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Abstract This chapter describes a unified framework for the detection and
correction of silent errors, which constitute a major threat for scientific applica-
tions at extreme-scale. We first motivate the problem and explain why checkpointing
must be combined with some verification mechanism. Then we introduce a general-
purpose technique based upon computational patterns that periodically repeat over
time. These patterns interleave verifications and checkpoints, and we show how
to determine the pattern minimizing expected execution time. Then we move to
application-specific techniques and review dynamic programming algorithms for
linear chains of tasks, as well as ABFT-oriented algorithms for iterative methods
in sparse linear algebra. Thanks to Selim AKkl, by Yves Robert—I have a vivid
souvenir of Selim’s visit to Lyon in the early 90s. Selim had obtained a Louis Néel
fellowship devoted to promote exchanges between Canada and the Rhone-Alpes area
in France, and he spent 6 months in Lyon with his family. Michel Cosnard was the
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head of the LIP laboratory at that time. Selim gave a course on parallel algorithms,
mainly sorting and PRAM, that sparkled a lot of interest among both our students and
the researchers in the lab. During his stay, Selim initiated several collaborations with
Jean Duprat, Afonso Ferreira and Pierre Fraigniaud. Although I never collaborated
with him, I would like to thank him for his vision. I was then a young professor in
LIP, and I felt like meeting a star, but a very kind one. His two books, Parallel Sorting
Algorithms and The Design and Analysis of Parallel Algorithms, had a huge influ-
ence on many researchers at LIP (including myself), as they helped shape our view
of parallel complexity. Later on we all took different research directions (PRAM,
hypercubes, systolic arrays, scheduling, routing, ...) but Selim laid the foundations
of the field for us, and we are grateful to him.

1 Introduction

For High-Performance Computing (HPC) applications, scale is a major opportunity.
Massive parallelism with 100,000+ nodes is the most viable path to achieving sus-
tained petascale performance. Future platforms will exploit even more computing
resources to enter the exascale era.

Unfortunately, scale is also a major threat, because resilience becomes a key
challenge. Even if each node provides an individual MTBF (Mean Time Between
Failures) of, say, one century, a machine with 100,000 such nodes encounters on
average a failure every 9h, an interval much shorter than the execution time of many
HPC applications. Note that (i) a one-century MTBF per node is an optimistic figure,
given that each node features several hundreds of cores; and (ii) in some scenarios
for the path to exascale computing [15], one envisions platforms including up to one
million such nodes, whose MTBF will decrease to 52 min.

Several kinds of errors need to be considered when computing at scale. In the
recent years, the HPC community has traditionally focused on fail-stop errors, such
as hardware failures. The de facto general-purpose technique to recover from fail-
stop errors is checkpoint/restart [11, 17]. This technique employs checkpoints to
periodically save the state of a parallel application, so that when an error strikes
some process, the application can be restored into one of its former states. There are
several families of checkpointing protocols, but they share a common feature: each
checkpoint forms a consistent recovery line, i.e., when an error is detected, one can
rollback to the last checkpoint and resume execution, after adowntime and a recovery
time. Many models are available to understand the behavior of the checkpointing and
restarting techniques [8, 14, 31, 37].

While the picture is quite clear for fail-stop errors, the community has yet to devise
an efficient approach to cope with silent errors, primary source of silent data cor-
ruptions. Such errors must also be accounted for when executing HPC applications
[28, 30, 39-41]. They may be caused, for instance, by soft errors in L1 cache,
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arithmetic errors in the ALU (Arithmetic and Logic Unit), or bit flips due to cos-
mic radiation. The main issue is that the impact of silent errors is not immediate,
since they do not manifest themselves until the corrupted data impact the result of
the computation (see Fig. 1), leading to a failure. If an error striking before the last
checkpoint is detected after that checkpoint, then the checkpoint is corrupted, and
cannot be used to restore the application. If only fail-stop failures are considered,
a checkpoint cannot contain a corrupted state, because a process subject to failure
cannot create a checkpoint or participate to the application: failures are naturally
contained to failed processes. When dealing with silent errors, however, faults can
propagate to other processes and checkpoints, because processes continue to partic-
ipate and follow the protocol during the interval that separates the occurrence of the
error from its detection.

In Fig. 1, X and X, are random variables that represent the time until the next
silent error and its detection latency, respectively. We usually assume that silent errors
strike according to a Poisson process of parameter A, so that X has the distribution
of an exponential law of parameter A and mean 1/A. On the contrary, it is very
hard to make assumptions on the distribution of X,. To alleviate the problem of
detection latency, one may envision to keep several checkpoints in memory, and
to restore the application from the last valid checkpoint, thereby rolling back to
the last correct state of the application [25]. This multiple-checkpoint approach has
three major drawbacks. First, it is demanding in terms of storage: each checkpoint
typically represents a copy of the entire memory footprint of the application, which
may well correspond to several terabytes. The second drawback is the possibility of
fatal failures. Indeed, if we keep k checkpoints in memory, the approach requires
that the last checkpoint still kept in memory to precede the instant when the error
currently detected struck. Otherwise, all live checkpoints would be corrupted, and
one would have to re-execute the entire application from scratch. The probability of
a fatal failure for various error distribution laws and values of k can be evaluated [1].
The third and most serious drawback of this approach applies even without memory
constraints, i.e., if we could store an infinite number of checkpoints in memory. The
critical point is to determine which checkpoint is the last valid one, information
which is necessary to recover from a valid application state. However, because of
the detection latency (which is unknown), we do not know when the silent error has
indeed occurred, hence we cannot identify the last valid checkpoint, unless some
verification mechanism is enforced.
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We introduce such verification mechanisms in this chapter. In Sect. 2, we discuss
several approaches to validation (recomputation, checksums, coherence tests, orthog-
onalization checks, etc.). Then in Sect. 3 we adopt a general-purpose approach, which
is agnostic of the nature of the verification mechanism. We consider a divisible-load
application (which means that we can take checkpoints at any instant), and we par-
tition the execution into computational patterns that repeat over time. The simplest
pattern is represented by a work chunk followed by a verified checkpoint, which
corresponds to performing a verification just before taking each checkpoint. If the
verification succeeds, then one can safely store the checkpoint. If the verification
fails, then a silent error has struck since the last checkpoint, and one can safely
recover from it to resume the execution of the application. We compute the optimal
length of the work chunk in the simplest pattern in Sect. 3.1, which amounts to revis-
iting Young and Daly’s formula [14, 37] for silent errors. While taking a checkpoint
without verification seems a bad idea (because of the memory cost, and of the risk of
saving corrupted data), a validation step not immediately followed by a checkpoint
may be interesting. Indeed, if silent errors are frequent enough, verifying the data in
between two (verified) checkpoints, will reduce in expectation the detection latency
and thus the amount of work to be re-executed due to possible silent errors. The
major goal of Sect.3 is to determine the best pattern composed of m work chunks,
where each chunk is followed by a verification and the last chunk is followed by a
verified checkpoint. We show how to determine m and the length of each chunk so
as to minimize the makespan, that is the total execution time.

Then we move to application workflows. In Sect. 4, we consider application work-
flows that consist of a number of parallel tasks that execute on a platform, and that
exchange data at the end of their execution. In other words, the task graph is a lin-
ear chain, and each task (except maybe the first and the last one) reads data from
its predecessor and produces data for its successor. This scenario corresponds to a
high-performance computing application whose workflow is partitioned into a suc-
cession of (typically large) tightly-coupled computational kernels, each of them being
identified as a task by the model. At the end of each task, we can either perform a
verification on the task output, or perform a verification followed by a checkpoint.
We provide dynamic programming algorithms to determine the optimal locations of
checkpoints and verifications.

The last technique that we illustrate is application-specific. In Sect. 5, we deal with
sparse linear algebra kernels, and we show how to combine ABFT (Algorithm Based
Fault Tolerance) with checkpointing. In a nutshell, ABFT consists in adding check-
sums to application data, and to view them as extended data items. The application
performs the same computational updates on the original data and on the checksums,
thereby avoiding the need to recompute the checksums after each update. The salient
feature of this approach is forward recovery: ABFT is used both as an error veri-
fication and error correction mechanism: whenever a single error strikes, it can be
corrected via ABFT and there is no need to rollback for recovery. Finally, we outline
main conclusions and directions for future work in Sect. 6.



Coping with Silent Errors in HPC Applications 273

2 Verification Mechanisms

Considerable efforts have been directed at error-checking to reveal silent errors. Error
detection is usually very costly. Hardware mechanisms, such as ECC (Error Correct-
ing Code) memory, can detect and even correct a fraction of errors, but in practice
they are complemented with software techniques. General-purpose techniques are
based on replication [18, 21, 34, 38]. Indeed, performing the operation twice and
comparing the results of the replicas makes it possible to detect a single silent error.
With Triple Modular Redundancy [26] (TMR), errors can also be corrected by means
of a voting scheme. Another approach, proposed by Moody et al. [29], is based on
checkpointing and replication and enables detection and fast recovery of applications
from both silent errors and hard errors.

Coming back to verification mechanisms, application-specific information can
be helpful in designing ad hoc solutions, which can dramatically decrease the cost
of detection. Many techniques have been advocated. They include memory scrub-
bing [24], but also ABFT techniques [7, 23, 35], such as coding for the SpMxV
(Sparse Matrix-Vector multiplication) kernel [35], and coupling a higher-order with
alower-order scheme for Ordinary Differential Equation [6]. These methods can only
detect an error but not correct it. Self-stabilizing corrections after error detection in
the conjugate gradient method are investigated by Sao and Vuduc [33]. Also, Heroux
and Hoemmen [22] design a fault-tolerant GMRES algorithm capable of converging
despite silent errors, and Bronevetsky and de Supinski [9] provide a comparative
study of detection cost for iterative methods. Elliot et al. [16] combine partial redun-
dancy and checkpointing, and confirm the benefit of dual and triple redundancy.
The drawback is that twice the number of processing resources is required (for dual
redundancy).

A nice instantiation of the checkpoint and verification mechanism that we study
in this chapter is provided by Chen [12], who deals with sparse iterative solvers. Con-
sider a simple method such as the Preconditioned Conjugate Gradient (PCG) method:
Chen’s approach performs a periodic verification every d iterations, and a periodic
checkpointevery d x citerations, which is a particular case, with equi-spaced valida-
tions, of the approach presented later in Sect. 3.2. For PCG, the verification amounts
to checking the orthogonality of two vectors and to recomputing and checking the
residual. The cost of the verification is small if compared to the cost of an iteration,
especially when the preconditioner requires many more flops than a SpMxV. As
already mentioned, the approach presented in Sect.3 is agnostic of the underlying
error-detection technique and takes the cost of verification as an input parameter to
the model.
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3 Patterns for Divisible Load Applications

In this section we explain how to derive the optimal pattern of interleaving check-
points and verifications. An extended presentation of the results is available in [2, 4,
10].

3.1 Revisiting Young and Daly’s Formula

Consider a divisible-load application, i.e., a (parallel) job that can be interrupted at
any time for checkpointing, for a nominal cost C. To deal with fail-stop failures, the
execution is partitioned into same-size chunks followed by a checkpoint, and there
exist well-known formulae by Young [37] and Daly [14] to determine the optimal
checkpointing period.

To deal with silent errors, the simplest protocol (see Fig.2) would be to perform
a verification (at a cost V) just before taking each checkpoint. If the verification suc-
ceeds, then one can safely store the checkpoint and mark it as valid. If the verification
fails, then an error has struck since the last checkpoint, which is correct having been
verified, and one can safely recover (which takes a time R) from that checkpoint to
resume the execution of the application. This protocol with verifications zeroes out
the risk of fatal errors that would force to restart the execution from scratch.

To compute the optimal length of the work chunk W*, we first have to define the
objective function. The aim is to find a pattern P (with a work chunk of length W
followed by a verification of length V and a checkpoint of length C) that minimizes
the expected execution time of the application. Let W, denote the base execution
time of an application without any overhead due to resilience techniques (without
loss of generality, we assume unit-speed execution). The execution is divided into
periodic patterns, as shown in Fig. 2. Let E(P) be the expected execution time of the
pattern. For large jobs, the expected makespan Wy, of the application when taking
failures into account can then be approximated by

E(P)
Wﬁnal ~ 7 X Wbase - Wbase + H(P) : Wbase

[r[c w e w V] (Without error)
Time

Error
Detection

[r[c w_ V[rR[_w_ e w V] (With error)
Time

Fig. 2 The simplest pattern: a work chunk W followed by a verification V and a checkpoint C
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where
E(P)
HP) =—=—-1
w

is the expected overhead of the pattern. Thus, minimizing the expected makespan is
equivalent to minimizing the pattern overhead H (P). Hence, we focus on minimizing
the pattern overhead. We assume that silent errors are independent and follow a
Poisson process with arrival rate A . The probability of having at least a silent error
during a computation of length w is given by p = 1 — e~*". We assume that errors
cannot strike during recovery and verification. The following proposition shows the
expected execution time of a pattern with a fixed work length W.

Proposition 1 The expected execution time of a pattern P with work length W is
EP)=W+V+C +AW*+AW(V +R)+ OQ*W?). (1)

Proof Let p =1 — e " denote the probability of having at least one silent error
in the pattern. The expected execution time obeys the recursive formula

EP)=W+V+pR+EP)+A-p)C. 2

Equation (2) can be interpreted as follows: we always execute the work chunk and run
the verification to detect silent errors, whose occurrence requires not only a recovery
but also a re-execution of the whole pattern. Otherwise, if no silent error strikes, we
can proceed with the checkpoint. Solving the recursion in Eq. (2), we obtain

EP)=" W+ V)+ ("W —1)R +C .

By approximating e** = 1 + A x + ’\22"2 up to the second-order term, we can further
simplify the expected execution time and obtain Eq. (1). O

The following theorem gives a first-order approximation to the optimal work
length of a pattern.

Theorem 1 A first-order approximation to the optimal work length W* is given by

V+C
W* = . 3
vV 3)
The optimal expected overhead is
H*(P) =2JA(V+C)+0R). 4)

Proof From the result of Proposition 1, the expected overhead of the pattern can be
computed as
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V+C

H(P) = +AWHAV +R)+O0R>W?). (5)
Assume that the MTBF of the platform u = 1/A is large if compared to the resilience
parameters. Then consider the first two terms of H (P) in Eq.(5): the overhead is
minimal when the pattern has length W = @ (A ~!/?), and in that case both terms are
in the order of A 172, so that we have

HP)=00">)+00).

Indeed, the last term O () ) becomes also negligible when compared to ® (X 172y,
Hence, the optimal pattern length W* can be obtained by balancing the first two
terms in Eq. (5), which gives Eq. (3). Then, by substituting W* back into H (P), we
get the optimal expected overhead in Eq. (4). O

We observe from Theorem 1 that the optimal work length W* of a pattern is in
® (A -1/ 2), and the optimal overhead H*(P) isin & (A 1/2) This allows us to express
the expected execution overhead of a pattern as H (P) = %‘ + orw W + O(A), where
oef and oy, are two key parameters that characterize two different types of overheads
in the execution, and they are defined below.

Definition 1 For a given pattern, os denotes the error-free overhead due to the
resilience operations (e.g., verification, checkpointing), and o, denotes the re-
executed work overhead, in terms of the fraction of re-executed work due to errors.

In the simple pattern we analyze above, these two overheads are given by
0ef =V + C and o, = A, respectively. The optimal pattern length and the optimal
expected overhead can thus be expressed as

Oef
* (S
W = ,

Orw

H*(P) = Zvoef 0w +O(A) .

We see that minimizing the expected execution overhead H (P) of a pattern
becomes equivalent to minimizing the product 0.t X oy up to the dominating term.
Intuitively, including more resilient operations reduces the re-executed work over-
head but adversely increases the error-free overhead, and vice versa. This requires
a resilience protocol that finds the optimal tradeoff between o.s and oy, . We make
use of this observation in the next section to derive the optimal pattern in a more
complicated protocol where patterns are allowed to include several chunks.

3.2 Optimal Pattern

If the verification cost is small when compared to the checkpoint cost, there is room
for optimization. Consider the pattern illustrated in Fig.3 with three verifications
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el w ] we ] ws e (Without error)
Time
Error
Detection
~ el v v P[R] wi ] w2 1] ws € (With error)
Time

Fig. 3 Pattern with three verifications per checkpoint

per checkpoint. There are three chunks of size w;, w,, and w3, each followed by a
verification. Every third verification is followed by a checkpoint.

To understand the advantages of such a pattern, assume w; = wy = w3 = W/3
for now, so that the total amount of work is the same as in the simplest pattern.
As before, a single checkpoint needs to be kept in memory, and each error leads to
re-executing the work since the last checkpoint. But detection occurs much more
rapidly in the new pattern, because of the intermediate verifications. If the error
strikes during the first of the three chunks, it is detected by the first verification, and
only the first chunk is re-executed. Similarly, if the error strikes the execution of the
second chunk (as illustrated in the figure), it is detected by the second verification,
and the first two chunks are re-executed. The entire frame of work needs to be
re-executed only if the error strikes during the third chunk. Under the first-order
approximation as in the analysis of Theorem 1, the average amount of work to re-
execute is (1 +2 +3)w/3 = 2w = 2W/3, that is, the re-executed work overhead
becomes o, = 2A /3. On the contrary, in the first pattern of Fig.2, the amount of
work to re-execute is always W, because the error is never detected before the end
of the pattern. Hence, the second pattern leads to a 33 % gain in the re-execution
time. However, this comes at the price of three times as many verifications, that
is, the error-free overhead becomes o.s = 3V + C. This overhead is paid in every
error-free execution, and may be an overkill if the verification mechanism is too
costly.

This example shows that finding the best trade-off between error-free overhead
(what is paid due to the resilience method, when there is no failure during execu-
tion) and execution time (when errors strike) is not a trivial task. The optimization
problem can be stated as follows: given the cost of checkpointing C, recovery R,
and verification V, what is the optimal pattern to minimize the (expectation of the)
execution time? A pattern is composed of several work chunks, each followed by
a verification, and the last chunk is always followed by both a verification and a
checkpoint. Let m denote the number of chunks in the pattern, and let w; denote the
length of the j-th chunkfor1 < j <m.Let W = Z;f'zl w;. We define B; = w;/W
be the relative length of the j-th chunk so that 8; > 0 and z;f'zl Bj =1. We let
B =181, B2, ..., Bn]. The goal is to determine the pattern work length W, the num-
ber of chunks m as well as the relative length vector 8 .
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Proposition 2 The expected execution time of the above pattern is
EP) =W +mV +C +(ABTAB)W> + 0(1), (6)

where A is an m x m matrix whose diagonal coefficients are equal to 1 and whose
other coefficients are all equal to %

Proof Let p ; = 1 — e~*"i denote the probability of having at least one silent error
in chunk j. To derive the expected execution time of the pattern, we need to know
the probability ¢; that the chunk j actually gets executed in the current attempt.

The first chunk is always executed, so we have g; = 1. Consider the second chunk,
which is executed if no silent error strikes the first chunk, hence ¢ =1 — p ;. In
general, the probability that the j-th chunk gets executed is

j—1
gi=[]a-ro.
k=1

Now, we are ready to compute the expected execution time of the pattern. The
following gives the recursive expression:

E(P) = (H(l - m))c
k=1
+ (1 -a- pk)) (R +E(P))

k=1

+> qiw;+ V). (7

j=1

Specifically, line 1 of Eq.(7) shows that the checkpoint at the end of the pattern is
performed only when there has been no silent error in any of the chunks. Otherwise,
we need to re-execute the pattern, after a recovery, as shown in line 2. Finally,
line 3 shows the condition for each chunk j to be executed. By simplifying Eq. (7)
and approximating the expression up to the second-order term, as in the proof of
Proposition 1, we obtain

EP)=W+mV+C +rfW>+0KWh),

where f =31, B; (ZZ’: i ,Bk), and it can be concisely written as f = 8TM8B,
where M is the m x m matrix given by

1 fori <j
m; ;= . ..
0 fori > j
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By replacing M by its symmetric part A = M+TMT, which does not affect the value
of f, we obtain the matrix A whose diagonal coefficients are equal to 1 and whose
other coefficients are all equal to % and the expected execution time in Eq.(6). O

Theorem 2 The optimal pattern has m* equal-length chunks, total length W* and
is such that:

« | mV+C
VT D ®

1
Bi=—forl <j<m", )
m

where m* is either max (1, |m*|) or [m™*] with

- _ |C
m —\/;. (10)

H*P)=+v21C +V2AV +0(1) . (11)

The optimal expected overhead is

Proof Given the number of chunks m with Z;’zl B; = 1, the function f = BTAB
is shown to be minimized [10, Theorem 1 with r = 1] when B follows Eq. (9), and its
minimum value is given by f* = 1 (l + %) We derive the two types of overheads

=2
as follows:
ot =mV +C ,

! l+l A
Orw = = - .
2 m

Oef

The optimal work length W* = /2L for any fixed m is thus given by Eq. (8).

The optimal number of chunks m* shown in Eq.(10) is obtained by minimizing
F(m) = 0t X 01y . The number of chunks in a pattern can only be a positive inte-
ger, so m* is either max(1, |[m*]) or [m*], since F(m) is a convex function of m.
Finally, substituting Eq. (10) back into H*(P) = 2./0cf X 0rw + O(X) gives rise to
the optimal expected overhead as shown in Eq. (11). O

4 Linear Workflows

For an application composed of a chain of tasks, the problem of finding the optimal
checkpoint strategy, i.e., of determining which tasks to checkpoint, in order to mini-
mize the expected execution time when subject to fail-stop failures, has been solved
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by Toueg and Babaoglu [36], using a dynamic programming algorithm. We revisit
the problem for silent errors by exploiting verification in addition to checkpoints. An
extended presentation of the results is available in [3, 5].

4.1 Setup

To deal with silent errors, resilience is provided through the use of checkpointing
coupled with an error detection (or verification) mechanism. When a silent error
is detected, we roll back to the nearest checkpoint and recover from there. As in
Sect. 3.1, let C denote the cost of checkpointing, R the cost of recovery, and V the
cost of a verification.

We consider a chain of tasks 7y, 15, ..., T,, where each task 7; has a weight w;
corresponding to the computational load. For notational convenience, we also define
Wij = > i_i.1 Wk to be the time to execute tasks 7;4 to T; for any i < j. Once
again we assume that silent errors occur following a Poisson process with arrival rate
A and that the probability of having at least one error during the execution of W; ; is
givenby p; j =1—e Wi,

We enforce that a verification is always taken immediately before each check-
point, so that all checkpoints are valid, and hence only one checkpoint needs to be
maintained at any time during the execution of the application. Furthermore, we
assume that errors only strike the computations, while verifications, checkpoints,
and recoveries are failure-free.

The goal is to find which task to verify and which task to checkpoint in order
to minimize the expected execution time of the task chain. To solve this problem,
we derive a two-level dynamic programming algorithm. For convenience, we add a
virtual task Ty, which is always checkpointed, and whose recovery cost is zero. This
accounts for the fact that it is always possible to restart the application from scratch
at no extra cost. In the following, we describe the general scheme when considering
both verifications and checkpoints.

4.2 Dynamic Programming

Figures4 and 5 illustrate the idea of the algorithm, which contains two dynamic pro-
gramming levels, responsible for placing checkpoints and verifications, respectively,
as well as an additional step to compute the expected execution time between two
verifications. The following describes each step of the algorithm in detail.

Placing checkpoints. The first level focuses on the placement of verified checkpoints,
i.e., checkpoints preceded immediately by a verification. Let Ec,(c2) denote the
expected time to successfully execute all the tasks from 7 to T;,, where T, is verified
and checkpointed. Now, to find the last verified checkpoint before T,,, we try all
possible locations from Ty to 7,,—;. For each location, say c;, we call the function
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Eckpt (Cl) Everif(clyc?)
Eckpt (02)

Fig. 4 First level of dynamic programming (Ecxp,)

‘ I, ‘vlc Tc.+1| ‘ T, \v T\"|+l‘ | L, \v

Eyerif(c1,v1) E(c1,vi,2)

Eyerif(c1,v2)

Fig. 5 Second level of dynamic programming (E,.r;s) and computation of expected execution
time between two verifications (E)

recursively with Ecp,(c1) (for placing checkpoints before T, ), and compute the
expected time to execute the tasks from 7,4, to T,. The latter is done through
Eyerif(c1, c2), which also decides where to place additional verifications between
T:,+1 and T,,. Finally, we add the checkpointing cost C (after T¢,) to E¢p;(c2).
Overall, we can express E ., (c2) as follows:

Eckpt(CZ) = Omin {Eckpt(cl) + Everif(CI» )+ C} .
<ci<c

Note that a location ¢; = 0 means that no further checkpoints are added. In this
case, we simply set Ecp,, (0) = 0, which initializes the dynamic program. The total
expected time to execute all the tasks from 7 to T}, is thus given by Ecz,, ().
Placing additional verifications. The second level decides where to insert additional
verifications between two tasks with verified checkpoints. The function is initially
called from the first level between two checkpointed tasks 7;, and 7,, each of which
also comes with a verification. Therefore, we define E,.is(c1, v2) as the expected
time to successfully execute all the tasks from T, 4+ to T,,, knowing that the last
checkpoint is right after task 7, and there is no additional checkpoint between
T, +1 and T,,. Note that E,.,;s(c1, v2) accounts only for the time required to execute
and verify these tasks. As before, we try all possible locations for the last verification
between T, and T, and, for each location v;, we call the function recursively with
Eyerif(c1, v1). Furthermore, we add the expected time needed to successfully execute
the tasks T;,+; to T,, denoted by E(cy, vy, v2), given the position c; of the last
checkpoint. Overall, we can express E,.is(c1, v2) as follows:

Everif(ci, v2) = minv {Everif(c1, v1) + E(c1, v1, v2)} . (12)
2

c1<v<
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Again, the case v; = ¢; means that no further verification is added, so we initialize
the dynamic program with E,.;s(c1, ¢1) = 0. Note that the verification cost V at the
end of task 7,, will be accounted for in the function E(c;, vy, v2).

Computing expected execution time between two verifications. Finally, to com-
pute the expected time to successfully execute several tasks between two verifications,
we need the position of the last checkpoint c;, as well as the positions of the two
verifications v; and v,.

First, we pay W,, ,, by executing all the tasks from T, 1 to T,,, followed by the
cost of verification V after T,,. During the execution, there is a probability p ,, ,, =
1 — e7*Wuu of having a silent error, which will be detected by the verification after
T,,. In this case, we need to perform a recovery from the last checkpoint after 7., with
acost R (setto0if c; = 0), and re-execute the tasks from there by calling the function
Eyerif(c1, vy) followed by E(cy, vy, v2). Therefore, we can express E(cy, vy, v2) as
follows:

E(ci,v1,v2) = Wy, + V + Py (R 4 Everig(cr, v1) + E(cr,v1,v2)) . (13)
Simplifying Eq.(13), we get
E(cr, v, vp) = & (Wy oy + V) 4 (712 — 1) (R + Eperip(c1, v1)) -

Complexity. The complexity is dominated by the computation of the expected
completion time table E,.,;s(c1, v2), which contains O (n?) entries, and each entry
depends on at most n other entries that are already computed. All tables are computed
in a bottom-up fashion, from the left to the right of the task chain. Hence, the overall
complexity of the algorithm is O (n?).

5 ABFT and Checkpointing for Linear Algebra Kernels

In this section we introduce ABFT (Algorithm Based Fault Tolerance) as an app-
lication-specific technique which allows for both error detection and correction.
We streamline our discussion on the CG method, however, the techniques that we
describe are applicable to any iterative solver that uses sparse matrix vector multiplies
and vector operations. This list includes many of the non-stationary iterative solvers
such as CGNE (Conjugate Gradient on Normal Equations), BiCG (Bi-Conjugate
Gradient), BiCGstab (Bi-Conjugate Gradient Stabilized), where sparse matrix trans-
pose vector multiply operations also take place. Preconditioned variants of these
solvers with an approximate inverse preconditioner (applied as an SpMxV, or two
SpMxVs) can also be made fault-tolerant with the proposed scheme. The extension
to PCG is described in [19].



Coping with Silent Errors in HPC Applications 283

In Sect. 5.1, we first provide a background on the CG method and give an overview
of both Chen’s stability tests [12] and ABFT protection schemes. Then we detail
ABFT techniques for the SpMxV kernel.

Algorithm 1 The Conjugate Gradient algorithm for a positive definite matrix A.

Input: A € R"" b,xg € R",e € R
Output: xc R" : |[Ax—b| <&

1: I‘()(—b—AX();

2: po < To;

3: i+ 0;

4: while [r;|| > € (|A[| - [[ro| + [[b]|) do
5: q<—Ap,~;2

6: o |[Ini]”/pfq;

7: Xit1 < X; +Op;;

8: 1‘i+1eri*2a(l; 5
90 B w7/ Il
10:  pip1 <11+ Bpi
11: i« i+1;

12: end while

13: return x;;

5.1 CG and Fault Tolerance Mechanisms

The code for the CG method is shown in Algorithm 1. The main loop features a
sparse matrix-vector multiply, two inner products (for pl-Tq and ||r;q; ||2), and three
vector operations of the form axpy.

Chen’s stability tests [12] amount to checking the orthogonality of vectors p;
and q, at the price of computing (piT +19/IPi+11l lg;: 1), and to checking the residual
at the price of an additional SpMxV operation Ax; — b. The dominant cost of these
verifications is the additional SpMxV operation.

We investigate three fault tolerance mechanisms. The first one is ONLINE- DETEC-
TION; this is Chen’s original approach modified to save the matrix A in addition to
the current iteration vectors. This is needed when a silent error is detected: if this
error comes for a corruption in data memory, we need to recover with a valid copy
of the data matrix A. The second one is ABFT- DETECTION, which detects errors
and restarts from the most recent checkpoint. The thirds one is ABFT-CORRECTION,
which detects errors and corrects if there was only one, otherwise restarts from the
last checkpoint. The three methods under the study keep a valid copy of A and have
exactly the same checkpoint cost.

We now introduce the ingredients of our own protection and verification mech-
anisms ABFT-DETECTION and ABFT-CORRECTION. We use ABFT techniques to
protect the SpMXxYV, its result (hence the vector q), the matrix A and the input vector
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p:- As ABFT methods for vector operations is as costly as a repeated computation,
we use TMR for them for simplicity. That is we do not protect p;, q, r;, and X; of the
ith loop beyond the SpMxV at line 5 with ABFT, but we compute the dots, norms
and axpy operations in resilient mode.

Although theoretically possible, constructing ABFT mechanism to detect up to
k errors is practically not feasible for k > 2. The same mechanism can be used
to correct up to |k/2] errors. Therefore, we focus on detecting up to two errors
and correcting single errors. That is, we detect up to two errors in the computation
q < Ap; (two entries in q are faulty), or in p;, or in the sparse representation of the
matrix A. With TMR, we assume that the errors in the computation are not overly
frequent so that two results out of three are correct (we assume errors do not strike the
vector data here). Our fault-tolerant CG versions thus have the following ingredients:
ABFT to detect up to two errors in the SpMxV and correct up to one; TMR for vector
operations; and checkpoint and roll-back in case errors are not corrected. In the rest
of this section, we discuss the proposed ABFT method for the SpMxV (combining
ABFT with checkpointing is later in Sect.5.3).

5.2 ABFT-SpMxV

The overhead of the standard single error correcting ABFT technique is too high
for the sparse matrix-vector product case. Shantaram et al. [35] propose a cheaper
ABFT SpMxV algorithm that guarantees detection of single errors striking either
the computation or the memory representation of the two input operands (matrix and
vector). As their results depend on the sparse storage format adopted, throughout this
section we assume that sparse matrices are stored in the compressed storage format
by rows (CSR) format [32, Sect. 3.4], that is by means of three distinct arrays, namely
Colid € N™®  Val € R™*) and Rowidx € N"*".

Shantaram et al. can protecty < Ax, where A € R”*" andx, y € R". To perform
error detection, they rely on a column checksum vector ¢ defined by

cj= ai; (14)

i=1

and an auxiliary copy X’ of the x vector. After having performed the actual SpMxV, to
validate the result it suffices to compute >_"_, y;, ¢Tx and ¢TX’, and to compare their
values. It can be shown [35] that in the case of no errors, these three quantities carry
the same value, whereas if a single error strikes either the memory or the computation,
one of them must differ from the other two. Nevertheless, this method requires A to be
strictly diagonally dominant, that seems to restrict too much the practical applicability
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of their ABFT scheme. Shantaram et al. need this condition to ensure the detection
of errors striking an entry of x corresponding to a zero checksum column of A. We
further analyze that case and show how to overcome the issue without imposing any
restriction on A.

A nice way to characterize the problem is expressing it in geometrical terms. Let
us consider the computation of a single entry of the checksum as

n
(WTA)j = E w;d;, j = WTA'],
i=l

where w € R” denotes the weight vector and A/ the j-th column of A. Let us now
interpret such an operation as the result of the scalar product (-, -) : R" x R" — R
defined by (u, v) — uTv. It is clear that a checksum entry is zero if and only if the
corresponding column of the matrix is orthogonal to the weight vector. In (14), we
have chosen w to be such that w; = 1 for 1 < i < n,in order to make the computation
easier. Let us see now what happens without this restriction.

The problem reduces to finding a vector w € R” that is not orthogonal to any
vector out of a basis # = {by, ..., b,} of R"—the rows of the input matrix. Each
one of these n vectors is perpendicular to a hyperplane #; of IR", and w does not
verify the condition

(w,b;) #0, 15)

forany i, if and only if it lies on ;. As the Lebesgue measure in R” of an hyperplane of
R" itself is zero, the union of these hyperplanes is measurable with m,, (U;’=1 h ,~) =
0, where m, denotes the Lebesgue measure of R". Therefore, the probability that a
vector w randomly picked in R" does not satisfy condition (15) for any i is zero.
Nevertheless, there are many reasons to consider zero checksum columns. First
of all, when working with finite precision, the number of elements in IR” one can
have is finite, and the probability of randomly picking a vector that is orthogonal to
a given one could be bigger than zero. Moreover, a coefficient matrix usually comes
from the discretization of a physical problem, and the distribution of its columns
cannot be considered as random. Finally, using a randomly chosen vector instead

of (1,...,1)T increases the number of required floating point operations, causing a
growth of both execution time and rounding errors. Therefore, we would like to keep
w = (1,..., 1)T as the vector of choice, in which case we need to protect SpMxV

with matrices having zero column sums. There are many matrices with this property,
for example the Laplacian matrices of graphs [13, Chap. 1].
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Algorithm 2 ABFT-protected SpMxV, detection of 2 errors, correction of 1 error

Input: A € R (asVal € R™A) Colid € N"™*A) Rowidx € R"), x € R”
Output y = AX, correction of %mgle error or detectlon of double error

: global WT « [11::1] € R>*™,

: global WT [WT,,H] € ]RZX"“;

X x;

[C,M,¢,,c] = COMPUTECHECKSUMS(Val, Colid, Rowidx);

: return SPMXV (Val, Colid, Rowidx, X, X', M, ¢,, ¢,);

[ARE S oI S R

6: function COMPUTECHECKSUMS(Val, Colid, Rowidx)
7: CT «+ WTA;

8: M+~ W-C;

9: ¢, +— WTRowidx;

0 +— WTx;

1 return C,M,c,,c,;

12: function SPMXV (Val, Colid, Rowidx, x,x', C, M, ¢, ¢,)
13: sy < 0 R**1;

14: for i<+ 1tondo

15: yi <05

16: Sy ¢ S+ [wy!] Rowidx;;

17: for j < Rowidx; to Rowidx;y — 1 do
18: ind < Colid ;

19: yi<_yi+valj'xind;

20: d, =c¢ —s,;

21: d,=WTy—-CTx;

22: d,=WT(x' —y)—MTx;

23: ifd, =0Ad,=0Ady =0 then

24: returny;
25: else
26: CORRECTERRORS(Val, Colid, Rowidx, x,x', C,M, d,, d,, dy, ¢, ¢,);

In Algorithm 2, we propose an ABFT SpMxV method that uses weighted check-
sums and does not require the matrix to be strictly diagonally dominant. The idea
is to compute the checksum vector and then shift it by adding to all of its entries a
constant value chosen so that all of the elements of the new vector are different from
zero. We give the result in Theorem 3 for the simpler case of single error detection
without correction, in which case Algorithm 2 has W = (1,..., 1)T at line 1 and
raises an error at line 26 (instead of correcting the error) if the tests at line 23 are not
passed. The cases of multiple error detection and single error correction are proved
in a technical report [20, Sect.3.2].

Theorem 3 (Correctness of Algorithm 2 for error detection) Let A € R"™" be a
square matrix, let X,y € IR" be the input and output vector respectively, and let
X' = X. Let us assume that the algorithm performs the computation

y < AX, (16)
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where A € R™" and X € R" are the possibly faulty representations of A and x
respectively, whiley € R" is the possibly erroneous result of the sparse matrix-vector
product. Let us also assume that the encoding scheme relies on

1. an auxiliary checksum vector ¢ = [Z?:l aii+k, .o D0 aia+ k], where k
is such that 37 _, a; j +k #0for1 < j <n,

2. an auxiliary checksum y,+1 = k>, X,

3. an auxiliary counter s, initialized to 0 and updated at runtime by adding the value
of the hit element each time the Rowidx array is accessed,

4. an auxiliary checksum ¢, = ";_, Rowidx; € IN.

Then, a single error in the computation of the SpMxV causes one of the following
conditions to fail:

. ~ 1 ~ . .. .

i ¢TX = Z:’:l y;, difference is in d, at line 21,
.. 1 ~ . . .

ii. ¢Tx' = ZTL yi, difference is in d, at line 22;
iii. s, = ¢, difference is in d, at line 20.

The proof of this theorem is technical and is available elsewhere [20, Theorem 1].

The function COMPUTECHECKSUM in Algorithm 2 requires just the knowledge of
the matrix. Hence in the common scenario of many SpMxVs with the same matrix,
it is enough to invoke it once to protect several matrix-vector multiplications. This
observation will be crucial when discussing the performance of the checksumming
techniques.

Extensions to k > 2 errors are discussed elsewhere [20, Section 3.2], where the
following are detailed. The method just described can be extended to detect up to a
total of k errors anywhere in the computation, in the representation of A, or in the
vector X. Building up the necessary structures requires O (knnz(A)) time, and the
overhead per SpMxV is O (kn). For the particular case of k = 2 a result similar to
that in Theorem 3 is also shown.

We now discuss error correction. If at least one of the tests at line 23 of Algo-
rithm 2 fails, the algorithm invokes CORRECTERRORS in order to determine whether
just one error struck either the computation or the memory and, in that case, to correct
it. Indeed, whenever a single error is detected, disregarding its location (i.e., compu-
tation or memory), it can be corrected by means of a succession of various steps, as
explained below; if need be, partial recomputations of the result are performed.

Specifically, we proceed as follows. To detect errors striking Rowidx, we compute
the ratio d of the second component of d, to the first one, and check whether its
distance from an integer is smaller than a certain threshold parameter ¢. If it is so, the
algorithm concludes that the d-th element of Rowidx is faulty, performs the correction
by subtracting the first component of d, to Rowidx,, and recomputes y; and y,;_i,
if the error in Rowidx, is a decrement; or y,4; if it was an increment. Otherwise, it
just emits an error.

The correction of errors striking Val, Colid and the computation of y are corrected
together. Let now d be the ratio of the second component of d, to the first one.
If d is near enough to an integer, the algorithm computes the checksum matrix
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C’ = WTA and considers the number zg of non-zero columns of the difference
matrix C =| C — C’ |. At this stage, three cases are possible:

e If zz = 0, then the error is in the computation of y,, and can be corrected by simply
recomputing this value.

e If z¢ = 1, then the error concerns an element of Val. Let us call f the index of the
non-zero column of C. The algorithm finds the element of Val corresponding to the
entry at row d and column f of A and corrects it by using the column checksums
much like as described for Rowidx. Afterwards, y, is recomputed to fix the result.

e If zg = 2, then the error concerns an element of Colid. Let us call f; and f,
the index of the two non-zero columns and m, m, the first and last elements of
Colid corresponding to non-zeros in row d. It is clear that there exists exactly
one index m™ between m; and m, such that either Colid,,» = f| or Colid,,» = f>.
To correct the error it suffices to switch the current value of Colid,,, i.e., putting
Colid,,» = f» in the former case and Colid,~ = f; in the latter. Again, y,; has to
be recomputed.

e if zg > 2, then errors can be detected but not corrected, and an error is emitted.

To correct errors striking x, the algorithm computes d, that is the ratio of the second
component of d, to the first one, and checks that the distance between d and the
nearest integer is smaller than ¢. Provided that this condition is verified, the algorithm
computes the value of the error 7 = Z?:] x; — cxp and corrects x; = x4 — 7. The
result is updated by subtracting from y the vector y* = Ax", where x* € R"*" is
such that x; = 7 and x/ = 0 otherwise.

Finally, note that double errors could be shadowed when using Algorithm 2, but
the probability of such an event is negligible. Still, there exists an improved version
which avoids this issue by adding a third checksum [20, Sect.3.2].

5.3 Performance Model

The performance model is a simplified instance of the one discussed in Sect.4,
and we instantiate it for the three methods that we are considering, namely ONLINE-
DETECTION, ABFT-DETECTION and ABFT-CORRECTION. We have a linear chain of
identical tasks, where each task corresponds to one or several CG iterations. We
execute T units of work followed by a verification, which we call a chunk, and we
repeat this scheme s times, i.e., we compute s chunks, before taking a checkpoint.
We say that the s chunks constitute a frame. The whole execution is then partitioned
into frames. We assume that the checkpoint, recovery and verification operations are
error-free. For each method below, we let C, R and V be the respective cost of these
operations. Finally, and as before, assume a Poisson process for errors and let g be
the probability of successful execution for each chunk: ¢ = e¢=*7, where A is the
fault rate.
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5.3.1 ONLINE-DETECTION

For Chen’s method [12], we have the following parameters:

e We have chunks of d iterations, hence T = dT;,.,, where T;,., is the raw cost of a
CQG iteration without any resilience method.

e The verification time V is the cost of the operations described in Sect.5.1.

e As for silent errors, the application is protected from arithmetic errors in the ALU,
as in Chen’s original method, but also for corruption in data memory (because
we also checkpoint the matrix A). Let A, be the rate of arithmetic errors, and A,,
be the rate of memory errors. For the latter, we have A,, = M X4 if the data
memory consists of M words, each susceptible to be corrupted with rate Xy,rq.
Altogether, since the two error sources are independent, they have a cumulated
rate of A = A, + A, and the success probability for a chunk is ¢ = e=*”. The
optimal values of d and s can be computed by the same method as in Sect.4.

5.3.2 ABFT-DETECTION

When using ABFT techniques, we detect possible errors every iteration, so a chunk
is a single iteration, and T = Tj,.,. For ABFT-DETECTION, V is the overhead due to
the checksums and redundant operations to detect a single error in the method.

ABFT-DETECTION can protect the application from the same silent errors as
ONLINE- DETECTION, and just as before the success probability for a chunk (a single
iteration here) is ¢ = e*7.

5.3.3 ABFT-CORRECTION

In addition to detection, we now correct single errors at every iteration. Just as for
ABFT-DETECTION, a chunk is a single iteration, and T = T}, but V corresponds
to a larger overhead, mainly due to the extra checksums needed to detect two errors
and correct a single one.

The main difference lies in the error rate. An iteration with ABFT-CORRECTION is
successful if zero or one error has struck during that iteration, so that the success
probability is much higher than for ONLINE- DETECTION and ABFT-DETECTION.
We compute that value of the success probability as follows. We have a Poisson
process of rate A, where A = A, + A, as for ONLINE- DETECTION and ABFT-DETEC-
TION. The probability of exactly k errors in time 7T is (Ak—r,)ke’” [27], hence the
probability of no error is e " and the probability of exactly one error is AT¢*”, so
thatg = e 4+ ATe 7.
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5.4 Experiments

Comprehensive tests were performed and reported in the technical report [20]. The
main observation is that ABFT-CORRECTION outperforms both ONLINE- DETEC-
TION and ABFT-DETECTION for a wide range of fault rates, thereby demonstrating
that combining checkpointing with ABFT correcting techniques is more efficient
than pure checkpointing for most practical situations.

6 Conclusion

Both fail-stop errors and silent data corruptions are major threats to executing HPC
applications at scale. While many techniques have been advocated to deal with fail-
stop errors, the lack of an efficient solution to handle silent errors is a real issue.

We have presented both a general-purpose solution and application-specific tech-
niques to deal with silent data corruptions, with a focus on minimizing the overhead.
For a divisible load application, we have extended the classical bound of Young/Daly
to handle silent errors by combining checkpointing and verification mechanisms. For
linear workflows, we have devised a polynomial-time dynamic programming algo-
rithm that decides the optimal checkpointing and verification positions. Then, we
have introduced ABFT as an application-specific technique to both detect and cor-
rect silent errors in iterative solvers that use sparse matrix vector multiplies and vector
operations.

Our approach only addresses silent data corruptions. While several techniques
have been developed to cope with either type of errors, few approaches are devoted
to addressing both of them simultaneously. Hence, the next step is to extend our
study to encompass both fail-stop and silent data corruptions in order to propose a
comprehensive solution for executing applications on large scale platforms.
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