
Enumerated BSP Automata

Gaetan Hains

Abstract Parallel software needs formal descriptions and mathematically verified
tools for its core concepts that are data-distribution and inter-process exchanges or
synchronizations. Existing formalisms are either non-specific, like process algebras,
or unrelated to standard Computer Science, like algorithmic skeletons or parallel
design patterns. This has negative effects on undergraduate training, general under-
standing andmathematically-verified software tools for scalable programming.Tofill
a part of this gap, we adapt the classical theory of finite automata to bulk-synchronous
parallel computing (BSP) by defining BSP words, BSP automata and BSP regular
expressions. BSP automata are built from vectors of finite automata, one per compu-
tational unit location. In this first model the vector of automata is enumerated, hence
the adjective enumerated in the title. We also show symbolic (intensional) notations
to avoid this enumeration. The resulting definitions and properties have applications
in the areas of data-parallel programming and verification, scalable data-structures
and scalable algorithm design.

1 Introduction and Background

This paper introduces a new theory of bulk-synchronous parallel computing (BSP),
by adapting classical automata theory to BSP. It attempts to provide the simplest
possible mathematical description of BSP computations. With maximal reuse of
existing Computer Science it is hoped that this theory will find its way into more
complex formalisms for parallel programming tools, language designs and software-
engineering.

BSP is a theory of parallel computing introduced by Valiant in the late 1980s
[20] and developed by McColl [14]. Unlike theories of concurrency that generalize
sequential computation, BSP retains the deterministic and predictable behaviour of
sequential machines of the Von Neumann type, while taking advantage of concurrent

G. Hains (B)
Huawei France R&D Center, 20 quai du Point du Jour, 92100 Boulogne-Billancourt, France
e-mail: gaetan.hains@huawei.com

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Emergent Computation, Emergence, Complexity
and Computation 24, DOI 10.1007/978-3-319-46376-6_10

233



234 G. Hains

execution for accelerating computations. Concurrency theory is related to BSP
in the way microscopes are related to telescopes: they are built from similar
components but look in opposite directions (Fig. 1).

Just as parallel algorithms are a special case of sequential algorithms (they realize
a sub- complexity class of problems i.e. NC ⊆ P), BSP machines are close relatives
of sequential machines whose instruction cycles are built from vectors of asynchro-
nous sequential computations and are called supersteps. When the vector’s elements
terminate, they are globally synchronized, which guarantees determinism and allows
predictable performance. This global sequence is called a superstep: launch a vector
of asynchronous and independent sequential computations, wait until they all termi-
nate and synchronize them. A BSP computation is a sequence of supersteps realized
by a BSP computer, that is a vector of Von Neuman sequential computers linked by
a global synchronization device. As we will see by adapting finite automata theory
to BSP

• BSP automata are special cases of finite-state machines because they are finitely-
defined systems, but

• the correspondence is not trivial and both the finite-alphabet hypothesis and the
classical theory of product automata have to be adapted to account for the two-level
nature of BSP computation.

In the usual definition and application of BSP, the sequential elements also
exchange data during synchronization and there is a simple linear model of time
complexity that estimates the delay for synchronization and data exchange in units
of sequential computation. The model defined in the present paper can be extended
to represent communication, as in the BSPCCS process algebra [16].

2 Bulk-Synchronous Words and Languages

Automata theory is both an elementary and standard part of Computer Science and
an area of advanced research through topics such as tree automata, pattern matching
and concurrency theory. It is also universally used by computing system through
lexical analysis, text processing and similar operations. We are interested here in the
core elementary theory of automata as described for example in [15, 21] or in the
initial chapters of graduate textbooks such as [9, 18].

LetΣ be a finite alphabet and p > 0 an integer constant. Elements ofΣ represent
inputs to the automaton, or more generally events it takes part into. Constant p rep-
resents the assumption of a vector of parallel computation units executing the events
or receiving them as signals. The local sequential computers or computations are
indexed by [p] = {0, 1, . . . , p − 1} and variable i will be assumed to range over [p].
In programming systems like BSPlib [7] this variable i is called pid for “Processor
ID”. A value i ∈ [p] is sometimes called a processor, or an explicit process [11] or
simply a location. Throughout the paper, all vectors will be assumed to be indexed
by [p].



Enumerated BSP Automata 235

Fig. 1 Concurrency versus bulk-synchronous parallelism

Our whole theory of BSP computation is parametrized over this constant p, which
is thus “static” and fixed for a given application of the theory. There is now a large
body of research about BSP and many generalizations have been studied but for the
sake of generality we model here only the standard core of BSP.

Our first definition represents the asynchronous part of supersteps: vectors of
sequential computations, which automata theory sees as p-vectors of traces or word-
vectors.

Definition 1 Elements of (Σ∗)p will be called word-vectors. A BSP word over Σ

is a sequence of word-vectors i.e. a sequence of ((Σ∗)p)∗. A BSP language over Σ

is a set of BSP words over Σ .

Remark 1 The word-vector < ε, . . . , ε > is not equivalent to an empty BSP word ε

as the former will trigger a global synchronization, while the latter will not. In other
words, < ε, . . . , ε > has length one and ε has length zero.

In our examples we will assume that Σ = {a, b}, ε is the empty “scalar” word
and p = 4 without loss of generality.

For example v1 =< ab, a, ε, ba > and v2 =< bbb, aa, b, a > are word-vector
and w = v1v2 is a BSP word. It is understood that w represents two successive
supersteps and that

w = v1v2 �=< abbbb, aaa, b, baa >

that is: concatenation of BSP words is not the same as pointwise concatenation of
word-vectors. Concatenation of BSPwords represents phases of collective communi-
cations and barrier synchronizations (see Fig. 2, where vectors are drawn vertically).
Concatenation of BSP words accordingly means concatenation of (sequences of)
word vectors:



236 G. Hains

Fig. 2 A BSP superstep

w = v1v2 =< ab, a, ε, ba >< bbb, aa, b, a > .

Let va =< ε, a, aa, aaa > respectively vb =< ε, b, bb, bbb > be word-vectors
whose local words are ai and bi respectively. Then La = {va}, Lb = {vb} and L2 =
{ε, va, vb, vavb} are finite BSP languages and L3 = {ε, va, vavb, vavbva, . . .} is an
infinite BSP language.

3 Finite Versus Infinite Alphabet

ABSP word is built from an infinite alphabet: even whenΣ is finite, the set of word-
vectors will be infinite. This part of the model illustrates the fact that a BSP computer
is two-level: it is built from sequential computers, whose computations are finite but
of unlimited length. But the infinite-alphabet property is not caused by the (finitely-
many) computing elements, it would still hold if p = 1. It is rather a consequence of
the fact that synchronization barriers are cooperative and not pre-emptive. Individual
local computations have to terminate before a superstep ends with synchronization.

In his famous paper [19] Turing gives sketches several arguments for the choice
of a finite alphabet. One is physical-topological: infinite alphabets realized by a finite
physical device would require infinite precision of the device reading a symbol from
working memory. He also gives another argument against infinite alphabets:

compound symbols [such as arabic numerals], if they are too lengthy, cannot be observed at
a glance

and even mentions, less convincingly, the case of Chinese ideograms as an attempt

to have an enumerable infinity of symbols.

So our notion of BSP computation would appear to be incoherent with classic
Church-Turing models: it is built from an infinite alphabet of symbols. However that



Enumerated BSP Automata 237

would only be the case if we chose to use BSP languages as a model for decidability,
which they are not intended to be. The BSP model was invented to model parallel
algorithms, not arbitrary parallel computations. All local computations are therefore
assumed to terminate and so is the global sequence of supersteps.

The best point of view on this question of infinite-vs-finite alphabet for BSP is that
BSP languages are sets of traces having a series-parallel structure representing
the behaviour of parallel computers that all synchronize periodically.

4 Bulk-Synchronous Automata

We now define BSP automata as acceptance machines for BSP words.

Definition 2 A BSP automaton A is a structure

({Qi}i∈[p],Σ, {δi}i∈[p], {qi0}i∈[p], {Fi}i∈[p],Δ)

such that for every i, (Qi,Σ, δi, qi0,F
i) is a deterministic finite automaton (DFA),1

and Δ : Q → Q is called the synchronization function where Q = (Q0 × ... ×
Q(p−1)) is called the set of global states.

In other words a BSP automaton is a vector of sequential automata Ai over the
same alphabet Σ , together with a synchronization function that maps state-vectors
to state-vectors.

Observe that the synchronization function is finite, like the transition functions,
and that its value depends on a whole vector of local states. Because of it, a BSP
automaton is more than the product [6] of its local automata (see Appendix 1 for an
explanation).

Let Qi be a set of local states at location i, δi : Qi × Σ → Qi a local transition
function on those states and δi∗ : Qi × Σ∗ → Qi, the extended transition function
on Σ-words. Right-application notation is sometimes convenient: δi ∗ (q, w) can be
written qw e.g. qab = δ(δ(q, a), b).

Define a transition function δ on word-vectors as follows. For q ∈ Q and w =<

w0, . . . , wp−1 > a word-vector

qw = Δ(< q0w0, . . . , qp−1wp−1 >) (1)

i.e. “synchronization” of the result of application of local transition functions to local
words. Function Δ is the model of a synchronization barrier because its local results
depend on the whole vector of asynchronous results.

A BSP word is a sequence of word vectors. It is read by a BSP automaton as
follows (Fig. 3):

1Qi is the finite set of states, δ the transition function, qi ∈ Qi the initial state and Fi ⊆ Qi the
non-empty set of accepting states.



238 G. Hains

Fig. 3 A BSP automaton

1. If the sequence of word vectors is empty, the vector state remains the vector of
local initial states; otherwise continue.

2. If < w0, . . . , wp−1 > is the first word vector. Local automaton i applies wi to
its initial state and transition function to reach some state qi, not necessarily an
accepting state.

3. The synchronization function maps Δ :< q0, . . . , qp−1 >→< q′0, . . . , q′p−1 >.
4. If there are no more word vectors, and ∀i. q′i ∈ Fi, the BSP word is accepted.
5. If there are no more word vectors, and ∃i. q′i /∈ Fi, the BSP word is rejected.
6. If there are more word vectors, control returns to step 2. but with local automaton

i in state q′i, for every location i.

Finite automata have no explicit notion of variables and values but states can be
used to encode them e.g. qx1 = {(x, 1)}, qx2 = {(x, 2)}, . . .. As a result, the synchro-
nization function Δ can encode the communication of values between locations i, j,
although this is not explicit in the general theory.

Proposition 1 A BSP automaton is equivalent to a deterministic automaton over
(the infinite alphabet of) word-vectors.

Proof If all p finite automata are deterministic, then the transition function on word-
vectors is a total and well-defined function of type Q × (Σ∗)p → Q. The following
structure built from A is a deterministic automaton by construction:

(Q, (Σ∗)p, δ,< q00, . . . , q
p−1
0 >, (F0 × . . . × Fp−1)).

The automaton is deterministic because δ is well-defined and total because of 1 and
the fact that local automata are deterministic. �

As Proposition 1 states, the BSP automaton is a deterministic automaton but its
alphabet is infinite. The synchronization function Δ finite (can be enumerated) but
enumerating the transition function δ is impossible: it is a table over Qp × (Σ∗)p



Enumerated BSP Automata 239

whose second component is infinite. So δ is infinite, but it has an obvious finite rep-
resentation: the vector of finite transition functions δi. As a result, a BSP automaton
is practically equivalent to a DFA modulo the above syntactic changes.

Definition 3 As shown in the proof of Proposition 1, a BSP automatonA is aDFAon
word-vectors. A BSP-wordw is accepted byA if the reflexive-transitive closure of δ

takes initial state q0 =< q00, . . . , q
p−1
0 > to an accepting state of (F0 × . . . × Fp−1)

when applied to w. The language of A is its set of accepted BSP-words.

We now give BSP automata to recognize BSP languages from Sect. 2.
Let Ai

a and Ai
b be the unique minimal DFA to recognize va and vb. Define Aa

as the BSP automaton (< A0
a,A

1
a,A

2
a,A

3
a >,Δ) where Δ is the identity function.

Then, for word-vector a, the local transition functions of Aa will lead to a vector
of accepting states, which the synchronization function Δ will leave unchanged.
For any other word-vector w, the local transition functions will lead to a vector of
non-accepting states, unchanged by synchronization. As a result Aa accepts exactly
language La = {va}. A similar construction with letter b gives a BSP automaton Ab

to accept Lb.
We now define a BSP automaton to accept

L2 = {ε, va, vb, vavb}.

Let Ai
a+b be a DFA that accepts language {ε, ai, bi} with exactly three accepting

states: qi0 initial state for accepting ε, qiFa for accepting ai and qiFb for accepting bi.
Let Ai

ε+b be a DFA that accepts language {ε, bi} with initial (accepting) state qib.
Define the BSP automaton as

Aa+b = (< Ai
a+b ∪ Ai

ε+b : i = 0, 1, 2, 3 >,Δ)

where the local automaton has the union of accepting states and initial state qi0. Define
also

Δ < q0Fa, q
1
Fa, q

2
Fa, q

3
Fa >=< q0b, q

1
b, q

2
b, q

3
b >

and Δ is the identity function on all other vector-states. Then Aa+b on ε leads to
Δ(ε) = ε which is by definition accepting. Automaton Aa+b applied to word-vector
a leads to

Δ < q0Fa, q
1
Fa, q

2
Fa, q

3
Fa >=< q0b, q

1
b, q

2
b, q

3
b >

an accepting state. Automaton Aa+b applied to word-vector b leads asynchronously
to

< q0Fb, q
1
Fb, q

2
Fb, q

3
Fb >

unchanged by Δ and that is an accepting state. Automaton Aa+b applied to word-
vector ab leads through a and synchronization to < q0b, q

1
b, q

2
b, q

3
b > and from there



240 G. Hains

asynchronously to accepting states ofAi
ε+b that the second synchronization preserves.

So ab is also accepted and it can be checked that any other sequence of word-vectors
is not accepted.

5 Non-determinism and Empty Transitions

A non-deterministic finite automaton (NFA) is a finite automaton whose transition
function has typeQ × Σ → P(Q) i.e. zero, one or more transitions δ(q, a) can exist
for a given symbol a . The closure of its transition function is the union of all possible
paths defined by δ for an input word.

A non-deterministic finite automaton with empty transitions (ε-NFA) is an NFA
over alphabetΣ ∪ {ε}where ε does not denote the emptywordbut a special “internal”
symbol that represents “spontaneous” state changes happening without input. The
closure of its transition function is the union of all possible NFA transitions on the
input word interleaved with an arbitrary number of ε symbols.2

The languages recognized by NFA and by ε-NFA are same regular languages
generated by regular expressions and recognized by DFA [15]. This holds because
of:

1. a polynomial-time algorithm to remove ε-transitions without changing the lan-
guage, and

2. an exponential-time algorithm to convert an NFA into an equivalent DFA.

The former transformation is called the subset algorithm because it generates a DFA
whose states are subsets of the NFA states.

Definition 4 A non-deterministic BSP automaton (NBSPA) is a BSP automaton
whose local automata are of typeQ × Σ → P(Q) and whose synchronization func-
tion has type Δ : Q → P(Q).

Definition 5 A non-deterministic BSP automaton with empty transitions
(ε-NBSPA) is a NBSPA whose local automata are ε-NFA (Fig. 4).

Remark that the definition of empty transitions for BSP automata leaves the syn-
chronization function Δ unchanged.

A (standard, deterministic) BSP automaton is by definition a special case of
NBSPA and of ε-NBSPA but we need to verify whether the latter encode the same
class of languages. The answer is positive and given by the next propositions.

2This notion of empty transitions is convenient but theoretically delicate. In the case of finite
automata it preserves all elementary properties but that is not the case for communicating automata.
For example Milner’s CCS process algebra [17] uses a spontaneous-transition symbol τ with a
similar property, but this changes the so-called bisimulation semantics of communicating automata.
Amore conservative process algebra can be built by replacing τ with an explicit clock-tick symbol�
[1]. The resulting algebra of processes combines a simple bisimulation semantics with the algebraic
simplicity (e.g. distributive law) similar to regular languages.



Enumerated BSP Automata 241

Fig. 4 An ε-NBSPA

Proposition 2 The language of a NBSPA can be accepted by a deterministic BSP
automaton.

Proof Let N be a NBSPA defined by (< N0, . . . ,Np−1 >,Δ)where the Ni are NFA
and Δ : Q → P(Q). Let Qi be the set of states of Ni.

By the subset algorithm there exists p DFA Di accepting the same (scalar) lan-
guages as the Ni and whose states are parts of P(Qi). Define Δ′ : P(Q) → P(Q)

by

Δ′{q1, . . . ,qn} =
n⋃

i=1

Δ(qi)

soΔ′ sends a set of possible vector states to a set of vector states (a non-deterministic
choice of synchronization transition). Define D as the deterministic automaton D =
(< D0, . . . ,Dp−1 >,Δ′). Then we can verify that L(N) ⊆ L(D) by induction on the
number of supersteps S in an accepted BSP word.

• (S = 0) If ε is accepted by N that is because the initial vector-state in N , q0 is
accepting. By definition of the subset algorithm, the accepting vector state of D is
built from local accepting states, and the initial state of D is just q0. As a result,
q0 is also accepting in D and so D accepts ε.

• (S = 1) If a word-vector w =< w0, . . . , wp−1 > is accepted by N then one of
the paths in Ni applied to wi leads to a state q′i such that Δ < q′0, . . . , q′p−1 >

contains an accepting state-vector. By the subset algorithm, q′i ∈ Q′i where Q′i is
a state of Di and by the definition of Δ′ then Δ′ < Q′0, . . . ,Q′p−1 > contains an
accepting state-vector.

• (S ≥ 2) If a BSP word w1; . . . ;wn−1;wn is accepted by N then N applied to
w1; . . . ;wn−1 leads to a set of vector-states among which one Q can be chosen
as initial vector state from which N would accept wn. By construction D contains
a vector-state containing Q. Apply then the above one-superstep proof from Q to
show that if N leads to acceptance, so does D. �



242 G. Hains

Proposition 3 The language of an ε-NBSPA can be recognized by a NBSPA.

Proof An ε-NBSPA N ′ is simply a non-deterministic BSP automaton built from a
vector of ε-NFAN ′i. Its synchronization function is non-deterministic but contains no
“spontaneous” empty supersteps. Standard automata theory gives us a polynomial-
time ε-reachability algorithm to convert everyN ′i into an equivalent NFANi without
ε-transitions. Define N to be the NBSPA built from the Ni and the same synchro-
nization function as N ′. Then L(N) = L(N ′). �

As a result, non-determinism and ε-transitions do not change the languages
accepted by BSP automata. Just as with sequential “scalar” automata, those syn-
tactic extensions can be used at an exponential cost in time and number of states.
Depending on the complexity of the synchronization functions, the blow-up factor
may also depend on p.

6 Sequentialization

Every parallel computation can be simulated sequentially and the theory of BSP
automata expresses this fact by a transformation from BSP automata to classical
finite automata. A word u = a1 . . . an of Σ∗ is localized to i as follows: u@i =
(a1, i) . . . (an, i). A word-vector w ∈ (Σ∗)p is sequentialized to a word Seq(w) on
alphabet Σ × [p] by the transformation:

Seq(w) = w0@0 . . .wp−1@(p − 1).

In otherwords, Seq(w) concatenates thewords ofword-vectorw after having labelled
them by their locations (any interleaving of the localized words would satisfy our
purpose, but ordered concatenation is simpler). For example if w =< b, ε, bb, aa >

then Seq(w) = w0@0 . . .w3@3 = (b, 0)(b, 2)(b, 2)(a, 3)(a, 3).

Definition 6 A BSP word on (Σ∗)p is sequentialized to a word on (Σ × [p]) ∪ {; }
as follows (Fig. 5):

Seq(ε) = ε

Seq(v1 . . . vn) = Seq(v1); . . . ;Seq(vn);

A BSP language L is sequentialized to Seq(L) by sequentializing every one of its
BSP words.

The following remarks should be kept in mind because they are much more than
a syntactic detail. 1. The sequentialization of a BSP word is either empty or contains
at least one semicolon, and 2. function Seq has one of two possible types.

• To sequentialize word vectors Seq : (Σ∗)p → (Σ × [p])∗.
• To sequentialize BSP words Seq : ((Σ∗)p)∗ → ((Σ × [p]) ∪ {; })∗.



Enumerated BSP Automata 243

BSP element: type −→ local / sequential element
ε : Σ∗ @i−→ ε

a : Σ∗ @i−→ (a, i)

abaa : Σ∗ @i−→ (a, i)(b, i)(a, i)(a, i)

ε =< ε, ε, ε, ε >: (Σ∗)p
Seq−→ ε

v1 =< aba, b, bbb, a >: (Σ∗)p
Seq−→ (a, 0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a, 3)

v2 =< a, ε, bbb, ε >: (Σ∗)p
Seq−→ (a, 0)(b, 2)(b, 2)(b, 2)

ε =< ε, ε, ε, ε >: (Σ∗)p
Seq−→ ε

ε : ((Σ∗)p)∗
Seq−→ ε

ε =< ε, ε, ε, ε >: ((Σ∗)p)∗
Seq−→ (ε; ) = ;

v2 ε : ((Σ∗)p)∗
Seq−→ (a, 0)(b, 2)(b, 2)(b, 2); ;

ε v2 : ((Σ∗)p)∗
Seq−→ ; (a, 0)(b, 2)(b, 2)(b, 2);

< ε, a, ε, a >< b, b, b, b >: ((Σ∗)p)∗
Seq−→ (a, 1)(a, 3); (b, 0)(b, 1)(b, 2)(b, 3);

Fig. 5 Localization and sequentialization

For simplicity we denote both by the same symbol Seq but the first one is only an
auxiliary part of the definition of the second one.

So if ε =< ε, . . . , ε > is considered to be a word-vector, then it is sequentialized
to the empty word. But as a BSP word it is sequentialized to the one-symbol word
“;” (Definition 6). This is the theoretical representation that even an “empty” BSP
algorithm (whose every local process has an empty execution trace) must end by a
synchronization barrier that propagates the coherent information “end execution” to
every location. In terms of BSP automata this means that even if Δ is the identity
function, and it follows a vector of empty computations, it still must be applied once.

A finite automaton A = (Q,Σ, δ, q0,F) of alphabet Σ can be localized to i ∈ [p]
and becomes automaton A@i by the transformation

A@i = (Q × {i},Σ × {i}, δ@i, (q0, i),F × {i})

where (δ@i)((q, i), (a, i)) = (δ(q, a), i).

Proposition 4 For any BSP automaton A on Σ , there exists a finite automaton
Seq(A) on (Σ × [p]) ∪ {; } such that Seq(L(A)) = L(Seq(A)).

Proof Let A = (< A0, . . . ,Ap−1 >,Δ) with Ai = (Qi,Σ, δi, qi0,F
i).

Define vector states Q = ∏p−1
i=0 Q

i for the sequential automaton i.e. all vectors of
local states.
Define localized transition function δa(q, a) = q[i:=δi(qi, a)] i.e. the local asynchro-
nous transition at i for any letter a localized at i.
Define a vector of initial state q0 =< (q00, 0), (q

1
0, 1) . . . , (qp−1

0 , p − 1) > with the



244 G. Hains

local initial states.
Define also the set of unanimously-accepting vector states F = ∏p−1

i=0 Fi.
Then Aa = (Q,Σ × [p], δa, q0,F) is a DFA that can simulate the application of A
to any word-vector w =< w0, . . . , wp−1 > as follows.
Let w = Seq(w) then δa(q0, w) =< δ0(q00,w

0), . . . , δp−1(qp−1
0 ,wp−1) >.

As a result, the asynchronous automaton Aa simulates A in the absence of syn-
chronizations. That covers the trivial case of accepting the empty BSP word whose
sequentialization is Seq(ε) = ε. Indeed if ε ∈ L(A) that is because ∀i.qi0 ∈ Fi and
then by definition q0 ∈ F so ε ∈ L(Aa). But even a single word-vector (single super-
step) involves the synchronization function when it is considered as a BSP word.

To simulate its effect with the sequential automaton, transform Aa to a DFA A; on
(Σ × [p]) ∪ {; } as follows.
Let δ; be the extension of δa with transitions on symbol semicolon ; that simulate
the effect of the synchronization function Δ. For any state vector q define δ;(q, ; ) =
Δ(q). Since the synchronization function is total, this ensures that δ; is a total function
and thatA; is a DFA. Consider a non-empty BSPword of length one i.e. a word vector
v (which could be a vector of empty words). The effect of A; on Seq(v) = (Seq(v));
is the same as the effect of A on v. Therefore v ∈ L(A) iff Seq(v) ∈ L(A;).

A trivial induction argument shows that this is also the case for a BSP word of
any length. We therefore define Seq(A) = A; and conclude that

v1 . . . vn ∈ L(A) ⇔ Seq(v1); . . . ;Seq(vn); ∈ L(A;)

i.e. Seq(L(A)) = L(A;) = L(Seq(A)). �

7 Parallelization

We have seen in Sect. 6 the sequentialization of word-vectors by localization of their
words, one symbol at a time Seq : (Σ∗)p → (Σ × [p])∗. It is easy to invert this
transformation and define Par : (Σ × [p])∗ → (Σ∗)p so that Par(Seq(w))) = w.

Let ε[i:=u] be the word vector that is empty everywhere except for word u at
position i. Let u · v be the pointwise concatenation of word-vectors i.e.

< u0, . . . , up−1 > · < v0, . . . , vp−1 >=< u0v0, . . . , up−1vp−1 > .

Define Par : Σ × [p] → (Σ∗)p by

Par(a, i) = ε[i:=a]

so that for example Par(u@i) = ε[i:=u]. Define then Par on sequentialized words of
(Σ × [p])∗ by

Par((a, i)(b, j) . . .) = Par(a, i) · Par(b, j) . . .



Enumerated BSP Automata 245

and in particular Par(ε) = ε the vector of empty words (or “empty-word vector” not
to be confused with the empty BSP word ε ∈ (Σ∗)p)∗). For example

Par((a, 0)(b, 1)(b, 0)(b, 3)) =< ab, b, ε, b > .

The following follows directly from the definition of Seq on word-vectors.

Lemma 1 Parallelization is the left-inverse of sequentialization on word-vectors
(Σ∗)p:

Par(Seq(v)) = v.

In fact, any permutationπ of Seq(w) that does not reorder co-located letters would
also preserve the parallelization Par(π(Seq(w))) but we will not expand on this for
it is not essential to our developments.

Function Par has one of three possible types.

• To parallelize localized letters Par : (Σ × [p]) → (Σ∗)p.
• To parallelize semicolon-free words Par : (Σ × [p])∗ → (Σ∗)p.
• To parallelize localized words with semicolons Par : (Σ × [p]) ∪ {; })∗ →

((Σ∗)p)∗.

Again, this can lead to ambiguity if the input type is unknown: the semicolon-free
word is mapped to the empty-word vector, but the empty general word of type
((Σ × [p]) ∪ {; })∗) is mapped to the empty BSP word (Fig. 6). This ambiguity is of
course only a convenience for notation but, as we have seen earlier, the difference
between empty-word vector and empty BSP word in fundamental.

The following straightforward consequence of our definitions shows that Par is a
non-injective function.

Proposition 5 If w is a word of (Σ × [p])∗ and π is a permutation of w that does
not exchange co-located letters, then Par(π(w)) = Par(w).

For this reason, Seq is not the left-inverse of Par:

∃w ∈ (Σ × [p])∗. Seq(Par(w)) �= w.

local / sequential element: type −→ vector/BSP element: type
(a, 1) : Σ × [p] Par−→ < ε, a, ε, ε >: (Σ∗)p

ε : (Σ × [p])∗ Par−→ < ε, ε, ε, ε >: (Σ∗)p

(a, 1)(b, 3)(a, 1) : (Σ × [p])∗ Par−→ < ε, aa, ε, b >: (Σ∗)p

(a, 0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a, 3) Par−→ < aba, b, bbb, a >: (Σ∗)p

(a, 0)(b, 0)(b, 2)(a, 3); (a, 0)(b, 1)(b, 2)(b, 2); Par−→ < ab, ε, b, a >< a, b, bb, ε >: ((Σ∗)p)∗

Fig. 6 Parallelization



246 G. Hains

For example if w = (a, 0)(b, 3)(a, 1) then Par(w) =< aa, ε, ε, b > and
Seq(Par(w)) = (a, 0)(a, 1)(b, 3) �= w. But Seq ◦ Par is clearly a normal form for
words of (Σ × [p])∗: it sorts their letters in increasing order of locations.

Proposition 6 Reduction to normal form ∼== Seq ◦ Par is a congruence for con-
catenation on (Σ × [p])∗ and (Σ × [p])∗/ ∼= is isomorphic to (Σ∗)p.

Proof Taking the normal form by ∼= preserves the value of Par, and Par is sur-
jective. Taking the i-subword of any w ∈ (Σ × [p])∗ is a homomorphism for con-
catenation. Therefore Par is a homomorphism from word concatenation to word-
vector concatenation. As a result Par is injective on (Σ × [p])∗/ ∼=, surjective and
homomorphic. �

Concurrency theories like process algebras [17] ignore the notion of localization
and simply consider interleavings π that forget the locations i. That is why they are
models of shared-memory computers and that was one of the reasons for inventing
theories like BSP that do not abstract from distributed-memory.

As the semicolon symbol ; encodes synchronization barriers i.e. the end of super-
steps, it is natural to extend parallelization to all words on (Σ × [p]) ∪ {; }.
Definition 7 Let α = α0; . . . ;αn; where αi ∈ (Σ × [p])∗.
Then Par(α) = Par(α0) . . . Par(αn).

For example Par((a, 0)(b, 1)(b, 0)(b, 3); (a, 2)(a, 2)(b, 3); ; (a, 0)) is theBSPword:

< ab, b, ε, b >< ε, ε, aa, b >< ε, ε, ε, ε >< a, ε, ε, ε > .

The inversion property on word-vectors then follows from our definitions.

Lemma 2 Parallelization is the left-inverse of sequentialization on BSP words
((Σ∗)p)∗:

Par(Seq(w)) = w.

The reasoning in the other direction, about Seq ◦ Par applies toBSPwords identically
and yields the same result as for word vectors (individual BSP supersteps): ∼==
Seq ◦ Par sorts inter-semicolon sequences in increasing order of location, it is a
congruence for concatenationon ((Σ × [p]) ∪ {; })∗ and leads to a parallel-sequential
isomorphism.

Reduction to normal form ∼== Seq ◦ Par is a congruence for concatenation on
sequential words but with the important exclusion of non-empty semicolon-free
sequential words that are meaningless for BSP.

Definition 8 Σp; = (((Σ × [p])∗); )

In other words, Σ∗
p; is the set of sequential localized words, without non-empty

semicolon-freewords.We find thatΣ∗
p;/ ∼= is isomorphic to the BSPwords ((Σ∗)p)∗.



Enumerated BSP Automata 247

Proposition 7 Reduction to normal form ∼== Seq ◦ Par is a congruence for con-
catenation on Σ∗

p; and Σ∗
p;/ ∼= is isomorphic to ((Σ∗)p)∗.

Proof The proof is almost identical to that of Proposition 6. The only (key) difference
is that Par would not be a bijection if applied to the whole of ((Σ × [p]) ∪ {; })∗. �
Definition 9 TheparallelizationPar(L)of a languageon (Σ × [p]) ∪ {; } is {Par(α) :
α ∈ L} and the sequentialization Seq(L′) of a BSP language is
{Seq(w) : w ∈ L′}.

We now give results about inverting the sequentialization of BSP automata.
The first result is about inverting the sequentialization of “incomplete superstep”

BSP words. Such words correspond to sequentialized words on Σp; i.e. words of
the form ((Σ × [p])∗); ). It would appear that such words contain all the necessary
information to be recognized by a BSP automaton. One word at a time this is true,
but it does not hold of regular languages of this type. Take for example the regular
language of expression ((a, 0) + (b, 1))∗ then its parallelized language can be recog-
nized by a BSP automaton whose language is < a∗, b∗, ε, ε >, essentially because
the number of a events is independent from the number of b events. But a language
like that of ((a, 0)(b, 1))∗ is parallelized to language {< an, bn, ε, ε > | n ≥ 0}
which cannot be recognized by a BSP automaton because the local automata at
locations 0 and 1 would need to keep synchronised without the help of the syn-
chronization function. However if the sequentialized language is given extra syn-
chronization semicolons, then it can be recognized by a BSP automaton. In the
above example, the language of expression ((a, 0)(b, 1); )∗ is parallelized to lan-
guage {< a, b, ε, ε >n | n ≥ 0} =< a, b, ε, ε >∗ forwhich aBSP automaton exists.
The process of adding semicolons to a sequential word or language will be called
over-synchronization.

Definition 10 For w ∈ ((Σ × [p])∗) ∪ {; }, we say that w′ over-sychronizes w and
write w ≤; w′ if w′ is obtained by interleaving w with a word of the form ;∗. A
language L′ over-synchronizes language L, written L ≤; L′, if there is a bijection
from L to L′ which is an over-synchronization. An automaton A′ over-synchronizes
automaton A, written A ≤; A′ if L(A) ≤; L(A′).

Lemma 3 For any automaton A on (Σ × [p]) there is a sequential automaton A′ ≥;
A, and a BSP automaton Par(A) on Σ such that L(Par(A)) = Par(L(A′)).

Proof Let rA be a regular expression such that L(rA) = L(A) (Appendix 2). We show
by induction on the syntax of ra that there exists a BSP automaton to recognize the
parallelization of an over-synchronization of L(A).

If rA = ∅ then Par(L(rA)) = ∅ and the BSP automaton can be any one that has
empty sets of accepting states. If rA = ε then L(rA) = {ε} and Par(L(rA)) = {ε} so
the BSP automaton should recognize nothing but the empty BSP word. To obtain
this, define its local automata as accepting {ε} and the synchronization function is
the identity.



248 G. Hains

If rA = r∗
0 then by induction there is a BSP automaton A0 to recognize Par(L(r0)).

Add new unique accepting states qiF to its local automata and ε-transitions from their
(previously) accepting states to the qiF . Add to A0’s synchronization function the
mapping from < q0F, . . . , qp−1

F > to the initial states of all finite automata. Call this
new ε-NBSPA A1. Then L(A1) = Par(L((r0; )∗)) i.e. the over-sychronization (r0; )∗
has A1 as accepting BSP automaton.

If rA = r1 + r2 then by induction there are BSP automata Aj and r′
j ≥; rj such

that L(Aj) = Par(L(r′
j)) for j = 1, 2. Then build an NBSPA A0 whose local automata

have: the union of local states from A1,A2 with an added new initial state with an ε-
transition leaving it to each of the (previously) initial states fromAi

1 andA
i
2, transition

function that are the union of local transition functions from A1,A2 and a new final
state qiF . The synchronization function ofA0 is the union of synchronization functions
of A1,A2 with the added mappings from all state vectors that are uniformly (∀i)
accepting for r′

1 or uniformly accepting for r′
2 to < q0F, . . . , qp−1

F >. Then L(A0) =
L(A1) ∪ L(A2) = Par((r′

1 + r′
2); ) which is an over-synchronization of rA.

If rA = r1r2 then a similar construction leads to a BSP automaton accepting the
parallelization of r1; r2. �

The second result follows about inverting the sequentialization of all BSP words.

Theorem 1 For any automaton A on (Σ × [p]) ∪ {; } there is a sequential automa-
ton A′ ≥; A, and a BSP automaton Par(A) on Σ such that L(Par(A)) = Par(L(A′)).

Proof Let rA be a regular expression such that L(rA) = L(A) (Appendix 2). We will
show by induction on the syntax of rA that there exists a BSP automaton Par(A) to
recognize Par(L(rA)) = Par(L(A)).

If rA = ∅ then Par(L(rA)) = ∅ and the BSP automaton can be any one that has
empty sets of accepting states.

If rA = ε then L(rA) = {ε} and Par(L(rA)) = {ε} so the BSP automaton should
recognize nothing but the empty BSP word. To obtain this, define its local automata
as accepting {ε} and the synchronization function can be arbitrary because it does
not get applied on the empty BSP word.

It is not possible to have rA = (a, i) then it is easy to build a BSP automaton to
recognize Par({(a, i); }.

If rA =; then L(rA) = {; } = {ε; } so Par(L(rA)) = {Par(ε)} = {ε}. Define then Ai

as a finite automaton with initial state qi0, a single accepting state equal to qi0 and
transition function to accept only the empty word. Let q0 =< q00, . . . , q

p−1
0 > and

define Δ(q0) = q0 and a different value of Δ(q) for all other q. Define the BSP
automaton Par(A) = (< A0, . . . ,Ap−1 >,Δ). Then applying Par(A) to ε leads to q0

vacuously on the local automata and then by one application of Δ, so ε is accepted.
Applying Par(A) to any other BSPword leads to non-acceptance so L(Par(A)) = {ε}.

If rA = r∗
0 , rA = r1 + r2 or rA = r1r2 then the corresponding induction steps used

in the proof of Lemma 3 apply directly. �

Moreover, as seen in Sect. 5 there exists a deterministic BSP automaton A equivalent
to the ε-NBSPA constructed in the proof of Theorem 1.



Enumerated BSP Automata 249

8 Bulk-Synchronous Regular Expressions

In this section it is shown how to adapt regular expressions (Appendix 2) to BSP
languages.

A BSP regular expression is an expression R from the following grammar:

R ::= ∅ | ε |< r0, . . . , rp−1 >| R;R | R∗ | R + R

where ri is any (scalar) regular expression. The set of BSP regular expressions is
BSPRE and the language any BSP regular expression is defined by L : BSPRE →
P(((Σ∗)p)∗) as:

R L(R)

∅ { }
ε {ε}

< r0, . . . , rp−1 > L(r0) × . . . × L(rp−1)

R1;R2 L(R1)L(R2)

R∗ L(R)∗
R1 + R2 L(R1) ∪ L(R2)

We now show that Kleene’s equivalence theorems (Appendix 2 and [10]) can be
adapted to the two-level BSP regular expressions and automata.

Theorem 2 For R ∈ BSPRE there exists a BSP automaton AR such that L(AR) =
L(R).

Proof We proceed by induction on the syntax of R. If R = ∅ the BSP automaton
simply needs to have empty (local) sets of accepting states. IfR = ε theBSP automata
should have as unique accepted BSP word the empty one. That is obtained by having
accepting (local) start states and all transitions leading to different (non-accepting
states), with an indentity synchronization function.

If R =< r0, . . . , rp−1 > then there exist classical automata Ai on Σ such that
L(Ai) = L(ri) (Appendix 2). The BSP automaton is then simply the collection of
those automata with identity synchronization function.

If R = R1;R2 then by induction there exists BSP automata A1,A2 such that
L(Aj) = L(Rj) for j = 1, 2. Define the BSP automaton A whose states is the dis-
joint union of those of the Aj, whose accepting states are those of A2, whose initial
vector state is that of A1, whose (partial) ΔA is the union of the synchronization
functions of the Aj with an added ε-transition from all accepting state vectors in A1

to the (previously) initial state vector of A2. The resulting A is an ε-NBSPA accepting
language L(A1)L(A2) = L(R).

If is of the form R = R∗
0 or R = R1 + R2, similar constructions lead to ε-NBSPA

whose language is R. �



250 G. Hains

Theorem 3 For A a BSP automaton there exists RA ∈ BSPRE such that L(RA) =
L(A).

Proof Assume

A = ({Qi}i∈[p],Σ, {δi}i∈[p], {qi0}i∈[p], {Fi}i∈[p],Δ) and Ai = (Qi,Σ, δi, qi0,F
i).

Let Q = ⋃
i Q

i be the union of all states in the local automata, then the states Q of
A are all in Qp. Similarly, let F ⊆ Q be the accepting states of Q.

Let q1, q2 ∈ Q be any local states. Then by Kleene’s theorem there exists
r(q1, q2)i ∈ RE such that L(r(q1, q2)i) is the set of Σ words that lead from q1
to q2 with δi. Let REA be the finite set of all such regular expressions over all
pairs of states and all location i ∈ [p]. Let ΣA = (REA)

p ∪ {; }, a large but finite
“alphabet” for the following construction of a “vector-automaton” A equivalent to
A. Define ΔA : Q × ΣA → Q by ΔA(q1, r) = q2 where q1,q2 are vectors of states
linked at every location by the local projection of r. Define also ΔA(q1, ; ) = q2 iff
Δ(q1) = q2. Define at last A = (Q,ΣA,ΔA,F).

This NFA can be applied to BSP words by applying the vectors of regular expres-
sions to the word vectors pointwise, and traversing any semicolon-edge when there
is a change of word. By defining transition in this manner, A is an acceptance mech-
anism for BSP word whose accepted language is precisely L(A).

By Kleene’s theorem applied to A, there is a (normal) regular expression built
from alphabetΣA = (REA)

p ∪ {; }whose language isL(A) = L(A). By construction,
such a regular expression is precisely a BSPRE whose language is that of A. �

It is convenient to write r = r′ in RE (respectively R = R′ in BSPRE) when the
two regular expressions (resp. BSP reg. expr.) have the same language.

Proposition 8 (Sect.9.3.1 of [15]) For r, r1, r2, r3 ∈ RE:
εr = rε = r r1(r2r1)∗ = (r1r2)∗r1
∅r = r∅ = ∅ (r1 ∪ r2)∗ = (r∗

1 r
∗
2 )

∗
ε∗ = ∅∗ = ε r1(r2 ∪ r3) = r1r2 ∪ r1r3

Classical equivalences such as the above hold also for BSP regular expressions
R,R1,R2,R3 because they involve no interactions between the two levels of BSP
syntax.

9 Minimization

For a given DFA A there exists a so-calledminimalDFAMA [21]: L(MA) = L(A), the
number of states ofMA is minimal amongst all automata of equal language.Moreover
the minimal automaton MA is unique: it is isomorphic to any other M ′

A of equal
language and of the same size. The computation A �→ MA is calledminimization and
can be realized by sequential algorithms of worst-case quadratic time in the number
of states of A.



Enumerated BSP Automata 251

Let us recall the state congruence relation used for the invariant of those algo-
rithms, and its very compact formulation by Benzaken (Chap.2, Sect. 6.3 of [2]).

Definition 11 Let A = (Q,Σ, q0, δ,F) be a DFA and k ≥ 0 an integer. For q ∈ Q,
define Aq to be the language accepted by A starting from q i.e. Aq = L(A[q0:=q]). For
p, q ∈ Q define p �k q or “p, q are k-equivalent” to mean Lk(Ap) = Lk(Aq) where
Lk( ) denotes the sub-language of words no longer than k.

Then k-equivalence �k is clearly an equivalence relation on Q and:

• �0 has only two equivalence classes of states, namelyF andQ − F: L0(p) = L0(q)
precisely when the empty word is accepted from either state. That is true when
both are in F and false otherwise.

• p �k+1 q iff (p �0 q) and ∀a ∈ Σ.(δ(p, a) �k δ(q, a)): two states define the same
language of length ≤ k + 1 iff 1 they are both accepting/non-accepting and 2 any
pair of transitions δ(p, a) and δ(q, a) leaving them on the same symbol a, leads to
k-equivalent states.

By definition, (k + 1)-equivalence is a (non-strict) refinement of k-equivalence,
so its equivalence classesQ/ �k+1 are obtained by splitting some equivalence classes
of Q/ �k . Moreover, if for some k we have Q/ �k+1= Q/ �k then all Q/ �i

are equal for i = k, k + 1, k + 2 . . .. Observe then that in the series of partitions
Q/ �0,Q/ �1, . . .Q/ �i . . ., the number of equivalence classes is non-decreasing,
yet by definition it cannot be greater than the number of states | Q |. It follows that
Ap = Aq iff p �|Q| q and it can be proved that A/ �|Q| is the unique minimal DFA
equivalent toA. Sequential algorithms for computing it can be derived from the above
construction, among them Hopcroft’s algorithm [8] of time complexity O(n log n)
where n =| Q |.

The above ideas have been generalized by D’Antoni and Veanes to so-called
symbolic finite automata (SFA) whose alphabets are logical formulae rather than
elementary letters [5]. They generalize the above DFA minimization method to SFA
and find that the key requirement is to check rapidly for satisfiability of φ ∧ ψ

when considering transitions of the form δ(p, φ) and δ(q, ψ). From the construction
used in the proof of Theorem 3 it appears that our BSP automata are a special case
of SFA and that those results [5] apply to them. But we will not make use of this
general result for the sake of simplicity and to keep this paper self-contained. Efficient
algorithms for BSP automata will also benefit from our elementary presentation that
only builds from DFAs, REs and vectors, as there is no guarantee that excessively
general methods lead to efficient algorithms for the class of BSP automata.

LetMinbe theminimization functiononDFA that results fromapplyingHopcroft’s
algorithm. Observe that it is not sufficient to minimize a BSP automaton by mini-
mizing its local automata: we must account for the synchronization function. The
states of a BSP automaton are the state-vectors of

∏
i Q

i. But if we apply the clas-
sical method to state-vectors and alphabet Σp; then all minimization properties and
methods apply.



252 G. Hains

Fig. 7 Automaton Aa

Proposition 9 If A is a deterministic BSPautomaton onΣ then there exists a sequen-
tial automaton Min(Seq(A)) that accepts the same Seq(L(A)) and is of minimal size.

Proof Consider A as a special notation for Seq(A): an automaton on (Σ × [p]) ∪ {; }
i.e. with vector-states but single-symbol local transitions or global transitions on ;
defined by the synchronization function Δ. Then clearly A is deterministic so it is a
DFA that can be minimized. Apply sequential minimization to obtain the result. �

Minimizing BSP automata is considerably more complex than minimizing DFA.
The reason is that pointwise minimization of the local automata, without reference
to the synchronization function, may change the accepted BSP language. Let us
illustrate this property by an example.

Example 1 Let Aa be the DFA with four states q1, q2, q3, qF , initial state q1, unique
accepting state qF , and transitions as shown in Fig. 7 (ignoring Δ). Then clearly
L(Aa) = ∅ because qF is unreachable from q1.

Define also the BSP automaton Aa = (< Aa, . . . ,Aa >,Δ) with the following
synchronization function:

q Δ(q)

q2 =< q2, . . . , q2 >
Δ−→ qF =< qF, . . . , qF >

qF =< qF, . . . , qF >
→−→ q1F =< q1, qF, . . . , qF >

any other q
→−→ q1F =< q1, qF, . . . , qF >

Since qF is the only accepting vector state for Aa, and since the initial state is <

q1, . . . , q1 > it follows that the emptyBSPword is not accepted byAa.AnyBSPword
of L(Aa) is therefore of length one or more, so must trigger one or more applications
of Δ. By definition, the only such application leading to acceptance is Δ(q2). By
definition of Aa, the only word-vectors leading to q2 is a =< a, a, . . . , a >. So the
BSP word a ∈ L(Aa).



Enumerated BSP Automata 253

Fig. 8 Locally minimal
automaton Min(Aa)

Any longer BSP words are not accepted, because 1 by definition of Aa, local
transitions will only lead from qF to itself and 2 synchronization Δ will then lead to
q1F which is not accepted, and similarly for a BSP word of length more than two.

As a result L(Aa) = a =< a, a, . . . , a >.

Consider now local minimization of the BSP automaton Aa of Example 1. That
yields the BSP automaton (< Min(Aa), . . . ,Min(Aa) >,Δ) where Min(Aa) is the
minimal DFA for accepting the empty language i.e. the two-state DFA of Fig. 8.
Local state q1 in Min(Aa) is actually the equivalence class {q1, q2, q3} in Aa so the
synchronization function would send < q1, . . . , q1 > to Δ(q2, . . . , q2 >) = qF so
that any BSP word of length one would be accepted. The result would then be a
BSP automaton whose language is < (a + b)∗, . . . , (a + b)∗ >�= L(Aa). The above
remarks show that local minimization alone does not preserve the BSP language.

The application of Min ◦ Seq as in Proposition 9 has a disadvantage: it produces
an automaton whose parallelization is not obvious. Sequentialization can then be
reversed but only at the cost of over-synchronization (by Theorem 1).

In other words, if we apply Min ◦ Seq and then Par ◦ ≤; in the hope of mini-
mization, the resulting BSP automaton may have a reduced number of states but an
increased number of synchronizations. In practical terms that means that the BSP
automaton’s implementation will consume less space, and process BSP words in the
same number of local transitions, but require an increased number of global barriers.
Proposition 9 is thus a first but insufficient step towards BSP automata minimization.

Figure9 illustrates the minimization of Seq(Aa) (with p = 2, sufficient for illus-
trating the computation). The circled groups of state vectors are provisional con-
gruence classes to be refined until the Min algorithm reaches its fixed point. They
strongly depend on the structure of Δ and as we have seen, the resulting (sequential)
automaton on Σp; can only be re-parallelized at the expense of extra synchroniza-
tions.

More important for our purpose, the objective of bulk-sychronous parallelism is to
provide realistic and predictable parallel speed-up. BSP theory includes a cost-model
that relates sequential time, the number of processes p and global synchronization



254 G. Hains

Fig. 9 Sequential minimization of BSP automaton Aa

(and communication) delays. Automaton minimization is directly related to space
complexity, memory consumption, but as seen in this section it can lead to higher
synchronization costs hence more time complexity. As a step in this direction, we
now adapt the cost-model of BSP theory to BSP automata and show how it can
be used as objective function in the search for fast parallel versions of sequential
automata.

10 Cost-Model

Words from regular languages can be recognized by (classical) finite automata in
time proportional to their length. Being models of parallel algorithms, BSP automata
are meant to accelerate this process. Ideally a word from a regular language could
be recognized p times faster by a BSP automaton. This is certainly possible but,
in general, parallel recognition requires more than one superstep so that the BSP
automaton’s operations require a BSP word of length more than one. Moreover, BSP
theory and systems have show that the synchronization functionΔ’s implementation
incurs costs that may be larger than the speed-up of parallelism.

In this section we show how to accelerate the recognition of regular languages,
and define a detailed version of the BSP cost model to quantify the time-space cost
of doing this.

The first auxiliary notion is concatenation-factorization on sequential words.



Enumerated BSP Automata 255

Definition 12 A factorization function on Σ words is a function Φ : Σ∗ → (Σ+)∗
such that

Φ(ε) = ε

|w| > 0 ⇒ |Φ(w)| > 0
Φ(w) = w1, w2 . . . , wn ⇒ w1w2 . . . wn = w

By definition, a factorization function sends the empty word to itself and sends a
non-empty w to a non-empty sequence of non-empty words whose concatenation is
w itself.

Next we define the distribution of sequential words to (BSP) locations. Recall that
(Σp;)∗ is the set of sequentialized BSP words ((Σ × [p])∗; )∗.

Definition 13 Given a factorization function Φ on Σ words, a distribution function
based on Φ is a DΦ : Σ∗ → (Σp;)∗ such that

DΦ(ε) = ε

Φ(w) = w1, w2 . . . , wn ⇒ DΦ(w) = w′
1;w′

2; . . . w′
n;

wt = a1 . . . ak ⇒ w′
t = (a1, i1) . . . (ak, ik)

i1, . . . , ik ∈ [p]

The distribution of a language on Σ is the set of distributions of its words i.e.
DΦ(L) = {DΦ(w) | w ∈ L}.
This definition is such that a distributionD(w) is the sequential image of a BSP word
and Seq(Par(DΦ(w))) ∼= DΦ(w) (Sect. 7).

For example if
w = aaabba

one possible factorization is
Φ(w) = aaab, ba

and one possible associated distribution is

DΦ(w) = (a, 3)(a, 2)(a, 2)(b, 0); (b, 1)(a, 1);

with
Par(DΦ(w)) =< b, ε, aa, a >< ε, ba, ε, ε >

and
Seq(Par(DΦ(w))) = (b, 0)(a, 2)(a, 2)(a, 3); (b, 1)(a, 1); ∼= DΦ.

The definition of distribution function is flexible enough to allow any word and
any language to be distributed to a BSP word or BSP language. The existence of
distributions is a trivial fact of no interest in itself. What matters is optimization:
the discovery of distributions with minimal parallel execution time. To define this
we need to define the cost of a BSP automaton’s computations. The synchronization



256 G. Hains

cost is an experimental constant that depends on the physical machine executing one
of our BSP automata.

Definition 14 Let v ∈ (Σ∗)p be a word vector. Its BSP cost cost(v) = maxi
∣∣vi

∣∣ is
the length of its longest element. Define also l ∈ N+, the barrier synchronization
cost constant. For a BSP word w = v1 . . . vS ∈ ((Σ∗)p)∗, its BSP cost is

cost(w) = ΣS
t=1(cost(vt) + l) = Sl + ΣS

t=1cost(vt).

The reader familiar with BSP theory will have noticed that our cost function covers
local sequential computation and global synchronization but not communication.
This is indeed a simplification and assumes, not that communication is “free” but
that an implementation always uses all-to-all communications and that its usual BSP
cost of p × g is here hidden in the l constant.

More detailed presentations of BSP automata will refine this, for example by
taking into account the actual dependencies in the synchronization function: a purely
local Δ actually costs less than one whose values (output states) depend on all the
input states. The above-defined cost model is a pessimistic upper-bound for this.
We now explain how BSP automata encode the elements of BSP algorithm design
namely load balancing and minimal synchronization.

Definition 15 For a given distribution functionDΦ of factorization Φ, the BSP cost
of a sequential word w ∈ Σ∗ with respect to DΦ is defined as the BSP cost of the
parallelization of its distribution:

costDΦ
(w) = cost(Par(DΦ(w)))

For example in the above example with w = aaabba we had

Par(DΦ(w)) =< b, ε, aa, a >< ε, ba, ε, ε >

and so
costDΦ

(w) = cost(Par(DΦ(w))) = 2 + l + 2 + l = 4 + 2l.

A direct consequence of the cost model is that the cost of a word with respect to
DΦ is least if the factorization Φ(w) produces a minimal number of factors (hence
minimal number of BSP supersteps) while the distribution of each factor DΦ(wt)

has the least maximal local length (hence the most balanced distribution). This bi-
objective cost function is the basis of BSP algorithm design: for a given amount of
parallelism, balance the lengths of local computations while minimizing the number
of supersteps.

Problem 1 BSP-PARALLELIZE-WORDWISE
Input: A regular language L given by a regular expression r or DFA A.
Goal: Find a distribution DΦ and BSP automaton AD such that L(A) = Par(DΦ(L))

and |AD| ∈ O(|A|).



Enumerated BSP Automata 257

Subject to: ∀w ∈ Σ∗. costDΦ
(w) is minimal over {(Φ,DΦ,AD) | L(A) =

Par(DΦ(L))}.
Minimization for every individual w is not a standard formulation. A better one is:

Problem 2 BSP-PARALLELIZE
Input: A regular language L given by a regular expression or DFA.
Goal: Find a distribution DΦ and BSP automaton AD such that L(A) = Par(DΦ(L))

and |AD| ∈ O(|A|).
Subject to: TDΦ

(n) = max{costDΦ
(w) | |w| = n} is minimal over {(Φ,DΦ,AD) |

L(A) = Par(DΦ(L))}, for all n ≥ 0.

Theoretical work can concentrate on limn→∞ TDΦ
(n)while certain applications could

consider only fixed-size input words i.e. a single value of n. The former is clearly a
general algorithm-design problem and the latter is more likely to have an algorith-
mic solution. The present formulation of BSP automata leave open both theoretical
and practical explorations: depending on the space of factorization and distribution
functions that is considered, the BSP-PARALLELIZE problem could have widely
different complexities.

In the next section we explore an important subproblem: finding BSP automata
parallelizations for the block-wise distribution functionD÷p. The cost is then equal to
l times the number of supersteps and BSP-PARALLELIZE amounts to minimizing
the number of supersteps. But as specified in the problem definition (|AD| ∈ O(|A|))
this should not be at the cost of an explosion in the number of states. We present
elements of both lower- and upper-bound for this parameter.

11 Parallel Acceleration

Problem BSP-PARALLELIZE sets the goal of finding the fastest possible tuple (fac-
torization, distribution, BSP automaton) of dimension p to recognize a given regular
language L. Fastest refers to the cost of the BSP words once they are factorized and
distributed for the BSP automaton. As a first step towards such optimal solutions, we
will adapt the experimental notion of parallel speedup and show someparallelizations
measured thus.

Definition 16 Let L be a regular language and (Φ,DΦ,AD) a factorization, distri-
bution and BSP automaton for L i.e. Par(DΦ(L)). The parallel speedup obtained by
(Φ,DΦ,AD) on a given word size n is the ratio

speedup(Φ,DΦ,AD, n) = min{n/costDΦ
(w) | |w| = n}

The n term in the denominator is |w|, the cost of sequential recognition by a DFA. On
first inspection, the definition of speedup does not appear to depend on the language
L being recognized. But it actually does. A speedup value is only possible by virtue



258 G. Hains

of a BSP automaton recognizing L with the given factorization (supersteps) and
distribution (data placement).

We take three examples of simple regular languages to parallelize.

• L1 = L(a∗)
• L2 = L(a∗b∗)
• L3 = L((a + b)∗bbb(a + b)∗)

Example 2 Parallel recognition of L1. Sequential recognition of a∗ amounts to
reading awordw ∈ Σ∗ sequentially with a DFA for this language. The simplest DFA
Aa∗ has two states q1, q2, starts from q1, accepting states F = {q1}, and transitions
δ(q2, x) = q2, δ(q1, a) = q1, δ(q1, b) = q2.

A simple and efficient parallelization for L1 is (Φ1,D◦,A1) defined as fol-
lows. The factorization function keeps the input word into a single superstep word:
Φ1(w) = (w).
The “remainder p” distribution function sends letters to locations in cyclic fashion:
D◦(u0 . . . un−1) = (u0, 0 mod p) . . . (un−1, (n − 1) mod p);
The BSP automaton A1 = (< Aa∗ , . . . ,Aa∗ >, Id) has a copy of the DFA for accept-
ing a∗ at every location so any input word containing letter b will put one location
into non-accepting local state. The synchronization function is the identity on state
vectors. As a result, the BSP words accepted are those that only contain letter a, i.e.
L(A1) = Par(D◦(L)).

By construction costD◦(w) = cost(w) + l i.e. the cost of the distributed word
vector + the cost of one barrier. Cyclic distribution is known to have cost n/p or
(n/p) + 1 because no location receives more than that many of the letters. As a
result the speedup is n

(n/p)+l which tends to p (ideal speedup) for large input sizes.
The above construction is an asymptotic solution to BSP-PARALLELIZE for

this language because any BSP automaton costs one l term on non-empty input, and
processing the whole input word is both necessary and requires at least parallel cost
n/p.

Example 3 Parallel recognition of L2. Sequential recognition of a∗b∗ is done by
a DFA having states q0, q1, q2 of which q0 is initial, accepting states q0, q1 and

transition function q0
a−→ q0, q0

b−→ q1,

q1
b−→ q1, q1

a−→ q2,
q2

x−→ q2.
Let us call this automaton A2.

Consider again parallelization with factorization function Φ1 i.e. BSP words of
length one superstep. Take as distribution function the “div-p” function that sends to
each location a block of length k ≥ p except one possibly shorter block at the end:
D÷p(u0u1 . . . un−1) = (u0, 0/p)(u1, 1/p) . . . (un−1, (n − 1)/p)
For example

D÷4(u0u1 . . . u8) = (u0, 0)(u1, 0)(u2, 0)(u3, 0)(u4, 1)(u5, 1)(u6, 1)(u7, 1)(u8, 2).



Enumerated BSP Automata 259

We now show that a BSP automaton can be built for Φ1 and D÷p to accept L2. Its
parallel speedup will then be the same as in Example 2. Consider the BSPRE
R = R0 + R1 + R2 + R3 where
R3 =< a∗, a∗, a∗, a∗b∗ >,
R2 =< a∗, a∗, a∗b∗, b∗ >,
R1 =< a∗, a∗b∗, b∗, b∗ >,
R0 =< a∗b∗, b∗, b∗, b∗ >.
By construction L(R) = Par(D÷p(L2) because the words of L2 split into four equal-
length blocks and parallelized are precisely of one of the four forms specified by R.

It is not sufficient for our purpose to apply Theorem2 toR because the constructive
proof given there introduces unnecessary synchronization. To obtain a one-superstep
BSP automaton for L2 based on R proceed as follows. Build a DFA A′

2 with states
q0, q1, q2, q3 such that q0, q1, q3 are accepting, state q0 acceptsL(a+), state q1 accepts
L(a+b∗), state q3 accepts L(b∗) and words leading to q2 are not from the union of
those languages (which equals L2). Let the BSP automaton have A′

2 as local automa-
ton at every location and define the synchronization function as follows:
Δ(< (q0 + q1), (q0 + q1), (q0 + q1), (q0 + q1) >) = an accepting vector state; to
accept R3,
Δ(< (q0 + q1), (q0 + q1), (q0 + q1), q3 >) = an acceptingvector state; to acceptR2,
Δ(< (q0 + q1), (q0 + q1), q3, q3 >) = an accepting vector state; to accept R1,
Δ(< (q0 + q1), q3, q3, q3 >) = an accepting vector state; to accept R0,
Δ sends any other state vector to a non-accepting vector state.
It then follows that the BSP automaton accepts L2 in one superstep for the given
distribution. This completes the example.

Example 4 Parallel recognition of L3. Sequential recognition of (a + b)∗bbb(a +
b)∗ amounts to searching for the first sequence bbb in a given word. A simple manner
of obtaining a DFA for this is to start for a NFA with a sequence of 4 states from
initial to accepting, each one related to the next by a unique δ(qj, b) = qj+1 transition,
and then apply the NFA-to-DFA transformation. Another method is to retain the four
states and add all missing transitions to obtain a DFA. Let us call it A3.

A3, and thus L3 can be parallelized to a one-superstep BSP automaton by a con-
struction similar to that of Example 3 above. The parallelization uses factorization
Φ1 and distribution D÷p: it sends the first n/p = |w|/p elements of w to location 0,
the next n/p to location 1, etc. with a single superstep symbol ; at the end.

To do this we consider the three factors w = w1w2 of any w ∈ L3 where w1 ∈
L((a + b)∗) − {bbb}, w2 ∈ L(bbb(a + b)∗) i.e. w2 begins with the first occurrence
of bbb in w. Then we consider all the p possible positions for the first letter of w2.
Each one corresponds through D÷p to a BSPRE. For example
|w1bbb| ≤ n/p iff Par(D÷p(w)) ∈ L(< ((a + b)∗) − {bbb})bbb, (a + b)∗, (a + b)∗,
. . . >). A BSP automaton A0 can be derived from this BSP regular expression: by
definition it operates in one superstep. Similar BSP automata Ai can be derived from
the hypothesis that the first b symbol of the first bbb sequence in w starts at a certain



260 G. Hains

point inw. It follows thatA0 + A1 + A2 + . . . is a BSP automaton for L3. Moreover it
is possible to combine those BSP automata by a purely local process: add (create the
disjuction) of all local DFA, and then build the combined synchronization functionΔ

by operating independently on the accepting states every local part Ai
j. The resulting

BSP automaton accepts L3 in a single superstep. Its speedup is the same as for
Example 3.

Warning In our parallelization examples above it is assumed that an input word
is split into regular blocks before being input to a custom-built BSPA. If process-
ing time is understood as the time required to accept/refuse a given input word in
each language, then our constructions indeed provide a p× speedup over the ini-
tial “sequential” DFA. But the reader should be aware that the BSPA are in general
non-deterministic (NBSPA) and that to obtain this speedup in practice requires to
transform them into equivalent deterministic BSPA. This pre-processing is amortized
over the whole language but may have an exponential cost in space and time.

The construction of Examples 3 and 4 can clearly be applied to the general
word recognition problem: for any given x ∈ L((a + b)∗), one can construct a one-
superstep BSP automaton A (i.e. based on Φ1 and D÷p) that paralellizes the lan-
guage (a + b)∗x(a + b)∗. This A is the sum (language union) ofO(max(p, |x|)) BSP
automata whose local DFA are minor modifications of Ax, the minimal DFA for
accepting x.

All examples shown above provide candidate solutions to BSP-PARALLELIZE:
they parallelize the given regular language Lj in one superstep with a BSP automaton
whose size is linear in the size of a minimal DFA for Lj. All three examples are
regular language of star-height one, and in general it is not clear whether such a
parallelization is always possible.

Problem 3 OPEN PROBLEM: does every instance of BSP-PARALLELIZE have a
one-superstep solution?

The answer would be positive if the number of states in the BSP automaton
solution were allowed to grow exponentially. However the construction for showing
this is very different from that of our above examples.

Proposition 10 Every regular language L of regular expression r has a one-
superstep parallelization (Φ1,D÷p,A) that can be constructed in time exponential
in |r| and such that |A| is also exponential in |r|.
Proof We show how L = L(r) can be parallelized to a 1-superstep BSP automaton.
Define Ln = L ∩ L((a + b)n) and apply the following steps to build (Φ1,D÷p,A)

such that L(A) = Par(D÷p(L)). Assume without loss of generality that p = 2 (if
p > 2 the construction can be extended by induction).

1. Compute L0 = L ∩ (a + b)n/2. Those words are the ones location 0 should accept
in A: the first half of Ln’s words i.e. L’s words for a given length input length n.
Let A0 be a DFA and r0 a regular expression for L0.

2. Compute Ln = L ∩ (a + b)n as a regular expression rn.



Enumerated BSP Automata 261

3. For every one of the 2n words x ∈ Ln/2, compute the Brzozowski differential
Dx(rn) whose language is known to equal x\Ln = {y | xy ∈ Ln}. This computa-
tion is a simple but exponential time-size converging normalization on the regular
expression [4, 21].

4. Let L′ = ∑
x∈(a+b)n/2(x ∩ Ln/2)\Ln. Let A′ be a DFA for accepting L′.

5. Define A = (< A0,A′ >,Δ) with Δ mapping to an accepting state vector, only
those pairs of accepting states that correspond to the same x prefix.

By construction A will accept at location 0 precisely the first halves of words in Ln,
and at location 1 their corresponding suffixes. The local automata are a sum (union)
of all such possibilities and the synchronization function Δ recombines them in the
correct way. �

In this section we have begun exploring parallelizations of regular languages.
We have only shown one-superstep examples because there are trivial n-supersteps
parallelizations that are of no interest either theoretically or practically. On sim-
ple examples of star-height one, space-efficient one-supersteps parallelizations have
been constructed. It has also been proved that any regular language can have a one-
superstep parallelization if exponential space (number of states) is allowed. It remains
to explore intermediate solutions and how their complexity relates to star-height of
the input regular language.

12 Intensional Notation and Application to Programming

In the theory presented up to this point, parallel vectors are enumerated but this is not
a scalable point of view on parallel programming. It is more usual and convenient
to represent vectors as functions from position i to the local element. This was the
basis for the λ-calculus in [12] whose primitives are now implemented in BSML
(BSP-OCaml). We show how to improve our theory of BSP automata in this manner
so that vectors are not enumerated but defined by a simple symbolic notation.

Assume that the locations i ∈ [p] are written in binary notation 0, 1, 10, 11 . . ..
Define a binary regular expression (BRE) by the following grammar:

b ::= ∅ | 0 | 1 | bb | b + b | b∗

Notice that BRE cannot encode the empty word. This notation is used to encode
sets of locations. For example b1 = (0 + 1)∗1 is the set of odd-rank locations,
b2 = 0(0 + 1)(0 + 1) represents the first four locations when p = 8, and b3 = 010
(0 + 1)(0 + 1)(0 + 1) the third 8-position block of positions when p = 32 i.e. posi-
tions 16–23 over 6 binary digits. It would be possible to make this notation symbolic
over p but that would require additional syntax and here we only explain how to
make it symbolic over the position integers for a fixed p.

To avoid enumerating BSP vectors, replace the enumeration< r0, r1, . . . , rp−1 >

by a grammar clause for intensional vectors of regular expressions:



262 G. Hains

R ::= < r@b >

where r ∈ RE and b ∈ BRE. The meaning of < r@b > is the vector of regular
expressions whose local value is r at locations pid ∈ L(b) and ∅ at other locations.
For example if p = 8, theBSPRE< (a + b)+@b2 > represents, in enumerated form,

< (a + b)+, (a + b)+, (a + b)+, (a + b)+, ∅, ∅, ∅, ∅ >

i.e. the BSP language of one-superstep BSP words with non-empty local traces at
positions 0–3 but empty traces at positions 4–7.

It is also possible to create BSP vectors by superposition ‖ of multiple r@b
expressions. For example if p = 4, the BSPRE < a@(0 + 1)∗0 ‖ b@(0 + 1)∗1 >

corresponds to the enumeration

< a, b, a, b > .

With this new notation, redefine the BSP regular expressions:

R ::= ∅ | ε |< V >| R;R | R∗ | R + R.

using a new sub-grammar for BSP vectors:

V ::= r@b | V ‖ V

where r ∈ RE and b ∈ BRE. The language of those intensional BSP regular expres-
sions is defined with new rules for intensional vectors:

R L(R)

∅ { }
ε {ε}

< r@b >
∏i=p−1

i=0

{
L(r) if i ∈ L(b)
{∅} else

< r1@b1 ‖ . . . ‖ rk@bk >
∏i=p−1

i=0

⋃{L(rj) | i ∈ L(bj), 1 ≤ j ≤ k}
R1;R2 L(R1)L(R2)

R∗ L(R)∗
R1 + R2 L(R1) ∪ L(R2)

This new notation is “scalable” in the sense that its parallel implementations
can slice it into local parts of the < r@b > sub-expressions and simply combine
their local values as (regular) functions of the location number pid. This is similar
to what data-parallel programming languages provide. But its restriction to regular
expressions has a major advantage: one location can compute the set of locations
that hold a certain value. For a parallel implementation this amounts to inverting the
communication relation, without specific source-code information to that effect.



Enumerated BSP Automata 263

We illustrate this kind of application on a simple butmeaningful example: convert-
ing “get” requests for remote data into “put” operations for sending data. Assume we
are programming a one-million core machine p = 220 in a high-level BSP language
and a global parallel instruction (purely functional, for simplicity) of the form

get datavector from indexvector

whose input types are a

datavector : floatp; indexvector : (int set)p

and whose output type is
(float set)p.

Let datavector be < d0, . . . , dp−1 > and indexvector be < I0, . . . , Ip−1 >

and assume that the get-from instruction realizes a global BSP operation whose
resulting value is the vector < A0, . . . ,Ap−1 > whose local values are

Ai = {dj | j ∈ Ii}

. In other words get-frommoves the elements of datavector as if every processor
i sends a request for local data to processors whose positions j are listed in the local
table Ii of indexvector. Consider now three successively improved data-parallel
implementations for this operation.

12.1 2-Phases Implementation

A straightforward implementation is to use two BSP supersteps. The first one sends
a set of requests from every processor i to processors j ∈ Ii. The second superstep
sends back the requested data i.e. processor j communicates back with all requesting
processors {i′ | j ∈ Ii′ }. The disadvantage of this scheme is that its BSP costs includes
two global barriers (i.e. twice the global latency) and implementors wish to avoid it
by “converting get into put” using one of the two following methods.

12.2 1-Phase O(p) Inversion

The SPMD paradigm for data-parallel programming ensures that the source program
is common to every local processor and thus the code for our instruction is known
at every position i, only data di and Ii are local. We can consider the Ii to be (finite)
languages of 20-bit words (log p-bit words) and improve the get-from instruction’s
syntax as follows: indexvector is given as a BSPRE e.g. < r@b > where r



264 G. Hains

encodes the Ii. As a result of this language construct, every processor j can directly
compute its set of target processors for sending data {i′ | j ∈ Ii′ } by simply running
every 20-bit word i′ through a finite automaton for r: if accepted and if j ∈ L(b) then
processor j should send its dj to processor i′. This can be done in time proportional
to 220 = p. Moreover it does not require two BSP supersteps but only one: the “get”
is implemented directly by a “send”, thanks to the simplicity of the sub-language on
integer sets for Ii.

12.3 1-Phase O(logP) Inversion

An evenmore efficient implementation of the 1-phase implementation is possible due
to the simplicity of BSPRE. Every processor j can simply enumerate L(r) because
it is a regular language. This can be done in time proportional to the size of this set
times the length of the words in it: that isO(log p) time the number of messages [13].
In our example, if processor j has a small number of requests to satisfy e.g. 3, that
would prevent it from executing p or one million instructions.

12.4 Other Intensional Notations

All p-indexed vectors in the theory of BSP automata can be manipulated with sim-
ilar regular-indexing notations. For example the factorization Φ and distribution D
functions on sequential regular languages can likewise be restricted to intensional
notations. The resultwould be to automate the inversion ofD, and from there compute
a BSPRE directly from a sequential regular expression.

Moreover, partition, distribution and synchronization are enumerated functions
whose implementation may not be obvious. Defining a regular notation for those
functions improves their ease of programming, makes expressions “scalable” (para-
metric on p) and leads to useful inversion algorithms e.g. inverse distribution. For
example BSPLib [7] and many other “SPMD” data-parallel programming systems
present the local code (which corresponds to our local sequential automata) as a
function of the location number called pid.

All the advantages of an intensional notation can be obtained by an extended
notation for BSPRE that we define below. Moreover as we will now explain, the low
complexity of regular languages allows us to automate the inversion of the (location
→ value) map, a useful operation for parallel algorithms that is rarely provided by
parallel languages.



Enumerated BSP Automata 265

13 Conclusions and Future Work

We have defined and begun exploring a BSP variant of elementary automata theory.
Some key observations are that BSP automata are more than product automata, their
natural alphabet is the set of regular expressions, and their state-space is exponential
in the number of parallel locations. BSP automata and BSP languages preserve all
the classical closure properties: non-determinism, ε-transitions and determinization,
but break the classical properties of minimization. The interaction between state-
minimization and BSP cost optimization remains to be understood. Compact sym-
bolic notations can be designed for the parallel-vector components of BSP automata
and BSP regular-expressions. BSP automata can help automate bulk-synchronous
parallel programming e.g. as a declarative language for connection supersteps, defin-
ing communication structures and cost optimization.

Futureworkwill explore (a)BSP regular grammars and their generalization toBSP
context-free languages, (b) the application of BSP automata to parallel text process-
ing and parsing, (c) applications to pattern matching and to parallel data structure
(tries etc.) (d) generalizations of BSP automata to heterogeneous and hierarchical
architectures.

BSP automata constitute a clear and easily-understood basis for teaching, speci-
fying and writing parallel programs. They can be used to combine the control- and
communication structure of BSP programs, analyze or optimize that structure. BSP
regular expressions are useful for declarative programming of parallel operations
with explicit data placement and synchronizations.

Acknowledgments The author thanks Frédéric Loulergue, Thibaut Tachon, Arnaud Lallouet and
Chong Li for their insightful remarks and help with proofreading. This work has been supported by
the author’s position at Huawei/CSI-FRC.

Appendix 1

1.1 BSP Automaton Versus Product of Automata

The theory of products of automata is developed by Gécseg in [6]. It describes
decompositions of finite automata as products of simpler ones, and is closely related
to the theory of semigroup decompositions.

A BSP computation is more than a vector of sequential computations, and this
is reflected by the fact that a BSP automaton is more than a vector of DFA. This
is relatively obvious but we make it here completely explicit by comparing that
definition (Definition 2) with that of a product automaton.

Let Ai = (Qi,Σ, δi, qi0,F
i), i ∈ [p] be a vector of DFA and A = (A0, . . . ,

Ap−1,Δ) a BSP automaton built from them. Gécseg’s definition (Definition 4.2 in
[6]) of machine product applies to Mealy machines i.e. DFA with an output function



266 G. Hains

added. For the purpose of language recognition the output functions are not necessary,
so we consider the machine product

∏
i A

i as the Gécseg without outputs. According
to Definition 4.2 in [6],

∏
i A

i is a state machine with vector states
∏

i Q
i, just like

the BSP automaton, a new externally-defined alphabet X, and a special transition
function δψ based on the externally-given function

φ : (
∏

i

Qi) × X → Σp

such that

δψ(< q0, . . . , qp−1 >, x) =< δ0(q0, x0), . . . , δp−1(qp−1, xp−1) >

where < x0, . . . , xp−1 >= φ((< q0, . . . , qp−1 >, x).
It is trivial to show that the automaton product can simulate the asynchronous

parts of a BSP computation. But the structure of δψ is not the same as a synchro-
nization function Δ. The product automaton could simulate the BSP automaton but
at the expense of an unnatural encoding e.g. X = (Σ∗)p × ∏

i Q
i to let φ distinguish

asynchronous versus synchronous applications of Δ.
But an alphabet which contains states and trace histories is hardly a natural (and

low-complexity) encoding. Following this theoretical direction would defeat the pur-
pose of BSP automata that is not the study of algebraic decompositions, or decidabil-
ity, but rather to investigate programming notations having BSP implementations.

Appendix 2

2.1 Regular Expressions

Regular expressions are a well-known notation for the languages of finite automata.
The definitions and properties we state below can be found in every textbook on finite
automata for example Chap. 3 of [21]. The languages denoted by regular expressions
are called regular, and that class of languages is the same as those recognized by a
DFA or its equivalent, non-deterministic variants.

A regular expression is an expression r from the following grammar:

r ::= ∅ | ε | a | rr | r∗ | r + r

where a ∈ Σ is any symbol from the alphabet. We write RE for the set of regular
expressions . The language of a regular expression is defined by L : RE → P(Σ∗)
where function L translates ∅ to the empty language, ε (resp. a) to a singleton empty
word (resp. singleton one-symbol word), r1r2 to the concatenation of languages, r∗
to L(r)∗ = ⋃

n≥0 L(r)n and r1 + r2 to the union of the two languages. The union,

http://dx.doi.org/10.1007/978-3-319-46376-6_3


Enumerated BSP Automata 267

concatenation, *-closure of two regular languages is regular. The complement of a
regular language is also regular [15].

For r ∈ RE, there exists a NFAA such that L(A) = L(r). A time-optimal quadratic
time algorithm for this transformation is described in [3]. It has been improved to a
linear-space and parallelisable algorithm in [22]. Both use the Glushkov automation
of r whose states are the positions in r’s syntax tree.

Inversely, for A a finite automaton, there exists r ∈ RE such that L(r) = L(A).
The two equivalence properties are called Kleene’s theorems [10].

References

1. Anantharaman, S., Hains, G.: A synchronous bisimulation-based approach for information flow
analysis. In: Third Workshop on Automated Verification of Critical Systems: (AVOCS’03),
Southampton, (UK) (2003)

2. Benzaken, C.: Systèmes formels: introduction à la logique et à la théorie des langages. Masson
(1991)

3. Brüggemann-Klein,A.:Regular expressions into finite automata. Theoret. Comput. Sci. 120(2),
197–213 (1993)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: Proceedings of the 41st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
pp. 541–553. ACM (2014)

6. Gécseg, F.: Products of Automata. Springer (1986)
7. Hill, J.M.D., McColl, B., Stefanescu, D.C., Goudreau, M.W., Lang, K., Rao, S.B., Suel, T.,

Tsantilas, T., Bisseling, R.H.: BSPlib: The BSP programming library. Parallel Comput. 24(14)
(1998)

8. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. Technical Report
No. STAN-CS-70-190, Stanford University, Department of Computer Science (1971)

9. John, M.: Howie. Automata and languages. Clarendon Press, Oxford (1991)
10. Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata Stud., 3–41

(1956)
11. Loulergue, F., Hains, G.: Functional parallel programming with explicit processes: Beyond

SPMD. Lecture Notes in Computer Science, vol. 1300. Springer (1997)
12. Loulergue, F., Hains, G., Foisy, Ch.: A calculus of recursive-parallel BSP programs. Sci. Com-

put. Programm. (2000)
13. Mäkinen, E.: On lexicographic enumeration of regular and context-free languages. Acta

Cybern. 13(1), 55–61 (1997)
14. McColl, W.F.: Scalable computing. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS,

vol. 1000. Springer (1995)
15. McNaughton, Robert: Elementary Computability, Formal Languages and Automata. Prentice-

Hall, Englewood Cliffs, NJ (1982)
16. Merlin,A.,Hains,G.:Abulk-synchronous parallel process algebra. Comput. Lang. Syst. Struct.

33(3), 111–133 (2007)
17. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)
18. Pin, J.-É.: Variétés de Langages Formels. Masson, Paris (1984)
19. Turing, A.: On computable numbers with an application to the entscheidungs problem. Proc.

Lond. Math. Soc. 2(42), 230–265 (1936)
20. Valiant, L.G.: A bridging model for parallel computation. CACM 33(8), 103 (1990)
21. Wood, D.: Theory of Computation. Wiley (1987)
22. Ziadi,D., Ponty, J.-L., Champarnaud, J.-M.: Passage d’une expression rationnelle à un automate

fini non-déterministe. Bull. Belgian Math. Soc. Simon Stevin 4(1), 177 (1997)


	Enumerated BSP Automata
	1 Introduction and Background
	2 Bulk-Synchronous Words and Languages
	3 Finite Versus Infinite Alphabet
	4 Bulk-Synchronous Automata
	5 Non-determinism and Empty Transitions
	6 Sequentialization
	7 Parallelization
	8 Bulk-Synchronous Regular Expressions
	9 Minimization
	10 Cost-Model
	11 Parallel Acceleration
	12 Intensional Notation and Application to Programming
	12.1 2-Phases Implementation
	12.2 1-Phase O(p) Inversion
	12.3 1-Phase O(logP) Inversion
	12.4 Other Intensional Notations

	13 Conclusions and Future Work
	References


