
Mining for Functional Dependencies
Using Shared Radix Trees in Many-Core
Multi-Threaded Systems

Joel Fuentes, Claudio Parra, David Carrillo and Isaac D. Scherson

Abstract We consider the problem of mining for functional dependencies in
relational databases. Intermediate data structures, although simple, explode in size
and a solution is proposed using radix trees to reducememory utilization. Parallelism
is further applied in a Multi-Core computer to further speedup the process. Because
bit-permutations are the basis of the construction of a binary intermediate matrix,
radix trees reduce the memory usage 10 times. Multi-Threading the construction and
processing of the intermediate data leads to a concurrent computing average-over-
time of 63% on an equivalent speedup of 6.3 on a system with 12 cores, 256 GB of
memory and 1 TB SSD.

1 Introduction

With the advent of computing systems that use silicon devices with many CPUs per
chip, also known as Many-Core or Multi-Core systems, new challenges are posed
to programming applications that attempt to use parallelism to achieve a significant
computational improvement. Typical Many-Core computers use chips that contain
two, four or more cores each. These Multi-Core chips also include an on-chip hier-
archical shared cache system that provides local and shared caches. An interface
to a large common main DRAM storage completes the solid state memory hierar-
chy. These systems are normally programmed using threads that are managed by

J. Fuentes (B)
Universidad del Bío-Bío, Chillán, Chile
e-mail: jfuentes@ubiobio.cl

C. Parra
Universidad Católica del Maule, Talca, Chile
e-mail: parra.claudio.alejandro@gmail.com

D. Carrillo · I.D. Scherson
University of California, Irvine, USA
e-mail: dcarril@ics.uci.edu

I.D. Scherson
e-mail: isaac@ics.uci.edu

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Emergent Computation, Emergence, Complexity
and Computation 24, DOI 10.1007/978-3-319-46376-6_13

303

304 J. Fuentes et al.

the operating system to execute in the available cores attempting to use as much
parallelism as possible. The main problem that arises is the management of shared
data structures in the shared hierarchical memory to guarantee synchronized access
to the data structures, avoiding deadlock and providing a correct access sequence as
required by the program.

Herlihy and Shavit [7] wrote a book that discusses the methodologies used to
properly program Multi-Core systems. Exploiting parallelism depends very much
on the synchronization mechanisms available to avoid shared data conflicts. Their
book has become a classic and has been adopted to teachMultiProgramming courses.

Experience with practical programs shows that in addition to deadlock avoidance,
programmers need to be very careful about write through latencies that are bound
to create incorrect value reads if threads access variables before the write through
mechanism updates values throughout the memory hierarchy. It seems that even
when sequentializing shared data accesses, the write through mechanism may get in
the way of correct execution, and might lead to a slowdown in program execution.

In this paper we consider an actual practical problem encountered when trying
to discover functional dependencies (FDs) in relational data bases using a recently
introduced technique based on the generation of refutations [6]. Given a relational
database with n records of k attributes each, the method starts by generating a refuta-
tion matrix that represents exhaustively all attribute groups where no dependencies
can be found. It is shown that the size of this matrix can explode beyond the storage
capabilities of the computer and a need is identified to represent it using radix trees.
The generation of this refutation matrix is almost embarrassingly parallel and a dis-
cussion is presented on how to gain performance by exploiting concurrency bothwith
a straight forward matrix data structure as well as with a radix tree representation.

It will be shown that a big bottleneck is an intermediate data structure whose size
may overcome the available storage in the computer. Radix trees are suggested to
reduce the demand on memory and are shown to yield a reduction of 10 times on
average for the worst case. Parallelization of the intensive phase of the procedure is
done on a Multi-Core engine using Multi-threaded programming. Recognizing the
inherent sequentialization present in shared memory/data programs, a figure of merit
is used to determine what percentage of the execution time threads are allowed to run
in parallel. A companion speedup is also calculated. For a 12-core computer, with
256GB of DRAM and 1TB disk, experimentation shows that on average a speedup
of 6.3 is achieved with parallelism observable 63% of the time.

2 Algorithm for Mining Functional Dependencies

Consider a relational database where R is a relation with a set of attributes
A = {ai |i = 1 . . . k} and r is an instance of R where each attribute in each tuple
can assume a value in some domain. We denote by t (ai) the value of attribute ai

Mining for Functional Dependencies Using Shared Radix Trees … 305

in tuple t . A functional dependency (FD) is an expression of the form X → ai ,
where X ⊆ {A − ai }. X is called the determinant set and ai is called the dependent
attribute. The FD X → ai is valid in the instance r if and only if for every pair of
rows (tuples) t, t ′ ∈ r , whenever t[a j] = t ′[a j] for all a j ∈ X , it is also the case that
t[ai] = u[ai].

Many direct algorithms have been proposed to find FDs in relational databases
[2, 4, 5, 8, 10]. This work is based on a novel approach that first prunes the search
space by determining which attributes cannot depend on others. The idea is to gen-
erate first “refutations” by exhaustively searching all tuple pairs in the relational
database to identify which subsets of attributes cannot determine another attribute.

To facilitate the description of the operations in Refutation-Based FD mining
(RB-FD) algorithm [6], let us give the following definitions:

1. Let A = {ai | i = 1 . . . k} be a set of attributes where each attribute can assume
a value in some domain.

2. A relation R over A describes all possible tuples of values of attributes in A.
3. An instance r of R is a subset of tuples of R. We denote by t (ai) the value of

attribute ai in tuple t .
4. A refutation [A − {ai }] � ai holds if and only if for t, t ′ ∈ r , t (ai) �= t ′(ai) ∧

∃a j , j �= i, t (a j) = t ′(a j).

A refutation is found when two different values for t (ai) and t ′(ai) correspond
to tuples where some subset of the remainder [A − {ai }] attributes are equal.

The result of finding refutations can be kept on a binary matrix H where a row
corresponds to the comparison of a pair of tuples t , t ′ in r . If t (ai) �= t ′(ai), the
row is generated with 1s at attribute positions where t (a j) = t ′(a j), i �= j , and 0s
elsewhere. If t (ai) = t ′(ai), no row is generated.

Note that if ai does not depend on some set of other attributes it does not depend
on any subset of those attributes. We conclude that when looking for refutations, we
only need to retain those with the maximum number of attributes other than ai .

If two refutations are generated such that the one with more 1s, say h, has 1s in all
the positions where other h′ has 1s, then only the one with more 1s (h) needs to be
retained. We say that the former (h) contains the latter (h′). The test for containment
can be summarized as follows:

If (h ∧ h′) ⊕ h = 0 ⇒ retain h′

If (h ∧ h′) ⊕ h′ = 0 ⇒ retain h

The procedure for generating the matrix H for an attribute ai in r is shown in
pseudocode in Algorithm 2 below.

306 J. Fuentes et al.

Input : relation r , set of attributes A
Output: set of refutations H

for t ∈ r do
for t ′ ∈ r do

if t (ai)! = t ′(ai) then
h = ∅;
for a j ∈ {A − ai } do

if t (a j) == t ′(a j) then
h = h ∪ a j ;

end
end
for h′ ∈ H do

if (h ∧ h′) ⊕ h = 0 then
continue next t ′;

end
if (h ∧ h′) ⊕ h = 0 then

H = H \ {h′};
end

end
H = H ∪ h;

end
end

end
Algorithm 2: Generation of refutations H for attribute ai .

Example. Given a 6-attribute relation with A = {a, b, c, d, e, f } such that the
domain for a = {a1, a2, a3, a4, a5}, for b = {b1, b2, b3, b4} and so on for c, d, e
and f (see Fig. 1), and the instance r shown in Fig. 1 we produce the matrix H
for attribute 6 as its refuted attribute. We observe that the tuples 1 and 2 produce
the refutation {a, b} � f (represented by the vector h = 11000) since the values of
attribute f in tuples 1 and 2 are distinct and for attributes a and b are equal; tuples
1 and 3 produce the refutations {b, d} � f (h = 01010); tuples 1 and 7 produce the
refutations {a} � f (h = 10000) and so on. Keeping only the maximal refutations
we discard the refutation {a} � f and finally obtain the refutations {a, b} and {b, d}
represented by the matrix shown below:

Fig. 1 Relation instance
with A = {a, b, c, d, e, f } Tuple ID a b c d e f

1 a1 b3 c2 d1 e4 f1
2 a1 b3 c3 d3 e1 f2
3 a2 b3 c5 d1 e5 f4
4 a3 b3 c2 d3 e3 f1
5 a4 b2 c2 d8 e2 f1
6 a5 b4 c4 d1 e3 f1
7 a1 b1 c3 d7 e6 f2

Mining for Functional Dependencies Using Shared Radix Trees … 307

H =
(a b c d e

1 1 0 0 0
0 1 0 1 0

)

Phase 1 of the RB-FD algorithm is the generation of the refutation matrix H just
described.

As seen in [6], Phase 2 consists in finding the minimal transversals of a hyper-
graph represented by a binary matrix H , the bit-wise complement of H . A minimal
transversal τm of the hypergraph H ′ is a (k − 1)-bit binary vector that contains the
minimal number of 1s such that τm ∧ hi contains at least one 1 for all rows i of H ′.

Theprocedure is supposed togenerate all possible distinctminimal transversals for
each matrix H (for each attribute). The detail of the minimal transversals generation
is not within the main scope of this paper and are left to the interested to read in [6].

Example. From the refutation matrix found from r in Fig. 1 in the previous exam-
ple, we continue now by obtaining the hypergraph of the complements of the hyper-
edges in H , which is H ′ = {{c, d, e}, {a, c, e}}, represented by the binary vectors
H ′ = {00111, 10101}. Finally the minimal transversals correspond to the functional
dependencies in minimal form:

H =
⎛
⎝
a b c d e

1 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎠

That is, we have discovered the functional dependencies {a, d} → f, {c} → f
and {e} → f .

Even though the generation of the refutation matrices H for each attribute has
polynomial complexity, it can become dominant due to the large size of the database
r (large n and k) and also because the size of H may explode as it will be seen in the
next section.

3 The Size of Refutation Matrices

Consider as above a n-tuple instance r of a relation R. It was shown that to generate a
refutation matrix H , all pairs of tuples in r need to be compared to obtain refutation
vectors that are inserted in a running matrix H following the containment rule.

Tofind the number of rows in H , that is the number of “non-contained” refutations,
out of the O(n2) generated by comparing all possible pairs of tuples in r , assume
that some pair of tuples generated a refutation with a maximum number of 1s. It is
obvious that the only non-contained other refutations that could be added to H are
those binary vectors that are some permutation of this maximum 1s refutation. All

308 J. Fuentes et al.

other refutations will be contained in the maximum one, or in one that is permutation
of the maximum one.

If q is the number of 1s in the refutation vector with the maximum number of
ones, the maximum number of non-contained refutations (rows) in H is:

max rows in H =
(
k

q

)
= (k − 1)!

q!(k − 1 − q)! k, q ∈ N

which has a maximum when q = k−1
2 .

The proof of this maximum can be obtained by induction and we omit it as it is
simple and does not add substantial knowledge to this work.

Observation: If n2 ≥ k−1!
q!(k−1−q)! and all permutations of a binary vector with

q = k−1
2 1s are generated, the maximum size of H is:

|H | = k − 1!
k−1
2 !(k − 1 − k−1

2)! (1)

Example. Table1 illustrates the growth of memory utilization needed to store
refutation matrix H when increasing the number of attributes in the worst case.

It is clear that there is a need for a compact representation of refutations in main
memory. In [9] Knuth shows different forms to represents all the permutations and
introduces the concept of path for these sequences. Table2 illustrates all the combi-

nations that corresponds to a worst case when finding

(
6

3

)
= 20maximal refutations

from a relationwith 6 attributes. From the second to the fourth column corresponds to
different forms of representing these binary strings that can also be seen as compact
representations. The second column corresponds to the dual combination bp . . . b1
that lists the position of zeros. The third column represents the primal combination
cp . . . c1 that lists the positions of the ones. The fourth column corresponds to the
multicombination dp . . . d1 that lists the number of 0s to the right of each 1.

Furthermore, Table2 presents the path of each binary string. Each binary string is
equivalent to a path of length k − 1 from the corner to corner of an q × (k − 1 − q)

grid, because such a path contains q vertical steps and k − 1 − q horizontal steps.

Table 1 Memory utilization
for refutation matrix H

Attributes Memory

16 25.7 KB

24 8.1 MB

32 2.4 GB

40 689 GB

48 195 TB

Mining for Functional Dependencies Using Shared Radix Trees … 309

Table 2 Representations of maximal refutations for k = 6 and q = 3

a5a4a3a2a1a0 b3b2b1 c3c2c1 d3d2d1 Path

000111 543 210 000

001011 543 310 100

001101 541 320 110

001110 540 321 111

010011 532 410 200

010101 531 420 210

010110 530 421 211

011001 521 430 220

011010 520 431 221

011100 510 432 222

100011 432 510 300

100101 431 520 310

100110 430 521 311

101001 421 530 320

101010 420 531 321

101100 410 532 322

110001 321 540 330

110010 320 541 331

110100 310 542 332

111000 210 543 333

The concept of path in this sense is useful to define a new data structure to store
refutations. It can be seen that the worst case presents common prefix sequences in
a half of the total of refutations.

310 J. Fuentes et al.

4 Reducing the Size of Intermediate Data Structures

The refutation matrix H represents a simple structure to store refutations but it
produces high costs to keep the maximal refutations in it. For example, when a
refutation is found, a review step over the entire matrix H must be done by removing
all its subsets (contained refutations). The other important cost is the memory usage,
where this structure can explode if the worst case is presented.

To deal with these issues the radix tree data structure is introduced. A radix tree is
an ordered tree data structure that is used to store a dynamic set or associative array
where the keys are usually strings. In a regular radix tree each edge is assigned with
some symbol. Thus, any route from a tree root to one of its leaves defines precisely
only one string. As the refutations are represented as a binary strings, for the radix
tree only the symbols 0 and 1 are considered.

When inserting these refutation in the radix tree and based on the property that
all the refutations have the same length, the refutations are represented as paths from
the root to every leaf. Figure2 on the right illustrates the refutations from H inserted
in the radix tree. To make the radix tree smaller, it is possible compress it. Such form
means that a number of bits B per node is defined allowing that nodes with the same
bits in the same level are packed.

Unlike balanced trees, radix trees permit lookup, insertion, and deletion in O(k)
time rather than logarithmic. However for our radix tree implementation, a fixed
number of bits B is defined as the strict number of bits per node. This value will also
represent the maximum common number of bits for different refutations that can be
compacted in a node.

Formally, let B be the number of bits in each node. The worst case for the radix
tree when looking up for a refutation is similar to the matrix H , O(|H |). It occurs
when having defined the value B there are no common prefixes of size B for the set of
refutations. For instance, if there exist |H | different refutations and they are different
from each other in the first B bits, {X1, . . . , XB}, and the rest of bits {XB+1, . . . , Xk}
for every refutation are similar, then there is no possible compression. However, from
the previous section it was shown that if the worst case scenario for the number of
refutations occurs, then common prefixes exist (common initial paths exist from one
corner to the opposite on the diagonal).

H =

⎛
⎜⎜⎝

a b c d e f

0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

⎞
⎟⎟⎠

Fig. 2 Maximal refutations stored in the matrix H (left) and the radix tree (right) with B = 2

Mining for Functional Dependencies Using Shared Radix Trees … 311

The average case can be calculated as follows. Let n be the number of refutations
with k bits. Let M = 2B the number of possible combinations given B bits, and mi

the i-th combination of bits. Let ra and rb be refutations. Finally, let bits(B, ra) be
the first B bits of the refutation ra .

The probability of having two refutations with the same first B bits is:

Pr(bits(B, ra) == bits(B, rb)) =
M∑
i=1

Pr(bits(B, ra) = mi AND bits(B, rb) = mi)

= M ∗ Pr(bits(B, ra) = mi) ∗ Pr(bits(B, rb) = mi)

= M ∗ (
1

M
)2

= 1

M

From above, Pr(bits(B, ra) �= bits(B, rb)) = 1 − 1
M . Then the probability that

n − 1 refutations are different to ra is (1 − 1
M)(n−1). This means ra is unique in its

first B bits. If all the refutations are unique in their first B bits, then the expected
number of different refutations is:

E[D] =
n∑

i=1

Pr(ri is unique) = n ∗ (1 − 1

M
)(n−1)

The number of refutations that share the first B bits is n(1 − (1 − 1
M)(n−1))

For the first level of the tree there are in average n ∗ (1 − 1
M)(n−1) ∗ B bits, and if

it is compared with the matrix H the memory usage is reduced by (1 − 1
2B)(n−1). On

the following levels the considerations are the same.
Experimental results show the important reduction in the memory usage by using

the radix tree. For instance, Fig. 4 illustrates a set of experiments comparing the
memory usage by the matrix H and the radix tree when increasing the number of
refutations. This experiment corresponds to a sequential execution of the algorithm
using both data structures.

5 Parallel Generation of Refutation Sets

The goal of the parallelization of the RB-FD on multicore systems is to minimize
the processing time with the computing power being efficiently utilized. Thus, the
parallelization plus the new data structure proposed would allow mining big datasets
in shorter time.

From results presented in [6] it can be seen that first step of RB-FD represents the
most time-consuming task. This part of the method involves two tasks:

312 J. Fuentes et al.

1. Obtain the set of maximal refutations H with the form [A − ai] � ai by compar-
ing every pairs of tuples for every attribute. That is, ∀ai ∈ A, the set of pairs of
tuples (t, t ′) ∈ r × r such that (∀a j ∈ [A − ai]) t[a j] = t ′[a j] ∧ t[ai] �= t ′[ai].
This task is exactly Θ(k2 n(n−1)

2) with n the number of tuples and k the number
of attributes.

2. Keep only the maximal refutations in H . For every new refutation, check its
maximality with the existing refutations in H .

The complexity of the first task does not seem to involve a problematic issue
even when having a big number of tuples. However the verification of maximal
refutations when inserting a new one in H would produce an upper bound of O(|H |)
whose complexity becomes the hardest with the presence of the worst case scenario.
Thus, we can have O(|H |) = k!

p!(k−q)! as a verification for every new refutation found.
TheDynamicMultithreading model described in [3] allows programmers to spec-

ify parallelism in applications without worrying about communication protocols,
load balancing, and other vagaries of static-thread programming. The model repre-
sents a multithreaded computation as a directed acyclic graph G = (V, E) whose
vertices are instructions and (u, v) ∈ E if u must be executed before v. The time
Tp needed to execute the computation on p cores depends on two parameters of the
computation: its work T1 and its span T∞. The work is the running time on a single
core, that is, the number of nodes (i.e., instructions) in G, assuming each instruction
takes constant time. Since p cores can execute only p instructions at a time, we have
Tp = Ω(T1/p). The span is the length of the longest path inG. Since the instructions
on this path need to be executed in order, we also have Tp = Ω(T∞). Together, these
two lower bounds give Tp = Ω(T∞ + T1/p). The degree to which an algorithm can
take advantage of the presence of p > 1 cores is captured by its speed-up T1/Tp and
its parallelism T1/T∞. In the absence of cache effects, the best possible speed-up is
p, known as linear speed-up. Parallelism provides an upper bound on the achievable
speed-up.

The proposed parallel solutions adopt the Dynamic Multithreading model. Fol-
lowing this model, two important features are defined to reflect the parallel behavior:
nested parallelism and parallel loops. Nested parallelism allows a subroutine to be
spawned, allowing the caller to proceed while the spawned subroutine is computing
its result. A parallel loop (parallel for in Algorithms 3 and 4) is like an ordinary for
loop, except that the iterations of the loop can execute concurrently.

Two parallel alternatives are presented in this section using radix trees.

5.1 Parallelism Through Attributes

It is easy to see that the first step of the studied algorithm is embarrassing parallel.
The objective of this step is to obtain the set of maximal refutations for every attribute
in A, itmeans that for every attribute there exists a set of refutations that is independent
from the sets generated for other attributes.

Mining for Functional Dependencies Using Shared Radix Trees … 313

Input : relation r , set of attributes A
Output: sets of refutations H1, . . . , Hk

parallel for a ∈ A do
Ha = findRefutations(a);

end

function findRefutations(a)
for t ∈ r do

for t ′ ∈ r do
if t (a)! = t ′(a) then

h = ∅;
for a j ∈ {A − {a}} do

if t (a j) == t ′(a j) then
h = h ∪ a j ;

end
end
addToRadixTree(Ha , h);

end
end

end
return Ha ;

end
Algorithm 3: Parallel RB-FD through the attributes usign radix trees (RB-FD-
rtree-att).

Given the set of attributes A = {a1, a2, . . . , ak} and an instance of relation r ,
this alternative associates independent threads to the search of refutations for each
attribute Ai . It results in a set of concurrent threads accessing (read operations) the
relation r to find refutations in it. The refutations are kept in radix trees, meaning
that each thread has its own radix tree which is independent from another thread’s
radix tree.

Each process computes exactly Θ(k n(n−1)
2) operations in finding refutations. The

Algorithm 3 presents the parallel solution through the set of attributes. The set of
refutations for each attribute (the right part in the refutation) are represented by Hai
and corresponds to a radix tree.

5.2 Parallelism Through Tuples

This alternative is based on the fact that sometimes a search of FDs for a specific
attribute can be needed. For instance, find all the refutations with attribute ai as the
dependent attribute. The approach consists in generating threads that go over a well-
defined range on the tuples of the relation r . Thus, every refutation found by a thread
will need to be stored in a common radix tree.

Formally, given a set of attributes A = {a1, a2, . . . , ak}, an instance of relation r
and a number of threads p; a range b is defined as b = |r |/p, where 0 ≤ b < |r |.

314 J. Fuentes et al.

A global radix tree is also defined with restricted access for writing and shared access
for reading. Each process is given a range of contiguous tuples that will be its scope
of search. The search of refutations starts when the main process takes a tuple as
a pivot and sends this tuple to each thread that has the labor of finding refutations
within its range. The radix tree is modified by getting exclusive access if and only if
the refutation to add is maximal.

Input : relation r , set of attributes A, number of processes P
Output: sets of refutations H1, . . . , Hk

i = 0;
j = 0;
range = |r |/P;
for a ∈ A do

Ha = ∅;
parallel for t ∈ r do

i = j + 1;
j = j + range;
findRefutations(a, t , i , j);

end
end

function findRefutations(a, t , i , j)
for t ′ ∈ (i, j) do

if t (a)! = t ′(a) then
h = ∅;
for a j ∈ {A − {a}} do

if t (a j) == t ′(a j) then
h = h ∪ a j ;

end
end
if h is maximal then

lock();
addToRadixTree(Ha , h);
unlock();

end
end

end
end

Algorithm 4: Parallel RB-FD through tuple ranges using shared radix trees (RB-
FD-rtree-tup).

For an attribute D and a range b each thread computes exactly Θ(k ∗ n ∗ b)
operations in finding refutations. Finding the refutations for all the attributes the
complexity is Θ(k2 ∗ n ∗ b). The Algorithm 4 presents the parallel solution through
the set of attributes.

Mining for Functional Dependencies Using Shared Radix Trees … 315

6 Experimental Results

A measurement of the average-over-time of the number of threads simultaneously
running is introduced as the figure of merit that characterizes the efficiency of a
Multi-threaded execution in a Many-Core computer. The objective is to distinguish,
for a certain problem and execution, what is the proportion of the total running time
for which threads execute in parallel and achieve some progress in their work.

Consider that blocking mechanisms are used to guarantee exclusive access to
certain memory location. These mechanisms usually have three main states:

• Acquiring permission: The thread asks for permission to access the protected
memory location. This state can consider blocking.

• Performing actions with permission: The thread performs actions on the protected
memory location.

• Releasing the permission: The thread releases the permission after finishing its
actions on the protected memory location.

It can be seen that the only blocking state is the first one, meaning that there can
be no progress on the actions that the thread has to perform. For instance, the Lock
blockingmechanism considers that only onewriter thread can have the lock at a time.
Thus the blocking state consists on repeatedly and unsuccessfully atomic operations
by the thread to change the lock state from unlock to lock.

Formally, let Γ be the total running time of a thread and let β be the time the
thread spends in blocking state, with a total of p threads running concurrently, the
average of parallel running time (APRT) is defined as follows:

APRT =
∑p

i=1 Γi − βi

p

APRT and the level of speedup are used to analyze the performance of the parallel
algorithms described previously. We carried out a set of experiments using both of
the proposals with the introduction of the radix tree.

Algorithms were implemented in the C++11 programming language. The exper-
iments were carried out on a Dual 12 Core Xeon Haswell, with a total of 24 physical
cores running at 2.60 GHz. Hyperthreading was disabled. The computer runs Linux
3.19.0-26-generic, in 64-bit mode. This machine has per-core L1 and L2 caches of
sizes 32 and 256 KB, respectively and a per-processor shared L3 cache of 30 MB,
with a 256GB DDR RAM memory and 1TB SSD. Algorithms were compared in
terms of running times using the usual high-resolution (nanosecond) C functions in
time.h.

The datasets (input) used are from UCI Machine Learning Repository [1], in
particular we use the PAMAP2 Physical Activity Monitoring datasets.

316 J. Fuentes et al.

6.1 Radix Tree Performance

One of the first improvement for RB-FD that was introduced in the previous section
was the use of a radix tree instead of a matrix to store maximal refutations. This new
data structure allows refutation compression by using the similar refutations’ prefix
as a single node.

A number of 12 relation instances where used to carry out some experiments to
measure the performance with the goal of seeing what is the improvement achieved
by using this new data structure. Figure3 shows the running time (in seconds) of
RB-FD using the original matrix H and the new version using a radix tree (RB-
FD-rtree). It is clear to see that RB-FD-rtree presents a significant less running time
when increasing the number of tuples in the datasets. A similar behavior occurs
when increasing the number of attributes. Furthermore, as analyzed previously, the
memory usage is reduced notoriously when using the radix tree. For instance, when
storing 30,000 maximal refutations the memory utilization is 10 times smaller than
using an array representation for the matrix H (Fig. 4).

Fig. 3 Running time of
RB-FD and RB-FD-rtree

 0

 5

 10

 15

 20

 25

 0 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of tuples

RB-FD
RB-FD-rtree

Fig. 4 Memory usage of
Matrix H and radix tree
storing refutations

Mining for Functional Dependencies Using Shared Radix Trees … 317

6.2 Parallel Alternatives

Table3 shows the times achieved by RB-FD on its three versions: RB-FD-rtree
(sequential algorithm) and the parallel versions RB-FD-rtree-att (parallelization
through attributes) and RB-FD-rtree-tup (parallelization through tuples). This exper-
iment corresponds to the finding of functional dependencies on a datasets with
502,182 tuples and 32 attributes. Figure5 shows the speedup from the sequential
version RB-FD-rtree when increasing the number of cores for RB-FD-rtree-att and
RB-FD-rtree-tup. Up to 12 cores, it can be seen that the speedup of the parallelization
through tuples grows slowly, then it stops growing and decreases its speedup a bit and
continues fluctuating between a speedup of 2 and 3. The main reason for this phe-
nomenon is that increasing the number of threads in RB-FD-rtree-tup produces data
contention and more lock operations on the shared radix tree. The data contention
does not occur with RB-FD-rtree-att, which presents a constant growth, since there
is no shared radix tree, due to each thread has its own radix tree.

The parallelization over tuples (RB-FD-rtree-tup) works with a simple Lock as
a mechanism for allowing exclusive access to the radix tree when a new maximal

Table 3 Running times (in seconds) varying the number of cores

cores RB-FD rtree RB-FD rtree-att RB-FD rtree-tup

1 4.41 4.41 4.41

4 – 2.08 1.7

8 – 1.94 1.04

12 – 1.46 0.76

16 – 1.86 0.66

20 – 1.62 0.56

24 – 1.90 0.44

Fig. 5 Speedup of parallel
alternatives varying the
number of cores

 2

 4

 6

 8

 10

 12

 14

 1 4 8 12 16 20 24

S
p
e
e
d
u
p

Number of cores

RB-FD-rtree-att
RB-FD-rtree-tup

318 J. Fuentes et al.

Table 4 Average of blocking and total time for threads running RB-FD-rtree-tup

cores Blocking time Total time APRT

4 0.018 0.22 0.91

8 0.030 0.156 0.79

12 0.05 0.132 0.63

16 0.048 0.106 0.57

20 0.064 0.114 0.43

24 0.082 0.126 0.35

refutation is found. Therefore it sounds interesting to see what is the APRT achieved
when different number of threads are finding FDs in a dataset.

Table3 shows the blocking and total times achieved by the algorithmwhen threads
work on the same attribute (right-part of the refutation). As explained in Algorithm 4
the number of tuples is divided by the number of threads and each thread has to
find refutations on its own range. These executions correspond to the same from the
previous experiments, but focusing only on RB-FD-rtree-tup and the blocking and
total times (Table4).

According to the results, when increasing the number of cores and threads shorter
running time is achieved. However after 12 cores, the running time stops decreasing
and keeps stable. This behavior is explained by the addition of more blocking time
as the number of cores and threads are increased. Therefore smaller APRT values
are obtained and the greater blocking times are added. In other words, with more
threads they have to perform less work but they suffer of blocking and waiting times
(Fig. 6).

Fig. 6 Running time
characterized by APRT and
blocking time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 4 8 12 16 20 24

T
i
m
e

Number of cores

APRT
Blocking time

Mining for Functional Dependencies Using Shared Radix Trees … 319

Acknowledgments Weare grateful to Prof. GilbertoGutiérrez andDr. Pablo Sáez for their valuable
guidance into the problem of finding functional dependencies. Thanks also to EMC Inc. in Irvine
for lending us computing resources.

References

1. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013)
2. Baixeries, J.: A formal concept analysis framework to mine functional dependencies.

Workshop on Mathematical Methods for Learning. Como, Italy (2004)
3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.

The MIT Press (2009)
4. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete Appl.

Math. 159(6), 450–466 (2011)
5. Flach, P., Savnik, I.: Database dependency discovery: a machine learning approach. AI Com-

mun. 12(3), 139–160 (1999)
6. Fuentes, J., Sáez, P., Gutiérrez, G., Scherson, I.D.: A method to find functional dependencies

through refutations and duality of hypergraphs. Comput. J. bxu047 (2014)
7. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA (2008)
8. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: Tane: an efficient algorithm for discov-

ering functional and approximate dependencies. Comput. J. 42(2), 100 (1999)
9. Knuth, D.E.: The art of computer programming, vol. 3, 2nd edn. In: Sorting and Searching.

Addison Wesley Longman Publishing Co., Inc, Redwood City, CA, USA (1998)
10. Novelli, N., Cicchetti, R., Fun: An efficient algorithm for mining functional and embedded

dependencies. In: Database Theory—ICDT, vol. 1973. Springer, London, United Kingdom,
189–203 (2001)

	Mining for Functional Dependencies Using Shared Radix Trees in Many-Core Multi-Threaded Systems
	1 Introduction
	2 Algorithm for Mining Functional Dependencies
	3 The Size of Refutation Matrices
	4 Reducing the Size of Intermediate Data Structures
	5 Parallel Generation of Refutation Sets
	5.1 Parallelism Through Attributes
	5.2 Parallelism Through Tuples

	6 Experimental Results
	6.1 Radix Tree Performance
	6.2 Parallel Alternatives

	References

