
A Hierarchy for BPP// log� Based
on Counting Calls to an Oracle

Edwin Beggs, Pedro Cortez, José Félix Costa and John V Tucker

Abstract Algorithms whose computations involve making physical measurements
can be modelled by Turing machines with oracles that are physical systems and ora-
cle queries that obtain data from observation and measurement. The computational
power ofmanyof these physical oracles has been established using non-uniformcom-
plexity classes; in particular, for large classes of deterministic physical oracles, with
fixed error margins constraining the exchange of data between algorithm and oracle,
the computational power has been shown to be the non-uniform class BPP// log�.
In this paper, we consider non-deterministic oracles that can be modelled by ran-
dom walks on the line. We show how to classify computations within BPP// log� by
making an infinite non-collapsing hierarchy betweenBPP// log� andBPP. The hier-
archy rests on the theorem that the number of calls to the physical oracle correlates
with the size of the responses to queries.

1 Introduction

Consider algorithms that request and receive data from an external source in the
course of their computations. These algorithms abound and can be found in all sorts
of monitoring and control systems. We suppose these algorithms are modelled by
Turingmachines with oracles that are physical systems, andwhose oracle queries ask

E. Beggs · J.V. Tucker
College of Science, Swansea University, Singleton Park, Swansea,
SA2 8PP Wales, UK
e-mail: e.j.beggs@swansea.ac.uk

J.V. Tucker
e-mail: j.v.tucker@swansea.ac.uk

P. Cortez · J.F. Costa (B)
Department of Mathematics, Instituto Superior Técnico and Centro de Filosofia
das Ciências da Universidade de Lisboa, Lisboa, Portugal
e-mail: fgc@math.ist.utl.pt

P. Cortez
e-mail: pedro.cortez.91@gmail.com

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Emergent Computation, Emergence, Complexity
and Computation 24, DOI 10.1007/978-3-319-46376-6_3

39

40 E. Beggs et al.

and obtain data bymeans of some process tomeasure a physical quantity. Essentially,
through a measurement procedure, the Turing machine will access a sequence of
approximations to a real number.

Starting in [5, 6], we began a theoretical investigation of such physical oracles,
focussing on classic deterministic physical experiments. To guide our thinking we
conceived an abstract experimenter using some physical equipment to undertake an
abstract experiment to measure a physical quantity. The Turing machine modelled
the experimental procedure and the data from the oracle modelled observations of
the equipment: see [5, 6, 10, 12, 13, 16] inter alia.

Technically, we examined what was involved in an algorithm requesting and
receiving data from a physical process, and especially interface properties to do with

(a) the error margins involved in the data: the queries could have infinite precision,
being exact or having finite but vanishingly small errors; or have a finite precision
that is a fixed error margin;

(b) the time taken by the algorithm to acquire the data: the queries need not take one
computational step or unit time, but may take time depending on the size of the
query.

We also placed complexity constraints on the computations, especially polynomial
time.

The computational power of many of these physical oracles has been established
using non-uniform complexity classes. These have the general form B/F consisting
of a complexity class B equipped with class F of special oracles called advice
functions. An advice function is a map f : N → Σ∗ that provides extra data f (n) to
the Turing machine when computing with inputs of size n ∈ N. Advice functions are
suitable for representing real numbers (in binary, say). Typically, we take B to be
the class P, defined by polynomial time deterministic Turing machines; or to be the
class BPP, defined by polynomial time Turing machines governed by fair probability
distributions. We take F to be based on logarithms.

Through a detailed investigation of protocols between analogue and digital com-
ponents of many types of system (see [8, 13]), we established the computational
power of these oracles as follows.

For infinite precision measurements, in deterministic polynomial time, the com-
putational power was shown to be P/ log�. However, in the more realistic case of
finite fixed precision measurements in deterministic polynomial time, the compu-
tational power was shown to be BPP// log�. This was done for a wide variety of
physical oracles and led to a thesis proposing BPP// log� as a limit to computation
[15]. The probabilistic form of BPP// log� is due to the use of probabilities to han-
dle fair choices of data from within the fixed-size error intervals of the deterministic
physical oracle. Probabilistic oracles are the subject of [4].

Our attempts to model measurement algorithmically addressed a longstanding
question, first formulated by Geroch and Hartle in their intriguing paper [20]: What
are the physically measurable numbers? Are the measurable numbers computable
numbers? Measurement is a scientific activity supported by a full theory developed

A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 41

throughout the last century as a chapter of mathematical logic (see [21]). Our com-
putational theory of measurement started in [9, 10] and focussed on the time needed
to make a measurement; here we consider the amount of data involved in making a
measurement.

The data provided by the oracle is constrained by

(i) the size of responses to queries, and
(ii) the frequency of calls to the oracle.

The size of the data can be controlled by the size of the values of the advice functions
|f (n)|. We will show that for BPP// log�, for inputs of size n, the amount of bits
translates into a modest number of calls to the oracle, which is poly-logarithmic in n.

In this paper, we also introduce the possibility of using physical oracles whose
behaviour is modelled stochastically, as one finds in statistical mechanics. Imagine
a physical experiment modelled by a random walk on the line, as discussed in [19].
The oracle is non-deterministic and can be connected to a Turing machine that can
be deterministic or non-deterministic: we will need both. Specifically, we will use
Turing machines and fair probabilistic Turing machines.

Let log(k) be the class of advice functions f : N → Σ∗ such that |f (n)| ∈
O(log(k)(n)). Let poly(log(k)) be the class of polynomial functions in log(k). We
prove the following:

Theorem 1 The class of sets decidable in polynomial time by RW fair probabilistic
Turing machines that can make up to poly(log(k)(n)) calls to the RW oracle, for
inputs of size n, is exactly BPP// log(k+1)�.

The hierarchy of complexity classes within BPP// log� we establish starts with
BPP// log� and approaches arbitrarily close to BPP.

We show strict boundedness, i.e., k ≥ 0, log(k+1) ≺ log(k). In particular, this is
true for k ≥ 1 and we have the following infinite descending chain

· · · ≺ log(4) ≺ log(3) ≺ log(2) ≺ log,

which can generate a hierarchy as in the figure.

Theorem 2 The classes of sets decided by RW fair probabilistic Turing machines
that can make up to

· · · � poly(log(3)(n)) � poly(log(2)(n)) � poly(log(n)) � poly(n)

42 E. Beggs et al.

calls to the RW oracle coincides with the descending chain of sets

· · · � BPP// log(4)� � BPP// log(3)� � BPP// log(2)� � BPP// log� ,

respectively.

While measuring a physical magnitude, a slight amount of bits of the binary
representation of a real number, relative to the size of the input, can originate hyper-
computation.

It is striking the extent to which the class BPP// log� arises naturally in exploring
physical systems and in physically inspired computational models. However other
non-uniform classes have been found useful. The computational power of determin-
istic neural networks having access to real numbers in polynomial timewas proposed
to be P/poly in [24]. These results contrast with our many results involving P/ log�:
our reduction of power in deterministic time is due to the fact that measurement takes
time in non-linear systems, while in [24] the systems considered are piecewise linear.
However, inspired by the work in [24], the authors of [26] specify hardware presum-
ably designed to be capable of computing a non-decidable fragment BPP// log�. In
our view such systems will not support programming, since programming in such
a context will the introduction of a real number into the system with unbounded
precision. Eventually, such systems will be capable of emergent computation due to
arbitrary unknown reals (if real numbers exist in Nature) specifying their compo-
nents. Emergent computational activities might well be relevant in learning tasks.

2 Random Walk Oracles

2.1 Random Walk

Consider the random walk experiment (RWE) of having a particle moving along
an axis. The particle is sent from position x = 0 to position x = 1. Then, at each
positive integer coordinate, the particle moves right, with probability σ, or left, with
probability 1 − σ, as outlined in Fig. 1. If the particle ever returns to its initial position
x = 0, then it is absorbed. In this process, the particle takes steps of one unit, at time
intervals also of one unit, postulated to be the time step of a Turingmachine transition
(see [25]).

We are interested in the probability that the particle is absorbed (see [22]). Let
pi be the probability of absorption when the particle is at x = i. In our model, the

Fig. 1 Random walk on the
line with absorption at x = 0

0 1 2 3 4 5 · · ·

1− σ σ

A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 43

particle is launched from x = 0 but it only starts its randomwalk at x = 1. It is easy to
see that p1 = (1 − σ) + σp2. From x = 2, to be absorbed, the particle must initially
move from x = 2 to x = 1 (not necessarily in one step), and then from x = 1 to x = 0
(again, not necessarily in one step). Both movements are made, independently, with
probability p1, thus, p2 is just p21. More generally, we have pk = pk1. Therefore, the
equation for the unidimensional random walk with absorption at x = 0 is given by
the equation

p1 = (1 − σ) + σp21,

with solutions p1 = 1 and p1 = 1−σ
σ
. For σ = 1

2 , the solutions coincide and p1 = 1.
For σ < 1

2 , the second solution is impossible, because 1−σ
σ

> 1, so, we must have
p1 = 1. For σ = 1, the particle always moves to the right, so p1 = 0. Thus, for the
sake of continuity of p1, for σ > 1

2 , we must choose p1 = 1−σ
σ
. Consequently, we get

p1 =
{
1 if σ ≤ 1

2
1−σ
σ

if σ > 1
2

.

So, if σ ≤ 1
2 , with probability 1 the particle always returns, but the number of steps

is unbounded. In Fig. 2, we illustrate this situation, for the case σ = 1/4, giving the
possible locations of the particle, and the respective probabilities, after the first steps.

Distance from the origin

Step

10 2 3 4 5 6 · · ·

1

0

2

3

4

5

6

...

1

1

3
4

1
4

3
16

1
16

9
64

6
64
6
64

1
64

24
256

9
256
9

256
1

256

54
1024

15
1024
15

1024
21

1024
21

1024
1

1024

Fig. 2 Diagram showing probabilities of the particle being at various distances from the origin, for
the case of σ = 1/4

44 E. Beggs et al.

2.2 Machines with Random Walk Oracles

We will combine the RWE with both Turing machines and fair probabilistic Turing
machines. Probabilistic Turingmachines have been around since the 1950s and have a
number of equivalent formulations. For example, the machine may randomly choose
between the available transitions at each step with probability 1

2 . Perhaps the most
elegant and easiest way to describe them is to say that they have access to a fair
independent coin toss oracle, returning values ‘heads’ or ‘tails’ with probability 1

2 .
Whilst the definition of the machines can be shown to converge, the different criteria
in use for recognising strings do not.

Definition 1 Consider any form of Turing machine that gives probabilistic results,
e.g. a Turing machine with any form of random oracle. A set A ⊂ {0, 1}∗ is accepted
by such a Turing machineM in polynomial time if there is a γ < 1/2 so that for for
every input w, M halts in polynomial time and

• If w ∈ A, M accepts w with error probability bounded by γ;
• If w /∈ A, M rejects w with error probability bounded by γ.

For example, fair probabilistic Turing machines are used to define the class BPP
with the criterion that any given run of the algorithm, it has a probability of (say)
at most 1

3 of giving the wrong answer, whether the answer is accept or reject. Fair
probabilistic Turing machines are required for our main theorems.

Now, let us consider a Turing machine coupled with a random walk experiment,
as introduced in [19]. To use the RWE as an oracle, we admit that the probability
σ that the particle moves forward, encodes some advice. Unlike scatter machine
experiments in [1, 6, 12], the RWE does not need any parameters to be initialized,
i.e., the Turing machine does not provide the oracle with any dyadic rational, it just
“pulls the trigger” to start the experiment. We consider both a Turing machine with
added RWE oracle, a RW Turing machine, and a fair probabilistic Turing machine
with added RWE oracle, a RW fair probabilistic Turing machine.

For every unknown σ ∈ (0, 1), the time that a particle takes to be absorbed is
unbounded. We introduce a constant time schedule to bound the oracle consultation
time. If the particle is absorbed during that time, the finite control of the Turing
machine changes to the ‘yes’ state, otherwise, the finite control changes to the ‘no’
state. The experiment has two possible outcomes and a constant time schedule.

We analyse the probability of ‘yes’.
A path of the randomwalk is a possible sequence of moves that the particle makes

until it is absorbed. Note that all such paths are made of an even number of steps.
Paths of the random walk along the positive x-axis with absorption at x = 0 are
isomorphic to a specific set of well-formed sequences of parentheses. For instance,
in a random walk of length 6, the particle could behave as ((())) or (()()), where a
movement to the right is represented by “(” and a movement to the left is represented
by “)”. The first opening parenthesis corresponds to the first move of the particle from
x = 0 to x = 1. The probability of answer in 6 steps is the sum of two probabilities
corresponding to the two possible paths. All paths of a certain length have the same

A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 45

probability; namely, for every even number n, the probability of each path of length
n is

σ
n
2 −1(1 − σ)

n
2 .

Therefore, we only need to know the number of possible paths for each length, i.e.,
the number of well-formed sequences of parentheses satisfying some properties. In
[17], the authors generalize the Catalan numbers and prove the following interesting
result:

Proposition 1 (Blass and Braun [17]) For every �,w ∈ Z, � ≥ w ≥ 0, let X be
the number of strings consisting of � left and � right parentheses, starting with w

consecutive left parentheses, and having the property that every nonempty, proper,
initial segment has strictly more left than right parentheses. Then

X = w

2� − w

(
2� − w

�

)

Note that whenw = � = 0, the undefined fractionw/(2� − w) is to be interpreted
as 1, since this gives the correct value X = 1, corresponding to the empty string of
parentheses. From this proposition, we derive the probability q(t) that the particle is
absorbed in even time t + 1, for t ≥ 1. It suffices to take � = (t + 1)/2 and w = 1:

q(t) = 1

t

(
t

t+1
2

)
(1 − σ)

t+1
2 σ

t+1
2 −1.

Therefore, the probability that the particle is absorbed during the time schedule T is
given by

F(σ,T) =
T−1∑
t=1
t odd

1

t

(
t

t+1
2

)
(1 − σ)

t+1
2 σ

t+1
2 −1.

This is the probability of getting the outcome ‘yes’ from the oracle. Figure3 allows
us to understand the behaviour of the probability F(σ,T) as a function of σ. We see
that, as T increases, F(σ,T) increases as well, since the longer the machine waits,
the more likely it is that a particle is absorbed. We can also see that as T approaches
infinity, F(σ,T) approaches the probability p1 that the particle is absorbed, which
makes sense, since p1 represents a probability of absorption with unbounded time.
For analytical reasons, we will consider only σ ∈ [12 , 1], corresponding to a variation
of p1 from 1 to 0. Note that we could consider any interval contained in [0, 1]. For
every T , this probability is a function of σ that satisfies the following conditions:

(a) F(•,T) ∈ C1([12 , 1]),
(b) for every σ ∈ [12 , 1], F ′(σ,T)
= 0 and
(c) n bits of F(•,T) are computable in time O(2n).

46 E. Beggs et al.

Fig. 3 Graphs of F(σ,T) for T = 2, T = 10 and T = 100

These conditions are the basis of an axiomatisation SPO of stochastic physical oracles
in the forthcoming paper [4], and from which take the following theorem:

Theorem 3 For every set A, A ∈ BPP// log� if, and only if, it is decidable by a RW
Turing machine in polynomial time.

3 Computational Resources

Consider that we have a limiting number of particles that the RW Turing machine
can launch, i.e., a bound in the number of oracle calls that the machine can make.
We study now how the precision in the measurement of σ depends on the number of
oracle calls.

Theorem 4 A RW Turing machine, or a RW fair probabilistic Turing machine, that
can make up to ξ(n) calls to the RW oracle, on input w of size |w| = n, can read
1
2 log(ξ(n)) + c bits of the unknown parameter σ, where c is a fixed constant, in
polynomial time.

Proof The proof is common to both types of Turing machine. We know that each
particle has probability of absorptionF(σ,T) in time T . Thus, if wemake ξ(n) oracle
calls on an input of size n, the number of times α that the experiment returns ‘yes’ is
a random variable with binomial distribution. Let us consider X = α/ξ(n), the ran-
dom variable that represents the relative frequency of absorption (‘yes’).We have the
expected value E[X] = E[α]/ξ(n) = ξ(n)F(σ,T)/ξ(n) = F(σ,T) and the variance
V[X] = V[α]/ξ(n)2 = ξ(n)F(σ,T)(1 − F(σ,T))/ξ(n)2 = F(σ,T)

(1 − F(σ,T))/ξ(n). Chebyshev’s inequality states that, for every δ > 0,

P(|X − E[X]| > δ) ≤ V[X]
δ2

≤ F(σ,T)(1 − F(σ,T))

ξ(n)δ2
≤ F(σ,T)

ξ(n)δ2
.

A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 47

Let k be the number of bits of σ to be read.1 This means that we have to find σ
up to an error of 2−k−5. To do this, we first estimate the probability F(σ) up to an
error δ, and then run a bisection algorithm to find the value of σ (this may require
polynomial time). The value of δ needed to ensure the required accuracy ofσ depends
on the lower bound of the derivative of F. To allow for this we set δ = C 2−k for
some C > 0, and then

P(|X − F(σ,T)| > C 2−k) ≤ 22kC−2 F(σ,T)

ξ(n)
≤ 22kC−2

ξ(n)
,

and if we want an error probability of at most γ, we set

22kC−2

ξ(n)
≤ γ.

Applying logarithms, we get

2k − 2 log(C) − log(ξ(n)) ≤ log(γ) ,

therefore,

k ≤ log(ξ(n)) +
constant value︷ ︸︸ ︷

log(γ) + 2 log(C)

2
.

For the RW Turing machine, for every σ, F(σ,T) increases with T and the term
log(1/F(σ,T)) decreases; contrary to what one might expect, for every input word
w of size n, the longer we wait for the particles to return, the less precision we can
obtain for σ.2 We take the particular case that in every oracle call the machine will
wait exactly two time steps for the particle to return (T = 2). Therefore, F(σ, 2) =
(1 − σ). Now, with k ∈ O(log(ξ(n))), we have

P(|(1 − X) − σ| = P(|X − (1 − σ)| > 2−k−5) ≤ γ.

With value 1 − X we can estimate σ. �

This result suggests a non-collapsing hierarchy of classes can be defined by the
magnitude of the number of queries to the oracle. As we want this to be a hierarchy
built on BPP and within BPP// log�, we must ensure that all of the machines we
consider can compute BPP. Thus we consider a RW oracle added to a probabilisitic
Turing machine, to give an RW fair probabilistic Turing machine.

1It is proved in [1, 13] that, for every σ ∈ C3 and for every dyadic rational z, if |σ − z| ≤ 2−k−5,
then the binary expansions of x and z coincide on the first k bits.
2This statement makes sense, since, if we wait too long, then we will lose information about the
absorption time of the particle.

48 E. Beggs et al.

4 Lower and Upper Bounds

We encode advice functions in order to compare RW Turing machines with Turing
machines with advice. We define the iterated logarithmic functions log(k)(n):

• log(0)(n) = n;
• log(k+1)(n) = log(log(k)(n)).

Similarly, we define the iterated exponential exp(k)(n):

• exp(0)(n) = n;
• exp(k+1)(n) = 2exp

(k)(n).

The iterated exponential is a well known bound on the number of computation
steps of elementary functions (e.g. see [23]). For every k ∈ N, the functions log(k) and
exp(k) are inverse of each other. Let log(k) also denote the class of advice functions
f such that |f (n)| ∈ O(log(k)(n)).

Let c(w) be the encoding of a single word w. We define the encoding y(f) =
lim y(f)(n) for an advice function f ∈ log(k)� in the following way:

• y(f)(0) = 0.c(f (0));
• if f (n + 1) = f (n)s, then

y(f)(n + 1) =
{
y(f)(n)c(s) if n + 1 is not of the form exp(k)(m)

y(f)(n)c(s)001 if n + 1 is of the form exp(k)(m)

So, for example, if we want to encode a function f ∈ log log�, we just have to place
the separator 001 when n + 1 is of the form 22

m
, for some m ∈ N.

For every k and for every f ∈ log(k)�, we have that y(f) ∈ C3. Also, for every n,
in order to extract the value of f (n), we only need to find the number m ∈ N such
that exp(k)(m − 1) < n ≤ exp(k)(m) and then read y(f) in triplets, until we find the
(m + 1)-th separator. Then, it is only needed to ignore the separators and replace
each 100 triplet by 0 and each 010 triplet by 1. Since f ∈ log(k)�, we know that
|f (exp(k)(m))| = O(log(k)(exp(k)(m))) = O(m). We conclude that 3O(m) + 3(m +
1) = O(m) bits are enough to get the value of f (exp(k)(m)) and, consequently,
O(log(k)(n)) bits to get the value of f (n).

Definition 2 Denote by poly(g(n)) the class of functions f : N → N for which there
is a polynomial p(x) so that f (n) ≤ p(g(n)) for all n ∈ N.

We can use this to prove the following result:

Theorem 5 (Lower bounds) For every k, every set in BPP// log(k+1)� is decidable
in polynomial time by a RW fair probabilistic Turing machine that can make up to
ξ(n) ∈ poly(log(k)(n)) RW oracle calls on inputs of size n.

Proof Let A be an arbitrary set in BPP// log(k+1)� and M a probabilistic Turing
machine with advice f ∈ log(k+1)�, which decides A in polynomial time with error
probability bounded by γ1 ∈ (0, 1/2).

A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 49

LetM′ be a RW fair probabilistic Turing machine with unknown parameter y(f),
the encoding of f , and let γ2 ∈ R be such that γ1 + γ2 < 1/2. Let w be a word
such that |w| ≤ n. Theorem 4 assures thatM′ can estimate, up to adding constants,
1
2 log(ξ(n))) = 1

2 log
(
(log(k)(n))m

)
(which for m large gives an arbitrary constant

multiple of log(k+1)(n)) bits of y(f), and, thus,M′ can read f (n) in scheduled protocol
time T = 2 and in machine polynomial time, with an error probability bounded by
γ2. We have that P(‘yes’) = 1 − σ and P(‘no’) = σ. By definition, the machine can
also make a sequence of fair coin tosses of polynomial length. Therefore, M′ can
decide A in polynomial time, with error probability bounded by γ1 + γ2 < 1/2. �

Taking the special case k = 0, we have the following complementary result to
Theorem 3:

Corollary 1 Every set in BPP// log� is decidable in polynomial time by a RW fair
probabilistic Turing machine that can make up to ξ(n) ∈ poly(n) RW oracle calls on
inputs of size n.

In order to state and prove upper bounds, we need the following auxiliary result.
This uses the query tree T , a tree with two branches—‘yes’ and ‘no’—every time a
query is made. The probability of taking a path down the tree is just the product of
the probabilities of the edges taken at every vertex.

Theorem 6 Let A be the set decided by a RWTuringmachine, or RW fair probabilis-
tic Turing machine,M with unknown parameter σ that can make up to ξ(n) calls to
the RW oracle, for inputs of size n, with error probability bounded by γ < 1/4. IfM′
is an identical RW machine, except with unknown parameter σ̃ and the probability
of absorption F̃, such that

|F(σ,T) − F̃(σ̃,T)| <
1

8ξ(n)
,

then, for any word of size ≤ n, the probability ofM′ making an error when deciding
A is ≤ 3/8.

Proof We know that M and M′ make at most ξ(n) calls to the oracle, in such a
way that the query tree T associated to both, has maximum depth ξ(n). Let w be
of size not greater than n. Let D be the assignment of probabilities to the edges of
T corresponding to the unknown parameter σ and ‘yes’ probability F(σ,T) and
D′ be the assignment of probabilities given by the unknown parameter σ̃ and ‘yes’
probability F̃(σ̃,T). Since |F(σ,T) − F̃(σ̃,T)| < 1/8ξ(n), the difference between
any particular probability is at most

κ = 1

8ξ(n)
.

Invoking Proposition 11 of [1], we have two different cases:

50 E. Beggs et al.

• w /∈ A: In this case, an incorrect result corresponds toM′ accepting w. The prob-
ability of acceptance PA(T ,D′) forM′ is

PA(T ,D′) ≤ PA(T ,D) + |PA(T ,D′) − PA(T ,D)|
≤ γ + ξ(n)κ

≤ γ + ξ(n)
1

8 ξ(n)
= 1

4
+ 1

8
= 3

8

• w ∈ A: In this case, an incorrect result corresponds toM′ rejecting w. The prob-
ability of rejection PR(T ,D′) for M′ is

PR(T ,D′) ≤ PR(T ,D) + |PR(T ,D′) − PR(T ,D)|
≤ γ + ξ(n)κ

≤ γ + ξ(n)
1

8 ξ(n)
= 1

4
+ 1

8
= 3

8

In both cases, the error probability is bounded by 3/8. �

Let F(σ,T)�m denote the firstm bits of the probability F(σ,T). The next theorem
is a corollary of the previous:

Theorem 7 Let A be the set decided by RW fair probabilistic Turing machine M
with unknown parameter σ that can make up to ξ(n) calls to the RW oracle, for
inputs of size n, with error probability bounded by γ < 1/4. If Mn is an identical
fair probabilistic Turing machine, with unknown parameter σ̃, but with the exception
that the probability that the oracle returns ‘yes’ is given by F(σ,T)�log ξ(n)+3, then
Mn decides the same set asM in the same time, but with error probability bounded
by 3/8.

Now we state and prove upper bounds.

Theorem 8 (Upper bounds) For every k, every set decided in polynomial time by a
RW Turing machine, or RW fair probabilistic Turing machine, that can make up to
ξ(n) = poly(log(k)(n)) calls to the RW oracle, where n is the size of the input, is in
BPP// log(k+1)�.

Proof Let A be a set decided in polynomial time p(n) and with error probability
bounded by 1/4 by a RW Turing machine M with unknown parameter σ that can
make up to ξ(n) ∈ poly(log(k)(n)) calls to the oracle. We specify a probabilistic
Turing machine M′ with advice f (n) = F(σ,T)�log ξ(n)+3 to decide A. We have f ∈
log(k+1)�.

By Theorem 7, we know that an RW Turing machine with ‘yes’ probability f (n)
decides the same as M for words of size ≤ n, but with error probability ≤ 3/8.
The value f (n) = F(σ)�log ξ(n)+3 is a dyadic rational with denominator 2log ξ(n)+3.
Thus, m = 2log ξ(n)+3f (n) ∈ [0, 2log ξ(n)+3)] is an integer. Consider κ = log ξ(n) + 3

A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 51

fair coin tosses, interpreted as a sequence of bits. The machine M′ then tests if
τ1τ2 . . . τk < m, where τ1τ2 . . . τk is now interpreted as an integer. If the test is true,
themachine returns ‘yes’, otherwise it returns ‘no’. The probability of returning ‘yes’
is m/2k = f (n), as required. The time taken is polynomial in n. �

From Theorems 4 and 8, we get the following corollary:

Theorem 9 The class of sets decidable in polynomial time by RW fair probabilistic
Turing machines that can make up to poly(log(k)(n)) calls to the RW oracle, for
inputs of size n, is exactly BPP// log(k+1)�.

As we want the RW Turing machines to run in polynomial time, the maximum
number of oracle calls that we can allow is polynomial. For that bound, the corre-
sponding class is BPP// log�. Thus, if we restrict more and more the number of
queries to the oracle, we can obtain a fine structure of BPP// log�. Observe that if k
is a very large number, the machine is allowed to make only few calls to the oracle,
but the advice is smaller, so the number of bits that the machine needs to read is also
smaller.

5 The Hierarchy

We explore some properties of advice classes (see [3, 7, 24]).
If f : N → Σ∗ is an advice function, then we use |f | to denote its size, i.e.,

the function |f | : N → N such that |f |(n) = |f (n)|, for every n ∈ N. For a class of
functions, F , |F | = {|f | : f ∈ F}.
Definition 3 A class of advice functions is said to be a class of reasonable advice
functions if:

1. for every f ∈ F , |f | is computable in polynomial time;
2. for every f ∈ F , |f | is bounded by a polynomial;
3. for every f ∈ F , |f | is increasing;
4. |F | is closed under addition and multiplication by positive integers;
5. for every polynomial p of positive integer coefficients and every f ∈ F , there

exists g ∈ F such that |f | ◦ p ≤ |g|.
Definition 4 Let r and s be two total functions. We say that r ≺ s if r ∈ o(s). Let F
and G be classes of advice functions. We say that F ≺ G if there exists a function
g ∈ G such that, for every f ∈ F , |f | ≺ |g|.

We have log(k+1) ≺ log(k), for all k ≥ 0. Now, we just need to know the relation
between the non-uniform complexity classes of BPP, induced by the relation ≺ in
the advice classes. Remember that a set is said to be tally if it is a language over
an alphabet of a single symbol (e.g. {0}). Now, consider the set of finite sequences
over the alphabet Σ ordered first by size and then alphabetically. The characteristic

52 E. Beggs et al.

function of a set A ⊆ Σ∗ is the unique infinite sequence χA : N → {0, 1} such that,
for every n, χA(n) is 1 if, and only if, the n-th word in that order is in A. The
characteristic function of a tally set A is a sequence where the i-th bit is 1 if, and only
if, the word 0i is in A. The following theorem generalizes the related theorem of [3,
7, 24], where it is proved for the deterministic case.

Theorem 10 If F and G are two classes of reasonable sublinear advice functions3

such that F ≺ G, then BPP//F � BPP//G.

Proof Trivially, BPP//F ⊆ BPP//G. Let linear be the set of advice functions of
size linear in the size of the input and η.linear be the class of advice functions of size
ηn, where n is the size of the input and η is a number such that 0 < η < 1. There is an
infinite sequence γ whose set of prefixes is in BPP//linear but not in BPP//η.linear
for some η sufficiently small.4 Let g ∈ G be a function such that, for every f ∈ F ,
|f | ≺ |g|. We prove that there is a set in BPP//g that does not belong to BPP//f , for
any f ∈ F .

A tally set T is defined in the following way: for each n ≥ 1,

βn =
{

γ�|g|(n) 0n−|g|(n) if |g|(n) ≤ n
0n otherwise

.

T is the tally set with characteristic string β1β2β3 With advice γ�|g|(n), it is easy
to decide T , since we can reconstruct the sequence β1β2 . . . βn, with (n2 + n)/2 bits,
and then we just have to check if its n-th bit is 1 or 0. We conclude that T ∈ P/g ⊆
BPP//g.

We prove that the same set does not belong to BPP//f . Suppose that some prob-
abilistic Turing machine M with advice f , running in polynomial time, decides T
with probability of error bounded by5

2− log(4|g|(n)) = 1

4|g|(n)
Since |f | ∈ o(|g|), then, for all but finitely many n, |f |(n) < η|g|(n), for arbitrarily
small η, meaning that we can compute, for all but finitely many n, |g|(n) bits of γ
using an advice of length η.|g|(n), contradicting the fact that the set of prefixes of γ is
not in BPP//η.linear. The reconstruction of the binary sequence γ�|g|(n) is provided
by the following procedure:

3F is a class of reasonable sublinear advice functions if it is a class of reasonable advice functions
such that, for every f ∈ F , |f | ∈ o(n)..
4We can take for γ the Chaitin Omega number, �.
5E.g. see Proposition 6.17 in [2]. The probability of error of a given probabilistic machine that
decides T in polynomial time can be reduced below any fixed value just by iteration.

A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 53

The queries are made simulating machine M which is a probabilistic Turing
machine with error probability bounded by 2− log(4|g|(n)) = 1

4|g|(n) . Thus, the proba-
bility of error of M′ is bounded by

1

4|g|(n2−n
2)

+ · · · + 1

4|g|(n2−n
2 + |g|(n)) .

As |g| is increasing, the error probability is bounded by

1

4|g|(n2−n
2)

× |g|(n),

which, for n ≥ 3, is bounded by

1

4|g|(n) × |g|(n) = 1

4
.

�

As we are considering prefix advice classes, it is useful to derive the following
corollary:

Theorem 11 If F and G are two classes of reasonable sublinear advice functions
such that F ≺ G, then BPP//F� � BPP//G�.

Proof The proof of Theorem10 is also a proof that BPP//F � BPP//G�, because
the advice functionused isγ�|g|(n),which is a prefixadvice function. SinceBPP//F� ⊆
BPP//F , the statement follows. �

We have already seen that, for all k ≥ 0, log(k+1) ≺ log(k). In particular, this is
true for k ≥ 1 and we have the following infinite descending chain

· · · ≺ log(4) ≺ log(3) ≺ log(2) ≺ log .

Therefore, by Theorem 11, we have also the descending chain of sets

· · · � BPP// log(4)� � BPP// log(3)� � BPP// log(2)� � BPP// log�,

54 E. Beggs et al.

that, according with Theorem 9, coincide with the classes of sets decided by RW fair
probabilistic Turing machines that can make up to

· · · � poly(log(3)(n)) � poly(log(2)(n)) � poly(log(n)) � poly(n)

calls to the RW oracle, respectively.

6 Conclusion

Summary. We introduced RW fair probabilistic Turing machine specified as fair
probabilistic Turing machines having access to a random walk experiment on a line.
We then proved that the class of sets decidable in polynomial time by RW fair
probabilistic Turing machines that can make up to poly(log(k)(n)) calls to the oracle
is exactly BPP// log(k+1)�, where log(k) is the class of advice functions f such that
|f (n)| ∈ O(log(k)(n)).

We proved that, if F and G are two classes of reasonable sublinear advice func-
tions such that F ≺ G, then BPP//F � BPP//G. Although this result was already
discussed for the deterministic case in [3, 7, 24], the probabilistic case seems not to
have been considered.

Then, we presented a fine structure of BPP// log� based on counting oracle calls:

· · · � BPP// log(4)� � BPP// log(3)� � BPP// log(2)� � BPP// log�,

that coincide with the structure of classes of sets decided by RW fair probabilistic
Turing machine that can make up to

· · · � poly(log(3)(n)) � poly(log(2)(n)) � poly(log(n)) � poly(n)

calls to the RW oracle, respectively.
Open Problem. Together with the transfinite chain of advice classes presented in [7,
18], we also have a transfinite chain of non-uniform probabilistic classes:

· · · � BPP// log(2ω)� � · · · � BPP// log(ω)� � · · · � BPP// log(2)� � BPP// log�.

In fact, the chain of non-uniform classes can be continued, where log(ω) =⋂
k∈N log(k) is a non-empty class (as shown in [7, 18] for diverse transfinite classes).

However, we do not know if there is a correspondence between these complex-
ity classes and the classes decided by RW fair probabilistic Turing machines with
bounded number of oracle calls, since we only proved such a correspondence for
advice classes of the form log(k), with k ∈ N. At present, we do not know how to
encode a function f ∈ log(ω)� into a real number.

A Hierarchy for BPP// log� Based on Counting Calls to an Oracle 55

Acknowledgments The research of José Félix Costa is supported by Fundação para a Ciência e
Tecnologia, projeto FCT I.P.:UID/FIL/00678/2013.

References

1. Ambaram, T., Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital model of
computation: turing machines with physical oracles. In: Adamatzky, A. (ed.) Advances in
Unconventional Computing, vol. 1(theory), p. 38. Springer (Sept 2016, to appear)

2. Balcázar, J.L., Días, J., Gabarró, J.: Structural Complexity I, 2nd edn. Springer, 1988 (1995)
3. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural networks: a

characterization in terms of Kolmogorov complexity. IEEE Trans. Inf. Theor. 43(4), 1175–
1183 (1997)

4. Beggs, E., Cortez, P., Costa, J.F., Tucker, J.V.: Classifying the computational power of stochastic
physical oracles (2016)

5. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as
oracles II. Upper bounds. Proc. R. Soc., Ser. A (Math., Phys. Eng. Sci.) 465(2105), 1453–1465
(2009)

6. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as
oracles. Proc. R. Soc., Ser. A (Math., Phys. Eng. Sci.), 464(2098), 2777–2801 (2008)

7. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Oracles and advice as measurements. In: Calude,
C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) Unconventional Computation
(UC 2008). Lecture Notes in Computer Science, vol. 5204, pp. 33–50. Springer (2008)

8. Beggs,E.,Costa, J.F., Poças,D., Tucker, J.V.:Computationswith oracles thatmeasure vanishing
quantities. Math. Struct. Comput. Sci. (in print)

9. Beggs, E., Costa, J.F., Tucker, J.V.: Computational models of measurement and Hempel’s
axiomatization. In: Carsetti, A. (ed.) Causality, Meaningful Complexity and Embodied Cog-
nition. Theory and Decision Library A, vol. 46, pp. 155–183. Springer (2010)

10. Beggs, E., Costa, J.F., Tucker, J.V.: Limits to measurement in experiments governed by algo-
rithms. Math. Struct. Comput. Sci. 20(06), 1019–1050 (2010)

11. Beggs, E., Costa, J.F., Tucker, J.V.: Physical oracles: the turing machine and the Wheatstone
bridge. Studia Log. 95(1–2), 279–300 (2010)

12. Beggs, E., Costa, J.F., Tucker, J.V.: The impact of models of a physical oracle on computational
power. Math. Struct. Comput. Sci. 22(5), 853–879 (2012)

13. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: Oracles that measure thresholds: the turing
machine and the broken balance. J. Log. Comput. 23(6), 1155–1181 (2013)

14. Beggs, E., Costa, J.F., Tucker, J.V.: A natural computation model of positive relativisation. Int.
J. Unconv. Comput. 10(1–2), 111–141 (2013)

15. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital Church-Turing thesis. Int.
J. Found. Comput. Sci. 25(4), 373–390 (2014)

16. Beggs, E., Costa, J.F., Tucker, J.V.: Three forms of physical measurement and their computabil-
ity. Rev. Symb. Log. 7(12), 618–646 (2014)

17. Blass, A., Braun, G.: Random orders and gambler’s ruin. Electr. J. Comb. 12, R23 (2005)
18. Costa, J.F.: Incomputability at the foundations of physics (A study in the philosophy of science).

J. Log. Comput. 23(6), 1225–1248 (2013)
19. Costa, J.F.: Uncertainty in time. Parallel Proc. Lett. 25, 1540007, 13 (2015)
20. Geroch, R., Hartle, J.B.: Computability and physical theories. Found. Phys. 16(6), 533–550

(1986)
21. Krantz, D.H., Suppes, P., Luce, R.D., Tversky, A.: Foundations of Measurement. Academic

Press, vol. 1 (1971), vol. 2 (1989) and vol. 3 (1990)
22. Mosteller, F.: Fifty Challenging Problems in Probability with Solutions. Dover Publications

(1987)

56 E. Beggs et al.

23. Odifreddi, P.: Classical Recursion Theory II. North Holland, Studies in Logic and the Founda-
tions of Mathematics (1999)

24. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit.
Birkhäuser (1999)

25. Venegas-Andraca, S.E.: Quantum Walks for Computer Scientists. Morgan and Claypool Pub-
lishers (2008)

26. Younger, A.S., Redd, E., Siegelmann, H.T.: Development of physical super-turing analog hard-
ware. In: Obara, O.H., et. al. (eds.) Unconventional Computation and Natural Computation—
13th International Conference (UCNC 2014). Lecture Notes in Computer Science, vol. 8553,
pp. 379–391 (2014)

	A Hierarchy for BPP//log Based on Counting Calls to an Oracle
	1 Introduction
	2 Random Walk Oracles
	2.1 Random Walk
	2.2 Machines with Random Walk Oracles

	3 Computational Resources
	4 Lower and Upper Bounds
	5 The Hierarchy
	6 Conclusion
	References

