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Abstract In distributed message-passing systems, synchronous computations rely
on and exploit for their correctness and/or efficiency the existence of some reliable
mechanism, which provides all system entities with a globally consistent view of
time, e.g., a common global clock. Many of these computations, however, exploit
time at amacroscopic level: they assume that transmissionof anunbounded amount of
information can be done in constant time.We are instead interested in themicroscopic
level of synchronous computations; that is, the study of computability and complexity
when, in a constant amount of time, only a constant number of bits can be transmitted.
Our general interest includes the extreme case, when amessage contains only a single
bit. We discuss the basics of computing at the microscopic level, describing simple
but powerful computational tools, and analyzing their use.

1 Introduction

Amessage-passing system is a model of a distributed computing environment, which
in turnmodels many artificial systems (e.g., distributed systems, communication net-
works, systolic architectures, etc.); it provides a language to describe its components,
its behaviour, its properties; furthermore, it includes the tools for the analysis and
the measurement of such an environment.

Time is an human artifact superimposed on nature in our attempt to quantify its
qualitative processes. This quantification has the immediate effect of discretizing the
perceived continuum and enabling its measurement.

The presence of time and the discretization it imposes are the predominant aspects
in synchronousmessage-passing system. Indeed, messages and time are the two cru-
cial components of synchronous computations, and their interplay is the determining
element for both feasibility and complexity of the computations.
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Many synchronous computations however view and exploit time only at amacro-
scopic level: they assume that a unit of time is large enough for the transmission of
an unbounded amount of information.

Instead, like several other researchers, we are interested in themicroscopic analy-
sis of synchronous computations; that is, we are interested in the study of computabil-
ity and complexity when, in a unit of time, only a constant number of bits can be
transmitted. Our interest covers also themost extreme case, when amessage contains
only a single bit. Not surprisingly, great part of the nature and beauty of synchronous
computing, is revealed only under the microscope.

The aim of this chapter is to introduce the basics of computing at the microscopic
level, describing simple but powerful computational tools, and analyzing their use.
The terminology and notation are from [37].

1.1 Message-Passing Systems

In the language of distributed computing, a message-passing system is a collection
of computational entities which communicate by sending and receiving bounded
sequences of bits called messages. A binary relation, called out-neighbour, defines
for each entity x the subset of the other entities, called out-neighbourhood, to which x
can send a message; analogous is the definition of in-neighbourhood of an entity. If,
for each entity, its in-neighbourhood coincides with its out-neighbourhood, we will
use the terms neighbour and neighbourhood. The couple G = (V,E) where V is the
set of entities and E is the out-neighbour relation defines a graph G which describes
the communication topology of the system. Hence, graph-theoretic concepts and
terminology (e.g., nodes, edges, diameter, etc.) can be used to describe distributed
algorithms and analyze their performance. In the following, the terms vertex, node,
site, and entity will have the same meaning; analogously, the terms edge, arc, link
and line will be used interchangeably. Messages received at an entity are processed
there in the order they arrive; if more than one message arrives at the same entity at
the same time, they will be processed in arbitrary order.

Each entity is provided with local processing and storage capabilities, and a local
clock. The behaviour of the entities can be conveniently described as finite-state and
event-driven; that is, each entity at any time is in a particular system state (from a
finite set of states) and, when a predefined external event occurs (e.g., a message is
received, the local clock is increased by one unit, etc.), it will serially perform some
operations whose nature depends on the current state and on the occurred event. The
operations that can be performed are local computations, transmission of messages,
and changes of state. Thus, the behaviour of an entity is a set of rules of the form
State x Event → Action, where State is a system state, Event is one of a predefined
set of external events, and Action is an indivisible sequence of local operations. The
set of rules, the same for all entities, is called a distributed algorithm or protocol.
The entities might have distinguished initial values, e.g., an identity; if this is not the
case, the system is said to be anonymous.
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The basic model is based on only two simple axioms:

• Local Orientation: Every entity can distinguish between its (in- and out-) neigh-
bours, and can detect from which in-neighbour a received message was sent.

• Finite Delays: In absence of failure, a message sent to an out-neighbour is even-
tually received there in its integrity.

As a consequence of the Local Orientation axiom, it can be assumed that each
entity x has a distinct label associated to each out-edge (i.e., edge connecting x to an
out-neighbour) and in-edge (i.e., edge connecting an in-neighbour to x).

Note that the Finite Delays axiom does not imply the existence of any bound on
transmission delays; it only states that, in absence of failure, a message will arrive
after a finite delay in its integrity.

Any additional restriction of the general model defines a specific submodel. For
example, the following additional axiom, called Message Ordering, defines a system
where the transmission of messages obeys a FIFO discipline: messages sent to the
same out-neighbour, if they arrive, will do so in the same order in which they were
sent. By convention, all axioms defining a submodel are common knowledge to all
entities. Common restrictions usually relate to reliability, time, or communication.

1.2 Synchronous Systems

With respect to time, the basic model does not make any assumption on the local
clocks nor (except for the fact that it is finite) on transmission time (which include
both processing and queueing delays). For these reason, the systems described by the
basic model are referred to as asynchronous, and represent one end of the spectrum
of message-passing systems with respect to time. On the other end are synchronous
systems; that is, systems defined by two assumptions about time:

• Synchronized Clocks (SC): all local clocks ‘tick’ simultaneously (although they
might not sign the same value).

• Bounded Transmission Delays (BTD): there exists a known upper bound on the
number of clock ticks required for message transmission (including processing
and queueing delays).

Since the bound is known a priori to all entities and all local clocks tick simulta-
neously, the unit of time can be redefined so that the BTD axiom can be replaced (as
is almost always done) by the axiom

• Unitary Transmission Delays (UTD): message transmission is performed in a
single unit of time.

In other words, if an entity sends a message at local clock tick t to a neighbour,
the message is received and processed there at time t + 1 (sender’s time). To avoid
paradoxical situations, it is assumed that at any clock tick only one message can be
send to the same neighbour.
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In the following, like in almost all the literature, synchronousmeans simultaneous
presence of SC and UTD.

1.3 Macro Versus Micro

In a synchronous message-passing system S, the complexity of a distributed algo-
rithm is evaluated with respect to two basic parameters: the number of message
transmissions performed during the execution, and the number of clock ticks elapsed
from the time the first entity starts the execution to the time the last entity terminates
its participation in the computation.

The interval of time between successive clock ticks (sometimes called a round1)
is bounded by some system parameter but, by definition, is long enough so that any
message sent at a clock tick t arrives and is processed at its destination at clock
tick t + 1. As a consequence, two very different assumptions on the message size
are possible, and have been made in the literature, each offering a different view of
synchronous computations:

1. message size is unbounded (e.g., all the data to be transmitted always fits in a
single message); this is the macroscopic view.

2. the message size is bounded by some system constant B; this is the microscopic
view.

In the microscopic view, if a computation requires an entity to transmit M > B
bits, it is actually requiring the transmission of at least �M/B� messages (and not
one, like in the macro level). Furthermore, since at a clock tick the entity can send
at most one message to the same neighbour, the transmission of M > m bits will
require at least �M/B� clock ticks (and not one, like in the macro level).

These microscopic facts are clearly invisible to the commonly used macroscopic
view (e.g., the LOCAL model of computation [34]). Indeed, as already mentioned,
a macroscopic view hides great part of the nature and beauty of synchronous com-
puting, revealed only under the microscope. From this moment on, we will consider
only the microscopic viewpoint.

1.4 Under the Microscope: The Difference Time Makes

Under the microscopic view, the unique characteristics of synchronous computations
appear very clear. Among the many examples and results, the best known is the one
expressed by the following “folk” theorem:

1These intervals are usually assumed to have all the same length, but such a condition is not
necessary.
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Property 1 Any finite sequence of bits can be communicated in S transmitting two
messages, regardless of the message size.

Proof Let α be the sequence of bits, and let u and v be the transmitting entity and
its receiving neighbour, respectively. Consider the following protocol for u: 1. send
a message; 2. wait g(α) clock ticks; and 3. send another message, where g(α) is
the integer whose binary representation is 1α. The protocol for v is the following:
1. upon receiving the first message, set count to zero; 2. at each clock tick, if no
message is received, increase count by one, otherwise stop. Obviously, when y stops,
count = g(α). �

Theaboveproperty is a striking example of the difference that computingwith time
makes: since themessage size is irrelevant and since the stringα is finite but arbitrary,
and the content of the transmitted messages is irrelevant, the property states that any
amount of information (e.g., several Facebook datasets) can be communicated by
transmitting just two bits.

The property, as stated, is incomplete from a complexity point of view. In fact, in
a synchronous system, time and transmission complexities are intrinsically related
to a degree non existent in asynchronous systems. In the example above, the constant
bit complexity is achieved at the cost of a time complexity which is exponential in
the length of the sequence of bits to be communicated, as stated by the following
reformulation of the above property:

Lemma 1 Any finite sequence of bits α can be communicated in S transmitting two
bits in time 2α+1.

1.5 Organization

In the following, we present in some details some interesting aspects of computing
with time, always in the inherent interplay between time and transmissions.

In Sect. 2 we discuss the most basic distributed computation, two-party commu-
nication: the communication of information between two neighbouring entities; the
described results are from [31]. In Sect. 3 we present a simple yet powerful tech-
nique, waiting, that exploits the availability of time as a computational element; the
results described in Sect. 3.1 are from [35], those in Sect. 3.2 from [11]. A general
technique, guessing, which can be used to avoid the transmission of unbounded val-
ues, is discussed in Sect. 4; the described results are from [41]. Finally, we look at
another basic activity, wakeup, and again investigate the time versus bits tradeoffs
that it offers in the case of complete network; the discussed results are from [18].



76 N. Santoro

2 Two-Party Communication

In a system of communicating entities, the most basic and fundamental problem
is obviously the process of efficiently and accurately communicating information
between two neighbouring entities.

This problem is sometimes called TWO-PARTY COMMUNICATION problem,
and any solution algorithm is called a TPC protocol or communicator. Due to the
basic nature of the process, the choice of a communicator can greatly affect the overall
performance of the higher-level protocols employed in the system. Associated with
any communicator are clearly two related cost measures: the total number of bit
transmissions and the total number of clock ticks elapsed during the communication;
as we will see, the study of the two-party communication problem in synchronous
networks is really the study of the trade-off between time and transmissions.

2.1 Basic Communicators

Consider two entities, called the sender and the receiver, connected by a direct link;
at each time unit, the sender can either transmit a bit or remain silent; a bit transmitted
by the sender at time t will be received and processed by the receiver at time t + 1
(sender’s time). A quantum of silence (or, simply, quantum) is the number of clock
ticks between two successive bit transmissions; the quantum is zero if the bits are
sent at two consecutive clock ticks.

Given a countable (andpossibly infinite) universeU, the two-party communication
problem for U, denoted by TPC(U), is the problem of the sender communicating
without ambiguity to the receiver arbitrary elements of U using any combination of
bit transmissions and silence. Since U is countable, we will assume without loss of
generality that U is a set of consecutive integers starting from 0.

As observed in Sect. 1.4, any positive integer x can be communicated transmitting
only two bits. This is achieved by the well-known 2-bits Communicator C2, to which
Lemma 1 refers in the Introduction:
Communicator C2:
• Tocommunicate a positive integer x, the sender transmits afirst bit,waits a quantum
of silence q1 = x, and then sends the second and final bit b1

• To reconstruct x, the receiver simply reconstructs the quantum of silence q1
between the two received bits.

Using this communicator, the number of bits transmitted is 2 and the time is x.
Interestingly, if we increase the number of transmissions, time becomes sublinear.

Consider the following protocol C3 that uses 3 bits:
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Communicator C3:
• To communicate a positive integer x, the sender transmits three bits in order: b0,
b1, and b2; the quantum of silence q1 between the first two transmissions, and q2
between the second and the last are: q1 = �√x� and q2 = x − �√x�2.

• To obtain x the receiver simply computes (q1)2 + q2.

Notice that q1 = x − �√x�2 ≤ 2
√
x; thus, protocol C3 has time sublinear time com-

plexity ≤ 3�√x� + 3. The method used by protocol C3 can be easily extended to
arbitrary k = 2r + 1, obtaining a communicator Ck that communicates any integer x
transmitting k bits using at most k x

1
k−1 + k time units.

Notice that here, as in the rest of this section, the transmitted bits are used only as
delimiters; this renders the protocols resistant to message corruptions. In corruption-
free systems, the bounds can obviously be improved by using the bits to convey
information [31].

2.2 Optimal Communicators

At this point the natural question is what are the optimal communicators. We first
discuss lower-bounds on the time-bits trade-off for the two-party communication
problem both in the worst and in the average case. The bounds apply to any solution
protocol, regardless of the schemes employed for encoding, transmitting and decod-
ing. We then describe a solution protocol whose cost matches the lowerbounds.

2.2.1 Lower Bounds

ConsiderCb(U); i.e., the two-party communication problem forU using exactly b bit
transmissions. Observe that b time units will be required to transmit the b bits; hence,
the concern is on the amount of additional time required by the protocol. Obviously,
the time before the first transmission and after the last transmission cannot be used
to convey information.

Let c(U, b) denote the number of time units needed in the worst case to solve
Cb(U). To derive a bound on c(U, b), we will consider the dual problem of deter-
mining the size ω(t, b) of the largest set Ü for which c(Ü, b) ≤ t; that is, Ü is the
largest set for which the two-party communication problem can always be solved
using b transmissions and at most t additional time units. Notice that, with b bit
transmissions, it is only possible to distinguish k = b − 1 quanta; hence, the dual
problem can be rephrased as follows:

Determine the largest positive integer n = ω(t, b) such that every x ∈ Zn = {0, 1, . . . , n} can
be communicated using k = b − 1 distinguished quanta whose total sum is at most t.

This problem has an exact solution which will enable us to establish the desired

bounds. Let Bin(x, y) denote the binomial coefficient

(
x
y

)
.
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Theorem 1 ω(t, b) = Bin(t + k, k).

Proof Let n = ω(t, b); by definition, it must be possible to communicate any element
in Zn = {0, 1, . . . , n} using k = b − 1 distinguished quanta requiring at most time t.
In other words, ω(t, k + 1) is equal to the number of distinct k-tuples 〈t1, t2, . . . , tk〉
of positive integers such that

∑
1≤i≤k ti ≤ t. Given a positive integer x, let Tk[x]

denote the number of compositions of x of size k; i.e.,

Tk[x] = |{〈x1, x2, . . . , xk〉 :
∑

xj = x, xj ∈ Z+}|

Since Tk[x] = Bin(x + k − 1, k − 1), it follows that

ω(t, k + 1) =
∑
i

Tk[i] =
∑
i

Bin(i + k − 1, k − 1) = Bin(t + k, k)

which proves the theorem. �

We can now establish a worst case lower bound. Given two positive integers x
and k, let f (x, k) be the smallest integer t such that x ≤ ω(t, k + 1).

Theorem 2 Any solution protocol for Ck+1(U) requires f (|U|, k) time units in the
worst case.

Proof From Theorem 1, it follows that c(U, b) = f (|U|, k). �

Theorem 3 Let f (|U|, k) = t. For any solution protocol P for Ck+1(U), there exists
a partition of U into t + 1 disjoint subsets U0,U1, . . . ,Ut such that

1. |Ui| = Bin(i + k − 1, k − 1), 0 ≤ i < t; |Ut| ≤ Bin(t + k − 1, k − 1)
2. the time P(x) required by P to communicate x ∈ Ui is P(x) ≥ i.

Proof Since f (|U|, k) = t, by Theorem 1,U is the largest set for which the two-party
communication problem can always be solved using b = k + 1 transmissions and
at most t additional time units. Given a protocol P for Ck+1(U), order the elements
x ∈ U according to the time P(x) required by P to communicate them; let Ü be
the corresponding ordered set. Define Üi to be the subset composed of the elements
of Ü whose ranking, with respect to the ordering defined above, is in the range∑

0≤ j<i Bin( j + k − 1, k − 1),
∑

0≤j≤i Bin( j + k − 1, k − 1). Since f (|U|, k) = t,

it follows that |Üi| = Bin(i + k − 1, k − 1) for 0 ≤ i < t and |Üt| ≤ Bin(t + k −
1, k − 1) which proves part 1 of the theorem.

We will now show that, for every x ∈ Üi,P(x) ≥ i. By contradiction, let this not
be the case. Let j ≤ t be the smallest index for which there exists an x ∈ Üi such
that P(x) < j. This implies that there exists a j′ < t such that |{x ∈ U : P(x) = j′}| >

Bin( j′ + k − 1, k − 1). In other words, in protocol P, the number of elements which
are uniquely identified using k quanta for a total of j′ time is greater than the number
Tk[ j′] = Bin( j′ + k − 1, k − 1) of compositions of j′ of size k; a clear contradiction.
Hence, for every x ∈ Üi,P(x) ≥ i, proving part 2 of the theorem. �
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This gives us an average case lower bound:

Theorem 4 Any solution protocol for Ck+1(U) requires

tm + ∑
0≤i<t i Bin(i + k − 1, k − 1)

|U|
time on the average where t = f (|U|, k) and m = t(|U| − ∑

0≤i<t i Bin(i + k −
1, k − 1)).

Proof From Theorem 3. �

2.2.2 An Optimal Solution

We now introduce a protocol whose cost matches both the worst and the average
case lower bounds; we can actually show that this communicator is optimal at any
point of the time-bits tradeoff.

Given two k-tuples q = 〈q1, q2, . . . , qk〉 and q′ = 〈q′
1, q

′
2, . . . , q

′
k〉 of positive inte-

gers, we say that q < q′ if qj = q′
j for 1 ≤ j < l, and ql < q′

l for some index l,
1 ≤ l ≤ k + 1. For a given k, let Vt be the ordered set of k-tuples q = 〈q1, q2, . . . , qk〉
where qi ∈ Z+ and

∑
i qi ≤ t; that is Vt[i] < Vt[i + 1]. Obviously, the size of Vt

is Bin(t + k, k). Any two integers t and i, 1 ≤ i ≤ Bin(t + k, k), uniquely iden-
tifies a k-tuple Vt[i] = 〈q1, q2, . . . , qk〉 where

∑
i qi ≤ t; conversely, any k-tuple

〈q1, q2, . . . , qk〉 uniquely identifies the integers t = ∑
i qi and i, 1 ≤ i ≤ Bin(t +

k, k), such that Vt[i] = 〈q1, q2, . . . , qk〉.
The solution algorithm, P1, is described below; it comprises of an encoding

scheme, a decoding scheme, and a communication protocol.

Encoding Scheme: Given X and k,
1. Let t be the smallest integer such that X ≤ Bin(t + k, k); i.e., t = f (X, k).
2. Determine Vt[X] = 〈q1, q2, . . . , qk〉
3. Set encoding(X) = 〈p0, p1, . . . , p2k〉, where p2i = b ∈ {0, 1} and p2i+1 =

qi, (0 ≤ i < k).

The value X to be communicated will be encoded as a (2k + 1)-tuple 〈p0, p1,
. . . , p2k〉, where the even elements p0, p2, . . . , p2k are arbitrary bits and the odd
elements p1, p3, . . . , p2k−1 form the k-tuple corresponding to the X-th element of the
set Vf (X,k); i.e., 〈p1, p3, . . . , p2k−1〉 = Vf (X,k)[X].

Once the (2k + 1)-tuple 〈p0, p1, . . . , p2k〉 corresponding to the encoding of X has
been determined, the actual communication can start. The encoded information is
communicated as follows: the element p2i = b ∈ {0, 1} is transmitted and the element
p2i+1 = qi is communicated by waiting a quantum of silence of length qi.
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Communication Protocol
SEND(X):

Compute encoding(X) = 〈p0, p1, . . . , p2k〉;
for 0 ≤ i ≤ 2k

if even(i) then transmit pi else wait pi time units;
endfor

RECEIVE(Z):
i := 0;
receive(b);
p0 := b;
Repeat until i = k

wait q until receive(b);
p2i+1 := q; i := i + 1; p2i := b;

Z := 〈p0, p1, . . . , p2k〉;
Compute decoding(Z);

Once the last bit p2k has been received, the receiving entity has received the
(2k + 1)-tuple 〈p0, p1, . . . , p2k〉 and will apply to it the decoding scheme. To decode
〈p0, p1, . . . , p2k〉, the receiver will extract the (k + 1)-tuple 〈q1, q2, . . . , qk〉 formed
by the odd elements qi = p2i+1, (0 ≤ i < k) and compute t = ∑

i qi; at this point X,
the communicated value, is the unique integer such that 1 ≤ X ≤ Bin(t + k, k) and
Vt[X] = 〈q1, q2, . . . , qk〉.

Decoding Scheme: Given Z = 〈p0, p1, . . . , p2k〉 and k,
1. Let Y = 〈q1, q2, . . . , qk〉 where qi = p2i+1, (0 ≤ i < k); let t = ∑

i qi.
2. Find X such that Vt[X] = Y .
3. Set decoding(Z) = X.

For a fixed k, let P(X) denote the amount of time required by algorithm P to
communicate integer X using k bit transmissions. Recall (from Sect. 3) that f (X, k)
is the smallest integer t such that x ≤ ω(t, k + 1).

Lemma 2 For a fixed k, P(X) = f (X, k) for every integer X.

Proof By construction. �

Theorem 5 P is worst-case optimal for every Zn = {0, 1, . . . , n}.
Proof By Lemma 2 and Theorem 2. �

Protocol P actually satisfies a much stronger notion of optimality. A solution
protocol A is everywhere optimal for U if, for every solution protocol B and ∀b ≥ 2,
there exists a permutation π of the elements of U such that ∀x ∈ U : A(x, b) ≤
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B(π(x), b). In other words, for every choice of the number of transmitted bits, A
requires no more time to communicate any element of U (within a relabelling) than
any other solution algorithm. Obviously, everywhere optimality implies both worst-
case and average-case time-bits optimality.

Theorem 6 For a fixed k, P is everywhere optimal for every Zn = {0, 1, . . . , n}.
Proof Given Zn, let t = f (n, k) be the smallest integer such that n ≤ ω(t, k + 1).
Assume for simplicity that n = Bin(t + k, k). Let Si = {x ∈ Zn : P1(x) = i}. By
Lemma 2, for every x ∈ Zn,P1(x) = f (x, k) ≤ t; hence, |Si| = Bin(i +
k − 1, k − 1), 0 ≤ i ≤ t. Recall that, by Theorem 2, for any solution algorithm
A, there exists a partition of Zn into t + 1 disjoint subsets A0,A1, . . . ,At such
that |Ai| = Bin(i + k − 1, k − 1) and A(x) ≥ i for every x ∈ Ai. Therefore, there
exists a permutation π of Zn such that P1(x) ≤ A(π(x)) for all x ∈ Zn, proving the
theorem. �

3 Waiting

In synchronous systems, time can be used to avoid the transmission of messages
of unbounded length, i.e., unbounded values. The communicators described in the
previous section are an instance of a simple and direct way of exploiting time to
communicate unbounded values transmitting only a constant number of bits.

In this section, we describe another technique that makes an explicit use of time
and that can be efficiently used as an alternative to transmitting possibly unbounded
values. The technique assumes that every entity x, in addition to its own integer value
v(x) (not necessarily unique), has locally available a bound w on the number n of
entities and a monotonically increasing integer function f , the same for all entities
With respect to this technique, an entity can be either active, processing or passive.
Initially, all entities are active.

The technique applies to both undirected and (strongly connected) directed graphs
(i.e., bidirectional and unidirectional networks). In the following, the term ‘neigh-
bours’ and the phrase ‘all other neighbours’ are assumed to mean for digraphs ‘out-
neighbours’ and ‘all out-neighbours’, respectively. The technique is as follows:

Waiting Technique
1. An active entity x waits f (v(x), w) time units.
2. If, during this time, it receives any message, it will forward it to all its

other neighbours and become passive; otherwise it becomes processing
and sends a message to all its neighbours.

We will now show how to “mutate” the basic technique so to work in different
environments and different problems.
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3.1 Minimum Finding and Election

Consider the situation where each entity x has a positive integer value v(x); values
might not be distinct.MINIMUMFINDING is the problem of moving from an initial
configuration where all entities are in the same state available, to a configuration
where every entity whose associated value is the minimum of all the values is in a
predefined state minimum and all others are in a different predefined state large.

To deal with different initiation times, a pre-processing phase is added to the
basic technique so to bound the delay between distinct starting times. Following is
the algorithm where w ≥ Δ(G) is known to all nodes, and f (a, b) = 2ab.

Algorithm WaitMinElect
• Rule 0. If an available entity wants to start the algorithm or receives an
activation message, it sends an activation message to all other neigh-
bours and becomes active.

• Rule 1. An active entity xwaits f (v(x), w) time units, ignoring anyactiva-
tion message. If, during this time it receives an end message, it forwards
it to all other neighbours and becomes large; otherwise, it sends an end
message to all its neighbours and becomes minimum.

• Rule 2. A large entity ignores all end messages.

Theorem 7 The minimum value vmin in any synchronous graph G with n nodes and
e edges can be found with at most 4e bits in at most 2wvmin + 2Δ(G) time units,
provided w ≥ Δ(G) is known.

Proof Let t(x) denote the time delay, from the start of the execution of the algorithm,
to the time entity x becomes active. Let x and y be two nodes such that v(x) < v(y).
Entity x will become active at time t(x) and will wait f (x, w) = 2v(x)w time units;
a message broadcasted by x would reach y after d(x, y) time units, where d(x, y)
denotes the length of the shortest path from x to y in G. Since (from Rule 0) t(x) ≤
t(y) + d(y, x), it follows that

t(x) + 2v(x)w + d(x, y) ≤ t(y) + d(y, x) + 2v(x)w + d(x, y) < t(y) + 2v(x)w + 2Δ(G)

This implies that the entities with smallest value become activewithin at mostΔ(G)

time units from the time the algorithm is first started; they will finish waiting before
everybody else, and thus send an endmessage; furthermore, this message will reach
every other entity while they are still waiting. Thus, any entity z with the smallest
identity (i.e., v(z) = vmin) will become minimum while all others will become large.
This process will require at most 2vminw + 2Δ(G) time units. Each edge will be
traversed by at most two activation messages and two end messages; since a
single bit is sufficient to distinguish between the two types of messages, a total of at
most 4e bits will be transmitted. �
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Notice that, if all initial values v(x) are distinct, only one entity will become
minimum, while all others become large. This means, that protocol WaitMinElect
actually solves the LEADER ELECTION problem; this problem requires moving
the system from an initial configuration where all entities are in the same state
(“candidate”), each with a distinct value, to a final configuration where all entities
are in the same predefined state (“defeated”), except one which is a distinguished
state (“leader”). Hence, the unique minimum is the elected leader.

Theorem 8 A leader can be elected in any synchronous graph G with n nodes and
e edges with at most 4e bits in at most 2wvmin + 2Δ(G) time units, where vmin is the
smallest value, provided w ≥ Δ(G) is known.

In specific classes of graphs more specific bounds apply:

Corollary 1 Knowing n, an election can be performed in a unidirectional ring
exchanging 2n bits in time (n + 1)vmin + 2n − 1, provided that the entities are aware
of being in a ring.

Proof To prove the time, choose f (a, b) = a(b + 1) and observe that, in a unidi-
rectional ring, d(x, y) + d(y, x) = n for all x and y. For the bit complexity, observe
that e = n and that each edge will be traversed by exactly one activation and one
entities message.

Corollary 2 Knowing n1 and n2, an election can be performed in a n1 × n2 mesh
exchanging O(n) bits in time O((n1 + n2)vmin), provided that the entities are aware
of being in a mesh.

Proof In a mesh of n = n1 × n2 nodes, Δ(G) = n1 + n2; by choosing w = d(G)

and f (a, b) = a(b + 1) the time bounds is achieved. Since e = O(n), the message
result follows.

Corollary 3 Knowing n, an election can be performed in an unlabelled hypercube
exchanging O(n log n) bits in time O(log nvmin), provided that the entities are aware
of being in a hypercube.

Proof In a hypercube of n = nodes, Δ(G) = log n; by choosing w = Δ(G) and
f (a, b) = a(b + 1) the time bounds is achieved. Since e = O(n log n), the message
result follows.

Corollary 4 With simultaneous initiation, an election can be performed in a com-
plete graph exchanging n − 1 bits in time 2vmin + 1, provided the entities are aware
of being in a complete graph.

Proof Remove Rule 0 (unnecessary because of simultaneous initiation) and Rule 2;
modify Rule 1 so that received endmessage is not forwarded, and choose f (a, b) =
2a. This choice of f ensures that the entity with smallest identity vmin will finish
waiting at least two time units before everybody else; hence, all other entities will
become passive after 2vmin + 1 time units. Following these modifications, the only
communication occurring in this election process will be the bit sent from the entity
with smallest identity to all other entities. �
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3.2 Symmetry Breaking in Rings

If the assumption on the uniqueness of the values v(x) does not hold, the election
problem cannot obviously be solved by an extrema-finding process. If the nodes have
no identities (i.e., the system is anonymous) then no deterministic solution exists for
the election problem, duly renamed SYMMETRY BREAKING, regardless of whether
the network is synchronous or not [3]. Thus, if any solution exists, it must be a
randomized algorithm.

We now shown that, using the Waiting Technique, symmetry can be broken in
a ring with O(n) bits and time units on the average without any assumption on
simultaneous initiation.

The algorithm is composed of a sequence of rounds; in each round, all nodes
become awake. In round i, upon becoming awake, a node x chooses a random value
v(x, i) ∈ {0, 1} with a biased coin: it selects 0 with probability 1

n and 1 with proba-
bility n−1

n . All nodes participate in determining whether exactly one node has chosen
0 (Situation 1), or not (Situation 2). If Situation 1 has occured, the only node that
has chosen 0 becomes leader, all other nodes become defeated, and the algorithm
terminates; if Situation 2 has occured, all nodes start a new round.

Initially, all nodes are in a sleeping state. Any sleeping node can spontaneously
become awake at any time and start the first round. To deal with different initiation
times, a pre-processing phase is added in each round so to bound the delay between
distinct starting times in that round.

A detailed description of the algorithm is as follows.

Algorithm SymmBreak
• Rule 1. A sleeping node:

1. It can become spontaneously awake and execute the Wake-up routine.
2. If it receives a wake- up message, it becomes awake and executes the

Wake-up routine.

• Rule 2. An awake node:

1. It ignores any received wake- up message.
2. If it receives a claim message, it becomes half-awake and sends the

message on.
3. If it receives a endmessage, it becomes defeated and passes the message

on. (* Situation 1 *)
4. When clock = n, if no claim is received (see rule 2.2) and the number it

selected is 0 it becomes candidate and sends a claim message.
5. When clock = 2n, if no claim is received (see rule 2.2) it executes the

Wake-up routine. (* Situation 2 *)
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• Rule 3. A candidate node:

1. If it receives a claim with clock < 2n, it becomes awake and executes
the Wake-up routine. (* Situation 2 *)

2. If it receives a claim and its clock equals 2n, it becomes elected and sends
a end message. (* Situation 1 *)

• Rule 4. A half-awake node:

1. If it receives a wake- up message, it becomes awake and executes the
Wake-up routine.

2. If it receives a endmessage, it becomes defeated and passes the message
on. (* Situation 2 *)

where the Wake-up routine is as follows

Wake-up Routine
1. choose 0 with probability 1

n and 1 with probability n−1
n ;

2. set clock := 0 and send a wake- up message.

An important property of the algorithm is expressed by the following

Lemma 3 (i) Every node starts its execution of a round within n − 1 time units
from the start of that round.

(ii) If exactly one node becomes candidate during this round, that node becomes
elected and all others become defeated; otherwise, all nodes start another round.

Proof Call a round a success if Situation 1 occurs. Assume the algorithm has per-
formed s − 1 unsuccessful rounds and that (i) holds at the beginning the s-th round
(s ≥ 1). Let t(x) denote the time at which node x becomes awake in this round; a node
x becomes candidate if and only if it has choosen 0 and it has not received any claim
in the (global) time interval (t(x), t(x) + n); furthermore, only candidate nodes orig-
inate claim messages. Three cases are possible depending on whether exactly one,
more than one, or no node becomes candidate in the round, respectively.

Case 1: exactly one node x becomes candidate. (Note: this case occurs if and only
if only one node chooses 0 in this round.) In this case, x will send a claim at time
t(x) + n. This message will reach node y at time t(x) + d(x, y) + n; since t(x) ≤
t(y) + d(y, x), it follows that node y will receive the claim at time t(x) + d(x, y) +
n ≤ t(y) + d(y, x) + d(x, y) + n = t(y) + 2n. Thus, by rule 2.2, y becomes half-
awake and sends the message on. In other words, the claim message originated by
x will travel along the ring transforming every node (except x) into half-awake and
will arrive at x at time t(x) + 2n; when this occurs, x becomes elected and originates
an end message (rule 2.2) which will make all other nodes defeated (rule 4.2).
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Case 2: more than one node becomes candidate. Let x1, x2, . . . , xk become can-
didate in this round; w.l.g. assume t(xi) ≤ t(xi+1), and let r(xi) denote the can-
didate nearest to xi clockwise. First observe that, for all candidate nodes xi and
xj, t(xj) < t(xi) + d(xi, xj) (otherwise t(xi) + d(xi, xj) + n ≤ t(xj) + n, and xj would
receive a claimwith clock≤ n becoming half-awake and not candidate by rule 2.2).
This implies that t(xi) + n < t(r(xi)) + d(r(xi), xi) + n; that is,

t(xi) + d(xi, r(xi)) + n < t(r(xi)) + d(r(xi), xi) + d(xi, r(xi)) + n = t(r(xi)) + 2n

In other words, a claim from xi will reach node r(xi) before r(xi) counts 2n. By rule
3.1, r(xi) will then kill the claim and start the next round by becoming awake and
sending a wake- up message; thus, within at most n − 1 additional time units from
the time the first xi becomes awake again, all nodes are awake.

Case 3: nobody becomes candidate. (Note: this case occurs if and only if nobody
chooses 0.) In this case, no claim will be sent, and each node x will start the next
round by becoming awake at time t(x) + 2n (rule 2.5).

Summarizing, if part (i) of the lemma holds for the s-th round, then part (ii) will
also hold; furthermore, if the round is not a success, part (i) will hold for the (s + 1)-th
round. Since (i) holds initially (i.e., for s = 1), the lemma is proved. �

The only thing left now is to see after how many rounds a leader will be elected.
Perhaps surprisingly, the process terminates after less than 3 expected rounds.

Theorem 9 Symmetry can be broken in a unidirectional ring using 2n bits and 2en
time units on the average regardless of the initiation time, where c is a constant and
e = 2.7 . . . is the basis of the natural logarithm.

Proof In any one round, each node will send exactly one wake- up message. If at
least one node becomes candidate, then each node will send or forward exactly one
claim message. Since there are a constant number of message types, each message
will use a constant c number of bits. Thus, each round will use at most 2cn bits.
Within 2n time steps when the first node on a round executed the Wake-up routine,
either a unique node is elected or a new round is started. For any round of random
selections, the probability that exactly one node selects 0 is

Bin(n, 1)
1

n
(
n − 1

n
)n−1 = (

n − 1

n
)n−1

For n large enough, this quantity is easily bounded:

lim
n→∞(

n − 1

n
)n−1 = 1

e

Thus, the expected number of rounds until this situation occurs is less than e; by
Lemma 3, if this event occurs, the algorithm terminates. �
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In the above theorem, the factor 2 can be removed from both the time and bit
complexity by allowing the nodes to immediately become candidate if they select 1
in the Wake-up routine, and modifying the algorithm appropriately.

4 Guessing

Another powerful technique that allows to compute functions on unbounded val-
ues without ever transmitting them is guessing. Let us consider again the MINI-
MUM FINDING problem, that is the problem of computing vmin = min{v(x)}. Let
us assume that all entities know n and start at the same time.

Consider the following distributed algorithm, where p is a parameter available to
all entities:

Decide(p)
clock := 0; (* start counting *)
if v(x) ≤ p then
send yes to all neighbors;
state := decided;

else state := undecided;
if (yes is received and clock < n and state = undecided) then

send the message to all neighbors which have not sent any message to you;
state := decided;

else ignore the message.

Note that forwarding a yesmessage can be done at most once by any entity since
after sending it the entity becomes decided. Also note that, due to the synchrony in
the network, this message could have been received from more than one neighbor in
the current time slot, and that it is forwarded only to the other neighbors.

Lemma 4 Let all entities know n and p, and simultaneously start the execution of
Decide(p) at time 0. Then, at time n:

1. if all local values are greater than p, then all entities are undecided;
2. if there is at least one local value v(x) ≤ p, then all entities are decided.

Furthermore, the number of bits transmitted is zero in case (1), and at most 2e in
case (2).

Proof At time zero entity x becomes undecided and sends no message iff its value
v(x) is greater than p. Thus, if all values are greater than p, no messages will be
transmitted during the execution of Decide; furthermore, all entities will remain
undecided, at time n. If entity x has local value v(x) ≤ p, it will become decided at
time zero and send yes messages to all its neighbours. An entity in state decided
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ignores all yes messages; an entity in state undecided receiving a yes message
becomes decided and forwards the message only to the neighbours from which such
a message has not yet been received; thus, at most two messages will be transmitted
on each edge, for a total of at most 2e bits. Since the underlying communication graph
is connected, it is easily shown that by time n each entity that was not decided at
time zero has received at least one yesmessage. Since an undecided entity becomes
decided as soon as it receives a message, all entities become decided within n − 1
time units. �

Using this property, we can effectively employDecide as a building block for our
computations.

4.1 Minimum Finding as a Guessing Games

A technique forminimum-finding can be developed by performing a sequence of exe-
cutions ofDecide as follows. Initially, all entities choose the same initial value g1 and
simultaneously perform Decide(g1). After n time units, all entities will be aware of
whether theminimumvalue is greater than g1 (case (1) in Lemma 4) or not (case (2) in
Lemma 4); note that the latter case means that we overestimated or guessed the min-
imum value; this case will be called overestimate, even if the correct value has been
guessed. Based on the outcome, a new value g2 will be chosen by all entities, which
will then simultaneously perform Decide(g2). In general, based on the outcome of
the execution of Decide(gi), all entities will choose a value gi+1 and simultaneously
performDecide(gi+1); this process is repeated until theminimum value is unambigu-
ously determined. Depending on which strategy is employed for choosing gi+1 given
the outcome of Decide(gi), different minimum-finding algorithms will result from
this technique. This technique allows to reformulate the minimum-finding problem
in terms of a number-guessing game, as follows.

Guessing Game
1. the network is a player;
2. the minimum value in the network is a number, previously chosen and

unknown to the player;
3. the player has to guess the number, by only asking questions of the type

“is the number greater than g?”, where each question corresponds to a
simultaneous execution of decide(g);

4. cases (1) and (2) of Lemma 4 correspond to a “yes” and a “no” answer to
the question, respectively; the latter case will be termed an overestimate.

First observe that, by definition, to each solution strategy for this number-guessing
game corresponds a solution algorithm for the minimum-finding problem. As for the
complexity of these solution algorithms recall that, by Lemma 4, each execution of
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Decide (i.e., each question) requires n time units, while the number of bits transmitted
is either zero or at most 2e, depending on whether the answer is “yes” or “no”,
respectively. The following theorem has thus been proved.

Theorem 10 Let S be a solution strategy for the number-guessing game which
requires b(X) overestimates and a total of t(X) questions in the worst case, where X
is the unknown number. Let vmin be the smallest value in the network, and assume n
is known to all entities. Then

1. minimum-finding can be performed in an anonymous network using at most
n · t(vmin) time and 2 · e · b(vmin) bits;

2. election inanetworkwith distinct values canbeperformedusingatmost n · t(vmin)
time and 2 · e · b(vmin) bits;

3. a spanning-tree in a network with distinct values can be constructed using at most
n · t(vmin) time and 2 · e · (b(vmin) + 2) bits.

4.2 Optimal Solutions

We are interested in determining the guessing strategy that offers the best use of
time for reducing the amount of bit transmissions. This means to find the strategy
that solves the guessing games with the minimum number of questions (each ques-
tion costs n time units) of which up to a given number b are overestimates (each
overestimate costs the transmission of 2e bits).

Consider first the case in which the unknown number is a positive integer in the
interval [1,M]; i.e., the values are v(x) ≤ M. We will see later the case when the
interval is unbounded, i.e., M = +∞.

4.2.1 Lower Bound

Wewant to determine theminimum number h(M, b) of questions needed to correctly
guess any value in [1,M] with no more than b overestimates.

To do so, we consider the “converse” problem of determining the largest integer
f (t, b) such that any value X known to be within the interval [1, f (t, b)] can be
guessed using at most t questions of which at most b are overestimates. The next
theorem determines f (t, b).

Theorem 11 For every t ≥ b ≥ 1,

f (t, b) =
∑
0≤i≤b

Bin(t, i). (1)
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Proof It is easy to see that f (t, 1) = t + 1, since the only algorithm that makes at
most one overestimate is “sequential search”; i.e., using the guesses g1 = 1, g2 =
2, . . . , gt = t. It also trivial to see that f (t, t) = 2t since, if any question can be an
overestimates, the largest possible interval is [1, 2t].

Now, for t > b ≥ 1, suppose the first question is “is the number > v?”. If the
answer is yes, the unknown number is greater than v, and the player has to find
it with t − 1 questions and b overestimates; hence, the largest interval that can be
correctly searched in this case is [v + 1, v + f (t − 1, b) ]. If the answer is no, then
the unknown number lies in the interval [1, v ], to be searched using t − 1 questions
and at most b − 1 overestimates. Thus, the largest value of v that allows for a correct
solution in this case is f (t − 1, b − 1). We therefore have

∀b, t > b ≥ 1, f (t, b) = f (t − 1, b) + f (t − 1, b − 1). (2)

One can show now that the unique solution to (2), satisfying the boundary con-
ditions f (t, 1) = t + 1 and f (t, t) = 2t , is given by (1). (Another approach is to
determine the generating function F(x, y) = 1/(1 − z)(1 − y − z ∗ y)). �

For future use we extend the definition of f (t, b) to the case where 1 ≤ t < b, so
as to satisfy (2) for every t and b, by

f (t, b) = f (t, t) for 1 ≤ t < b. (3)

We can now return to our original quest for determining a bound on the minimum
number h(M, b) of questions needed to correctly guess any value in [1,M] with no
more than b overestimates. We are now able to do so; in fact, by Theorem 11 we
have:

Theorem 12 Let t̂(M, b) = min{t : f (t, b) ≥ M }. Then, for every b ≥ 1,

t̂(M, b) ≥ h(M, b) ≥ t̂(M, b) − 1. (4)

Observe that, ifM = f (t, b), then h(M, b) = t̂(M, b) = t.
There is no known closed-form expression for h(M, b); however, it can be closely

estimated as follows:

Lemma 5

h(M, b) = (b ! N)
1
b + ε b, for some ε = ε(N, b) with − 1 < ε < 1. (5)

Proof 1. By induction on (t, b) (using (2)), one can show that

Bin(t + 1, b) ≤ f (t, b) (6)
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By (4) and (6) we have
Bin(h, b) ≤ f (h − 1, b) < N

and hence

h(h − 1) · · · (h − b + 1) < b ! N .

Thus (h − b + 1)b < b ! N and we have

h < (b ! N)
1
b + b. (7)

2. By induction on (t, b) (using (2)), one can show that

f (t, b) ≤ Bin(t + b, b). (8)

By (4) and (8) we have

N ≤ f (h,N) ≤ Bin(h + b, b),

and hence

b ! N ≤ (h + b)(h + b − 1) · · · (h + 1).

Thus, using the inequality between the arithmetic and geometric means:

(b ! N)
1
b ≤ [(h + b)(h + b − 1) · · · (h + 1) ] 1

b

≤ 1

b
[(h + b) + (h + b − 1) + · · · + (h + 1) ] = h + b + 1

2
.

Therefore

h ≥ (b ! N)
1
b − b + 1

2
. (9)

The lemma follows from (7) and (9). �

4.2.2 Optimal Protocol

The optimal guessing strategy follows directly from the proof of Theorem 11:
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Optimal Guessing Strategy To optimally search in [1,M] with at most k
overestimates:
1. Use as a guess p = h(q − 1, k − 1), where q ≥ k is the smallest integer

such that M ≤ h(q, k).
2. If p is an underestimate, then optimally search in [p + 1,M] with k over-

estimates.
3. If it is an overestimate, then optimally search in [1, p] with k − 1 overes-

timates.

This means that

Theorem 13 The number guessing game in a bounded interval [1,M] can be solved
with b bits and t̂(M, b) questions.

Worst case optimality follows from Theorem 12.

Wemust still consider solving the guessing gamewhen the interval in unbounded;
i.e., M = +∞. A solution strategy could be to first determine a bounded interval
containingX using b′ < b overestimates, and then use theOptimal Guessing Strategy
above to find X in this interval with at most b − b′ overestimates.

To determine an interval containing X, we find an upperbound on X by using
a monotonically increasing integer function g and proceeding through a sequence
of questions “is the number > g(i)?” (i = 1, 2, . . .), until we determine the value j
such that g( j − 1) < X ≤ g( j). This approach requires exactly j questions and one
overestimate.

Once this is done, we are left to determine X in an interval of size Δ( j) = g( j) −
g( j − 1)with only b − 1 overestimates; this can be done using the Optimal Guessing
Strategy above with at most h(Δ( j), b − 1) questions.

The entire process will thus require at most j + h(Δ( j), b − 1) questions. In other
words:

Theorem 14 The number guessing game in a unbounded interval can be solved
with b overestimates using at most 2h(X, b) − 1 questions, where X is the unknown
number.

Proof Choose g(i) = f (i, b), for i ≥ 1. Let t = h(X, b) (i.e., the smallest integer i
such that f (i, b) ≥ X); then, following the above procedure,we stopwhen j = t. From
this follows that Δ(j) = g(t) − g(t − 1) = f (t, b) − f (t − 1, b) = f (t − 1, b − 1);
that is, t − 1 questions will suffice to solve the resulting guessing game in an interval
of sizeΔ(jwith b − 1 overestimates. Altogether, we determined the unknown X with
a total of at most 2t − 1 questions and b overestimates. �
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4.3 Improved Bounds for Distributed Problems

Using the correspondence between guessing games andminimum-finding, the results
of the previous section will now be reinterpreted in the context of distributed compu-
tations. First observe that, in the distributed problem, no upper-bound is assumed on
the range of the values among which the minimum must be found. Further observe
that each solution strategy for the number guessing game with k overestimates cor-
responds to a minimum-finding algorithm requiring the transmission of O(k · e) bits
(Theorem 10). Let Ck denote the class of such minimum-finding algorithms.

Theorem 15 The minimum value vmin in a synchronous anonymous network can be

determined using at most O(k · e) bits in time O(k · n · v
1
k
min) for any integer k > 0,

provided n is known to the entities, and the entities start simultaneously. For every
value of the integer k, this bound is optimal among all algorithms in Ck.

Proof Let t be the smallest integer such that f (t, k) ≥ vmin; by Theorem 13 it follows
that vmin can be guessed using at most 2t − 1 questions. Thus, by Theorem 10, the
minimum value vmin can be determined using at most (4t − 2) · n time and 2 · k · e
bits. By Lemma 5, t < (k! · i) 1

k + k, which is approximately i
1
k k
e + k (using Stirling’s

approximation), from which the bound follows. By Theorem 11 and Lemma 5,
any algorithm in Ck requires at least �(( k!·vmin2 )

1
k ) questions, from which optimality

follows. �

In a similar way, the following theorem can be proved.

Theorem 16 In a synchronous network with distinct values, election and spanning-

tree construction can be performed using at most O(k · e) bits in time O(k · n · v
1
k
min)

for any k, where vmin is the smallest value in the network, provided n is known and
the entities start simultaneously.

Again, by choosing k to be any constant > 1, the theorem yields an improvement
in the time complexity of using waiting (Theorem 8) without increasing the order of
magnitude of the bit complexity.

5 Waking up in Complete Networks

A basic activity in distributed computing systems is that of WAKE-UP: initially all
entities are asleep; one or more entities, called initiators, independently wake-up and
send wakeupmessages to some neighbours, starting a process to ensure that within
finite time all entities become awake. Since the wakeup message contains no other
information, the wakeup process is a prototypical microscopic computation.

The wake-up process is used in a variety of situations, including initialization,
notification, and reset, e.g., to ensure that every entity in the system becomes aware of
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the start (or termination) of a computation. Called also weak unison and distributed
reset, this process can be carried out by totally anonymous entities. It offers an
interesting trade-off between time (the difference between the time the first entity
wakes up and the time that all entities are awakened) and communication (number
of wakeup messages sent in that interval) in synchronous networks.

This is indeed the case in complete networks. For simplicity, let denote the set
of nodes by {0, 1, . . . , n − 1}, and for nodes x, y, the label of the edge {x, y} is the
integer (y − x) mod n.

The obvious solution is to “flood”: an initiator sends a wakeupmessage to all its
neighbours. Since we are in a complete graph, this protocol requires only a single
round. The number of messages will however be k(n − 1), where k is the number
of initiators; this means that, in the worst case, n2 − n messages will be transmitted.
The only way to keep down the number of messages is for initiators to send only
to a subset of their neighbours. For example, if each node x sends only to node
(x + 1) mod n then only n messages will be sent in total, regardless of the number
of initiators. However, the time to complete wakeup will be the maximum distance
between successive initiators; this means that, in the worst case (i.e., with a single
initiator), the wakeup requires n − 1 time units.

In this type of situation, tomeasure the complexity of a protocol, the integrated cost
measure time × bits (TB) is used, i.e., the number of messages times the number of
steps required in the worst case for the completion of the algorithm, over all possible
choice and schedule of the initiators. Notice that, for the two algorithms described
above, the TB-complexity is the same:O(n2). The quest is for more efficient wakeup
protocols.

5.1 Oblivious Protocols

We consider a special class of protocols, those where an entity sends the wakeup
message to the same set of neighbours bothwhen it is an initiator andwhen it receives
awakeupmessage while asleep. This class of protocols is called oblivious (because
the set of neighbours does not depend on the state of the entity).

Notice that, since the network is anonymous, an oblivious protocol P can be seen
as specifying a subset S of integers modulo n and requiring every entity x to send a
wakeup message only to the subset {(x + j)mod n : j ∈ S(P)} of its neighbours. It
is assumed that 1 ∈ S while 0 /∈ S.

Further notice that the set S = {d0, d1, d2, . . . , dk−1}, where d0 = 1 and di−1 <

di < n for 1 ≤ i < n, defines a graph Rn[d1, d2, . . . , dk−1] where the nodes are
0, 1, . . . , n − 1 and there is an edge between nodes x, y if and only if (x − y)
mod n ∈ S. The class of graphs so defined are known as chordal ring.

Example 1 For n ≤ 2k the chordal ring Rn[2, 4, . . . , 2k−1] has diameter ≤ 2 log n
and degree log n. This chordal ring is also called double-cube.
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Example 2 For n < k! the chordal ring Rn[2!, 3!, . . . , (k − 1)!] has diameter O(k2)
(use the fact that every x < n canbe represented in themixedbasis 1!, 2!, . . . , (k − 1)!
as x = x1 + x22! + · · · + xk−1(k − 1)!, with 0 ≤ xi ≤ i, for i ≥ 1) and degree n ≤
log n/ log log n.

Summarizing, the edges on which messages are sent during the execution of
an oblivious wakeup protocol P form a chordal ring R. The message and the time
complexity of P will be the number of edges and the diameter of R, respectively.

We will use this observation to derive an optimal wakeup protocol.

5.2 Lower Bounds for Oblivious Protocols

We first derive a lower bound on the TB-complexity of oblivious wakeup protocols.
The derivation of this lower bound is based on the following bound for chordal rings.

Lemma 6 Let chordal ring Rn[d1, d2, . . . , dk−1] have diameter ψ. Then

k · ψ = �
(
log2 n

)
.

As a consequence, we have the following:

Theorem 17 Any oblivious wakeup protocol has �(n log2 n) TB-complexity.

Proof This follows easily fromLemma 6. Since the protocol is oblivious every entity
transmits a fixed number of messages in each iteration of the wakeup protocol, say k.
The graph resulting from such a protocol is the chordal ring Rn[S], where S is a set of
size k. The time required for thewakeupmessage to reach all the entities is at least the
diameterψ of the chordal ringRn[S]. Eventually all n entities are awakened. Since the
protocol is oblivious every entity that receives a wakeup message must transmit to
all its k neighbours. Hence the number of messages transmitted during the execution
of the protocol is nk. It follows that the complexity is at least nkψ = �(n log2 n). �

5.3 Optimal Oblivious Wakeup

In this section we describe an optimal oblivious wakeup algorithms. To derive it,
first observe that the k-dimensional mesh can be viewed as a chordal ring Rn[S], for
some set S of links. For example, the 2-dimensional mesh is the chordal ring Rn[√n],
while the k-dimensional mesh is the chordal ring Rn[n1/k, n2/k, . . . , n(k−1)/k].

For each point p = (p1, p2, . . . , pk) in the k-dimensional mesh, let

Sip = {(p1, . . . , pi−1, xi, pi+1, . . . , pk) : xi < n1/k}.
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If we define Si = {(0, . . . , 0, xi, 0, . . . , 0) : 0 ≤ xi < n1/k} then we see easily that
Sip = p + Si. Let Sp = S1p ∪ · · · ∪ Skp , and S = S1 ∪ · · · ∪ Sk .

This indicates a way to design an efficient oblivious wakeup algorithm for the
complete graph which terminates in k steps. In this protocol, entity p sends wakeup
messages to all and only the entities in the set p + S.

Oblivious Chordal Wakeup (for entity p)
1. If p is an initiator then it sends a wakeup message to all its neighbors in

the set p + S and becomes awake.
2. If p receives awakeupmessage from another entity and is not awake then

it sends wakeup messages to all entities in the set p + S and becomes
awake.

Theorem 18 For any k, if n = qk for some q, then protocol Oblivious Chordal
Wakeup has TB-complexity O(k2n(k+1)/k).

Proof Let n = qk; then in the execution of protocol Oblivious Chordal Wakeup,
the size of each transmission is kn1/k . A transmission from entity p = (p1, . . . , pk)
will reach all entities of the form p′ = (p1, . . . , pi−1, p′

i, pi+1, . . . , pk), where 0 ≤
p′
i < n, i = 1, 2, . . . , k. Therefore every entity will be reached after k steps. The
complexity is easily seen to be as claimed. �

More generally, by carefully choosing S, we have

Theorem 19 For any k and any m ≤ n1/k, if n = qk for some q, then protocol
Oblivious Chordal Wakeup is a t-step wakeup protocol, where t = k

mn
1/k, and its

TB-complexity is O(m k t n) = O(k2n(k+1)/k).

Proof Let n = qk , m ≤ n1/k , and t = d
mn

1/k . In the execution of Oblivious Chordal
Wakeup, each entity p transmits to the set p + S, where S = S1 ∪ · · · ∪ Sk and Si =
{(0, . . . , 0, xi, 0, . . . , 0) : 0 ≤ xi < m}. �

We now have all the ingredients to make Oblivious Chordal Wakeup optimal.

Theorem 20 Oblivious wakeup is possible with optimal TB-complexity�(n log2 n).

Proof Consider protocol Oblivious Chordal Wakeup when the set of neighbours
to which an entity p sends the wakeup messages defines the double-cube, i.e., the
chordal ringRn[2, 22, . . . , 2k−1]described inExample 1.ByTheorem19, the claimed
complexity follows. Optimality follows from the lower bound for oblivious protocols
of Theorem 17. �
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6 Further Reading

The aim of this chapter has been to introduce the basics of synchronous computing
at the microscopic level, describing some simple but powerful computational and
analytical tools.

Notice that, even though everything has been expressed in terms of message-
passing, the validity of what we said is independent of whether message transmission
to a neighbour and its reception are implemented by using physical communication
channels, or by writing to and reading from a predesigned shared register; in the
latter case, the microscopic view examines synchronous computations when the size
of the registers is limited by a system constant.

The reader interested in knowingmore about the microscopic nature of synchrony
is referred to the overview material in Chap. 6 of [37], as well as to the significant
amount of investigations on the subject.

These investigations cover a wide spectrum of problems and topics, including
election (e.g., [8, 12, 13, 25, 33, 35, 40, 41]), extrema finding (e.g., [1, 36, 41]),
symmetry breaking (e.g., [11, 15, 20, 26]), consensus (e.g., [7]), communicators and
their use (e.g., [5, 6, 30, 31, 38]), shortest paths (e.g., [28]), unison, firing squad
and wake-up (e.g., [4, 10, 16, 18, 29, 32]), matching (e.g., [19, 42]). Also relevant
are the results in the more powerful CONGESTmodel, on problem such as minimum
dominating sets (e.g. [21, 23]), coloring and independent sets (e.g. [2, 15, 17, 22,
27, 39]), andminimum-spanning-tree construction (e.g. [9, 14, 24, 34]). For a recent
investigation in a different application area see [43].
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