmetric and positive definite and det Ã2 = det A2.
We now set a2 = a3 = . . . = aT = a and let

A2 =
1
a
Ã2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

x2x′
2

a + 2I −I 0
−I

x3x′
3

a + 2I −I
.

−I
xT −1x′

T −1
a + 2I −I

0 −I
xT x′

T

a + I

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

The determinant of a block tridiagonal matrix can be calculated as follows.

Proposition 4 [Sal06]. The determinant of a block tridiagonal matrix

M =

⎛

⎜⎜⎜⎜⎜⎝

G1 E2 0
F2 G2 E3

.
Fm−1 Gm−1 Em

0 Fm Gm

⎞

⎟⎟⎟⎟⎟⎠

is detM =
∏m

k=1 det Λk, where Λ1 = G1 and Λk = GK − FkΛ−1
k−1Ek, k =

2, 3, . . . ,m, provided all required inversions can be performed.

Proof. The proof is by reducing the matrix to the block upper triangular form
and taking the product of determinants of the diagonal blocks. By subtracting
from the second block row the first block row multiplied on the left by F2G

−1
1 ,

we eliminate F2 and get Λ2 in place of G2. The rest is by induction.
�

248 Y. Kalnishkan

We get

det A2 =
T∏

t=2

det Λt, (13)

where Λ2 = x2x
′
2/a + 2I, Λt = xtx

′
t/a + 2I − Λ−1

t−1 for t = 3, . . . , T − 1, and
ΛT = xT x′

T /a + I − Λ−1
T−1.

Lemma 2. All Λt, t = 2, . . . , T , are well-defined symmetric positive definite
matrices.

Proof. Let us prove by induction that, for t = 2, 3, . . . , T − 1, Λt is symmet-
ric positive definite and all its eigenvalues are greater than or equal to 1. The
eigenvalues of Λ2 are 2 + ‖xt‖2/a, 2, . . . , 2 so the base of the induction holds.

If Λt−1 satisfies the induction hypothesis, then it is invertible, Λ−1
t−1 is sym-

metric positive definite and all its eigenvalues are less than or equal to 1. The
eigenvalues of xtx

′
t/a+2I are greater than or equal to 2. By the Courant-Fischer

min-max theorem ([HJ13], Theorem 4.2.6) the eigenvalues of xtx
′
t/a+2I −Λ−1

t−1

are greater than or equal to 1.
A similar argument implies that eigenvalues of ΛT are non-negative. However,

if it is singular, then (13) implies that detA2 = 0. Since A2 is positive definite,
ΛT is non-singular.
�
The matrix recursive formulas for Λt are difficult to analyse. We will use the
following proposition to reduce them to scalar formulas.

Proposition 5. If M is a symmetric positive semidefinite (m×m)-matrix, then

det M ≤
(

tr M

m

)m

;

if M is positive definite, then

tr M−1 ≥ m2

tr M
.

(Notation tr M is used for the trace of a matrix M .)

Proof. Let λ1, λ2, . . . , λm be the eigenvalues of M , counting multiplicities. The
inequalities for the arithmetic, geometric, and harmonic means

(λ1λ2 . . . λm)1/m ≤ λ1 + λ2 + . . . + λm

m
,

m
1

λ1
+ 1

λ2
+ . . . + 1

λm

≤ λ1 + λ2 + . . . + λm

m

(see Sect. 1.16 of [BB61]) imply the proposition.
�
Corollary 3. The determinant of A2 satisfies det A2 ≤ (r2r3 . . . rT)n, where
the sequence rt, t = 2, 3, . . . , T , is defined by r2 = b + 2, rt = b + 2 − 1/rt−1 for
t = 3, . . . , T − 1, and rT = b + 1 − 1/rT−1 with b = B2

an .

An Upper Bound for AARCh 249

Proof. It follows by induction that tr Λt/n ≤ rt. Indeed,

tr Λ2

n
≤ B2

an
+ 2 = r2,

tr Λt

n
≤ B2

an
+ 2 − tr Λ−1

t−1

n
≤ B2

na
+ 2 − n

tr Λt−1

≤ b + 2 − 1
rt−1

= rt, t = 3, . . . , T − 1,

and

tr ΛT

n
≤ B2

an
+ 1 − tr Λ−1

T−1

n
≤ b + 1 − 1

rT−1
= rT .

We get det Λt ≤ rn
t and the corollary follows by (13).
�

The products r2r3 . . . rt form a recurrent sequence, which is easy to analyse.

Lemma 3. The determinant of A2 satisfies det
(
A2

) ≤ (dT −dT−1)n, where the
sequence dt, t = 0, 1, 2, . . ., is defined by d0 = 0, d1 = 1, and dt = (b + 2)dt−1 −
dt−2 for t = 2, 3, . . . with b = B2

an .

Proof. By induction we get dt = r2 . . . rt for t = 2, 3, . . . , T − 1 and dT =
r2 . . . rT−1(rT + 1) = r2 . . . rT−1rT + dT−1.
�
We need to study the behaviour of dt.

Lemma 4. For every b > 0 the sequence dt from Lemma 3 satisfies

dT − dT−1 =
1
2

(
λT−1
1

(
1 +

b√
b2 + 4b

)
+ λT−1

2

(
1 − b√

b2 + 4b

))
,

where λ1 = 1 + b
2 + 1

2

√
b2 + 4b, λ2 = 1 + b

2 − 1
2

√
b2 + 4b, and T = 1, 2, . . .

Proof (Sketch). The recurrent formula for dt can be written in the matrix form
as (

dt

dt−1

)
= R

(
dt−1

dt−2

)
, where R =

(
b + 2 −1

1 0

)
,

and thus (
dT

dT−1

)
= RT−1

(
d1
d0

)
= RT−1

(
1
0

)
.

In order to calculate RT−1, we need to represent R in a convenient form. One can
check that λ1 and λ2 are the eigenvalues of R and the corresponding eigenvectors
can be chosen as

v1 = (−
√

b − √
b + 4,

√
b − √

b + 4)′,

v2 = (−
√

b +
√

b + 4,
√

b +
√

b + 4)′.

We get R = V ΛV −1, where Λ is the diagonal matrix with diagonal elements λ1

and λ2 and the columns of V are v1 and v2. Raising to power T − 1 can be done
as RT−1 = V ΛT−1V −1. The lemma follows by direct calculation.
�

250 Y. Kalnishkan

The following simple facts will be used to upper bound dT − dT−1.

Lemma 5. For every b > 0 we get

b√
b2 + 4b

≤
√

b

2
.

For every b ≥ 0 we get

λ2

λ1
= λ2

2 =
(

1 +
b

2
− 1

2

√
b2 + 4b

)2

≤ 1,

and

ln λ1 ≤
√

b,

where λ1 and λ2 are from Lemma4.

Proof (Sketch). The first inequality follows from

b√
b2 + 4b

=

√
b√

b + 4
≤

√
b

2
.

The equality involving lambdas can be checked by direct calculation. The
inequality follows from

b

2
≤

√
b2

4
+ b < 1 +

b

2
.

The last inequality follows by differentiation:

d

db
ln λ1 =

1√
b2 + 4b

≤ 1√
4b

=
1

2
√

b
=

d

db

√
b,

while for b = 0 we get ln λ1 =
√

b = 0.
�
We can now upper bound the extra term in Proposition 2 as

Y 2 ln
det A

an
1an·(T−1)

≤ nY 2 ln
(

TB2

a1n
+ 1

)
+ Y 2 ln detA2,

where Y 2 ln detA2 ≤ nY 2 ln(dT − dT−1) and

ln(dT − dT−1) ≤ ln
1
2

(
λT−1
1

(
1 +

√
b

2

)
+ λT−1

2

)
=

− ln 2 + (T − 1) ln λ1 + ln

(
1 +

√
b

2

)
+ ln

(
1 +

1

1 +
√

b
2

(
λ2

λ1

)T−1
)

≤

− ln 2 + (T − 1)
√

b +

√
b

2
+

(
λ2

λ1

)T−1

,

where the last term is expanded in Lemma 5. Theorem 1 follows by substituting
b = B2

an .

An Upper Bound for AARCh 251

6 Comments on the Proof

In this section we make some remarks about the proof.

Remark 1. Inequality (12) can be iterated, but that method would not lead to
a good upper bound. For equal as, by using Stirling’s formula we get

ln
det A

anT
≤ ln

T∏

t=1

(
tB2

an
+ 1

)n

≈ n ln T ! + Tn ln
B2

an
≈ Tn ln T − Tn ln a

n

B2
.

In order to get an extra term of the order o(T), we must take a(T) growing at
about the same rate as T and thus ruin the growth of a · ∑T

t=2 ‖ut − ut−1‖2.
Remark 2. A recurrent formula upper bounding the determinant of A2 can be
obtained in a simpler way not involving Proposition 5 at a price of a small loss
of quality.

If the diagonal blocks xtx
′
t/a+cI in A2 are replaced by

(
B2

a + c
)

I, the eigen-

values and the determinant may only increase. Indeed, each matrix B2

a I −xtx
′
t/a

is positive semidefinite and adding the positive semidefinite block diagonal
matrix will not increase the eigenvalues by the Courant-Fischer min-max theo-
rem ([HJ13], Theorem 4.2.6). The resulting matrix turns out to be the Kronecker
(tensor) product of I and the tridiagonal (T × T)-matrix

Ă2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

B2

a + 2 −1 0
−1 B2

a + 2 −1
.

−1 B2

a + 2 −1
0 −1 B2

a + 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Theorem 4.2.12 from [HJ94] on eigenvalues of the Kronecker product implies

det A2 ≤ det(I ⊗ Ă2) = (det I)T (det Ă2)n = (det Ă2)n.

The determinant of Ă2 can be calculated using the recurrence from [HJ13],
Section 0.9.10 (this is effectively a non-block special case of Proposition 4). We
get an upper bound on detA2 similar to Lemma 3 but with b = B2/a.

Then using Lemmas 4 and 5 we get an analogue of Theorem 1 with a slightly
different α (which is not important) and Y 2B(T − 1/2) n√

a
instead of Y 2B(T −

1/2)
√

n
a . Applying Lemma 1 we get a counterpart of Corollary 1 but with the

main extra term 3
22/3 Y 4/3B2/3n2/3(T − 1/2)2/3(v(T))1/3.

Acknowledgement. The author has been supported by the Leverhulme Trust
through the grant RPG-2013-047 ‘Online self-tuning learning algorithms for han-
dling historical information’. The author would like to thank Vladimir Vovk, Dmitry
Adamskiy, and Vladimir V’yugin for useful discussions. Special thanks to Alexey
Chernov, who helped to simplify the statement of the main result.

252 Y. Kalnishkan

References

[AKCV12] Adamskiy, D., Koolen, W.M., Chernov, A., Vovk, V.: A closer look at
adaptive regret. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T.
(eds.) ALT 2012. LNCS, vol. 7568, pp. 290–304. Springer, Heidelberg (2012)

[AW01] Azoury, K.S., Warmuth, M.K.: Relative loss bounds for on-line density
estimation with the exponential family of distributions. Mach. Learn. 43,
211–246 (2001)

[BB61] Beckenbach, E.F., Bellman, R.E.: Inequalities. Springer, Heidelberg (1961)
[BK07a] Busuttil, S., Kalnishkan, Y.: Online regression competitive with changing

predictors. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007.
LNCS (LNAI), vol. 4754, pp. 181–195. Springer, Heidelberg (2007)

[BK07b] Busuttil, S., Kalnishkan, Y.: Weighted kernel regression for predicting
changing dependencies. In: Kok, J.N., Koronacki, J., Mantaras, R.L.,
Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNAI, vol. 4701,
pp. 535–542. Springer, Heidelberg (2007)

[CBCG05] Cesa-Bianchi, N., Conconi, A., Gentile, C.: A second-order perceptron algo-
rithm. SIAM J. Comput. 34(3), 640–668 (2005)

[For99] Forster, J.: On relative loss bounds in generalized linear regression. In:
Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 269–280.
Springer, Heidelberg (1999)

[HJ94] Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge Univer-
sity Press, Cambridge (1994)

[HJ13] Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge Univer-
sity Press, Cambridge (2013)

[HW01] Herbster, M., Warmuth, M.K.: Tracking the best linear predictor. J. Mach.
Learn. Res. 1, 281–309 (2001)

[MVC15] Moroshko, E., Vaits, N., Crammer, K.: Second-order non-stationary on-line
learning for regression. J. Mach. Learn. Res. 16, 1481–1517 (2015)

[Sal06] Salkuyeh, D.K.: Comments on “A note on a three-term recurrence for a
tridiagonal matrix”. Appl. Math. Comput. 176(2), 442–444 (2006)

[Vov90] Vovk, V.: Aggregating strategies. In: Proceedings of the 3rd Annual Work-
shop on Computational Learning Theory, pp. 371–383. Morgan Kaufmann,
San Mateo (1990)

[Vov98] Vovk, V.: A game of prediction with expert advice. J. Comput. Syst. Sci.
56, 153–173 (1998)

[Vov01] Vovk, V.: Competitive on-line statistics. Int. Stat. Rev. 69(2), 213–248
(2001)

Things Bayes Can’t Do

Daniil Ryabko(B)

Inria, Villeneuve-d’Ascq, France
daniil@ryabko.net

Abstract. The problem of forecasting conditional probabilities of the
next event given the past is considered in a general probabilistic setting.
Given an arbitrary (large, uncountable) set C of predictors, we would
like to construct a single predictor that performs asymptotically as well
as the best predictor in C, on any data. Here we show that there are
sets C for which such predictors exist, but none of them is a Bayesian
predictor with a prior concentrated on C. In other words, there is a
predictor with sublinear regret, but every Bayesian predictor must have
a linear regret. This negative finding is in sharp contrast with previous
results that establish the opposite for the case when one of the predictors
in C achieves asymptotically vanishing error. In such a case, if there is a
predictor that achieves asymptotically vanishing error for any measure
in C, then there is a Bayesian predictor that also has this property, and
whose prior is concentrated on (a countable subset of) C.

1 Introduction

The problem is probability forecasting in the most general setting. A sequence
x1, . . . , xt, . . . is generated by an unknown and arbitrary measure ν over the
space of all infinite sequences. Here for simplicity we consider xi coming from
a finite set X (since we are after a negative result, this is not a limitation),
but no other assumptions are made; in particular, xi may be dependent and the
dependence may be arbitrary. At each time step t a predictor ρ is required to give
the conditional probabilities ρ(xt+1|x1, . . . , xt) of the next outcome xt+1 given
the observed past, before xt+1 is revealed and the process continues. We would
like the predicted ρ probabilities to be as close as possible to the unknown ν
probabilities ν(xt+1|x1, . . . , xt). The difference is measured with respect to some
loss function L, which in this work we take to be the ν-expected average log
loss (see the definitions below); however, it is clear that the main result applies
more generally as well. Since ρ is required to give conditional probabilities given
every possible sequence of past outcomes, ρ itself defines a probability measure
over X ∞, and thus predictors and environments (mechanisms generating the
data) are objects of the same kind.

To assist in the prediction task, we are given a set of predictors C. The perfor-
mance of our predictor ρ is compared to that of the predictors in C, on sequences
x1, . . . , xt . . . generated by an arbitrary and unknown measure ν. Thus, we are
interested in regret of using the predictor ρ as opposed to using the best (for
this ν) predictor from C. The question we pose is whether this can be achieved
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 253–260, 2016.
DOI: 10.1007/978-3-319-46379-7 17

254 D. Ryabko

by some kind of combination of predictors in C, or whether it may be necessary
to look elsewhere — outside of C (and its convex hull). More specifically, we are
asking the question of whether there exists a prior over C, such that the Bayesian
predictor with this prior has the smallest possible regret (at least, asymptotically)
with respect to the best measure in C. The answer we obtain is negative: there
are some classes C such that any Bayesian predictor has linear regret, while the
best possible predictor has sublinear regret. Note that an example of such a set
C is necessarily uncountable, since for a countable set C any prior with non-zero
weights results in a Bayesian predictor with at most constant (in time) regret
with respect to each predictor in C, and thus zero asymptotic average regret.

It is worth noting that the result is not about Bayesian versus non-Bayesian
inference; in fact, in the last section of the paper it is argued that the negative
finding applies not only to Bayesian predictors. Thus, the result means that in
some cases, given a set of predictors, to construct a predictor that performs as
close as possible to the best of them, one has to look elsewhere — somewhere
completely outside of C (and its convex hull).

Prior Work. This is somewhat disturbing, since it contradicts both the intuition
acquired from the literature on less general cases, and the positive results in
related general settings. Specifically, the question has been studied extensively
for specific families C of predictors, as well as in the non-probabilistic setting
of prediction with expert advice. For specific families, the question dates back
to Laplace who considered it for the case when C is the set of all Bernoulli
i.i.d. measures, and, moreover, it is assumed that the measure ν to be predicted
belongs to C. The latter assumption means that the problem is in the realizable
case. The predictor suggested by Laplace is in fact a Bayesian predictor with the
uniform prior over the parameter space. Moreover, a Bayesian predictor (with
a different, Dirichlet, prior) is known to achieve optimal cumulative log loss in
the realizable case of this problem, and, more generally for the case when C is
the set of Markov processes of order k [4]. Bayesian predictors for a variety of
other families are widely used, and their optimality can be often established even
outside the Bayesian setting, including the settings where the measures to be
predicted are outside the predictor’s prior. For example, a Bayes mixture over
all finite-memory processes predicts also all stationary processes [5].

In the setting of prediction with expert advice, one is given a finite set C
of experts, and the predictor that competes with them is constructed that has
a small regret (see, e.g., [1] for an extensive overview). A typical construction
for such a combination of experts is obtained by attaching a weight to each
expert’s prediction, where the weight decreases exponentially with the loss accu-
mulated — a construction that is clearly reminiscent of Bayesian updating.

In either setting, one is typically concerned with finite or countable classes,
or with some specific parametric families of experts. The general case of the pre-
diction problem has been formulated in [6], where it is shown that, if we are only
interested in the realizable case, that is, the measure ν to be predicted belongs
to C, then one can always do with a Bayes predictor. More precisely, if there is a
predictor ρ whose error asymptotically vanishes with t on every ν ∈ C, then there

Things Bayes Can’t Do 255

is a Bayesian predictor (with a prior over a measurable subset of C) that also has
this property. Moreover, the prior can be always taken over a countable subset
of C. This is shown without any assumptions on C whatsoever; in particular, C
is not required to be measurable. The work [7] unifies the formulations of the
realizable and the non-realizable (expert advice) problems, and also formulates
the following semi-realizable problem to which the result of [6] is generalized:
now ν is allowed to be any measure such that there is a measure μ in C whose
error asymptotically vanishes on ν. Here, again, if anything works then there is
a prior such that a Bayesian predictor with this prior works as well. The present
work completes the picture (and answers an open question from [7]), showing
that, unlike the realizable and semi-realizable case, the fully non-realizable case
of the problem cannot always be solved by a Bayesian predictor.

The result of this work along with those cited above can be also put into the
perspective of classical results on the consistency of Bayesian inference. Thus,
in [2] it is shown that, roughly speaking, there may exist a prior with which a
Bayesian predictor is inconsistent. In the context of the realizable case of the
prediction problem, that is, if there is a consistent predictor, [6] shows that there
always exists a prior with which a Bayesian predictor is consistent. Here we show
that, in the nonrealizable case, there are cases where every Bayesian predictor
with every possible prior is far from being as close as possible to being consistent.

2 Preliminaries

Let X be a finite set (the alphabet). Denote X ∗ := ∪k∈NX k. The notation x1..T

is used for x1, . . . , xT . We consider stochastic processes (probability measures)
on (X ∞,B) where B is the usual Borel sigma-field. We use Eμ for expectation
with respect to a measure μ.

The loss we use in this paper is the expected log loss, which can be defined
as the expected cumulative Kullback-Leibler divergence (KL divergence):

LT (ν, ρ) := Eν

T∑

t=1

∑

a∈X
ν(xt = a|x1..t−1) log

ν(xt = a|x1..t−1)
ρ(xt = a|x1..t−1)

,

where ν, ρ are any measures over X ∞. In words, we take the expected (over
data) cumulative (over time) KL divergence between ν- and ρ-conditional (on
the past data) probability distributions of the next outcome. The expected log
loss is easy to study because of the following identity

LT (ν, ρ) = −Eν log
ρ(x1..T)
ν(x1..T)

, (1)

where on the right-hand side we have simply the KL divergence between mea-
sures μ and ρ restricted to the first T observations.

If we have two predictors μ and ρ, we can define the regret up to time T of
(using the predictor) ρ as opposed to (using the predictor) μ on the measure ν
(that is, ν generates the sequence to predict) as

Rν
T (μ, ρ) := LT (ν, ρ) − LT (ν, μ).

256 D. Ryabko

For a set of measures C one can also define the regret up to time T of ρ with
respect to C on ν as Rν

T (C, ρ) := supμ∈C Rν
T (μ, ρ). For the case of a finite or

compact C one often seeks to minimize Rν
T (C, ρ). However, already for countably

infinite sets C it may not be possible to bound Rν
T (μ, ρ) uniformly over C. This is

why we will not make much use of Rν
T (C, ρ), but rather work with its asymptotic

version, defined as follows.
Define the asymptotic average regret as

R̄ν(μ, ρ) := lim sup
T→∞

1
T

Rν
T (μ, ρ),

and
R̄ν(C, ρ) := sup

μ∈C
R̄ν(μ, ρ).

Note that, since we are after a negative result, working with asymptotic quanti-
ties only is not a limitation.

3 Main Result

Theorem 1. There exist a set C of measures and a predictor ρ such that for
every measure ν we have R̄ν(C, ρ) = 0, yet for every Bayesian predictor ϕ with
a prior concentrated on C there exists a measure ν such that R̄ν(C,ϕ) ≥ c > 0
where c is a (possibly large) constant. In other words, any Bayesian predictor
must have a linear regret, while there exists a predictor with a sublinear regret.

Remark 1 (Countable C). Note that any set C satisfying the theorem must nec-
essarily be uncountable. Indeed, for any countable set C = (μk)k∈N, take the
Bayesian predictor ϕ :=

∑
k∈N

wkμk, where wk can be, for example, 1
k(k+1) .

Then, for any ν and any T , from (1) we obtain

LT (ν, ϕ) ≤ − log wk + LT (ν, μk).

That is to say, the regret of ϕ with respect to any μk is a constant independent
of T (though it does depend on k), and thus for every ν we have R̄ν(C,ϕ) = 0.
It is worth nothing that the origins of the use of such countable mixtures for
prediction trace back to [8,9].

Before passing to the proof of the theorem, we present here an informal
exposition of the counterexample used in the proof and the idea why it works.

The example of the proof starts with taking a Bernoulli i.i.d. biased coin-
toss measure, say, the one with the parameter p = 1/3, denoted βp. Take then
the set S of sequences typical for this measure, that is, all sequences for which
the frequency of 1 is asymptotically 1/3. We are interested in a predictor that
predicts all measures concentrated on a single sequence from S, and we will
ignore all other possible ν. The set of measures C is constructed as follows. Take
any sequence x in S and define the measure μx as the one that behaves exactly
as Bernoulli 1/3 on this sequence x, and on all other sequences it behaves as

Things Bayes Can’t Do 257

some fixed (deterministic) measure. In other words, we have taken a Bernoulli
1/3 measure and split it into all its typical sequences, continuing it with a fixed
arbitrary sequence everywhere else. Denote C the resulting set of measures. Note
that the original measure βp can be recovered with a Bayesian predictor from
the set S. Indeed, it is enough to take βp itself as a prior over S. Such a Baysian
predictor will then be as good as βp on any measure. Observe that for every
x1..T it puts the weight of about 2−hpT on the set of sequences from S that start
with x1..T (where hp is the binary entropy for p = 1/3 of the example). The loss
it achieves on measures from S is thus hpT and this is, in fact, also the minimax
loss one can achieve on S. However, it is not possible to achieve the same loss
(and to recover βp) with a Bayesian predictor whose prior is concentrated on
the set C. The trouble is that each measure μ in C attaches already too little
weight to the sequence from S that it is based on. To be precise, the weight it
attaches is the same 2−hpT that the Bayesian predictor gives to the corresponding
deterministic sequence. Whatever extra prior weight a Bayesian predictor gives
will only go towards regret; it cannot give a constant weight to each measure
because there are uncountably many of them. In fact, the best it can do is give
another 2−hpT , which means that the resulting loss is going to be double the best
possible one can obtain on measures from S with the best possible predictor,
and, again, double of what one can obtain taking for each ν ∈ S the best μ ∈ C.
This results in linear regret, which is, as we show, is at least hp in asymptotic
average.

Proof. Let the alphabet X be ternary X = {0, 1, 2}. For α ∈ (0, 1) denote
h(α) the binary entropy h(α) := −α log α − (1 − α) log(1 − α). Fix an arbitrary
p ∈ (0, 1/2) and let βp be the Bernoulli i.i.d. measure (produces only 0 s and 1s)
with parameter p. Let S be the set of sequences in X ∞ that have no 2s and such
that the frequency of 1 is close to p:

S := {x ∈ X ∞ : xi �= 2∀i, and
∣∣∣∣
1
t
|{i = 1..t : xi = 1}| − p

∣∣∣∣ ≤ f(t) from some t on},

where f(t) = log t/
√

t. Clearly, βp(S) = 1.
Define the set DS as the set of all Dirac measures concentrated on a sequence

from S, that is DS := {νx : νx(x) = 1, x ∈ S}. Moreover, for each x ∈ S define
the measure μx as follows: μx(XT+1|X1..T) = p coincides with βp (that is, 1
w.p. p and 0 w.p. 1 − p) if X1..T = x1..T , and outputs 2 w.p. 1 otherwise:
μx(2|X1..T) = 1 if X1..T �= x1..T . That is, μx behaves as βp only on the sequence
x, and on all other sequences it just outputs 2 deterministically. This means, in
particular, that many sequences have probability 0, and some probabilities above
are defined conditionally on zero-probability events, but this is not a problem;
see the remark in the end of the proof.

Finally, let C := {μx : x ∈ S}. Next we will define the predictor ρ that
predicts well all measures in C. First, introduce the measure δ that is going
to take care of all the measures that output 2 w.p.1 from some time on. For

258 D. Ryabko

each a ∈ X ∗ let δa be the measure that is concentrated on the sequence that
starts with a and then consists of all 2s. Define δ :=

∑
a∈X ∗ waδa, where wa

are arbitrary positive numbers that sum to 1. Let also the measure β′ be i.i.d.
uniform over X . Finally, define

ρ := 1/3(βp + β′ + δ). (2)

Next, let us show that, for every ν, the measure ρ predicts ν as well as any
measure in C: its loss is an additive constant factor. In fact, it is enough to see
this for all ν ∈ DS , and for all measures that output all 2 s w.p.1 from some
n on. For each ν in the latter set, from (2) the loss of ρ is upper-bounded by
log 3 − log wa, where wa is the corresponding weight. This is a constant (does
not depend on T). For the former set, again from the definition (2) for every
νx ∈ DS we have (see also Remark 1)

LT (νx, ρ) ≤ log 3 + LT (νx, βp) = Thp + o(T),

while
inf
μ∈C

LT (νx, μ) = LT (νx, μx) = Thp + o(T).

Therefore, for all ν we have

Rν
T (C, ρ) = o(T) and R̄ν(C, ρ) = 0.

Thus, we have shown that for every ν ∈ S there is a reasonably good predictor
in C (here “reasonably good” means that its loss is linearly far from that of
random guessing), and, moreover, there is a predictor ρ whose asymptotic regret
is zero with respect to C.

Next we need to show that any Bayes predictor has 2Thp + o(T) loss on
at least some measure, which is double that of ρ, and which can be as bad as
random guessing (or worse; depending on p). We will show something stronger:
any Bayes predictor has asymptotic average loss of 2Thp on average over all
measures in S. So there will be many measures on which it is bad, not just one.

Let ϕ be any Bayesian predictor with its prior concentrated on C. Since
C is parametrized by S, for any x1..T ∈ X T , T ∈ N we can write ϕ(x1..T) =∫

S
μy(x1..T)dW (y) where W is some measure over S (the prior). Moreover, using

the notation W (x1..k) for the W -measure of all sequences in S that start with
x1..k, from the definition of the measures μx, for every x ∈ S we have

∫

S

μy(x1..T)dW (y) =
∫

y∈S:y1..T=x1..T

βp(x1..T)dW (y) = βp(x1..T)W (x1..T).

(3)
We will consider the average

EU lim sup
1
T

LT (νx, ϕ)dU(x),

where the expectation is taken with respect to the measure U defined as the
measure βp restricted to S; in other words, U is approximately uniform over this

Things Bayes Can’t Do 259

set. Fix any νx ∈ S. Observe that LT (νx, ϕ) = − log ϕ(x1..T). For the asymptotic
regret, we can assume w.l.o.g. that the loss LT (νx, ϕ) is upper-bounded, say, by
T log |X | at least from some T on (for otherwise the statement already holds for
ϕ). This allows us to use Fatou’s lemma to bound

EU lim sup
1
T

LT (νx, ϕ)

≥ lim sup
1
T

EULT (νx, ϕ) = lim sup − 1
T

EU log ϕ(x)

= lim sup − 1
T

EU log βp(x1..T)W (x1..T), (4)

where in the last equality we used (3). Moreover,

− EU log βp(x1..T)W (x1..T)

= −EU log βp(x1..T) + EU log
U(x1..T)
W (x1..T)

− EU log U(x1..T) ≥ 2hpT + o(T),

(5)

where in the inequality we have used the fact that KL divergence is non-negative
and the definition of U (that is, that U = βp|S). From this and (4) we obtain
the statement of the theorem.

Finally, we remark that all the considered measures can be made non-zero
everywhere by simply combining them with the uniform i.i.d. over X measure
β′, that is, taking for each measure ν the combination 1

2 (ν + β′). This way all
losses up to time T become bounded by T log |X | + 1, but the result still holds
with a different constant. 	

4 Discussion

We have shown that there are sets of predictors whose performance cannot be
combined using any Bayesian predictor. While the result is stated for Bayesian
predictors and for log loss, the example used to establish it seems to apply more
generally. Indeed, it is clear that changing the loss won’t change the result, only
making the analysis slightly more cumbersome. More generally, the reason why
any Bayesian predictor does not work in this example is that, since the set C
considered is large, the predictor has to attach a quickly decreasing weight to
each element in C, whereas each measure in C already attaches too little weight
to the part of the event space of interest. In other words, the likelihood of the
observations w.r.t. each predictor in C is too small to allow for any penalty. To
combine predictors in C one has to boost the likelihood, rather than attach a
penalty. Doing something like this would of course break a predictor on other
sets C. This applies not only to Bayes. In fact, whatever general prediction
principle one could consider, for example, the MDL principle (see, e.g., [3]), it
appears to fail on the example presented. The same concerns expert-advice-style
predictors. The problem, therefore, seems to be generic: to combine the predictive

260 D. Ryabko

power of the predictors in the set, it is not enough to consider combinations of
these predictors; rather, one has to look somewhere completely outside of C.

This suggests a more general question of how one can characterize those sets
C of predictors for which it is enough to consider only the predictors inside C
in order to effectively compete with them, as well as what can one do when this
is not the case.

As far as prediction in the realizable case is concerned (i.e., ν ∈ C, or, more
generally, zero regret is possible), the following question remains open. It is
shown in [6] that in this case, if any predictor works then there is a prior such
that a Bayesian predictor with this prior works as well. However, this result is
asymptotic. One can ask the question of whether the speed of convergence of
the loss (to 0 in this case) can be matched by some Baysian predictor, if any of
the measures in C is chosen to generate the data.

Another generalization is to the case when the best achievable regret is linear,
either in the realizable case or in the non-realizable one. Thus, the set C of
predictors may be so large that no predictor can have a sublinear regret. We still
would like to have as small regret as possible with respect to this set. Since the
set C is larger, the realizable case becomes more interesting. Can the smallest
regret still be achieved with a Bayesian predictor?

Acknowledgements. The research presented in this paper was supported by CPER
Nord-Pas de Calais/ FEDER DATA Advanced data science and technologies 2015–
2020, by French Ministry of Higher Education and Research, Nord-Pas-de-Calais
Regional Council.

References

1. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge
University Press, Cambridge (2006)

2. Diaconis, P., Freedman, D.: On the consistency of Bayes estimates. Ann. Stat. 14(1),
1–26 (1986)

3. Grünwald, P.: The Minimum Description Length Principle. MIT Press, Cambridge
(2007)

4. Krichevsky, R.: Universal Compression and Retrival. Kluwer Academic Publications,
Dordrecht (1993)

5. Ryabko, B.: Prediction of random sequences and universal coding. Probl. Inf.
Transm. 24, 87–96 (1988)

6. Ryabko, D.: On finding predictors for arbitrary families of processes. J. Mach. Learn.
Res. 11, 581–602 (2010)

7. Ryabko, D.: On the relation between realizable and non-realizable cases of the
sequence prediction problem. J. Mach. Learn. Res. 12, 2161–2180 (2011)

8. Solomonoff, R.J.: Complexity-based induction systems: comparisons and conver-
gence theorems. IEEE Trans. Inf. Theor. IT 24, 422–432 (1978)

9. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of
the concepts of information and randomness by means of the theory of algorithms.
Russ. Math. Surv. 25(6), 83–124 (1970)

On Minimaxity of Follow the Leader Strategy
in the Stochastic Setting

Wojciech Kot�lowski(B)

Poznań University of Technology, Poznań, Poland
wkotlowski@cs.put.poznan.pl

Abstract. We consider the setting of prediction with expert advice
with an additional assumption that each expert generates its losses i.i.d.
according to some distribution. We first identify a class of “admissible”
strategies, which we call permutation invariant, and show that every
strategy outside this class will perform not better than some permutation
invariant strategy. We then show that when the losses are binary, a simple
Follow the Leader (FL) algorithm is the minimax strategy for this game,
where minimaxity is simultaneously achieved for the expected regret, the
expected redundancy, and the excess risk. Furthermore, FL has also the
smallest regret, redundancy, and excess risk over all permutation invari-
ant prediction strategies, simultaneously for all distributions over binary
losses. When the losses are continuous in [0, 1], FL remains minimax only
when an additional trick called “loss binarization” is applied.

1 Introduction

In the game of prediction with expert advice [4,5], the learner sequentially
decides on one of K experts to follow, and suffers loss associated with the chosen
expert. The difference between the learner’s cumulative loss and the cumulative
loss of the best expert is called regret. The goal is to minimize the regret in the
worst case over all possible loss sequences. A prediction strategy which achieves
this goal (i.e., minimizes the worst-case regret) is called minimax. While there is
no known solution to this problem in the general setting, it is possible to derive
minimax algorithms for some special variants of this game: for 0/1 losses on the
binary labels [4,5], for unit losses with fixed loss budget [2], and when K = 2
[9]. Interestingly, all these algorithms share a similar strategy of playing against
a maximin adversary which assigns losses uniformly at random. They also have
the equalization property: all data sequences lead to the same value of the regret.
While this property makes them robust against the worst-case sequence, it also
makes them over-conservative, preventing them from exploiting the case, when
the actual data is not adversarially generated1.

W. Kot�lowski—This research was supported by the Polish National Science Centre
under grant no. 2013/11/D/ST6/03050.

1 There are various algorithms which combine almost optimal worst-case performance
with good performance on “easy” sequences [6,10–13]; these algorithms, however,
are not motivated from the minimax principle.

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 261–275, 2016.
DOI: 10.1007/978-3-319-46379-7 18

262 W. Kot�lowski

In this paper, we drop the analysis of worst-case performance entirely, and
explore the minimax principle in a more constrained setting, in which the adver-
sary is assumed to be stochastic. In particular, we associate with each expert k a
fixed distribution Pk over loss values, and assume the observed losses of expert k
are generated independently from Pk. The motivation behind our assumption is
the practical usefulness of the stochastic setting: the data encountered in prac-
tice are rarely adversarial and can often be modeled as generated from a fixed
(yet unknown) distribution. That is why we believe it is interesting to deter-
mine the minimax algorithm under this assumption. We immediately face two
difficulties here. First, due to stochastic nature of the adversary, it is no longer
possible to follow standard approaches of minimax analysis, such as backward
induction [4,5] or sequential minimax duality [1,9], and we need to resort to a
different technique. We define the notion of permutation invariance of prediction
strategies. This let us identify a class of “admissible” strategies (which we call
permutation invariant), and show that every strategy outside this class will per-
form not better than some permutation invariant strategy. Secondly, while the
regret is a single, commonly used performance metric in the worst-case setting,
the situation is different in the stochastic case. We know at least three poten-
tially useful metrics in the stochastic setting: the expected regret, the expected
redundancy, and the excess risk [8], and it is not clear, which of them should be
used to define the minimax strategy.

Fortunately, it turns out that there exists a single strategy which is minimax
with respect to all three metrics simultaneously. In the case of binary losses,
which take out values from {0, 1}, this strategy turns out to be the Follow the
Leader (FL) algorithm, which chooses an expert with the smallest cumulative
loss at a given trial (with ties broken randomly). Interestingly, FL is known to
perform poorly in the worst-case, as its worst-case regret will grow linearly with
T [5]. On the contrary, in the stochastic setting with binary losses, FL has the
smallest regret, redundancy, and excess risk over all permutation invariant pre-
diction strategies, simultaneously for all distributions over binary losses! In a
more general case of continuous losses in the range [0, 1], FL is provably sub-
optimal. However, by applying binarization trick to the losses [6], i.e. randomly
setting them to {0, 1} such that the expectation matches the actual loss, and
using FL on the binarized sequence (which results in the binarized FL strategy),
we obtain the minimax strategy in the continuous case.

We note that when the excess risk is used as a performance metric, our setup
falls into the framework of statistical decision theory [3,7], and the question we
pose can be reduced to the problem of finding the minimax decision rule for
a properly constructed loss function, which matches the excess risk on expec-
tation. In principle, one could try to solve our problem by using the complete
class theorem and search for the minimax rule within the class of (generalized)
Bayesian decision rules. We initially followed this approach, but it turned out to
be futile, as the class of distributions we are considering are all distributions in
the range [0, 1], and exploring prior distributions over such classes becomes very
difficult. On the other hand, the analysis presented in this paper is relatively

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting 263

simple, and works not only for the excess risk, but also for the expected regret
and the expected redundancy. To the best of our knowledge, both the results
and the analysis presented here are novel.

The paper is organized as follows. In Sect. 2 we formally define the prob-
lem. The binary case is solved in Sect. 3, while Sect. 4 concerns continuous case.
Section 5, concludes the paper and discusses an open problem.

2 Problem Setting

2.1 Prediction with Expert Advice in the Stochastic Setting

In the game of prediction with expert advice, at each trial t = 1, . . . , T , the
learner predicts with a distribution wt = (wt,1, . . . , wt,K) over K experts. Then,
the loss vector �t = (�t,1, . . . , �t,K) ∈ X K is revealed (where X is either {0, 1} or
[0, 1]), and the learner suffers loss:

wt · �t =
K∑

k=1

wt,k�t,k,

which can be interpreted as the expected loss the learner suffers by following one
of the experts chosen randomly according to wt. Let Lt,k denote the cumulative
loss of expert k at the end of iteration t, Lt,k =

∑
q≤t �q,k. Let �t abbreviate the

sequence of losses �1, . . . , �t. We will also use ω = (w1, . . . ,wT) to denote the
whole prediction strategy of the learner, having in mind that each distribution
wt is a function of the past t−1 outcomes �t−1. The performance of the strategy
is measured by means of regret :

T∑

t=1

wt · �t − min
k

LT,k,

which is a difference between the algorithm’s cumulative loss and the cumulative
loss of the best expert. In the worst-case (adversarial) formulation of the problem,
no assumption is made on the way the sequence of losses is generated, and hence
the goal is then to find an algorithm which minimizes the worst-case regret over
all possible sequences �T .

In this paper, we drop the analysis of worst-case performance and explore
the minimax principle in the stochastic setting, defined as follows. We assume
there are K distributions P = (P1, . . . , PK) over X , such that for each k, the
losses �t,k, t = 1, . . . , T , are generated i.i.d. from Pk. Note that this implies that
�t,k is independent from �t′,k′ whenever t′ �= t or k �= k′. The prediction strategy
is then evaluated by means of expected regret :

Reg(ω,P) = E

[T∑

t=1

wt(�t−1) · �t − min
k

LT,k

]
,

264 W. Kot�lowski

where the expectation over the loss sequences �T with respect to distribution
P = (P1, . . . , Pk), and we explicitly indicate the dependency of wt on �t−1.
However, the expected regret is not the only performance metric one can use in
the stochastic setting. Instead of comparing the algorithm’s loss to the loss of
the best expert on the actual outcomes, one can choose the best expected expert
as a comparator, which leads to a metric:

Red(ω,P) = E

[T∑

t=1

wt(�t−1) · �t

]
− min

k
E [LT,k] ,

which we call the expected redundancy, as it closely resembles a measure used
in information theory to quantify the excess codelength of a prequential code
[8]. Note that from Jensen’s inequality it holds that Red(ω,P) ≥ Reg(ω,P) for
any ω and any P, and the difference Red(ω,P) − Reg(ω,P) is independent of ω
given fixed P. This does not, however, imply that these metrics are equivalent
in the minimax analysis, as the set of distributions P is chosen by the adversary
against strategy ω played by learner, and this choice will in general be different
for the expected regret and the expected redundancy. Finally, the stochastic
setting permits us to evaluate the prediction strategy by means of the individual
rather than cumulative losses. Thus, it is reasonable to define the excess risk of
the prediction strategy at time T :

Risk(ω,P) = E

[
wT (�T−1) · �T

]
− min

k
E [�T,k] ,

a metric traditionally used in statistics to measure the accuracy of statistical
procedures. Contrary to the expected regret and redundancy defined by means
of cumulative losses of the prediction strategy, the excess risk concerns only a
single prediction at a given trial; hence, without loss of generality, we can choose
the last trial T in the definition. For the sake of clarity, we summarize the three
measures in Table 1.

Table 1. Performance measures.

Expected regret: Reg(ω,P) = E

[T∑
t=1

wt(�
t−1) · �t − min

k
LT,k

]

Expected redundancy: Red(ω,P) = E

[T∑
t=1

wt(�
t−1) · �t

]
− min

k
E [LT,k]

Excess risk: Risk(ω,P) = E

[
wT (�T−1) · �T

]
− min

k
E [�T,k]

Given performance measure R, we say that a strategy ω∗ is minimax with
respect to R, if:

sup
P

R(ω∗,P) = inf
ω

sup
P

R(ω,P),

where the supremum is over all K-sets of distributions (P1, . . . , PK) on X , and
the infimum is over all prediction strategies.

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting 265

2.2 Permutation Invariance

In this section, we identify a class of “admissible” prediction strategies, which we
call permutation invariant. The name comes from the fact that the performance
of these strategies remains invariant under any permutation of the distributions
P = (P1, . . . , PK). We show that for every prediction strategy, there exists a
corresponding permutation invariant strategy with not worse expected regret,
redundancy and excess risk in the worst-case with respect to all permutations
of P.

We say that a strategy ω is permutation invariant if for any t = 1, . . . , T ,
and any permutation σ ∈ SK , where SK denotes the group of permutations over
{1, . . . , K}, wt(σ(�t−1)) = σ(wt(�t−1)), where for any vector v = (v1, . . . , vK),
we denote σ(v) = (vσ(1), . . . , vσ(K)) and σ(�t−1) = σ(�1), . . . , σ(�t−1). In words,
if we σ-permute the indices of all past loss vectors, the resulting weight vector
will be the σ-permutation of the original weight vector. Permutation invariant
strategies are natural, as they only rely on the observed outcomes, not on the
expert indices. The performance of these strategies remains invariant under any
permutation of the distributions from P:

Lemma 1. Let ω be permutation invariant. Then, for any permutation σ ∈ SK ,
Eσ(P)

[
wt(�t−1) · �t

]
= EP

[
wt(�t−1) · �t

]
, and moreover R(ω, σ(P)) = R(ω,P),

where R is the expected regret, expected redundancy, or excess risk, and σ(P) =
(Pσ(1), . . . , Pσ(K)).

Proof. We first show that the expected loss of the algorithm at any iteration
t = 1, . . . , T , is the same for both σ(P) and P:

Eσ(P)

[
wt(�t−1) · �t

]
= EP

[
wt(σ(�t−1)) · σ(�t)

]
= EP

[
σ(wt(�t−1)) · σ(�t)

]

= EP
[
wt(�t−1) · �t

]
,

where the first equality is due to the fact, that permuting the distributions is
equivalent to permuting the coordinates of the losses (which are random variables
with respect to these distributions), the second equality exploits the permuta-
tion invariance of ω, while the third inequality uses a simple fact that the dot
product is invariant under permuting both arguments. Therefore, the “loss of the
algorithm” part of any of the three measures (regret, redundancy, risk) remains
the same. To show that the “loss of the best expert” part of each measure is the
same, note that for any t = 1, . . . , T , k = 1, . . . , K, Eσ(P) [�t,k] = EP

[
�t,σ(k)

]
,

which implies:

min
k

Eσ(P) [�T,k] = min
k

EP
[
�T,σ(k)

]
= min

k
EP [�T,k] ,

min
k

Eσ(P) [LT,k] = min
k

EP
[
LT,σ(k)

]
= min

k
EP [LT,k] ,

Eσ(P)

[
min

k
LT,k

]
= EP

[
min

k
LT,σ(k)

]
= EP

[
min

k
LT,k

]
,

so that the “loss of the best expert” parts of all measures are also the same for
both σ(P) and P. ��

266 W. Kot�lowski

We now show that permutation invariant strategies are “admissible” in the fol-
lowing sense:

Theorem 1. For any strategy ω, there exists permutation invariant strategy ω̃,
such that for any set of distributions P,

R(ω̃,P) = max
σ∈SK

R(ω̃, σ(P)) ≤ max
σ∈SK

R(ω, σ(P)),

where R is either the expected regret, the expected redundancy or the excess risk.
In particular, this implies that: supP R(ω̃,P) ≤ supP R(ω,P).

Proof. This first equality in the theorem immediately follows from Lemma 1.
Define ω̃ = (w̃1, . . . , w̃T) as:

w̃t(�t−1) =
1

K!

∑

τ∈SK

τ−1
(
wt(τ(�t−1))

)
.

Note that ω̃ is a valid prediction strategy, since w̃t is a function of �t−1 and a
distribution over K experts (w̃t is a convex combination of K! distributions, so
it is a distribution itself). Moreover, ω̃ is permutation invariant:

w̃t(σ(�t−1)) =
1

K!

∑

τ∈SK

τ−1
(
wt(τσ(�t−1))

)

=
1

K!

∑

τ∈SK

(τσ−1)−1
(
wt(τ(�t−1))

)

=
1

K!

∑

τ∈SK

στ−1
(
wt(τ(�t−1))

)
= σ(w̃t(�t−1)),

where the second equality is from replacing the summation index τ �→ τσ. Now,
note that the expected loss of w̃t is:

EP
[
w̃t(�t−1) · �t

]
=

1
K!

∑

τ∈SK

EP
[
τ−1

(
wt(τ(�t−1))

) · �t

]

=
1

K!

∑

τ∈SK

EP
[
wt(τ(�t−1)) · τ(�t)

]

=
1

K!

∑

τ∈SK

Eτ−1(P)

[
wt(�t−1) · �t

]

=
1

K!

∑

σ∈SK

Eσ(P)

[
wt(�t−1) · �t

]
.

Since the “loss of the best expert” parts of all three measures are invariant under
any permutation of P (see the proof of Lemma 1), we have:

R(ω̃,P) =
1

K!

∑

σ∈SK

R(ω, σ(P)) ≤ max
σ∈SK

R(ω, σ(P)). (1)

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting 267

This implies that:

sup
P

R(ω̃,P) ≤ sup
P

max
σ∈SK

R(ω, σ(P)) = sup
P

R(ω,P).

��
Theorem 1 states that strategies which are not permutation-invariant do not give
any advantage over permutation-invariant strategies even when the set of distri-
butions P is fixed (and even possibly known to the learner), but the adversary
can permute the distributions to make the learner incur the most loss. We also
note that one can easily show a slightly stronger version of Theorem 1: if strategy
ω is not permutation invariant, and it holds that R(ω,P) �= R(ω, τ(P)) for some
set of distributions and permutation τ , then R(ω̃,P) < maxσ∈SK

R(ω, σ(P)).
This follows from the fact that the inequality in (1) becomes sharp.

2.3 Follow the Leader Strategy

Given loss sequence �t−1, let N = | argminj=1,...,K Lt−1,j | be the size of the leader
set at the beginning of trial t. We define the Follow the Leader (FL) strategy wfl

t

such that wfl
t,k = 1

N if k ∈ argminj Lt−1,j and wfl
t,k = 0 otherwise. In other words,

FL predicts with the current leader, breaking ties uniformly at random. It is
straightforward to show that such defined FL strategy is permutation invariant.

3 Binary Losses

In this section, we set X = {0, 1}, so that all losses are binary. In this case,
each Pk is a Bernoulli distribution. Take any permutation invariant strategy
ω. It follows from Lemma 1 that for any P, and any permutation σ ∈ SK ,
EP

[
wt(�t−1) · �t

]
= Eσ(P)

[
wt(�t−1) · �t

]
. Averaging this equality over all per-

mutations σ ∈ SK gives:

EP
[
wt(�t−1) · �t

]
=

1
K!

∑

σ

Eσ(P)

[
wt(�t−1) · �t

]

︸ ︷︷ ︸
=: losst(wt,P)

, (2)

where we defined losst(wt,P) to be permutation-averaged expected loss at trial
t. We now show the main result of this paper, a surprisingly strong property
of FL strategy, which states that FL minimizes losst(wt,P) simultaneously over
all K-sets of distributions. Hence, FL is not only optimal in the worst case, but
is actually optimal for permutation-averaged expected loss for any P, even if P
is known to the learner! The consequence of this fact (by (2)) is that FL has
the smallest expected loss among all permutation invariant strategies for any P
(again, even if P is known to the learner).

268 W. Kot�lowski

Theorem 2. Let ωfl = (wfl
1 , . . . ,w

fl
T) be the FL strategy. Then, for any K-

set of distributions P = (P1, . . . , PK) over binary losses, for any strategy ω =
(w1, . . . ,wT), and any t = 1, . . . , T :

losst(wfl
t ,P) ≤ losst(wt,P).

Proof. For any distribution Pk over binary losses, let pk := Pk(�t,k = 1) =
EPk

[�t,k]. We have:

losst(wt,P)=
1

K!

∑

σ

Eσ(P)

[
wt(�t−1) · �t

]
(3)

=
1

K!

∑

σ

Eσ(P)

[
wt(�t−1)

] · Eσ(P) [�t]

=
1

K!

∑

σ

∑

�t−1

(
K∏

k=1

p
Lt−1,k

σ(k) (1−pσ(k))t−1−Lt−1,k

)(
K∑

k=1

wt,k(�t−1)pσ(k)

)

=
1

K!

∑

�t−1

K∑

k=1

wt,k(�t−1)

(
∑

σ

K∏

j=1

p
Lt−1,j

σ(j) (1−pσ(j))t−1−Lt−1,jpσ(k)

)

︸ ︷︷ ︸
=: losst(wt,P|�t−1)

,

where in the second equality we used the fact that wt depends on �t−1 and does
not depend on �t. Fix �t−1 and consider the term losst(wt,P|�t−1). This term
is linear in wt, hence it is minimized by wt = ek for some k = 1, . . . ,K, where
ek is the k-th standard basis vector with 1 on the k-th coordinate, and zeros
on the remaining coordinates. We will drop the trial index and use a shorthand
notation Lj = Lt−1,j , for j = 1, . . . ,K, and L = (L1, . . . , LK). In this notation,
we rewrite losst(wt,P|�t−1) as:

losst(wt,P|�t−1) =
K∑

k=1

wt,k(�t−1)

⎛

⎝
∑

σ

K∏

j=1

p
Lj

σ(j)(1 − pσ(j))t−1−Ljpσ(k)

⎞

⎠ . (4)

We will show that for any P, and any �t−1 (and hence, any L), losst(wt,P|�t−1)
is minimized by setting wt = ek∗ for any k∗ ∈ argminj Lj . In other words, we
will show that for any P, L, any k∗ ∈ argminj Lj , and any k = 1, . . . ,K,

losst(ek∗ ,P|�t−1) ≤ losst(ek,P|�t−1).

or equivalently, using (4), that for any P, L, k∗ ∈ argminj Lj , and k = 1, . . . ,K,

∑

σ

K∏

j=1

p
Lj

σ(j)(1 − pσ(j))t−1−Ljpσ(k∗) ≤
∑

σ

K∏

j=1

p
Lj

σ(j)(1 − pσ(j))t−1−Ljpσ(k). (5)

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting 269

We proceed by induction on K. Take K = 2 and note that when k∗ = k,
there is nothing to prove, as both sides of (5) are identical. Therefore, without
loss of generality, assume k∗ = 1 and k = 2, which implies L1 ≤ L2. Then, (5)
reduces to:

pL1
1 pL2

2 (1 − p1)t−1−L1(1 − p2)t−1−L2p1

+ pL1
2 pL2

1 (1 − p2)t−1−L1(1 − p1)t−1−L2p2

≤ pL1
1 pL2

2 (1 − p1)t−1−L1(1 − p2)t−1−L2p2

+ pL1
2 pL2

1 (1 − p2)t−1−L1(1 − p1)t−1−L2p1,

After rearranging the terms, it amounts to show that:

(p1p2)L1

(
(1 − p1)(1 − p2)

)t−1−L2

(p1 − p2)

×
(
(p2(1 − p1))L2−L1 − (p1(1 − p2))L2−L1

)
≤ 0.

But this will hold if:

(p1 − p2)
(
(p2(1 − p1))L2−L1 − (p1(1 − p2))L2−L1

)
≤ 0. (6)

If L1 = L2, (6) clearly holds; therefore assume L1 < L2. We prove the validity
of (6) by noticing that:

p2(1 − p1) > p1(1 − p2) ⇐⇒ p2 > p1,

which means that the two factors of the product on the left-hand side of (6) have
the opposite sign (when p1 �= p2) or are zero at the same time (when p1 = p2).
Hence, we proved (6), which implies (5) when k∗ = 1 and k = 2. The opposite
case k∗ = 2, k = 1 with L2 ≤ L1 can be shown with exactly the same line of
arguments by simply exchanging the indices 1 and 2.

Now, we assume (5) holds for K−1 ≥ 2 experts and any P = (P1, . . . , PK−1),
any L = (L1, . . . , LK−1), any k∗ ∈ argminj=1,...,K−1 Lj , and any k = 1, . . . ,K −
1, and we show that it also holds for K experts. Take any k∗ ∈ argminj=1,...,K Lj ,
and any k = 1, . . . ,K. Without loss of generality, assume that k∗ �= 1 and k �= 1
(it is always possible find expert different than k∗ and k, because there are K ≥ 3
experts). We expand the sum over permutations on the left-hand side of (5) with
respect to the value of σ(1):

K∑

s=1

pL1
s (1 − ps)t−1−L1

∑

σ : σ(1)=s

K∏

j=2

p
Lj

σ(j)(1 − pσ(j))t−1−Ljpσ(k∗),

and we also expand the sum on the right-hand side of (5) in the same way. To
prove (5), it suffices to show that every term in the sum over s on the left-hand
side is not greater than the corresponding term in the sum on the right-hand
side, i.e. to show that for any s = 1, . . . ,K,

270 W. Kot�lowski

∑

σ : σ(1)=s

K∏

j=2

p
Lj

σ(j)(1−pσ(j))t−1−Ljpσ(k∗) ≤
∑

σ : σ(1)=s

K∏

j=2

p
Lj

σ(j)(1−pσ(j))t−1−Ljpσ(k).

(7)
We now argue that this inequality follows directly from the inductive assumption
by dropping L1 and Ps, and applying (5) to such a (K − 1)-expert case. More
precisely, note that the sum on both sides of (7) goes over all permutations on
indices (1, . . . , s − 1, s + 1, . . . , K) and since k, k∗ �= 1, k∗ ∈ argminj=2,...,K Lj

and k ≥ 2. Hence, applying (5) to K − 1 expert case with K − 1 distributions
(P1, P2, . . . , Ps−1, Ps+1, . . . , PK) (or any permutation thereof), and K−1 integers
(L2, . . . , LK) immediately implies (7).

Thus, we proved (5) which states that losst(wt,P|�t−1) is minimized by any
leader k∗ ∈ argminj Lj , where Lj =

∑t−1
q=1 �q,j . This means losst(wt,P|�t−1)

is also minimized by the FL strategy wfl
t , which distributes its mass uniformly

over all leaders. Since FL minimizes losst(wt,P|�t−1) for any �t−1, by (3) it also
minimizes losst(wt,P). ��
Note that the proof did not require uniform tie breaking over leaders, as any
distribution over leaders would work as well. Uniform distribution, however,
makes the FL strategy permutation invariant.

The consequence of Theorem 2 is the following corollary which states the
minimaxity of FL strategy for binary losses:

Corollary 1. Let ωfl = (wfl
1 , . . . ,w

fl
T) be the FL strategy. Then, for any P over

binary losses, and any permutation invariant strategy ω:

R(ωfl,P) ≤ R(ω,P).

where R is the expected regret, expected redundancy, or excess risk. This implies:

sup
P

R(ωfl,P) = inf
ω

sup
P

R(ω,P),

where the supremum is over all distributions on binary losses, and the infimum
over all (not necessarily permutation invariant) strategies.

Proof. The second statement immediately follows from the first statement and
Theorem 1. For the first statement, note that the “loss of the best expert” part
of each measure only depends on P. Hence, we only need to show that for any
t = 1, . . . , T ,

EP
[
wfl

t · �t

] ≤ EP [wt · �t] .

Since wfl
t and wt are permutation invariant, Lemma 1 shows that EP

[
wfl

t · �t

]
=

losst(wfl
t ,P), and similarly, EP [wt · �t] = losst(wt,P). Application of Theorem

2 finishes the proof.

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting 271

4 Continuous Losses

In this section, we consider the general case X = [0, 1] of continuous loss vectors.
We give a modification of FL and prove its minimaxity. We later justify the
modification by arguing that the plain FL strategy is not minimax for continuous
losses.

4.1 Binarized FL

The modification of FL is based on the procedure we call binarization. A similar
trick has already been used in [6] to deal with non-integer losses in a different
context. We define a binarization of any loss value �t,k ∈ [0, 1] as a Bernoulli
random variable bt,k which takes out value 1 with probability �t,k and value 0
with probability 1 − �t,k. In other words, we replace each non-binary loss �t,k by
a random binary outcome bt,k, such that E[bt,k] = �t,k. Note that if �t,k ∈ {0, 1},
then bt,k = �t,k, i.e. binarization has no effect on losses which are already binary.
Let us also define bt = (bt,1, . . . , bt,K), where all K Bernoulli random variables
bt,k are independent. Similarly, bt will denote a binary loss sequence b1, . . . , bt,
where the binarization procedure was applied independently (with a new set of
Bernoulli variables) for each trial t. Now, given the loss sequence �t−1, we define
the binarized FL strategy ωbfl by:

wbfl
t (�t−1) = Ebt−1

[
wfl

t (bt−1)
]
,

where wfl
t (bt−1) is the standard FL strategy applied to binarized losses bt−1,

and the expectation is over internal randomization of the algorithm (binarization
variables).

Note that if the set of distributions P has support only on {0, 1}, then wbfl
t ≡

wfl
t . On the other hand, these two strategies may differ significantly for non-

binary losses. However, we will show that for any K-set of distributions P (with
support in [0, 1]), wbfl

t will behave in the same way as wfl
t would behave on some

particular K-set of distributions over binary losses. To this end, we introduce
binarization of a K-set of distributions P, defined as Pbin = (P bin

1 , . . . , P bin
K),

where P bin
k is a distribution with support {0, 1} such that:

EPbin
k

[�t,k] = P bin
k (�t,k = 1) = EPk

[�t,k].

In other words, P bin
k is a Bernoulli distribution which has the same expectation as

the original distribution (over continuous losses) Pk. We now show the following
results:

Lemma 2. For any K-set of distributions P = (P1, . . . , PK) with support on
X = [0, 1],

E�t∼P
[
wbfl

t (�t−1) · �t

]
= E�t∼Pbin

[
wfl

t (�t−1) · �t

]
.

272 W. Kot�lowski

Proof. Let pk be the expectation of �t,k according to either Pk or P bin
k , pk :=

EPk
[�t,k] = EPbin

k
[�t,k]. Since for any prediction strategy ω, wt depends on �t−1

and does not depend on �t, we have:

EP
[
wbfl

t · �t

]
= EP

[
wbfl

t

] · EP [�t] = EP
[
wbfl

t

] · p,

where p = (p1, . . . , pK). Similarly,

EPbin

[
wfl

t · �t

]
= EPbin

[
wfl

t

] · p.

Hence, we only need to show that EP
[
wbfl

t

]
= EPbin

[
wfl

t

]
. This holds because

wbfl
t “sees” only the binary outcomes resulting from the joint distribution of P

and the distribution of binarization variables:

E�t−1∼P
[
wbfl

t (�t−1)
]

= E�t−1∼P,bt−1

[
wfl

t (bt−1)
]
,

and for any bt,k, the probability (jointly over Pk and the binarization variables)
of bt,k = 1 is the same as probability of �t,k = 1 over the distribution P bin

k :

P (bt,k = 1) =
∫

[0,1]

P (bt,k = 1|�t,k)Pk(�t,k)d�t,k

=
∫

[0,1]

�t,kPk(�t,k)d�t,k = pt = P bin(�t,k = 1). (8)

Hence,
E�t−1∼P,bt−1

[
wfl

t (bt−1)
]

= E�t−1∼Pbin

[
wfl

t (�t)
]
.

��
Lemma 3. For any K-set of distributions P = (P1, . . . , PK) with support on
X = [0, 1],

R(ωbfl,P) ≤ R(ωfl,Pbin),

where R is either the expected regret, the expected redundancy, or the excess risk.

Proof. Lemma 2 shows that the expected loss of ωbfl on P is the same as the
expected loss of ωfl on Pbin. Hence, to prove the inequality, we only need to con-
sider the “loss of the best expert” part of each measure. For the expected redun-
dancy, and the expected regret, it directly follows from the definition of Pbin that
for any t, k, EP [�t,k] = EPbin [�t,k], hence mink EP [�T,k] = mink EPbin [�T,k], and
similarly, mink EP [LT,k] = mink EPbin [LT,k]. Thus, for the expected redundancy
and the excess risk, the lemma actually holds with equality.

For the expected regret, we will show that EP [mink LT,k] ≥ EPbin [mink LT,k],
which will finish the proof. Denoting BT,k =

∑T
t=1 bt,k, we have:

E�T ∼Pbin [min
k

LT,k] = E�T ∼P,bT [min
k

BT,k]

≤ E�T ∼P

[
min

k
EbT [BT,k|�T]

]

= E�T ∼P [min
k

LT,k],

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting 273

where the first equality is from the fact that for any bt,k, the probability (jointly
over Pk and the binarization variables) of bt,k = 1 is the same as probability
of �t,k = 1 over the distribution P bin

k (see (8) in the proof of Lemma 2), while
the inequality follows from Jensen’s inequality applied to the concave function
min(·). ��
Theorem 3. Let ωbfl = (wbfl

1 , . . . ,wbfl
T) be the binarized FL strategy. Then:

sup
P

R(ωbfl,P) = inf
ω

sup
P

R(ω,P),

where R is the expected regret, expected redundancy, or excess risk, the supremum
is over all K-sets of distributions on [0, 1], and the infimum is over all prediction
strategies.

Proof. Lemma 3 states that for any K-set of distributions P, R(ωbfl,P) ≤
R(ωfl,Pbin). Furthermore, since ωbfl is the same as ωfl when all the losses are
binary, R(ωbfl,Pbin) = R(ωfl,Pbin), and hence R(ωbfl,P) ≤ R(ωbfl,Pbin), i.e.
for every P over continuous losses, there is a corresponding Pbin over binary
losses which incurs at least the same regret/redundancy/risk to ωbfl. Therefore,

sup
P on [0,1]

R(ωbfl,P) = sup
P on {0,1}

R(ωbfl,P) = sup
P on {0,1}

R(ωfl,P).

By the second part of Corollary 1, for any prediction strategy ω:

sup
P on {0,1}

R(ωfl,P) ≤ sup
P on {0,1}

R(ω,P) ≤ sup
P on [0,1]

R(ω,P),

which finishes the proof. ��
Theorem 3 states that the binarized FL strategy is the minimax prediction strat-
egy when the losses are continuous on [0, 1]. Note that the same arguments would
hold for any other loss range [a, b], where the binarization on losses would convert
continuous losses to the binary losses with values in {a, b}.

4.2 Vanilla FL is Not Minimax for Continuous Losses

We introduced the binarization procedure to show that the resulting binarized
FL strategy is minimax for continuous losses. So far, however, we did not exclude
the possibility that the plain FL strategy (without binarization) could also be
minimax in the continuous setup. In this section, we prove (by counterexample)
that this is not the case, so that the binarization procedure is justified. We will
only consider excess risk for simplicity, but one can use similar arguments to
show a counterexample for the expected regret and the expected redundancy as
well.

The counterexamples proceeds by choosing the simplest non-trivial setup of
K = 2 experts and T = 2 trials. We will first consider the case of binary losses
and determine the minimax excess risk. Take two distributions P1, P2 on binary

274 W. Kot�lowski

losses and denote p1 = P1(�t,1 = 1) and p2 = P2(�t,2 = 1), assuming (without
loss of generality) that p1 ≤ p2. The excess risk of the FL strategy (its expected
loss in the second trial minus the expected loss of the first expert) is given by:

P (�1,1 = 0, �1,2 = 1)p1 + P (�1,2 = 0, �1,1 = 1)p2 + P (�1,1 = �1,2)
p1 + p2

2
− p1,

which can be rewritten as:

p2(1 − p1)p1 + p1(1 − p2)p2︸ ︷︷ ︸
=2p1p2−p1p2(p1+p2)

+
(
p1p2 + (1 − p1)(1 − p2)

)p1 + p2
2︸ ︷︷ ︸

=p1p2(p1+p2)−(p1+p2)2+
p1+p2

2

− p1

=
p2 − p1

2
− (p2 − p1)2

2
.

Denoting δ = p2 − p1, the excess risk can be concisely written as δ
2 − δ2

2 . Maxi-
mizing over δ gives δ∗ = 1

2 and hence the maximum risk of FL on binary losses
is equal to 1

8 .
Now, the crucial point to note is that this is also the minimax risk on con-

tinuous losses. This follows because the binarized FL strategy (which is the
minimax strategy on continuous losses) achieves the maximum risk on binary
losses (for which it is equivalent to the FL strategy), as follows from the proof
of Theorem 3. What remains to be shown is that there exist distributions P1, P2

on continuous losses which force FL to suffer more excess risk than 1
8 . We take

P1 with support on two points {ε, 1}, where ε is a very small positive number,
and p1 = P1(�t,1 = 1). Note that E[�t,1] = p1 + ε(1 − p1). P2 has support on
{0, 1− ε}, and let p2 = P2(�t,2 = 1− ε), which means that E[�t,2] = p2(1− ε). We
also assume E[�t,1] < E[�t,2] i.e. expert 1 is the “better” expert, which translates
to p1 + ε(1 − p1) < p2(1 − ε). The main idea in this counterexample is that by
using ε values, all “ties” are resolved in favor of expert 2, which makes the FL
algorithm suffer more loss. More precisely, this risk of FL is now given by:

p2(1 − p1)p1 + p1(1 − p2)p2 +
(
p1p2 + (1 − p1)(1 − p2)

)
p2︸ ︷︷ ︸

ties

− p1 + O(ε).

Choosing, e.g. p1 = 0 and p2 = 0.5, gives 1
4 + O(ε) excess risk, which is more

than 1
8 , given that we take ε sufficiently small.

5 Conclusions and Open Problem

In this paper, we determined the minimax strategy for the stochastic setting
of prediction with expert advice in which each expert generates its losses i.i.d.
according to some distribution. Interestingly, the minimaxity is achieved by a
single strategy, simultaneously for three considered performance measures: the
expected regret, the expected redundancy, and the excess risk. We showed that
when the losses are binary, the Follow the Leader algorithm is the minimax

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting 275

strategy for this game, and furthermore, it also has the smallest expected regret,
expected redundancy, and excess risk among all permutation invariant predic-
tion strategies for every distribution over the binary losses simultaneously, even
among (permutation invariant) strategies which know the distributions of the
losses. When the losses are continuous in [0, 1], FL remains minimax only when
an additional trick called “loss binarization” is applied, which results in the
binarized FL strategy.

Open Problem. The setting considered in this paper concerns distributions over
loss vectors which are i.i.d. between trials and i.i.d. between experts. It would
be interesting to determined the minimax strategy in a more general setting,
when the adversary can choose any joint distribution over loss vectors (still i.i.d.
between trials, but not necessarily i.i.d. between experts). We did some prelim-
inary computational experiment, which showed that that FL is not minimax in
this setting, even when the losses are restricted to be binary.

References

1. Abernethy, J., Agarwal, A., Bartlett, P.L., Rakhlin, A.: A stochastic view of opti-
mal regret through minimax duality. In: COLT (2009)

2. Abernethy, J., Warmuth, M.K., Yellin, J.: When random play is optimal against
an adversary. In: COLT, pp. 437–445, July 2008

3. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, Berlin
(1985)

4. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E.,
Warmuth, M.K.: How to use expert advice. J. ACM 44(3), 427–485 (1997)

5. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

6. van Erven, T., Kot�lowski, W., Warmuth, M.K.: Follow the leader with dropout
perturbations. In: COLT, pp. 949–974 (2014)

7. Ferguson, T.: Mathematical Statistics: A Decision Theoretic Approach. Academic
Press, London (1967)

8. Grünwald, P.D.: The Minimum Description Length Principle. MIT Press, Cam-
bridge (2007)

9. Koolen, W.M.: Combining strategies efficiently: high-quality decisions from con-
flicting advice. Ph.D. thesis, ILLC, University of Amsterdam (2011)

10. Koolen, W.M., van Erven, T.: Second-order quantile methods for experts and com-
binatorial games. In: COLT, pp. 1155–1175 (2015)

11. Luo, H., Schapire, R.E.: Achieving all with no parameters: AdaNormalHedge. In:
COLT, pp. 1286–1304 (2015)

12. de Rooij, S., van Erven, T., Grünwald, P.D., Koolen, W.M.: Follow the leader if
you can, hedge if you must. J. Mach. Learn. Res. 15(1), 1281–1316 (2014)

13. Sani, A., Neu, G., Lazaric, A.: Exploiting easy data in online optimization. In:
NIPS, pp. 810–818 (2014)

A Combinatorial Metrical Task System Problem
Under the Uniform Metric

Takumi Nakazono1,3, Ken-ichiro Moridomi1(B), Kohei Hatano2,
and Eiji Takimoto1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{moridomi.kenichiro,eiji}@inf.kyushu-u.ac.jp

2 Library, Kyushu University, Fukuoka, Japan
hatano@inf.kyushu-u.ac.jp

3 Toshiba Solutions Corporation, Fukuoka, Japan

Abstract. We consider a variant of the metrical task system (MTS)
problem under the uniform metric, where each decision corresponds to
some combinatorial object in a fixed set (e.g., the set of all s-t paths of
a fixed graph). Typical algorithms such as Marking algorithm are not
known to solve this problem efficiently and straightforward implementa-
tions takes exponential time for many classes of combinatorial sets. We
propose a modification of Marking algorithm, which we call Weighted
Marking algorithm. We show that Weighted Marking algorithm still
keeps O(log n) competitive ratio for the standard MTS problem with
n states. On the other hand, combining with known sampling techniques
for combinatorial sets, Weighted Marking algorithm works efficiently for
various classes of combinatorial sets.

1 Introduction

The metrical task system is defined as a repeated game between the player and
the adversary. Given a fixed set C of states a metric δ : C×C → R+ and a initial
state c0 ∈ C, for each round t = 1, . . . , T , (i) the adversary reveals a (processing)
cost function ft : C → R+, (ii) the player chooses a state ct ∈ C, and (iii) the
player incurs the processing cost ft(ct) and the moving cost δ(ct, ct−1). The goal
of the algorithm is minimizing the cumulative (processing and moving) cost. The
performance of the algorithm is measured by the competitive ratio, that is, the
ratio of the cumulative cost of the algorithm to the cumulative cost of the best
fixed sequence of states in hindsight.

In the expert setting, i.e., where the decision set consists of n states, there
are many existing works on the MTS [4,5,8,11,14]. In particular, for the uniform
metric δ (which is defined as δ(i, j) = 1 if i �= j and otherwise δ(i, j) = 0), the
MTS problem is well studied [1,4,8,14]. Borodin et al. show the lower bound
of the competitive ratio of any randomized algorithm is Hn, where Hn is the
n-th harmonic number [8]. Especially, Abernethy et al. provide an algorithm
which uses the method of convex optimization, and shows the upper bound of
the competitive ratio of the algorithm is Hn + O(log log n) [1].
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 276–287, 2016.
DOI: 10.1007/978-3-319-46379-7 19

A Combinatorial MTS Problem Under the Uniform Metric 277

When we consider the situation where the decision set C is a combinatorial
set from {0, 1}d (e.g., the set of spanning trees or s-t paths of a graph), the com-
putational issue arises. A natural example of a combinatorial MTS is a routing
problem. For example, we consider a routing problem. Consider a fixed network
G = (V,E) where V is the set of routers (nodes) and E ⊆ V × V is the set of
d edges between routers and V includes two routers, the source s and the sink
t. The decision set C is the set of paths from s to t, whose size is exponential
in d. In general, for typical combinatorial sets, the size could be exponential
in the dimension size d as well and straightforward implementations of known
algorithms for the MTS take exponential time as well since time complexity of
these algorithms is proportional to the size n of the decision set.

In this paper, for the uniform metric, we propose a modification of the Mark-
ing algorithm [8], which we call the Weighted Marking algorithm. The weighted
Marking algorithm employs an exponential weighting scheme and can be viewed
as an analogue of the Hedge algorithm [12] for the MTS problem, whereas the
Marking algorithm is an analogue of the classical Halving algorithm. We prove
that the Weighted Marking algorithm retains O(log n) competitive ratio for
the standard MTS problem with n states. The expected running time of the
Weighted Marking algorithm at each round is the same as that of the original
one.

On the other hand, combining with efficient sampling techniques w.r.t.
exponential weights on combinatorial objects (k-sets, s-t paths [18], stars in a
graph [10] permutation matrices [10,15], permutation vectors [2]), the Weighted
Marking algorithm works efficiently for various classes of combinatorial sets.

1.1 Related Work

There are some existing works for combinatorial metrical task systems. Blum et
al. provide algorithms for the list update problem [6]. For the k-server problem,
which can be viewed as a combinatorial MTS problem, Koutsoupias et al. provide
a deterministic algorithm [17]. Bansal et al. improve the results of Koutsoupias et
al. by a randomization technique [3]. These algorithms are efficient and perform
well for specific problems, i.e., the list update problem and the k-server problem.
However, these algorithms are specialized for limited decision sets and we cannot
use them for other problems.

Buchbinder et al. consider combinatorial MTS problems where the decision
space is defined as a matroid [9]. The concept of matroid can express vari-
ous classes of combinatorial objects such as spanning trees. They show a uni-
fied algorithm with a guaranteed competitive ratio. Their analysis is, however,
applicable for a continuous “relaxed” space only. It is not known if there exists a
rounding scheme that approximately preserves the moving cost over the relaxed
space. Gupta et al. also consider combinatorial MTS problems over the basis of
a matroid [13]. They give a rounding algorithm and prove the competitive ratio
of a rounded solution, for a class of metrics including the Hamming distance but
not the uniform metric.

278 T. Nakazono et al.

2 Preliminaries

A metrical task system (MTS) is a pair (C, δ) where C is a set of states and
δ : C × C → R+ is a metric. In particular, we consider a combinatorial setting
where C is a subset of {0, 1}d for some dimension d > 0. We denote by n the
size of C, that is, n = |C|. Typically, n is exponentially large in d. Moreover, we
only consider the uniform metric δ, that is,

δ(c1, c2) =

{
1 if c1 �= c2,

0 if c1 = c2.

The combinatorial MTS problem for (C, δ) is defined as the following protocol
between the algorithm and the adversary.

First the adversary chooses a task sequence σ = (�1, �2, . . . , �T), where each
�t ∈ [0, 1]d is called a loss vector. In other words, we assume the oblivious setting.
For a given initial state c0 ∈ C, the protocol proceeds in rounds, where in each
round t = 1, 2, . . . , T ,

1. the algorithm receives the loss vector �t ∈ [0, 1]d,
2. the algorithm chooses a state ct ∈ C, and
3. the algorithm suffers a cost given by ct · �t + δ(ct, ct−1).

The first term ct · �t of the cost is called the processing cost at round t, and the
second term δ(ct, ct−1) is called the moving cost at round t.

For a task sequence σ, the cumulative cost of an algorithm A is defined as

costA(σ) =
T∑

t=1

(ct · �t + δ(ct, ct−1)),

and the cumulative cost of the best offline solution is defined as

costOPT(σ) = min
(c∗

1 ,c∗
2 ,...,c∗

T)∈CT

T∑

t=1

(c∗
t · �t + δ(c∗

t , c
∗
t−1)).

We measure the performance of algorithm A by its competitive ratio, which is
defined as

CR(σ) =
E[costA(σ)]
costOPT(σ)

,

where the expectation is with respect to the internal randomness of A. The goal
of the algorithm is to minimize the worst case competitive ratio maxσ CR(σ).
Note that the usual (non-combinatorial) MTS problem is a special case where
C consists of unit vectors.

We also require the algorithm A to produce a state ct in time polynomial
in d for each round t. Typically, the size n of C is exponential in d, and so we
cannot directly maintain all states c in C. Therefore, we assume two oracles to
access the state set C efficiently. The first one is the linear optimization oracle,
which solves the following decision problem:

A Combinatorial MTS Problem Under the Uniform Metric 279

OPT(C)
Input: L ∈ R

d
+

Output:

{
0 if minc∈C c · L < 1,

1 otherwise.

The assumption of this oracle is natural since the linear optimization problem
has a polynomial time algorithm for many useful state sets C.

The second one is a sampling oracle, which chooses a state c randomly accord-
ing to a certain probability distribution over C, where the distribution is specified
by a given parameter L ∈ R

d
+. In particular, we consider two kinds of sampling

oracles, which will be defined later.

3 The Marking Algorithm

Here we apply the Marking algorithm [8] to the combinatorial MTS problem.
The Marking algorithm is a simple randomized algorithm whose competitive
ratio is upper bounded by 2Hn ≤ 2(ln n + 1), where Hn is the n-th harmonic
number.

Below we describe how the Marking algorithm works. For a naive implemen-
tation, it maintains the cumulative processing costs l[c] for all states c ∈ C. For
each round t,

1. Observe the loss vector �t and update l[c] = l[c] + c · �t for all c ∈ C.
2. If l[ct−1] < 1 then output ct = ct−1.
3. Else choose a state ct uniformly at random from the set of states c with

l[c] < 1, and output ct.
4. If no such states exist, then reset l[c] = 0 for all c ∈ C and choose a state ct

uniformly at random from C, and output ct.

Note that Lines 2 and 3 intuitively mean that the Marking algorithm does
not change states until l[ct] ≥ 1. As is well known as a folklore (See, e.g., [7]), we
can assume without loss of generality that the loss vectors �t are small enough
so that l[ct] ≤ 1 always holds. In the appendix we give more detailed discussion.
In other words, the Marking algorithm changes states only when l[ct] = 1.

Of course, the naive implementation of the Marking algorithm is not efficient
because it maintains the cumulative processing cost l[c] for all states c ∈ C.
Instead, we can maintain the cumulative loss vector L =

∑
t �t, which implicitly

maintains l[c] as l[c] = c · L for all c. Furthermore, the sampling problem at
Line 3 can be restated as the following problem in terms of L, which we call
Sampling 1.

Sampling 1
Input: L ∈ R

d
+,

Output: c ∈ CL = {c ∈ C | c · L < 1} uniformly at random.

280 T. Nakazono et al.

Note that the problem Sampling 1 is only defined when CL �= ∅, but we can
check whether the condition holds by using the linear optimization oracle for
OPT(C). Moreover, the uniform sampling at Line 4 is also restated as Sampling 1
with L = 0. So, if we assume a linear optimization oracle for OPT(C) and a
sampling oracle for Sampling 1, then we can emulate the Marking algorithm in
O(d) time per round. We give this implementation of the Marking algorithm in
Algorithm 1.

Algorithm 1. An implementation of the Marking algorithm
Input: A linear optimization oracle for OPT(C) and a sampling oracle for Sampling 1
Initialize: Let L = 0.
For each round t = 1, 2, . . . , T ,

1. Observe the loss vector �t and update L = L + �t.
2. Let ct = ct−1 and output ct.
3. If ct · L ≥ 1, then

(a) If minc∈C c · L ≥ 1, then reset L = 0. // use the linear optimization oracle
(b) Choose a state ct ∈ CL uniformly at random. // use the sampling oracle

The question that naturally arises is that for what state set C, the problem
Sampling 1 is efficiently solved. Unfortunately, we do not know any non-trivial
sets C that have polynomial time algorithm for Sampling 1. We could use MCMC
sampling methods to design approximate sampling, but it seems hard to show
theoretically guaranteed performance bounds for many natural state sets C.

4 The Weighted Marking Algorithm

The computational cost of the sampling problem Sampling 1 would be due to
the fact that the support of the sampling distribution is restricted to the set CL.
So, we relax the distribution to a continuous distribution whose support is not
restricted to CL.

Specifically, we propose the following sampling problem, called Sampling 2.

Sampling 2
Input: L ∈ R

d
+,

Output: c ∈ C chosen with probability πL(c) =
exp(−ηc · L)∑

c∈C exp(−ηc · L)
,

where η > 0 is a parameter.

In words, the new sampling distribution πL is such that πL(c) is a monotone
decreasing function with respect to its cumulative processing cost l[c] = c·L. So,
the probability that a state c with large l[c] is chosen is very low, and thus we
will see that the support of πL is essentially restricted to a set {c ∈ C | c·L < L}
for some L > 1.

A Combinatorial MTS Problem Under the Uniform Metric 281

Unlike Sampling 1, there are known efficient implementations of Sampling 2
for several combinatorial objects such as k-sets, s-t paths [18], permutation
matrices [10,15], stars in a graph [10] and permutation vectors [2].

Now we modify the Marking algorithm by assuming the sampling oracle for
Sampling 2, as well as assuming the linear optimization oracle for OPT(C). The
modified version is called the Weighted Marking algorithm. The difference from
the Marking algorithm is that (1) it does not change states until its cumulative
processing cost reaches L instead of 1, and (2) it uses πL as the sampling dis-
tribution instead of the uniform distribution over CL. Note that the Weighted
Marking algorithm resets the cumulative loss vector as L = 0 when minc∈C c ·L
reaches 1, which is the same condition as the Marking algorithm. So, unlike the
Marking algorithm, resetting L may happen at some round where the cumulative
processing cost of the current state does not reach L, since L �= 1.

The detailed description of the Weighted Marking algorithm is given in Algo-
rithm 2.

Algorithm 2. Weighted Marking algorithm
Input: A linear optimization oracle for OPT(C) and a sampling oracle for Sampling 2
Parameter: η > 0 and L > 1 such that ne−ηL ≤ e−η/2.
Initialize: Let L = 0.
For each round t = 1, 2, . . . , T ,

1. Observe the loss vector �t and update L = L + �t.
2. Let ct = ct−1 and output ct.
3. If minc∈C c · L ≥ 1 then // use the linear optimization oracle

(a) Reset L = 0.
(b) Choose a state ct ∈ C with probability πL(c) // use the sampling oracle

4. Else if ct · L ≥ L, then
(a) Repeat

Choose a state ct ∈ C with probability πL(c) // use the sampling oracle
Until ct · L < L.

For convenience, we define the notion of phases for analyzing the behavior
of the Weighted Marking algorithm. A phase is an interval {t | tb ≤ t ≤ te}
of rounds such that the resetting happens at round tb − 1 and te but does not
happen at every round tb ≤ t < te.

Again, as is well known as a folklore, we assume without loss of generality that
the loss vectors �t are small enough so that it always holds that minc∈C c ·L ≤ 1
at Line 3 and it always hold that ct · L ≤ L at Line 4. In other words, a phase
ends (resetting happens) only when minc∈C c · L = 1 and states ct are changed
only when ct · L = L. These assumptions greatly simplifies the analysis.

More formally, the assumption is described as follows:

Assumption 1. Whenever the previous state ct−1 satisfies ct−1 · L < L, where
L is the cumulative loss vectors up to round t − 1 in the current phase, and the

282 T. Nakazono et al.

phase did not end at round t − 1, i.e., minc∗∈C c∗ · L < L, then �t satisfies the
two conditions:

1. ct−1 · (L + �t) ≤ L, and
2. minc∗∈C c∗ · (L + �t) ≤ 1.

We assume Assumption 1 holds throughout this section. In the appendix, we
briefly explain why the assumption holds without loss of generality.

In the next theorem, we give an upper bound of the competitive ratio of the
Weighted Marking algorithm.

Theorem 1. Let η = ln 2n, and L = 2. Then for any task sequence σ =
(�1, �2, . . . , �T), the competitive ratio of the Weighted Marking algorithm is upper
bounded by

CR(σ) ≤ 6e ln n + 9.

Moreover, the expected running time per round is O(d + Tlin + TSamp2), where
Tlin is the running time of the linear optimization oracle and TSamp2 is that of
the sampling oracle for Sampling 2.

To prove this theorem, we show that the cumulative moving cost in each
phase is O(log n). So in the following, we fix a particular phase I = {tb, . . . , te}.
For each round t ∈ I, Lt denotes the cumulative loss vector L at Line 1 at round
t. Note by definition that minc∗∈C c∗ · Lte

= 1.
Let G = {c ∈ C | c · Lte

< L} be the goal set, meaning that if we choose
a state in G at some round t ∈ I, i.e., ct ∈ G, then the Weighted Marking
algorithm never changes the state until the end of the phase. Note that c∗ ∈ G
and so G �= ∅. Let c1, c2, . . . , cn be the members of C. (This is an abuse of
notation. Do not confuse them with the states ct the algorithm chooses at round
t). For any ci �∈ G, we can define ti ∈ I such that ci ·Lti

= L. Then, without loss
of generality, we assume t1 ≤ t2 ≤ · · · ≤ tn−|G| and cn = c∗, i.e., cn · Lte

= 1.
Moreover, we assume |G| = 1 just for simplicity. Clearly, the algorithm changes
states only at some rounds in {t1, . . . , tn−1}. Let t(k) be the round where the
algorithm makes the k-th change of states. For any state c ∈ C, we define the
weight function Wk(c) as

Wk(c) :=
{

e−ηc·L
t(k) if c · Lt(k) < L,

0 if c · Lt(k) ≥ L.

Let W k :=
∑

c∈C Wk(c). Then Wk(c)/W k is the probability of choosing state c
at the k-th change of states. One can see that Wk(c) is monotonically decreasing
w.r.t. k because Lt is monotonically increasing vector w.r.t. t.

If the best offline solution changes its state in the phase, then its cumulative
moving cost is at least 1, and otherwise its cumulative processing cost is at least
1 by the definition of the phase. This immediately implies the following lemma.

Lemma 2. For any sequence of loss vectors (�1, �2, · · · , �T), the best offline
solution suffers cost at least 1 on each phase.

A Combinatorial MTS Problem Under the Uniform Metric 283

On the other hand, whenever the Weighted Marking algorithm changes states
(i.e., suffers the moving cost of 1) from ct(k−1) to ct(k) , then its cumulative
processing cost from t(k−1) to t(k) is at most L. This implies the following lemma.

Lemma 3. For any sequence of loss vectors (�1, �2, · · · , �T), the cumulative
processing cost of the Weighted Marking algorithm is at most L times the cumu-
lative moving cost on each phase.

The following lemma provides the probability of ending a phase.

Lemma 4. For any α ∈ (0, 1) and for any k, if αW k ≤ e−η holds then the
phase will end at the k + 1-th change of the state with probability at least α.

Proof. By the assumption cn · Lte
= 1, if the algorithm choose cn then the

algorithm will change its state at the end of the phase te, i.e. if the state cn is
chosen then the phase rests only 1 change. By cn · L ≤ 1, we get Wk(cn) ≥ e−η

for any k. Using this and the condition of the lemma, we get

α ≤ e−η

W k

≤ Wk(cn)
W k

.

Here, the right hand side is the probability of the state cn will be chosen by the
Weighted Marking algorithm. 	

The following lemma guarantees the probability of choosing cn becomes
higher at each change of the state.

Lemma 5. For any α ∈ (0, 1), for any k, if αW k ≥ e−η holds then

Pr[W k+1 ≤ αW k] > α.

Proof. Summing up weights of states from n, n − 1, · · · and consider when the
sum gets greater than αW k. E.g. consider ik s.t.

∑n
i=ik+1 Wk(ci) ≤ αW k and∑n

i=ik
Wk(ci) > αW k.

Assume that the Weighted Marking algorithm chooses the state cs at the
k-th change of the state. If s ≥ ik, the algorithm changes its state at t(k+1) and
then Wk+1(ci) = 0 for any i ≥ ik by the definition of W and ik. Thus,

W k+1 =
n∑

i=1

Wk+1(ci) =
n∑

i=ik+1

Wk+1(ci).

Because Wk is monotonically decreasing w.r.t. k, one can get
n∑

i=ik+1

Wk+1(ci) ≤
n∑

i=ik+1

Wk(ci) ≤ αW.

So we get if s ≥ ik then W k+1 ≤ αW . The probability of the Weighted Marking
algorithm choosing the state cs such that s ≥ ik satisfies

Pr[s ≥ ik] =

∑n
i=ik

Wk(ci)

W k

>
αW k

W k

= α.

	

284 T. Nakazono et al.

By Lemma 4, one can get the following immediately.

Lemma 6. For any α ∈ (0, 1) and round t(k), if αW k ≤ e−η then the expected
number of remaining changes of states in the phase is less than 1

α + 1.

Because of Wk is monotonically decreasing w.r.t. k and Lemma 5, one can
get the following lemma.

Lemma 7. For any k, for any α ∈ (0, 1), if αW k ≤ e−η then the expectation of
m such that W k+m ≤ αW k is E[m] < 1

α .

We say that a sequence W = {W 1,W 2, · · · ,WK} of weights is α-fast decreas-
ing at the round t(k+1) if W k+1 ≥ αW k holds.

Proof (Proof of Theorem 1). Assume that the Weighted Marking algorithm
changes its state at K times in a phase. By Lemma 6, if αW k′ ≤ e−η holds
then we have

E[K] ≤ k′ +
1
α

+ 1.

Thus, we need to estimate k′ s.t. αW k′ ≤ e−η to bound E[K].
Let αW k′ ≤ e−η holds after α-fast decreasing K ′ times, then

αK′
W 0 ≤ W k′ ≤ eη

α
.

By W 0 = n, we get αK′
n ≤ e−η

α and rearranging, K ′ ≤ 1
ln 1

α

(ln n + η) − 1. Using
Lemma 7,

E[k′] ≤ E[m]K ′ =
1
α

K ′ =
1

α ln 1
α

(ln n + η) − 1
α

.

Thus, the number of changing of states at a phase is

E[K] ≤ E[k′] +
1
α

+ 1 =
1

α ln 1
α

(ln n + η) + 1.

The bound of E[K] is minimized when α = 1/e. So we get E[K] ≤ e(ln n+η)+1.
Setting η = ln 2n, we get E[K] ≤ 2e ln n + 3. By Lemma 3,

E[(cumulative processing cost)] ≤ L × E[(cumulative moving cost)].

At each phase, we have

E[Cumulative loss]
= E[Cumulative processing cost] + E[Cumulative moving cost]
≤ 3 × E[K]
≤ 6e ln n + 9.

By Lemma 2, at each phase the best offline solution has the cumulative process-
ing cost at least 1. Thus we get the bound of the competitive ratio. 	

A Combinatorial MTS Problem Under the Uniform Metric 285

Next, we prove the running time of the Weighted Marking algorithm. The
key point of analysis of the Weighted Marking algorithm is the number of calls
to the oracle for Sampling 2 at Line 4-(a) of the pseudo code. The following
lemma gives a theoretical bound of retrying.

Lemma 8. The expected number of calls to the sampling oracle at Line 4-(a) is
at most 2.

Proof. For any state c such that c · L ≥ L, the probability that the sampling
oracle chooses c is

exp(−ηc · L)∑
c′ exp(−ηc′ · L)

≤ exp(−ηL)
exp(−ηcn · L)

≤ exp(−ηL)
exp(−η)

since cn · L < 1. By the union bound, the probability that the sampling oracle
chooses some c with c · L ≥ L is at most

n exp(−ηL)
exp(−η)

=
1
2

by our choice of η and L. 	

5 Conclusion and Future Work

In this paper, we proposed the Weighted Marking algorithm for combinatorial
MTS problems under the uniform metric space, and proved its competitive ratio
is at most 6e ln n + 9 = O(log n). We showed that, by combining with existing
sampling techniques for exponential weights over combinatorial objects, the pro-
posed algorithm runs efficiently for several combinatorial classes, e.g., s-t paths
and k-sets.

There are several open problems to investigate. First one is to provide a lower
bound of the competitive ratio of the combinatorial MTS. In particular, it still
remains open to prove Ω(log d) or Ω(log n) lower bounds for some combinatorial
class of the decision set.

Secondly, it is not known if FPL [16] is applicable for the combinatorial MTS
problem. If so, the sampling oracle is no longer necessary and we could efficiently
solve MTS problems for more classes of combinatorial objects.

Finally, the hardness of the Sampling 1(C) is not known, either. Our conjec-
ture is, it is #P hard for a specific class.

Acknowledgments. We thank anonymous reviewers for useful comments. Hatano is
grateful to the supports from JSPS KAKENHI Grant Number 16K00305. Takimoto is
grateful to the supports from JSPS KAKENHI Grant Number 15H02667. In addition,
the authors acknowledge the support from MEXT KAKENHI Grant Number 24106010
(the ELC project).

286 T. Nakazono et al.

A On Assumption 1

As is well known as a folklore, we can assume without loss of generality that the
loss vectors �t are small enough, so that Assumption 1 is satisfied.

Assumption 1. Whenever the previous state ct−1 satisfies ct−1 · L < L, where
L is the cumulative loss vectors up to round t − 1 in the current phase, and the
phase did not end at round t − 1, i.e., minc∗∈C c∗ · L < 1, then �t satisfies the
two conditions:

1. ct−1 · (L + �t) ≤ L, and
2. minc∗∈C c∗ · (L + �t) ≤ 1.

This is because, when �t violates the assumption, then we can replace �t by
a sequence of non-negative loss vectors �t1 , �t2 , . . . , �tk

so that �t = �t1 + · · ·+�tk

and the new sequence of loss vectors satisfy the assumption in the following way:

1. If the first condition is violated, i.e., ct−1 · (L + �t) = a > L, then we let

α1 =
L − ct−1 · L

a − ct−1 · L
.

Otherwise, we let α1 = 1. In the former case, we can easily verify that 0 <
α1 < 1 and ct−1 · (L + α1�t) = L.

2. If the second condition is violated, i.e., minc∗∈C c∗ · (L + �t) > 1, then we
let 0 < α2 < 1 be such that minc∗∈C c∗ · (L + α2�t) = 1. Otherwise, we
let α2 = 1. Note that, in the former case, we can find such α2 efficiently by
binary search.

3. Let α = min{α1, α2} and �t1 = α�t and �t2 = (1 − α)�t. Then, clearly �t1

satisfies Assumption 1. If �t2 still violates the assumption, then repeat the
same procedure for �t2 recursively.

References

1. Abernethy, J., Bartlett, P.L., Buchbinder, N., Stanton, I.: A regularization app-
roach to metrical task systems. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann,
T. (eds.) ALT 2015. Lecture Notes in Artificial Intelligence (LNAI), vol. 6331, pp.
270–284. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16108-7 23

2. Ailon, N., Hatano, K., Takimoto, E.: Bandit online optimization over the permuta-
hedron. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2015. Lecture
Notes in Artificial Intelligence (LNAI), vol. 8776, pp. 215–229. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-11662-4 16

3. Bansal, N., Buchbinder, N., Madry, A., Naor, J.S.: A polylogarithmic-competitive
algorithm for the k-server problem. J. ACM 62(5), 40:1–40:49 (2015)

4. Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog(n)-competitive algorithm
for metrical task systems. In: Proceedings of the Twenty-ninth Annual ACM Sym-
posium on Theory of Computing, STOC 1997, pp. 711–719. ACM, New York (1997)

http://dx.doi.org/10.1007/978-3-642-16108-7_23
http://dx.doi.org/10.1007/978-3-319-11662-4_16

A Combinatorial MTS Problem Under the Uniform Metric 287

5. Bartal, Y., Bollobas, B., Mendel, M.: A Ramsey-type theorem for metric spaces and
its applications for metrical task systems and related problems. In: Proceedings of
42nd IEEE Symposium on Foundations of Computer Science, pp. 396–405, October
2001

6. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic search-optimality in
lists and trees. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2002, pp. 1–8. Society for Industrial and Applied
Mathematics, Philadelphia (2002)

7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, New York (1998)

8. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task
system. J. ACM 39(4), 745–763 (1992)

9. Buchbinder, N., Chen, S., Naor, J.S., Shamir, O.: Unified algorithms for online
learning and competitive analysis. Math. Oper. Res. 41(2), 612–625 (2016)

10. Cesa-Bianchi, N., Lugosi, G.: Combinaotrial bandits. J. Comput. Syst. Sci. 78(5),
1404–1422 (2012)

11. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and appli-
cations. SIAM J. Comput. 32(6), 1403–1422 (2003)

12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

13. Gupta, A., Talwar, K., Wieder, U.: Changing bases: multistage optimization for
matroids and matchings. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias,
E. (eds.) ICALP 2015. LNCS, vol. 8572, pp. 563–575. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-43948-7 47

14. Irani, S., Seiden, S.: Randomized algorithms for metrical task systems. Theor.
Comput. Sci. 194(12), 163–182 (1998)

15. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM 51, 671–697 (2004)

16. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. J. Com-
put. Syst. Sci. 71(3), 291–307 (2005)

17. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42(5),
971–983 (1995)

18. Takimoto, E., Warmuth, M.K.: Path kernels and multiplicative updates. J. Mach.
Learn. Res. 4(5), 773–818 (2004)

http://dx.doi.org/10.1007/978-3-662-43948-7_47

Competitive Portfolio Selection Using Stochastic
Predictions

Tuğkan Batu and Pongphat Taptagaporn(B)

Department of Mathematics, London School of Economics, London, UK
{t.batu,p.taptagaporn}@lse.ac.uk

Abstract. We study a portfolio selection problem where a player
attempts to maximise a utility function that represents the growth rate
of wealth. We show that, given some stochastic predictions of the asset
prices in the next time step, a sublinear expected regret is attainable
against an optimal greedy algorithm, subject to tradeoff against the
“accuracy” of such predictions that learn (or improve) over time. We
also study the effects of introducing transaction costs into the model.

1 Introduction

In the field of portfolio management, the problem of how to distribute wealth
among a number of assets to maximise wealth gain (or some notion of utility,
e.g., mean-variance tradeoff) has been the focus of much academic and industrial
research. Most of the studies in this field were previously from the perspective
of financial mathematics and economics, and would usually assume some under-
lying distribution for the price process, e.g., Brownian Motion.

In the 1990’s, a new field emerged that uses online learning to design growth-
optimal portfolio selection models, following Cover’s original work [8]. This
model was shown to be competitive to the best CRP: an investment strategy
that maintains a fixed proportion of wealth in each of the m assets for each
time step, performing any required rebalancing as to maintain these proportions
as the asset prices change. In particular, Cover showed sublinear regret on all
possible outcomes of price sequence

max
xT

(
log S∗

T − log ŜT

)
= O(log T),

where S∗
T and ŜT are the wealth obtained by the best CRP and Cover’s universal

portfolio over T time steps (for some price sequence xT), respectively. Most
interestingly, the sublinear regret implies that the (per time step) log-wealth
growth achieved by Cover’s model converges to that of the best CRP as T → ∞,
without making any assumption on the price process (that is, in a model-free
sense).

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 288–302, 2016.
DOI: 10.1007/978-3-319-46379-7 20

Competitive Portfolio Selection Using Stochastic Predictions 289

1.1 Our Contributions

Our result goes beyond the restriction imposed by the CRP, and instead, we
devise a model that is competitive with the best greedy portfolio in a stochastic
setting: one that makes the optimal decision as if it knows the next time step’s
price. To do this, we suppose that our model has access to a price prediction x̃t (of
the next time step, t+1) that follows some probability distribution x̃t ∼ Dt(xt),
where xt is the later observed price change. In this model, we quantify the precise
relationship between the expected regret and the accuracy of such predictions.
Note that we allow the prediction accuracy to vary over time, as reflected by the
dependence of Dt on the current time step t. We demonstrate that for certain
probability distributions Dt,

Ex̃t∼Dt(xt)

[
max
xT

(
log S∗

T − log ŜT

)]
= o(T)

is attainable, subject to some restrictions on the accuracy of x̃t’s: namely, that
the integral of the tail probabilities (of misestimation) must converge to zero
as t grows. Intuitively, this is equivalent to improving our predictions through
learning from past outcomes, and the requirement is that the model must be
learning at a rate fast enough as to satisfy a certain sufficient condition that we
will later prove. We also show a bound on the variance of regret in these cases.

Note that we also consider transaction costs for transferring wealth between
assets (similar to Blum and Kalai [6]), as there is usually costs associated with
buying and selling financial assets in practice (spreads, brokerage charge, etc.).
However, we will prove that sublinear expected regret (over all possible price
paths) is not attainable in the case of non-zero transaction costs (unless we
assume that the price increases in each time step are independently distributed),
unlike in the case of zero transaction costs.

Lastly, we show that our portfolio selection model can be computed efficiently
using linear programming.

1.2 Related Work

The first published work combining the studies of portfolio theory with regret
minimisation was by Cover [8]. Since then, there has been much follow up work
and extensions to Cover’s original portfolio model. Of particular interest to us,
Blum and Kalai [6] extended the original model to account for transaction costs.
However, the transaction costs plays a minor role in the Blum and Kalai model as
it does not affect the decision process beyond that the penalty reduces the wealth
that was retained. In particular, there was no cost-versus-wealth tradeoff, to
assess whether shifting the portfolio would be beneficial over the cost this would
incur, due to the limitation of the CRP model. We introduced a counterpart
to the above that balances the reward from rebalancing the portfolio (based
on information received from a price prediction) against the transaction cost
incurred, and find an optimal point in between as to maximise cost adjusted
wealth again.

290 T. Batu and P. Taptagaporn

Transaction costs aside, we compare our model to a less restrictive benchmark
than in [8] because the best greedy portfolio is at least as good as the best
CRP (in terms of the wealth obtained). However, we instead proved a bound on
expected regret (as a function of the distributions Dt) rather than worst-case
regret, as we assume that we have additional knowledge in the form of price
predictions, bringing us from an adversarial setting to a stochastic one. Note
that when considering non-zero transaction costs, neither the greedy portfolio
nor the best CRP is strictly better than the other.

Some other works that introduced notions similar to predictions [3,9] used
a concept called “side information”. This is where the adversary reveals a side
information (say, an integer between 1 and y) and the CRP restriction is applied
on each state separately. In particular, there is now y different CRPs that may
be used, depending on the side information in that particular time step. The
benchmark in this case is the best set of y CRP’s that achieves the best wealth,
given the observed sequence of side information. However, the regret bound of
this model assumes that y is finite and does not grow with T , meaning that
sublinear regret does not hold if the benchmark model uses a different portfolio
in every time step (i.e., the side information never repeats). We do not have such
restriction in our model.

More recent efforts to incorporate predictions into online learning problems
can be found in [7,16]; these works look at the more general case of convex loss
functions, but their regret is still benchmarked against the best CRP (which
is substantially weaker than the best greedy portfolio). Some other variants of
universal portfolio models can be found in [1,2,4,10,11,13,15,18]. Most of these
models are based on the idea of taking a weighted combination of CRPs over
the set of all possible portfolio vectors.

Portfolio optimisation is a fundamental problem studied in mathematical
finance literature [14,17], wherein models with stochastic price changes is the
norm. For example, price changes distributed log-normally is analogous to Geo-
metric Brownian Motion [5,12,14], a well-understood model used in that field.
However, our study and model, motivated by a machine learning perspective to
maximise growth-rate of wealth (as opposed to, say, mean-variance optimisation
in modern portfolio theory) yields incomparable results.

2 Preliminaries

Consider the scenario where we have m assets available for trading over T time
steps. Define xt = (xt(1), . . . , xt(m)) ∈ R

m
+ as a real-valued vector of price

relatives at time step t; the i-th element of this vector is the ratio of the respective
true market prices of Asset i at time t and time t − 1. For convention, xt is
defined for 1 ≤ t ≤ T , and we denote by xT the vector (x1, . . . , xT). The space B
of portfolio vectors is defined as

B := {b ∈ R
m
+ :

m∑

i=1

b(i) = 1},

Competitive Portfolio Selection Using Stochastic Predictions 291

where b(i) is the proportion of the portfolio b’s total wealth allocated to Asset i.
Typically, we may need to redistribute wealth between assets as to obtain the
portfolio vector chosen for the next time step. We will call this process of redis-
tributing wealth rebalancing. We denote by θ(b, b′, x) the multiplicative factor of
decrease in wealth due to rebalancing from portfolio b (after observing the price
change x) to portfolio b′, which we will define in more details in the next section.
Then, we can define the wealth of a portfolio model (b1, . . . , bT) as1

ST =
T∏

t=1

btxtθ(bt−1, bt, xt−1).

As a convention, we assume that there are no transaction costs associated with
the initial positioning before the first time step: that is, b0 := b1, x0 = (1, . . . , 1),
and, thus, θ(b0, b1, x0) = 1. Broadly speaking, ST is the product of the wealth
change across all time steps t = 1, . . . , T , where, at each step, we first pay a
factor of θ(bt−1, bt, xt−1) transaction cost for rebalancing bt−1 to bt, and then
experience a change btxt in wealth, once the price change is observed. Similarly,
for the portfolio models denoted as (b̂1, . . . , b̂T) and (b∗

1, . . . , b
∗
T), respectively,

we will use ŜT and S∗
T , respectively, to denote the wealth generated by the

corresponding portfolio model.
Note that a CRP (from [8]) imposes the additional constraint that the port-

folio vector is the same throughout every time step, that is, b1 = ... = bT .
Although the portfolio model investigated here has the restriction that all

the wealth must be invested in one of the m assets, this can be extended to a
portfolio of m + 1 assets where the first m asset is as before, and the last one
represents cash. Therefore, the returns xt now has m + 1 dimension where the
last element could represent risk-free interest rate, analogous to much of the
work in financial mathematics.

2.1 Transaction Costs

The concept of transaction costs was first introduced into the study of online
portfolios selection by Blum and Kalai [6], wherein their model charge a fixed
percentage of commission on the purchase, but not on the sale, of assets. This
is equivalent to charging commission on the purchase and sale of assets equally,
as the wealth from any asset we sold will have to be used to purchase another
asset (by the constraints of the problem setting). We will use the same model
here, though the choice of model doesn’t significantly affect our results.

Given portfolio vectors bt−1, bt ∈ B and price-relatives vector xt−1, we want
to rebalance from the vector b′

t−1 := bt−1 · xt−1 ∈ R
m to bt ∈ B ⊂ R

m. Given a
transaction cost factor c ∈ [0, 1] indicating the proportion of cost to be paid from
the value of assets purchased, the proportion of wealth retained after rebalancing
can be expressed recursively as

θ := θ(bt−1, bt, xt−1) = 1 − c
∑

i:βi>0

βi,

1 The notations btxt is used as a short-hand for vector dot product.

292 T. Batu and P. Taptagaporn

where βi = θbt(i) − bt−1(i) · xt−1(i) = θbt(i) − b′
t−1(i) indicates the quantity

of Asset i that needs to be sold or bought, depending on its sign. Intuitively, θ
represents the proportion of the total wealth left after rebalancing. In the worst
case, the market value of b′ is at least 1 − c of the market value of b after
rebalancing. In particular, rebalancing a portfolio will always retain at least 1−c
proportion of its wealth.

2.2 Problem Setting

At time t ∈ [T], suppose our model has access to a prediction such that it follows
some probability distribution with respect to the later observed price change:
that is, x̃t ∼ Dt(xt). Note that the distribution Dt may depend on the current
time step t (hence, the subscript) and xt, possibly hiding further dependencies
on additional parameters such as variance. Based on this prediction, we can
compute a portfolio vector as to optimise the wealth.

Definition 1 (Portfolio Model). For each t ∈ [T], given a predicted price-
change x̃t of the observed price change xt such that x̃t ∼ Dt(xt) for some prob-
ability distribution Dt, the portfolio vector at time t is specified by

b̂t := arg maxb∈B bx̃tθ(b̂t−1, b, xt−1).

Our benchmark model, which we call the optimal greedy portfolio, is defined sim-
ilarly as, for each time t,

b∗
t = arg maxb∈B bxtθ(b∗

t−1, b, xt−1).

Note that the above models considers the tradeoff between the transaction
cost of shifting to a “better” portfolio against the expected benefit of doing such
a rebalancing given the prediction or actual outcome, respectively. In the case
where the optimisation yields multiple solutions, we canonically choose the one
with the least transaction costs. This will be made more precise in Sect. 5.

3 Main Results

In this section, we present our technical contributions. In particular, we investi-
gate how close the wealth of our portfolio model is to the benchmark model, in
expectation over the random choices of x̃t ∼ Dt(xt) and adversarially chosen xt,
for t ∈ [T].

Firstly, we show the expected-regret bound of the portfolio model b̂ against b∗,
in terms of the distribution of the predicted price change x̃t relative to the later
observed price change xt. This will lead us to a sufficient condition to obtain a
sublinear expected regret (and, additionally, sublinear variance of regret) in the
case of zero transaction costs. Then, we show that sublinear expected regret is
unattainable in general in the case of non-zero transaction costs, no matter how
small c > 0 is.

Competitive Portfolio Selection Using Stochastic Predictions 293

3.1 Expected-Regret Bound

As a measure of performance, we consider the expected-regret E[R] of our port-
folio model against the optimal greedy portfolio model: namely,

Ex̃t∼Dt(xt)

[
max
xT

(
log S∗

T − log ŜT

)]
.

This can be interpreted as enumerating through all possible price predictions x̃T

and choosing the outcome of price sequence xT that maximises regret for each
choice of x̃T . Each of these choices of x̃T occurs with some probability depending
on xT and Dt for t ∈ [T], and we take the expectation over these probabilities.

We analyse the expected regret E[R], where the choices of portfolio vectors
depend directly on the random choices of x̃t ∼ Dt(xt) and xt is chosen adversar-
ially, for each t ∈ [T]. The theorem below gives an upper bound on the expected
regret as a function of the distributions Dt of predictions in each time step.

Theorem 2. The expected regret of our portfolio model from Definition 1 can
be bounded from above as

E[R] ≤ γ + 2
T∑

t=1

∫ ∞

0

Pr
x̃t∼Dt(xt)

[x̃t �∈ (e−zxt, e
zxt)] dz ,

where γ accounts for the regret arising from the positioning error of our portfolio
and is defined as

γ = −
T∑

t=1

E

[
log

θ(b̂t−1, b
∗
t , xt−1)

θ(b∗
t−1, b

∗
t , xt−1)

]
.

Proof. We fix some time t and consider the ratio of the single-time-step wealth
change of our portfolio to that of the benchmark at time t in order to bound the
regret arising from that time step. The regret associated with the time step t has
two sources: positioning error of the current portfolio that results in transaction
costs and inaccurate price predictions. We define

ρt =
θ(b̂t−1, b

∗
t , xt−1)

θ(b∗
t−1, b

∗
t , xt−1)

to capture the regret arising from the positioning error of the portfolio at time
step t: for example, when b∗

t−1 was in a better position than b̂t−1 to minimise
transaction costs when rebalancing at time t.

Now, suppose that (1 − δ)xt 	 x̃t 	 (1 − δ)−1xt,2 at time step t, for some δ

such that 0 ≤ δ < 1. Then, for any b̂t, b
∗
t , b̂t−1, b

∗
t−1 ∈ B, we have the following

bound on the ratio of the single-time-step wealths:

2 The notations �, �, ≺, and � denote component-wise vector inequalities.

294 T. Batu and P. Taptagaporn

b̂txtθ(b̂t−1, b̂t, xt−1)
b∗
t xtθ(b∗

t−1, b
∗
t , xt−1)

≥ (1 − δ)
b̂tx̃tθ(b̂t−1, b̂t, xt−1)
b∗
t xtθ(b∗

t−1, b
∗
t , xt−1)

(1)

≥ (1 − δ)2
b̂tx̃tθ(b̂t−1, b̂t, xt−1)
b∗
t x̃tθ(b∗

t−1, b
∗
t , xt−1)

(2)

≥ (1 − δ)2ρt. (3)

In the above, (1) is due to xt � (1 − δ)x̃t, (2) is due to x̃t � (1 − δ)xt, and (3)
is due to the fact that

b̂tx̃tθ(b̂t−1, b̂t, xt−1) ≥ b∗
t x̃tθ(b̂t−1, b

∗
t , xt−1) = ρtb

∗
t x̃tθ(b∗

t−1, b
∗
t , xt−1),

as b̂t was chosen to maximise its single-time-step wealth by Definition 1. For
each time step t ∈ [T], we define deviation δt of xt and x̃t as

δt := min{δ ≥ 0 | (1 − δ)xt � x̃t � (1 − δ)−1xt}.

Intuitively, this is the deviation of the predicted price change from the observed
price change. We can now calculate the expected regret as follows.

E[R] = E

[
max
xT

log
(S∗

T

ŜT

)]

= E

[
max
xT

log
(T∏

t=1

b∗
t xtθ(b∗

t−1, b
∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)

)]

≤ E

[
log

(T∏

t=1

(1 − δt)−2ρ−1
t

)]
(4)

≤
T∑

t=1

2E
[

− log(1 − δt)
]

− E

[
log ρt

]
, (5)

where (4) is by the inequality from (3), and (5) follows from linearity of expec-
tation. We now will now use γ = −∑T

t=1 E[log ρt] to denote the “positioning
error,” and continue our analysis of the first term on the right hand side of the
inequality.

T∑

t=1

E

[
− log(1 − δt)

]
=

T∑

t=1

∫ ∞

0

Pr
x̃t

[− log(1 − δt) ≥ z] dz

=
T∑

t=1

∫ ∞

0

Pr
x̃t

[1 − δt ≤ e−z] dz,

=
T∑

t=1

∫ ∞

0

1 − Pr
x̃t

[1 − δt > e−z] dz,

=
T∑

t=1

∫ ∞

0

1 − Pr
x̃t

[e−zxt ≺ x̃t ≺ ezxt] dz,

Competitive Portfolio Selection Using Stochastic Predictions 295

where the last line above is obtained from applying the definition of δt, giving
us the bound on expected regret. �
Note that the quantity γ in Theorem 2 captures the positioning error of our
model arising from transaction costs. Hence, in the absence of transaction costs
(that is, when c = 0), we have that γ = 0. In fact, we later prove in Sect. 3.3
that, in general, γ = Ω(T) for non-zero transaction costs (that is, when c > 0),
by showing that there exists a sequence xT that yields an expected regret at
least linear in T .

We also observe that γ = 0 in the weaker case when xt is a random variable
that is independent of xt−1 (hence, also independent of b∗

t−1 and b̂t−1), for all
time steps t ∈ [T], whereas Theorem 2 is stronger as it makes no assumption on
how xt are chosen. This is because

E[log θ(b∗
t−1, b

∗
t , xt−1)] = E[log θ(b̂t−1, b̂t, xt−1)],

intuitively meaning that the random choice of xt and x̃t are just as likely
be favourable to b∗

t−1 as it is to b̂t−1. For example, suppose that we define
x̃t = (1, ..., 1) and xt is drawn from some log-normal distribution with mean x̃t.
Then, this is equivalent to assuming that the returns xt follows a Geometric
Brownian Motion and that the current price is the best prediction of the next
time step’s price; similar to the assumption surrounding much of the work in
financial mathematics.

Finally, setting γ aside, the result above gives us a good intuition on what the
expected regret looks like. Namely, in each time step the regret can be thought
of to be no larger than the sum of an integral of the tail probabilities. Having a
small expected regret then hinges on bounding these tail probabilities.

3.2 Variance-of-Regret Bound

We can now prove a bound on the variance of regret, using much of the ideas
from the proof of the bound on expected regret in Theorem 2.

Theorem 3. The variance of regret of our portfolio model from Definition 1
can be bounded from above as

Var[R] ≤ η + 4
T∑

t=1

∫ ∞

0

Pr
x̃t∼Dt(xt)

[x̃t �∈ (e−√
zxt, e

√
zxt)] dz ,

where η accounts for the variance in the regret arising from the positioning error
and the covariance of the single-time-step wealth ratios, defined as

η = −
T∑

t=1

Var
[
log

θ(b̂t−1, b
∗
t , xt−1)

θ(b∗
t−1, b

∗
t , xt−1)

]

+
T∑

t=1

∑

j 	=t

cov
[b∗

t xtθ(b∗
t−1, b

∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)
,
b∗
jxjθ(b∗

j−1, b
∗
j , xj−1)

b̂jxjθ(b̂j−1, b̂j , xj−1)

]
.

296 T. Batu and P. Taptagaporn

Proof

Var[R] = Var
[
max
xT

log
(S∗

T

ŜT

)]

= Var
[
max
xT

log
(T∏

t=1

b∗
t xtθ(b∗

t−1, b
∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)

)]

≤ Var
[
log

(T∏

t=1

(1 − δt)−2ρ−1
t

)]

≤ η + 4
T∑

t=1

Var
[

− log(1 − δt)
]
,

where η is the term representing the positioning errors and covariance terms, as
described in the theorem statement. We continue to simplify the remaining part
of the equation, making use of the inequality Var[R] ≤ E[R2]. Thus, we get

T∑

t=1

Var
[

− log(1 − δt)
]

≤
T∑

t=1

E

[
(− log(1 − δt))2

]

=
T∑

t=1

∫ ∞

0

Pr
x̃t

[− log(1 − δt) ≥ √
z] dz

=
T∑

t=1

∫ ∞

0

Pr
x̃t

[1 − δt ≤ e−√
z] dz,

=
T∑

t=1

∫ ∞

0

1 − Pr
x̃t

[1 − δt > e−√
z] dz,

=
T∑

t=1

∫ ∞

0

1 − Pr
x̃t

[e−√
zxt ≺ x̃t ≺ e

√
zxt] dz,

where the last line above is obtained from applying the definition of δt (as defined
in the proof of Theorem 2), giving us the desired result. �
Similarly to the case for expected regret discussed in the previous section, we
also have that η = 0 in the zero-transaction cost scenario (that is, c = 0) or xt

is independently distributed from xt−1 for t ∈ [T].

3.3 Linear Expected Regret for Non-zero Transaction Costs

We will now show that for any class of non-trivial distributions Dt, the expected-
regret bound above will not be sublinear for non-zero transaction cost (in effect,
showing that γ is not necessarily sublinear for any c > 0). This is because
there exists a sequence of returns xt for t ∈ [T] that will favour b∗

t position,
hence, yielding a large enough long-term regret. Here, we define a non-trivial

Competitive Portfolio Selection Using Stochastic Predictions 297

distribution as one where the preimage of the cumulative distribution function
is non-empty at some value inside a constant interval around 1

2 . Note that any
class of continuous distributions satisfies this criteria.

Theorem 4. Given non-trivial Dt, for all t ∈ [T], E[R] = Ω(T) when transac-
tion cost c is non-zero.

Proof. To prove that the expected regret is not necessarily sublinear in the case
of non-zero transaction cost, it is enough to come up with a sequence of xt that
breaks this sub-linearity. Therefore, we will give a way to construct such xt for
each t ∈ [T] in the two-asset case (m = 2), where b∗

t and b̂t will always take the
values of either (0, 1) or (1, 0) by our construction of the re-balancing scheme
from Sect. 5.

For time step t, assume that b̂t−1 = (0, 1), without loss of generality, with b∗
t−1

is (0, 1) or (1, 0). We will calculate the single-time-step loss

b∗
t xtθ(b∗

t−1, b
∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)

in these two cases separately.

State 1 (Different). b∗
t−1 = (1, 0)

The adversary chooses xt = (1, 1 − c), resulting in a single-time-step loss of
1

1−c , regardless of the choice x̃t ∼ Dt(xt).

State 2 (Same). b∗
t−1 = (0, 1)

The adversary chooses xt = (ξt, 1), where ξt is chosen such that

Pr
x̃t∼Dt((ξt,1))

[x̃t(1)
x̃t(2)

>
1

1 − c

]
=

1
2
.

Intuitively, this is the choice of price relative vector where the portfolio model
(as represented by b̂t) has equal probabilities of shifting or staying put. This
implies that Prx̃t∼Dt(xt)[b̂t = b∗

t] = 1
2 , and the single-time-step loss may be

as small as 1 in this case. Note that this choice of ξt exists if the preimage of
the CDF of Dt at 1

2 is non-empty. One can easily extend this proof to cases
where the preimage of the CDF is non-empty at some value inside a constant
interval around 1

2 .

With this information, we can model the dynamics of the portfolio as a
Markov chain with these two states (Different and Same). The transition prob-
ability matrix of that Markov chain, assuming worst-case, i.e., the lowest prob-
ability of staying in “different” is

(
0 1
1
2

1
2

)
,

298 T. Batu and P. Taptagaporn

which implies a limiting distribution π = (13 , 2
3). Using this, the expected regret

(over all possible xt) can be lower-bounded by the linear expected regret (over
the particular choice of xt, as described above).

E[R] = E

[
max
xT

log
(S∗

T

ŜT

)]

≥ E

[
log

(S∗
T

ŜT

)]

=
T∑

t=1

E

[
log

b∗
t xtθ(b∗

t−1, b
∗
t , xt−1)

b̂txtθ(b̂t−1, b̂t, xt−1)

]

= −1
3

T∑

t=1

log(1 − c) = Θ(T),

where the last line follows from the fact that the portfolio needs to shift all its
wealth in one third of the steps in the long run (due to the limiting distribution
of the Markov chain above), each of which incurs a loss factor of 1 − c. �
So now we have established that we cannot hope for sublinear expected regret
in the presence of transaction costs, no matter the choice of Dt (as long as it is
non-trivial). However, we will later show in Sect. 4 that a few sensible choices
for Dt will indeed yield sublinear expected regret (and variance of regret) in the
case c = 0.

4 Special Cases for the Distributions of Predictions

Given the above results are for a generically distributed x̃t ∼ Dt(xt), we will
now look at some particular cases for Dt and compute the required quality of
prediction in order to achieve sublinear expected regret. Herein we will assume
that c = 0, as Theorem 4 shows that we cannot hope for sublinear expected
regret in the presence of transaction costs.

Firstly, we shall assume that Dt is parametrised by two variables μt (mean)
and σt (standard deviation). We will look only at log-returns (rather than
absolute returns); this is quite a standard notion in financial mathematics for
a number of reasons [5,12,14]. In particular, we will say that the log-predicted
returns (ln x̃t) are distributed around the mean (defined as the log-observed
returns, lnxt) with some standard deviation σt. Formally, ln x̃t ∼ Dlnxt,σ2

t
for

some distribution D, or simply x̃t ∼ ln Dln xt,σ2
t

for short-hand. As our port-
folio vector is multi-dimensional, we will use σt = (σt, ..., σt) ∈ R

m
+ , apply the

logarithm and distribution element-wise: that is,

ln xt = ln(xt(1), ..., xt(m)) = (lnxt(1), ..., ln xt(m)),

and, thus,
ln Dlnxt,σ2

t
= lnDln xt(1),σ2

t
× ... × ln Dlnxt(m),σ2

t
.

Competitive Portfolio Selection Using Stochastic Predictions 299

Note that Chebyshev’s inequality is too loose to obtain a reasonable bound
for a generalised distribution D:

E[R] ≤ 2
T∑

t=1

∫ ∞

0

Pr
x̃t∼Dt(xt)

[x̃t �∈ (e−zxt, e
zxt)] dz ≤ 2

T∑

t=1

∫ ∞

0

σ2
t

z2
dz,

where the last inequality is due to Chebyshev’s, which states that

Pr(|x − μ| ≥ z) ≤ σ2
t /z2.

As a result, the last integral evaluates to +∞. Therefore, the next three subsec-
tion looks at the required σt, for t ∈ [T], to obtain sublinear expected regret for
three particular cases of D: uniform, linear, and normal.

4.1 Log-Uniformly Distributed Predictions

Suppose that x̃t ∼ ln Uln xt,σ2
t
, where U is the uniform distribution on the log-

returns between the range [−σt, σt] with the following probability density func-
tion

f(y) =

{
1

2σt
if 0 ≤ |y − ln xt| ≤ σt,

0 otherwise.

In this case, applying Theorems 2 and 3 yields

E[R] ≤ 2
T∑

t=1

∫ σt

0

1 − z

σt
dz =

T∑

t=1

σt,

Var[R] ≤ 4
T∑

t=1

∫ σt

0

1 −
√

z

σt
dz = 4

T∑

t=1

σt − 2
3
√

σt.

Thus, σt → 0 at any speed will yield sublinear expected regret and variance of
regret, hence, making no other restriction on the required rate of learning.

4.2 Log-Linearly Distributed Predictions

Suppose that x̃t ∼ lnLln xt,σ2
t
, where L is the linearly-decreasing distribution

with largest density at the mean, lnxt. More precisely, it has the following prob-
ability density function

f(y) =

{
1
σt

− |y−lnxt|
σ2
t

if 0 ≤ |y − ln xt| ≤ σt,

0 otherwise.

In this case, applying Theorems 2 and 3 yields

E[R] ≤ 2
T∑

t=1

∫ σt

0

(1 − 2
z

σt
+

z2

σ2
t

) dz = 2
T∑

t=1

σt

3
=

2
3

T∑

t=1

σt,

300 T. Batu and P. Taptagaporn

Var[R] ≤ 4
T∑

t=1

∫ σt

0

(1 − 2
√

z

σt
+

z

σ2
t

) dz = 4
T∑

t=1

σt − 4
3
√

σt +
1
2

= Θ(T).

so σt → 0 at any speed will yield sublinear expected regret, but the bound on
the variance of regret is linear in T .

4.3 Log-Normally Distributed Predictions

We will now look at the particular case when Dt is log-normally distributed
(analogous to Geometric Brownian Motion). Suppose that x̃t ∼ ln Nln xt,σ2

t
, then

E[R] ≤ 4
T∑

t=1

∫ ∞

0

Pr
y∼N0,1

[y > z/σt] dz.

To achieve a sublinear expected regret then depends on the ability to obtain an
appropriate sequence of predictions with σt such that

1
T

T∑

t=1

∫ ∞

0

Pr
y∼N0,1

[y > z/σt] dz → 0,

as T → ∞. This has a very natural interpretation; the above condition can be
viewed as an integral over the tail probabilities of the standard normal distrib-
ution, where the size of the tail is determined by σt.

Clearly, σt = O(1) for all t ∈ [T] is not a sufficient condition as the tail
probabilities will not tend to zero for small values of z, so we must necessarily
have that σt → 0 as t → ∞. However, it is unclear what rate of convergence
would be required for this condition to hold. We suspect that σt = O(1/ log t)
suffices, but this remains to be shown and leaves an interesting open question.
Similarly, the variance of regret in this case can be bounded as

Var[R] ≤ 8
T∑

t=1

∫ ∞

0

Pr
y∼N0,1

[y >
√

z/σt] dz.

5 Portfolio Computation

The θ function can be viewed as a variant of the earth mover’s distance, which,
in turn, can be formulated as a transportation or flow problem and solved using
a linear program. Here, we present an LP for computing b̂ (and, hence, for
similarly computing b∗) by first computing θ. The input to the computation is
the original allocation vector w = (w1, . . . , wm) (corresponding to Kb̂, where K
is the total wealth before rebalancing and b ∈ B) and the target portfolio vector
given as q = (q1, . . . , qm) (with

∑
i qi = 1). The variables of the LP are the

wealth W resulting after the rebalancing and fij , for i, j ∈ [m], that corresponds
to wealth that needs to be transferred from Asset i to Asset j.

Competitive Portfolio Selection Using Stochastic Predictions 301

max W

subject to
∑

j∈[m]

fij ≤ wi ∀i = 1, . . . ,m (6)

fjj + (1 − c) ·
∑

i∈[m]
i	=j

fij ≥ W · qj ∀j = 1, . . . ,m (7)

fij ≥ 0 ∀i, j = 1, . . . ,m (8)

The constraints in (6) ensure that the wealth transferred out of each asset is
bounded by the current wealth in that asset. The constraints in (7) ensure that
the wealth that stays in each asset plus the wealth transferred into that asset,
minus the incurred transaction costs, are sufficient to reach the target portfolio
vector with a total wealth of W . Finally, the flow of wealth will always be positive
by (8). Note that the sets of constraints in (6) and (7) will be satisfied tightly
in an optimal solution. First of all, for any i ∈ [m], total flow

∑
j∈[m] fij out of

Asset i will be equal to wi, because any increase in the total flow
∑

i,j fij can
be distributed over the assets according to q, creating slack in each constraint
in (7) and allowing a strictly larger value for W . Similarly, if the flow into any
Asset j, given as fjj +(1−c) ·∑i∈[m],i 	=j fij , was strictly larger than W ·qj , then
this excess flow can be shifted to other assets to create slack in each constraint
in (7), which, in turn, allows W to be increased. The fact that the constraints
in (6) and (7) are tight for an optimal solution shows that all the wealth in
the previous time step is used during rebalancing and the resulting portfolio
distribution adheres to q. Finally, by the maximisation of W , we get that the
optimal solution to the LP gives the value of θ, and also b̂ (by summing up
all of the flow in/out of each asset fij). In the case where there are multiple
optimal solutions, we choose the one with the lowest

∑
j∈[m] fij , for i = 1, ...,m

sequentially; that is, we break ties by minimising the outflow from the smallest
to the largest i.

References

1. Agarwal, A., Hazan, E.: Efficient algorithms for online game playing and universal
portfolio management. In: Electronic Colloquium on Computational Complexity,
13(033) (2006). http://eccc.hpi-web.de/eccc-reports/2006/TR06-033/index.html

2. Agarwal, A., Hazan, E., Kale, S., Schapire, R.E.: Algorithms for portfolio manage-
ment based on the Newton method. In: Cohen, W.W., Moore, A. (eds.) Machine
Learning, Proceedings of the Twenty-Third International Conference (ICML 2006).
ACM International Conference Proceeding Series, vol. 148, pp. 9–16. ACM (2006).
http://doi.acm.org/10.1145/1143844.1143846

3. Bean, A.J., Singer, A.C.: Universal switching and side information portfolios under
transaction costs using factor graphs. In: Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, pp. 1986–
1989. IEEE (2010). http://dx.doi.org/10.1109/ICASSP.2010.5495255

http://eccc.hpi-web.de/eccc-reports/2006/TR06-033/index.html
http://doi.acm.org/10.1145/1143844.1143846
http://dx.doi.org/10.1109/ICASSP.2010.5495255

302 T. Batu and P. Taptagaporn

4. Bean, A.J., Singer, A.C.: Factor graph switching portfolios under transaction costs.
In: Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, ICASSP 2011, pp. 5748–5751. IEEE (2011). http://dx.doi.org/
10.1109/ICASSP.2011.5947666

5. Black, F., Scholes, M.S.: The pricing of options and cor-
porate liabilities. J. Polit. Econ. 81(3), 637–654 (1973).
https://ideas.repec.org/a/ucp/jpolec/v81y1973i3p637-54.html

6. Blum, A., Kalai, A.: Universal portfolios with and without transaction costs. Mach.
Learn. 35(3), 193–205 (1999). http://dx.doi.org/10.1023/A:1007530728748

7. Chiang, C.K., Yang, T., Lee, C.J., Mahdavi, M., Lu, C.J., Jin, R., Zhu, S.: Online
optimization with gradual variations. In: COLT, p. 6-1 (2012)

8. Cover, T.M.: Universal portfolios. Math. Finan. 1(1), 1–29 (1991).
http://dx.doi.org/10.1111/j.1467-9965.1991.tb00002.x

9. Cover, T.M., Ordentlich, E.: Universal portfolios with side information. IEEE
Trans. Inf. Theor. 42(2), 348–363 (1996). http://dx.doi.org/10.1109/18.485708

10. Györfi, L., Walk, H.: Empirical portfolio selection strategies with propor-
tional transaction costs. IEEE Trans. Inf. Theor. 58(10), 6320–6331 (2012).
http://dx.doi.org/10.1109/TIT.2012.2205131

11. Hazan, E., Agarwal, A., Kale, S.: Logarithmic regret algorithms for
online convex optimization. Mach. Learn. 69(2–3), 169–192 (2007).
http://dx.doi.org/10.1007/s10994-007-5016-8

12. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Cal-
culus. Graduatetexts in Mathematics. Springer, New York (1991).
http://opac.inria.fr/record=b1079144, autres tirages corrigs: 1996, 1997, 1999,
2000, 2005

13. Kivinen, J., Warmuth, M.K.: Averaging expert predictions. In: Fischer, P., Simon,
H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, pp. 153–167. Springer,
Heidelberg (1999). http://dx.doi.org/10.1007/3-540-49097-3 13

14. Merton, R.C.: Optimum consumption and portfolio rules in a
continuous-time model. J. Econ. Theor. 3(4), 373–413 (1971).
https://ideas.repec.org/a/eee/jetheo/v3y1971i4p373-413.html

15. Ordentlich, E., Cover, T.M.: On-line portfolio selection. In: Proceedings of the
Ninth Annual Conference on Computational Learning Theory, COLT 1996, pp.
310–313. ACM, New York (1996). http://doi.acm.org/10.1145/238061.238161

16. Rakhlin, A., Sridharan, K.: Online learning with predictable sequences. In: COLT,
pp. 993–1019 (2013)

17. Sharpe, W.F.: Capital asset prices: a theory of market equilib-
rium under conditions of risk. J. Finan. 19(3), 425–442 (1964).
https://ideas.repec.org/a/bla/jfinan/v19y1964i3p425-442.html

18. Stoltz, G., Lugosi, G.: Internal regret in on-line portfolio selection. Mach. Learn.
59(1–2), 125–159 (2005). http://dx.doi.org/10.1007/s10994-005-0465-4

http://dx.doi.org/10.1109/ICASSP.2011.5947666
http://dx.doi.org/10.1109/ICASSP.2011.5947666
https://ideas.repec.org/a/ucp/jpolec/v81y1973i3p637-54.html
http://dx.doi.org/10.1023/A:1007530728748
http://dx.doi.org/10.1111/j.1467-9965.1991.tb00002.x
http://dx.doi.org/10.1109/18.485708
http://dx.doi.org/10.1109/TIT.2012.2205131
http://dx.doi.org/10.1007/s10994-007-5016-8
http://opac.inria.fr/record=b1079144
http://dx.doi.org/10.1007/3-540-49097-3_13
https://ideas.repec.org/a/eee/jetheo/v3y1971i4p373-413.html
http://doi.acm.org/10.1145/238061.238161
https://ideas.repec.org/a/bla/jfinan/v19y1964i3p425-442.html
http://dx.doi.org/10.1007/s10994-005-0465-4

Bandits and Reinforcement Learning

Q(λ) with Off-Policy Corrections

Anna Harutyunyan1(B), Marc G. Bellemare2, Tom Stepleton2,
and Rémi Munos2

1 VU Brussel, Brussels, Belgium
aharutyu@vub.ac.be

2 Google DeepMind, London, UK
bellemare@google.com, stepleton@google.com, munos@google.com

Abstract. We propose and analyze an alternate approach to off-policy
multi-step temporal difference learning, in which off-policy returns are
corrected with the current Q-function in terms of rewards, rather than
with the target policy in terms of transition probabilities. We prove that
such approximate corrections are sufficient for off-policy convergence
both in policy evaluation and control, provided certain conditions. These
conditions relate the distance between the target and behavior policies,
the eligibility trace parameter and the discount factor, and formalize
an underlying tradeoff in off-policy TD(λ). We illustrate this theoretical
relationship empirically on a continuous-state control task.

1 Introduction

In reinforcement learning (RL), learning is off-policy when samples generated
by a behavior policy are used to learn about a distinct target policy. The usual
approach to off-policy learning is to disregard, or altogether discard transitions
whose target policy probabilities are low. For example, Watkins’s Q(λ) [22] cuts
the trajectory backup as soon as a non-greedy action is encountered. Similarly, in
policy evaluation, importance sampling methods [9] weight the returns according
to the mismatch in the target and behavior probabilities of the corresponding
actions. This approach treats transitions conservatively, and hence may unnec-
essarily terminate backups, or introduce a large amount of variance.

Many off-policy methods, in particular of the Monte Carlo kind, have no
other option than to judge off-policy actions in the probability sense. How-
ever, temporal difference methods [15] in RL maintain an approximation of the
value function along the way, with eligiblity traces [23] providing a continuous
link between one-step and Monte Carlo approaches. The value function assesses
actions in terms of the following expected cumulative reward, and thus provides
a way to directly correct immediate rewards, rather than transitions. We show in

A. Harutyunyan—This work was carried out during an internship at Google Deep-
Mind.

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 305–320, 2016.
DOI: 10.1007/978-3-319-46379-7 21

306 A. Harutyunyan et al.

this paper that such approximate corrections can be sufficient for off-policy con-
vergence, subject to a tradeoff condition between the eligibility trace parameter
and the distance between the target and behavior policies. The two extremes
of this tradeoff are one-step Q-learning, and on-policy learning. Formalizing the
continuum of the tradeoff is one of the main insights of this paper.

In particular, we propose an off-policy return operator that augments the
return with a correction term, based on the current approximation of the Q-
function. We then formalize three algorithms stemming from this operator: (1)
off-policy Qπ(λ), and its special case (2) on-policy Qπ(λ), for policy evaluation,
and (3) Q∗(λ) for off-policy control.

In policy evaluation, both on- and off-policy Qπ(λ) are novel, but closely
related to several existing algorithms of the TD(λ) family. Section 7 discusses
this in detail. We prove convergence of Qπ(λ), subject to the λ − ε tradeoff
where ε

def= maxx ‖π(·|x) − μ(·|x)‖1 s a measure of dissimilarity between the
behavior and target policies. More precisely, we prove that for any amount of
“off-policy-ness” ε ∈ [0, 2] there is an inherent maximum allowed backup length
value λ = 1−γ

γε , and taking λ below this value guarantees convergence to Qπ with-
out involving policy probabilities. This is desirable due to the instabilities and
variance introduced by the likelihood ratio products in the importance sampling
approach [10].

In control, Q∗(λ) is in fact identical to Watkins’s Q(λ), except it does not
cut the eligiblity trace at off-policy actions. Sutton and Barto [17] mention such
a variation, which they call naive Q(λ). We analyze this algorithm for the first
time and prove its convergence for small values of λ. Although we were not
able to prove a λ − ε tradeoff similar to the policy evaluation case, we provide
empirical evidence for the existence of such a tradeoff, confirming the intuition
that naive Q(λ) is “not as naive as one might at first suppose” [17].

We first give the technical background, and define our operators. We then
specify the incremental versions of our algorithms based on these operators, and
state their convergence. We follow by proving convergence: subject to the λ − ε
tradeoff in policy evaluation, and more conservatively, for small values of λ in
control. We illustrate the tradeoff emerge empirically in the Bicycle domain in
the control setting. Finally, we conclude by placing our algorithms in context
within existing work in TD(λ).

2 Preliminaries

We consider an environment modelled by the usual discrete-time Markov Deci-
sion Process (X ,A, γ, P, r) composed of the finite state and action spaces X and
A, a discount factor γ, a transition function P mapping each (x, a) ∈ (X ,A) to a
distribution over X , and a reward function r : X ×A → [−Rmax, Rmax]. A policy
π maps a state x ∈ X to a distribution over A. A Q-function Q is a mapping
X × A → R. Given a policy π, we define the operator Pπ over Q-functions:

(PπQ)(x, a) def=
∑

x′∈X

∑

a′∈A
P (x′ |x, a)π(a′ |x′)Q(x′, a′).

Q(λ) with Off-Policy Corrections 307

To each policy π corresponds a unique Q-function Qπ which describes the
expected discounted sum of rewards achieved when following π:

Qπ def=
∑

t≥0

γt(Pπ)tr, (1)

where for any operator X, (X)t denotes t successive applications of X, and
where we commonly treat r as one particular Q-function. We write the Bellman
operator T π, and the Bellman equation for Qπ:

T πQ
def= r + γPπQ,

T πQπ = Qπ = (I − γPπ)−1r. (2)

The Bellman optimality operator T is defined as T Q
def= r + γ maxπ PπQ, and

it is well known e.g., [1,11] that the optimal Q-function Q∗ def= supπ Qπ is the
unique solution to the Bellman optimality equation

T Q = Q. (3)

We write Greedy(Q) def= {π|π(a|x) > 0 ⇒ Q(x, a) = maxa′ Q(x, a′)} to denote
the set of greedy policies w.r.t. Q. Thus T Q = T πQ for any π ∈ Greedy(Q).

Temporal difference (TD) learning [15] rests on the fact that iterates of both
operators T π and T are guaranteed to converge to their respective fixed points
Qπ and Q∗ . Given a sample experience x, a, r, x′, a′, SARSA(0) [13] updates its
Q-function estimate at kth iteration as follows:

Qk+1(x, a) ← Qk(x, a) + αkδ,

δ = r + γQk(x′, a′) − Qk(x, a),

where δ is the TD-error, and (αk)k∈N a sequence of nonnegative stepsizes.
One need not only consider short experiences, but may sample trajectories
x0, a0, r0, x1, a1, r1, . . ., and accordingly apply T π (or T) repeatedly. A particu-
larly flexible way of doing this is via a weighted sum Aλ of such n-step operators:

T π
λ Q

def= Aλ[(T π)n+1Q]

= Q + (I − λγPπ)−1(T πQ − Q),

Aλ[f(n)] def= (1 − λ)
∑

n≥0

λnf(n).

Naturally, Qπ remains the fixed point of T π
λ . Taking λ = 0 yields the usual

Bellman operator T π, and λ = 1 removes the recursion on the approximate
Q-function, and restores Qπ in the Monte Carlo sense. It is well-known that λ
trades off the bias from bootstrapping with an approximate Q-function, with the
variance from using a sampled multi-step return [4], with intermediate values of
λ usually performing best in practice [14,16]. The above λ-operator can be effi-
ciently implemented in the online setting via a mechanism called eligibility traces.

308 A. Harutyunyan et al.

As we will see in Sect. 7, it in fact corresponds to a number of online algorithms,
each subtly different, of which SARSA(λ) [13] is the canonical instance.

Finally, we make an important distinction between the target policy π, which
we wish to estimate, and the behavior policy μ, from which the actions have been
generated. If μ = π, the learning is said to be on-policy, otherwise it is off-policy.
We will write Eμ to denote expectations over sequences x0, a0, r0, x1, a1, r1, . . .,
ai ∼ μ(·|xi), xi+1 ∼ P (·|xi, ai) and assume conditioning on x0 = x and a0 = a
wherever appropriate. Throughout, we will write ‖ · ‖ for supremum norm.

3 Off-Policy Return Operators

We will now describe the Monte Carlo off-policy corrected return operator Rπ,μ

that is at the heart of our contribution. Given a target π, and a return generated
by the behavior μ, the operator Rπ,μ attempts to approximate a return that
would have been generated by π, by utilizing a correction built from a current
approximation Q of Qπ. Its application to Q at a state-action pair (x, a) is
defined as follows:

(Rπ,μQ)(x, a) def= r(x, a) + Eμ

[∑

t≥1

γt
(
rt + EπQ(xt, ·) − Q(xt, at)︸ ︷︷ ︸

off-policy correction

)]
, (4)

where we use the shorthand EπQ(x, ·) ≡ ∑
a∈A π(a|x)Q(x, a).

That is, Rπ,μ gives the usual expected discounted sum of future rewards,
but each reward in the trajectory is augmented with an off-policy correction,
which we define as the difference between the expected (with respect to the
target policy) Q-value and the Q-value for the taken action. Thus, how much a
reward is corrected is determined by both the approximation Q, and the target
policy probabilities. Notice that if actions are similarly valued, the correction will
have little effect, and learning will be roughly on-policy, but if the Q-function
has converged to the correct estimates Qπ, the correction takes the immediate
reward rt to the expected reward with respect to π exactly. Indeed, as we will
see later, Qπ is the fixed point of Rπ,μ for any behavior policy μ.

We define the n-step and λ-versions of Rπ,μ in the usual way:

Rπ,μ
λ Q

def= Aλ[Rπ,μ
n], (5)

(Rπ,μ
n Q)(x, a) def= r(x, a) + Eμ

[n∑

t=1

γt
(
rt + EπQ(xt, ·) − Q(xt, at)

)

+γn+1
EπQ(xn+1, ·)

]
.

Note that the λ parameter here takes us from TD(0) to the Monte Carlo version
of our operator Rπ,μ, rather than the traditional Monte Carlo form (1).

4 Algorithm

We consider the problems of off-policy policy evaluation and off-policy control.
In both problems we are given data generated by a sequence of behavior policies

Q(λ) with Off-Policy Corrections 309

Algorithm 1. Q(λ) with off-policy corrections

Given: Initial Q-function Q0, stepsizes (αk)k∈N

for k = 1 . . . do
Sample a trajectory x0, a0, r0, . . . , xTk from μk

Qk+1(x, a) ← Qk(x, a) ∀x, a
e(x, a) ← 0 ∀x, a
for t = 0 . . . Tk − 1 do

δ
πk
t ← rt + γEπkQk+1(xt+1, ·) − Qk+1(xt, at)

for all x ∈ X , a ∈ A do
e(x, a) ← λγe(x, a) + I{(xt, at) = (x, a)}
Qk+1(x, a) ← Qk+1(x, a) + αkδ

πk
t e(x, a)

end for
end for

end for

On-policy Qπ(λ): μk = πk = π.
Off-policy Qπ(λ): μk �= πk = π.
Q∗(λ): πk ∈ Greedy(Qk).

(μk)k∈N. In policy evaluation, we wish to estimate Qπ for a fixed target policy
π. In control, we wish to estimate Q∗. Our algorithm constructs a sequence
(Qk)k∈N of estimates of Qπk from trajectories sampled from μk, by applying the
Rπk,μk

λ -operator:
Qk+1 = Rπk,μk

λ Qk, (6)

where πk is the kth interim target policy. We distinguish between three algo-
rithms:

Off-policy Qπ(λ) for policy evaluation: πk = π is the fixed target policy.
We write the corresponding operator Rπ

λ.
On-policy Qπ(λ) for policy evaluation: for the special case of μk = μ = π.
Q∗(λ) for off-policy control: (πk)k∈N is a sequence of greedy policies with

respect to Qk. We write the corresponding operator R∗
λ.

We wish to write the update (6) in terms of a simulated trajectory
x0, a0, r0, . . . , xTk

drawn according to μk. First, notice that (5) can be rewritten:

Rπ,μ
λ Q(x, a) = Q(x, a) + Eμ

[∑

t≥0

(λγ)tδπ
t

]
,

δπ
t

def= rt + γEπQ(xt+1, ·) − Q(xt, at),

where δπ
t is the expected TD-error. The offline forward view1 is then

Qk+1(x, a) ← Qk(x, a) + αk

Tk∑

t=0

(γλ)tδπk
t , (7)

1 The true online version can be derived as given by van Seijen and Sutton [20].

310 A. Harutyunyan et al.

While (7) resembles many existing TD(λ) algorithms, it subtly differs from all
of them, due to Rπ,μ

λ (rather than T π
λ) being at its basis. Section 7 discusses the

distinctions in detail. The practical every-visit [17] form of (7) is written

Qk+1(x, a) ← Qk(x, a) + αk

T∑

t=0

δπk
t

t∑

s=0

(γλ)t−s
I{(xs, as) = (x, a)}, (8)

and the corresponding online backward view of all three algorithms is summa-
rized in Algorithm 1.

The following theorem states that when μ and π are sufficiently close, the
off-policy Qπ(λ) algorithm converges to its fixed point Qπ.

Theorem 1. Consider the sequence of Q-functions computed according to Algo-
rithm 1 with fixed policies μ and π. Let ε = maxx ‖π(·|x)−μ(·|x)‖1. If λε < 1−γ

γ ,
then under the same conditions required for the convergence of TD(λ) (1–3 in
Sect. 5.3) we have, almost surely:

lim
k→∞

Qk(x, a) = Qπ(x, a).

We state a similar, albeit weaker result for Q∗(λ).

Theorem 2. Consider the sequence of Q-functions computed according to
Algorithm 1 with πk the greedy policy with respect to Qk. If λ < 1−γ

2γ , then under
the same conditions required for the convergence of TD(λ) (1–3 in Sect. 5.3) we
have, almost surely:

lim
k→∞

Qk(x, a) = Q∗(x, a).

The proofs of these theorems rely on showing that Rπ
λ and R∗

λ are contrac-
tions (under the stated conditions), and invoking classical stochastic approxima-
tion convergence to their fixed point (such as Proposition 4.5 from [2]). We will
focus on the contraction lemmas, which are the crux of the proofs, then outline
the sketch of the online convergence argument.

Discussion. Theorem 1 states that for any λ ∈ [0, 1] there exists some degree
of “off-policy-ness” ε < 1−γ

λγ under which Qk converges to Qπ. This is the λ − ε

tradeoff for the off-policy Qπ(λ) learning algorithm for policy evaluation. In the
control case, the result of Theorem 2 is weaker as it only holds for values of λ
smaller than 1−γ

2γ . Notice that this threshold corresponds to the policy evaluation
case for ε = 2 (arbitrary off-policy-ness). We were not able to prove convergence
to Q∗ for any λ ∈ [0, 1] and some ε > 0. This is left as an open problem for
now2.

The main technical difficulty lies in the fact that in control, the greedy policy
with respect to the current Qk may change drastically from one step to the next,

2 For a general convergence result (for any λ and any ε), we refer the reader to the
follow-up work [7].

Q(λ) with Off-Policy Corrections 311

while Qk itself changes incrementally (under small learning steps αk). So the cur-
rent Qk may not offer a good off-policy correction to evaluate the new greedy
policy. In order to circumvent this problem we may want to use slowly changing
target policies πk. For example we could keep πk fixed for slowly increasing peri-
ods of time. This can be seen as a form of optimistic policy iteration [11] where
policy improvement steps alternate with approximate policy evaluation steps
(and when the policy is fixed, Theorem1 guarantees convergence to the value
function of that policy). Another option would be to define πk as the empirical
average πk

def= 1
k

∑k
i=1 π′

i of the previous greedy policies π′
i. We conjecture that

defining πk such that (1) πk changes slowly with k, and (2) πk becomes increas-
ingly greedy, then we could extend the λ−ε tradeoff of Theorem 1 to the control
case. This is left for future work.

5 Analysis

We begin by verifying that the fixed points of Rπ,μ
λ in the policy evaluation

and control settings are Qπ and Q∗, respectively. We then prove the contractive
properties of these operators: Rπ

λ is always a contraction and will converge to
its fixed point, R∗

λ is a contraction for particular choices of λ (given in terms
of γ). The contraction coefficients depend on λ, γ, and ε: the distance between
policies. Finally, we give a proof sketch for online convergence of Algorithm 1.

Before we begin, it will be convenient to rewrite (4) for all state-action pairs:

Rπ,μQ = r +
∑

t≥1

γt(Pμ)t−1[Pμr + PπQ − PμQ].

We can then write Rπ
λ and R∗

λ from (5) as follows:

Rπ
λQ

def= Q + (I − λγPμ)−1[T πQ − Q], (9)

R∗
λQ

def= Q + (I − λγPμ)−1[T Q − Q]. (10)

It is not surprising that the above along with the Bellman equations (2) and (3)
directly yields that Qπ and Q∗ are the fixed points of Rπ

λ and R∗
λ:

Rπ
λQπ = Qπ,

R∗
λQ∗ = Q∗.

It then remains to analyze the behavior of Rπ,μ
λ as it gets iterated.

5.1 λ-Return for Policy Evaluation: Qπ(λ)

We first consider the case with a fixed arbitrary policy π. For simplicity, we take
μ to be fixed as well, but the same will hold for any sequence (μk)k∈N, as long
as each μk satisfies the condition imposed on μ.

312 A. Harutyunyan et al.

Lemma 1. Consider the policy evaluation algorithm Qk = (Rπ
λ)kQ. Assume

the behavior policy μ is ε-away from the target policy π, in the sense that
maxx ‖π(·|x) − μ(·|x)‖1 ≤ ε. Then for ε < 1−γ

λγ , the sequence (Qk)k≥1 converges
to Qπ exponentially fast: ‖Qk − Qπ‖ = O(ηk), where η = γ

1−λγ (1 − λ + λε) < 1.

Proof. First notice that

‖Pπ − Pμ‖ = sup
‖Q‖≤1

‖(Pπ − Pμ)Q‖

= sup
‖Q‖≤1

max
x,a

∣∣∣
∑

y

P (y|x, a)
∑

b

((π(b|y) − μ(b|y)) Q(y, b)
∣∣∣

≤ max
x,a

∑

y

P (y|x, a)
∑

b

|π(b|y) − μ(b|y)| ≤ ε.

Let B = (I − λγPμ)−1 be the resolvent matrix. From (9) we have

Rπ
λQ − Qπ = B

[T πQ − Q + (I − λγPμ)(Q − Qπ)
]

= B
[
r + γPπQ − Qπ − λγPμ(Q − Qπ)

]

= B
[
γPπ(Q − Qπ) − λγPμ(Q − Qπ)

]

= γB
[
(1 − λ)Pπ + λ(Pπ − Pμ)

]
(Q − Qπ).

Taking the sup norm, since μ is ε-away from π:

‖Rπ
λQ − Qπ‖ ≤ η‖Q − Qπ‖

for η = γ
1−λγ (1 − λ + λε) < 1. Thus ‖Qk − Qπ‖ = O(ηk).

5.2 λ-Return for Control: Q∗(λ)

We next consider the case where the kth target policy πk is greedy with respect
to the value estimate Qk. The following Lemma states that is possible to select
a small, but nonzero λ and still guarantee convergence.

Lemma 2. Consider the off-policy control algorithm Qk = (R∗
λ)kQ. Then

‖R∗
λQk − Q∗‖ ≤ γ + λγ

1 − λγ
‖Qk − Q∗‖,

and for λ < 1−γ
2γ the sequence (Qk)k≥1 converges to Q∗ exponentially fast.

Proof. Fix μ and let B = (I − λγPμ)−1. Using (10), we write

R∗
λQ − Q∗ = B [T Q − Q + (I − λγPμ)(Q − Q∗)]

= B [T Q − Q∗ − λγPμ(Q − Q∗)] .

Taking the sup-norm, since ‖T Q − Q∗‖ ≤ γ‖Q − Q∗‖, we deduce the result:

∥∥R∗
λQ − Q∗∥∥ ≤ γ + λγ

1 − λγ

∥∥Q − Q∗∥∥.

Q(λ) with Off-Policy Corrections 313

5.3 Online Convergence

We are now ready to prove the online convergence of Algorithm 1. Let the
following hold for every sample trajectory τk and all x ∈ X , a ∈ A:

1. Minimum visit frequency:
∑

t≥0 P{xt, at = x, a} ≥ D > 0.
2. Finite trajectories: Eμk

T 2
k < ∞, where Tk is the length of τk.

3. Bounded stepsizes:
∑

k≥0 αk(x, a) = ∞,
∑

k≥0 α2
k(x, a) < ∞.

Assumption 2 requires trajectories to be finite w.p. 1, which is satisfied by proper
behavior policies. Equivalently, we may require from the MDP that all trajecto-
ries eventually reach a zero-value absorbing state. The proof closely follows that
of Proposition 5.2 from [2], and requires rewriting the update in the suitable
form, and verifying Assumptions (a) through (d) from their Proposition 4.5.

Proof. (Sketch) Let zk,t(x, a) def=
∑t

s=0(γλ)t−s
I{(xs, as) = (x, a)} denote the

accumulating trace. It follows from Assumptions 1 and 2 that the total update
at phase k is bounded, which allows us to write the online version of (8) as

Qo
k+1(x, a) ← (1 − Dkαk)Qo

k(x, a) + Dkαk

(Rπk,μk

λ Qo
k(x, a) + wk + uk

)

wk
def= (Dk)−1

[∑

t≥0

zk,tδ
πk
t − Eμk

[∑

t≥0

zk,tδ
πk
t

]]
,

uk
def= (Dkαk)−1

(
Qo

k+1(x, a) − Qk+1(x, a)
)
,

where Dk(x, a) def=
∑

t≥0 P{xt, at = x, a},and we use the shorthand yk ≡ yk(x, a)
for αk, Dk, wk, uk, and zk,t. Combining Assumptions 1 and 2, we have 0 < D ≤
Dk(x, a) < ∞, which, combined in turn with Assumption 3, assures that the
new stepsize sequence α̃k(x, a) = (Dkαk)(x, a) satisfies Assumption (a) of Prop.
4.5. Assumptions (b) and (d) require the variance of the noise term wk(x, a) to
be bounded, and the residual uk(x, a) to converge to zero, both of which can
be shown identically to the corresponding results from [2], if Assumption 2 and
Assumption (a) are satisfied. Finally, Assumption (c) is satisfied by Lemmas 1
and 2 for the policy evaluation and control cases, respectively.3 We conclude that
the sequence (Qo

k)k∈N converges to Qπ or Q∗ in the respective settings, w.p. 1.

6 Experimental Results

Although we do not have a proof of the λ− ε tradeoff (see Sect. 4) in the control
case , we wished to investigate whether such a tradeoff can be observed exper-
imentally. To this end, we applied Q∗(λ) to the Bicycle domain [12]. Here, the
agent must simultaneously balance a bicycle and drive it to a goal position. Six
real-valued variables describe the state – angle, velocity, etc. – of the bicycle.
The reward function is proportional to the angle to the goal, and gives -1 for
3 Note that the control case goes through without modifications, for the values of λ

prescribed by Lemma 2.

314 A. Harutyunyan et al.

falling and +1 for reaching the goal. The discount factor is 0.99. The Q-function
was approximated using multilinear interpolation over a uniform grid of size
10 × · · · × 10, and the stepsize was tuned to 0.1. We are chiefly interested in the
interplay between the λ parameter in Q∗(λ) and an ε-greedy exploration policy.
Our main performance indicator is the frequency at which the goal is reached by
the greedy policy after 500,000 episodes of training. We report three findings:

1. Higher values of λ lead to improved learning;
2. Very low values of ε exhibit lower performance; and
3. The Q-function diverges when λ is high relative to ε.

Together, these findings suggest that there is indeed a λ−ε tradeoff in the control
case as well, and lead us to conclude that with proper care it can be beneficial
to do off-policy control with Q∗(λ).

Average End Performance

= 0

= 0.003

= 0.03

Maximum Non-diverging λ

Fig. 1. Left. Performance of Q∗(λ) on the Bicycle domain. Each configuration is an
average of five trials. The ‘X’ marks the lowest value of λ for which ε = 0.03 causes
divergence. Right. Maximum non-diverging λ in function of ε. The left-hand shaded
region corresponds to our hypothesized bound. Parameter settings in the right-hand
shaded region do not produce meaningful policies.

Learning Speed and Performance. Figure 1 (left) depicts the performance
of Q∗(λ), in terms of the goal-reaching frequency, for three values of ε. The agent
performs best (p < 0.05) for ε ∈ [0.003, 0.03] and high (w.r.t. ε) values of λ.4

Divergence. For each value of ε, we determined the highest safe choice of
λ which did not result in divergence. As Fig. 1 (right) illustrates, there is a
marked decrease in what is a safe value of λ as ε increases. Note the left-hand
shaded region corresponding to the policy evaluation bound 1−γ

γε . Supporting our
hypothesis on the true bound on λ (Sect. 5), it appears clear that the maximum
safe value of λ depends on ε. In particular, notice how λ = 1 stops diverging
exactly where predicted by this bound.

4 Recall that Randløv and Alstrøm’s agent was trained using SARSA(λ) with λ = 0.95.

Q(λ) with Off-Policy Corrections 315

7 Related Work

In this section, we place the presented algorithms in context of the existing
work in TD(λ) [17], focusing in particular on action-value methods. As usual,
let (xt, at, rt)t≥0 be a trajectory generated by following a behavior policy μ,
i.e. at ∼ μ(·|xt). At time s, SARSA(λ) [13] updates its Q-function as follows:

Qs+1(xs, as) ← Qs(xs, as) + αs(AλR(n)
s − Q(xs, as)︸ ︷︷ ︸

Δs

), (11)

R(n)
s =

s+n∑

t=s

γt−srt + γn+1Q(xs+n+1, as+n+1), (12)

where Δs denotes the update made at time s, and can be rewritten in terms of
one-step TD-errors:

Δs =
∑

t≥s

(λγ)t−sδt, (13)

δt = rt + γQ(xt+1, at+1) − Q(xt, at).

SARSA(λ) is an on-policy algorithm and converges to the value function Qμ

of the behavior policy. Different algorithms arise by instantiating R
(n)
s or Δs

from (11) differently. Table 1 provides the full details, while in text we will specify
the most revealing components of the update.

7.1 Policy Evaluation

One can imagine considering expectations over action-values at the corresponding
states EπQ(xt, ·), in place of the value of the sampled action Q(xt, at), i.e.:

δt = rt + γEπQ(xt+1, ·) − EπQ(xt, ·). (14)

This is the one-step update for General Q-Learning [19], which is a generalization
of Expected SARSA [21] to arbitrary policies. We refer to the direct eligibility
trace extensions of these algorithms formed via Equations (11)-(13) by General
Q(λ) and Expected SARSA(λ) (first mentioned by Sutton et al. [18]) Unfor-
tunately, in an off-policy setting, General Q(λ) will not converge to the value
function Qπ of the target policy, as stated by the following proposition.

Proposition 1. The stable point of General Q(λ) is Qμ,π = (I −λγ(Pμ−Pπ)−
γPπ)−1r which is the fixed point of the operator (1 − λ)T π + λT μ.

Proof. Writing the algorithm in operator form, we get

RQ = (1 − λ)
∑

n≥0

λn
[n∑

t=0

γt(Pμ)tr + γn+1(Pμ)nPπQ
]

=
∑

t≥0

(λγ)t(Pμ)t
[
r + (1 − λ)γPπQ

]
= (I − λγPμ)−1

[
r + (1 − λ)γPπQ

]
.

316 A. Harutyunyan et al.

Thus the fixed point Qμ,π of R satisfies the following:

Qμ,π = (I − λγPμ)−1
[
r + (1 − λ)γPπQμ,π

]
= (1 − λ)T πQμ,π + λT μQμ,π.

Solving for Qμ,π yields the result.

Alternatively to replacing both terms with an expectation, one may only
replace the value at the next state xt+1 by EπQ(xt+1, ·), obtaining:

δπ
t = rt + γEπQ(xt+1, ·) − Q(xt, at). (15)

This is exactly our policy evaluation algorithm Qπ(λ). Specifically, when π = μ,
we get the on-policy Qπ(λ). The induced on-policy correction may serve as a
variance reduction term for Expected SARSA(λ) (it may be helpful to refer to
the n-step return in Table 1 to observe this), but we leave variance analysis of
this algorithm for future work. When π �= μ, we recover off-policy Qπ(λ), which
(under the stated conditions) converges to Qπ.

Target Policy Probability Methods: The algorithms above directly descend
from basic SARSA(λ), but often learning off-policy requires special treatment.
For example, a typical off-policy technique is importance sampling (IS) [10]. It
is a classical Monte Carlo method that allows one to sample from the available
distribution, but obtain (unbiased or consistent) samples of the desired one, by
reweighing the samples with their likelihood ratio according to the two distribu-
tions. That is, the updates for the ordinary per-decision IS algorithm for policy
evaluation are made as follows:

Δs =
∑

t≥s

(λγ)t−sδt

t∏

i=s+1

π(ai|xi)
μ(ai|xi)

δt = rt + γ
π(at+1|st+1)
μ(at+1|st+1)

Q(xt+1, at+1) − Q(xt, at).

This family of algorithms converges to Qπ with probability 1, under any soft,
stationary behavior μ [9]. There are several (recent) off-policy algorithms that
reduce the variance of IS methods, at the cost of added bias [3,5,6].

However, off-policy Qπ(λ) is perhaps related closest to the Tree-Backup (TB)
algorithm, also discussed by Precup et al. [9]. Its one-step TD-error is the same
as (15), the algorithms back up the same tree, and neither requires knowledge
of the behavior policy μ. The important difference is in the weighting of the
updates. As an off-policy precaution, TB(λ) weighs updates along a trajectory
with the cumulative target probability of that trajectory up until that point:

Δs =
∑

t≥s

(λγ)t−sδπ
t

t∏

i=s+1

π(ai|xi). (16)

Q(λ) with Off-Policy Corrections 317

T
a
b
le

1
.

C
o
m

p
a
ri

so
n

o
f

th
e

u
p
d
a
te

ru
le

s
o
f

se
v
er

a
l

le
a
rn

in
g

a
lg

o
ri

th
m

s
u
si

n
g

th
e

λ
-r

et
u
rn

.
W

e
sh

ow
b
o
th

th
e

n
-s

te
p

re
tu

rn
a
n
d

th
e

re
su

lt
in

g
u
p
d
a
te

ru
le

fo
r

th
e

λ
-r

et
u
rn

fr
o
m

a
n
y

st
a
te

x
s

w
h
en

fo
ll
ow

in
g

a
b
eh

av
io

r
p
o
li
cy

a
t

∼
μ
(·|

x
t
).

T
o
p

p
a
rt

,
p
o
li
c
y

e
v
a
lu

a
ti

o
n

a
lg

o
ri

th
m

s:
S
A

R
S
A

(λ
),

E
x
p
ec

te
d

S
A

R
S
A

(λ
),

G
en

er
a
l
Q

(λ
),

P
er

-D
ec

is
io

n
Im

p
o
rt

a
n
ce

S
a
m

p
li
n
g

(P
D

IS
(λ

))
,
T

B
(λ

),
a
n
d

Q
π
(λ

),
in

b
o
th

o
n
-p

o
li
cy

(i
.e

.
π

=
μ
)
a
n
d

o
ff
-p

o
li
cy

se
tt

in
g
s
(w

it
h

a
ta

rg
et

p
o
li
cy

π
�=

μ
).

N
o
te

th
e

sa
m

e
Q

π
(λ

)
eq

u
a
ti

o
n

a
p
p
li
es

to
b
o
th

o
n
-
a
n
d

o
ff
-p

o
li
cy

se
tt

in
g
s.

W
e

a
b
b
re

v
ia

te
π

i
≡

π
(a

i
|x i

),
μ

i
≡

μ
(a

i
|x i

),
ρ

i
≡

π
i
/
μ

i
,
a
n
d

w
ri

te
E

a
�=

b
π

Q
(x

,·)
≡
∑

a
∈A

\b
π
(a

|x)
Q

(x
,a

).
B

o
tt

o
m

p
a
rt

,
c
o
n
tr

o
l

a
lg

o
ri

th
m

s:
W

a
tk

in
s’

s
Q

(λ
),

P
en

g
a
n
d

W
il
li
a
m

s’
s

Q
(λ

),
a
n
d

Q
∗ (

λ
).

T
h
e
F
P

co
lu

m
n

d
en

o
te

s
th

e
st

a
b
le

p
o
in

t
o
f
th

es
e

a
lg

o
ri

th
m

s
(i

.e
.
th

e
fi
x
ed

p
o
in

t
o
f
th

e
ex

p
ec

te
d

u
p
d
a
te

),
re

g
a
rd

le
ss

o
f
w

h
et

h
er

th
e

a
lg

o
ri

th
m

co
n
v
er

g
es

to
it

.
G

en
er

a
l
Q

(λ
)
m

ay
co

n
v
er

g
e

to
Q

μ
,π

d
efi

n
ed

a
s
th

e
fi
x
ed

p
o
in

t
o
f
th

e
B

el
lm

a
n

o
p
er

a
to

r
(1

−
λ
)T

π
+

λ
Tμ

.
T

h
e

fi
x
ed

p
o
in

t
o
f
W

a
tk

in
s’

s
Q

(λ
)

is
Q

∗
b
u
t

th
e

ca
se

λ
>

0
m

ay
n
o
t

b
e

si
g
n
ifi

ca
n
tl

y
b
et

te
r
th

a
n

λ
=

0
(r

eg
u
la

r
Q

-l
ea

rn
in

g
)
if

th
e

b
eh

av
io

r
p
o
li
cy

is
d
iff

er
en

t
fr

o
m

th
e

g
re

ed
y

o
n
e.

T
h
e

fi
x
ed

p
o
in

t
Q

μ
,∗

o
f
P
en

g
a
n
d

W
il
li
a
m

s’
s

Q
(λ

)
is

th
e

fi
x
ed

p
o
in

t
o
f
(1

−
λ
)T

+
λ
Tμ

,
w

h
ic

h
is

d
iff

er
en

t
fr

o
m

Q
∗

w
h
en

μ
�=

π
(s

ee
P

ro
p
o
si

ti
o
n

1
).

T
h
e

a
lg

o
ri

th
m

s
a
n
a
ly

ze
d

in
th

is
p
a
p
er

a
re

Q
π
(λ

)
a
n
d

Q
∗ (

λ
),

fo
r

w
h
ic

h
co

n
v
er

g
en

ce
to

re
sp

ec
ti

v
el

y
Q

π
a
n
d

Q
∗

o
cc

u
rs

u
n
d
er

so
m

e
co

n
d
it

io
n
s

(s
ee

L
em

m
a
s)

.

318 A. Harutyunyan et al.

The weighting simplifies the convergence argument, allowing TB(λ) to con-
verge to Qπ without further restrictions on the distance between μ and π [9].
The drawback of TB(λ) is that in the case of near on-policy-ness (when μ is
close to π) the product of the probabilities cuts the traces unnecessarily (espe-
cially when the policies are stochastic). What we show in this paper, is that
plain TD-learning can converge off-policy with no special treatment, subject
to a tradeoff condition on λ and ε. Under that condition, Qπ(λ) applies both
on- and off-policy, without modifications. An ideal algorithm should be able to
automatically cut the traces (like TB(λ)) in case of extreme off-policy-ness while
reverting to Qπ(λ) when being near on-policy.

7.2 Control

Perhaps the most popular version of Q(λ) is due to Watkins and Dayan [22].
Off-policy, it truncates the return and bootstraps as soon as the behavior policy
takes a non-greedy action, as described by the following update:

Δs =
s+τ∑

t=s

(λγ)t−sδt, (17)

where τ = min{u ≥ 1 : as+u /∈ arg maxa Q(xs+u, a)}. Note that this update
is a special case of (16) for deterministic greedy policies, with

∏t
i=s+1 I{ai ∈

arg maxa Q(xi, a)} replacing the probability product. When the policies μ and
π are not too similar, and λ is not too small, the truncation may greatly reduce
the benefit of complex backups.

Q(λ) of Peng and Williams [8] is meant to remedy this, by being a hybrid
between SARSA(λ) and Watkins’s Q(λ). Its n-step return

∑s+n
t=s γt−srt +

γn+1 maxa Q(xs+n+1, a) requires the following form for the TD-error:

δt = r(xt, at) + γ max
a

Q(xt+1, a) − max
a

Q(xt, a).

This is, in fact, the same update rule as the General Q(λ) defined in (14), where
π is the greedy policy. Following the same steps as in the proof of Proposition 1,
the limit of this algorithm (if it converges) will be the fixed point of the operator
(1 − λ)T + λT μ which is different from Q∗ unless the behavior is always greedy.

Sutton and Barto [17] mention another, naive version of Watkins’s Q(λ) that
does not cut the trace on non-greedy actions. That is exactly the Q∗(λ) algo-
rithm described in this paper. Notice that despite the similarity to Watkins’s
Q(λ), the equivalence representation for Q∗(λ) is different from the one that
would be derived by setting τ = ∞ in (17), since the n-step return uses the cor-
rected immediate reward rt+γ maxa Q(xt, a)−Q(xt, at) instead of the immediate
reward alone. This correction is invisible in Watkins’s Q(λ), since the behavior
policy is assumed to be greedy, before the return is cut off.

Q(λ) with Off-Policy Corrections 319

8 Conclusion

We formulated new algorithms of the TD(λ) family for off-policy policy evalu-
ation and control. Unlike traditional off-policy learning algorithms, these meth-
ods do not involve weighting returns by their policy probabilities, yet under the
right conditions converge to the correct TD fixed points. In policy evaluation,
convergence is subject to a tradeoff between the degree of bootstrapping λ, dis-
tance between policies ε, and the discount factor γ. In control, determining the
existence of a non-trivial ε-dependent bound for λ remains an open problem.
Supported by telling empirical results in the Bicycle domain, we hypothesize
that such a bound exists, and closely resembles the 1−γ

γε bound from the policy
evaluation case.

Acknowledgements. The authors thank Hado van Hasselt, André Barreto, Georg
Ostrovski, Hubert Soyer, and others at Google DeepMind for their helpful input to the
paper, as well as the anonymous reviewers for their thoughtful feedback.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
2. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific,

Belmont (1996)
3. Hallak, A., Tamar, A., Munos, R., Mannor, S.: Generalized emphatic temporal

difference learning: bias-variance analysis (2015). arXiv:1509.05172
4. Kearns, M.J., Singh, S.P.: Bias-variance error bounds for temporal difference

updates. In: Conference on Computational Learning Theory, pp. 142–147 (2000)
5. Mahmood, A.R., Sutton, R.S.: Off-policy learning based on weighted importance

sampling with linear computational complexity. In: Conference on Uncertainty in
Artificial Intelligence (2015)

6. Mahmood, A.R., Huizhen, Y., White, M., Sutton, R.S.: Emphatic temporal-
difference learning. arXiv preprint arXiv:1507.01569 (2015)

7. Munos, R., Stepleton, T., Harutyunyan, A., Bellemare, M.G.: Safe and efficient
off-policy reinforcement learning. In: Advances in Neural Information Processing
Systems (2016)

8. Peng, J., Williams, R.J.: Incremental multi-step q-learning. Mach. Learn. 22(1–3),
283–290 (1996)

9. Precup, D., Sutton, R.S., Singh, S.: Eligibility traces for off-policy policy evalua-
tion. In: International Conference on Machine Learning (2000)

10. Precup, D., Sutton, R.S., Dasgupta, S.: Off-policy temporal-difference learning
with function approximation. In: International Conference on Machine Learning
(2001)

11. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

12. Randløv, J., Alstrøm, P.: Learning to drive a bicycle using reinforcement learning
and shaping. In: International Conference on Machine Learning (1998)

13. Rummery, G.A., Niranjan, M.: On-line q-learning using connectionist systems.
Technical report, Cambridge University Engineering Department (1994)

http://arxiv.org/abs/1509.05172
http://arXiv.org/abs/1509.05172
http://arxiv.org/abs/1507.01569
http://arXiv.org/abs/1507.01569
http://arXiv.org/abs/1507.01569

320 A. Harutyunyan et al.

14. Singh, S., Dayan, P.: Analytical mean squared error curves for temporal difference
learning. Mach. Learn. 32(1), 5–40 (1998)

15. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach.
learn. 3(1), 9–44 (1988)

16. Sutton, R.S.: Generalization in reinforcement learning: successful examples using
sparse coarse coding. In: Advances in Neural Information Processing Systems
(1996)

17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Cambridge
University Press, Cambridge (1998)

18. Sutton, R.S., Mahmood, A.R., Precup, D., van Hasselt, H.: A new q (λ) with
interim forward view and monte carlo equivalence. In: International Conference on
Machine Learning, pp. 568–576 (2014)

19. van Hasselt, H.P.: Insights in reinforcement learning: formal analysis and empirical
evaluation of temporal-difference learning algorithms. Ph.D. thesis, Universiteit
Utrecht, January 2011

20. van Seijen, H., Sutton, R.S.: True online TD(λ). In: International Conference on
Machine Learning, pp. 692–700 (2014)

21. van Seijen, H., van Hasselt, H., Whiteson, S., Wiering, M.: A theoretical and empir-
ical analysis of expected Sarsa. In: Adaptive Dynamic Programming and Reinforce-
ment Learning, pp. 177–184. IEEE (2009)

22. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8, 272–292 (1992)
23. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, King’s College,

Cambridge (1989)

On the Prior Sensitivity of Thompson Sampling

Che-Yu Liu1 and Lihong Li2(B)

1 ORFE, Princeton University, Princeton, NJ 08544, USA
cheliu@princeton.edu

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
lihongli@microsoft.com

Abstract. The empirically successful Thompson Sampling algorithm
for stochastic bandits has drawn much interest in understanding its the-
oretical properties. One important benefit of the algorithm is that it
allows domain knowledge to be conveniently encoded as a prior distrib-
ution to balance exploration and exploitation more effectively. While it
is generally believed that the algorithm’s regret is low (high) when the
prior is good (bad), little is known about the exact dependence. This
paper is a first step towards answering this important question: focusing
on a special yet representative case, we fully characterize the algorithm’s
worst-case dependence of regret on the choice of prior. As a corollary,
these results also provide useful insights into the general sensitivity of
the algorithm to the choice of priors, when no structural assumptions are
made. In particular, with p being the prior probability mass of the true
reward-generating model, we prove O(

√
T/p) and O(

√
(1 − p)T) regret

upper bounds for the poor- and good-prior cases, respectively, as well
as matching lower bounds. Our proofs rely on a fundamental property
of Thompson Sampling and make heavy use of martingale theory, both
of which appear novel in the Thompson-Sampling literature and may be
useful for studying other behavior of the algorithm.

1 Introduction

Thompson Sampling (TS), also known as probability matching and posterior
sampling, is a popular strategy for solving stochastic bandit problems. An impor-
tant benefit of this algorithm is that it allows domain knowledge to be conve-
niently encoded as a prior distribution to address the exploration-exploitation
tradeoff more effectively. In this paper, we focus on the sensitivity of the algo-
rithm to the prior it uses. In the rest of this section, we first define the bandit
setting and notation, and describe Thompson Sampling; we will then discuss
previous works that are most related to the present paper.

1.1 Thompson Sampling for Stochastic Bandits

In the multi-armed bandit problem, an agent is repeatedly faced with K possible
actions. At each time step t = 1, . . . , T , the agent chooses an action It ∈ A :=

Most of this work was done when C.Y. Liu was an intern at Microsoft.

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 321–336, 2016.
DOI: 10.1007/978-3-319-46379-7 22

322 C.-Y. Liu and L. Li

{1, . . . , K}, then receives reward XIt,t ∈ R. An eligible action-selection strategy
chooses actions at step t based only on past observed rewards Ht = {Is,XIs,s; 1 ≤
s < t} and potentially on an external source of randomness. More background
on the bandit problem can be found in a recent survey [8].

We make the following stochastic assumption on the underlying reward-
generating mechanism. Let Θ be a countable1 set of possible reward-generating
models. When θ ∈ Θ is the true underlying model, the rewards (Xi,t)t≥1 are i.i.d.
random variables taking values in [0, 1] drawn from some known distribution
νi(θ) with mean μi(θ). Of course, the agent knows neither the true underlying
model nor the optimal action that yields the highest expected reward. The per-
formance of the agent is measured by the regret incurred for not always selecting
the optimal action. More precisely, the frequentist regret (or regret for short) for
an eligible action-selection strategy π under a certain reward-generating model
θ is defined as

RT (θ, π) := E

T∑

t=1

(
max
i∈A

μi(θ) − μIt(θ)
)

, (1)

where the expectation is taken with respect to the rewards (Xi,t)i∈A,t≥1, gener-
ated according to the model θ, and the potential external source of randomness.

If one imposes a prior distribution p over Θ, then it is natural to consider
the following notion of average regret known as Bayes regret:

R̄T (π) := Eθ∼p RT (θ, π) =
∑

θ∈Θ

RT (θ, π)p(θ) . (2)

The Thompson Sampling strategy was proposed in probably the very first
paper on multi-armed bandits [29]. This strategy takes as input a prior distribu-
tion p1 for θ ∈ Θ. At each time t, let pt be the posterior distribution for θ given
the prior p1 and the history Ht = {Is,XIs,s; 1 ≤ s < t}. Thompson Sampling
selects an action randomly according to its posterior probability of being the
optimal action. Equivalently, Thompson Sampling first draws a model θt from
pt (independently from the past given pt) and it pulls It ∈ argmaxi∈A μi(θt). For
concreteness, we assume that the distributions (νi(θ))i∈A,θ∈Θ are absolutely con-
tinuous with respect to some common measure ν on [0, 1] with likelihood func-
tions (�i(θ)(·))i∈A,θ∈Θ. The posterior distributions pt can be computed recur-
sively by Bayes rule as follows:

pt+1(θ) =
pt(θ)�It(θ)(XIt,t)∑

η∈Θ pt(η)�It(η)(XIt,t)
.

We denote by TS(p1) the Thompson Sampling strategy with prior p1.
Two remarks are in order. First, the setup above is a discretized version of

rather general bandit problems. For example, the K-armed bandit is a special
1 Note that in this paper, we do not impose any continuity structure on the reward

distributions ν(θ) with respect to θ ∈ Θ. Therefore, it is easy to see that when Θ is
uncountable, the (frequentist) regret of Thompson Sampling, as defined in Eq. 1, in
the worst-case scenario is linear in time under most underlying models θ ∈ Θ.

On the Prior Sensitivity of Thompson Sampling 323

case, where Θ is the Cartesian product of the sets of reward distributions of
all arms. As another example, in linear bandits [1,12], Θ is a set of candidate
coefficient vectors that determine the expected reward function. Discretization
of Θ provides a convenient yet useful approximation that leads to simplicity
in expositions and analysis. Such an abstract formulation is analogous to the
expert setting widely studied in the online-learning literature [10]; also see a
recent study of Thompson Sampling with 2 and 3 experts [15].

Second, although we assume reward are bounded, some results in the
paper, especially Lemma 1 that may be of independent interest, still hold with
unbounded rewards.

1.2 Related Work

Recently, Thompson Sampling has gained a lot of interest, largely due to its
empirical successes [11,14,25,28]. Furthermore, this strategy is often easy to be
combined with complex reward models and easy to implement [13,20,30]. While
asymptotic, no-regret results are known [25], these empirical successes inspired
finite-time analyses that deepen our understanding of this old strategy.

For the classic K-armed bandits, regret bounds comparable to the the more
widely studied UCB algorithms are obtained [3,4,18,19], matching a well-known
asymptotic lower bound [21]. For linear bandits of dimension d, an Õ(d

√
TK)

upper bound has been proved [5]. All these bounds, while providing interest-
ing insights about the algorithm, assume non-informative priors (often uniform
priors), and essentially show that Thompson Sampling has a comparable regret
to other popular strategies, especially those based on upper confidence bounds.
Unfortunately, the bounds do not show what role prior plays in the performance
of the algorithm. In contrast, a variant of Thompson Sampling is proposed, with
a bound that depends explicitly on the entropy of the prior [23]. However, their
bound has an O(T 2/3) dependence on T that is likely sub-optimal.

Another line of work in the literature focuses on the Bayes regret with an
informative prior. Previous work has shown that, for any prior in the two-
armed case, TS is a 2-approximation to the optimal strategy that minimizes
the “stochastic” (Bayes) regret [17]. It has also been shown that in the K-armed
case, the Bayes regret of TS is always upper bounded by O(

√
KT) for any

prior [9,26]. These results were later improved [27] to a prior-dependent bound
O(

√
H(q)KT) where q is the prior distribution of the optimal action, defined

as q(i) = Pθ∼p1(i = argmaxj∈A μj(θ)), and H(q) = −∑K
i=1 q(i) log q(i) is the

entropy of q. While this bound elegantly quantifies, in terms of averaged regret,
how Thompson Sampling exploits prior distributions, it does not tell how well
Thompson Sampling works in individual problems. Indeed, in the analysis of
Bayes regret, it is unclear what a “good” prior means from a theoretical per-
spective, as the definition of Bayes regret essentially assumes the prior is correctly
specified. In the extreme case where prior p1 is a point mass, H(q) = 0 and the
Bayes regret is trivially 0.

To the best of our knowledge, our work is the first to consider frequentist
regret of Thompson Sampling with an informative prior. Specifically, we focus

324 C.-Y. Liu and L. Li

on understanding TS’s sensitivity to the choice of prior, making progress towards
a better understanding of such a popular Bayesian algorithm. It is shown that,
while a strong prior can lower the Bayes regret substantially [27], such a benefit
comes with a cost: if the true model happens to be assigned a low prior (the poor-
prior case), the frequentist regret will be very large, which is consistent with
a recent result on Pareto regret frontier [22]. Our findings suggest Thompson
Sampling can be under -exploring in general. Techniques like those in the “mini-
monster” algorithm [2] may be necessary to modify Thompson Sampling to make
it less prior-sensitive. It is an open question whether such modified Thompson
Sampling algorithms can still take advantage of an informative prior to enjoy a
small Bayes regret.

Finally, our analysis makes critical use of a certain martingale property of
Thompson Sampling. Although martingales have been applied to hypothesis
testing, for example, in analyzing the statistical behavior of likelihood ratios [7],
our use of martingales to analyze the behavior of posteriors in TS is new, to
the best of our knowledge. Moreover, a different martingale property was used
by other authors to study the Bayesian multi-armed bandit problem, where
the reward at the current “state” is the same as the expected reward over the
distribution of the next state when a play is made in the current state [16,17].
Their martingale property is different from ours: their martingales apply to the
reward at the current state, while ours refers to the inverse of the posterior
probability mass of the true model (see Sect. 3 for details).

2 Main Results

Naturally, we expect the regret of Thompson Sampling to be small when the true
reward-generating model is given a large prior probability mass, and vice versa.
An interesting and important question is to understand the sensitivity of the
algorithm’s regret to the prior it takes as input. We take a minimalist approach,
and investigate a special yet meaningful case. Our results fully characterize the
worst-case dependence of TS’s regret on the prior, which also provides important
insights into a more general case as a corollary. Furthermore, our analysis appears
novel to the best of our knowledge, making heavy use of martingale techniques
to analyze the behavior of the posterior probability. Such techniques may be
useful for studying other bandit algorithms.

Similar to the expert setting [10], we assume access to a set of candi-
date models, Θ = {θ1, θ2, . . . , θN} for N ≥ 2. This setting is referred to as
K-Actions-And-N-Models, where K is the cardinality of the action set. For
simplicity, in this work, we restrict ourselves to the binary action case: K = 2.
Finally, the special case with N = 2 and K = 2 is called 2-Actions-And-2-
Models.

Two comments are in order. First, our goal in this work is not to solve
these specialized bandit problems, but rather to understand prior sensitivity of
TS. Such seemingly simplistic problems happen to be nontrivial enough to be
useful in our constructive proof of matching lower bounds. Second, we aim to

On the Prior Sensitivity of Thompson Sampling 325

understand TS’s prior sensitivity without making any structural assumptions
about Θ. A natural next step of this work is to investigate, with a structural Θ
(e.g., linear), how robust TS is to the prior.

Our upper-bound analysis requires the following smoothness assumption of
the likelihood functions of models in Θ. Note that this assumption is needed
only in the upper-bound analysis, but not in the lower-bound proofs.

Assumption 1 (Smoothness). There exists constant s > 1 such that ν-almost
surely, for i ∈ {1, 2}, s−1 · �i(θ1) ≤ �i(θ2) ≤ s · �i(θ1).

Remark 1. While this assumption does not hold for all distributions, it holds
for some important ones, such as Bernoulli distributions Bern(p) with mean
p ∈ (0, 1). On one hand, the assumption essentially avoids situations where
a single application of Bayes rule can change posteriors by too much, analo-
gous to bounded gradients or rewards in most online-learning literature. On the
other hand, a small s value in the assumption tends to create hard problems
for Thompson Sampling, since models are less distinguishable. Therefore, the
assumption does not trivialize the problem.

The first main result of this paper is the following upper bound; see Sect. 4
for more details:

Theorem 1. Consider the 2-Actions-And-2-Models case and assume that
Assumption 1 holds. Then, the regret of Thompson Sampling with prior p1 sat-
isfies RT (θ1,TS(p1)) = O(s

√
T/p1(θ1)). Moreover, when p1(θ1) ≥ 1 − 1

8s2 , we
have RT (θ1,TS(p1)) = O(s4

√
(1 − p1(θ1))T).

Remark 2. The above upper bounds have the same dependence on T and p1(θ1)
as the lower bounds to be given in Theorems 2 and 3 below. Moreover, both
bounds are increasing functions of the smoothness parameter s. Because prob-
lems with small s tend to be harder for Thompson Sampling, our upper bounds
are tight up to a universal constant for a fairly general class of hard problems.
We conjecture that the dependence on s is an artifact of our proof techniques
and can be removed to get tighter upper bounds for all problem instances of the
2-Actions-And-2-Models case.

The next two theorems give matching lower bounds for the poor- and good-
prior cases, respectively. More details are given in Sect. 5.

Theorem 2. Consider the 2-Actions-And-2-Models case. Let p1 be a prior dis-
tribution and T ≥ 1

p1(θ1)
. Consider the following specific problem instance:

ν1(θ1) = Bern
(
1
2 + Δ

)
, ν1(θ2) = Bern

(
1
2 − Δ

)
, ν2(θ1) = ν2(θ2) = Bern

(
1
2

)
,

where Δ = 1/
√

8p1(θ1)T . Then, the regret of Thompson Sampling with prior p1

satisfies the following: if p1(θ1) ≤ 1
2 , then RT (θ1, TS(p1)) ≥ 1

168
√
2

√
T

p1(θ1)
.

Theorem 3. Consider the 2-Actions-And-2-Models case. Let p1 be a prior dis-
tribution and T ≥ 1

1−p1(θ1)
. Consider the following specific problem instance

326 C.-Y. Liu and L. Li

with Bernoulli reward distributions: ν1(θ1) = ν1(θ2) = Bern
(
1
2

)
, ν2(θ1) =

Bern
(
1
2 − Δ

)
, ν2(θ2) = Bern

(
1
2 + Δ

)
, where Δ =

√
1

8(1−p1(θ1))T
. Then

the regret of Thompson Sampling with prior p1 satisfies RT (θ1, TS(p1)) ≥
1

10
√
2

√
(1 − p1(θ1))T .

The lower bounds in the 2-Actions-And-2-Models case easily imply the lower
bounds in the general case.

Corollary 1. (General Lower Bounds) Consider the case with two actions and
an arbitrary countable Θ. Let p1 be a prior over Θ and θ∗ ∈ Θ be the true
model. Then, there exist problem instances where the regrets of Thompson Sam-
pling are Ω(

√
T

p1(θ∗)) and Ω(
√

(1 − p1(θ∗))T) for small p1(θ∗) and large p1(θ∗),
respectively.

Remark 3. These lower bounds show that the performance of Thompson Sam-
pling can be quite sensitive to the choice of input prior, especially when the prior
is poorly chosen.

Due to space limit, we can only include the more important, novel or challeng-
ing parts of the analysis in the paper. A complete proof, together with simulation
results corroborating our theoretical findings, are given in a full version [24].

2.1 Comparison to Previous Results

Note that an upper bound in the K-Actions-And-N -Models case can be derived
from an earlier result [27], which upper-bounds the Bayes regret, R̄T (TS(p1)):

RT (θ1, TS(p1)) ≤ R̄T (TS(p1))
p1(θ1)

= O

(√
H(q)KT

p1(θ1)

)
,

where θ1 ∈ Θ is the unknown, true model. On one hand, in the 2-Actions-And-

2-Models case, the above upper bound becomes O

(√
log

(
1

p1(θ1)

)
T

p1(θ1)

)
for

small p1(θ1), and O

(√
log

(
1

1−p1(θ1)

)
(1 − p1(θ1))T

)
for large p1(θ1). Our upper

bounds in Theorem 1 remove the extraneous logarithmic terms in these upper
bounds. On the other hand, the above general upper bound can be further upper

bounded by O
(√

T
p1(θ1)

)
for small p1(θ1) and O

(√
log

(
1

1−p1(θ1)

)
(1 − p1(θ1))T

)

for large p1(θ1). We conjecture that these general upper bounds can be improved
to match our lower bounds in Corollary 1, especially for small p1(θ1). But it
remains open how to extend our proof techniques for the 2-Actions-And-2-
Models case to get tight general upper bounds.

It is natural to compare Thompson Sampling to exponentially weighted
algorithms, a well-known family of algorithms that can also take advantage

On the Prior Sensitivity of Thompson Sampling 327

of prior knowledge. If we see each model θ ∈ Θ as an expert who recom-
mends the optimal action based on distributions specified by θ, and use the
prior p1 as the initial weights assigned to the experts, then the EXP4 algo-
rithm [6] has a regret of O

(
KTγ + 1

γ log 1
p1(θ∗)

)
, with a parameter γ ∈ (0, 1).

For the sake of simplicity, we only do the comparison in the 2-Actions-And-
2-Models case. By trying to match or even beat the upper bounds in The-
orem 1, we reach the choice that γ =

√
H(p1)/T . Assuming that θ1 is the

true model, the bound becomes O

(√
log

(
1

p1(θ1)

)
T

p1(θ1)

)
for small p1(θ1), and

O

(√
log

(
1

1−p1(θ1)

)
(1 − p1(θ1))T

)
for large p1(θ1). Thus, although EXP4 is

not a Bayesian algorithm, it has the same worst-case dependence on prior as
Thompson Sampling, up to logarithmic factors. This is partly explained by the
fact that such algorithms are designed to perform well in the worst-case (adap-
tive adversarial) scenario. On the contrary, by design, Thompson Sampling takes
advantage of prior information more efficiently in most cases, especially when
there is certain structure on the model space Θ [9]. Note that in this paper,
we do not impose any structure on Θ, thus our lower bounds do not contradict
existing results in the literature with non-informative priors (where p(θ∗) can be
very small as Θ is typically large).

Finally, our proof techniques are new in the Thompson Sampling literature,
to the best of our knowledge. The key observation is that the inverse of the
posterior probability of the true underlying model is a martingale (Lemma1).
It allows us to use results and techniques from martingale theory to quantify
the time and probability that the posterior distribution hits a certain threshold.
Then, the regret of Thompson Sampling can be analyzed separately before and
after hitting times.

3 Preliminaries

In this section, we study a fundamental martingale property of Thompson Sam-
pling and its implications. The results are essential to proving our upper bounds
in Sect. 4. Note that a similar property holds for posterior updates using Bayes
rule, which however does not involve action selection.

Throughout this paper, for a random variable Y , we will use the shorthand
Et[Y] for the conditional expectation E[Y |Ht]. Moreover, we denote by E

θ[Y]
the expectation of Y when θ is the true underlying model, i.e., when Xi,t has
distribution νi(θ). The notation P

θ[·] is similarly defined. Furthermore, we use
the shorthand a ∧ b for min{a, b}.

Lemma 1. (Martingale Property) Assume that Θ is countable and that θ∗ ∈ Θ
is the true reward-generating model. Then, the stochastic process (pt(θ∗)−1)t≥1

is a martingale with respect to the filtration (Ht)t≥1.

328 C.-Y. Liu and L. Li

Proof. First, recall that conditioned on Ht, pt is deterministic. Then one has

E
θ∗
t [pt+1(θ∗)−1] = E

θ∗
t

[∑
η∈Θ pt(η)�It(η)(XIt,t)
pt(θ∗)�It(θ∗)(XIt,t)

]

=
K∑

i=1

P
θ∗
t (It = i)Eθ∗

t

[∑
η∈Θ pt(η)�i(η)(Xi,t)
pt(θ∗)�i(θ∗)(Xi,t)

]

=
K∑

i=1

P
θ∗
t (It = i)

∫ ∑
η∈Θ pt(η)�i(η)(x)
pt(θ∗)�i(θ∗)(x)

�i(θ∗)(x) dν(x)

= pt(θ∗)−1
K∑

i=1

P
θ∗
t (It = i)

∫ ∑

η∈Θ

pt(η)�i(η)(x) dν(x)

= pt(θ∗)−1
K∑

i=1

P
θ∗
t (It = i) = pt(θ∗)−1 ,

where the second last equality follows from the fact that
∫

�i(η)(x) dν(x) = 1
for any η ∈ Θ. ��
Consider the 2-Actions-And-2-Models case. Let A,B ∈ (0, 1) be two constants
such that A > p1(θ1) > B. We define the following hitting times and hit-
ting probabilities: τA = inf{t ≥ 1, pt(θ1) ≥ A}, τB = inf{t ≥ 1, pt(θ1) ≤ B},
qA,B = P

θ1(τA < τB), and qB,A = P
θ1(τA > τB). The martingale property above

implies the following results which will be used repeatedly in the proofs of our
results.

Lemma 2. Consider the 2-Actions-And-2-Models case with Δ > 0, where Δ is
as defined in Theorem2. Then, we have τA < +∞ almost surely. Furthermore,
assume that τB < ∞ and that there exists constant γ > 0 so that pτB (θ1) ≥ γ
almost surely, then

qA,B =
E

θ1 [pτB (θ1)−1|τA > τB] − p1(θ1)−1

Eθ1 [pτB (θ1)−1|τA > τB] − Eθ1 [pτA(θ1)−1|τA < τB]
and

qB,A =
p1(θ1)−1 − E

θ1 [pτA(θ1)−1|τA < τB]
Eθ1 [pτB (θ1)−1|τA > τB] − Eθ1 [pτA(θ1)−1|τA < τB]

.

Finally, qB,A ≤ B
p1(θ1)

and qB,A ≤ 1−p1(θ1)
A−B .

Proof. We first argue that τA < +∞ almost surely. Define the event E = {τA =
+∞}. Under the event E, pt(θ1) is always upper bounded by A for any t. Thus

RT (θ1, TS(p1)) = Δ · Eθ1

T∑

t=1

pt(θ2) ≥ P
θ1(E)Δ(1 − A)T.

On the Prior Sensitivity of Thompson Sampling 329

It follows that

R̄T (TS(p1)) ≥ p1(θ1)RT (θ1, TS(p1)) ≥ p1(θ1)Pθ1(E)Δ(1 − A)T.

However, it was proven [9] that the Bayes risk R̄T (TS(p1)) is always upper
bounded by O(

√
T). Therefore we must have P

θ1(E) = 0; that is τA < +∞
almost surely. This implies that pτA∧τB (θ1) is well defined and qA,B + qB,A = 1.

Now, by Lemma 1, (pt(θ1)−1)t≥1 is a martingale. It is easy to verify that
τA and τB are both stopping times with respect to the filtration (Ht)t≥1.
Then it follows from Doob’s optional stopping theorem that for any t,
E

θ1 [pt∧τA∧τB (θ1)−1] = p1(θ1)−1. Moreover, for any t ≥ 1, pt∧τA∧τB (θ1)−1 ≤ γ−1

(Note that by definition, γ ≤ B). Hence, by Lebesgue’s dominated convergence
theorem, Eθ1 [pt∧τA∧τB (θ1)−1] −→ E

θ1 [pτA∧τB (θ1)−1] as t → +∞. Thus,

p1(θ1)−1 = E
θ1 [pτA∧τB (θ1)−1]

= qA,BE
θ1 [pτA(θ1)−1|τA < τB] + qB,AE

θ1 [pτB (θ1)−1|τA > τB] .

The above equality combined with qA,B + qB,A = 1 gives the desired expressions
for qA,B and qB,A. Finally, we have

qB,A =
p1(θ1)−1 − E

θ1 [pτA(θ1)−1|τA < τB]
Eθ1 [pτB (θ1)−1|τA > τB] − Eθ1 [pτA(θ1)−1|τA < τB]

≤ p1(θ1)−1

Eθ1 [pτB (θ1)−1|τA < τB]
≤ B

p1(θ1)

and

qB,A =
p1(θ1)−1 − E

θ1 [pτA(θ1)−1|τA < τB]
Eθ1 [pτB (θ1)−1|τA > τB] − Eθ1 [pτA(θ1)−1|τA < τB]

≤ p1(θ1)−1 − 1
B−1 − A−1

=
AB

p1(θ1)
1 − p1(θ1)

A − B
≤ 1 − p1(θ1)

A − B
.

��

4 Upper Bounds

In this section, we focus on the 2-Actions-And-2-Models case. We present and
prove our results on the upper bounds for the frequentist regret of Thompson
Sampling. Due to space limitation, we only sketch the proof for the poor-prior
case (first part of Theorem 1); complete proofs, including those for the good-prior
case, will appear in a long version.

We start with a simple lemma that follows immediate from Assumption 1:

Lemma 3. Under Assumption 1, regardless of either θ1 or θ2 being the true
underlying model, for any θ ∈ {θ1, θ2}, s−1 · pt(θ) ≤ pt+1(θ) ≤ s ·
pt(θ) ν-almost surely.

330 C.-Y. Liu and L. Li

The next lemma describes how the posterior probability mass of the true
model evolves over time. It can be proved by direct, although a bit tedious,
calculations.

Lemma 4. Consider the 2-Actions-And-2-Models case. We have the following
inequalities concerning various functionals of the stochastic process (pt(θ1))t≥1.

(a) For t ≥ 1, Eθ1
t

[
log(pt(θ1)−1) − log(pt+1(θ1)−1)

]

≥ 1
2

∑
i∈{1,2} pt(θi)pt(θ2)2|μi(θ1) − μi(θ2)|2.

(b) For t ≥ 1, Eθ1 [pt+1(θ1)] ≥ E
θ1 [pt(θ1)] and

E
θ1
t [pt+1(θ1) − pt(θ1)] ≤ ∑

i∈{1,2} pt(θi)pt(θ1)pt(θ2)Eθ1

[
�i(θ1)(Xi,t)
�i(θ2)(Xi,t)

− 1
]
.

(c) For t ≥ 1, Eθ1
t

[
(1 − pt+1(θ1))−1 − (1 − pt(θ1))−1

]

=
∑

i∈{1,2} pt(θi)
pt(θ1)
pt(θ2)

E
θ1

[
�i(θ1)(Xi,t)
�i(θ2)(Xi,t)

− 1
]

≥ pt(θ1)
2

2pt(θ2)
|μ1(θ1) − μ1(θ2)|2 + pt(θ1)

2 |μ2(θ1) − μ2(θ2)|2.
(d) RT (θ1, TS(p1)) ≤ ΔT (1 − p1(θ1)).

We now introduce some notation. Let Δ = μ1(θ1) − μ2(θ1), Δ1 = |μ1(θ1) −
μ1(θ2)| and Δ2 = |μ2(θ1) − μ2(θ2)|. Obviously, Δ ≤ Δ1 + Δ2. We assume Δ > 0
to avoid the generated case. To simplify notation, define the regret function
RT (·) by RT (p1(θ1)) = RT (θ1,TS(p1)). Since the immediate regret of each step
is at most Δ, we immediately have RT (p1(θ1)) ≤ ΔT . Furthermore, we have
the following useful and intuitive monotone property, which can be proved by a
dynamic-programming argument inspired by previous work [17, Section 3].

Lemma 5. RT is a decreasing function of p1(θ1).

The proofs of the upper bounds rely on several propositions that reveal
interesting recursions of Thompson Sampling’s regret as a function of the prior.
Although these propositions use similar analytic techniques, they differ in many
important details. Due to space limitation, we only sketch the proof of Proposi-
tion 1.

Proposition 1. Consider the 2-Actions-And-2-Models case and assume that
Assumption 1 holds. Then for any T > 0 and p1(θ1) ∈ (0, 1), we have

RT (p1(θ1)) ≤
(

96 log
3s

2
+ 6

) √
T

p1(θ1)
+ RT

(
1
3

)
.

Proof (Sketch). We recall that θ1 is assumed to be the true reward-generating
model in the proposition, and use the same notation as in Lemma2. First, the
desired inequality is trivial if p1(θ1) ≥ 1

3 since RT (·) is a decreasing function.

Moreover, if Δ ≤ 2
√

1
p1(θ1)T

, then RT (p1(θ1)) ≤ ΔT ≤ 2
√

T
p1(θ1)

, which com-

pletes the proof. Thus, we can assume that p1(θ1) ≤ 1
3 and Δ > 2

√
1

p1(θ1)T
. Let

On the Prior Sensitivity of Thompson Sampling 331

A = 3
2p1(θ1) and B = 1

Δ

√
p1(θ1)

T . Then, it is easy to see that B ≤ 1
2p1(θ1) ≤

1
2 ≤ 1 − A.

Now, the first step is to upper bound E
θ1 [τA ∧ τB − 1]. By Lemma 4(a), we

have for t ≤ τA ∧ τB − 1 that,

E
θ1
t

[
log(pt(θ1)−1) − log(pt+1(θ1)−1)

] ≥ 1
2
pt(θ1)pt(θ2)2Δ2

1 +
1
2
pt(θ2)3Δ2

2

≥ pt(θ2)2B
2

(Δ2
1 + Δ2

2) ≥ BΔ2

16
.

In other words,
(
log(pt(θ1)−1) + tBΔ2

16

)

t≤τA∧τB
is a supermartingale. Applying

Doob’s optional stopping theorem to the stopping times σ1 = t ∧ τA ∧ τB and
σ2 = 1 and letting t → +∞ by using Lebesgue’s dominated convergence theorem
and the monotone convergence theorem, we have

E
θ1 [τA ∧ τB − 1] ≤ 16

BΔ2
E

θ1

[
log

pτA∧τB (θ1)
p1(θ1)

]

≤ 16
BΔ2

log
sA

p1(θ1)
=

16
BΔ2

log
3s

2
,

where we have used Lemma 3 in the second last step.
Next, the regret of Thompson Sampling can be decomposed as follows

RT (p1(θ1))

= Δ · Eθ1 [τA ∧ τB − 1] + qB,A · Eθ1 [RT (pτB (θ1))|τA > τB]

+ qA,B · Eθ1 [RT (pτA(θ1))|τA < τB]

≤ 16
BΔ

log
3s

2
+

B

p1(θ1)
ΔT + RT

(
3
2
p1(θ1)

)

=
(

16 log
3s

2
+ 1

) √
T

p1(θ1)
+ RT

(
3
2
p1(θ1)

)
,

where in the second last step, we have used the facts that qB,A ≤ B
p1(θ1)

(by
Lemma 2), pτA(θ1) ≥ A = 3

2p1(θ1), and RT (·) is a decreasing function (by
Lemma 5). Because the above recurrence inequality holds for all p1(θ1) ≤ 1

3 ,
simple calculations lead to the desired inequality. ��
Using similar proof techniques, one can prove the following recursion:

Proposition 2. Consider the 2-Actions-And-2-Models case and assume that
Assumption 1 holds. Then, for any T > 0 and p1(θ1) ≤ 1

2 , we have

RT (p1(θ1)) ≤
(

16s

p1(θ1)2
+ 1

) √
T +

1
2
RT

(
1
2s

p1(θ1)
)

.

332 C.-Y. Liu and L. Li

With the technical lemmas and propositions developed so far, we are now
ready to prove the first upper bound of Theorem1, for p small. The second
bound for large p can be proved in a similar fashion, although the details are
quite different [24].

Proof (of the first part in Theorem1). For convenience, define β = 96 log 3s
2 + 6.

By Propositions 1 and 2,

RT

(
1
3

)
≤ (144s + 1)

√
T +

1
2
RT

(
1
6s

)

≤ (144s + 1)
√

T +
1
2
β
√

6sT +
1
2
RT

(
1
3

)
.

Therefore,

RT

(
1
3

)
≤

(
288s + β

√
6s + 2

) √
T .

Using again Proposition 1, one has for any p1(θ1) ∈ (0, 1),

RT (p1(θ1)) ≤ β

√
T

p1(θ1)
+ RT

(
1
3

)

≤ β

√
T

p1(θ1)
+

(
288s + β

√
6s + 2

) √
T

≤ β

√
T

p1(θ1)
+

(
288s + β

√
6s + 2

) √
T

p1(θ1)

≤
(
288s + β(

√
6s + 1) + 2

) √
T

p1(θ1)
≤ 1490s

√
T

p1(θ1)
,

where the last step follows from the inequalities β = 96 log 3s
2 + 6 ≤ 300

√
s and√

6s + 1 ≤ 4
√

s for s > 1. ��

5 Lower Bounds

In this section, we give a proof for the lower bound when the prior is poor
(Theorem 2); the other case (Theorem 3) is left in the long version [24]. The
following technical lemma is needed, which can be proved by direct calculations:

Lemma 6. Let −
√

1
8 ≤ Δ ≤

√
1
8 . Let �1 and �2 be the density functions of

the Bernoulli distributions Bern
(
1
2 + Δ

)
and Bern

(
1
2 − Δ

)
with respect to the

counting measure on [0, 1]. Then EX∼Bern(1
2+Δ)

[
�1(X)
�2(X) − 1

]
≤ 32Δ2.

On the Prior Sensitivity of Thompson Sampling 333

Proof (of Theorem 2). Let A = 3
2p1(θ1). Clearly, A ≤ 3

4 . Recall that τA = inf{t ≥
1, pt(θ1) ≥ A}. Using Lemmas 4(b) and 6, one has for t ≤ τA − 1,

E
θ1
t [pt+1(θ1) − pt(θ1)]

≤
∑

i∈{1,2}
pt(θi)pt(θ1)pt(θ2)Eθ1

[
�i(θ1)(Xi,t)
�i(θ2)(Xi,t)

− 1
]

= pt(θ1)2pt(θ2)Eθ1

[
�1(θ1)(X1,t)
�1(θ2)(X1,t)

− 1
]

≤ 32A2Δ2 = 72p1(θ1)2Δ2.

Therefore,
(
pt(θ1) − 72p1(θ1)2Δ2t

)
t≤τA

is a supermartingale. Now, using Doob’s
optional stopping theorem, one has Eθ1

[
pt∧τA∧T (θ1) − (t ∧ τA ∧ T)72p1(θ1)2Δ2

]

≤ p1(θ1) − 72p1(θ1)2Δ2 for any t ≥ 1.
Moreover, using Lebesgue’s dominated convergence theorem and the mono-

tone convergence theorem,

E
θ1

[
pt∧τA∧T (θ1) − (t ∧ τA ∧ T)72p1(θ1)2Δ2

]

−→ E
θ1

[
pτA∧T (θ1) − (τA ∧ T)72p1(θ1)2Δ2

]

as t → +∞. Hence,

E
θ1 [τA ∧ T − 1] ≥ 1

72p1(θ1)2Δ2
E

θ1 [pτA∧T (θ1) − p1(θ1)] .

One one side, if Pθ1(τA∧T = T) ≥ 1
21 , then E

θ1 [τA∧T] ≥ P
θ1(τA∧T = T)T ≥ T

21 .
On the other side, if Pθ1(τA ∧T = τA) ≥ 20

21 , then E
θ1 [pτA∧T (θ1)] ≥ P

θ1(τA ∧T =
τA)A ≥ 10

7 p1(θ1) and thus

E
θ1 [τA ∧ T − 1] ≥ 1

72p1(θ1)2Δ2

(
10
7

p1(θ1) − p1(θ1)
)

=
T

21
.

In both cases, we have E
θ1 [τA ∧ T − 1] ≥ T

21 .
Finally, one has

RT (θ1, TS(p1)) = ΔE
θ1

[
T∑

t=1

(1 − pt(θ1))

]
≥ ΔE

θ1

[
τA∧T−1∑

t=1

(1 − pt(θ1))

]

≥ Δ(1 − A)Eθ1 [τA ∧ T − 1] ≥ ΔT

84
=

1
168

√
2

√
T

p1(θ1)
,

where we have used the fact that 1 − A ≥ 1
4 . ��

Proof (of Theorem3). Using Lemmas 4(c) and 6, one has

E
θ1
t

[
pt+1(θ2)−1 − pt(θ2)−1

]
=

∑

i∈{1,2}
pt(θi)

pt(θ1)
pt(θ2)

E
θ1

[
�i(θ1)(Xi,t)
�i(θ2)(Xi,t)

− 1
]

= pt(θ1)Eθ1

[
�2(θ1)(X2,t)
�2(θ2)(X2,t)

− 1
]

≤ 32Δ2.

334 C.-Y. Liu and L. Li

Then for any t ≤ T ,

E
θ1

[
pt(θ2)−1

] ≤ 1
1 − p1(θ1)

+ 32(t − 1)Δ2 =
1 + 4(t − 1)/T

1 − p1(θ1)
≤ 5

1 − p1(θ1)
.

By Jensen’s inequality, we have for any t ≤ T , E
θ1 [pt(θ2)] ≥(

E
θ1

[
pt(θ2)−1

])−1 ≥ 1−p1(θ1)
5 . Hence,

RT (θ1, TS(p1)) = Δ · Eθ1

T∑

t=1

pt(θ2) ≥ ΔT
1 − p1(θ1)

5
≥ 1

10
√

2

√
(1 − p1(θ1))T .

��

6 Conclusions

In this work, we studied an important aspect of the popular Thompson Sampling
strategy for stochastic bandits — its sensitivity to the prior. Focusing on a special
yet nontrivial problem, we fully characterized its worst-case dependence of regret
on prior, both for the good- and bad-prior cases, with matching upper and lower
bounds. The lower bounds are also extended to a more general case as a corollary,
quantifying inherent sensitivity of the algorithm when the prior is poor and when
no structural assumptions are made.

These results suggest a few interesting directions for future work, only four of
which are outlined here. One is to close the gap between upper and lower bounds
for the general, multiple-model case. We conjecture that a tighter upper bound
is likely to match the lower bound in Corollary 1. The second is to consider prior
sensitivity for structured stochastic bandits, where models in Θ are related in
certain ways. For example, in the discretized version of the multi-armed bandit
problem [4], the prior probability mass of the true model is exponentially small
when a uniform prior is used, but strong frequentist regret bound is still possible.
Sensitivity analysis for such problems can provide useful insights and guidance
for applications of Thompson Sampling. Thrid, it remains open whether there
exists an algorithm whose worst-case regret bounds are better than those of
Thompson Sampling for any range of p1(θ∗), with θ∗ being the true underlying
model. This question is related to the recent study of Pareto regret front [22]. We
conjecture that the answer is negative, especially in the 2-Actions-And-2-Models
case. Finally, it is interesting to consider problem-dependent regret bounds that
often scale logarithmically with T .

Acknowledgments. We thank Sébastien Bubeck and the anonymous reviewers for
helpful advice that improves the presentation of the paper.

References

1. Abbasi-Yadkori, Y., Pál, D., Szepesvári, C.: Improved algorithms for linear sto-
chastic bandits. In: NIPS, pp. 2312–2320 (2011)

On the Prior Sensitivity of Thompson Sampling 335

2. Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., Schapire, R.E.: Taming the
monster: a fast and simple algorithm for contextual bandits. In: ICML, pp. 1638–
1646 (2014)

3. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit
problem. In: COLT, pp. 39.1–39.26 (2012)

4. Agrawal, S., Goyal, N.: Further optimal regret bounds for Thompson sampling. In:
AISTATS, pp. 99–107 (2013)

5. Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear
payoffs. In: ICML, pp. 127–135 (2013)

6. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The non-stochastic multi-
armed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

7. Bartroff, J., Lai, T.L., Shih, M.-C.: Sequential Experimentation in Clinical Trials:
Design and Analysis, vol. 298. Springer, Heildelberg (2013)

8. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

9. Bubeck, S., Liu, C.Y.: Prior-free and prior-dependent regret bounds for Thompson
sampling. In: NIPS, pp. 638–646 (2013)

10. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

11. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: NIPS, pp.
2249–2257 (2011)

12. Chu, W., Li, L., Reyzin, L., Schapire, R.E.: Contextual bandits with linear payoff
functions. In: AISTATS, pp. 208–214 (2011)

13. Gopalan, A., Mannor, S., Mansour, Y.: Thompson sampling for complex online
problems. In: ICML, pp. 100–108 (2014)

14. Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-scale Bayesian click-
through rate prediction for sponsored search advertising in Microsoft’s Bing search
engine. In: ICML, pp. 13–20 (2010)

15. Gravin, N., Peres, Y., Sivan, B.: Towards optimal algorithms for prediction with
expert advice. In: SODA, pp. 528–547 (2016)

16. Guha, S., Munagala, K.: Approximation algorithms for Bayesian multi-armed ban-
dit problems. arXiv preprint arXiv: 1306.3525v2 (2013)

17. Guha, S., Munagala, K.: Stochastic regret minimization via Thompson sampling.
In: COLT, pp. 317–338 (2014)

18. Honda, J., Takemura, A.: Optimality of Thompson sampling for Gaussian bandits
depends on priors. In: AISTATS, pp. 375–383 (2014)

19. Kaufmann, E., Korda, N., Munos, R.: Thompson sampling: an asymptotically opti-
mal finite-time analysis. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T.
(eds.) ALT 2012. LNCS, vol. 7568, pp. 199–213. Springer, Heidelberg (2012)

20. Komiyama, J., Honda, J., Nakagawa, H.: Optimal regret analysis of Thompson
sampling in stochastic multi-armed bandit problem with multiple plays. In: ICML,
pp. 1152–1161 (2015)

21. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv.
Appl. Math. 6, 4–22 (1985)

22. Lattimore, T.: The pareto regret frontier for bandits. In: NIPS, pp. 208–216 (2015)
23. Li, L.: Generalized Thompson sampling for contextual bandits. Technical report

MSR-TR-2013-136, Microsoft Research (2013)
24. Liu, C.Y., Li, L.: On the prior sensitivity of Thompson sampling (2015).

arXiv:1506.03378
25. May, B.C., Korda, N., Lee, A., Leslie, D.S.: Optimistic Bayesian sampling in

contextual-bandit problems. J. Mach. Learn. Res. 13, 2069–2106 (2012)

http://arxiv.org/abs/1306.3525v2
http://arXiv.org/abs/1306.3525v2
http://arXiv.org/abs/1306.3525v2
http://arxiv.org/abs/1506.03378
http://arXiv.org/abs/1506.03378
http://arXiv.org/abs/1506.03378

336 C.-Y. Liu and L. Li

26. Russo, D., Van Roy, B.: Learning to optimize via posterior sampling. Math. Oper.
Res. 39(4), 1221–1243 (2014)

27. Russo, D., Van Roy, B.: An information-theoretic analysis of Thompson sampling.
J. Mach. Learn. Res. 17(68), 1–30 (2016)

28. Scott, S.L.: A modern Bayesian look at the multi-armed bandit. Appl. Stoch.
Models Bus. Ind. 26, 639–658 (2010)

29. Thompson, W.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Bull. Am. Math. Soc. 25, 285–294 (1933)

30. Xia, Y., Li, H., Qin, T., Yu, N., Liu, T.-Y.: Thompson sampling for budgeted
multi-armed bandits. In: IJCAI, pp. 3960–3966 (2015)

Clustering

Finding Meaningful Cluster Structure Amidst
Background Noise

Shrinu Kushagra1(B), Samira Samadi2, and Shai Ben-David1

1 University of Waterloo, Waterloo, Canada
skushagr@uwaterloo.ca, shai@cs.uwaterloo.ca
2 Georgia Institute of Technology, Atlanta, USA

ssamadi6@gatech.edu

Abstract. We consider efficient clustering algorithm under data cluster-
ability assumptions with added noise. In contrast with most literature on
this topic that considers either the adversarial noise setting or some noise
generative model, we examine a realistically motivated setting in which
the only restriction about the noisy part of the data is that it does not
create significantly large “clusters”. Another aspect in which our model
deviates from common approaches is that we stipulate the goals of clus-
tering as discovering meaningful cluster structure in the data, rather
than optimizing some objective (clustering cost).

We introduce efficient algorithms that discover and cluster every sub-
set of the data with meaningful structure and lack of structure on its
complement (under some formal definition of such “structure”). Notably,
the success of our algorithms does not depend on any upper bound on
the fraction of noisy data.

We complement our results by showing that when either the notions
of structure or the noise requirements are relaxed, no such results are
possible.

1 Introduction

Clustering is an umbrella term for a wide variety of unsupervised data processing
techniques. Being widely applied in practice, it comes in many variations that
are hard to encompass in a precise single definition. A relatively comprehensive
description is that clustering aims to group together data instances that are
similar, while separating dissimilar objects. Most of the common clustering tools
output a partitioning of the input data into groups, clusters, that share some
form of cohesiveness or between-cluster separation requirement1. However, in
many cases, real data sets, in particular large ones, have on top of such cohesive
separated groups, a significant amount of “background” unstructured data. An
obvious example of such a scenario is when the input data set is the set of pixels
of an image and the goal of the clustering is to detect groups of pixels that
correspond to objects in that image. Clustering in such situations is the focus of
1 The assignment to clusters can sometimes be probabilistic, and clusters may be

allowed to intersect, but these aspects are orthogonal to the discussion in this paper.

c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 339–354, 2016.
DOI: 10.1007/978-3-319-46379-7 23

340 S. Kushagra et al.

this work. Maybe surprisingly, this topic has received relatively little attention in
the clustering research community, and even less so when it comes to theoretical
work.

The discussion of finding clustering structure in data sets that also contain
subsets that do not conform well to that structure usually falls under the ter-
minology of noise robustness (see e.g., [1,5,10–12]). However, noise robustness,
at least in that context, addresses the noisy part of the data as either gener-
ated by some specific generative model (like uniform random noise, or Gaussian
perturbations) or refers to worst-case adversarially generated noisy data. In this
paper we take a different approach. What distinguishes the noise that we con-
sider form the “clean” part of the input data is that it is structureless. The exact
meaning of such a notion of structurlessness may vary depending on the type
of structure the clustering algorithm is aiming to detect in the data. We focus
on defining structurelessness as not having significantly large dense subsets. We
believe that such a notion is well suited to address “gray background” contrast-
ing with cohesive subsets of the data that are the objects that the clustering
aims to detect.

The distinction between structured and unstructured parts of the data
requires, of course, a clear notion of relevant structure. For that, we resort to a
relatively large body of recent work proposing notions of clusterable data sets.
That work was developed mainly to address the gap between the computational
hardness of (the optimization problem of) many common clustering objectives
and the apparent feasibility of clustering in practical applications. We refer the
reader to [6] for a survey of that body of work. Here, we focus on two such
notions, one based on the α-center-proximity introduced by [2] and the other,
λ-separation, introduced by [7].

Our approach diverges from previous discussions of clusterable inputs in yet
another aspect. Much of the theoretical research of clustering algorithms views
clustering as an optimization problem. For some predetermined objective func-
tion (or clustering cost), the algorithm’s task is to find the data partitioning
that minimizes that objective. In particular, this approach is shared by all the
works surveyed in [6]. We believe that the reality of clustering applications is
different. Given a large data set to cluster, there is no way a user may know
what is the cost of the optimal clustering of that data, or how close to optimal
the algorithm’s outcome is. Instead, a user might have a notion of meaning-
ful cluster structure, and will be happy with any outcome that meets such a
requirement. Consequently, our algorithms aim to provide meaningful cluster-
ing solutions (where “meaningful” is defined in a way inspired by the above
mentioned notions of clusterability) without reference to any particular opti-
mization objective function. Our algorithms efficiently compute a hierarchical
clustering tree that captures all such meaningful solutions. One should notice
that all of those notions of clusterability (those under which it can be show that
an objective-minimizing clustering can be found efficiently) assume that there
exists an optimal solution that satisfies the meaningfulness condition (such as
being perturbation robust, or having significantly smaller distances of points to

Finding Meaningful Cluster Structure Amidst Background Noise 341

their own cluster centers than to other centers). Under those assumptions, an
algorithm that outputs a tree capturing all meaningful solutions, allows efficient
detection of the cost-optimal clustering (in fact, the algorithms of [5] also yield
such trees, for clean, noiseless inputs). Consequently, under the assumptions of
those previous works, our algorithms yield an efficient procedure for finding such
an optimal solution.

1.1 Related Work

The goal of clustering is to partition a set of objects into dissimilar subsets of
similar objects. Based on the definition of similarity, the optimal solution to a
clustering task is achieved by optimizing an objective function. Although solving
this optimization problem is usually NP-hard, the clustering task is routinely
and successfully employed in practice. This gap between theory and practice
recommends characterizing the real world data sets by defining mathematical
notions of clusterable data. As a result, provably efficient clustering algorithms
can be found for these so called nice data.

In the past few years, there has been a line of work on defining notions of
clusterability. The goal of all these methods has been to show that clustering
is computationally efficient if the input X enjoys some nice structure. In [9], a
clustering instance is considered to be stable if the optimal solution to a given
objective function does not change under small multiplicative perturbations of
distances between the points. Using this assumption, they give an efficient algo-
rithm to find the max-cut clustering of graphs which are resilient to O(

√|X |)
perturbations. Using a similar assumption, [1] considered additive perturbations
of the underlying metric and designed an efficient algorithm that outputs a clus-
tering with near-optimal cost.

In terms of clusterability conditions, the most relevant previous papers are
those addressing clsutering under α-center proximity condition (see Definition 5).
Assuming that the centers belong to X (proper setting), [2] shows an efficient
algorithm that outputs the optimal solution of a given center-based objective
assuming that optimal solution satisfies the (α > 3)-center proximity. This result
was improved to (α =

√
2+1 ≈ 2.4) when the objective is k-median [5]. In [8] it

was shown that unless P=NP such a result cannot be obtained for (α < 2)-center
proximal inputs.

However, as mentioned above, these results apply only to the noiseless case.
Few methods have been suggested for analyzing clusterability in the presence
of noise. [5] considers a dataset which has α-center proximity except for an ε
fraction of the points. They give an efficient algorithm which provides a 1+O(ε)-
approximation to the cost of the k-median optimal solution when α > 2 +

√
7 ≈

4.6. Note that, while this result applies to adversarial noise as well, it only yields
an approximation to the desired solution and the approximation guarantee is
heavily influenced by the size of noise.

In a different line of work, [7] studied the problem of robustifying any center-
based clustering objective to noise. To achieve this goal, they introduce the
notion of center separation (look at Definition 7). Informally, an input has center

342 S. Kushagra et al.

separation when it can be covered by k well-separated set of balls. Given such
an input, they propose a paradigm which converts any center-based clustering
algorithm into a clustering algorithm which is robust to small amount of noise.
Although this framework works for any objective-based clustering algorithm,
it requires a strong restriction on the noise and clusterability of the data. For
example, when the size of the noise is 5

100 |X |, their algorithm is able to obtain
a robustified version of 2-median, only if X is covered by k unit balls which are
separated with distance 10.

In this work, we consider a natural relaxation of [5,7], with the goal to capture
more realistic domains containing arbitrary amount of noise, assuming that noise
is structureless (in a precise sense defined below). For example, in [5], the size of
the noise |N | ≤ m(C)

8 (where m(C) is size of the smallest cluster). Our algorithms
can handle much larger amount of noise as long as they satisfy the structureless
condition.

We define a novel notion of “gray background” noise. Informally, we call noise
structureless if it does not have similar structure to a nice cluster at any part of
the domain. Under that definition (look at Definition 6), our positive, efficient
clustering results, do not depend on any restriction on the size of the noise.

Given a clusterable input X which contains structureless noise, we propose an
efficient algorithm that outputs a hierarchical clustering tree of X that captures
all nice clusterings of X . Our algorithm perfectly recovers the underlying nice
clusterings of the input and its performance is independent of number of noisy
points in the domain.

We complement our algorithmic results by proving that under more relaxed
conditions, either on the level of clusterability of the clean part of the data, or on
the unstructuredness requirements on the noise, such results become impossible.

1.2 Outline

The rest of this paper is structured as follows. In Sect. 2, we present our notation
and formal definitions. In Sect. 3 we show that the type of noise that we address
in this paper is likely to arise under some natural assumptions on the data gen-
erating process. In Sect. 4, we present an efficient algorithm that, for any input
set X which contains structureless noise, recovers all the underlying clusterings
of non-noise subset of X that satisfies α-center proximity for α > 2 +

√
7. We

complement these results by proving that for α ≤ 2
√

2 + 3 in the case that we
have arbitrary noise and for α ≤ √

2+3 in the case of structureless noise, efficient
discovery of all nicely structured subsets is not possible.

In Sect. 5.1, we describe an efficient algorithm that, for any input X , recovers
all the underlying clusterings of X that satisfy λ-center separation for λ ≥ 3. We
also prove that it is NP-Hard to improve this to λ ≤ 2. In Sect. 5.2, we consider
a similar problem in the presence of either arbitrary or structureless noise. We
propose an efficient algorithm that, for any input X which contains structureless
noise, recovers all the underlying clusterings of non-noise subset of X that satisfy
λ-center separation for λ ≥ 4. We will also show that this result is tight for the

Finding Meaningful Cluster Structure Amidst Background Noise 343

case of structureless noise. We complement our results by showing that, under
arbitrary noise assumption, no similar positive result can be achieved for λ ≤ 6.
Note that all our missing proofs can be found in the appendix.

2 Notation and Definition

Let (M, d) be a metric space. Given a data set X ⊆ M and an integer k. A
k-clustering of X denoted by CX is a partition of X into k disjoints sets. Given
points c1, . . . , ck ∈ M, we define the clustering induced by these points (or
centers) by assigning each x ∈ X to its nearest center. In the steiner setting, the
centers can be arbitrary points of the metric space M. In the proper setting, we
restrict our centers to be members of the data set X . In this paper, we will be
working in the proper setting.

For any set A ⊆ X with center c ∈ M, we define the radius of A as rc(A) =
maxx∈A d(x, c). Throughout the paper, we will use the notation CX to denote
the clustering of the set X and CS to denote the clustering of some S ⊆ X .

Definition 1 (r(CX) , m(CX)). Given a clustering CX = {C1, . . . , Ck} induced
by centers c1, . . . , ck ∈ M, we define m(CX) = mini |Ci| and r(CX) = maxi r(Ci).

Definition 2 (CX Restricted to a Set). Given S ⊆ X and a clustering CX =
{C1, . . . , Ck} of the set X . We define CX restricted to the set S as CX|S =
{C1 ∩ S, . . . , Ck ∩ S}.
Definition 3 (CX Respects CS). Given S ⊆ X , clusterings CX = {C1, . . . , Ck}
and CS = {S1, . . . , Sk′}. We say that CX respects CS if CX|S = CS .

Definition 4 (T or L Captures CS). Given a hierarchical clustering tree T
of X and a clustering CS of S ⊆ X . We say that T captures CS if there exists a
pruning P which respects CS .

Similarly, given a list of clusterings L of X and a clustering CS of S ⊆ X .
We say that L captures CS if there exists a clustering CX ∈ L which respects CS .

Definition 5 (α-Center Proximity [2]). A clustering CX = {C1, . . . , Ck}
satisfies α-center proximity w.r.t X and k if there exist centers c1, . . . , ck ∈ M
such that the following holds. For all x ∈ Ci and i 	= j, αd(x, ci) < d(x, cj)

Next, we formally define our notion of structureless noise. Roughly, such noise
should be scattered sparsely, namely, there should be no significant amount of
noise in any small enough ball. Note that such a restriction does not impose any
upper bound on the number of noise points.

Definition 6 ((α, η)-Center Proximity). Given S ⊆ X , a clustering CS =
{S1, . . . , Sk} has (α, η)-center proximity w.r.t X ,S and k if there exists centers
s1, . . . , sk ∈ M such that the following holds.

344 S. Kushagra et al.

 α-center proximity: For all x ∈ Si and i 	= j, αd(x, si) < d(x, sj)

 η-sparse noise: For any ball B, r(B) ≤ η r(CS) =⇒ |B ∩ (X \S)| < m(CS)

2

Definition 7 (λ-Center Separation [7]). A clustering CX = {C1, . . . , Ck}
has λ-center separation w.r.t X and k if there exists centers c1, . . . , ck ∈ M such
that CX is the clustering induced by these centers and the following holds. For
all i 	= j, d(ci, cj) > λr(CX)

Definition 8 ((λ, η)-Center Separation). Given S ⊆ X , a clustering CS has
(λ, η)-center separation w.r.t X ,S and k if there exists centers s1, . . . , sk ∈ M
such that CX is the clustering induced by these centers and the following holds.

 λ-center separation: For all i 	= j, d(si, sj) > λr(CS)

 η-sparse noise: For any ball B, r(B) ≤ η r(CS) =⇒ |B ∩ (X \S)| < m(CS)

2

We denote a ball of radius x at center c by B(c, x). We denote by Pi(c) a
collection of i many points sitting on the same location c. If the location is clear
from the context, we will use the notation Pi.

3 Justification of Sparse Noise

In this section, we examine our sparseness condition. We will show that if the
set of points N are generated by a non concentrated distribution in a ball in
Rd then with high probability, as long as N is not too large (so as to“ drown”
the original data set), it will satisfy the sparse noise condition. The proof is
based on the epsilon approximation theorem for classes of finite VC-dimension,
applied to the set of balls in Rd. The following, rather natural, definition of non
concentrated distribution was introduced in [3].

Definition 9. A probability distribution over the d-dimensional unit ball is non-
concentrated if, for some constant c, the probability density of any point x is at
most c times its density under the uniform distribution over that ball.

Theorem 1 (Noise by Non Concentrated Distribution is Sparse). Let
X be a ball of radius R in Rd and S ⊆ X . Let C be a clustering of S which satisfies
α-center proximity (or λ-center separation). Given parameters ε, δ ∈ (0, 1). Let
N ⊆ X be picked i.i.d according to a non concentrated probability distribution. If

|N | < c
(

R
r(C)η

)d

m(C) then with high probability, S ∪ N satisfies (α, η)-center
proximity (the (λ, η)-center separation, respectively).

Proof. Let H = {B is a ball : B ⊆ X}. Observe that VC-Dim(H) = d + 1. Let
γ := r(C)

R . Since the noise-generating distribution P is c-concentrarted, for every
ball B, P (B) ≤ c vol(B)

vol(X) = cγd. Now, the fundamental ε-approximation theorem
(Theorem 16) establishes the result. �

Note that Theorem 1 shows that the cardinality of the noise set, |N |, can be
much bigger than the size of the smallest cluster m(C).

Finding Meaningful Cluster Structure Amidst Background Noise 345

4 Center Proximity

In this section, we study the problem of recovering (α, η)-center proximal clus-
terings of a set X , in the presence of noise. The goal of our algorithm is to
produce an efficient representation (hierarchical clustering tree) of all possible
(α, η)-center proximal nice clusterings rather than to output a single clustering
or to optimize an objective function. Here is a more precise overview of the
results of this section:

• Positive result under sparse noise - In Sect. 4.1, we give our main result under
sparse noise. If α ≥ 2 +

√
7 ≈ 4.6 and η ≥ 1; for any value of t, Algorithm 1

outputs a tree which captures all clusterings C∗ (of a subset of X) which
satisfy (α, η)-center proximity and m(C∗) = t.

• Lower bound under sparse noise - In Sect. 4.2, we show that if α ≤ 2+
√

3 ≈ 3.7
and η ≤ 1 then there is no tree and no list of ‘small’ size (< 2k/2) which
can capture all clusterings C (of a subset of X) which satisfy (α, η)-center
proximity even for a fixed value of the size of the smallest cluster (m(C) = t).

• Lower bound with arbitrary noise - In Sect. 4.3, we show that for a given value
of a parameter t, if α ≤ 2

√
2+3 ≈ 5.8 and the number of noisy points exceeds

3
2 t then no tree can capture all clusterings C (of a subset of X) which satisfy
α-center proximity even for fixed m(C) = t. Identical result holds for ‘small’
(< 2k/2) lists if the number of noisy points exceeds 3k

2 t.

4.1 Positive Result Under Sparse Noise

Given a clustering instance (X , d) and a parameter t, we introduce an efficient
algorithm which outputs a hierarchical clustering tree T of X with the following
property. For every k, for every S ⊆ X and for every k-clustering CS which
satisfies (α, η)-center proximity (for α ≥ 2 +

√
7 and η ≥ 1) and m(CS) = t, T

captures CS . It is important to note that our algorithm only knows X and has
no knowledge of the set S.

Our algorithm has a linkage based structure similar to [5]. However, our
method benefits from a novel sparse distance condition. We introduce the algo-
rithm in Algorithm 1 and prove its efficiency and correctness in Theorem 3 and
Theorem 2 respectively.

Definition 10 (Sparse Distance Condition). Given a clustering C =
{C1, . . . , Ck} of the set X and a parameter t. We say that the ball B ⊆ X satisfies
the sparse distance condition w.r.t clustering C when the following holds.

• |B| ≥ t.
• For any Ci ∈ C, if Ci ∩ B 	= ∅, then Ci ⊆ B or |B ∩ Ci| ≥ t/2.

Intuitively, Algorithm1 works as follows. It maintains a clustering C(l), which
is initialized so that each point is in its own cluster. It then goes over all pairs
of points p, q in increasing order of their distance d(p, q). If B(p, d(p, q)) satisfies
the sparse distance condition w.r.t C(l), then it merges all the clusters which

346 S. Kushagra et al.

intersect with this ball into a single cluster and updates C(l). Furthermore, the
algorithm builds a tree with the nodes corresponding to the merges performed
so far. We will show that for all S ⊆ X which are (α, η)-proximal t-min nice and
for all clusterings CS which have (α, η)-center proximity, Algorithm 1 outputs a
tree which captures CS .

Algorithm 1. Alg. for (α, η)-center proximity with parameter t

Input: (X , d) and t
Output: A hierarchical clustering tree T of X .

Let C(l) denote the clustering X after l merge steps have been performed.
Initialize C(0) so that all points are in their own cluster. That is,
C(0) = {{x} : x ∈ X}.
Go over all pairs of points p, q in increasing order of the distance d(p, q). If
B = B(p, d(p, q)) satisfies the sparse distance condition then

Merge all the clusters which intersect with B into a single cluster.

Output clustering tree T . The leaves of T are the points in dataset X . The
internal nodes correspond to the merges performed.

Theorem 2. Given a clustering instance (X , d) and a parameter t. Algorithm1
outputs a tree T with the following property. For all k, S ⊆ X and for all
k-clusterings C∗

S = {S∗
1 , . . . , S∗

k} which satisfy (2 +
√

7, 1)-center proximity the
following holds. If m(C∗

S) = t then T captures CS .

Theorem 3. Given clustering instance (X , d) and t. Algorithm1 runs in
poly(|X |).
Proof. Let n = |X |. Checking if B satisfies the sparse-distance condition takes
O(n) time and hence the algorithm runs in O(n3) time.

4.2 Lower Bound Under Sparse Noise

Theorem 4. Given the number of clusters k and parameter t. For all α ≤ 2+
√

3
and η ≤ 1 there exists a clustering instance (X , d) such that any clustering tree
T of X has the following property. There exists S ⊆ X and clustering CS which
satisfies (α, η)-center proximity and m(CS) = t but T doesn’t capture CS .

Theorem 5. Given the number of clusters k and parameter t. For all α ≤
2 +

√
3, η ≤ 1 there exists (X , d) such that any list L (of clusterings of X) has

the following property. If |L| < 2
k
2 then there exists S ⊆ X and clustering CS

which satisfies (α, η)-center proximity and m(CS) = t but L doesn’t capture CS .

Finding Meaningful Cluster Structure Amidst Background Noise 347

4.3 Lower Bound Under Arbitrary Noise

Theorem 6. Given the number of clusters k and a parameter t. For all α <
2
√

2+3 there exists (X , d) such that any clustering tree T of X has the following
property. There exists S ⊆ X and there exists clustering CS which satisfies α-
center proximity such that m(CS) = t and the following holds. If |X \ S| ≥
3t(CS)

2 + 5, then T doesn’t capture CS .

Algorithm 2. Alg. for λ-center separation
Input: (X , d)
Output: A hierarchical clustering tree T of X .

Initialize the clustering so that each point is in its own cluster.
Run single-linkage till only a single cluster remains. Output clustering tree T .

Theorem 7. Given the number of clusters k and parameter t. For all α ≤
2 +

√
2 + 3 there exists (X , d) such that any list L (of clusterings of X) has

the following property. There exists S ⊆ X and there exists clustering CS which
satisfies α-center proximity such that m(CS) = t and the following holds. If
|L| < 2

k
2 and |X \ S| ≥ k

2 (3t(CS)
2 + 5), then L doesn’t capture CS .

5 Center Separation

5.1 Center Separation Without Noise

In this section, we study the problem of recovering λ-center separated clusterings
of a set X , in the absence of noise. We do not want to output a single clustering
but to produce an efficient representation (hierarchical clustering tree) of all
possible λ-center separated nice clusterings. In Sect. 5.1.1 we give an algorithm
that generates a tree of all possible λ-center separated clusterings of X for λ > 3.
In Sect. 5.1.2, we prove that for λ < 2, it is NP-Hard to find any such clustering.

5.1.1 Positive Result Under No Noise
Given a clustering instance (X , d), our goal is to output a hierarchical clustering
tree T of X which has the following property. For every k and for every k-
clustering CX which satisfies λ-center separation, there exists a pruning P of the
tree which equals CX . Our algorithm (Algorithm2) uses single-linkage to build
a hierarchical clustering tree of X . We will show that when λ ≥ 3 our algorithm
achieves the above mentioned goal.

Theorem 8. Given (X, d). For all λ ≥ 3, Algorithm2 outputs a tree T with
the following property. For all k and for all k-clusterings C∗

X = {C∗
1 , . . . , C∗

k}
which satisfy λ-center separation w.r.t X and k, the following holds. For every
1 ≤ i ≤ k, there exists a node Ni in the tree T such that C∗

i = Ni.

348 S. Kushagra et al.

5.1.2 Lower Bound with No Noise
We will prove that for λ ≤ 2, finding any solution for λ-center separation is NP-
Hard. [13] proved that finding any solution for α-center proximity is NP-Hard
for α < 2. Our reduction is same as the reduction used in Theorem 1 in [13] and
hence we omit the proof.

Theorem 9. Given a clustering instance (X , d) and the number of clusters k.
For λ < 2, finding a clustering which satisfies λ-center separation is NP-Hard.

5.2 Center Separation in the Presence of Noise

In this section, we study the problem of recovering (λ, η)-center separated clus-
terings of a set X , in the presence of noise. Here is a more precise overview of
the results of this section:

• Positive result under sparse noise - In Sect. 5.2.1, we show that if λ ≥ 4 and
η ≥ 1; for any value of parameters r and t, Algorithm 3 outputs a clustering
which respects all clusterings C∗ (of a subset of X) which satisfies (λ, η)-center
proximity and m(C∗) = t and r(C∗) = r.

• Lower bound under sparse noise - In Sect. 5.2.2, we show that, if λ < 4 and η ≤
1 then there is no tree and no list of ‘small’ size (< 2k/2) which can capture
all clusterings C (of subset of X) which satisfy (λ, η)-center proximity even
for fixed values of the size of the smallest cluster (m(C) = t) and maximum
radius (r(C) = r).

• Lower bound with arbitrary noise - In Sect. 5.2.3, we show that for a given
value of parameters r and t, if λ ≤ 6 and the number of noisy points exceeds
3
2 t then no tree can capture all clusterings C (of a subset of X) which satisfy
λ-center separation even for fixed m(C) = t and r(C) = r. Identical result
holds for ‘small’ (< 2k/2) lists if the number of noisy points exceeds 3k

2 t.

5.2.1 Positive Result Under Sparse Noise
We are given a clustering instance (X , d) and parameters r and t. Our goal is to
output a clustering CX which has the following property. For every k, for every
S ⊆ X and for every k-clustering CS which satisfies (λ, η)-center separation, the
clustering CX restricted to S equals CS .

In the next section, we propose a clustering algorithm (Algorithm3) and
prove (Theorem 10) that our algorithm indeed achieves the above mentioned
goal (under certain assumptions on the parameters λ and η). It is important to
note that our algorithm only knows X and has no knowledge of the set S.

Intuitively, Algorithm3 works as follows. In the first phase, it constructs a
list of balls which have radius at most r and contain at least t points. It then
constructs a graph as follows. Each ball found in the first phase is represented
by a vertex. If two balls have a ‘large’ intersection then there is an edge between
the corresponding vertices in the graph. We then find the connected components
in the graph which correspond to the clustering of the original set X .

Finding Meaningful Cluster Structure Amidst Background Noise 349

Algorithm 3. Alg. for (λ, η)-center separation with parameters t and r

Input: (X , d), t and r
Output: A clustering C of the set X .

Phase 1
Let L denote the list of balls found so far. Initialize L to be the empty set.
L = ∅.
Go over all pairs of points p, q ∈ X in increasing order of the distance d(p, q).
Let B := B(p, d(p, q)). If |B| ≥ t and r(B) ≤ r then

L = L ∪ B

Output the list of balls L = {B1, . . . , Bl} to the second phase of the algorithm.

Phase 2
Construct a graph G = (V, E) as follows. V = {v1, v2, . . . , vl}. If |Bi ∩ Bj | ≥ t/2
then construct an edge between vi and vj .
Find connected components (G1, . . . , Gk) in the graph G.
Merge all the points in the same connected component together to get a
clustering C = {C1, . . . , Ck} of the set X .
Assign x ∈ X \ ∪iBi to the closest cluster Ci. That is, i := arg min

j∈[k]

min
y∈Cj

d(x, y).

Output C.

Theorem 10. Given a clustering instance (X , d) and parameters r and t. For
every k, for every S ⊆ X and for all k-clusterings C∗

S = {S∗
1 , . . . , S∗

k} which
satisfy (4, 1)-center separation such that m(C∗

S) = t and r(C∗
S) = r, the following

holds. Algorithm3 outputs a clustering CX such that CX |S = C∗
S .

Theorem 11. Given (X , d) and parameters r and t. Algorithm3 runs in
poly(|X |).
Proof. Let n = |X |. Phase 1 of Algorithm3 runs in O(n2) time. Phase 2 gets
a list of size l. Constructing G and finding connected components takes O(l2)
time. Hence, the algorithm runs in O(n2) time.

5.2.2 Lower Bound Under Sparse Noise
Theorem 12. Given the number of clusters k and parameters r and t. For all
λ < 4 and η ≤ 1, there exists a clustering instance (X , d) such that any clustering
tree T of X has the following property. There exists S ⊆ X and a k-clustering
CS = {S1, . . . , Sk} which satisfies (λ, η)-center separation such that m(CS) = t
and r(CS) = r, but T doesn’t capture CS .

Theorem 13. Given the number of clusters k and parameters r and t. For all
λ ≤ 4 and η ≤ 1 there exists a clustering instance (X , d) such that any list L
(of clusterings of X) has the following property. If |L| < 2

k
2 then there exists

S ⊆ X and clustering CS which satisfies (λ, η)-center separation and m(CS) = t
and r(CS) = r, but L doesn’t capture CS .

350 S. Kushagra et al.

5.2.3 Lower Bound with Arbitrary Noise
Theorem 14. Given the number of clusters k and parameters r and t. For all
λ < 6, there exists a clustering instance (X , d) such that any clustering tree T of
X has the following property. There exists S ⊆ X and there exists k-clustering
CS which satisfies λ-center separation such that m(CS) = t, r(CS) = r and the
following holds. If |X \ S| ≥ 3t

2 + 5, then T doesn’t capture CS .

Theorem 15. Given the number of clusters k and parameters r and t. For all
λ ≤ 6 there exists (X , d) such that any list L (of clusterings of X) has the
following property. There exists S ⊆ X and there exists clustering CS which
satisfies λ-center separation such that m(CS) = t, r(CS) = r and the following
holds. If |L| < 2

k
2 and |X \ S| ≥ k

2 (3t(CS)
2 + 5), then L doesn’t capture CS .

A Proofs of Missing Lemmas and Theorems

Proof of Theorem 2 Fix any S ⊆ X . Let C∗
S = {S∗

1 , . . . , S∗
k} be a clustering of

S such that m(C∗
S) = t and C∗

S has (α, η)-center proximity. Denote by ri := r(S∗
i)

and r = max ri. Define Y C
B := {Ci ∈ C : Ci ⊆ B or |B ∩ Ci| ≥ t/2}. Note that

whenever a ball B satisfies the sparse-distance condition, all the clusters in Y C(l)

B

are merged together and the clustering C(l+1) is updated. We will prove the
theorem by proving two key facts.

F.1 If the algorithm merges points from a good cluster S∗
i with points from

some other good cluster, then at this step the distance being considered
d = d(p, q) > ri.

F.2 When the algorithm considers the distance d = ri, it merges all points from
S∗

i (and possibly points from X \ S) into a single cluster Ci. Hence, there
exists a node in the tree Ni which contains all the points from S∗

i and no
points from any other good cluster S∗

j .

Note that the theorem follows from these two facts. Similar reasoning was also
used in proof of Lemma 3 in [5]. We now prove both of these facts formally.
Proof of Fact. F.1 Let C(l) = {C1, . . . , Ck′} be the current clustering of X . Let
l + 1 be the first merge step which merges points from the good cluster S∗

i with
points from some other good cluster. Let p, q ∈ X be the pair of points being
considered at this step and B = B(p, d(p, q)) the ball that satisfies the sparse
distance condition at this merge step. Denote by Y = Y C(l)

B . We need to show
that d(p, q) > ri. To prove this, we need Claim 1 below.

Claim 1. Let p, q ∈ X and B, Y , S∗
i and C(l) be as defined above. If d(p, q) ≤ r,

then B ∩ S∗
i 	= ∅ and there exists n 	= i such that B ∩ S∗

n 	= ∅.
l +1 is the first step which merges points from S∗

i with some other good cluster.
Hence, ∃Ci ∈ Y such that Ci ∩ S∗

i 	= ∅ and ∀n 	= i, Ci ∩ S∗
n = ∅. Also, ∃Cj ∈ Y

such that Cj ∩ S∗
j 	= ∅ for some S∗

j and Cj ∩ S∗
i = ∅.

Finding Meaningful Cluster Structure Amidst Background Noise 351

Ci ∈ Y . Hence, Ci ⊆ B or |Ci ∩B| ≥ t/2. The former is trivial. In the latter,
for the sake of contradiction, assume that B contains no points from S∗

i . This
implies that B∩Ci ⊆ B∩{X \S} and |B∩{X \S}| ≥ t/2. This is a contradiction.
The case when Cj ∈ Y is identical. �

Claim 2. Let the framework be as given in Claim 1. Then, d(p, q) > ri.

If d(p, q) > r, then the claim follows trivially. In the other case, from Claim1, B
contains pi ∈ S∗

i and pj ∈ S∗
j . Let ri = d(ci, qi) for some qi ∈ S∗

i .
d(ci, qi) < 1

αd(qi, cj) < 1
α [1αd(pi, pj) + 1

αd(ci, qi) + d(pi, pj) + 2d(ci, qi)] This
implies that (α2−2α−1)d(qi, ci) < (α+1)d(pi, pj). For α ≥ 2+

√
7, this implies

that d(ci, qi) < d(pi, pj)/2 which implies d(ci, qi) < d(p, q). This result was also
stated in [5]. �
Proof of Fact F.2 Let C(l) = {C1, . . . , Ck′} be the current clustering of X . Let
l + 1 be the merge step when p = si and q = qi such that d(si, qi) = ri. We will
prove that the ball B = B(si, qi) satisfies the sparse-distance condition.

Claim 3. Let si, qi, ri, B and Y be as defined above. Then, B satisfies the
sparse distance condition and for all C ∈ Y , for all j 	= i, C ∩ S∗

j = ∅.
|B| = |S∗

i | ≥ t. Observe that, for all C ∈ C(l), |C| = 1 or |C| ≥ t.

• Case 1. |C| = 1. If C ∩ B 	= ∅ =⇒ C ⊆ B = S∗
i .

• Case 2. |C| ≥ t. C ∩ B 	= ∅. Let h(C) denote the height of the cluster in the
tree T .

• Case 2.1. h(C) = 1. In this case, there exists a ball B′ such that B′ = C.
We know that r(B′) ≤ ri ≤ r. Hence using Claim 2, we get that for all
j 	= i, B′ ∩ S∗

j = ∅. Thus, |B′ \ S∗
i | ≤ t/2 =⇒ |B ∩ C| = |C| − |C \ B| =

|C| − |B′ \ S∗
i | ≥ t/2. Hence, C ∈ Y .

• Case 2.2. h(C) > 1. Then there exists some C ′ such that h(C ′) = 1 and
C ′ ⊂ C. Now, using set inclusion and the result from the first case, we
get that |B ∩ C| ≥ |B ∩ C ′| ≥ t/2. Hence, C ∈ Y . Using Claim 2, we get
that for all j 	= i, C ∩ S∗

j = ∅. �

Proof of Theorem 4 Let X , B1, B2, B
′
1, B

′
2 be as shown in Fig. 1. Let t1 = t

2 +1
and t2 = t

2 −2. For α ≤ 2+
√

3, clusterings CS = {B1, B2, B3, . . . , Bk} and CS′ =
{ B′

1, B
′
2, B3, . . . , Bk} satisfy (α, 1)-center proximity and m(CS) = m(C′

S) = t.

•
Pt2

α − 2 •
P1

1 •
Pt1

α − 2 •
P1

1 •
Pt2

1 •
P1

α − 2 •
Pt1

1 •
P1

α − 2 •
Pt2

10α •
B3

α •
B4

. •
Bk

k − 2

B1 B′
1 B2 B′

2

Fig. 1. X ⊆ R such that no tree can capture all the (α, η)-proximal clusterings.

352 S. Kushagra et al.

Now, a simple proof by contradiction shows that there doesn’t exist a tree T
and prunings P and P ′ such that P respects CS and P ′ respects CS′ . �
Proof of Theorem 5 The clustering instance X is an extension of Fig. 1.
Let G1 = {B1, B

′
1, B2, B

′
2} be the balls as in Fig. 1. Now, construct G2 =

{B3, B
′
3, B4, B

′
4} exactly identical to G1 but far. In this way, we construct k/2

copies of G1. �
Proof of Theorem 6 Let X ⊆ R be as shown in Fig. 2. Let t′ = t

2 − 1 and let
B1, B2, B3, B

′
1, B′

2, B
′
3, B

′′
1 , B′′

2 and B′′
3 be as shown in Fig. 2. For α ≤ 2

√
2 + 3,

clusterings CS = {B1, B2, B3, . . . , Bk}, CS′ = { B′
1, B

′
2, B3, . . . , Bk} and C′′

S =
{ B′′

1 , B′′
2 , B3, . . . , Bk} satisfy (α, 1)-center proximity. Also, m(CS) = m(C′

S) =
m(C′′

S) = t. Arguing similarly as in Theorem 4 completes the proof. �

•
Pt′

α − 3•
P2

2 •
Pt′

α − 3•
P2

2 •
Pt′

α − 3•
P2

2 •
Pt′

2 •
P2

α − 3•
Pt′

.•
P2

•
Pt′

2 •
P2

α − 3•
Pt′

2 α − 3 10α •
B3

. •
Bk

k − 2

B1 B′
1 B′′

1 B2 B′
2 B′′

2

Fig. 2. X ⊆ R such that no algorithm can capture all the α-proximal clusterings.

Proofs of Theorems 7, 15 and 13 have the exact same ideas as the proof of
Theorem 5. To prove the lower bound in the list model, instance constructed in
Theorem 5 is a simple extension of the instance in Theorem 4. The instances for
the proof of Theorems 7, 15 and 13 are similarly constructed as extensions of
their respective tree lower bound instances (Theorems 6, 14 and 12).

Proof of Theorem 8 We will show that C∗
X has strong stability ([4]) which will

complete the proof (Theorem 8 in [4]). Let A ⊂ C∗
i and B ⊆ C∗

j . Let p ∈ A and
q ∈ C∗

i \A be points which achieve the minimum distance between A and C∗
i \A.

If ci ∈ A then d(p, q) ≤ d(ci, q) ≤ r. If ci ∈ C∗
i \ A then d(p, q) ≤ d(p, ci) ≤ r.

Hence, dmin(A,C∗
i \ A) ≤ r. Similarly, we get that dmin(A,B) > r. �

Proof of Theorems 14 and 12 are also identical to the proofs of Theorem6
and 4.

Proof of Theorem 10 Fix S ⊆ X . Denote by ri := r(S∗
i). Let CX =

{C1, . . . , Ck} be the clustering outputed by the algorithm. Let L = {B1, . . . , Bl}
be the list of balls as outputed by Phase 1 of Algorithm3. Let G be the graph as
constructed in Phase 2 of the algorithm. Observe that B = B(si, ri) = S∗

i ∈ L.
WLOG, denote this ball by B(i) and the corresponding vertex in the graph G
by v(i). We will prove the theorem by proving two key facts.

F.1 If Bi1 and Bi2 intersect S∗
i then the vertices vi1 and vi2 are connected.

F.2 If Bi1 intersects S∗
i and Bj1 intersects S∗

j then vi1 and vj1 are disconnected
in G.

Finding Meaningful Cluster Structure Amidst Background Noise 353

Claim 4. Let L, G,B(i) and v(i) be as defined above. Let balls Bi1, Bi2 ∈ L be
such that Bi1 ∩ S∗

i 	= ∅ and Bi2 ∩ S∗
i 	= ∅. Then there exists a path between vi1

and vi2.

Assume that vi1 and v(i) are not connected by an edge. Hence, |Bi1 \B(i)| ≥ t/2.
Since λ > 4, for all j 	= i, Bi1∩S∗

j = ∅. Thus, Bi1\B(i) ⊆ X \S. which contradicts
|Bi1 ∩ {X \ S}| < t/2. �

Claim 5. Let the framework be as in Claim 4. Let Bi1 ∈ L be such that Bi1 ∩
S∗

i 	= ∅ and Bj1 be such that Bj1 ∩ S∗
j 	= ∅. Then vi1 and vj1 are disconnected

in G.

Assume that vi1 and vj1 are connected. Hence, there exists vertices vi and vn such
that vi and vn are connected by an edge in G and Bi ∩ S∗

i 	= ∅ and Bn ∩ S∗
n 	= ∅

for some n 	= i. |Bi ∩ Bn| ≥ t/2. Now, λ ≥ 4, thus Bi ∩ {S \ S∗
i } = ∅ and

Bn ∩ {S \ S∗
n} = ∅. Thus, Bi ∩ Bn ⊆ X \ S which contradicts the sparseness

assumption. �

Theorem 16 (Vapnik and Chervonenkis [14]). Let X be a domain set and
D a probability distribution over X. Let H be a class of subsets of X of finite
VC-dimension d. Let ε, δ ∈ (0, 1). Let S ⊆ X be picked i.i.d according to D of
size m. If m > c

ε2 (d log d
ε + log 1

δ), then with probability 1 − δ over the choice of
S, we have that ∀h ∈ H ∣∣∣∣

|h ∩ S|
|S| − P (h)

∣∣∣∣ < ε

References

1. Ackerman, M., Ben-David, S.: Clusterability: a theoretical study. In: International
Conference on Artificial Intelligence and Statistics, pp. 1–8 (2009)

2. Awasthi, P., Blum, A., Sheffet, O.: Center-based clustering under perturbation
stability. Inf. Process. Lett. 112(1), 49–54 (2012)

3. Balcan, M.-F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communica-
tion complexity and privacy. arXiv preprint arXiv:1204.3514 (2012)

4. Balcan, M.-F., Blum, A., Vempala, S.: A discriminative framework for clustering
via similarity functions. In: Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing, pp. 671–680. ACM (2008)

5. Balcan, M.F., Liang, Y.: Clustering under perturbation resilience. In: Mehlhorn,
K., Pitts, A., Wattenhofer, R., Czumaj, A. (eds.) ICALP 2012, Part I. LNCS, vol.
7391, pp. 63–74. Springer, Heidelberg (2012)

6. Ben-David, S.: Computational feasibility of clustering under clusterability assump-
tions. arXiv preprint arXiv:1501.00437 (2015)

7. Ben-David, S., Haghtalab, N.: Clustering in the presence of background noise.
In: Proceedings of the 31st International Conference on Machine Learning (ICML
2014), pp. 280–288 (2014)

8. Ben-David, S., Reyzin, L.: Data stability in clustering: a closer look. Theor. Com-
put. Sci. 558, 51–61 (2014)

9. Bilu, Y., Linial, N.: Are stable instances easy? Comb. Probab. Comput. 21(05),
643–660 (2012)

http://arxiv.org/abs/1204.3514
http://arXiv.org/abs/1204.3514
http://arxiv.org/abs/1501.00437
http://arXiv.org/abs/1501.00437

354 S. Kushagra et al.

10. Cuesta-Albertos, J.A., Gordaliza, A., Matrán, C., et al.: Trimmed k-means: an
attempt to robustify quantizers. Ann. Stat. 25(2), 553–576 (1997)

11. Dave, R.N.: Robust fuzzy clustering algorithms. In: Second IEEE International
Conference on Fuzzy Systems, pp. 1281–1286. IEEE (1993)

12. Garćıa-Escudero, L.A., Gordaliza, A., Matrán, C., Mayo-Iscar, A.: A general trim-
ming approach to robust cluster analysis. Ann. Stat., 1324–1345 (2008)

13. Reyzin, L.: Data stability in clustering: a closer look. In: Stoltz, G., Vayatis, N.,
Zeugmann, T., Bshouty, N.H. (eds.) ALT 2012. LNCS, vol. 7568, pp. 184–198.
Springer, Heidelberg (2012)

14. Vapnik, V.N., Ya, A.: Chervonenkis: on the uniform convergence of relative
frequencies of events to their probabilities. In: Vovk, V., Papadopoulos, H.,
Gammerman, A. (eds.) Measures of Complexity, pp. 11–30. Springer, Heidelberg
(2015)

A Spectral Algorithm with Additive Clustering
for the Recovery of Overlapping Communities

in Networks

Emilie Kaufmann1(B), Thomas Bonald2, and Marc Lelarge3

1 CNRS & CRIStAL, Université Lille, Villeneuve-d’ascq, France
emilie.kaufmann@univ-lille1.fr

2 Télécom ParisTech, Université Paris-Saclay, Paris, France
3 Inria-ENS, Paris, France

Abstract. This paper presents a novel spectral algorithm with additive
clustering, designed to identify overlapping communities in networks.
The algorithm is based on geometric properties of the spectrum of the
expected adjacency matrix in a random graph model that we call sto-
chastic blockmodel with overlap (SBMO). An adaptive version of the
algorithm, that does not require the knowledge of the number of hid-
den communities, is proved to be consistent under the SBMO when the
degrees in the graph are (slightly more than) logarithmic. The algorithm
is shown to perform well on simulated data and on real-world graphs
with known overlapping communities.

1 Introduction

Many datasets (e.g., social networks, gene regulation networks) take the form
of graphs whose structure depends on some underlying communities. The com-
monly accepted definition of a community is that nodes tend to be more densely
connected within a community than with the rest of the graph. Communities are
often hidden in practice and recovering the community structure directly from
the graph is a key step in the analysis of these datasets. Spectral algorithms
are popular methods for detecting communities [14], that consist in two phases.
First, a spectral embedding is built, where the n nodes of the graph are projected
onto some low dimensional space generated by well-chosen eigenvectors of some
matrix related to the graph (e.g., the adjacency matrix or a Laplacian matrix).
Then, a clustering algorithm (e.g., k-means or k-median) is applied to the n
embedded vectors to obtain a partition of the nodes into communities.

It turns out that the structure of many real datasets is better explained by
overlapping communities. This is particularly true in social networks, in which
the neighborhood of any given node is made of several social circles, that nat-
urally overlap [9]. Similarly, in co-authorship networks, authors often belong
to several scientific communities and in protein-protein interaction networks, a
given protein may belong to several protein complexes [11]. The communities
do not form a partition of the graph and new algorithms need to be designed.
c© Springer International Publishing Switzerland 2016
R. Ortner et al. (Eds.): ALT 2016, LNAI 9925, pp. 355–370, 2016.
DOI: 10.1007/978-3-319-46379-7 24

356 E. Kaufmann et al.

This paper presents a novel spectral algorithm, called Spectral Algorithm with
Additive Clustering (SAAC). The algorithm consists in a spectral embedding
based on the adjacency matrix of the graph, coupled with an additive clustering
phase designed to find overlapping communities. The proposed algorithm does
not require the knowledge of the number of communities present in the network,
and can thus be qualified as adaptive.

SAAC belongs to the family of model-based community detection methods,
that are motivated by a random graph model depending on some underlying
set of communities. In the non-overlapping case, spectral methods have been
shown to perform well under the stochastic block model (SBM), introduced by
Holland and Leinhardt [6]. Our algorithm is inspired by the simplest possible
extension of the SBM to overlapping communities, we refer to as the stochastic
blockmodel with overlaps (SBMO). In the SBMO, each node is associated to
a binary membership vector, indicating all the communities to which the node
belongs. We show that exploiting an additive structure in the SBMO leads to an
efficient method for the identification of overlapping communities. To support
this claim, we provide consistency guarantees when the graph is drawn under
the SBMO, and we show that SAAC exhibit state-of-the-art performance on real
datasets for which ground-truth communities are known.

The paper is structured as follows. In Sect. 2, we cast the problem of detect-
ing overlapping communities into that of estimating a membership matrix in
the SBMO model, introduced therein. In Sect. 3, we compare the SBMO with
alternative random graph models proposed in the literature, and review the algo-
rithms inspired by these models. In Sect. 4, we exhibit some properties of the
spectrum of the adjacency matrix under SBMO, that motivate the new SAAC
algorithm, introduced in Sect. 5, where we also formulate theoretical guarantees
for an adaptive version of the algorithm. Finally Sect. 6 illustrates the perfor-
mance of SAAC on both real and simulated data.

Notation. We denote by ||x|| the Euclidean norm of a vector x ∈ R
d. For any

matrix M ∈ R
n×d, we let Mi denote its i-th row and M·,j its j-th column. For

any S ⊂ {1, . . . , d}, |S| denotes its cardinality and 1S ∈ {0, 1}1×d is a row vector
such that (1S)1,i = 1{i∈S}. The Frobenius norm of a matrix M ∈ R

n×d is

||M ||2F =
n∑

i=1

||Mi||2 =
d∑

j=1

||M·,j ||2 =
∑

1≤i,j≤n

M2
i,j .

The spectral norm of a symmetric matrix M ∈ R
d×d with eigenvalues λ1, . . . , λd

is ||M || = maxi=1..d |λi|. We let SK be the group of permutations of {1, . . . , K}
and for σ ∈ SK Pσ ∈ R

K×K be the permutation matrix associated to σ, defined
by (Pσ)k,l = δσ(k),l.

SAAC for the Recovery of Overlapping Communities in Networks 357

2 The Stochastic Blockmodel with Overlaps (SBMO)

2.1 The Model

For any symmetric matrix A ∈ [0, 1]n×n, let Â be some random symmetric binary
matrix whose entries (Âi,j)i≤j are independent Bernoulli random variables with
respective parameters (Ai,j)i≤j . Then Â is the adjacency matrix of an undirected
random graph with expected adjacency matrix A. In all the paper, we restrict the
hat notation to variables that depend on this random graph. For example, the
empirical degree of node i and empirical maximal degree observed in the random
graph are respectively denoted by d̂i =

∑n
j=1 Âi,j and d̂max = maxi

∑n
j=1 Âi,j ,

whereas the expected degree of node i and expected maximal degree are respec-
tively denoted by di =

∑n
j=1 Ai,j and dmax = maxi

∑n
j=1 Ai,j .

The stochastic block model (SBM) with n nodes and K communities depends
on some mapping k : {1, . . . , n} → {1, . . . , K} that associates nodes to commu-
nities and on some symmetric community connectivity matrix B ∈ [0, 1]K×K . In
this model, two nodes i and j are connected with probability

Ai,j = Bk(i),k(j) = Bk(j),k(i).

Introducing a membership matrix Z ∈ {0, 1}n×K such that Zi,k = 1{k(i)=k}, the
expected adjacency matrix can be written

A = ZBZT .

The stochastic blockmodel with overlap (SBMO) is a slight extension of this
model, in which Z is only assumed to be in {0, 1}n×K and Zi �= 0 for all i.
Compared to the SBM, the rows of the membership matrix Z are no longer
constrained to have only one non-zero entry. Since these n rows give the com-
munities of the respective n nodes of the graph, this means that each node can
now belong to several communities.

2.2 Community Detection with Overlap in an Identifiable SBMO

Given some adjacency matrix Â drawn under the SBMO, our goal is to recover
the underlying communities, that is to build an estimate Ẑ of the membership
matrix Z, up to some permutation of its columns (corresponding to a permu-
tation of the community labels). With K̂ the estimate for the number of com-
munities (K is in general unknown), one has Ẑ ∈ {0, 1}n×K̂ . We introduce two
performance metrics for this problem. The first is related to the number of nodes
that are “well classified”, in the sense that there is no error in the estimate of
their membership vector. The objective is to minimize the number of misclassi-
fied nodes of an estimate Ẑ of Z, defined as MisC(Ẑ, Z) = n if K̂ �= K and

MisC(Ẑ, Z)= min
σ∈SK

|{i : ∃k ≤ K s.t. Ẑi,σ(k) �= Zi,k}|

358 E. Kaufmann et al.

otherwise. The second is the fraction of wrong predictions in the membership
matrix (again, up to a permutation of the community labels). The estimation
error of Ẑ is defined as Error(Ẑ, Z) = 1 if K̂ �= K and

Error(Ẑ, Z)=
1

nK
inf

σ∈SK

||ẐPσ − Z||2F ≤ MisC(Ẑ, Z)
n

otherwise.
The communities of a SBMO can only be recovered if the model is identifiable

in that the equality Z ′B′Z ′T = ZBZT , for some integer K ′ and matrices Z ′ ∈
{0, 1}n×K′

, B′ ∈ [0, 1]K
′×K′

, implies MisC(Z ′, Z) = 0 (and thus K ′ = K),
which means that two SBMO with the same expected adjacency matrices have
the same communities, up to a permutation of the community labels. Sufficient
conditions for the identifiability of a SBMO with parameter K,Z,B are given in
Theorem 1: B should be invertible and each community should contain at least
one pure node, that is a node belonging to this community only.

Theorem 1. We define the following assumptions:

(SBMO1) B is invertible;
(SBMO2) ∀k ∈ {1, . . . , K} there exists i such that Zi,k =

∑K
�=1 Zi,� = 1.

Under assumptions (SBMO1) and (SBMO2), the parameters K,B,Z of the
SBMO are identifiable (up to a permutation of the community labels).

Our choice for SBMO1-2 is motivated by applications to social networks:
homophily will make the matrix B diagonally dominant, hence invertible.
A proof of this theorem, as well as a more complete discussion on identifia-
bility, can be found in the extended version of this paper. In the rest of the
paper, we assume that the conditions (SBMO1) and (SBMO2) are satisfied.

2.3 Subcommunity Detection

Any SBMO with K overlapping communities may be viewed as a SBM with
up to 2K − 1 non-overlapping communities, corresponding to groups of nodes
sharing exactly the same communities in the SBMO and that we refer to as
subcommunities. Let K ′ be the number of subcommunities in the SBMO:

K ′ = |T | , where T = {z ∈ {0, 1}1×K : ∃i : Zi = z}.

The corresponding SBM has K ′ communities indexed by z ∈ T , with commu-
nity connectivity matrix B′ given by B′

y,z = yBzT . It can be checked that
if the initial SBMO satisfies (SBMO1-2) then the corresponding SBM satisfies
identifiability conditions for SBM (B′ is invertible).

This suggests that community detection in the SBMO reduces to commu-
nity detection of the corresponding SBM, for which many efficient algorithms
are known. However, the knowledge of the subcommunities is not sufficient to
recover the initial overlapping communities. It is indeed necessary to map these

SAAC for the Recovery of Overlapping Communities in Networks 359

subcommunities to elements of {0, 1}K \{0}, which is not an easy task: first, the
number of communities K is unknown; second, assuming K is known, there are
up to (2K − 1)! such mappings so that a simple approach by enumeration is not
feasible in general. Moreover, the performance of clustering algorithms degrades
rapidly with the number of communities so that it is preferable to work directly
on the K overlapping communities rather than on the K ′ subcommunities, with
K ′ possibly as large as 2K − 1.

As we will see, the SAAC algorithm directly detects the K overlapping com-
munities using the specific geometry of the eigenvectors of the expected adja-
cency matrix, A. We provide conditions under which these geometric properties
hold for the observed adjacency matrix, Â, which guarantees the consistency of
the algorithm: the K communities are recovered with probability tending to 1
in the limit of a large number of nodes n.

2.4 Scaling

To study the performance of our algorithm when the number of nodes n grows,
we introduce a degree parameter αn so that the expected adjacency matrix of a
graph with n nodes is in fact given by

A =
αn

n
ZBZT ,

with B ∈ [0, 1]K×K independent of n and Z ∈ {0, 1}n×K . Although Z depends
on n, we do not make it explicit in the notation. Observe that the expected
degree of each node grows like αn, since di = αn

(
1
nZiBZT1

)
, where 1 is the

vector of ones of dimension n.
We assume that the set of subcommunities T does not depend on n and that

for all z ∈ T , there exists a constant βz (independent of n) towards which the
proportion of nodes with membership vector z converges:

| {i : Zi = z} |/n → βz > 0. (1)

This implies the existence of positive constants Lz and of a matrix O ∈ R
K×K ,

such that
∀z ∈ T ,

1
n

zBZT1 → Lz, and
1
n

ZT Z → O. (2)

One has di ∼ αnLz for any i such that Zi = z. In the sequel, we assume that
the graph is sparse in the sense that αn → ∞ with αn/n → 0. Observe also that
Ok,k is the (limit) proportion of nodes that belong to community k while Ok,l

is the (limit) proportion of nodes that belong to communities k and l, for k �= l.
Hence we refer to O as the overlap matrix.

In the following, we will slightly abuse notation by writing O = 1
nZT Z and

di = αnLz if Zi = z, although these equalities in fact hold only in the limit.

360 E. Kaufmann et al.

3 Related Work

Models. Several random graph models have been proposed in the literature to
model networks with overlapping communities. In these models, each node i is
characterized by some community membership vector Zi that is not always a
binary vector, as in the SBMO. In the Mixed-Membership Stochastic Blockmodel
(MMSB) [1], introduced as the first model with overlaps, membership vectors are
probability vectors drawn from a Dirichlet distribution. In this model, condition-
ally to Zi and Zj , the probability that nodes i and j are connected is ZiBZT

j

for some community connectivity matrix B, just like in SBMO. However, the
fact that Zi and Zj are probability vectors makes the model less interpretable.
In particular, the probability that two nodes are connected does not necessar-
ily increase with the number of communities that they have in common, as
pointed out by Yang and Leskovec [16], which contradicts a tendency empiri-
cally observed in social networks.

A first model that relies on binary membership vectors is the Overlapping
Stochastic Block Model (OSBM) [8], in which two nodes i, j are connected with
probability σ(ZiWZT

j + ZiV + ZjU + w), where W ∈ R
K×K
+ , U, V ∈ R

K
+ ,

w ∈ R, and σ is the sigmoid function. Now the probability of connectivity of
two nodes increases with the number of communities shared, but the particular
form of the probability of connection makes the model hard to analyze. Given a
community connectivity matrix B, another natural way to build a random graph
model based on binary membership vectors is to assume that two nodes i and j
are connected if any pair of communities k, l to which these nodes respectively
belong can explain the connection. In other words, i and j are connected with
probability 1 − ∏K

k,l=1(1 − Bk,l)Zi,kZj,l . Denoting by Q the matrix with entries
Qk,l = − log(1 − Bk,l), this probability can be written 1 − exp

(−ZiQZT
j

) �
ZiQZT

j , where the approximation is valid for sparse networks. In this case, the
model is very close to the SBMO, with connectivity matrix Q. The Community-
Affiliation Graph Model (AGM) [16] is a particular case of this model in which
B is diagonal. The SBMO with a diagonal connectivity matrix can be viewed as
a particular instance of an Additive Clustering model [13] and is also related to
the ‘colored edges’ model [4], in which Âi,j is drawn from a Poisson distribution
with mean θiθ

T
j , where θi ∈ R

1,K is the (non-binary) membership vector of
node i. Letting θi =

√
Bi,iZi and approximating the Poisson distribution by a

Bernoulli distribution, we recover the SBMO.
The Overlapping Continuous Community Assignment Model (OCCAM),

proposed by Zhang et al. [19] relies on overlapping communities but also on
individual degree parameters, which generalizes the degree-corrected stochas-
tic blockmodel [7]. In the OCCAM, a degree parameter θi is associated to
each node i. Letting Θ = Diag(θi) ∈ R

n×n, the expected adjacency matrix
is A = ΘZBZT Θ, with a membership matrix Z ∈ R

n×K . Identifiability of
the model is proved assuming that B is positive definite, each row Zi satisfies
||Zi|| = 1, and the degree parameters satisfy n−1

∑n
i=1 θi = 1. The SBMO can

SAAC for the Recovery of Overlapping Communities in Networks 361

be viewed as a particular instance of the OCCAM, for which we provide new
identifiability conditions, that allow for binary membership vectors.

Algorithms. Several algorithmic methods have been proposed to identify over-
lapping community structure in networks [15]. Among the model-based methods,
that rely on the assumption that the observed network is drawn under a random
graph model, some are approximations of the maximum likelihood or maxi-
mum a posteriori estimate of the membership vectors under one of the random
graph models discussed above. For example, under the MMSB or the OSBM the
membership vectors are assumed to be drawn from a probability (prior) distrib-
ution, and variational EM algorithms are proposed to approximate the posterior
distributions [1,8]. However, there is no proof of consistency of the proposed
algorithms. In the MMSB, a different approach that uses tensor power iteration
is proposed in [2] to compute an estimator derived using the moments method,
for which the first consistency results are provided.

The first occurrence of a spectral algorithm to find overlapping communities
goes back to [18]. The proposed method is an adaptation of spectral clustering
with the normalized Laplacian (see e.g., [10]) with a fuzzy clustering algorithm
in place of k-means, and its justification is rather heuristic. Another spectral
algorithm has been proposed by [19], as an estimation procedure for the (non-
binary) membership matrix under the OCCAM. The spectral embedding is a
row-normalized version of Û Λ̂1/2 ∈ R

n×K , with Λ̂ the diagonal matrix contain-
ing K leading eigenvalues of Â and Û the matrix of associated eigenvectors. The
centroids obtained by a k-median clustering algorithm are then used to estimate
Z. This algorithm is proved to be consistent under the OCCAM, when moreover
degree parameters and membership vectors are drawn according to some distri-
butions. Similar assumptions have appeared before in the proof of consistency
of some community detection algorithms in the SBM or DC-SBM [20]. Our con-
sistency results are established for fixed parameters of the model, and hold for
relatively sparse graph (αn � log n), unlike those obtained under the OCCAM.

4 Spectral Analysis of the Adjacency Matrix
in the SBMO

Let Z be the set of membership matrices that contains at least one pure node
per community:

Z = {Z ∈ {0, 1}n×K , ∀k ≤ K,∃i ≤ n : Zi = 1{k}}.

From the conditions (SBMO1) and (SBMO2), the expected adjacency matrix
A = ZBZT is of rank K and Z belongs to Z. Let U ∈ R

n×K be a matrix whose
columns u1, . . . , uK ∈ R

n are normalized orthogonal eigenvectors associated to
the K non-zero eigenvalues of A. The structure of U is described in the follow-
ing proposition. Its first statement follows from the fact that the eigenvectors
u1, . . . , uK form a basis of Im(A) ⊆ Im(Z). The proof of the second statement,
provided below, is also the key ingredient of the proof of Theorem1.

362 E. Kaufmann et al.

Proposition 1. 1. ∃X ∈R
K×K such that U = ZX.

2. If U = Z ′X ′ for some Z ′ ∈ Z, X ′ ∈ R
K×K , then there exists σ ∈ SK such

that Z = Z ′Pσ.

Proof of Statement 2. Let Z,Z ′ ∈ Z and assume that there exist invertible
matrices X,X ′ such that U = ZX = Z ′X ′. As for all k = 1, . . . ,K there
exists some i such that Zi = 1{k}, the k-th row of X is a sum of rows in X ′:
Xk = Z ′

iX
′ =

∑
l∈Sk

X ′
l , for some Sk ⊂ {1, . . . , K}. Similarly, each row of X ′ is

a sum of rows in X, thus for any k �= l, there exist K integers a1, . . . , aK :

Xk + Xl =
K∑

m=1

amXm.

If Sk ∩Sl �= ∅, there exists some m such that am ≥ 2. But this is in contradiction
with the fact that X is invertible. Hence, Sk ∩Sl = ∅ for all k �= l. The only way
for the Sk to be pairwise disjoint is that there exists a permutation σ such that
X ′ = PσX. Since ZX = Z ′X ′ and X is invertible, this implies Z = Z ′Pσ. ��
This decomposition reveals in particular an additive structure in U : each row Ui

is the sum of rows of pure nodes associated to the communities to which node i
belongs. Fixing for each k a pure node ik in community k, one has indeed

∀i, Ui =
K∑

k=1

Uik
1(Zi,k=1) (3)

Proposition 1 can also be used to establish the following result that relates the
eigenvectors of A to those of a K × K matrix featuring the overlap matrix O
introduced in Sect. 2.4. Note that for any x ∈ R

K , we have xT Ox = |Zx|2/n so
that O has the same rank as Z, equal to K. Hence O is invertible and positive
definite, thus the matrix O1/2 (resp. its inverse) is well defined.

Proposition 2. Let μ �= 0 and M0 = O1/2BO1/2. u = Zx is an eigenvector of
A associated to αnμ if and only if O1/2x is an eigenvector of M0 associated to
μ. In particular, the non-zero eigenvalues of A are of the same order as αn.

In practice, we observe the adjacency matrix Â, which is a noisy version of
A. Our hope is that the K leading eigenvectors of Â are not too far from the K
leading eigenvectors of A, so that, in view of Proposition 1, the solution in Z ′ of
the following optimization problem provides a good estimate of Z:

min
Z′∈Z,X′∈RK×K

||Û − Z ′X ′||F ,

where Û is the matrix of the K normalized eigenvectors of Â associated to the
K largest eigenvalues. If K is unknown, one should also find an estimate K̂, and
let Û ∈ R

n×K̂ be the matrix of K̂ leading eigenvectors.
This hope is supported by the following result on the perturbation of the

largest eigenvectors of the adjacency matrix of any random graph, that also
provides an adaptive procedure to select the eigenvectors to use in the spectral
embedding. λmin(A) is the smallest absolute value of a non-zero eigenvalue of A.

SAAC for the Recovery of Overlapping Communities in Networks 363

Lemma 1. Let δ ∈]0, 1[and η ∈]0, 1/2[. Let Û be a matrix formed by orthog-
onal eigenvectors of Â with an associated eigenvalue λ that satisfy |λ| ≥
(2 (1 + η) d̂max log(4n/δ))1/2, and K̂ be the number of such eigenvectors. Let U
be matrix of K̂ largest eigenvectors of A. There exists Cη, Dη > 0 such that if

dmax ≥ Cη log (4n/δ) and λmin(A)2/dmax > Dη log (4n/δ) ,

then with probability larger than 1−δ, K̂ = rank(A) and there exists P̂ ∈ On(R):

∣∣∣
∣∣∣Û − UP̂

∣∣∣
∣∣∣
2

F
≤ 32

(
1 +

η

η + 2

) (
dmax

λmin(A)2

)
log

(
4n

δ

)
.

The proof of Lemma 1 relies on the use of a matrix concentration inequality
to bound the spectral norm of Â − A, and on results from linear algebra that
relate the eigenvalues and eigenvectors of two matrices that are close in spectral
norm (mostly the Davis-Kahan theorem, see, e.g. [12]). A detailed proof can be
found in the extended version of this paper.

Under the SBMO, we have λmin(A) = Θ(αn) in view of Proposition 2; since
dmax = Θ(αn), we need αn/ log(n) → +∞ to use Lemma 1 to prove that Û is
a good estimate of U . We give in the next section sufficient conditions on the
degree parameter αn to obtain asymptotically exact recovery of the communities.

5 The SAAC Algorithm

The spectral structure of the adjacency matrix suggests that Ẑ defined below is
a good estimate of the membership matrix Z in the SBMO:

(P) : (Ẑ, X̂) ∈ argmin
Z′∈Z,X′∈RK×K

||Û − Z ′X ′||2F , (4)

where Û ∈ R
n×K is the matrix of the K normalized leading eigenvectors of Â.

In practice, solving (P) is very hard, and the SAAC algorithm, introduced in
Sect. 5.1, solves a relaxation of (P) in which Z ′ is only constrained to have binary
entries. In Sect. 5.2, we prove that the estimate Ẑ in (4) is consistent.

5.1 Description of the Algorithm

The spectral algorithm with additive clustering (SAAC) consists in first com-
puting a matrix Û ∈ R

n×K whose columns are normalized eigenvectors of Â
associated to the K largest eigenvalues (in absolute value), and then computing
the solution of the following optimization problem:

(P)′ : (Ẑ, X̂) ∈ argmin
Z′∈{0,1}n×K :∀i,Z′

i �=0

X′∈R
K×K

||Z ′X ′ − Û ||2F .

(P)′ is reminiscent of the (NP-hard) k-means problem, in which the same func-
tion is minimized under the additional constraint that ||Zi|| = 1 for all i. The

364 E. Kaufmann et al.

name of the algorithm highlights the fact that, rather than finding a clustering
of the rows of Û , the goal is to find Ẑ, containing pure nodes î1, . . . , îk, that
reveals the underlying additive structure of Û : for all i, Ûi is not too far from∑

k Ûîk
1(Ẑi,k=1), in view of (3).

In practice, just like k-means, we propose to solve (P)′ by an alternate mini-
mization over Z ′ and X ′. Let m be some upper bound on the maximum overlap
Omax = max{||z||2, z ∈ T }, provided to limit the combinatorial complexity of
the algorithm. For a fixed X ′, the optimization in Z ′ consists in letting the
i-th row be Z ′

i = argminz∈{0,1}1×K ||zX ′ − Ûi||, with the extra condition that
1 ≤ ||z||2 ≤ m. Given Z ′, as long as the matrix Z ′T Z ′ is invertible, there is
a closed form for the optimization in X ′, given by X ′ = (Z ′T Z ′)−1Z ′T Û . If
Z ′T Z ′ is not invertible, Z ′ does not contain one pure node for each community,
which should be the case for a reasonable solution. If this happens, we therefore
re-initialize X ′.

Alternate minimization is guaranteed to converge, in a finite number of steps,
towards a local minimum of the objective. However, the convergence is very
sensitive to initialization. We use a k-means++ initialization (see [3]), which is
a randomized procedure that picks as initial centroids rows from Û that should
be far from each other. For the first centroid, we choose at random a row in
Û corresponding to a node whose degree is smaller than the median degree in
the network. We do so because in the SBMO model, pure nodes tend to have
smaller degrees and we expect the algorithm to work well if the initial centroids
are chosen not too far from rows in Û corresponding to pure nodes.

If K is unknown, Theorem 2 suggests an adaptive version of the algorithm:
the columns of Û are normalized eigenvectors of Â associated to eigenvalues
λ such that |λ| ≥ (2 (1 + η) d̂max log(4n1+r))1/2, for some positive constants η
and r. While heuristics do exist for selecting the number of clusters in spectral
clustering (e.g. [14,17]), this thresholding procedure is supported by theory for
networks drawn under SBMO. It is reminiscent of the USVT algorithm of [5],
that can be used to estimate the expected adjacency matrix in a SBM.

5.2 Consistency of an Adaptive Estimator

We give in Theorem 2 theoretical properties for a slight variant of the estimate Ẑ
in (4), that is solution of the optimization problem (Pε) defined therein, featuring
the set of membership matrices for which the proportion of pure nodes in each
community is larger than ε:

Zε(K) = {Z ′ ∈ Z : ∀k, |{i : Z ′
i = 1{k}}| > εn}.

Recall the notation introduced in (1) and (2). We assume that ε is smaller than
mink β1{k} , the smallest proportion of pure nodes, and let Lmax = maxz Lz, so
that dmax = αLmax.

The estimator analyzed is adaptive, for it relies on an estimate K̂ of the
number of communities, and on Ẑε = Zε(K̂). We establish its consistency for any
fixed matrices B and Z satisfying (SBMO1) and (SBMO2). It is to be noted that

SAAC for the Recovery of Overlapping Communities in Networks 365

while the consistency result for the OCCAM algorithm [19] applies to moderately
dense graphs (αn has to be of order nα for some α > 0), our result handle
relatively sparse graphs, in which αn is of order (log(n))1+c for some c > 0.
Theorem 2, whose proof is postponed to Sect. 5.3, features constants defined
below, that are related to the overlap matrix O. Note that d0 in Definition 1 is
indeed positive because the matrix O−1/2 is invertible.

Definition 1. Introducing the symmetric K × K matrix M0 := O1/2BO1/2,

μ0 = min{|λ| : λ ∈ sp(M0) \ {0}}, d0 := min
z∈{−1,0,1,2}1×K ,z �=0

∣∣∣
∣∣∣zO−1/2

∣∣∣
∣∣∣ > 0.

Theorem 2. Let η ∈]0, 1/2[and r > 0. Let Û be a matrix formed by the
orthogonal eigenvectors of Â with an associated eigenvalue λ satisfying |λ| ≥
(2 (1 + η) d̂max log(4n1+r))1/2. Let K̂ be the number of such eigenvectors. Let

(Pε) : (Ẑ, X̂) ∈ argmin
Z′∈Ẑε,X′∈RK̂×K̂

||Z ′X ′ − Û ||2F .

Assume that αn

log n → ∞ and ε < mink β1{k} . There exists two constants C1 > 0
and C0(η) > 0 such that if αn is larger than (1 + r)(C0(η)/(Lmaxμ

2
0)) log(n),

then, for n large enough, with probability larger than 1 − n−r, K̂ = K and

MisC(Ẑ, Z)
n

≤ C1
K2Lmax

d20μ
2
0

log(4n1+r)
αn

.

5.3 Proof of Theorem2

Let U ∈ R
n×K be a matrix whose columns are K independent normalized eigen-

vectors of A associated to the non-zero eigenvalues. The proof strongly relies on
the following decomposition of U , that is a consequence of Proposition 2.

Lemma 2. There exists a matrix V ∈ OK(R) of normalized eigenvectors of the
matrix M0 = O1/2BO1/2 such that U = ZX with X = n−1/2O−1/2V .

We state below a crucial result characterizing the sensitivity to noise of the
decomposition U = ZX of Proposition 2, in terms of the quantity d0 introduced
in Definition 1. Due to space limitation, its proof is provided in the extended
version of this paper. It builds on fact that d0 provides a lower bound on the
norm of some particular linear combinations of the rows of X: indeed, one has

∀ z ∈ {−1, 0, 1, 2}1×K\{0}, ||zX|| ≥ d0/
√

n.

Lemma 3. (Robustness to Noise). Let Z ′ ∈ R
n×K , X ′ ∈ R

K×K and N ⊂
{1, . . . , n}. Assume that

1. ∀i ∈ N , ||Z ′
iX

′ − Ui|| ≤ d0
4K

√
n

2. there exists (i1, . . . , iK), (j1, . . . , jK) ∈ (N K): ∀k ∈ [1,K], Zik
= Z ′

jk
= 1{k}

366 E. Kaufmann et al.

Then there exists a permutation matrix Pσ such that for all i ∈ N , Zi = (Z ′Pσ)i.

Let Û the matrix defined in Theorem2. From Lemma 1 and the fact
that dmax = αnLmax (by definition) and λmin(A) = αμ0 (by Proposi-
tion 2), there exists C0(η) > 0 and P̂ ∈ OK(R) such that if αn ≥ (1 +
r)(C0(η)/(Lmaxμ

2
0)) log(n), then with probability larger than 1 − n−r, K̂ = K

and

||Û − UP̂ ||2F ≤ 32
(

1 +
η

η + 2

)
Lmax

μ2
0

(
log(4n1+r)

αn

)
. (5)

In the sequel, we assume that K̂ = K and that this inequality holds.
The estimate Ẑ,X̂ is then defined by

(Ẑ, X̂) ∈ argmin
Z′∈Zε(K),X′∈RK×K

||Z ′X ′ − Û ||2F .

Let X̂1 := X̂P̂−1 and (Z,X) as in Lemma 2. As ε < mink β1{k} , one has Z ∈ Zε.
Thus, using notably the above definition of (Ẑ, X̂),

||ẐX̂1− U ||F ≤ ||ẐX̂P̂−1− Û P̂−1||F + ||Û P̂−1− U ||F = ||ẐX̂− Û ||F + ||Û− UP̂ ||F
≤ ||ZXP̂ − Û ||2F + ||Û − UP̂ ||F = 2||UP̂ − Û ||F . (6)

We now introduce the set of nodes

Nn =
{

i : ||ẐiX̂1 − Ui|| ≤ d0
4K

√
n

}

and show that Assumptions 1 and 2 in Lemma3 are satisfied for this set and the
pair (Ẑ, X̂1), under the condition

64K2/d20||Û − UP̂ ||2F ≤ ε. (7)

By definition of Nn, Assumption 1 holds. We show that, as required by assump-
tion 2., Nn contains one pure node in each community relatively to Z and Ẑ.

First, using notably (6), the cardinality of N c
n is upper bounded as

|N c
n|

n
=

∑
i∈N c

n
1

n
≤ 16K2

d20

n∑

i=1

||ẐiX̂1 − Ui||2 ≤ 64K2

d20
||Û − UP̂ ||2F .

If (7) holds, |N c
n| ≤ εn. As Ẑ ∈ Zε(K), for all k ≤ K the cardinality of the set of

nodes i such that Ẑi = 1{k} is strictly larger than εn, hence this set cannot be
included in N c

n. Thus, for all k, there exists jk ∈ Nn such that Ẑjk
= 1{k}. As ε is

smaller than mink β1{k} , the minimal proportion of pure nodes in a community,
by a similar argument the set of nodes i such that Zi = 1{k} cannot be included
in N c

n either. Thus for all k, there exists ik ∈ Nn such that Zik
= 1{k}.

Applying Lemma 3, there exists σ ∈ SK such that ∀i ∈ Nn, Ẑi,σ(k) = Zi,k:
up to a permutation of the community labels, all the communities of nodes in Nn

SAAC for the Recovery of Overlapping Communities in Networks 367

are recovered. This implies that whenever αn ≥ (1+ r)(C0(η)/(Lmaxμ
2
0)) log(n),

with probability larger than 1 − n−r,

MisC(Ẑ, Z)

n
≤ |N c

n|
n

≤ 64K2

d2
0

||Û − UP̂ ||2F ≤ 2048K2Lmax

d2
0μ

2
0

(
1+

η

η+2

)
log(4n1+r)

αn
,

provided that the final upper bound is smaller that ε (which implies that the
condition (7) is satisfied), which is the case for n large enough.

6 Experimental Results

6.1 Simulated Data

We compare SAAC to (normalized) spectral clustering using the adjacency
matrix, referred to as SC and to the spectral algorithm proposed by Zhang et al.
[19] to fit the random graph model called OCCAM. We refer to this algorithm as
the OCCAM spectral method. First, we generate networks from SBMO models
with n = 500 nodes, K = 5 communities, αn = log1.5(n), B = Diag([5, 4, 3, 3, 3])
and Z drawn at random in such a way that each community has a fraction of pure
nodes equal to p/K for some parameter p and the size of the maximum overlap
Omax is smaller than 3. Figure 1 (left) shows the error of each method as a func-
tion of p, averaged over 100 networks. SAAC significantly outperforms OCCAM,
especially when there is a large overlap between communities. As expected, both
methods outperform SC, which is designed to handle non-overlapping commu-
nities, except when the amount of overlap gets really small. To have a more
fair comparison, we also draw networks under a modified version of the model
used before, in which the rows of Z are normalized, so that for all i, one has
||Zi|| = 1, which is a particular instance of the OCCAM (right). The OCCAM
spectral algorithm, designed to fit this model, performs slightly better than the
other methods, but the gap between OCCAM and SAAC is very narrow.

Fig. 1. Comparison of SC, SAAC and the OCCAM spectral algorithm under instances
of SBMO (left) and OCCAM (right) random graph models.

368 E. Kaufmann et al.

6.2 Real Networks

The OCCAM spectral algorithm was shown to outperform other existing algo-
rithms on both simulated data and real data, namely ego networks [9]. Nodes
in an ego network are the set of friends of a given central node in a social net-
work, and edges indicate friendship relationships between these nodes. We first
apply SAAC on networks from this dataset, that naturally contain overlap. To
do so, we use the pre-processing of the networks described in [19], that especially
keeps communities if they have at least a fraction of pure nodes equal to 10 % of
the network. Additionally, because the focus is on overlapping communities, we
keep only networks for which the fraction of nodes that belong to more than one
community is larger than 1 %. This leads us to keep only 6 (out of 10) Facebook
networks (labeled 0, 414, 686, 698, 1912 and 3437 in the dataset) and 26 (out of
133) Google Plus networks from the original dataset.

Table 1 presents the characteristics of the Facebook networks used, and the
performance of SC, OCCAM and SAAC averaged over the 6 networks used (with
the standard deviation added). For each algorithm, the estimation error is dis-
played but also the fraction of false positive (FP) and false negative (FN) entries
in Ẑ The parameter c corresponds to the average number of communities per
node, c =

∑
i,k Zi,k/n and Omax is the maximum size of an overlap. OCCAM

and SAAC have comparable performance, but there is no significant improve-
ment over spectral clustering. This can be explained by the fact that the amount
of overlap (c) is very small in these datasets. The same tendency was observed
on the Google Plus networks.

Table 1. Spectral algorithms recovering overlapping friend circles in ego-network.

n K c Omax FP FN Error

SC 190 3.17 1.09 2.17 0.200 0.139 0.120

(173) (1.07) (0.06) (0.37) (0.110) (0.107) (0.083)

OCCAM 190 3.17 1.09 2.17 0.176 0.113 0.127

(173) (1.07) (0.06) (0.37) (0.176) (0.084) (0.102)

SAAC 190 3.17 1.09 2.17 0.125 0.101 0.102

(173) (1.07) (0.06) (0.37) (0.067) (0.062) (0.049)

We then try SAAC on co-authorship networks built from DBLP in the follow-
ing way. Nodes correspond to authors and we fix as ground-truth communities
some conferences (or group of conferences): an author belongs to some commu-
nity if she/he has published at least one paper in the corresponding conference(s).
We then build the network of authors by putting an edge between authors
if they have published a paper together in one of the considered conferences.
We present results for some conferences with machine learning in their scopes:
ICML, NIPS, and two theory-oriented conferences that we group together, ALT
and COLT. We compare the three spectral algorithms in terms of estimation

SAAC for the Recovery of Overlapping Communities in Networks 369

error and false positive/false negative rates. Results are presented in Table 2,
in which the estimated amount of overlap ĉ =

∑
i,k Ẑi,k/n is also reported. In

this case, SAAC and OCCAM significantly outperform SC, although the error
is relatively high. The amount of overlap is under-estimated by both algorithms,
but SAAC appears to recover slightly more overlapping nodes. The difficulty of
recovering communities in that case may come from the fact that the networks
constructed are very sparse.

Table 2. Spectral algorithms recovering overlapping machine learning conferences

7 Conclusion

Most existing algorithms for community detection assume non overlapping com-
munities. Although they may in principle be used to detect all subcommunities
generated by the various overlaps, this is not sufficient to recover the initial
communities due to the combinatorial complexity of the corresponding map-
ping. We have proposed a spectral algorithm, SAAC, that works directly on the
overlapping communities, using the specific geometry of the eigenvectors of the
adjacency matrix under the SBMO. We have proved the consistency of this algo-
rithm under the SBMO, provided each community has some positive fraction of
pure nodes and the expected node degree is at least logarithmic, and tested
its performance on both simulated and real data. This work has raised many
interesting issues. First, it would be worth relaxing the assumption that each
community has some positive fraction of pure nodes. Next, preliminary exper-
iments on simulated data have shown threshold phenomena in the very sparse
regime (αn = O(1)) that should be further explored. Finally, the proof of con-
sistency assumes that the underlying (NP-hard) optimization problem is solved
exactly while this is not feasible in practice and heuristics need to be applied, like
the proposed alternate optimization routine. Understanding the impact of these
heuristics on the performance of the algorithm is an interesting future work.

Acknowledgment. The authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR) under reference ANR-11-JS02-005-01 (GAP).

370 E. Kaufmann et al.

References

1. Airoldi, E., Blei, D., Fienberg, S., Xing, E.: Mixed membership stochastic block-
models. J. Mach. Learn. Res. 9, 1981–2014 (2008)

2. Anandkumar, A., Ge, R., Hsu, D., Kakade, S.: A tensor spectral approach to
learning mixed membership community models. JMLR 15(1), 2239–2312 (2014)

3. Arthur, D., Vassilvitskii, S.: k-means++: the advantage of careful seeding. In:
Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (2007)

4. Ball, B., Karrer, B., Newman, M.E.: An efficient and principled way for detecting
communities in networks. Phys. Rev. E 84, 036103 (2011)

5. Chatterjee, S.: Matrix estimation by universal singular value thresholding. Ann.
Stat. 43(1), 177–214 (2015)

6. Holland, P.W., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2),
109–137 (1983)

7. Karrer, B., Newman, M.E.: Stochastic blockmodels and community structure in
networks. Phys. Rev. E 83, 016107 (2011)

8. Latouche, P., Birmelé, E., Ambroise, C.: Overlapping stochastic block models with
applications to the French political blogoshpere. Ann. Appl. Stat. 5(1), 309–336
(2011)

9. Mc Auley, J., Leskovec, J.: Learning to discover social circles in ego networks. In:
NIPS, vol. 25, pp. 548–556 (2012)

10. Newman, M.E.: Spectral methods for network community detection and graph
partitioning. Phys. Rev. E 88, 042822 (2013)

11. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435, 814–818 (2005)

12. Rohe, K., Chatterjee, S., Yu, B.: Spectral clustering and the high-dimensional
stochastic blockmodel. Ann. Stat. 39(4), 1978–1915 (2011)

13. Shepard, R.N., Arabie, P.: Additive clustering: representation of similarities as
combinations of discrete overlapping properties. Psychol. Rev. 86(2), 87 (1979)

14. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416
(2007)

15. Xie, J., Kelley, S., Szymanski, B.: Overlapping community detection in networks:
state of the art and comparative study. ACM Comput. Surv. 45, 43 (2013)

16. Yang, J., Leskovec, J.: Community-affiliation graph model for overlapping commu-
nity detection. In: IEEE International Conference on Data Mining (2012)

17. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in
Neural Information Processing Systems (2004)

18. Zhang, S., Wang, R.-S., Zhang, X.-S.: Identification of overlapping community
structure in complex networks using fuzzy c-means clustering. Phyisca A 374,
483–490 (2007)

19. Zhang, Y., Levina, E., Zhu, J.: Detecting overlapping communities in networks
with spectral methods (2014). arXiv:1412.3432v1

20. Zhao, Y., Levina, E., Zhu, J.: Consistency of community detection in networks
under degree-corrected stochastic block models. Ann. Stat. 40(4), 2266–2292
(2012)

http://arxiv.org/abs/1412.3432v1
http://arXiv.org/abs/1412.3432v1
http://arXiv.org/abs/1412.3432v1

Author Index

Ambos-Spies, Klaus 163

Batu, Tuğkan 288
Bellemare, Marc G. 305
Ben-David, Shai 50, 339
Beros, Achilles A. 145
Bonald, Thomas 355
Bshouty, Nader H. 115, 207

Cortes, Corinna 67
Costa, Areej 115

DeSalvo, Giulia 67
Diochnos, Dimitrios I. 98

Gao, Ziyuan 145

Haddad-Zaknoon, Catherine A. 207
Hanneke, Steve 18
Harutyunyan, Anna 305
Hatano, Kohei 276
Hölzl, Rupert 189

Jain, Sanjay 174, 189
Jin, Rong 83

Kalnishkan, Yuri 238
Kaufmann, Emilie 355
Kinber, Efim 174
Kotłowski, Wojciech 261
Kushagra, Shrinu 339

Lelarge, Marc 355
Li, Lihong 321
Liu, Che-Yu 321

Maurer, Andreas 3
Mohri, Mehryar 67, 223
Moran, Shay 34
Moridomi, Ken-ichiro 276
Munos, Rémi 305

Nakazono, Takumi 276

Ryabko, Daniil 253

Sabato, Sivan 130
Samadi, Samira 339
Stephan, Frank 189
Stepleton, Tom 305

Takimoto, Eiji 276
Taptagaporn, Pongphat 288

Urner, Ruth 50

Warmuth, Manfred K. 34

Yang, Scott 223
Yang, Tianbao 83

Zhang, Lijun 83
Zhivotovskiy, Nikita 18
Zhou, Zhi-Hua 83
Zilles, Sandra 145

	Preface
	Organization
	Abstract of Invited Talks
	Learning about Agents and Mechanisms from Opaque Transactions
	Perspectives of Feature Selection in Bioinformatics: From Relevance to Causal Inference
	Margin Based Structured Output Learning
	Collective Attention on the Web
	How to Estimate the Mean of a Random Variable?
	Contents
	Error Bounds, Sample Compression Schemes
	A Vector-Contraction Inequality for Rademacher Complexities
	1 Introduction
	2 The Vector-Contraction Inequality
	3 Examples of Loss Functions
	3.1 Multi-class Classification
	3.2 K-Means Clustering
	3.3 Learning to Learn or Meta-Learning

	4 Bounding the Rademacher Complexity of Vector-Valued Classes
	4.1 Reduction to Component Classes
	4.2 Linear Classes Defined by Norms
	4.3 Operator Valued Kernels

	5 Proof of the Contraction Inequality
	6 A Negative Result
	References

	Localization of VC Classes: Beyond Local Rademacher Complexities
	1 Introduction
	2 Notation and Previous Results
	3 Preliminaries from Empirical Processes
	4 Local Metric Entropy
	5 Minimax Lower Bound
	6 Discussion and Open Problems
	References

	Labeled Compression Schemes for Extremal Classes
	1 Introduction
	2 Extremal Classes
	2.1 Preliminaries
	2.2 Definition of Extremal Classes and Examples
	2.3 Basic Properties of Extremal Classes

	3 A Labeled Compression Scheme for Extremal Classes
	4 Unlabeled Sample Compression Schemes and Combinatorial Conjectures
	5 Discussion
	References

	On Version Space Compression
	1 Introduction
	2 Definitions and Notation
	2.1 Hypothesis Classes

	3 Exact Version Space Compression (VSC)
	3.1 Definitions of Exact VSC
	3.2 Existence of Exact VSC
	3.3 Closure Properties
	3.4 Impossibility Results for Exact VSC

	4 Approximate VSC
	4.1 Definitions of Approximate VSC
	4.2 A Semi-supervised ERM Paradigm for Approximate VSC
	4.3 Impossibility Results for Approximate VSC

	5 Related Work
	6 Discussion
	References

	Statistical Learning Theory, Evolvability
	Learning with Rejection
	1 Introduction
	2 Learning Problem
	2.1 General Rejection Model
	2.2 Confidence-Based Rejection Model

	3 Theoretical Analysis
	3.1 Generalization Bound
	3.2 Convex Surrogate Losses
	3.3 Consistency Results
	3.4 Margin Bounds

	4 Algorithms for Kernel-Based Hypotheses
	5 Confidence-Based Rejection Algorithms
	6 Experiments
	7 Conclusion
	References

	Sparse Learning for Large-Scale and High-Dimensional Data: A Randomized Convex-Concave Optimization Approach
	1 Introduction
	2 Related Work
	3 Algorithm
	4 Main Results
	4.1 Assumptions
	4.2 Theoretical Guarantees

	5 Analysis
	5.1 Proof of Theorem1
	5.2 Proof of Lemma1
	5.3 Proof of Lemma2
	5.4 Proof of Lemma5

	6 Conclusion and Future Work
	References

	On the Evolution of Monotone Conjunctions: Drilling for Best Approximations
	1 Introduction
	2 Definition of Evolvability
	3 Preliminaries
	3.1 The Swapping Algorithm

	4 Foundations for Evolvability
	4.1 On the Minimum Non-zero Value of A(u), u{0, �, n}
	4.2 On Tolerance and Design Requirements

	5 Adaptation
	5.1 Evolution When H = C
	5.2 Evolution When H = Cq
	5.3 Determining = min{2pq+, min=0{A(u) }}

	6 Convergence
	6.1 Short Initial Hypothesis and Short Target
	6.2 Short Initial Hypothesis and Medium Target
	6.3 Short Initial Hypothesis and Long Target
	6.4 Medium or Long Initial Hypothesis

	7 Sketch of Complexity Analysis for Evolution
	8 Further Remarks
	References

	Exact and Interactive Learning, Complexity of Teaching Models
	Exact Learning of Juntas from Membership Queries
	1 Introduction
	1.1 Results for Non-adaptive Learning
	1.2 Results for Adaptive Learning

	2 Definitions and Preliminary Results
	2.1 Universal Sets and d-Wise Bipartite Connected Families

	3 Deterministic Non-adaptive Algorithms
	3.1 Lower and Upper Bound
	3.2 Polynomial Time Algorithms

	4 Randomized Non-adaptive Algorithms
	4.1 Lower Bound
	4.2 Upper Bound and Polynomial Time Algorithms
	4.3 A Reduction for Randomized Non-adaptive Algorithms

	References

	Submodular Learning and Covering with Response-Dependent Costs
	1 Introduction
	2 Definitions and Preliminaries
	3 A Greedy Algorithm for Response-Dependent Costs
	3.1 Guarantees for Learning Objectives
	3.2 Guarantees for General Objectives

	4 Experiments
	References

	Classifying the Arithmetical Complexity of Teaching Models
	1 Introduction
	2 Preliminaries
	3 Teaching
	4 Teaching Dimension
	5 Positive Teaching Dimension
	6 Recursive Teaching Dimension
	7 Conclusion
	References

	Inductive Inference
	Learning Finite Variants of Single Languages from Informant
	1 Introduction
	2 Learnability of the Classes S+L: Basic results
	3 InfEx-Learnable Classes S+L
	4 Learnability of the Classes +L
	5 Summary
	References

	Intrinsic Complexity of Partial Learning
	1 Introduction
	2 Preliminaries
	3 Basic Properties of Reductions
	4 Complete Classes and the Class R
	5 Relationship Between iINIT, iCOINIT and iRINIT Classes
	References

	Learning Pattern Languages over Groups
	1 Introduction
	2 Preliminaries
	3 A Characterisation
	4 Learning Patterns with up to n Variable Occurrences
	5 Automatic Learning of All Patterns
	6 Learning Bounded Unions of Patterns
	7 Conclusions
	References

	Online Learning
	The Maximum Cosine Framework for Deriving Perceptron Based Linear Classifiers
	1 Introduction
	2 The Maximum Cosine Framework
	2.1 Problem Settings
	2.2 The Cosine Bound

	3 New Aggressive ROMMA
	3.1 The Local Cosine Bound for the NAROMMA Algorithm
	3.2 Equivalence to Aggressive ROMMA

	4 The Maximum Cosine Perceptron Algorithm
	5 Experiments
	A Proofs of Sect.2
	References

	Structural Online Learning
	1 Introduction
	2 Notation and Preliminaries
	3 Theoretical Guarantees for Structural Online Learning
	4 Algorithms for Structural Online Learning
	4.1 SOL.Boost Algorithm

	5 Online-to-Batch Conversion
	6 Conclusion
	References

	An Upper Bound for Aggregating Algorithm for Regression with Changing Dependencies
	1 Introduction
	2 Preliminaries
	2.1 Games and Prediction Strategies
	2.2 Aggregating Algorithm for Regression with Changing Dependencies

	3 Main Result
	4 Deriving the Upper Bound on AARCh
	4.1 Prediction with Expert Advice
	4.2 Aggregating Algorithm
	4.3 Constructing the Bound for AARCh

	5 Upper Bounding the Determinant
	6 Comments on the Proof
	References

	Things Bayes Can't Do
	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Discussion
	References

	On Minimaxity of Follow the Leader Strategy in the Stochastic Setting
	1 Introduction
	2 Problem Setting
	2.1 Prediction with Expert Advice in the Stochastic Setting
	2.2 Permutation Invariance
	2.3 Follow the Leader Strategy

	3 Binary Losses
	4 Continuous Losses
	4.1 Binarized FL
	4.2 Vanilla FL is Not Minimax for Continuous Losses

	5 Conclusions and Open Problem
	References

	A Combinatorial Metrical Task System Problem Under the Uniform Metric
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 The Marking Algorithm
	4 The Weighted Marking Algorithm
	5 Conclusion and Future Work
	A On Assumption 1
	References

	Competitive Portfolio Selection Using Stochastic Predictions
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Transaction Costs
	2.2 Problem Setting

	3 Main Results
	3.1 Expected-Regret Bound
	3.2 Variance-of-Regret Bound
	3.3 Linear Expected Regret for Non-zero Transaction Costs

	4 Special Cases for the Distributions of Predictions
	4.1 Log-Uniformly Distributed Predictions
	4.2 Log-Linearly Distributed Predictions
	4.3 Log-Normally Distributed Predictions

	5 Portfolio Computation
	References

	Bandits and Reinforcement Learning
	Q(λ) with Off-Policy Corrections
	1 Introduction
	2 Preliminaries
	3 Off-Policy Return Operators
	4 Algorithm
	5 Analysis
	5.1 -Return for Policy Evaluation: Q()
	5.2 -Return for Control: Q*()
	5.3 Online Convergence

	6 Experimental Results
	7 Related Work
	7.1 Policy Evaluation
	7.2 Control

	8 Conclusion

	On the Prior Sensitivity of Thompson Sampling
	1 Introduction
	1.1 Thompson Sampling for Stochastic Bandits
	1.2 Related Work

	2 Main Results
	2.1 Comparison to Previous Results

	3 Preliminaries
	4 Upper Bounds
	5 Lower Bounds
	6 Conclusions
	References

	Clustering
	Finding Meaningful Cluster Structure Amidst Background Noise
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Notation and Definition
	3 Justification of Sparse Noise
	4 Center Proximity
	4.1 Positive Result Under Sparse Noise
	4.2 Lower Bound Under Sparse Noise
	4.3 Lower Bound Under Arbitrary Noise

	5 Center Separation
	5.1 Center Separation Without Noise
	5.2 Center Separation in the Presence of Noise

	A Proofs of Missing Lemmas and Theorems
	References

	A Spectral Algorithm with Additive Clustering for the Recovery of Overlapping Communities in Networks
	1 Introduction
	2 The Stochastic Blockmodel with Overlaps (SBMO)
	2.1 The Model
	2.2 Community Detection with Overlap in an Identifiable SBMO
	2.3 Subcommunity Detection
	2.4 Scaling

	3 Related Work
	4 Spectral Analysis of the Adjacency Matrix in the SBMO
	5 The SAAC Algorithm
	5.1 Description of the Algorithm
	5.2 Consistency of an Adaptive Estimator
	5.3 Proof of Theorem2

	6 Experimental Results
	6.1 Simulated Data
	6.2 Real Networks

	7 Conclusion
	References

	Author Index

