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Abstract. In this paper, we tackle the issue of symptom recognition for
rare diseases in biomedical texts. Symptoms typically have more com-
plex and ambiguous structure than other biomedical named entities. Fur-
thermore, existing resources are scarce and incomplete. Therefore, we
propose a weakly-supervised framework based on a combination of two
approaches: sequential pattern mining under constraints and sequence
labeling. We use unannotated biomedical paper abstracts with dictio-
naries of rare diseases and symptoms to create our training data. Our
experiments show that both approaches outperform simple projection
of the dictionaries on text, and their combination is beneficial. We also
introduce a novel pattern mining constraint based on semantic similarity
between words inside patterns.

Keywords: Information extraction · Pattern mining · CRF · Symptoms
recognition · Biomedical texts

1 Introduction

Orphanet encyclopedia is the reference portal for information on rare diseases
(RD) and orphan drugs. A rare disease is a disease that affects less than 1 over
2,000 people. There are between 6,000 and 8,000 rare diseases and 30 million
people are concerned in Europe. The Orphanet initiative aims to improve the
diagnosis, care and treatment of patients with such diseases. Among its activi-
ties, Orphanet maintains a rare disease database containing expert-authored and
peer-reviewed syntheses describing current knowledge about each disease. The
syntheses are produced by human specialists following a manual, time-consuming
monitoring of the medical literature. The aim of our work is to automatically
acquire new knowledge related to rare diseases; we focus on the task of symptom
recognition in medical publication abstracts.

We use the term symptom to refer to features of a disease, as noticed and
described by a patient (functional sign), or as observed by a healthcare profes-
sional (clinical sign) without distinction. The linguistic structure of symptoms is
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typically more complex than other biomedical named entities [3] for various rea-
sons as discussed in [10]. They manifest a considerably larger variability in forms,
ranging from simple nouns to whole sentences, and a larger number of syntactic
and semantic ambiguities. In the following examples, symptoms as identified by
an expert are shown in bold:

– With disease progression patients additionally develop weakness and wast-
ing of the limb and bulbar muscles.

– Diagnosis is based on clinical presentation, and glycemia and lactacidemia
levels after a meal (hyperglycemia and hypolactacidemia), and after
three to four hour fasting (hypoglycemia and hyperlactacidemia).

Furthermore, few works have focused on symptom recognition and therefore
existing resources are limited and incomplete: to our knowledge, no dataset that
is fully annotated with symptoms is available to allow for supervised learning.

To address these issues, we propose a weakly-supervised approach to symp-
tom recognition that combines three independent lexical resources (Sect. 2.1):
a corpus of unannotated medical paper abstracts and two dictionaries, one for
rare diseases and another for symptoms.

We project the dictionaries on the abstracts to create an annotated dataset
to train subsequent models. Since the dictionaries are not exhaustive, the anno-
tation is only partial (weak). Given the annotated dataset, we formalize the
problem of symptom recognition in two complementary ways: (a) as super-
vised sequence labeling for which we use Conditional Random Fields (CRF) [8]
(Sect. 2.3); and (b) as sequential pattern mining under constraints [2] (Sect. 2.4).
We combine these approaches in a pipeline architecture (Sect. 2).

Our contribution is threefold. First, we show experimentally (Sect. 3) that
sequence labeling and pattern mining are both adequate formalizations of the
task, for they outperform a simple projection of the dictionaries on the text; Fur-
thermore, we show that their combination is beneficial since CRFs allow for rich
representation of words while pattern mining privileges modeling their context.
Second, we introduce a novel pattern mining constraint based on distributional
similarities between words (Sect. 2.4). Third, we created a gold standard for
evaluation (Sect. 2.1), manually annotated with symptoms by human experts.

2 A Pipeline Architecture for Symptom Recognition

In this section we describe our iterative pipeline approach to symptom recogni-
tion, in the spirit of [11]. Figure 1 depicts the overall architecture of our system.

Input data to our approach contain a collection of unannotated article
abstracts and two dictionaries, one for diseases and one for symptoms. First,
the dictionaries are projected on the abstracts to obtain partial annotations;
the resulting annotated data is used to train a CRF sequence labeler and as an
input to a sequential pattern mining algorithm; the learned CRF model and the
extracted patterns are used to extract symptoms from the test data, separately
or in combination; these symptoms are then compared to manually annotated
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Fig. 1. Overall architecture of the system.

gold standard for evaluation using F-measure. It should be noted that the learned
models can be applied on the training data (using cross-validation) to discover
new symptoms to be added to the dictionary, and the whole process can be
iterated.

2.1 Datasets and Evaluation

The input to our system is composed of three independent online resources:

– The first dataset is a corpus of 10,000 article abstracts extracted from the
biomedical literature available on PubMed.1 To build it, we extracted 100
biomedical paper abstracts for each one of 100 rare diseases selected from
OrphaData in advance by an expert;

– The second dataset is a dictionary of 17,469 distinct phenotype anomalies
provided by the Human Phenotype Ontology (HPO).2 A phenotype is all the
observable characteristics of a person, such as their morphology, biochemical or
physiological properties. It results from the interactions between a genotype
(expression of an organism’s genes) and its environment. Since many rare
diseases are genetic, we follow [11] and consider the above anomalies to be
symptoms. This dictionary is not exhaustive;

– The third dataset is a dictionary of 16,576 distinct names of rare disease and
their aliases, provided by OrphaData,3 a comprehensive, high-quality resource
related to rare diseases and orphan drugs. This dictionary is not exhaustive.

The testing data are made of 50 biomedical paper abstracts with an average
of 184 word by abstract. A first automatic annotation was made on the data,
then we ask two medical experts to review the generated symptoms and add
missing ones to build a gold standard. Our experts have labeled 407 symptoms
and their position in the testing data, so an average of 8,1 symptom by abstract.

1 http://www.ncbi.nlm.nih.gov/pubmed.
2 http://human-phenotype-ontology.github.io.
3 http://www.orphadata.org.

http://www.ncbi.nlm.nih.gov/pubmed
http://human-phenotype-ontology.github.io
http://www.orphadata.org
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Performance is evaluated using the standard precision, recall and F-measure.4

2.2 Weak Annotation by Projection

Given the input datasets, the first step in our workflow is to project the dic-
tionaries of symptoms and diseases on the abstracts contained in our trainings
set. The projection step produce only weak (partial) annotation since Orpha-
Data and HPO lists are not exhaustive; they do not contain all symptoms and
diseases, nor the various linguistic forms they can take.

The corpus and dictionaries are preprocessed using TreeTagger:5 texts are
tokenized, and each token is lemmatized and part-of-speech (POS) tagged. Each
term in the dictionaries (possibly composed of several tokens) is matched against
the corpus by comparing using regular expressions. Terms coming from HPO are
often generic (e.g. “weakness”) and may be supplemented in medical texts with
adjectives or object complements (e.g. “severe weakness of the tongue”). Thus,
once a term matches, it can be expanded to its nominal phrase using the POS
tags assigned to surrounding terms.

The partially annotated corpus resulting from the projection is used as a
training set for the subsequent models.

2.3 Symptom Recognition as Sequence Labeling

We formalize the problem of symptom recognition as a supervised sequence
labeling problem with BIO notation, for which we use Conditional Random
Fields (CRF) [8]. An abstract text is seen as a sequence of words, each of which
is labeled with one of three possible labels: B (beginning of a symptom), I (inside
a symptom), and O (outside a symptom). Thus, a symptom is a word segment
corresponding to a label B potentially followed by consecutive I labels, as shown
in Fig. 2.

O B I O O B I I O
clinically silent tumors often demonstrate subclinical hormonal activity .

Fig. 2. Symptom recognition as BIO sequence labeling. Symptoms are bolded.

The main advantage of CRFs is their conditional nature which allows for
rich representations of words in a sequence. It is possible to incorporate multiple
information sources in the form of feature functions, without having to model
their interactions explicitly. On the contrary, applying sequential pattern mining
on such rich representations is prohibitively intractable.

We use the same set of features used for named entity recognition in [5] as
implemented in Stanford NER recognizer.6 They include the current word, the
4 Using the script provided by http://www.cnts.ua.ac.be/conll2000/chunking/output.

html which take the same input data format (BIO) as our data.
5 http://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger.
6 http://nlp.stanford.edu/software/CRF-NER.shtml.

http://www.cnts.ua.ac.be/conll2000/chunking/output.html
http://www.cnts.ua.ac.be/conll2000/chunking/output.html
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger
http://nlp.stanford.edu/software/CRF-NER.shtml
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previous and next one, as well as all the words in window of a given size (n-gram
features); orthographic features characterizing the form of the words; prefixes
and suffixes; and several conjunctions thereof.

2.4 Symptom Recognition as Sequential Pattern Mining

While the sequence labeling CRF approach presented above can easily employ
rich representation of words, it cannot efficiently capture rich context. For
instance, considering all possible sub-sequences as context for the current word
is computationally intractable because their number grows exponentially in the
size of the sequence.

To address this issue, we propose to use a sequential pattern mining approach
with an emphasis on the context more than the words themselves. Sequential
pattern mining allows to take into account the language sequentiality and is one
of the most studied and challenging task in data mining. Since its introduction
by Agrawal and Srikant [1], the problem has been well formalized:

Let I = {i1, i2 . . . im} be the finite set of items. An itemset is a non-empty
set of items. A sequence S over I is an ordered list 〈it1, . . . , itk〉, with itj an
itemset over I, j = 1 . . . k. A k-sequence is a sequence of k items (i.e., of length
k), |S| denotes the length of sequence S. T(I) will denote the (infinite) set of all
possible sequences over I. A sequence database D over I is a finite set of doubles
(SID, T ), called transactions, with SID ∈ {1, 2, . . .} an identifier and T ∈ T(I)
a sequence over I.

Definition 1 (Inclusion). A sequence S′ = 〈is′
1 is′

2 . . . is′
n〉 is a subsequence

of another sequence S = 〈is1 is2 . . . ism〉, denoted S′ � S, if there exist
i1 < i2 < . . . ij . . . <in such that is′

1 ⊆ isi1 , is′
2 ⊆ isi2 . . . is′

n ⊆ isin .

Definition 2 (Support). The support of a sequence S in a transaction database
D, denoted Support(S,D), is defined as: Support(S,D) = |{(SID, T ) ∈ D|S �
T}|. The frequency of S in D, denoted freqD

S , is freqD
S = Support(S,D)

|D| .

Given a user-defined minimal frequency threshold σ, the problem of sequen-
tial pattern mining is the extraction of all the sequences S in D such that
freqD

S ≥ σ. The set of all frequent sequences for a threshold σ in a database D
is denoted FSeqs(D, σ),

FSeqs(D, σ) = {S | freqD
S ≥ σ} (1)

Our data contains the lemma and the POS of each word. So in our context, let
I be the finite set of all words and part-of-speech tag. An itemset is a non-empty
set of the lemma and the part-of-speech of a word. We also add a special item
(#symptom#) in I. This item will be used as a placeholder for each annotated
symptom in the training data, as shown in the following example:

< {we, PP}{find, V BD}{that, IN}{clinically,RB}{#symptom#}
{often,RB}{demonstrate, V BP}{#symptom#}{., SENT}>



Weakly-Supervised Symptom Recognition 197

Using sequential pattern mining on such sequences allows us to extract lin-
guistic patterns covering symbolic symptoms. However, using only the user-
defined minimal frequency threshold σ as a constraint, pattern mining typically
yields an exponential number of patterns. Pattern mining under constraints [17]
is a powerful paradigm to target relevant patterns [14]. Therefore, we used a
pattern mining algorithm under the most used constraints in the literature in
addition to σ. The minimal and maximal gap constraint imposes a limit on
the number of words separating items of a pattern. The minimal and maxi-
mal length constraint limits the number of items in a pattern. We also used a
belonging constraint specific to our task, a pattern must contain our specific item
#symptom#.

Semantic Similarity Constraint. In addition to the above-mentioned con-
straints, we introduce a new semantic similarity constraint based on the distri-
butional properties of the words, estimated from a large unannotated corpus.

We observed during initial experiments a high level of redundancy in
extracted patterns, such as a succession of conjunctions or prepositions for
instance. We designed a constraint with a limit on the similarity of two adjacent
items of a pattern. Therefore, this constraint is designed to discard redundant,
uninformative patterns.

To be able to quantify the level of redundancy in the pattern, we used the
distributional hypothesis [6]: words that occur in the same context tend to have
similar meanings, this hypothesis is the basis for models like Word2Vec [12,13],
which learns a low-dimensional continuous vector representation of words from
large amount of text. To train the Word2Vec model, we extracted 7,031,643
biomedical paper abstract from PubMed, that’s 8.7 GB of input data for a
final model of 1.10 GB containing 1,373,138 words in a biomedical context. The
learned Word2Vec model is loaded by the data mining algorithm, each item i will
have an associated vector Vi allowing to measure the cosine distance Dc(Vi, Vj)
between two consecutive items.

Definition 3 (Semantic Similarity Constraint). Given a user-defined max-
imal similarity threshold ζ. Let id the last item of a sequence S, an extension of
S by a new item in is possible only if :

Dc(Vid , Vin) � ζ (2)

The semantic similarity constraint is anti-monotonic, the Proposition 1 allows
an efficient pruning of the search space.

Property 1 (Effect of the anti-monotonic semantic similarity con-
straint). Let S be a sequence. If S does not respect the semantic similarity
constraint, it does not exist a sequence S′ with S � S′ which will respect the
constraint. Therefore, the search space of all the extensions of S can be pruned.
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3 Experiments and Results

In this section we evaluate the performance of our system on the test set. We
evaluate each component individually, as long as their combination. We also
evaluate the contribution of the new similarity-based constraint.

3.1 Individual Module Results

In this section we compare symptom recognition results, shown in Table 1, for
each of the recognition modules independently of the other.

Table 1. Details of the best results with tuned parameters for each module

Module Parameters Precision Recall F-measure

Dictionary 57.58 14.00 22.53

CRF Bag of words 56.31 14.25 22.75

CRF ngrams, ngramLength=6 56.14 15.72 24.57

Pattern σ=0.05 %, Gap=0, ζ=0.4 23.12 38.57 28.91

Dictionary Projection Results. We first created a baseline by projection of the
17,469 symptoms that we gathered in our dictionary on the testing data using
regular expressions. Of all our results, this baseline have the best precision but
the worst recall.

CRF Results. The CRF module, successfully learned to generalize from the
symptoms of the dictionary as indicated by the 12 % point increase in recall and
2.5 % in increase in precision, which resulted in 9 % increase in F-measure.

Pattern Mining Results. Since we replaced each symptom by the item #symp-
tom# in the training data, we only represent the context. A pattern like
“(such,JJ) (as,IN) (#symptom#)” can be applied on the testing data and dis-
cover symptoms that were not in the training data. Hence, the Pattern mining
module has an increase of 175 % of recall, but a 60 % decline in precision, for
a final amelioration of the F-measure by 28 %. It was expected that the preci-
sion would drop, but in our context of helping human expert process data, the
recall is more important to maximize: missing a potential new symptom is more
harmful than producing a large number of false-positives. Figure 3 lists some of
the extracted patterns.

Table 2 shows the difference between the annotation of each module and the
annotation of the human expert on two sentences.
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(treatment,NN) (IN) (#symptom#) : 62

(development,NN) (of,IN) (#symptom#) : 43

(patient,NNS) (with,IN) (#symptom#) : 295

(diagnosis,NN) (IN) (#symptom#) : 98

(patient,NNS) (IN) (#symptom#) : 306

(case,NN) (of,IN) (#symptom#) : 48

(such,JJ) (as,IN) (#symptom#) : 91

(IN) (patient,NNS) (IN) (#symptom#) : 163

(NNS) (such,JJ) (as,IN) (#symptom#) : 46

(in,IN) (patient,NNS) (IN) (#symptom#) : 89

(in,IN) (patient,NNS) (with,IN) (#symptom#) : 88

(IN) (patient,NNS) (with,IN) (#symptom#) : 161

Fig. 3. Examples of extracted patterns with their support.

Table 2. Examples of each module annotations.

diffuse palmoplantar keratoderma and precocious

Expert Annotation B I I O B
Pattern Annotation B I I I I
CRF Annotation B I I O O

primary immunodef. disorders with residual cell-mediated immunity

Expert B I I O O O O
Pattern B I I I I I I
CRF O B O O O O O

3.2 Impact of Training Data Size

Figure 4 shows the variation in precision, recall and F-measure for our mod-
ules with increasing size of training data. From 1.000 to 10.000 biomedical
abstracts, there is no visible impact on the CRF, even if the best score, in term of
F-Measure, is on the maximum size data. Pattern Mining improves its recall with
more data, but the precision tends to drop. The best score is on the middle size
data.

3.3 Model Combination Analysis

We clearly see on the Fig. 4 the difference in the precision/recall ratio of the
numerical and the symbolic modules even if they are very close in terms of
F-measure. Because the CRF maximizes the precision and the pattern mining
maximizes the recall, we tried to do a combination of the best CRF module
result and the best pattern mining module. If the two models made the same
decision we keep it, if not we promote the choice of “B”. This combination
gives better results (cf. Table 3) than each modules separately. In the same logic,
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Fig. 4. Impact of the number of abstracts used for training

Table 3. Details of the best results for each module and their combination.

Module Precision Recall F-measure

Dictionary (D) 57.58 14.00 22.53

CRF - ngram 56.14 15.72 24.57

Pattern mining 23.12 38.57 28.91

Combination 23.46 39.31 29.38

CRF - ngram + D 56.90 16.22 25.24

Pattern mining + D 23.35 39.07 29.23

Combination 23.46 39.31 29.38

we also combine our bests results with the baseline using the projection of the
symptom dictionary. If that last enhancement has improved each module result
individually, it did not improve the combination of the best CRF and pattern
mining result.

3.4 Impact of Semantic Similarity Constraint

The purpose of the semantic similarity constraint is to reduce the number of
patterns extracted without jeopardizing the classification accuracy, and like most
data mining constraint the results are threshold dependent. Figure 5 shows the
success of our constraint, a 30 % reduction of extracted patterns without losses
in F-Measure. It also shows that a too strong threshold for the constraint lower
the performance. With a maximal semantic similarity below 0.4 the constraint
tends to produce very few patterns. In terms of cosine distance, a threshold of
0.2 is so low that semantically divergent words would be considered similar.

3.5 Iterative Learning Analysis

In this experiment, unlike the next results, the whole annotation process is iter-
ated a number of times in an attempt to discover more symptoms. For the
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Fig. 5. Impact of the semantic similarity constraint (abscissa) on the number of
extracted patterns (black line) and scoring (blue column). (Color figure online)

pattern mining module, there is no amelioration because after the first iteration,
symptom placeholders cover more parts of the sequence, and the new symptoms
are noisy. We almost never find a new symptom after the first iteration. An inter-
esting perspective would be to try this iterative learning with different data set
each time, by splitting the data into subsets. It is different for the CRF module,
it learns more and more new symptoms at each iterations, but unfortunately it
is also mainly noise because the precision tends to decrease.

4 Related Work

To our knowledge, there is no annotated dataset which can be used to train
a supervised model specific for symptom recognition. Most of the studies are
based on clinical reports or narrative corpora without symptom annotation and
therefore can not be used in our context for symptom monitoring. Such cor-
pora include the Mayo Clinic corpus [15] and the 2010i2b2/VA Challenge corpus
[18]. Other existing biomedical datasets annotate only diseases; they include the
NCBI disease corpus [4] which consists of 793 PubMed abstracts with 6,892 dis-
ease mentions and 790 unique disease concepts mapped to the Medical Subject
Headings (MeSH),7 and the Arizona Disease Corpus (AZDC) [9] which contains
2,784 sentences from MEDLINE abstracts annotated with disease mentions and
mapped to the Unified Medical Language System (UMLS)8.

Symptom recognition [10] is a relatively new task, often included in more
general categories such as clinical concepts [19], medical problems [18] or phe-
notypic information [16]. Even on these categories, few studies take advantage
of considering the linguistic context in which symptoms appear, and they are
more focused on the linguistic analysis. In [15], the authors notice that most
of the symptoms are given in relation with an anatomic location, while in [7]
the authors state, after annotating their corpus with MeSH, that 75 % of the

7 https://www.nlm.nih.gov/mesh/meshhome.html.
8 https://www.nlm.nih.gov/research/umls/.

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/research/umls/
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signs and symptoms co-occur with up to five other signs and symptoms in a
sentence. None of the above work was concerned with fully automatic symptom
recognition.

5 Conclusion

We have described a system that enable the use of different learning modules for a
symptom recognition task in biomedical texts. For the numeric approach we used
a CRF module which maximized the precision and for the symbolic approach
we used a pattern mining module which maximize the recall. We introduced a
new semantic constraint for the pattern mining process which remove redundant
patterns without decline in the scoring. Both approach (symbolic and numerical)
have been combined to further enhanced the results. A first future direction will
be to enhance the combination of the modules. An idea is to use the patterns
extracted as features for the CRF. A second future direction is to enhance our
similarity constraint to take into account more distant redundancy in a pattern,
or to apply the constraint differently in function of the words part-of-speech.
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