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Abstract The most economical representation of a musical rhythm is as a binary
sequence of symbols that represent sounds and silences, each ofwhich have a duration
of one unit of time. Such a representation is eminently suited to objective mathemat-
ical and computational analyses, while at the same time, and perhaps surprisingly,
provides a rich enough structure to inform both music theory and music practice.
A musical rhythm is considered to be “good” if it belongs to the repertoire of the
musical tradition of some culture in the world, is used frequently as an ostinato or
timeline, and has withstood the test of time. Here several simple deterministic algo-
rithms for generating musical rhythms are reviewed and compared in terms of their
computational complexity, applicability, and capability to capture “goodness.”

1 Introduction

The Oxford dictionary defines aesthetics as a set of principles concerned with the
nature and appreciation of beauty, especially in art. Traditionally it is also a branch of
philosophy concernedwith the nature, expression, and perception of beauty and artis-
tic taste [1]. The design of algorithms that generate “good”musical rhythms thus falls
in the domain of computational aestheticswhich is concernedwith questions such as:
How can the computer generate aesthetic objects without human intervention? [2].
A related question also asked is: How can the arts influence computer generated aes-
thetic objects? This question is sometimes attributed to another emergent field called
aesthetic computing [3]. These two fields are, not surprisingly, inextricably inter-
twined. Not only do artistic principles provide artificial intelligence researchers with
new ideas, but the results of computer programs influence artistic practices. Closely
related to these two emerging computational fields is the area concerned with con-
structing mathematical measures of aesthetics, which goes back most notably to at
least the work of Birkhoff [4–6] and should not be confused with the field that stud-
ies the aesthetics of mathematics [7]. The former attempts to develop mathematical
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measures of aesthetics that predict human aesthetic judgments, whereas the latter is
concerned with studying the role of aesthetics in the mathematical research carried
out by mathematicians. Not surprisingly these two fields are also inextricably inter-
twined. Indeed, the philosopher Oswald Spengler [8] wrote: “The mathematics of
beauty and the beauty of mathematics are ... inseparable.”

Most research in thesefields has been limited to the visual arts, such as painting [9],
and less attention has been paid to music in general [10, 11] and musical rhythm in
particular [12–14]. Mathematical measures of aesthetics explore a variety of features
such as symmetry [15], theGolden section [16–18], and complexity [19] to determine
how well they correlate with human judgments [20].

It is useful to distinguish between algorithmic generation of music, and genera-
tion of music using electronic digital computers. The word ‘algorithmic’ specifies
the use of well defined rules, without necessarily implying that these rules must be
implemented on an electronic digital computer. Indeed the algorithmic approach to
music composition may use any other method such as rolling dice with human hands
to generate rhythms and melodies, as was popular in 18th century Europe [21], when
more than twenty algorithmic processes were devised, inspired by the new develop-
ments in mathematics and probability theory that were receiving public attention at
the time. In this sense algorithmic composition predates the advent of the electronic
digital computer by centuries if not millennia. Following the introduction of the sim-
ple dice-rollingmethods employed in 18th century Europe,muchwork has been done
using more advanced approaches for incorporating randomness to compose music.
Such methods usually involve the application of Markov processes [22]. Markov
processes work well in general for applications where short-term dependencies are
sufficient to capture relevant information, such as in text recognition [23, 24]. To
exploit long term dependencies in musical rhythm, probabilistic methods that incor-
porate the distributions of distances between subsequences have been shown to be
superior to more traditionalMarkovmethods [25]. Other approaches that incorporate
randomness to generate musical rhythms include genetic algorithms that use proba-
bilistic rules to mutate rhythms to obtain new better rhythms [13, 26]. Some systems,
such as The Continuator, interact with a musician during a performance, and either
modify the music that the performer plays, or generate music that complements what
is being played by the performer [27].

Themethods described above generate rhythms using complex probabilistic algo-
rithms that involve parameters that must be tuned in order to yield “good” rhythms,
with sufficiently high probability. Furthermore, the “goodness” or quality of the
rhythms produced by these methods is evaluated either by mathematical measures
of aesthetics such as fitness functions in simulated annealing and genetic algorithms
[28, 29], or by human beings who are usually the designers of the algorithms.

In contrast to the complex and probabilistic methods outlined above, this chapter
provides a description of some simple and deterministic rules that are guaranteed
(within specified limits of rhythm length) to generate “good” musical rhythms. Fur-
thermore, in contrast to the above methods that measure “goodness” by either human
evaluations, or with mathematical measures of “goodness,” the methods described
in the following consider a rhythm to be “good” if it belongs to the repertoire of the
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musical tradition of some culture in the world, is used frequently as an ostinato or
timeline, and has withstood the test of time. Typical examples of “good” rhythms that
satisfy this definition are the timelines in Sub-Saharan music [12, 30–33], the talas
in Indian music [34], the compas in the Flamenco music of southern Spain [35], and
the wazn in Arabic music [36–38].

The most convenient and economical representation of a musical rhythm is in
box notation as a sequence of binary symbols that represent sounds and silences,
each of which has a duration of one unit of time. In text the simplest visualization
uses the symbols “x” and “.” to denote the onset of a sound and a silent pulse (unit
rest), respectively. Thus the sixteen-pulse, five-onset clave son rhythm would be
represented by the sequence [x . . x . . x . . . x . x . . .]. Such a skeletal representation is
eminently suited to objective mathematical and computational analyses, while at the
same time, and perhaps surprisingly, encapsulates a rich enough structure to provide
considerable musical insight into both the theory and practice of musical rhythm.
Here several simple deterministic algorithms for generating musical rhythms are
reviewed and compared in terms of their ability to capture “goodness” as defined
above.

2 Maximally Even Rhythms and the Euclidean Algorithm

The most salient simple deterministic rule that generates “good” rhythms yields
rhythms that have the property that their onsets are distributed in the rhythmic cycle
as evenly as possible. In 2004 the author discovered that the ancient Greek algorithm
for determining the greatest commondivisor of two numbers, known as theEuclidean
Algorithm [39], generates scores of traditionalmusical rhythms from cultures all over
the world. For this reason they are called Euclidean rhythms. This discovery was first
published in the Bridges-2005 conference held in Banff (Canada) [40], and most
recently re-published in Interalia Magazine [41]. Furthermore, it turns out that the
Euclidean algorithm generates rhythms that have their onsets distributed as evenly
as possible in the rhythmic cycle. Sets that have this property are termed maximally
even sets in the music theory literature, where it was originally introduced in the
context of pitch-class sets (chords and scales) by Clough and Douthett [42]. The
first appearance of the Euclidean algorithm is in Propositions 1 and 2 of Book VII
of Euclid’s Elements written circa 300 BC [43]. Given two positive integers, n and
k, the Euclidean algorithm repeatedly subtracts the smaller number from the larger
until either 1 or 0 is obtained. The greatest common divisor of the two numbers
is 1 if the algorithm terminates with 1, and the number just preceding 0 if 0 is
obtained. However, for the purpose of rhythm generation we are in fact not interested
in calculating the greatest common divisor of the two numbers, but rather in the
process bywhich the answer is obtained. In this setting n denotes the number of pulses
(onsets and silent rests) in the rhythm, and k denotes the number of onsets (sounded
pulses). The repeated subtraction process in the Euclidean algorithm is illustrated in
Fig. 1 with n = 16 and k = 5. A similar implementation of the Euclidean algorithm
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Fig. 1 The rhythm obtained
by the Euclidean algorithm
with n = 16 and k = 5
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was used by Bjorklund [44, 45] to design timing systems for spallation neutron
source accelerators in the Los Alamos National Laboratory, that evenly distribute a
specified number of electrical pulses within a given interval. In row (a) the 16 pulses
are first organized so that the sounded pulses (here denoted by squares filled with
black disks) fill the first 5 positions going from left to right, and the remaining 11
silent pulses (denoted by empty squares) fill the remaining positions. Since there are
more empty boxes than filled boxes, 5 of them are “subtracted” and placed flush to
the left under the remaining boxes, as in row (b). At this stage the “remainder” of
6 empty boxes is still larger than 5, so a second subtraction is performed to yield
the pattern in row (c). This process terminates when the remainder consists of a
single column of boxes shorter than the others, such as one box in row (c), or an
empty column. The generated rhythm is then obtained by reading row (c) in a top-
to-bottom and left-to-right fashion, as illustrated in rows (d) and (e). The rhythm
obtained in row (e) with n = 16 and k = 5 has inter-onset intervals (IOI) 33334,
and is the signature rhythm of electronic dance music (EDM) [46], and one of the
ways the shamans on the east coast of South Korea subdivide a 16-pulse cycle in
their ritual drumming music [47]. Since the type of rhythm considered here is cyclic,
and thus repeats throughout a piece of music, it is also useful to consider rhythm
necklaces consisting of all rotations of a given rhythm. Note that in the EDM rhythm
the long interval occurs at the end. On the other hand, the rhythm heard on the piano
of Radiohead’s recent song ‘Codex’ places the long IOI at the start of the pattern to
obtain 43333 [48]. Furthermore, there are traditional rhythms that situate this interval
at other locations in the cycle. For example the bossa-nova rhythm from Brazil has
IOI = 33433 [49].

Given the two positive integers n = 16 and k = 5, the Euclidean algorithm ter-
minates with a remainder of 1, establishing that the numbers 16 and 5 are relatively
prime. Two integers are relatively prime if there exists no integer greater than 1
that divides both. On the other hand, with n = 16 and k = 4 the remainder is 0, the
arrangement of boxes forms a 4 × 4 rectangle yielding the regular rhythm [x . . . x
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. . . x . . . x . . .], a house kick drum (four-on-the-floor) pattern [46]. Therefore the
Euclidean algorithm generates regular rhythms as well. However, the most interest-
ing rhythms are obtained when n and k are relatively prime numbers [14, 31, 32,
40, 50]. In addition, if the starting point of the cyclic rhythm is not important and
all rotations are included in the set, then these rotations are known as Euclidean
necklaces. If mirror reflections are also included in the set then the set is referred to
as a Euclidean bracelet [14].

By varying the values of n and k one may generate scores of Euclidean rhythms
that are used in traditionalmusic all over theworld. The number n is generally smaller
than 24 [51]. Usually the value of k is between one fourth and one half that of n.
The most frequent values of n the world over are 4, 6, 8, 12, 16, and 24. When n is
8, 12, or 16, a popular value of k is 5. Figure2 depicts the Euclidean algorithm at
work with n = 12 and k = 5. The resulting rhythm with pattern [x . . x . x . . x . x .]
is the Venda clapping pattern of a South African children’s song [31]. As a final
example consider the case when n = 8 and k = 5 pictured in Fig. 3. The resulting
rhythm with pattern [x . x x . x x .] is a rhythm found in the music of many cultures
around the world, known in Cuba as the cinquillo pattern [52]. When it is started on
the second onset it is the Spanish tango [53] and a thirteenth century Persian rhythm,
the al-saghil-al-sani [37].

Fig. 2 The rhythm obtained
by the Euclidean algorithm
with n = 12 and k = 5
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Fig. 3 The rhythm obtained
by the Euclidean algorithm
with n = 8 and k = 5
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Fig. 4 Generating a maximally even rhythm by the snapping algorithm with n = 16 and k = 5

The Euclidean algorithm described above, based on repeated subtraction, gen-
erates rhythms that are maximally even sets [42], in the sense that the IOIs of the
rhythms obtained are distributed as evenly as possible in the necklace cycle. Maxi-
mally even rhythms may also be generated by means of a simple geometric process
that consists of snapping real numbers to integers in a d × n grid of squares, as illus-
trated in Fig. 4 for the case n = 16 and k = 5. The vertical y-axis denotes the number
of onsets desired in the rhythm, whereas the horizontal x-axis denotes the units of
time at which the onsets should occur. First connect the lower left corner of the d × n
grid to the upper right corner with a straight line. This diagonal line intersects the
horizontal dashed lines at equally spaced x-coordinates. The first intersection is at
x = 16/5 = 3.2, the second intersection at x = 2(16/5) = 6.4, and so forth. The
final step involves “snapping” these intersection points to their next lower integer
(unless they happen to already have an integer x-coordinate. The resulting rhythm
has IOI pattern 33334, the electronic dance music rhythm (EDM) [46]. Alternately
one can “snap” the intersections to the next higher integer to obtain the IOI pattern
43333, a rotation of 33334. It is also possible to implement the “snapping” algorithm
on a circular lattice. For the case of n = 16 and k = 5 the circle is first divided into
a circular lattice of 16 equidistant points. On this lattice place an inscribed regular
pentagon with one of its vertices on the first lattice point. Finally the remaining four
vertices of the pentagon are snapped to the their nearest counter-clockwise integer
lattice point, unless they are located on a lattice point.

Since the discovery that the Euclidean algorithm generates almost all the most
popular rhythms that occur in traditional music all over the world in such a simple
fully automatic manner, and can in addition generate “good” new rhythms that seem
not to have appeared before in traditional music, by specifying unusual numbers for
n and k, it has been frequently implemented electronically, and is now available in a
variety of commercial open-source hardware sequencers such as Ableton Live [54].
Sequencers for generating Euclidean rhythms have also been applied to distributed
multi-robot systems (swarm robotics) in which the motions of the robots control a
group of Euclidean rhythms played concurrently [55].
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3 Almost Maximally Even Rhythms and the Snapping
Algorithm

For given values of n and k the Euclidean algorithm generates only a single “good”
rhythm, which for n = 16 and k = 5 is the EDM rhythm [x . . x . . x . . x . . x . . .].
However, there exist other “good” rhythms with n = 16 and k = 5 used in traditional
world music, such as the distinguished clave son: [x . . x . . x . . . x . x . . .] [12], which
although not maximally even, are close to being maximally even. This motivates the
generalization of the concept of maximally even, in order to obtain a simple deter-
ministic algorithm that captures these additional “good” rhythms found in practice.
There exists a plethora of mathematical possibilities for defining rhythms that are
approximately maximally even. For example, one can define a measure of the dis-
tance between any rhythm with say n = 16 and k = 5, such as the edit distance [56],
and consider a rhythm to be approximately even if the edit distance between the
rhythm in question and a maximally even rhythm with n = 16 and k = 5 is below a
specified threshold.

The algorithm for generating maximally even rhythms with the snapping algo-
rithm on the grid illustrated in Fig. 4 suggests a natural generalization of maximally
even rhythms by permitting each intersection point to be “snapped” to either its
left (floor function) or right (ceiling function) nearest integer (pulse). This gener-
alized “snapping” algorithm is conveniently described as a traversal in a nearest
pulse directed acyclic graph (NP-DAG) constructed as follows (refer to Fig. 5). The
source vertex of the NP-DAG is the lower left corner of the grid that corresponds to
the occurrence of the first onset at time zero. Directed edges are connected from the
source vertex to both the left and right nearest integer pulse locations (vertices) cor-
responding to the first intersection point of the diagonal line with the dashed line of
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Fig. 5 The nearest pulse directed acyclic graph (NP-DAG) obtained with n = 16 and k = 5
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Fig. 6 Almost maximally
even rhythms with k = 5 and
n = 16
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the second onset. This process is continued from the two vertices created, connecting
directed edges to the two vertices determined by the succeeding intersection point.
Finally the last two vertices are connected to the upper right target vertex, which
corresponds to the starting onset at time zero. In this NP-DAG every path from the
source vertex to the target vertex corresponds to an IOI pattern along the x-axis
and thus a generated rhythm. The rhythms generated with this algorithm are termed
almost maximally even. Since the vertices of this DAG other than those correspond-
ing to the last intersection point of the diagonal at level 5, have degree 2, the number
of distinct paths from the source vertex to the target vertex is 2 × 2 × 2 × 2 = 16.
Therefore for n = 16 and k = 5 there are sixteen almost maximally even rhythms.
These sixteen rhythms are shown in box-notation in Fig. 6. Note that among this
collection are present eight well known traditional rhythms (shaded) including the
clave son, and a rotation of the gahu rhythm which has IOI pattern 33442 [57]. Note
also that rhythms No. 1 and 9 are a rotations of the samba or EDM rhythm as well as
the bossa-nova and its variant, and rhythm No. 11 is a rotation of the clave son. Fur-
thermore, rhythm No. 5 is a rotation of the mirror image of the clave son. Therefore
the notion of almost maximally even is a much more encompassing characterization
of “good” rhythms than the stricter definition of Euclidean maximally even rhythms,
and includes some, but not all, the rotations and mirror images of the traditional
rhythms used in practice, suggesting that some of these transformations of “good”
rhythms also produce “good” rhythms. Recall that if a rhythm is maximally even,
then all its rotations and mirror images are also maximally even. However, not all
the rotations or mirror images of an almost maximally even rhythm are almost maxi-
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mally even. For example the clave son has an IOI of length 2, but none of the sixteen
almost maximally even rhythms start with an IOI of length 2.

Although the unshaded rhythms in Fig. 6 do not appear to be used in traditional
music, and are thus not “good” according to the definition used in this study, this does
not imply that they would not be considered “good” rhythms by present-day musi-
cians. Indeed, as has already been pointed out in the preceding, rhythmNo. 1with IOI
pattern 43333, which is a rotation of the EDM rhythm, is used by Radiohead. Also, a
rotation of the clave sonby180degreeswhenviewedon a circle, or equivalently, start-
ing the rhythm on the silent pulse No. 8, yieds the rhythm [. . x . x . . . x . . x . . x .],
which is a popular way to play the rhythm in salsa music [58]. Aesthetic judgments
in general, and of the “goodness” of a musical rhythm are of course partly dependent
on cultural upbringing and musical experience [59]. Hannon et al. provide evidence
that supports the hypothesis that culture-dependent familiarity of musical meter has
a significant influence on rhythmic pattern perception [60]. There is also explicit evi-
dence that language has an influence on the rhythmic aspects of music composition,
and implicitly on the perception of musical rhythm [61]. To the author, all 16 almost
maximally even rhythms in Fig. 6 sound good, although some are less familiar than
others.

The 16 almost maximally even rhythms with k = 5 and n = 12 are shown in
Fig. 7. Note that as with k = 5 and n = 16, half of the rhythms generated by the
NP-DAG algorithm (shown shaded) are well established traditional rhythms used
in practice in Sub-Saharan Africa, Andalusia in Southern Spain, and Cuba [14]. A
noteworthy feature that distinguishes the rhythms used in practice from the other
eight (unshaded) is the absence of two onsets located in adjacent pulses. None of the
former have an IOI = 1, and all but one (No. 13) of the latter contain an IOI = 1. Due

Fig. 7 Almost maximally
even rhythms with k = 5 and
n = 12
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Fig. 8 Almost maximally
even rhythms obtained with
k = 5 and n = 8

1 2 3 4 5 6 70

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Cinquillo

Lundu

Kromanti

Perfectly Even

Rumanian Folk

Rumanian Folk

Lolo

Ipu

Abitan rotation

to the decrease in available temporal space for 5 onsets to be distributed among 12
rather than 16 pulses, the NP-DAG algorithm creates these short IOIs, which appear
to be an undesirable feature in the rhythms used in practice.

The sixteen almost maximally even rhythms obtained when the values of k and
n are set to 5 and 8, respectively, are shown in Fig. 8. As with n = 12 and n = 16,
more than half (ten) of the rhythms generated by the NP-DAG algorithm (shown
shaded) are well established traditional rhythms used in practice in Rumanian folk
music, vodou rhythms, Sub-Saharan Africa, Cuba, and the Arab world [14, 36–
38]. A noteworthy feature that distinguishes the rhythms used in practice from the
other seven (unshaded) is the absence of two groups of contiguous onsets. None
of the former contain one group of two contiguous onsets and one group of three
continuous onsets. Due to the further decrease in available temporal space for 5
onsets to be distributed among 8 rather than 12 pulses, the NP-DAG algorithm tends
to create fewer groups of onsets, whereas three groups appear to be preferred in
practice. Another feature present in these rhythms is that some of them (Nos. 4, 11
and 12) contain only four onsets. Due to the fact that 5 is more than one half of 8, the
snapping rule used in theNP-DAGalgorithm sometimes creates “collisions”whereby
the rightward-snapped onset and the leftward-snapped onset of two consecutive input
onsets coincide, resulting in the loss of one onset. Nevertheless, the regular 4-onset
rhythmNo. 4 is used all over the world, and the irregular 4-onset rhythmNo. 12when
started on the last onset has IOI = 2132, which is the Abitan vodou rhythm [62].
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4 Mutating “Good” Rhythms

The NP-DAG algorithm for generating almost maximally even rhythms described in
the preceding section is limited to generating, fromonemaximally even rhythmmade
up of n pulses, fifteen offspring rhythms with the same number n of pulses. However,
with a slight modification the snapping algorithm may transform a “good” rhythm
with n pulses into one with m pulses where n �= m. Such a modification, besides
serving as a model of the trans-cultural evolution of musical rhythms, and as a fully
automatic algorithm for generating additional “good” rhythms, also provides a tool
for changing themeter or introducingmetrical ambiguity during performances on the
fly [63–66]. This version of the snapping algorithm is most conveniently illustrated
using concentric circular notation of cyclic rhythms [14, 67]. Figures9 and 10 depict
the algorithm for themost ubiquitous values of thenumber of pulsesn = 8, 12, 16and
the number of onsets k = 5. The input rhythms are displayed as polygons composed
of solid lines, and the output rhythms as polygons with dashed lines. The snapping
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Fig. 9 Binarization from n = 12 to n = 16 (left), and from n = 12 to n = 8 (right)
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algorithm is similar to the algorithm used to generate Euclidean rhythms, except
that here the onsets on the input circle are snapped to selected pulses on the output
circle. If an onset on the input circle is flush with a pulse on the output circle, then it
does not move. Otherwise several possibilities exist: (1) the onsets may be snapped
to their nearest clockwise neighboring pulse, (2) their nearest counter-clockwise
neighboring pulse, or (3) simply to their closest neighboring pulse in either direction.
In Figs. 9 and 10 the nearest clockwise rule is used. Rhythms that are made up
of 8 or 16 pulses (numbers divisible by 2 and not by 3) are here called binary
rhythms, whereas rhythms with 12 pulses (divisible by 3) are here called ternary
rhythms. The process of snapping a non-binary rhythm to a binary rhythm is called
binarization [64–66], whereas snapping a non-ternary rhythm to a ternary rhythm
is called ternarization [63]. Figure9 (left) shows the binarization of the ternary 12-
pulse, 5-onset fume-fume rhythm (on interior circle) to a 16-pulse binary rhythm,
the clave son (on exterior circle). The diagram on the right shows the binarization
of the fume-fume to an 8-pulse binary rhythm, in this case the cinquillo. Note that
binarizing a ternary Euclidean rhythm does not necessarily yield a binary Euclidean
rhythm. The fume-fume rhythm is Euclidean, and so is the cinquillo, but the clave
son is not, although it is almost maximally even.

Figure10 (left) shows the ternarization of the binary 16-pulse, 5-onset clave son
rhythm (on outer circle) to a 12-pulse ternary rhythm with IOI = 32313 (on inner
circle). The diagram on the right shows the ternarization of the binary 8-pulse lundu
rhythm (on outer circle) to an 12-pulse ternary rhythm with IOI = 23133 (on inner
circle). Note that in this case both output ternary rhythms are rotations of each other.

The algorithm for generating almost maximally even rhythms described in the
preceding may be viewed as a method for transforming a single maximally even
rhythm that is established as being “good” according to our definition of “good,” to
a larger family of rhythms that are expected to be “good,” by means of small local
changes to the maximally even rhythm, in the form of minimal shifts of onsets, while
maintaining the even distribution of the onsets in the rhythmic cycle as much as pos-
sible. These small changes fall into the much broader category of rhythm mutations.
Mutations are typically defined in a biological context involving a modification of a
DNAmolecule that is modeled as a sequence of symbols each of which may take on
one of four values. In the present context a rhythmic mutation is defined broadly as a
transformation of one binary sequence to another. It is useful to distinguish between
local and global transformations. A global transformation is guided or constrained
by one or more properties of the rhythm as a whole, such as maintaining maximal
evenness or almost maximal evenness, or transforming a binary rhythm to a ternary
rhythm (or vice-versa). On the other hand, local transformations are implemented by
local rules that may disregard their effect on global structural properties. Intuition
suggests that a natural simple local rule for generating “good” rhythms is to make
small judicious changes to existing “good” rhythms. One possible method is simply
to take an established “good” rhythm such as a maximally even Euclidean rhythm
or a ubiquitous non-Euclidean rhythm that has withstood the test of time, such as
the clave son, and shift one or more of its onsets (other than the first) in either direc-
tion by one or more pulse positions. Application of this rule to the maximally even
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Fig. 11 Mutations of the
maximally even rhythm
obtained by shifting a single
onset by one pulse
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(Euclidean) EDM rhythm with the minimal restrictions that only a single onset may
be shifted by only one pulse position minimal onset shifting (MOS) rule, yields the
eight mutations shown in Fig. 11, four of which (shown shaded) are rhythms used in
practice. Rhythm No. 2 may be viewed as the clave son run backwards starting at the
last onset, or as the clave son run forwards starting at the third onset. The unshaded
rhythms all sound good and it would not be surprising to find them used in practice
somewhere, and thereby satisfy our definition of “good.” Rhythm No. 5 is a more
syncopated version of a popular rap rhythm given by [x . . . x . . x . x . . x . . .] by
virtue that the second onset in the rap rhythm is anticipated by one pulse. Rhythm
No. 8 is also a more syncopated variant of the clave son obtained by anticipating the
two last onsets.

Recall that the sixteen almost maximally even rhythms in Fig. 1 were generated
by snapping each intersection point to its nearest left and right pulse positions. Note
that all sixteen rhythms have the property that not one of their onsets is more than one
pulse away from its nearest onset in the maximally even rhythm (No. 16). However,
this does not imply that a rhythm obtained with a single shift of one of the onsets of
a maximally even rhythm, by one pulse position, implies that the resulting rhythm is
almost maximally even. Indeed, some rhythms in Fig. 11 are not almost maximally
even, such as rhythm No. 8 which ends with an IOI of length 5, whereas no almost
maximally even rhythm in Fig. 6 has such a long IOI.

Application of the MOS rule to the distinguished “good” rhythm, the clave son,
yields the eight mutations shown in Fig. 12, six of which (shown shaded) are used
in practice. However, both rhythms numbered 4 and 7 are “good” rhythms as well.
Rhythm No. 4 anticipates the second and third onsets of the shiko by one pulse
each, making it more syncopated than the shiko. Rhythm No. 7 introduces hesitation
on the last pair of adjacent onsets of the soukous by starting one pulse later, thus
placing greater emphasis on the closing response portion of the rhythm. The two
examples of the MOS rule applied to the EDM and clave son rhythms suggest that
this method may be a viable alternative to the Euclidean and NP-DAG algorithms. In
terms of computational complexity the MOS rule is certainly efficient once a “good”
rhythm is given as input. However, compared to the Euclidean algorithm it requires
too much memory (and concomitant search time) in terms of a table of existing
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Fig. 12 Mutations of the
clave son obtained by
shifting a single onset by one
pulse
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rhythms, whereas the Euclidean algorithm requires no knowledge of any existing
rhythms, generating rhythms automatically by merely varying n and k. Furthermore,
comparing theMOS rulewith theNP-DAGalgorithm, the former yields fewer “good”
rhythms than the latter. Of course one could relax the MOS constraint that only one
onset may be shifted by only one pulse position, thereby generating many more
rhythms. However, then the property of maximal evenness will be grossly violated
and the chance of generating good rhythms will dwindle.

A variety of other local mutation algorithms are possible that sometimes yield
a “good” rhythm. However, they are rather ad hoc and thus lack generality and
applicability. For example, an extremely simple rule is to just delete one onset from
a “good” rhythm in the hope that the remaining rhythm is still “good.” Here deletion
means replacement of an onset with a silent pulse. If the last onset of the clave son
[x . . x . . x . . . x . x . . .] is deleted one obtains the rhythm [x . . x . . x . . . x . . . . .]
which is often heard in practice and is therefore “good.” However, deleting the
third onset of the clave son yields [x . . x . . . . . . x . x . . .], which is not a successful
mutation. So an algorithm that uses this rule requires the solution of the difficult
problem of finding a general rule to determine which onsets of any given rhythm
may be deleted without losing “goodness.” Another approach is to change rhythms
by some rule, and pass the resulting rhythms through similarity filters in the hope
that admitting a rhythm that is similar to a “good” rhythmmust also be “good.” Such
methods depend on measures of similarity or distance between rhythms [56, 68].
However, the relationship between “goodness” and similarity (or distance) is not yet
well defined, making it difficult to select an appropriate similarity measure that will
guarantee good results. The edit distance, often used in music applications, is known
to correlate well with human judgements of rhythm similarity [56], but this does not
imply it also correlates with rhythm “goodness.” Assume for instance that a mutation
of the clave son is accepted by a filter that uses the edit distance, if the distance is
at most 1. Both of the above mutations obtained by deleting either the third or last
onsets have edit distance 1 from the clave son, and yet one is “good” and the other
is “bad.” Furthermore, this approach may incur a heavy computational burden, if
the distance between a candidate rhythm and all the “good” rhythms stored in some
table must be computed and compared to some acceptability threshold.
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5 Conclusion

In contrast to the computationally complex randomized and probabilistic methods,
outlined in the introduction, that are used to generate musical rhythms without any
guarantees that the resulting rhythms are “good,” and with the requirement that para-
meters must be tuned by their designers in order to yield rhythms that are good
enough, this chapter focused on two computationally efficient and conceptually sim-
ple deterministic algorithms that are guaranteed to generate “good”musical rhythms:
(1) the Euclidean algorithm, which for specific numbers of pulses n and onsets k
yields a single maximally even (Euclidean) rhythm, and (2) the NP-DAG (Nearest
PulseDirectedAcyclicGraph) algorithm that generates a family of almostmaximally
even rhythms. It is argued that although other simple deterministic algorithms for
mutating “good” rhythms to obtain new “good” offspring rhythms are easy to con-
coct, they fall short of the Euclidean andNP-DAGalgorithms on several counts. They
not only lack generality and applicability, but are less efficient in terms of memory
requirements and computational complexity, and are not guaranteed to yield “good”
rhythms without “human intervention,” the latter being one of the hallmarks of the
field of computational aesthetics [2]. Aword of clarification is in order here concern-
ing the words “without human intervention,” regarding the selection of the values
of the number of pulses n and the number of onsets k in either the Euclidean or the
NP-DAG algorithms. Clearly, selecting n and k arbitrarily does not guarantee that
these algorithms will always yield “good” rhythms. For instance, if n = 128 (as hap-
pens for some Indian talas) and k is too large (k = 50) or too small (k = 5) relative
to n, then the resulting rhythms are guaranteed to be terrible. Are not n and k then,
parameters that must be tuned in order to obtain good results, thus implying that the
algorithms depend on human intervention in order to perform well? To clarify this
seeming contradiction it helps to distinguish between parameters that must be tuned,
and constraints that must be satisfied. The parameters that must be tuned in typical
approaches to rhythm generation, such as genetic algorithms, use complicated fitness
functions that depend on statistics compiled from music corpora, and that encapsu-
late parameters including frequencies of notes, saliency weights attached to notes,
and relations between note duration intervals [29]. These parameters (including the
weights) must be tuned by trial and error to yield good results. On the other hand, the
Euclidean and NP-DAG algorithms assume that the values of n and k are selected
so as to lie in the range of values found in existing styles of music practice, and
therefore are musical constraints that must be satisfied, rather than parameters that
must be tuned. Once these values are fixed, the rhythm generation is automatic and
completely free of human intervention. In this sense these algorithms fall also in
the area of aesthetic computing [3], which asks how the arts can influence computer
generated aesthetic objects. The values of n and k that are used in musical traditions
all over the world have evolved over many years, even millennia, and have been
adopted as part of the artistic practices of different cultures, providing the artistic
influence on the computational generation of “good” musical rhythms.
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