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Preface

We are proud to present the proceedings of the 15th International Symposium on
Intelligent Data Analysis, which took place during October 13–15 in Stockholm,
Sweden. The series started in 1995 and was held biennially until 2009. In 2010, the
symposium re-focused to support papers that go beyond established technology and
offer genuinely novel and game-changing ideas, while not always being as fully
realized as papers submitted to other conferences.

IDA 2016 continued this approach and sought first-look papers that might elsewhere
be considered preliminary, but contain potentially high-impact research. In addition, for
the first time this year, IDA introduced an industrial challenge track. For the industrial
challenge, researchers were invited to participate in a machine learning prediction
challenge, where the task was to devise a prediction model for judging whether or not a
vehicle faces imminent failure of a specific component, exploiting data collected from
heavy Scania trucks in everyday usage.

The IDA symposium is open to all kinds of modelling and analysis methods,
irrespective of discipline. It is an interdisciplinary meeting that seeks abstractions that
cut across domains. IDA solicits papers on all aspects of intelligent data analysis,
including papers on intelligent support for modelling and analyzing data from complex,
dynamical systems.

Intelligent support for data analysis goes beyond the usual algorithmic offerings in
the literature. Papers about established technology were only accepted if the technology
was embedded in intelligent data analysis systems, or was applied in novel ways to
analyzing and/or modelling complex systems. The conventional reviewing process,
which favors incremental advances on established work, can discourage the kinds of
papers that were selected for IDA 2016. The reviewing process addressed this issue
explicitly: referees evaluated papers against the stated goals of the symposium, and any
paper for which at least one program committee advisor wrote an informed, thoughtful,
positive review was accepted, irrespective of other reviews. Indeed, this had a notable
impact on what papers were included in the program.

We were pleased to see a very strong program. We received 75 submissions by 198
authors from 30 different countries, out of which 15 were accepted as regular papers, 12
as regular poster papers, and 4 as short papers (industrial challenge papers). All sub-
missions were reviewed by three PC members and one PC advisor.

In addition, we were happy to accept two abstracts to the IDA horizon track:

– “Usable analytics at societal scale”, by Daniel Gillblad
– “Cognitive Computing for the Automated Society”, by Devdatt Dubhashi

We were honored to have the following distinguished invited speakers at IDA 2016:

• Samuel Kaski, Aalto University and University of Helsinki, Finland; on the topic
“Bayesian Factorization of Multiple Data Sources”



• Sihem Amer Yahia, CNRS at LIG, Grenoble, France; on the topic “Worker-
Centricity Could Be Today’s Disruptive Innovation in Crowdsourcing”

• Foster Provost, New York University, USA; on the topic “The Predictive Power of
Massive Data about Our Fine-Grained Behavior”.

The conference was held at the Department of Computer and Systems Sciences of
Stockholm University, Sweden.

We wish to express our gratitude to all authors of submitted papers for their
intellectual contributions; to the program committee members and advisors and addi-
tional reviewers for their effort in reviewing, discussing, and commenting on the
submitted papers, and to the members of the IDA steering committee for their ongoing
guidance and support. We thank Isak Karlsson for running the conference website.
Special thanks go to the industrial challenge chair, Tony Lindgren, for handling the
submission and reviewing process of the industrial challenge papers. We gratefully
acknowledge those who were involved in the local organization of the symposium:
Lars Asker, Isak Karlsson, Jing Zhao, and Ram Gurung. We are grateful to our
sponsors: Stockholm University, Scania AB, Vetenskapsrådet, Springer, The Artificial
Intelligence Journal, and SERSC. We are especially indebted to KNIME, who funded
the IDA Frontier Prize for the most visionary contribution presenting a novel and
surprising approach to data analysis in the understanding of complex systems.

July 2016 Henrik Boström
Arno Knobbe
Carlos Soares

Panagiotis Papapetrou
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DSCo-NG: A Practical Language Modeling
Approach for Time Series Classification

Daoyuan Li(B), Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon

Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, Luxembourg, Luxembourg

{daoyuan.li,tegawende.bissyande,jacques.klein,yves.letraon}@uni.lu

Abstract. The abundance of time series data in various domains and
their high dimensionality characteristic are challenging for harvesting
useful information from them. To tackle storage and processing chal-
lenges, compression-based techniques have been proposed. Our previous
work, Domain Series Corpus (DSCo), compresses time series into sym-
bolic strings and takes advantage of language modeling techniques to
extract from the training set knowledge about different classes. However,
this approach was flawed in practice due to its excessive memory usage
and the need for a priori knowledge about the dataset. In this paper
we propose DSCo-NG, which reduces DSCo’s complexity and offers an
efficient (linear time complexity and low memory footprint), accurate
(performance comparable to approaches working on uncompressed data)
and generic (so that it can be applied to various domains) approach for
time series classification. Our confidence is backed with extensive exper-
imental evaluation against publicly accessible datasets, which also offers
insights on when DSCo-NG can be a better choice than others.

1 Introduction

Time series data usually refer to temporally or spatially ordered data, which
are abundant in numerous domains including health-care, finance, energy and
industry applications. Besides their abundance, time series data are becoming
increasingly challenging to efficiently store, process and mine useful information
due to their high dimensionality characteristics. In order to tackle these chal-
lenges, researchers have proposed many approaches to model time series more
efficiently. Compression-based techniques are especially promising and have been
adopted in many recent studies, including dimensionality reduction [9,11,21]
and numerosity reduction [24]. Symbolic Aggregate approXimation (SAX) [15]
is an approach that is capable of both dimensionality and numerosity reduction.
Among all time series data mining tasks, time series classification (TSC) has
received great interests from researchers and practitioners thanks to its wide
application scenarios including speech recognition, medical diagnosis, etc.

Our previous work, Domain Series Corpus (DSCo) [13] for TSC, takes advan-
tage of SAX to compress real-valued time series data into text strings and builds
per-class language models as a means of extracting representative patterns in the
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 1–13, 2016.
DOI: 10.1007/978-3-319-46349-0 1



2 D. Li et al.

training phase. To classify unlabeled samples, we compute the fitness of each
symbolized sample against all per-class models by finding the best way to seg-
ment this sample and choose the class represented by the model with the best
fitness score. We also prove that although DSCo works with approximated data,
it can perform similarly to approaches that work with original uncompressed
numeric data. One issue with DSCo, however, lies in its excessive memory usage
when calculating the fitness score of one sample against language models, which
makes it impractical for real-world applications.

In this paper, we set to improve DSCo’s time and space complexity and pro-
pose a next generation of DSCo: DSCo-NG. We follow our initial intuition that
time series data are similar to sentences from different languages or dialects,
but apply a more efficient approach to find nuances of difference from these
languages. Specifically, unlike in DSCo where we try to find the best way to
recursively segment time series, DSCo-NG breaks time series into smaller seg-
ments of the same size, and this simplification of the classification process also
leads to simplified language model inference in the training phase. Overall, the
contributions of this paper are summarized as follows:

– We propose a new practical language modeling-based approach for time series
classification, which has a linear time complexity and small memory footprint.
Previously DSCo works optimally on a High Performance Computing (HPC)
platform, e.g. ULHPC [20], while DSCo-NG can virtually run efficiently on
any personal computers thanks to its low complexity.

– We have tested our approach extensively on an open archive which contains
datasets from various domains, demonstrating by comparison with state-of-
the-art approaches and first generation DSCo that DSCo-NG is both perfor-
mant and efficient.

– We investigate the performance of DSCo-NG by scrutinizing the character-
istics of datasets and provide insights in application scenarios when DSCo-
NG could be a better choice than other approaches.

– We offer a new perspective for TSC: traditional TSC approaches compare
instances against instances, which can be computationally inefficient when
the training dataset is large, while our approach aggregates training sets into
models and compares the fitness of instances to such models, making compar-
isons more efficient.

The remainder of this paper is organized as follows. Section 2 provides the
necessary background information on time series classification as well as our
first trial of using language modeling for TSC. Section 3 briefly surveys related
research work to ours. Section 4 presents the details of our new improvements,
while experiments and evaluation results are described in Sect. 5. Section 6 con-
cludes the paper with directions for future work.

2 Background

In this section, we briefly introduce time series, TSC, SAX and DSCo. For a
more detailed information on DSCo, the readers are encouraged to refer to [13].
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Traditionally, time series data refers to temporally ordered data, e.g., data
sequences that are related to time. However, data mining community [7]
embraces a broader definition, relaxing the time aspect and incorporating any
ordered sequences. For instance, images may also be transformed into time series
representation [25]. In this paper, we define a time series T = t0, t1, ..., tn−1,
where ti (0 ≤ i ≤ n − 1) is a real-valued number and that T has a length of n,
i.e., |T | = n.

TSC is a common category of tasks that involves learning from a training
dataset and applying the learned knowledge to classify instances from a test-
ing dataset, where instance classes or labels are often unknown or purposefully
hidden. TSC tasks are commonly found in various application domains such
as image and speech recognition, medical analysis, industrial automation, etc.
Many techniques have been proposed for TSC, including k-Nearest Neighbors,
shapelets [25], and bag-of-features [2]. In practice, the Nearest Neighbor (1NN)
approach has been proven to work very well [1], especially when combined with
a good time series distance metrics such as Dynamic Time Warping (DTW) [4]
and Time Warp Edit Distance (TWED) [16,19].

In the literature of time series data mining, real-valued data are sometimes
transformed into symbolic representations, so as to potentially benefit from the
enormous wealth of data structures and algorithms made available by the text
processing and bio-informatics communities. Besides, symbolic representation
approaches make it easier to solve problems in a streamed manner [15]. Finally,
many algorithms target discrete data represented by strings over floating point
numbers. Symbolic Aggregate approXimation (SAX) [15] is one such technique
that is popular among the community [14,17]. It can perform both dimension-
ality reduction and numeriosity reduction on time series and transforms real
valued time series data into a string of alphabets.

Once time series data are compressed into strings, DSCo [13] builds per-
class unigram and bigram language models which contains artificial words and
phrases that have been extracted from the training dataset. Figure 1 illustrates
how DSCo works. When classifying unlabeled instances, DSCo calculates the

Per-Class
Language 

Models

Class 1:
0,5,7,9,8,0,
9,0,5,9

Class 1:
acbbc

BuildReduction
LM_1:
ac  1

LM_N:

LM }
Class N: Class N: BuildReduction

LM

0,5,7,9,8,0,
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Reduction
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Score_LM_NAssign Label X X

Segment with Per-Class Models
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Fig. 1. Flow chart illustration of DSCo’s training (in yellow) and testing process. (Color
figure online)
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fitness scores of one instance against all per-class language models, and the fittest
model’s class label will be assigned to this instance. DSCo builds on the simply
intuition that time series signals are comparable to sentences and phrases from
natural languages and dialects in the real-world: each dialect have their unique
words and patterns, which is similar to distinguishable features in time series. In
DSCo, we try to recursively segment an instance using a Viterbi algorithm until
we find the best way to divide such instance with a given language model. Due
to this intensive process, DSCo has an almost linear time complexity and space
complexity of O(m2n2), where m is the number of instances in the training set
and n is the length of time series.

3 Related Work

Due to TSC’s wide application scenarios, there are a plethora of algorithms
made available by the research community. An extensive review of time series
mining has been done by Fu [7]. Here we only survey the works that are closely
related to ours due to space limitation. Since DSCo-NG is a compression-based
approach, we introduce related approaches that also takes advantage of time
series compression techniques.

There are basically two methods for compressing time series, i.e., dimension-
ality reduction that works on the time axis and numerosity reduction that works
on the value axis. Dimensionality reduction mechanisms include Piecewise Lin-
ear Representation (PLR) [8], Piecewise Aggregate Approximation (PAA) [9],
and methods that keeps only perceptually important points (PIP) [6]. Our previ-
ous work [11] takes advantage of Discrete Wavelet Transform for dimensionality
reduction. On the value axis, Xi et al. [24] have proposed using numerosity reduc-
tion to speed up TSC, and Lin et al. have proposed SAX [15], which converts
real-valued data into a symbolic form. Note that it is possible to apply both
dimensionality reduction and numerosity reduction using SAX.

Symbolic representation of time series has opened a new avenue for TSC since
it makes it possible to borrow paradigms from the text mining community. For
instance, the bag-of-words approach has inspired the bag-of-features [2,22] and
SAX-VSM [18] approach for TSC. Furthermore, Representative Pattern Mining
(RPM) [23] compresses time series to strings using SAX and then tries to identify
the most representative patterns in the training set. These patterns are then used
to match against testing instances during classification. Unlike RPM, DSCo does
not try to find which patterns are representative or not. Instead, we evaluate
testing instances’ fitness to each class in an overall perspective.

Note that our compression-based approach is not to be confused with
compression-based time series similarity measures [10], which compares the com-
pression ratios of time series under the assumption that compressing similar
series would produce higher compression rates than compressing dissimilar ones.

Finally, as a part of our smart building project, a language modeling app-
roach, which inspired the idea of DSCo, was applied for household electric appli-
ance profiling [12], where language models are used to classify and maintain
profiles of different appliances.
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4 Next Generation Domain Series Corpus for TSC

Since our approach is based on a simple intuition that if we abstract time series
classes to languages, these languages will be descriptive so that it is able to differ-
entiate instances or sentences. In practice, we firstly harvest descriptive language
models of different patterns from a training corpus. Later in the classification
phase, these language models are used to find out which instances are likely to
be written in a corresponding language.

The main complexity of original DSCo lies in the classification process, where
testing instances are recursively segmented in order to produce the best segmen-
tation result using a language model, in DSCo-NG we try to break the testing
instances into sub-sequences of the same length. Then we calculate the prod-
uct of bigram probability of these sub-sequences. This scheme is inspired by the
intuition that when using a sliding widow of size w to iterate over the training
set, all possible unigrams and bigrams are already captured within the language
model of a specific class. As a result, there is no need to use a sliding window of
variable length during the classification process, thus reducing the classification
complexity. To better illustrate how DSCo-NG works, we detail it in three steps
in the subsections below.

4.1 Compressing Time Series into Texts

There are potentially many approaches that can compress time series data into
texts. For instance, one may think of creating a mapping from range of values
to alphabets. However, for the benefit of reusing existing mature techniques, we
have leveraged SAX for this task. Recall that SAX is capable of both dimen-
sionality and numerosity reduction, as long as the required length and cardinal-
ity parameters are specified. Previously with DSCo we arbitrarily reduced the
dimensionality of all long (of size larger than 100) time series to 100, for the sake
of computational efficiency. Here for DSCo-NG we do not conduct dimension-
ality reduction since DSCo-NG is efficient enough, allowing us to remove one
parameter (or heuristics-based decision) from our processing pipeline. However,
as our previous study [11] suggests, conducting dimensionality reduction can
potentially increase overall classification accuracy.

4.2 Extracting Language Models

Once time series are compressed to texts, a language model can be extracted to
summarize each time series class. Since the text representation does not have
word boundaries, we need to create artificial words. To that end, we employ
a sliding window mechanism that generates such words. In order to facilitate
reader understanding, we reproduce the procedure from [13] in Algorithm 1.
This algorithm collects all possible sub-strings of length w within a string, so
that no descriptive segment is left uncaptured from the original time series.
For example, we can break string abcde into the following 2-alphabet words:
ExtractWords(abcde, 2) produces an output of [ab, bc, cd, de].
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Algorithm 1. Extract words from a string (S) using a sliding window (of
length w).
1: procedure ExtractWords(S, w)
2: words ← ∅

3: for i ← 0, GetLength(S) − w + 1 do
4: word ← SubString(S, i, w) � Sub-string of size w
5: words ← words ∪ {word}
6: return words

Next, we build ngram language models for each time series class in our train-
ing set, which is illustrated in Algorithm2. Unlike DSCo that requires a minimum
word length and a maximum word length to capture words, here we use a sin-
gle length w. Note that the probability of ngrams are calculated independently,
since different classes may have different number of training instances.

Algorithm 2. Build language models (LMs) from a list (SL) of (string, label)
pairs.
1: procedure BuildLM(SL, w)
2: LMs ← ∅

3: for all (string, label) ∈ SL do
4: if NGramslabel /∈ LMs then
5: NGramslabel ← ∅

6: words ← ExtractWords(string, w))
7: for all ngram ∈ GetNGrams(words) do
8: InsertOrIncreaseFreq(NGramslabel, ngram)
9: LMs ← LMs ∪ NGramslabel

10: ConvertFreqToProbability(LMs)
11: return LMs

4.3 Classifying Unlabeled Instances

As mentioned earlier, classification in DSCo-NG is performed by checking which
language model is the best fit for the tested sample. Specifically, we compare the
sample’s fitness scores to each model, which is calculated following the ngram
statistical language model probability as shown in Eq. 1.

P (w1, ..., wm) =
m∏

i=1

P (wi|w1, ..., wi−1) ≈
m∏

i=1

P (wi|wi−(n−1), ..., wi−1) (1)

In practice, bigrams (n = 2) and trigrams (n = 3) are most prominent [3].
We have opted for the bigram model due to its simplicity for both the language
model extraction process and fitness score calculation, which is approximated as
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P (w1, ..., wm) ≈ ∏m
i=1 P (wi|wi−1). During the classification process, we need to

break time series strings into words. Unlike original DSCo which breaks sentences
into variable sized words, here we adopt the same sliding window size w as the
uniform word length. As we shall show later, this simplified process yields similar
classification accuracy but greatly reduces the complexity compared with DSCo.

4.4 Time and Space Complexity

During the preprocessing phase, SAX has a linear time and space complex-
ity when transforming real-valued time series into text representation. When
extracting language models in the training phase, each training sample is went
through once and models are stored to external storage, resulting an O(n) time
and space complexity. Finally, the classification process go through testing sam-
ples constant times with language models loaded from external storage, yielding
linear time complexity. Language models loaded to memory has a theoretic com-
plexity of O(αw) where α is the alphabet size used when using SAX to compress
real-valued data, and w is the length of artificial words. In practice, language
models seldom exceed a few megabytes, due to the fact that time series in a
domain have a very limited number of words.

DSCo-NG’s real advantage comes when the training set is large. Given a
training set of m1 time series of length n, when classifying a testing set of
m2 instances, traditional kNN approaches have to conduct m1 × m2 pairwise
comparisons. Even when using a linear similarity measure such as Euclidean
distance, the overall time complexity goes up to O(m1m2n). On the other hand,
DSCo-NG would only have a computational complexity of O(cm2n) where c is
the number of classes and c � m1, making DSCo-NG a magnitude faster than
kNN. And this is indeed great improvement even compared with DSCo which
has a time complexity of O(cm2nw2) and space complexity of O(m2

1n
2).

5 Experimental Evaluation

In order to evaluate performance of our new approach, we have implemented
DSCo-NG and tested it on an open dataset archive. To facilitate reproducibility,
we have open sourced our implementation with full documentation and tuto-
rials on GitHub1. We opt for testing with the UCR Time Series Classification
Archive [5] for three reasons: (1) this archive has a large number of publicly
accessible datasets; (2) these datasets are from a wide range of domains, from
environmental monitoring to medical diagnosis; (3) it comes with precomputed
classification accuracy rates for DTW-based 1NN, which is the most widely used
similarity measure in the research community and has become the de facto state-
of-the-art benchmark for TSC. In the experiments below we consider 39 datasets
from the Newly Added Datasets sub-archive because of its uniform file format
and structure.

1 Repository is available at https://github.com/serval-snt-uni-lu/dsco.

https://github.com/serval-snt-uni-lu/dsco
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5.1 Implementation and Setup

In theory, when calculating ngram probabilities, the larger n is, the more accu-
rate these probabilities will be. However, in practice it is seldom the case, due to
the lack of training data and the rise of complexity when n becomes larger. As a
result, our implementation considers the bigram model with unigram fallback as
a trade-off between efficiency and accuracy. Note that falling back to unigrams
may not always work, when specific unigrams are missing from the training set.
In this case it is necessary to employ a penalty mechanism to offset the influence
of such unigrams. From our experience, these missing unigrams’ probability could
be set as a constant of low probability value, so that the missing probabilities
do not overwhelm the existing ones and lead to inaccurate classification.

5.2 Parameter Optimization

Ideally, time series mining approaches should have as few parameters as possi-
ble, even parameter-free, so as to avoid presumption on data [10]. In reality it
is extremely difficult to achieve. For instance, even the popular DTW distance
requires a warping window size to be set in order to produce optimal results. In
DSCo-NG, we essentially have two parameters: the cardinality of SAX alphabet
when compressing real-valued data to text strings and the sliding window size
or length of artificial words. Normally, approaches based on SAX have to specify
both the cardinality and a PAA size to which time series are reduced. Since
DSCo-NG does not necessarily need dimensionality reduction, we only need to
fix for a suitable cardinality, i.e., a good alphabet size that keeps sufficient infor-
mation during time series compression. To that end, we try to reduce time series
using different cardinality values from 3 to 20, which is range supported by major
SAX implementations. For length of artificial words, we also fix a range to 2 to
20 in order to avoid extremely long words, in order to limit the size of language
models.

Figure 2 presents the classification accuracy from four datasets across differ-
ent domains. As shown, although these four datasets have different characteris-
tics in terms of training dataset size, time series length and number of classes,
there is a clear trend when high classification accuracy is achieved. That is, gen-
erally good accuracy is achieved with small to medium SAX alphabet size and
the alphabet size has more impact than the word length (imagine projecting
the 3D plots to the 2D plane defined by the alphabet size and accuracy axis).
This is extremely useful to narrow down the parameter space, even though in
fact our parameter space is already small (18 ∗ 19 = 342 combinations in total).
Note that there are other methods available for finding the optimal parameters.
For instance, in [23] the authors have adopted an algorithm named DIRECT.
Thanks to the small parameter space and efficiency of DSCo-NG we employ a
brute force approach for finding the best parameters for different datasets. Nat-
urally, there is not a single parameter setting that guarantees good performance,
since different datasets can be totally different in number of classes, size, time
series lengths and variation amplitude. However, it is indeed possible to set the
same parameters for datasets with similar characteristics.
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Fig. 2. 3D surface plots of classification accuracy with different parameters, darker
blue indicates higher accuracy. (Color figure online)

5.3 Comparison of Classification Performance

Now that we have fixed the parameters for DSCo-NG, here we set to compare its
performance with its predecessor DSCo and the state-of-the-art approach DTW-
based 1NN classifier. As an intuitive and simple benchmark, we only consider the
classification accuracy here because the accuracy results are available in the UCR
archive and it is in general what the time series classification community compare
with. Figure 3 presents the classification results. It clearly demonstrates that
DSCo-NG outperforms its predecessor. In fact, in 90% (35/39) of the datasets,
DSCo-NG is more or equally accurate compared with DSCo, indeed suggesting
performance improvement in accuracy. This is probably due to the fact that
DSCo tries to find the best way to segment time series; however, with insufficient
training data this segmentation process will result in suboptimal segmentation
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and thus not as high accuracy. Furthermore, we note that in 72% (28/39) of
the datasets, DSCo-NG also outperforms the state-of-the-art DTW-based 1NN,
indicating its superiority in specific datasets. Besides, we would like to remind
the readers that DSCo-NG is potentially more scale than 1NN based approaches,
especially for datasets with a large training set, e.g., the ElectricDevices dataset.

Fig. 3. Overall accuracy comparison between 1NN with DTW distance, DSCo and
DSCo-NG.

We have demonstrated the performance of DSCo-NG through complexity
analysis and extensive experiments. Although DSCo-NG outperforms our pre-
vious work in vast majority of tested datasets, it remains unclear why DSCo-
NG outperforms DTW-based 1NN in certain datasets while underperforms in
other ones. To this end, we investigate in which scenarios DSCo-NG performs
better. Obviously the size of training set can be an important factor, because
our model-based approach has to capture from different and a large number of
instances the representative patterns, while for instance-based approaches – e.g.
kNN – one representative instance could potentially help accurately classifying
all similar instances. This is a major reason why DSCo-NG greatly underper-
forms 1NN for the WordSynonyms dataset, which has many (25) classes but
very few (267) training instances. Besides, some classes in this dataset has as
few as two instances, making the language model extraction highly inaccurate
for DSCo-NG.

Besides training set size, in this study we found another important factor that
lies in how small segments constitute a time series. Figure 4 shows why DSCo-
NG does not perform well for InsectWingbeatSound: these two classes consist
of similar segments installed in different positions of time series. Thus DSCo-
NG will consider these segments as the same word unless we set an extremely long
word length. Similarly, DSCo-NG underperforms for UWaveGestureLibraryAll
because instances in this dataset are composed of three different segments.

Finally, we demonstrate with one example why DSCo-NG outperforms DTW-
based 1NN. Consider the two classes from the FordA dataset as shown in Fig. 5.
It is obvious that visually it is impossible for a human being to distinguish these
two classes, because there are two many samples that are not properly aligned
like in Fig. 4. As a result, for 1NN classifier, these samples could be distracting so
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Fig. 4. All instances of two classes (1 and 5) from InsectWingbeatSound’s training set.

Fig. 5. All instances of two classes (−1 and 1) from FordA’s training set.

that it fails to find similar samples given a testing instance. However, DSCo-NG is
able to aggregate samples within a class so that it finds the overall descriptive
way to differentiate different classes.

6 Conclusions and Future Work

In this study we have improved our previous work DSCo and propose a new
approach for TSC. Through complexity analysis and extensive experiments, we
show that DSCo-NG is both efficient and performant when comparing with DSCo
and the state-of-the-art DTW-based 1NN. Besides, DSCo-NG does not require
datasets to be properly aligned, as a result it can save time and efforts preparing
for time series data, and result in better classification accuracy with not properly
aligned data. Finally, unlike DTW-based 1NN and similar approaches, DSCo-
NG can work with data of variable length, which make it suitable for streaming
applications.

Since DSCo-NG uses SAX to discretize real-valued time series to text rep-
resentations, there can be other symbolization techniques to replace SAX and
make DSCo-NG parameter-free. In the future, we plan to investigate such oppor-
tunities and study the impact of different symbolization techniques on the per-
formance of DSCo-NG.

Acknowledgment. The authors would like to thank Paul Wurth S.A. and
Luxembourg Ministry of Economy for sponsoring this research work.



12 D. Li et al.

References

1. Batista, G.E., Wang, X., Keogh, E.J.: A complexity-invariant distance measure for
time series. In: SDM, vol. 11, pp. 699–710 (2011)

2. Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time
series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796–2802 (2013)

3. Bellegarda, J.R.: Statistical language model adaptation: review and perspectives.
Speech Commun. 42(1), 93–108 (2004)

4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: KDD Workshop, vol. 10, pp. 359–370 (1994)

5. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The
UCR time series classification archive, July 2015. www.cs.ucr.edu/∼eamonn/time
series data/

6. Chung, F.L., Fu, T.C., Luk, R., Ng, V.: Flexible time series pattern matching based
on perceptually important points. In: International Joint Conference on Artificial
Intelligence Workshop on Learning from Temporal and Spatial Data, pp. 1–7 (2001)

7. Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1),
164–181 (2011)

8. Keogh, E.: Fast similarity search in the presence of longitudinal scaling in time
series databases. In: Proceedings of the Ninth IEEE International Conference on
Tools with Artificial Intelligence, pp. 578–584. IEEE (1997)

9. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3),
263–286 (2001)

10. Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data min-
ing. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 206–215. ACM (2004)

11. Li, D., Bissyande, T.F., Klein, J., Le Traon, Y.: Time series classification with dis-
crete wavelet transformed data: insights from an empirical study. In: The 28th
International Conference on Software Engineering and Knowledge Engineering
(2016)

12. Li, D., Bissyande, T.F., Kubler, S., Klein, J., Le Traon, Y.: Profiling household
appliance electricity usage with n-gram language modeling. In: The 2016 IEEE
International Conference on Industrial Technology, Taipei, pp. 604–609. IEEE
(2016)

13. Li, D., Li, L., Bissyande, T.F., Klein, J., Le Traon, Y.: DSCo: a language modeling
approach for time series classification. In: The 12th International Conference on
Machine Learning and Data Mining, New York (2016)

14. Li, Y., Lin, J.: Approximate variable-length time series motif discovery using gram-
mar inference. In: Proceedings of the Tenth International Workshop on Multimedia
Data Mining, p. 10 (2010)

15. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic rep-
resentation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

16. Marteau, P.F.: Time warp edit distance with stiffness adjustment for time series
matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 306–318 (2009)

17. Senin, P., et al.: GrammarViz 2.0: a tool for grammar-based pattern discovery in
time series. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML
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Abstract. The logistic Generalized Estimating Equations (logistic-
GEE) models have been extensively used for analyzing clustered binary
data. However, assessing the goodness-of-fit and predictability of these
models is problematic due to the fact that no likelihood is available and
the observations can be correlated within a cluster. In this paper we
propose a new measure for estimating the generalization performance of
the logistic GEE models, namely ranking accuracy for models based on
clustered data (RAMCD). We define RAMCD as the probability that a
randomly selected positive observation is ranked higher than randomly
selected negative observation from another cluster. We propose a compu-
tationally efficient algorithm for RAMCD. The algorithm can be applied
for two cases: (1) when we estimate RAMCD as a goodness-of-fit cri-
terion and (2) when we estimate RAMCD as a predictability criterion.
This is experimentally shown on clustered data from a simulation study
and a biomarkers’ study.

Keywords: Clustered data · Generalized Estimating Equation ·
Goodness-of-fit · Predictability · Ranking accuracy

1 Introduction

Clustered data are common in biomedical, clinical, and social-science research
[2,9,14]. They are defined as data with a clustered/grouped structure. A cluster
(group) can consist of variable measurements of related subjects or repeated vari-
able measurements for a single subject such that in either case the measurements
may correlate.

To analyze clustered data, the correlation within clusters needs to be taken
into account. To this end, Liang and Zeger [10] proposed an extension of the
Generalized Linear Model (GLM) for clustered data with either dichotomous or
continuous outcomes [16]. They introduced Generalized Estimating Equations
(GEE) to estimate the parameters of the GLM model for dealing with correlated
outcomes.
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 14–25, 2016.
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The GEE models are widely used for analysis of clustered data, particularly
if outcomes are binary (see e.g., [8]). However, due to the fact that no likeli-
hood is available and the residuals (observed outcome minus expected terms)
are correlated within a cluster, there is no consensus how to evaluate the GEE
models.

This paper addresses the problem of evaluating logistic GEE models. The
problem has been considered by several authors (see e.g., [6,7,13]). As a result,
several criteria and tests have been proposed for assessing the goodness-of-fit of
logistic GEE models. However, most of them have their own shortcomings mak-
ing impossible having a commonly accepted criterion or test. Below we briefly
describe relevant work and then propose our solution.

Barnhart and Williamson [4] proposed a model-based and robust goodness-
of-fit test for logistic-GEE models. The method is based on partitioning the space
of covariates into distinct regions. The main disadvantage of this method is that
applying this method might be problematic when many continuous covariates
contribute to the model, or sample sizes are small.

Williamson et al. [15] proposed a Kappa-like classification statistic to assess
the model fit of GEE models with categorical outcomes. The disadvantage of the
statistic is that for two-class imbalanced data it usually tends to be close to zero
(i.e., it states that the model is poorly fitted). Moreover, since no distribution
of the statistic is given, interpretation of the statistic is not obvious.

One of the well-established goodness-of-fit statistics for GEE is an quasilikeli-
hood under the independence model information criterion (QIC) [12] which is the
extension of Akiake’s information criterion (AIC) [3]. As a goodness-of-fit and
model-selection criterion, the model with smaller QIC is preferred. Since QIC
is a function of both quasilikelihood (that depends on the size of the working
dataset) and the number of estimated parameters in the GEE model, it indicates
the quality of a model relative to other models, fitted with the same data set.
That is why it might have different ranges for different data sets. Therefore, QIC
is not an applicable criterion for comparing the goodness-of-fit of GEE models
for different data sets.

If we generalize the aforementioned goodness-of-fit test statistics and criteria
for logistic GEE models, we can derive the following shortcomings: (a) diffi-
culty of interpretation, (b) a relative range of the criterion values (i.e., the range
depends on the number of subjects and number of covariates in the model),
(c) restriction on the number and types of covariates in the model being eval-
uated, (d) bias in case of two-class imbalanced data, and (e) inapplicability to
indicate the predictability of the model being evaluated.

To propose a criteria that does not suffer from problems (a)–(e), we observe
that: (1) logistic GEE models are models trained on clustered data, and
(2) logistic GEE models output probabilities of being positive for test obser-
vations. The latter implies that logistic GEE models can induce an ordering
over those observations. Thus, logistic GEE models actually solve the bipartite
ranking task for clustered data [1]. The task is as follows: given labeled clus-
tered data, find an ordering on test observations so that positive observations
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are ranked higher than negative ones. The standard measure for the quality of
that ordering is ranking accuracy. However, it is not applicable for the logistic
GEE models, since it does not take into account the within-cluster correlation
that might be present, and thus it is not valid.

In this paper we extend the concept of ranking accuracy for clustered data.
We propose a new measure that we call ranking accuracy for models based on
clustered data (RAMCD). It is defined as a probability that a randomly selected
positive observation is ranked higher than randomly selected negative observa-
tion from another cluster. By the definition RAMCD employs the within-cluster
correlation in the data used. It focuses on estimating the generalization perfor-
mance of the logistic GEE models when ranking uncorrelated observations.

We show that RAMCD can be used as a goodness-of-fit criterion and a
predictability criterion (i.e., it can be used for estimating the generalization
performance of the logistic GEE models beyond training data). For the latter
we propose a modification to standard k-fold cross validation method applicable
for clustered data.

When comparing RAMCD with the presented standard goodness-of-fit test
statistics and criteria for logistic GEE models we observe that RAMCD does
not suffer from any of problems (a) to (e) (given above). The main reasons
are that: (1) RAMCD is a probability that is easy to interpreted; (2) RAMCD
does not impose any restriction on the models being evaluated; (3) RAMCD is
not biased for binary imbalanced data (since it indicates class separation); and
(4) RAMCD can be used as a goodness-of-fit criterion and a predictability cri-
terion.

The rest of the paper is organized as follows. Section 2 briefly formalizes the
bipartite ranking task for clustered data and logistic-GEE model. RAMCD is
introduced in Sect. 3. Section 4 provides the experiments and Sect. 5 concludes
the paper.

2 Bipartite Ranking Task and Logistic GEE Models

The bipartite ranking task assumes that we have n subjects. The i-th subject
is represented by a cluster of mi observations such that the tth observation,
t = 1, ...,mi is given with p covariates Xit1, ...,Xitp in R and a binary outcome
variable Yit. Hence, the i-th cluster is identified by Xi and Yi, where Xi =
(Xi1, ...,Ximi

)′ in which Xit = (Xit1, ...,Xitp) is 1 × p vector of covariates for
observation t for subject i and Yi = (Yi1, ..., Yimi

)′ is mi × 1 vector of binary
outcomes. For any i �= j we assume that the correlation between Yi and Yj

equals 0.0 while the components of each Yi may be correlated and the covariates
may be either fixed or changing at every cluster level. Given n clusters Xi and
Yi for i ∈ [1, n], the goal of bipartite ranking is to find a real-value ranking
function that maps any observation Xit to real number. The ranking function
can be used to induce ordering over the observations Xit.

The logistic-GEE model solves the bipartite ranking task, since it is essen-
tially a ranking function for clustered data. It describes the relationship between
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the covariates and outcome variables with the following equation:

log
(

πit

1 − πit

)
= β0 + βX ′

it , i = 1, ..., n, t = 1, ...,mi, (1)

where πit = E(Yit|Xit), β0 is the population averaged intercept term and β =
(β1, ..., βp) is the vector of population averaged (or marginal) coefficients.

The logistic-GEE model can be obtained by estimating the unknown regres-
sion coefficient vector γ = (β0,β). Estimating the coefficients can be done by
solving the following generalized estimating equations [10]:

n∑

i=1

(
∂πi

∂βh

)′
Vi

−1(Yi − πi) = 0, h = 0, ..., p, (2)

where, for i = 1, ..., n, πi = (πi1, ..., πimi
)′, Vi = Ai

1/2Ri(α)Ai
1/2 is the working

covariance matrix for Yi, Ai, is a diagonal matrix diag[πi1(1−πi1), ..., πimi
(1−

πimi
)], α is an m × 1 vector of unknown parameters, associated with the cor-

relation between outcomes Yit and Yis of cluster i, m = max(m1, ...,mn), and
Ri(α) is the working correlation matrix for Yi.

We note that the working correlation matrix Ri(α), parameterized by α,
might be defined in different ways depending on the nature of correlation between
outcomes Yit and Yis. Zeger and Liang [16] proposed a method for estimating
the parameter vectors α and γ in Eq. (3). The method operates by minimizing
the weighted sum of squared residuals using IRLS, described in [11].

3 Ranking Accuracy for Models Based on Clustered Data

In this section we introduce the ranking accuracy for models based on clustered
data (RAMCD). RAMCD is formally defined in Subsect. 3.1. The algorithm
for computing RAMCD is provided in Subsect. 3.2 together with a complexity
analysis. Subsect. 3.3 explains how the algorithm can be used for estimating
RAMCD as a criterion of the model’s goodness-of-fit and as a criterion for the
model’s predictability.

3.1 Definition

According Eq. (1) any logistic GEE model is essentially a scoring classifier. It
outputs a score, a probability πit, for any observation Xit. Given a test data of
n number of clusters 〈Xi,Yi〉, the probabilities πit induce an ordering over the
observations from the clusters. To judge the quality of the probabilities πit, we
judge the quality of the ordering, they induce, and compare that ordering with
the binary outcome variables Yit. The standard measure for such a comparison is
ranking accuracy [1]. It is defined as a probability that a randomly selected pos-
itive observation is ranked higher than randomly selected negative observation.
However, as it might be seen from the definition, the ranking accuracy does not
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take into account the within-cluster correlation that might be present and thus
it is not valid for clustered data. This calls for a new special ranking accuracy
applicable for models based on clustered data.

We introduce the ranking accuracy for models based on clustered data
(RAMCD) by analogy. Consider a set of observations Xit where each cluster is
present with exactly one observation. The number of such sets equals

∑n
i=1 mi.

The probabilities πit induce an ordering for each of these sets. To compare these
orderings with the binary outcome variables Yit we introduce RAMCD. RAMCD
is defined as a probability that a randomly selected positive observation is ranked
higher than randomly selected negative observation from another cluster. By the
definition RAMCD employs the within-cluster correlation in the data used and
focuses on estimating the generalization performance of the logistic GEE models
when ranking uncorrelated observations.

RAMCD is easy to interpret, since it is a probability (i.e., it ranges between
0 and 1). The value of 1.0 indicates that the orderings imposed correspond
completely to the binary outcome variables Yit in the clustered data, and the
value of 0.0 shows that the orderings are reversed to that with value of 1.0. The
value of 0.5 is the worst case. It indicates bad orderings that do not correspond
at all to the outcome variables. However, we note that RAMCD of 0.5 does
not always imply a random logistic GEE model (e.g., when the data is class-
imbalanced).

Below we introduce the exact formula for RAMCD. We first introduce statis-
tics imposed by the binary outcome variables Yit. Following the RAMCD defin-
ition we determine for any positive observation Xit the number Pit of negative
observations from other clusters:

Pit =
n∑

j=1,j �=i

mj∑

t=1

I{Yjt = 0} (3)

where I is the indicator function. The number Pit can be interpreted as the
number of pairs that consist of positive observation Xit and negative observation
from any other cluster. It is the same for any positive observation in cluster i.
This implies that the number Pi of pairs for all the positive observations in
cluster i is equal to:

Pi =
mi∑

t=1

PitI{Yit = 1} (4)

and the total number P of pairs of observations over all the clusters imposed by
the binary outcome variables Yit is equal to:

P =
n∑

i=1

Pi (5)

Once the statistics imposed by the binary outcome variables Yit have been
defined, we introduce statistics for comparing the orderings imposed by probabil-
ities πit. We assume that for any observation Xit we have a probability estimate
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πit provided by a logistic GEE model. We rank the observations Xit according
to πit. To judge whether a particular positive observation Xit from cluster i is
ranked properly we compute the number CP it of correct pairs produced by the
ranking through combining with all negative observations Xjt from all other
clusters j such that j �= i. The number CP it is given by:

CPit =
n∑

j=1,j �=i

mj∑

tj=1

(I{πit > πjtj} +
1
2
I{πit = πjtj})I{Yjtj = 0} (6)

Number CP it does not stay the same for each positive observation in cluster i.
Hence, the number CP i of all correct pairs produced by combining all the positive
observations Xit from cluster i with all the negative observations Xjt over all
the clusters j given that j �= i is equal to:

CPi =
mi∑

t=1

CPitI{Yit = 1} (7)

and the number CP of all the correct pairs produced by the ranking is:

CP =
n∑

i=1

CPi (8)

Thus, formally our RAMCD with respect to the ranking produced is defined
equal to:

RAMCD =
CP
P

(9)

3.2 Algorithm

Below in Fig. 1 we provide an algorithm for RAMCD. Given data with n num-
ber of clusters 〈Xi,Yi〉, and a vector πi of observation probabilities πit for each
cluster 〈Xi,Yi〉, the algorithm computes RAMCD induced by the observation
probabilities πit w.r.t. outcome variable Yit. The main steps are as follows. First,
the algorithm computes the statistics imposed by the binary outcome variables
Yit: it computes number Pi for each cluster i (see formula (4)) and total num-
ber P (see formula (5)). Then, the algorithm computes statistics necessary for
comparing the orderings imposed by probabilities πit. For that purpose the obser-
vations Xit over all the clusters are sorted according to πit in decreasing order
of magnitude into list Lπ. The algorithm scans the sorted list Lπ to compute
numbers CP it, CP i, and CP (initially set equal to 0). For list scanning it keeps
a counter Ci for all the clusters i ∈ [1, n] that represents the number of all
correct pairs that start with a positive observation from cluster i and end with
a negative observation from another cluster given that both observations have
not been visited in list Lπ. Therefore, Ci is initialized equal to Pi

mi
which is the

number of pairs derived by combining a positive observation from cluster i with
all possible negative observations from other clusters.
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Fig. 1. Algorithm for computing ranking accuracy for models based on clustered data.

After the initialization the algorithm sequentially visits the observations Xit

in the sorted list Lπ. For each observation Xit the actions taken depends on the
output variable Yit. If the observation is negative (Yit = 0), then the algorithm
decrements the counter Cj for each cluster j different from cluster i. This is
to indicate that all the positive observations Xjt with probability πjt that is
lower than πit cannot form a correct pair with observation Xit according to
the ordering imposed on Lπ. If the observation is positive (Yit = 1), then the
algorithm assigns the counter value Ci to the number CP it and then this number
is added to number CP i according to formula (7). Once all the numbers CP i

have been computed, the algorithm computes number CP (see formula (8)) and
then outputs the RAMCD (see formula (9)).

The algorithm for RAMCD is computationally efficient. Its space complexity
is O(nm), where n is the number of clusters and m is the size of the clusters.
This complexity is due to the sorted list Lπ that has to be explicitly maintained
by the algorithm. The time complexity is O(nmlog2(nm)) and it coincides with
the time complexity of the sorting algorithm1. We note that the time complexity
of scanning list Lπ is linear in the size of the list (nm) and that is why it does
not influence the asymptotic time complexity.

1 We assume the usage of efficient sorting algorithms like merge sort.
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3.3 Goodness of Fit and Predictability

The ranking accuracy for models based on clustered data (RAMCD) can be used
as a criterion of model’s goodness-of-fit and as a criterion for model’s predictabil-
ity. If a logistic GEE model has been trained and tested on the same data, then
RAMCD is a goodness-of-fit criterion. In this case RAMCD estimates how the
logistic GEE model fits the data when only uncorrelated observations are taken
into account.

If a logistic GEE model has been tested using k-fold cross validation on the
data, then RAMCD is a predictability criterion. However, the randomization
part of the cross validation has to be controlled such that observations within
any cluster are being selected for only one folder. In this way we do not introduce
additional bias when computing probabilities πi due to the within-cluster corre-
lation. This guarantees that the algorithm estimates RAMCD that indicates the
predictability of the GEE model beyond training data when only uncorrelated
observations are taken into account.

4 Experiments

In this section we present the experiments with RAMCD and QIC on simulated
data and biomarker data. The experiments are employed to compare these two
criteria.

4.1 Experiments with Simulated Data

This subsection presents two experiments with RAMCD of logistic GEE mod-
els on a simulated data. The simulated data is described by 30 time-dependent
covariates (X1, X2, . . . , X30). It contains 500 clusters with maximum sizes of
m = 10 and autoregressive working correlation structure of order 1 with corre-
lation of 0.25.

The first experiment is in the context of the goodness-of-fit test. We compare
RAMCD and QIC in a function of the GEE model complexity. For that purpose
we add the covariates X1 to X30 one by one into the GEE model and each time
plot the RAMCD and QIC in Fig. 2. The Figure shows that the RAMCD and
QIC follow similar trends in a function of the model complexity. There exists
however some fluctuations of RAMCD when it is close to 0.5. In these cases GEE
models are under-fitted and exhibit random performance which is not captured
by QIC.

The second experiment is in the context of model selection: we employ
RAMCD for forward feature selection when it is used as a goodness-of-fit crite-
rion and when it is used as a predictability criterion. In the first case RAMCD
is estimated on the simulated data and it is denoted as RAMCD. In the second
case RAMCD is estimated using one-cluster-out cross validation on the simu-
lated data and it is denoted as RAMCD-CV. In both cases we compare the
results of the model selection with those obtained by QIC.
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Fig. 2. QIC and RAMCD as functions of GEE model complexity.

The process of forward feature selection is sequential; i.e., the covariates are
added one by one. It is guided by a hill-climbing search which for RAMCD
(QIC) adds that covariate that maximizes (minimizes) the RAMCD (QIC) of
the resulted GEE model. The process stops when further improvement is not
possible.

Table 1. Forward feature selection for logistic-GEE model using RAMCD, RAMCD-
CV, and QIC. Each box represents the selected covariate and the value of selection
criterion (RAMCD, RAMCD-CV, or QIC). The bold variables are those that are not
selected.

Step RAMCD RAMCD-CV QIC Step RAMCD RAMCD-CV QIC

1 X18 (0.590242) X18 (0.581824) X18 (3791.772) 16 X25 (0.877261) X25 (0.873539) X25 (2464.293)

2 X17 (0.621768) X17 (0.614062) X17 (3732.281) 17 X27 (0.881865) X27 (0.878116) X27 (2425.637)

3 X16 (0.649819) X16 (0.643470) X16 (3658.207) 18 X26 (0.886264) X26 (0.882337) X26 (2387.744)

4 X19 (0.672773) X19 (0.666522) X19 (3587.769) 19 X9 (0.889523) X9 (0.885488) X9 (2360.825)

5 X15 (0.696743) X15 (0.690881) X15 (3502.061) 20 X29 (0.890200) X29 (0.885943) X29 (2357.297)

6 X20 (0.718667) X20 (0.713321) X20 (3422.789) 21 X2 (0.890596) X6 (0.886166) X6 (2355.108)

7 X13 (0.743073) X13 (0.737916) X13 (3325.778) 22 X6 (0.890973) X28 (0.886391) X28 (2353.878)

8 X14 (0.759801) X14 (0.754877) X14 (3241.496) 23 X28 (0.891342) X2 (0.886536) X2 (2352.896)

9 X22 (0.778013) X22 (0.773413) X22 (3141.077) 24 X5 (0.891657) X5 (0.886586) X5 (2352.300)

10 X21 (0.798329) X21 (0.794059) X21 (3028.665) 25 X30 (0.891823) X4 (0.886572) X7 (2352.430)

11 X12 (0.818305) X12 (0.814269) X12 (2905.000) 26 X4 (0.891994) X30 (0.886520) X4 (2352.941)

12 X23 (0.834424) X23 (0.830658) X23 (2801.273) 27 X7 (0.892142) X7 (0.886462) X30 (2353.607)

13 X24 (0.848698) X24 (0.844904) X24 (2698.514) 28 X1 (0.892164) X1 (0.886271) X8 (2355.205)

14 X11 (0.861617) X11 (0.858049) X11 (2600.898) 29 X8 (0.892181) X8 (0.886086) X1 (2356.971)

15 X10 (0.870470) X10 (0.866909) X10 (2527.606) 30 X3 (0.892134) X3 (0.885836) X3 (2359.079)

The results of model selection for RAMCD, RAMCD-CV, and QIC are pro-
vided in Table 1. The Table shows that RAMCD-CV and QIC are rather con-
sistent: they lead to the same ordered set of covariates on the simulated data
when the process of feature selection stops. This means that RAMCD-CV and
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QIC result in the same GEE model. However, if we continue to add covariates
after the stopping condition, the RAMCD-CV and QIC become less consistent.
As expected, the values of RAMCDs are higher than those of RAMCD-CVs at
each step which results in a bigger set of selected covariates. In this context we
note that RAMCD is less consistent with RAMCD-CV and QIC than those two
measures together.

4.2 Experiments with Biomarkers’ Data

This subsection presents a model-selection (biomarker selection) process guided
by RAMCD-CV on the data from the TIME-CHF study [5]. The TIME-CHF
study (The Intensified versus standard Medical therapy in Elderly patients
with Congestive Heart Failure) includes 499 patients aged 60 years or older,
with left ventricular ejection fraction (LVEF) < 45% and NYHA II or more,
from 15 centers in Switzerland and Germany. Patients were followed for 6 pre-
specified visits after baseline, 1st, 3rd, 6th, 12th and 18th month. Six biomark-
ers, PREA (prealbumin), SST2 (soluble ST2), IL6 (Interleukin-6), hsCRP (high
sensitivity C-reactive protein), GDF15 (growth differentiation factor 15), SFLT
(soluble fms-like tyrosine kinase-1,) and BPsyst (Systolic blood pressure) and
LVEF were measured at every visit and dosages of a heart failure (HF) drug
Loop (Loop diuretics per se) were available on a daily basis. Patients were fol-
lowed up for 19 months and the outcome variable for ith patient at month t,
Yit, i = 1, ..., 499, t = 1, ..., 19, takes the value of one if the patient experienced
HF hospitalization or death at the given month, otherwise zero. In this setup,
more weight is given to the outcome death (weight 2 for death and 1 for the
other observations).

The medication covariate Loop is down-sampled to monthly values by tak-
ing the average drug dosage during the previous month. Since the biomarkers,
BPsyst and LVEF have been recorded just in six visits; obviously for these six
measurements, the covariates gets the exact value, and between these six vis-
its we used last observation carried forward method (LOCF) and put the value
of the covariates of the previous visit. There exist eight fixed covariates that
measured only at the baseline; Age, Gender (1 = male, 0 = female), Coronary
artery disease (CAD), Kidney-disease, Diabetes, Anemia, Charlsonscore (Charl-
son comorbidity score) and Rales, where CAD, Kidney-disease and Diabetes are
binary variable that indicates whether the patients are suffering from these dis-
eases or not (1 = yes, 0 = no) and Rales (1 = abnormal lung sounds, 0 = normal
lung sounds).

The goal of the study is to select the best subset of covariates (biomark-
ers) to explain the variation of the probability of HF hospitalization and death.
To this end, we apply a forward feature selection process using the proposed
RAMCD-CV and QIC as model-selection criteria to find the best GEE model.
Table 2 shows the selected covariates for the GEE model at every step of for-
ward selection process based on RAMCD-CV and QIC. Both criteria lead to
the same selected subset of covariates (GDF15, SST2, CAD, Loop, hsCRP,
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Table 2. Selected covariates at each step of forward selection method using RAMCD-
CV and QIC as model selection criteria.

RAMCD-CV-Covariates RAMCD-CV p-values QIC-Covariates QIC p-values

Intercept 0.5 0.000000 Intercept 1917.96 0.000000

GDF15 0.738816 0.000002 GDF15 1753.53 0.000002

SST2 0.767409 0.000001 SST2 1691.76 0.000001

CAD 0.775987 0.003211 Loop 1660.43 0.000060

Loop 0.784891 0.000060 CAD 1649.28 0.003211

hsCRP 0.790796 0.031393 BPsyst 1645.50 0.018600

Age 0.794360 0.020222 Age 1639.86 0.020222

BPsyst 0.795732 0.018600 hsCRP 1635.74 0.031393

Rales 0.796831 0.073626 Rales 1635.28 0.073626

Age, BPsyst and Rales), however, the selected subsets were obtained in dif-
ferent orders for each criterion. The estimated coefficients and corresponding
p-values of selected covariates, when using RAMCD-CV as a model-selection,
are presented in Table 2.

5 Conclusion

In this paper we proposed RAMCD as a new measure for estimating the general-
ization performance of logistic GEE models. RAMCD was defined as a probabil-
ity that a randomly selected positive observation is ranked higher than randomly
selected negative observation from another cluster. We showed that RAMCD
focuses on estimating the generalization performance of the logistic GEE mod-
els when ranking uncorrelated observations. We proposed a computationally effi-
cient algorithm for RAMCD and showed that it can be applied for two cases:
(1) when we estimate RAMCD as a goodness-of-fit criterion and (2) when we
estimate RAMCD as a predictability criterion. The algorithm was experimen-
tally tested on clustered data from a simulation study and a biomarkers’ study.
The experiments showed that RAMCD is consistent with the QIC criterion.

We compared RAMCD with the standard goodness-of-fit test statistics and
criteria for logistic GEE models: we observed that RAMCD does not suffer from
any of their problems. The main reasons are that: (1) RAMCD is a probability
that is easy to interpreted; (2) RAMCD does not impose any restriction on the
models being evaluated; (3) RAMCD is not biased for binary imbalanced data
(since it indicates class separation); and (4) RAMCD can be used as a goodness-
of-fit criterion and a predictability criterion.

Finally, we note although RAMCD has been initially designed for the logistic
GEE models, it is applicable to any model for bipartite ranking based on clus-
tered data. This is due to the fact that RAMCD employs model’s probabilities
and data labels; i.e., it does not use any internal information from the model
being tested. Thus, we conclude that RAMCD is a general measure for models
for bipartite ranking based on clustered data.
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Abstract. This paper introduces The Morality Machine, a system that
tracks ethical sentiment in Twitter discussions. Empirical approaches to
ethics are rare, and to our knowledge this system is the first to take a
machine learning approach. It is based on Moral Foundations Theory, a
framework of moral values that are assumed to be universal. Carefully
handcrafted keyword dictionaries for Moral Foundations Theory exist,
but experiments demonstrate that models that do not leverage these
have similar or superior performance, thus proving the value of a more
pure machine learning approach.
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1 Introduction

There has been growing interest in social sciences research to leverage intelli-
gent data analysis to automatically gather and analyze large amounts of data.
A potentially interesting yet relatively unexplored area is ethics, which so far
has been approached more theoretically rather than empirically, especially with
machine learning methods. The instantaneous and opinionated nature of Inter-
net media such as Twitter provides an immediate outlet for emotions, opinions,
information and interactions, loaded with moral perspectives [14]. Accordingly,
Twitter is a promising data source for interdisciplinary research on ethics. How-
ever, most social science research examines the diffusion of information rather
than the content [1,7,17]. Even when content is analysed, this has mostly been
focused on commercial or political motivations [2,18]. Likewise within intelli-
gent data analysis, social media monitoring is a popular topic, but it is typically
limited to sentiment or opinion mining for business applications, and is lacking
theoretical social science foundations. Hence, there is room for an approach that
combines morality research with social network content analysis.

The main purpose of this study is to provide an overview of The Morality
Machine, a proof of concept system that detects and monitors moral sentiment
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 26–37, 2016.
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in Twitter communications, using a text classification approach. It is based on
an ethical framework from social psychology called Moral Foundations Theory
(MFT), which assumes universal moral foundations exist that can be used to
categorize and study ethical problems and discourse [8,11].

As an example debate, this study will explore public opinion on austerity
measures in the Eurozone, and specifically the discussion of the Greek exit
of the Euro (the ‘Grexit’). Austerity is a good topic to explore because it is
often discussed in the context of moral hazard [10]. Some state that by bailing
out Southern European nations that have shown lack of fiscal discipline, it is
encouraging such behaviour rather than criticising it, and that the irresponsible
behaviour of these governments is the root cause of the European financial crisis
[4]. Conversely, others point out that richer countries have been main benefi-
ciaries of economical support to poorer countries in the past, and that all EU
countries have a duty to look after each other and protect the integrity of the
EU. Consequently, the Grexit discussion is framed in a moral light, where ‘good’
and ‘bad’ nations and policies are distinguished, and there is no shortage of
opinions. This austerity dispute will be used to contextualise the methodology
since it has the potential to engage all moral foundations.

Related work that classify text into moral foundations typically use dictio-
nary based techniques, meaning that large word lists grounded in psychological
theory must first be created and validated manually, as opposed to being discov-
ered automatically by machine learning [2,21,22]. When using these dictionaries,
frequencies of morally related words generate moral loadings for texts [5,6,18].
However, the relative importance of these frequencies for detecting certain moral
foundations are not derived from evidence. Thus, machine learning algorithms
are useful since they can automatically determine lexical indicators for each
foundation, without the need to create a dictionary beforehand. Additionally,
lexical indicators for each moral foundation can be gleaned from the algorithm,
which can be used for further research into moral expressions.

To our knowledge, this is the first study that aims to detect and monitor
Moral Foundations using a machine learning approach. It is also the first study
to examine moral expressions of the public regarding the Grexit. It uses generally
accepted machine learning techniques to explore moral expressions in a natural
real world setting, through the use of the Twitter platform. Specifically, this
study will determine if supervised machine learning models are able to classify
Tweets into moral foundations at an acceptable accuracy, potentially without
relying on handcrafted dictionaries.

The remainder of this paper is structured as follows; Sect. 2 provides back-
ground on Moral Foundation Theory and text classification. Our methodology
is outlined in Sect. 3 and experiments and results are described in Sect. 4. The
paper ends with a discussion (Sect. 5) and conclusion (Sect. 6).

2 Related Work

Early ideas in moral reasoning originate in Greek Philosophy. Contemporary
moral research asserts that the backbone of our moral decisions lie in a com-
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bination of biological and environmental factors [18]. These inert, deep-seated
motivations can serve different social functions. This section provides an overview
of Moral Foundations Theory (MFT), a framework of assumed universal moral
values, and applies it to the case study of the Grexit. It also examines previous
research on content analysis using MFT.

2.1 Moral Foundations Theory

The assertion behind MFT is that intrinsic, cognitive responses in individuals
can be used to explain the variation in human moral reasoning across cultures
[12]. Hence, the theory posits that there is an innate and universal morality which
transcends cultural boundaries. This universal morality can be categorised into
different foundations, which can be thought of as ‘moral building blocks’. Each
foundation is fostered within cultures, which serves the purpose of constructing
narratives, virtues and institutions. The fostering of foundations differs between
groups, where some may emphasize one foundation over another [8]. The founda-
tions can be held simultaneously by individuals and societies, and may conflict
with one another.

In the context of this research, six foundations will be used to classify Twitter
data. Although there are normally five foundations which form the basis of MFT,
a sixth (Liberty - Oppression) has previously been included in the model for
other politically driven studies, so we included it [8]. The foundations are briefly
described in Table 1, along with example Tweets. The moral foundation which
drives opinions can stem from society at large, smaller communities, or individual
moral preferences. As such, this study asserts no preference for a specific moral
standpoint, as its main focus is learning to classify Grexit Tweets into moral
foundations, as a case study for empirical ethics. Also by definition a framework
is framed by an underlying theory, which should not be seen as objective or value
free. MFT provides a useful framework to distinguish ethical statements, but we
do not want to imply it is the only valid one. See for example [20] for a critical
review.

2.2 Moral Foundations Text Analysis

In social sciences, dictionary based approaches are predominantly used for text
classification. A Moral Foundations Dictionary (MFD) is also available. This
dictionary gives linguistic indications for the five basic moral foundations (hence
‘liberty’ is excluded). The MFD was created for use with the Linguistic Inquiry
Word Count (LIWC) program [9]. LIWC is one of the most widely used social
science tools for text analysis and is also commonly used for Tweet classification
[6,22]. Yet, there is no current research which uses the MFD with LIWC to
detect moral foundations in Tweets.

Instead, textual analytics using the MFD with LIWC has been applied in
analysis of long texts such as news articles and web blogs, where rhetorical moral
assessments were assigned to each text [6,18]. The analysed texts are authored by
opinion leaders, such as news media or bloggers, rather than the general public.



The Morality Machine: Tracking Moral Values in Tweets 29

Table 1. Descriptions of moral foundations

Foundation Description Tweets

Care, Harm The desire to cherish protect others,

identification of a victim and

sympathy with him

European control of the IMF is helping

Greece

Greece runs out of funding options

despite Euro zone reprieve

Fairness, Cheating The notions of justice and rights,

applied to shared rules in a

community. Relates to reciprocal

altruism

Greece forced to sell assets and cut

spending to pay back debts to EU

It’s easy for the Dutch to go hard on

‘Greece’

Loyalty, Betrayal Relating to ‘in-groups’; friends, family,

community, as well as showing

virtues of patriotism

If I had to choose between #Greece

and #Germany, I know which way

I’d go...

Greece may stay in the Eurozone for

the time being there are no

guarantees it can become a

responsible member

Authority, Subversion Submission to and respect for

legitimate authority and traditions

Greece says Euro zone approves reform

plan

German elites are willing to let the

Euro crash to guarantee their own

political survival

Sanctity, Degradation Stems from feelings of disgust and

contamination. Relating to the

virtue that ‘the body is a temple’,

and should not be defiled

There really is no space inside the Euro

for a radical left government

The four-month extension on the Greek

debt lowers the risk of Greece

leaving the Euro zone

Liberty, Oppression The resentment of tyranny and desire

for autonomy. This is often in

tension with the foundation of

‘Authority’

Greece needs a path out of the Euro

Greece really might leave the Euro

For example, research on the Ground Zero Mosque showed that blog authors
showed more lexical similarity among virtuous terms for the foundations care,
fairness and authority [6]. One can then gather that expression of the other
foundations may be constructed differently amongst cultural groups. Due to the
differences in textual expressions of moral opinion, dictionary based approaches
can be problematic when drawing conclusions about moral reasoning. And given
that the dictionary is hand built rather than learned, it is very dependent on it
being correct and complete. All in all, the use of MFT and MFD in text analysis
is in its infancy, and there is notable room for improvement.

3 Experiments and Results

In this section we provide an overview of the experiments and results, and then
review each step of the process and the accompanying results in more detail.

3.1 Overall Procedure

Tweets were collected, and for a random sample frequent keywords were gener-
ated as well as bigrams, and bigrams and Tweets were labelled. This gave us 3
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data sets: just raw data, raw data with bigrams and raw data with the moral
foundations dictionary (MFD). We created two variants of each, one with and
one without stop words removed. Skipping stop word removal worked best, so
on this data we then carried out learning curve experiments to assess the impact
of training set size. For the best performing variants we ran an additional five
fold cross validation test. The best model was then deployed to the full data set
minus the labeled Tweets to illustrate how the model can be used to track moral
sentiment on new data.

3.2 Data Collection

In order to gather initial public reactions to Eurozone meetings, English lan-
guage Tweets with keywords ‘Euro’ and ‘Greece’ were collected from three spe-
cific times in 2015, using a custom built streaming Twitter data collector. The
search term ‘Grexit’ was omitted, as it is more prominent in the financial sector,
so it excludes Tweets from those who are not familiar with the term. Moreover,
‘grexit’ tends to carry a certain connotation, focusing only on Greece leaving
the Eurozone, rather than economic issues as a whole. The exact dates, num-
ber of Tweets and events are outlined in Table 2. Each week of data collection
yielded between 4000 and 7000 Tweets, resulting in a total of 18,986 Tweets. The
duplicate entries were then removed (including re-Tweets), leaving only unique
Tweets (N = 8,292). Note all our coding was done with in Python including the
Python Natural Language ToolKit [3].

Table 2. Data collection time periods

Data set Date Range N Event

1 24/02/2015 to 03/03/2015 7,037 Eurozone Finance ministers agreed to
extend the Greek bailout for
another 4months

2 28/04/2015 to 04/05/2015 4,856 Eurozone Finance ministers meet to
discuss reform packages from
Athens

3 11/05/2015 to 23/05/2015 7,066 Athens announces repayments to
International Monetary Fund to
avoid default

3.3 Data Preparation

Tweets in our system are primarily represented as distributions across sets of
keywords (bag of words) and these distributions are then fed into the classifiers. A
baseline set of keywords to be used is the Moral Foundations Dictionary (MFD).
In our machine learning approach we can already improve over basic MFD label
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counting because the relationship between MFD keywords and moral foundations
classes is learned. In addition we generate keyword sets from the data.

First, data was changed to lower case and hexadecimal codes for emojis were
removed, leaving plain text for coding and analysis. Also URLs were replaced
with the code ‘URL’ in order to determine the frequency of link sharing, rather
than the most popularly shared links. Next, generated frequency counts for the
100 most common words and 100 most common bi-grams (pairs of consecutive
words) were produced for efficiency. Optionally, once the relevance of the data
was confirmed by Ethics scholars, a list of common stop words was applied. Stop
words contain the most common words in a language and corpus. Removal of
these words often yields more accurate predictions in linguistic processing and
classification [19]. The most common words were examined without removing
stop words, then the most frequently Tweeted words in the data set were added
to a standard stop word list, including ‘URL’, ‘greece’ and ‘euro’. We kept the
raw version of the data and keyword sets as well.

The next step was to manually label a random selection of 2000 Tweets
with the correct moral foundation. The codes were initially based on the MFD,
where related words and synonyms were used to guide classification. Beginning
with a dictionary-based approach was useful in order to obtain a more tangible
picture of lexical indicators for each of the foundations. However, since the MFD
didn’t include liberty, a list of synonyms for this foundation was created. Then,
detailed descriptions of each of the foundations were used to better understand
the nuances in each foundation, as outlined in the work of Graham et al. [8]
and Haidt [11]. So the combination of specific, related words as well as detailed
descriptions of the foundations were used to code the Tweets.

Manual labeling of Tweets is a challenging task, given the inherent ambiguity
of some Tweets, the short length of Tweets, the potential of multiple moral
foundations being covered in Tweets and use of writing styles such as irony,
sarcasm, satire or mere trolling. We choose not to filter out hard to label Tweets
as this could bias the sample, nor did we want to include an ‘unknown’ category,
as it would limit the usefulness of the model for monitoring. We considered
approaching it as a multi-label problem, however in our view there were far
more cases where the Tweet was simply hard to label due to ambiguity than that
there was sufficient evidence to conclude that multiple foundations were being
addressed, also given the short lengths of Tweets in contrast to the longer texts
(blog posts, articles) studied in related work. For similar reasons we discounted
an approach where we would have scored the Tweets on the various dimensions
to a particular degree. So we kept it simple by manually labeling each Tweet
with a single label. These other approaches are indeed interesting areas for future
research, but we decided to generate baseline results first.

The most frequent class occurred in 21 % of cases, thus a majority vote base-
line model has an accuracy of 21 %. Two coders also labeled a set of bigrams
(N = 112) to determine the degree which coders could agree on moral classes.
The coders agreed on 66 % of the classifications. It is acknowledged that coding
bigrams more difficult than coding Tweets, yet it gives an indication of inter-
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coder agreement in classifying moral foundations with little contextual informa-
tion. Therefore, any accuracy higher than 21 % is an improvement of the classifier
over selection of the most frequently occurring class, and any accuracy around
66 % would show that the classifier is matching human classification of bigrams.

4 Modeling and Evaluation

Previous research using the MFD was conducted on long texts, examining moral
loadings and linguistic relations between these texts [6,18]. Since Tweets are
short, single-label output (one classification per Tweet) was chosen over multi-
ple labels. We used Multinomial Naive Bayes (NB) and Maximum Entropy (ME)
as classification algorithms [15]. The most relevant key difference for this study
relates to the independence of features, where NB assumes conditional indepen-
dence and ME can exploit contextual information (such relationships between
words) for classification. Despite the fact that the independence assumption is
typically violated, Naive Bayes has shown in general to be a robust classification
method, especially for noisy, high variance problems [16].

The data was split into a training (N = 1,300) and a test set (N = 700). Classi-
fiers were built on the raw data (no stop word removal) and the clean data (stop
word removal). NB showed higher overall accuracy (raw = 65 %, clean = 64 %)
than ME (raw = 57 %, clean = 55 %). Removing stop words did not seem to
increase classifier accuracy for either algorithm. To study the impact of train-
ing set size, we trained classifiers on raw data training sets of increasing size,
with increments of 100 Tweets, up until a maximum of 1300, whilst keeping
the test set constant. We also varied the feature set between the raw features,
raw features with the MFD and raw features with the bigrams. The results in
Fig. 1 show that NB performance is not significantly improved by adding the
dictionary, and performance drops if bigrams are added. Detailed results for ME
are omitted for brevity, but ME performs best with the addition of bi-grams,
achieving 57 % accuracy, and for training set sizes of 300 instances or more, NB
outperforms ME. Under almost all conditions, the NB classifier outperformed
ME, shown in Fig. 2 (best feature set for each). Over time, the learning curves
of both classifiers flattens. It is therefore expected that additional training data
will not improve classifier accuracy.

These results were confirmed by a 5-fold cross-validation comparison, where
the mean accuracy for NB was 64.7 % (SD = 0.03, p = .000) compared with the
ME mean accuracy of 54.2 % (SD = 0.02, p = .000). The difference in classifier
accuracy is significant (T = 13.9, p = .000). Overall, the NB classifier is 10 %
points more accurate than ME in classifying Tweets into moral foundations.

Confusion matrices, precision, recall and F measures are provided in Tables 3
and 4 for this model (ME results are omitted for brevity). These tables refer to
a subsample of Tweets used for training and testing the model. The most fre-
quently correctly classified foundation was care (N = 108), followed by authority
(N = 87). Liberty was the least often correctly classified foundation (N = 38).
Despite care being most frequently classified correctly, the precision, recall and
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Fig. 1. NB classifier test set accuracy for different training set sizes

Fig. 2. NB and ME classifiers test set accuracy for different training set sizes

F-measures in Table 4 show otherwise. Taking the relative accuracy into account,
authority was the most accurately classified (F = 0.73), followed by sanctity
(F = 0.66) and care (F = 0.63). Fairness was the least accurate (F = 0.58). There-
fore, this model overall works best in identifying Tweets stemming from the
foundation of authority.

Fig. 3. Classification of all Tweets Fig. 4. Classification of Tweets per
time period
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Table 3. Naive Bayes Confusion Matrix, comparing actual frequencies (rows) and
predicted frequencies (columns)

Authority Care Fairness Liberty Loyalty Sanctity

Authority <87> 13 2 . 9 4

Care 6 <108> 7 5 13 7

Fairness 8 25 <61> 7 23 6

Liberty 4 12 4 <38> 10 2

Loyalty 10 15 5 1 <77> 8

Sanctity 10 23 3 . 14 <73>

Table 4. Naive Bayes accuracy for each class

TP FN FP Precision Recall F-Measure

Authority 87 28 38 0.696 0.757 0.725

Care 108 38 88 0.551 0.74 0.632

Fairness 61 69 21 0.744 0.469 0.575

Liberty 38 32 13 0.745 0.543 0.628

Loyalty 77 39 69 0.527 0.664 0.589

Sanctity 73 27 27 0.73 0.593 0.655

Total 444 256 256

4.1 Deployment

The most accurate algorithm, with the least training time required (NB, raw
data, no MFD) was trained with all labeled data (N = 2000). Following learning,
the model was used to classify the remaining Tweets (N = 16,986). Deployment of
the model enabled analysis of changes in moral concerns following key meetings
regarding the Greek exit of the Eurozone. There were 3 different time frames
where Tweets were collected. Figure 3 demonstrates that Tweets were classified
most frequently in the care category (N = 5068). Hence, over the first half of
2015, individuals on Twitter showed care as the primary moral concern in the
Grexit debate, authority as the second, and loyalty as the third. However, over
time, the predominant moral underpinning of the rhetoric can change. Indeed,
Fig. 4 shows that in the first and third time periods, care was the most common
concern, whereas in the second time period, authority dominated the discussion
overall. In all time periods, liberty was the least discussed foundation, especially
in data set 2, where the foundation barely emerged. Thus, the hypothesis that
liberty is a necessary foundation for this research is disconfirmed. Application
of the classifier shows that people on Twitter are not primarily concerned with
liberty or oppression of any party in this debate.

The running means of the Tweets made through the data sets shown in
Figs. 5, 6 and 7. These means show the discourse over the number of Tweets,
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Fig. 5. Running Mean for data set 1 Fig. 6. Running Mean for data set 2

disregarding the time and day they were sent. This compensates for different time
zones and allows time for news to disseminate. In Fig. 5, care has two dominant
peaks, despite initial discussion referring to authority. Towards the end of the
week, loyalty and fairness was behind the discussion. Figure 6 shows that in the
first Tweets of data set 2, authority is a key concern, but is replaced with care
in the later Tweets. In the final data set (see Fig. 7) there are multiple points
of interest. The first peak shows that authority drove the early Tweets, followed
by loyalty. At the end of the discussion, care became the dominant foundation.
Liberty was not a relative point of concern in any data set.

Fig. 7. Running Mean for data set 3

One key finding is that the data shows that public discussion is not in line
with analysts moral view of the situation, as shown especially in Figs. 6 and
7. Economic analysts tend to approach Grexit discussion from angles of fairness
and loyalty, such as the potential loyalty of Greece shifting beyond the European
Union if they were to leave [13]. The public discussion frequently centers on
the foundation of care, referring to helping Greece with extensions or bailouts.
Loyalty was indeed more present than fairness, but clearly care and authority
were salient moral foundations especially in data sets 2 and 3.

5 Discussion

The results show that the NB classifier is a good starting point for attributing
moral foundations to Tweets. The three most accurately classified foundations
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(care, authority and sanctity) agree with previous research [6]. The learning
curves show that coding more than 2,000 Tweets for training a classifier will not
improve accuracy, at least for the feature sets and ground truth used.

For time periods monitored care is the primary moral concern of the pub-
lic, which is somewhat in contrast to the dominant economic views that are
concerned more with loyalty and fairness.

Perhaps most surprisingly, results also showed that addition of words from
the MFD did not improve model accuracy. Therefore, the usefulness of the MFD
in a frequency based classification approach is called into question. If using this
dictionary is desired in future research, improvements to the dictionary should
be made by including words identified as the most informative features follow-
ing training the NB algorithm. However, the efforts in improvement of the MFD
may only have marginal implications for model accuracy. It may be prudent
to discontinue the MFD, since these dictionaries are costly to build and main-
tain, and a pure machine learning approach has similar accuracy and uses less
assumptions.

6 Conclusion

This study presents several experiments to determine if machine learning meth-
ods can be used to accurately detect moral foundations in Tweets regarding the
Grexit. A Naive Bayes (NB) model trained on raw data was 10 % points more
accurate than the a Maximum Entropy (ME) model, with best results achieved
on raw data without bigram or Moral Foundations Dictionary (MFD) attributes.
Specifically, the fact that the NB model doesn’t require the handcrafted MFD
is an interesting result.

At this point, it is difficult to compare with other moral foundation classifica-
tion research, as thus far none have used a machine learning approach. However,
the accuracy of the NB model is comparable to the agreement of moral classifi-
cation between humans for bigrams (64.7 % compared with 66 %, respectively).
Moreover, the model is roughly 3 times more accurate than the ZeroR measure
of 21.4 %. Hence, using a NB classifier is a good starting point for categorization
of Tweets into their dominant moral foundations.
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Abstract. Probabilistic relational models (PRMs) extend Bayesian net-
works (BNs) to a relational data mining context. Just like BNs, the
structure and parameters of a PRM must be either set by an expert or
learned from data. Learning the structure remains the most complicated
issue as it is a NP-hard problem. Existing approaches for PRM structure
learning are inspired from classical methods of learning the BN structure.
Extensions for the constraint-based and score-based methods have been
proposed. However, hybrid methods are not yet adapted to relational
domains, although some of them show better experimental performance,
in the classical context, than constraint-based and score-based methods,
such as the Max-Min Hill Climbing (MMHC) algorithm. In this paper,
we present an adaptation of this latter to relational domains and we
made an empirical evaluation of our algorithm. We provide an experi-
mental study where we compare our new approach to the state-of-the
art relational structure learning algorithms.

Keywords: Probabilistic relational model · Relational structure learn-
ing · Relational Max-Min Hill Climbing

1 Introduction

Statistical relational learning (SRL) has emerged as a field of machine learning
that enables effective and robust reasoning about relational data structures [8].
Probabilistic relational models (PRMs) [10,17] are an extension of Bayesian net-
works (BNs) [16] which allow to work with relational database representation
rather than propositional data representation. PRMs are interested in manip-
ulating structured representation of the data, involving objects described by
attributes and participating in relationships, actions, and events. The probabil-
ity model specification concerns classes of objects rather than simple attributes.

In order to be used, PRMs have to be constructed either by an expert or
using learning algorithms. PRM learning implies finding a graphical structure as
well as a set of conditional probability distributions that fit the best way to the
relational training data. PRM structure learning remains the most challenging
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issue, as it is considered as a NP-Hard problem [7]. Only few works have been
proposed to learn PRMs [6] or almost similar models [11,13,14] from relational
data. Proposed algorithms are inspired from standard BNs learning approaches.
Those latter are divided into three families, namely, constraint-based, score-
based and hybrid approaches [5]. PRM structure learning approaches are adap-
tations of either constraint-based or score-based approaches. However, it has
been shown that, for BNs, some hybrid approaches provide better experimen-
tal results than constraint-based and score-based methods [18]. In this paper we
present a new hybrid algorithm to learn the structure of a PRM from a complete
relational dataset. Our proposal is an adaptation of the Max-Min Hill Climbing
(MMHC) algorithm [18]. We call it Relational Max-Min Hill Climbing algo-
rithm, RMMHC for short. Also, we provide an experimental study where we
compare the RMMHC algorithm to state-of-the-art methods. The remainder of
this paper is as follows: Sect. 2 presents useful background and discusses related
work. Section 3 details the RMMHC algorithm. Section 4 provides the empirical
study. Finally, Sect. 5 concludes and outlines some perspectives.

2 Background

We start by providing a brief recall on PRMs and presenting methods to learn
BNs and PRMs structure from data.

2.1 Probabilistic Relational Models

A PRM is defined through two components: a graphical one, a dependency
structure defined over the attributes of a relational structure (i.e., an entity-
relationship model or a relational schema) containing classes ans class attributes,
and a numerical component that quantifies probabilistic dependencies between
variables of the relational structure.

Relational model. A relational structure consists of a set of classes X ≡ E ∪R,
where E is a set of entity classes and R is a set of relationship classes. Each R ∈ R
links a set of entity classes R(Ei . . . Ej). Each X ∈ E ∪ R has a set of attributes
denoted by A(X). Every attribute takes on a range of values V(X.A).

A relational skeleton σ is a partial specification of an instance of a relational
structure. It specifies the set of class objects that exist in a domain and the
relations that hold between them.

Example 1. An example of a relational structure is depicted in Fig. 1(a), with
three classes X = {Movie, V ote, User}. E = {Movie, User}. R = {V ote} The
entity class User has three attributes A(User) = {Gender,Age,Occupation}.
The linked entities of the relationship V ote are Movie and User (Dotted links).

Figure 1(b) shows an example of a relational skeleton for the relational
schema of Fig. 1(a). It consists of three User objects and five Movie objects.
User user1 has voted for two movies M = movie1 and movie2.
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Fig. 1. Example of a relational structure (a) and a relational skeleton (b) for the
movie domain inspired from the MovieLens dataset http://grouplens.org/datasets/
movielens/

Probabilistic model. A PRM M = (S, Θ) brings together the strengths of
probabilistic graphical models and the relational representation of data. A depen-
dency structure S is constructed by adding probabilistic dependencies between
class attributes, ∀X.A ∈ A(X), there is a set of parents Pa(X.A) = {U1, . . . , Ul}.
The numerical component is composed of the conditional probability distribu-
tions (CPD) of the attributes in the context of their parents in the dependency
structure P (X.A|Pa(X.A)). Probabilistic dependencies may be intra or inter
classes, this depends on the path that connects the child to its parent. Several
paths may be found depending on the way how the relational structure has been
traversed. Friedman et al. [6] specify the path between the parent and child vari-
ables using a slot chain. Heckerman et al. [9] refer to as constraint and Maier
et al. [13] call it relational path.

Moreover, depending on the cardinality (i.e., the number of items an entity
can participate in a relationship), it is possible for an attribute object to have
multiple parents objects (i.e., a Many cardinality). This number of parents
is finite but not known in advance and it varies from one object to another.
Whereas, there is only one CPD shared among all objects of a given parent
attribute X.A. To address this issue, the notion of aggregation has been adopted
from database theory: An aggregate γ takes a multiset of values of some ground
type, and returns a summary of it. γ can be the MAX, MIN, MODE, etc.

Each parent Ui has then the form X.B if it is a simple attribute in the same
class. X.K.B or γ(X.K.B) otherwise, where K is a path and γ is an aggregation
function. Aggregators are needed if the path contains at least a Many cardinality.

Example 2. Figure 2(a) shows a PRM for the relational structure of Fig. 1(a).
User.Occupation has two parents from the same class User. V ote.Rating has two
parents: V ote.User.Gender from the User class and V ote.Movie.Genre from

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
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Fig. 2. Example of a probabilistic relational model (a) and a ground graph (b) for the
movie domain of Fig. 1

the Movie class. V ote.Movie.genre → V ote.rating is an example of a proba-
bilistic dependency derived from a path of length one where V ote.Movie.genre
is the parent and V ote.rating is the child as shown by Fig. 2(a). Also,
varying the path length may give rise to other dependencies. For instance,
using a path of length three, we can have a probabilistic dependency from
γ(V ote.User.User−1.Movie.genre) to V ote.rating. In this case, V ote.rating
depends probabilistically on an aggregate value of all the genres of movies rated
by a particular user. User.User−1.Movie is the path and User−1 specifies the
path part which involves the use aggregators.

Given a PRM M and a relational skeleton σ, we can construct a ground
Bayesian network (GBN) by applying the probabilistic dependencies specified
in M to the object attributes of σ. The CPD for each x.A is inherited from
the CPD P (X.A|Pa(X.A)) defined in the PRM. An example of the graphical
structure of a GBN is shown by Fig. 2(b).

2.2 From BN to PRM Structure Learning

A wealth of literature has been produced that seeks to understand and pro-
vide methods for BN structure learning from data [5]. Some of the proposed
approaches have been extended to learn from relational domains. In this section
we start by a brief survey on BN structure learning approaches, then we present
existing approaches for PRM structure learning.

BN structure learning is known as an NP-Hard problem [3]. BN struc-
ture learning methods are divided into three main families. The first family
tackles this issue as a constraint satisfaction problem. Constraint-based algo-
rithms look for independencies (dependencies) in the data, using statistical tests
then, try to find the most suitable graphical structure with this information.
The second family treats structure learning as an optimization problem. They
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evaluate how well the structure fits to the data using a score function. So, these
Score-based algorithms search for the structure that maximizes this function.
The third family presents hybrid algorithms which combine the main features
of both techniques, for instance, by using local conditional independence tests
and global scoring functions. Tsamardinos et al. [18] proposed the max-min hill
climbing (MMHC) hybrid algorithm and provided a wide comparative study
among several algorithms from three algorithm families, using several bench-
marks and metrics (e.g., execution time, SHD measure). Following this study,
they showed that their proposal outperforms other algorithms included in the
study. The MMHC algorithm consists of two phases:

– The first phase, ensured by the max-min parents and children (MMPC) algo-
rithm, aims to find, for each node in the graph, the set of candidate nodes that
can be connected to it. At this stage there is no distinction between children
and parents nodes and links orientation is not of interest. MMPC discovers
the set of candidate parents and children (CPC) for a target variable T . It con-
sists of a raw neighborhood identification step ensured by the MMPC algo-
rithm and an additional symmetrical correction step, where MMPC removes
from each set CPC(T ) each node X for which T /∈ CPC(X). MMPC consists
of a forward phase where for each variable T of the graph, a set of variables
are added to CPC(T ), and a backward phase whose role is to remove false
dependencies detected in the forward phase. Dependency is measured using
an association measurement function such as mutual information or χ2.

– The second phase allows the construction of the graph G using the greedy
search heuristic constrained to the set of candidate parents and children of
each node resulting from the first phase.

PRM structure learning aims at finding the dependency structure S for a
given relational structure and a relational observational dataset that instantiates
this structure. As we have seen in Sect. 2.1, paths may be arbitrary large and
give rise to complicated models. So that a user specified value, a maximum path
length (Kmax), is required to limit the length of possible paths that one can cross
in the model. Only few works have been proposed to learn PRM structure from
relational data [6,11,13,14]. These latter are inspired from classical methods for
BN structure learning.

Friedman et al. [6] proposed the Relational Greedy Hill-Climbing Search
(RGS) algorithm. For each path length k ∈ {0,Kmax} RGS defines a hypothesis
space of potential PRM structures (i.e., neighbors) it is willing to consider, using
the add edge, delete edge and reverse edge operators. Then, it computes the
score of each neighbor, and keeps the graph that has the best score, until it
reaches a structure that has the highest score in the list of neighbors. As score
function, they used a relational extension of the Bayesian Dirichlet (BD) score
[4]. In this process, the neighborhood search space could be super-exponential.

Maier et al. proposed two constraint-based approaches. The first is a rela-
tional extension of the PC algorithm to learn PRM structure from relational
data [14]. Yet, unlike the PC algorithm which is sound and complete the RPC
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algorithm did not satisfy these criteria. The second approach comes to refine
the RPC algorithm [13]. They proposed the relational causal discovery (RCD)
algorithm and proved that this approach is sound and complete for causally suf-
ficient relational data. The RCD algorithm performs on two phases. In the first
phase, given a maximum path length, RCD starts by providing the set of all
potential dependencies. Then continues by removing conditional independences
found using conditional independence tests. Because of asymmetry caused by
the use of aggregate functions, RCD verifies whether a statistical association is
detected between two variables in both directions and it leaves the dependency
if a statistical association exists in at least one direction, but omits this infor-
mation about orientation. In the second phase, RCD determines the orientation
of the dependencies discovered previously. Orientation rules are similar to those
used by the PC algorithm. In [11] the authors proposed a refined version of the
RCD algorithm in term of time complexity and space.

Algorithm 1 RMMPC

Require: schema: A relational model, D: A database instance
Current Path length: A path length, T : A target attribute

Ensure: CPC: The set of parents and children of T , CPC(T ) = CPC(T )sym ∪
CPC(T )asym

1: Potlist = Generate potential list(T,Current Path length)
% Phase I: Forward

2: repeat
3: 〈F, assocF 〉 = MaxMinHeuristic(T,CPC(T ), Potlist)
4: if assocF �= 0 then
5: if Current path length = 0 OR does Not Contains Many Relationship(F )

then
6: CPC(T )sym = CPC(T )sym ∪ F
7: else
8: CPC(T )asym = CPC(T )asym ∪ F
9: end if
10: CPC(T ) = CPC(T )sym ∪ CPC(T )asym

11: Potlist = Potlist\F
12: end if
13: until CPC has not changed or assocF = 0 or Potlist = ∅

% Phase II: Backward
14: for all A ∈ CPC(T ) do
15: if ∃S ⊆ CPC(T ), s.t.Ind(A;T |S) then
16: CPC(T ) = CPC(T )\{A}
17: end if
18: end for

Hybrid approaches combine both techniques and some algorithms, such as the
MMHC, experimentally outperforms the classical approaches. Yet, no hybrid
algorithm has been proposed for PRMs. In the next section, we will provide a
new hybrid approach to learn PRM structure from relational data. Our proposal
is a relational extension of the MMHC algorithm detailed at Sect. 2.2, that we
refer to as relational max min hill climbing (RMMHC).



44 M. Ben Ishak et al.

3 RMMHC: The Relational Max Min Hill Climbing
Algorithm

RMMHC preserves the same phases as the MMHC algorithm (cf. Sect. 2.2).
The neighborhood identification phase, ensured by the RMMPC algorithm,
handles asymmetry caused by the use of aggregators and leads to a partially
oriented neighborhood (cf. Sect. 3.1). This latter is then used to simplify the
global structure identification phase (cf. Sect. 3.2).

3.1 Relational Max Min Parents and Children: RMMPC

Neighborhood identification: RMMPC. The RMMPC algorithm aims to
find the list of neighbors of a target attribute T , that consists of either children
or parents of T , from a set of potential variables. For BNs, MMPC does not
make a difference between a node in the graph structure and a variable, and
the potential set of parents and children of a node T is V\T , where V is the
set of BN nodes. While, a PRM is a meta-model used to describe the overall
behavior of a system in a relational domain. For a PRM , and due to the horizon
of crossed paths, the number of potential variables is not fixed. Thus, we have
to make the difference between an attribute and a variable:

Algorithm 2 RMMPC

Require: schema: A relational model,D: A database instance,Current Path length: A path
length, T : A target attribute

Ensure: CPC: The set of parents and children of T , CPC(T ) = CPC(T )sym ∪
CPC(T )asym

1: if Current Path length = 0 then
2: CPC(T )sym = ∅, CPC(T )asym = ∅, CPC(T ) = ∅
3: end if
4: CPC(T ) = RMMPC(schema,D, T, Current Path length)
5: for all A ∈ CPC(T ) do
6: if Current Path length = 0 then
7: CPC(A)sym = ∅, CPC(A)asym = ∅, CPC(A) = ∅
8: end if
9: CPC(A) = RMMPC(schema,D, A, Current Path length)
10: if A ∈ CPC(T )sym AND T /∈ CPC(A)sym then
11: CPC(T ) = CPC(T )\{A}
12: end if
13: end for

– An attribute is characterized by its name, domain, a set of possible aggregators
and the class that it belongs to. A child is an attribute.

– A variable is characterized by its name, domain, the class that it belongs to,
a specific aggregator type and the path that it is derived from. A parent is
a variable and its path starts from the class to which the child belongs. This
notion is defined in [13] as a canonical dependency.

Consequently, each parent is a variable, while each target is an attribute.
When searching the CPC(T ), T is a target attribute. CPC(T ) consists of the
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candidate parents and children of T , and |CPC(T )| depends on the length of
the traversed path k ∈ {0 . . . Kmax}. For each value of k, a subset of potential
parents and children can be generated. As the final generated CPC(T ) list may
be very large, we adopt the same strategy as [6] and we proceed by phases.
That is, suppose that we want to provide the list of children and parents of each
attribute T given a maximum path length kmax, the neighborhood identification
will be done on kmax + 1 phases. At phase 0, we will search for the set of
parents and children of attribute T from the same class as T , at phase 1, we
will search for the set of parents and children of attribute T in classes related
to T class using paths of length one. At phase 2, we will go through further
classes and search for the set of parents and children of attribute T in classes
related to T class by traversing paths of length 2 and so on. The neighborhood
identification, for one specified value of path length, is described by Algorithm 1.
The Generate potential list method aims to identify the list of potential parents
and children of a target attribute T given a path length k. Its result is a set of
potential variables of the form XT .A for intra-class dependencies and XT .K.Y.A
or γ(XT .K.Y.A) for inter-class dependencies, where K is a path of length k.
More details about this method can be found in [1].

On the other hand, as some dependencies may require aggregators, there is
an inherent asymmetry and this list of candidate dependencies is closely related
to the path composition. So that, we propose to divide the neighborhood list,
CPC, into two sub-lists. Formally, CPC(T ) = CPC(T )sym ∪ CPC(T )asym,
where:

– CPC(T )sym : The set of potential children and parents of target attribute T
coming either from the same class as T , with path length equal to 0 or from
paths that do not contain any Many relationship.

– CPC(T )asym : The set of potential variables coming from the other paths. In
this case, A could only be a potential parent of T [7].

As for the standard case [18], MaxMinHeuristic selects the variables that
maximize the MinAssoc with target attribute T conditioned to the subset of
the currently estimated CPC(T ) = CPC(T )sym ∪ CPC(T )asym.

Symmetrical correction: RMMPC. The RMMPC algorithm (Algorithm 2)
comes to refine the result of Algorithm 1 by applying a symmetrical correction
to the CPC(T ) provided by RMMPC. As CPC(T ) consists of two subsets, the
symmetrical correction depends on the concerned subset.

– For each A ∈ CPC(T )sym, we must verify that T ∈ CPC(A)sym, otherwise, A
has to be removed from CPC(T )sym. This symmetrical correction is equivalent
to the symmetrical correction of standard MMPC.

– For each A ∈ CPC(T )asym, we cannot apply the symmetrical correction since
the SQL queries involved in such a case are not equivalent and the resulting
datasets on which we will apply statistical tests are not the same. However,
∀A ∈ CPC(T )asym, A can only be a parent of T . By this way, we can deduce
the dependency direction, directly from the first phase of RMMHC.

A detailed toy example on the various steps of this phase can be found in [1].
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3.2 Global Structure Identification

The global structure identification is performed using a score-based algorithm
only on the set of variables derived from the first local search phase. We choose
to work with the RGS procedure, using the relational Bayesian score. In this
case, PotK(X.T ) consists of the CPC list of attribute X.T found on the local
search step. As this set contains two subsets, the choice of the operator to be
performed during the neighbors generation process depends on the concerned
subset:

Algorithm 3 RMMHC

Require: schema: A relational model, D: A database instance, kmax:
Maximun Path Length

Ensure: The local optimal dependency graph S
% Local search

1: for Current Path length = 0 to kmax do
2: for all T do
3: CPC(T ) = RMMPC(schema,D, T, Current Path length)
4: end for
5: end for

% Global search
6: S = RGS(schema,D, CPC)

– For CPC(T )sym : each A ∈ CPC(T )sym can be either a child or a parent of
X.T so all the operators, namely, add edge, delete edge and reverse edge can
be tested.

– For CPC(T )asym : each A ∈ CPC(T )asym is a potential parent of X.T so
only the add edge and delete edge operators can be tested.

The global search step is expensive in term of complexity, since the size of the
generated neighborhood may increase rapidly. RMMHC performs the local
search procedure in phases until reaching the Kmax value. The result of this
search procedure will be the CPC list of all variables for all path lengths. This
partially directed result allows to further reduce the size of the search space
during greedy search. It is used as input to the global search procedure that will
be run only one time. The overall process is as presented by Algorithm 3.

3.3 Time Complexity of the Algorithms

The MMPC algorithm consists of the MMPC algorithm of complexity
O(|Potlist| .2|CPC|) and an additional symmetrical correction. Thus, its over-
all complexity is O(|Potlist|2 .2|CPC|). At each iteration of the classical greedy
search algorithm, the number of possible local changes is bounded by O(V2),
where V is the number of nodes in the graph [18].

Our RMMPC algorithm presents the same steps as for the standard case,
augmented with the Generate potential list procedure which is of complexity
O(Nk), where N is the number of classes and k is the current path length.
Thus, its time complexity, at each k value, k ∈ {0 . . . Kmax} remains equal to
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Fig. 3. The average values of Precision, Recall and F-Measure with respect to the
sample size

O(|Potlist| .2|CPC|). Thus, augmented with the symmetrical correction, the time
complexity of the RMMPC algorithm is O(|Potlist|2 .2|CPC|). For RGS, we
have to iterate on attributes and for each attribute, we have to iterate on the
list of all its potential parents. Let us consider β the number of potential parents
that could be reached, then the number of possible local changes is bounded by
O(β.V). Note that β = |CPC| when the RGS is called after a local search step
performed using RMMPC algorithm. In RMMHC algorithm, the local search
step has been augmented with an outer loop presenting the current path length
to consider at each iteration. Thus the final complexity of the local search is
O(Kmax. |Potlist|2 .2|CPC|).

4 Experiments

We will compare the RMMHC algorithm to the state-of-the-art approaches,
namely, the RGS and RCD algorithms (cf. Sect. 2.2). The RCD is supposed to
correct the theoretical problems of RPC and an experimental study on these two
approaches can be found in [13]. Thus the RPC algorithm is excluded from the
comparative study. In term of specific implementations, we have re-implemented
the RGS algorithm and used our version in the experimental study. We have
used the source code of the RCD algorithm available in1. As both RCD and
RMMHC use statistical independence tests, we have implemented the linear
regression test to fit the RCD implementation and we have used it to perform
statistical tests during the local search phase of RMMHC. To judge conditional
independence, we have run both RCD and RMMHC using a threshold α =
0.05.

Networks and Datasets. Unlike standard Bayesian networks, where a set of
ground truth models (i.e., benchmarks) is available to perform experimentations,
there is no such models defined in the context of PRMs. Consequently, we have
used our generating process, already described in [2] to generate gold models and
relational database instances. We have followed the same experimental protocol
1 https://kdl.cs.umass.edu/display/public/Relational+Causal+Discovery.

https://kdl.cs.umass.edu/display/public/Relational+Causal+Discovery
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as [13] and we have generated relational models containing: 4 entity classes, one
less than the number of entities as relationship classes. The number of attributes
per class is drawn from Poison(λ = 1) + 1 and cardinalities are selected uni-
formly at random. The number of dependencies is from 1 to 15, limited by a
maximum path length = 3 and at most 3 parents per variable. For each of the
previously described networks, we have randomly sampled 5 relational observa-
tional complete datasets with 500, 1000, 2000, and 3000 instances as an average
number of objects per class for each.

Evaluation metrics. We have compared the algorithms in term of the quality
of reconstruction. Using the Precision, Recall and F-score measurement defined
in [13].

Experimental results. Figure 3 presents the experimental results in term of
Precision, Recall and F-score. RGS presents the worst result for all sample sizes
≥ 1000. RMMHC outperforms RGS and RCD in term of Precision for all
sample sizes and it presents the best Recall and F-score values for sample sizes
≥ 1000. For small sample size (=500), RMMHC and RGS have similar results,
followed by the RCD algorithm. Figure 3(a) shows that for sample size ≥ 1000,
beyond 50% of the dependencies retrieved by RMMHC are relevant. Figure 3(b)
shows that for sample size ≥ 1000, RMMHC was able to find beyond 40% of
the relevant dependencies. Both values are increased by raising the sample size.

5 Conclusion

We proposed a first hybrid approach to learn PRMs structure from relational
observational data. Our RMMHC algorithm is based on a local search phase
that allows to handle asymmetry and leads to a partially oriented neighborhood.
This latter is used as input to simplify the global structure identification phase,
optimize the search space and consequently enhance the scalability. We have also
presented a first comparative study of state-of-the-art relational structure learn-
ing approaches and experiments showed that our approach presents good results
in term of quality of reconstruction. However, this work is just the beginning for
several challenging research tasks.

RMMHC can be improved to deal with more complex structural uncer-
tainty [7], or it can be adapted to learn PRM extensions [15]. Another avenues
for future research is combining other theories to learn the model structure [12].
Also, one interesting perspective consists on the use of some prior knowledge,
derived from knowledge representation frameworks such as ontologies, as input
to the learning process.
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Abstract. In this paper we study the effect of target set size on trans-
fer learning in deep learning convolutional neural networks. This is an
important problem as labelling is a costly task, or for new or specific
classes the number of labelled instances available may simply be too
small. We present results for a series of experiments where we either train
on a target of classes from scratch, retrain all layers, or subsequently lock
more layers in the network, for the Tiny-ImageNet and MiniPlaces2 data
sets. Our findings indicate that for smaller target data sets freezing the
weights for the initial layers of the network gives better results on the
target set classes. We present a simple and easy to implement training
heuristic based on these findings.

Keywords: Deep learning · Convolutional neural networks · Transfer
learning · Learning curves · AlexNet

1 Introduction

Current deep learning research achieves state-of-the-art performance in image
classification tasks [6,13,15,18]. Modern models make use of deep convolutional
neural networks (CNN) such as AlexNet [8]. However, training these models on
large data sets such as ImageNet [1] can take up a significant amount of time,
and the number of labelled examples per class available may be limited, so learn-
ing from scratch has its downsides. One approach to overcome this problem is
to use transfer learning. The objective of transfer learning is to use knowledge
of a source task and transfer that to a new target task [10]. It provides consider-
able benefits over learning from scratch (i.e. from a random initialisation of the
weights). One obvious advantage is that a model can learn more efficiently since
it starts with a pre-initialised weight matrix.

In their study, Yosinski et al. [17] trained AlexNet on the ImageNet data
set and found that the first three layers in a CNN contain generic and reusable
features. Beyond the third layer, the features gradually become more specific
with respect to the source data set. However, the authors did not take into
account the size of the target data set, on which the model with the transferred
features will be trained.
c© Springer International Publishing AG 2016
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The size of the target data set plays an important role, since it affects how
much impact transfer learning will have on the performance. Thus, it is logical
to ask how well extracted features generalise to smaller data sets. It would be
helpful to know at what data set size transfer learning would be still beneficial.
More specifically, at what layer is the model still able to generalize to a small data
set size? Therefore, it is of both academic and practical interest to investigate at
what target data set size transfer learning can still provide any additional value.
Furthermore, Yosinski et al. only used the ImageNet data set [17]. It would be
interesting to find out whether the transfer learning properties are different when
using a data set from a different domain.

In this work we will expand the study by [17], and measure the effect of
target data set size on the transferability of parameters in convolutional neural
networks. Our main contribution is to quantify the extent to which features are
able to generalise to the target data set when we systematically reduce its size.
We will investigate this for each individual layer by evaluating the accuracy as
a function of the data set size. We will have three variants of this. First, we
will obtain a base score, without applying any form of transfer learning. In the
second condition we will completely fine-tune all the layers of the network. In
the third one, we will freeze the transferred features per individual layer. We will
investigate this for different sizes of the target set. Moreover, we will test this on
two different subsets of data sets, each with a different domain, ImageNet and
Places2.

The remainder of this paper is organised as follows. Section 2 provides
an overview of related work in deep learning and transfer learning. Section 3
describes our experimental setup and result, which addresses the data pre-
processing steps we took, details about our feature transfer process and infor-
mation regarding the training of the networks. In Sect. 4 we elaborate on our
results and report our main findings, and conclude the paper in Sect. 5.

2 Related Work

Several studies have investigated the generalizability of features and have proven
the success of transfer learning [4,9]. A popular strategy for transfer learning is
fine-tuning, by training a linear classifier on top of the final layer of a CNN. Zeiler
et al. [18] examined this by pre-training a CNN on ImageNet, and then training
a linear classifier on three target data sets, PASCAL VOC 2012, Caltech-101 [3]
and Caltech-256 [5]. They varied the target data set size, as well as the layer
from which the classifier is trained on. They found that the model generalizes
extremely well to Caltech-101 and Caltech-256, however less so to PASCAL.
Nonetheless, the study proved the benefits of applying transfer learning. Simi-
larly, good results were yielded in [11] using this approach of transfer learning.
The authors pre-trained on ImageNet in combination with a SVM classifier, and
use Pascal VOC and MIT-67 Indoor Scenes as target tasks.

In [2] the researchers investigated how well features transfer to different
domain target problems, and they investigated at what layer in the network
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this is most optimal. They first trained AlexNet on the ImageNet data set, and
tested these features on a basic object recognition task using the Caltech-101 [3]
data set. Second, they tested the network on domain adaptation, where there
is a small amount of data is available, using the Office database [12]. Thirdly,
they tested how well their model performs on a more fine grained data set, using
the Caltech-UCSD birds data set [16]. Since the images in this data set are very
similar to each other, this is a rather difficult image classification task. Finally,
the authors tested their model on the SUN-397 Large-Scale Scene Recognition
database. This task is quite different from the source task, where the task was
to classify objects. The objective of the SUN-397 data set is to classify scenic
categories. In every experiment the authors improved the benchmark scores, indi-
cating that the features learned from ImageNet provide substantial generalisable
properties.

Our research is a direct extension of the work by Yosinski et al. [17]. They
investigated how transferable features are between layers in the AlexNet archi-
tecture. To this end they trained two networks, N1 and N2, each on a random
split of the ImageNet data set containing half of the data, split A and split
B. After both networks were trained on their respective splits, the features of
the first layer from network N1, the base, were transferred to the first layer of
network N2, the target. The remaining layers in network N2 were randomly ini-
tialised. Finally, network N2 gets trained on the B partition of the ImageNet
data set. Thus, what happens is that network N2 does not train from scratch,
but rather, it uses the pre-initialised features from network N1. The researchers
do this for layer one to seven in the network, transferring both from A to B as
well as from B to A. They found that the features in the first three layers are
fairly general and could be transferred and boost performance. However, fea-
tures in deeper layers of the network are more specific to the source task and
therefore, transferring them worsens the performance.

We hypothesize that a transfer learning approach by fixing the first layers is
more valuable if the target set is smaller, and that for larger data sets updating
all layers will give better results, and validate this on data sets from two different
image classification domains.

3 Experiments and Results

In this section we present an overview of our experimental set up and results.
We will start with a general overview of the approach, and then provide further
detail in further sub sections.

3.1 Overall Approach

We will transfer features from a CNN trained on a source task, to a target task,
i.e. data sets with disjunct outcome classes. We will consider the scenario where
the target data set is the same size, as well as smaller in size as the source data
set. The latter condition is the conventional setting in transfer learning [10].
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Hypothetically the value of transfer learning should increase with smaller trans-
fer data sets. Moreover, for each scenario we will investigate the first case where
we will fine-tune all the layers with the transferred features. In the second case
we will transfer the features but freeze the network weights in the first layers.

The CNN architecture we will use is AlexNet, developed by Krizhevsky
et al. [8] (see Fig. 1), which was the winning model in the ImageNet Large Scale
Visual Recognition Challenge 2012. The model consists of five convolutional
layers and three fully connected layers. The first two convolutional layers are
followed by a max pooling layer and a normalization layer respectively. The fifth
convolutional layer is followed only by a max pooling layer. The first two fully
connected layers contain 4,096 neurons. The final fully connected layer contains
1000 neurons for the target class scores. It is interesting to note that the authors
used Rectified Linear Units (ReLUs) as activation functions instead of the reg-
ular sigmoid. Moreover, they applied a regularization technique called dropout
to reduce overfitting [14].

3.2 Data Pre-processing

In our experiments, we use a subset of the ImageNet data set [1], Tiny-
ImageNet. This data set contains 100,000 images with 200 classes, where each
class contains 500 images, each of size 64 × 64 pixels. The data set contains
images of a wide range of objects such as cats, parking meters, cliffs and rugby
balls. The validation set contains 10,000 separate images.

Moreover, we extend the work by Yosinski et al. [17] by also repeating the
experiments on a second data set, MiniPlaces2. This is a scaled down version
of the larger MIT Places database [19]. The data set is made up of images with
settings such as a food court, golf course, an office, and ice skating rink. It
contains 100,000 images with 100 classes. Each class consists of 1000 pictures of
size 128 × 128 pixels, however we resize them to 64 × 64 pixels to keep the image
size consistent with Tiny-ImageNet. Again, the validation set contains 10,000
images. In Fig. 2 we present several image classes of both data sets to underline
the difference between the two domains.

Fig. 1. AlexNet architecture (illustration taken from [8]).
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(a) Lighthouse (b) Sulphur
butterfly

(c) Umbrella

(d) Museum (e) Baseball
field

(f) Valley

Fig. 2. Top: a sample of training images from the Tiny-ImageNet data set. Bottom: a
sample of training images from the MiniPlaces2 data set.

To measure the effect of data set size on the generalizability of features, we
transfer the features from a source task to a target task, where the latter has
a variable size. We will test this on a subset of the ImageNet and Places2 data
set. We use a subset of the data sets rather than training on the full data sets
of ImageNet and Places2 (respectively containing 1.2 million and 8.1 million
images for training) due to computational limitations. We denote our target
data set as Ntarget. Moreover, we define the data set splits with a variable size
as Mtargeti where Mtargeti ⊆ Ntarget. To obtain Mtargeti from Ntarget we execute
the following procedure:

(1) We randomly split the entire data set into a source and a target parti-
tion, Nsource and Ntarget respectively, where each partition contains 50,000
images. In both the source and target partition the images are equally dis-
tributed over k = 100 classes with 500 images per class for Tiny-ImageNet.
In MiniPlaces2 the split is k = 50 classes per partition, with 1,000 images
per class.

(2) We artificially reduce Ntarget by drawing random samples of size Mtargeti

from each class k, where i equals 5001,400, 300, 200, 100 and 50 in case of
Tiny-ImageNet.For MiniPlaces2 i equals 1000 (See Footnote 1), 900, 800,
700, 600 and 500.

Moreover, for both Tiny-ImageNet and MiniPlaces2, we split the respective
validation sets in half to create Vtarget and Vsource, each containing 5,000 test
images. The classes of Vtarget correspond to the classes in Ntarget. Therefore,
Vtarget will be the validation set for Mtargeti in our experiments. The other
1 Note that in the case where i = 500 and i = 1,000 we do not reduce Ntarget for

Tiny-ImageNet and MiniPlaces2 respectively.
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validation half, Vsource, contains classes corresponding to Nsource. In sum, we
train our model on Mtargeti , and evaluate it on a separate validation set Vtarget,
to obtain our accuracy a.

3.3 Transferring Features

To create a model from which we can transfer the features, we first train our
network on Nsource. The parameters of the source model are stored in a Caf-
femodel object (see Sect. 3.4), which we use to transfer the parameters from the
source model to the target model.

To obtain our baseline score we do not apply any transfer learning at all, and
let the model train on the given training set. In our first experiment we fine-tune
the network by transferring all the features from the source task to the model,
and continue with backpropagation on the new task.

However, since we are also interested in at what layer l of the network features
are able to generalize, we transfer the features from the source to the target task,
one layer at a time. AlexNet has eight layers in total. Therefore, we transfer from
layer l = 1, up until layer l = 7. When we transfer the parameters to the target
model, we keep them fixed. That is to say, we do not update the parameters
by gradient descent. The remaining 8 − l layers of the network we randomly
initialize and let the errors backpropagate through the layers.

Finally, to get a mean accuracy score, we run the experiments again by
following the same procedure, but now use Nsource as Ntarget and vice versa.

3.4 Training

To conduct our experiments, we use the Caffe deep learning framework developed
at UC Berkeley [7]. We make use of a single Nvidida GTX Titan X graphics card
to enable Caffe in GPU mode, to speed up our training time. We use the AlexNet
reference model which is included in Caffe. Detailed information about the model
architecture can be found in [8]. Moreover, we follow the same training regime
as specified by the reference model.

Furthermore, in terms of data augmentation we take a random crop in the
training phase and use random mirroring as specified by Caffe. In the test phase
we take a center crop of the images. Since our input images are 64× 64, we
change the crop size to 57, rather than upscaling the images to 256× 256 and
applying the default crop size of 227. Thus, we stay consistent with the ratio
used in the AlexNet reference model. Moreover, we subtract the image mean
from each image.

Finally, to determine for how many iterations we should train the models,
we trained on Nsource of both data sets and validated on the respective Vsource,
without applying any form of transfer learning.

We found that the model began to overfit on the training data around 10,000
iterations (see Figs. 3 and 4). Therefore, we found it reasonable for subsequent
experiments to let each model run for 10 K iterations in order to measure the
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positive effect of transfer learning. Moreover, the more we reduce Ntarget, the
faster the model will reach the point of overfitting, which is evidenced by the
decreasing accuracy of the base training conditions across our experiments.
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Fig. 3. Top: the accuracy on Vsource after training on Nsource of the Tiny-ImageNet
data set after 25 K iterations. This split contains 100 classes, with 500 images per class.
Bottom: the log loss over the training set with the identical split.

3.5 Results Tiny-ImageNet

In Fig. 5 we see the results of transfer learning on different data set sizes. The
plot shows the accuracy on the validation set after 10 K iterations of training.
The first two conditions are the base case and fine-tune all. The condition base
indicates we did not apply transfer learning. Condition FTall means we fine-
tuned through all the layers, and the notation SnT denotes up until which
layers we freeze the transferred features from the source in the target model. For
instance, S3T implies we transferred the first three feature layers from the model
trained on Nsource to the model trained on Mtargeti . The final seven scores are
the accuracies where we transfer the parameters per layer from the source, and
freeze that particular layer. We notice an effect of data set size on the accuracy
of the baseline score. As we decrease the data set size, we find that the accuracy
decreases as well. In Fig. 5 we observe that the accuracy worsens as we keep
more layers fixed when transferring parameters from the source task.

3.6 Results MiniPlaces2

As can be seen from Fig. 6, even though this is a task from a different domain,
the results follow a pattern very similar to Tiny-ImageNet. With smaller target
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Fig. 4. Top: the accuracy on Vsource after training on Nsource of the MiniPlaces2 data
set after 25 K iterations. This split contains 50 classes, with 1000 images per class.
Bottom: The log loss over the training set with the identical split.

set sizes the benefits of locking the first few layers increases. Only for Mtarget1000

the graphs seem to indicate that training from scratch is better, but this is truly
just a baseline. In a real deployment one would probably expect that the source
classes also still need to be recognized, and performance of tuning all layers is
still lower then locking some of the initial layers.

4 Discussion

Our results reveal that data set size affects the accuracy in transfer learning with
deep convolutional neural networks. The first effect we notice is on the baseline
case (to repeat, just training the network with randomly initialized weights). We
can see that the model starts to overfit on the training data when we artificially
reduce the data set size, which leads to a steady decline in accuracy on both
Tiny-ImageNet as well as MiniPlaces2. This can be explained by a sub-optimal
parameter configuration as a result of overfitting on a small data set size.

Furthermore, fine-tuning all the layers only appears to have a positive effect
with smaller data sets for Tiny-ImageNet where i in Mtargeti ranges from 400
until 50, and MiniPlaces2 where Mtargeti equals 500. This is an interesting result,
as a network for which all layers can be adapted still benefits from potentially
valuable initialization of the weights. We speculate that the source features are
important for the target data set splits as well. Thus, the effect of initializing the
model with parameters obtained from a model trained on a larger data set clearly
shows its advantage. Moreover, we notice a visible spike in accuracy in all our
graphs, when we transfer parameters from the first two layers. Likewise, there
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Fig. 5. Mean accuracy obtained after training on the target splits of Tiny-ImageNet
where i in Mtargeti equals 500, 400, 300, 200, 100 and 50 and validating on Vtarget.
Note that we ran the same experiments again, but used Nsource as Ntarget and vice
versa. Thus, we obtained our mean accuracies by averaging the scores.
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Fig. 6. Mean accuracy after training on the target splits of MiniPlaces2, where i in
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is a considerable decline in accuracy when transferring four layers, compared to
transferring the first three layers.

The results in Fig. 5 generally follow the findings of the study by Yosinski
et al. [17]. As we transfer more and more features (layers) from the source task,
the accuracy initially goes up but then decreases. This can be attributed to
feature specificity with regards to the source task. However, we observe a second
positive spike in the accuracy at layer l = 5 in nearly all of our experiments. This
result is quite surprising since the features have become substantially specific to
the source, and yet generalize well to the new task. Evidently, the transferred
features from the source task in this layer hold the same, or even superior,
representational power compared to the features solely learned from a target
data set.

All these results can be summarized into a fairly straightforward heuristic.
For the first n instances of a new class, freeze the first l layers of the network.
Once you have obtained more than n instances for new class, training can simply
affect all layers. Obviously the values for n and l depend on the data and task
at hand, in our experiments freezing the first 3 layers until 300 (Tiny-ImageNet)
and respectively 900 (MiniPlaces2) instances per class gave the best results.

Our study could have benefited from having more samples per data point, by
running repeated experiments. Since the initialization of the parameters happens
at random, the parameters might converge at different local minima each time
the model is run. This could effect the accuracy score in the test phase. Our
results still indicate that transferring features from a larger source data set to
a smaller target data set adds value by reducing the risk of overfitting, and
improves performance.

5 Conclusion

In this paper we investigated the effect of data set size on the generalizability
of features in deep convolutional neural networks. To this end, we transferred
features from a pre-trained network to a new network. We systematically reduced
the size of the target training set and trained our new network on these splits with
the pre-initialized features. In support for a general rule of thumb heuristic, we
found that freezing the first two to three layers of features results in a significant
performance boost over the baseline score, especially for smaller target set sizes
under a thousand instances per class.
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Abstract. In data analysis clustering is one of the core processes to
find groups in otherwise unstructured data. Determining the number of
clusters or finding clusters of arbitrary shape whose convex hulls overlap
is in general a hard problem. In this paper we present a method for
clustering data points by iteratively shrinking the convex hull of the
data set. Subdividing the created hulls leads to shape descriptors of the
individual clusters. We tested our algorithm on several data sets and
achieved high degrees of accuracy. The cluster definition employed uses
a notion of spatial separation. We also compare our algorithm against
a similar algorithm that automatically detects the boundaries and the
number of clusters. The experiments show that our algorithm yields the
better results.

Keywords: Density based clustering · Convex hulls · Concave hulls ·
Noise removal · Automatic detection of cluster number

1 Introduction

Clustering is a fundamental problem in data analysis [14]. Its key function is
to sort data points into an (unknown) amount of groups. Groups are usually
disjunct, but this is not always necessary [2]. If points may partially belong to
more than one cluster, we speak of fuzzy or possibilistic clustering [10,13]. The
distinction between the two is mainly whether the membership degrees sum up to
one or not. Hierarchical (agglomorative) clustering on the other hand starts with
singleton clusters which are subsequently joined and merged to form a hierarchy
of clusters from which the final clustering result may be extracted.

In this paper we will present an algorithm that learns the shape of the clusters
in a data set by refining and splitting the hull of the data set. Let X ⊂ Rd be
a d-dimensional data set with data points pi ∈ Rd in general position, i.e. no
d + 1 points are co-hyperplanar. In the two-dimensional case this simply means
that no three points lie on the same line. Should the data points not be in
general position, we can still induce such a situation by adding a minuscule
amount of gaussian noise to any of the degenerating points. This property is
mainly necessary in our paper to ensure the runtime complexity of the convex
hull algorithms and the uniqueness of the hull itself.
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 61–72, 2016.
DOI: 10.1007/978-3-319-46349-0 6
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Fig. 1. Left we see the convex hulls of two non-convex clusters. Both hulls cover a lot
more space than necessary, while the polygons on the right side appear to be a much
better cluster shape descriptor.

The convex hull H of a set X of points is the set of all convex linear combi-
nations of two points in the data set. On the one hand it is the smallest convex
set, that contains X . On the other hand it is the maximal set of points that can
be constructed from the data points by convex linear combinations of points.
Clusters as subsets of the data set may be described by their respective convex
hulls which – in general – is not the best descriptor (see Fig. 1). The problem
here is that clusters may actually not fill the space described by the convex hull
and adding concavities to the hull may lead to a better description of the cluster
shape. A concave hull is much less well defined since technically any set H∗ ⊆ H
could qualify as concave hull as long as all pi are still contained in H∗. If in
the following we speak of the convex hull, we explicitly mean the polygon that
describes the border of the set H or H∗.

In this paper we present a way of constructing a concave hull for each cluster
contained in the data set by iteratively refining the convex hull of the com-
plete data set. The algorithm is capable of finding the number of clusters on its
own. The next section contains an overview about other similar approaches to
constructing concave hulls. We also review some clustering algorithms that con-
struct convex hulls to cluster data. In Sect. 3 we describe our algorithm and how
we developed it while Sect. 4 contains the evaluation of the algorithm and an
interpretation of the results. The paper concludes with some critical remarks on
the algorithms performance and some future work which we plan to implement
later.

2 Related Work

Calculating the convex hull has been studied extensively over the past decades
(e.g. [1,3,9,12]). There are already optimal algorithms for the construction of the
convex hull considering different criteria for optimality. Concave hulls are also
often called characteristic shapes in literature [6]. Many algorithms rely on the
computation of a Delaunay tesselation [4] of the data set. All edges that would
belong to the convex hull of the data set also belong to the Delaunay tesselation.
Removing unwanted edges (e.g. edges that are longer than the longest edge of
the minimum spanning tree), can lead to a polygon, that resembles the shape



Obtaining Shape Descriptors from a Concave Hull 63

of the data well [6]. The caveat here is that usually only a single polygon is
used to describe the data. This is not helpful if we want to find clusters. In [7]
the concept of α-shapes was developed. Starting from the Delaunay tesselation
edges are removed if there exists any circle (in the two-dimensional case) that
contains the two points forming the edge and at least a third point. If no such
circle can be found, the edge is kept and becomes part of the alpha shape.

The algorithm presented in [18] uses a similar approach to our method as it
starts from the convex hull and iteratively replaces edges that are too long by
more favorable candidates. The authors use the angle between the new edges
and the old one as their criterion of choice. For this every point that is currently
not and has never been on the hull polygon becomes a candidate. This increases
the necessary search space. At the end a single polygon is found (c.f. Fig. 6.12
in [18]). Though this is certainly one possible way of representing the data set,
notably in the depicted case several individual polygons would be more suitable
than the narrow bridges that are currently connecting the individual clusters –
especially since they sometimes leave rather large gaps.

In [17] the notion of concave hulls is used to describe clusters. However, it
is not used to find clusters but to describe them, after a clustering algorithm
has found dense, connected regions in the data space. This would actually be
the opposite way of our approach, since we attend to find the clusters by finding
their concave hulls. If our method was to be applied in this way, the major
difference would be how new edges are chosen for the hull: the authors of [17]
chose a modified gift wrapping approach (c.f. [12]) to choose an edge. However,
we use a best-candidate approach to find a point that will become part of the
new hull.

Similarly [15] has the goal to find a better representation of the clusters
than a mere prototype to better compute the membership degrees of a fuzzy
partitioning. They do not use all data points that belong to a cluster but rather
only a subset that adequately describes the cluster’s shape.

3 CLASH: Clustering Along Split Hulls

Similar to other concave hull methods shown in Sect. 2, the algorithm proposed
by us will start off with the convex hull of the data set initially. This hull will
be refined to adapt to the data set and, by doing this, the data set will be split
naturally into different subsets. More accurately, our algorithm is composed of
two major principles:

1. Hull Refinement
i.e. iteratively replacing the currently longest edge of the hull with a more
suitable edge path to describe the data, and

2. Recursively Splitting the Data Set
into different clusters if necessary, i.e. splitting the current hull path into two
separate, closed paths as soon as it converges into one point multiple times.
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Algorithm 1. Refining an edge
Require: hull given as list of edges,

el = (p1,p2) is the longest edge currently in hull

1: function Refine(P, hull, el)
2: pm ← middle point on el
3: n ← normal vector on el pointing into the hull
4: r ← direction vector along el
5: Prel ← all points p ∈ P � All relevant points above el
6: with (p − pm) · n > 0
7: Psplit ← all points p ∈ Prel � All possible split points

8: with
∣
∣
∣

1
|n| (p − pm) · r

∣
∣
∣ ≤ 1

2
|el|

9: psplit ← The point in Psplit closest to pm � The split point

10: Pleft ← all points p ∈ P � all points left of the split point
11: with (p − pm) · r ≤ 0
12: Pright ← all points p ∈ P � all points right of the split point
13: with (p − pm) · r > 0

14: hullnew ← hull[p2 ... p1] � Current hull without el
15: for edge in convex hull(Pleft)[p1 ... psplit] do
16: append edge to hullnew

17: for edge in convex hull(Pright)[psplit ... p2] do
18: append edge to hullnew

19: return hullnew

These steps will be explained in detail below. As an optional third step, in order
to avoid overfitting of the hull to the data set, the resulting concave hulls may be
simplified subsequently. This may be done, e.g., by deleting unnecessary edges.

3.1 Hull Refinement

Given an existing hull of the data (Fig. 2 ff. on the next page), our algorithm
will iteratively select the longest edge el = (u , v) and replace it with another
edge or a series of other edges that fit the data more accurately.

To do this, we look for an inner split point, which will become part of the new
hull (Fig. 3). The data set is then split into two sub-sets: the data points that
lie above the longest edge and left of the split point, and those points above the
longest edge and right of the split point (Fig. 4). Since the convex hull usually is
given in counter- clockwise order, we know that all points lie left of the hull. But
as soon as the hull is not convex anymore, points may also lie on the right side
(below or behind the longest edge, if we look into the direction of the normal
vector of our current edge).

To find a good split point, our algorithm will first calculate the middle point
pm along el. From there we determine the set of all data points on the inner
side of the longest edge, within the rectangular, inward-bound stripe upon el.
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Fig. 2. Initial point set
with convex hull.

Fig. 3. Points on stripe
above longest edge el.

Fig. 4. Left and right
point set X1 and X2.

Fig. 5. Convex hulls of
X1 and X2.

Fig. 6. Merged hull
after only one iteration.

Fig. 7. Final hull.

This set is guaranteed to be non-empty since if there were no points in the stripe
we would be either pointing into the wrong direction or there would be an edge
that starts and ends outside of the stripe, thus making it a longer edge. This is
in opposition to the assumption that el is the longest edge. From the points in
Prel we choose the point psplit, that lies closest to pm.

For the left and right subsets according to this split point, a new partial
convex hull is computed which then replaces el (Fig. 5). Thus, the new concave
hull of the data set will consist of the former hull of the data set without the
edge el, the series of edges along the convex hull of the left subset – starting
from the left end vertex u of el up to the split point psplit – and the series of
edges along the convex hull of the right subset – starting from psplit up to the
right end vertex v of el (Fig. 6). Figure 7 shows the resulting hull after the first
iteration.

This process is repeated until a termination criterion is met. For this, we
define a minimum length θ and replace any edge shorter than this threshold. To
find an appropriate minimum we make use of different data set statistics that
characterize the overall density of the data set.

For this paper, the edge lengths of the Delaunay tessellation serve as such
statistic: We assume that the more longer edges there are in this triangulation,
the sparser is the data set around these edges, and vice versa. Thus, hull edges
that would be considered an outlier within the Delaunay tessellation edge lengths
are supposedly too long to appropriately describe the data set – and thus they
should be subject to refinement.
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In our algorithm edges which are q = 3 times longer than the p-th percentile
of the edge lengths of the Delaunay tessellation will be replaced. q acts as a
hyperparameter here helping to adjust the value of p. Of course we could always
set q = 1 and just choose an appropriate p that represents the length just chosen
by this combination. Our experiments however indicated that it becomes easier
adjusting the value of p in the range [0.5, 0.7] than e.g. working in the range
[0.95, 0.99]. By adjusting the percentile parameter p, we automatically adjust
our definition of long edges in relation to the data set density. The proper choice
of p however is a less concern than one might think at first glance. The smaller the
chosen value the more edges will be removed and the more ragged the resulting
hull will be. In Sect. 3.3 we will present a way to smooth such hulls.

Other data set statistics that could be used instead of the Delaunay tessela-
tion edge lengths are e.g. Minimum Spanning Tree edge lengths, or the distance
of points to their k-nearest neighbors.

Algorithm 2. Computing the concave hull iteratively and dividing the data
recursively
Require: X being a set of points,

θ being the minimum edge length threshold

1: function ConcaveHulls(X )
2: hull ← convex hull of X
3: while there is an edge longer than θ, and |hull| ≥ 3 do
4: el ← longest edge in hull
5: hull ← Refine(X , hull, el)
6: if a point p occurs twice in hull then
7: split hull into hull1 and hull2
8: X1 ← points within hull1,
9: X2 ← points within hull2

10: hulls1 ← ConcaveHulls(X1, hull1)
11: hulls2 ← ConcaveHulls(X2, hull2)
12: return hulls1, hulls2
13: if |hull| ≥ 3 then
14: return hull
15: else
16: return Nothing

3.2 Splitting into Multiple Smaller Hulls

When performing the steps above multiple times without meeting the termi-
nation criterion, we may encounter situations where the hull becomes so thin
that it passes through one point multiple times. This would yield non-favorable
results. Thus, once a point occurs twice on the hull, we split the hull into two
closed hulls using this point. Along with these two hulls, the data set will be
divided into two sub-sets, too.
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Fig. 8. Result for the spirals (left) and the aggregation (right) data set.

Fig. 9. Result for the compound data set.

The algorithm will then process both sub-sets separately and refine both hulls
independently from each other. If, after some steps, another point occurs twice
on one of those hulls, the corresponding sub-set will be split again. This is done
for each subset recursively until either the termination criterion of a minimum
edge length is met, or the sub-set consists of less than three points.

If there are less than three points in a data set, it is omitted since it is too
small to calculate a hull that is not degenerated.

This way, the algorithm is automatically able to separate the data set into
subsets while simultaneously computing their hulls. This will work for all non-
overlapping clusters of points whose distance is greater than the minimum edge
length threshold θ. More accurately, two point sets X1 and X2 will be separated
properly by our algorithm, if

∀ (p1,p2) ∈ X1 × X2 : ‖p1 − p2‖2 > θ
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and for each point in a set there are (at least) two points to which it is
connected:

∀ p1 ∈ Xi : ∃ p2, p3 ∈ Xi : ‖p1 − p2‖2 ≤ θ ∧ ‖p1 − p3‖2 ≤ θ.

If the second condition is not met by some individual points within a set of
points, these might be located too distant from the rest of the set and will be
automatically regarded as noise.

Overall the algorithm so far has a worst-case runtime complexity of
O(n2 log n). However, this case cannot occur in any practical setting. Usually
the convex hull can be found in O(n log k), where k is the number of points on
the convex hull and n is the total number of points. If the parameters are chosen
poorly and the concave hull found by our algorithm completely vanishes (c.f.
Fig. 13), then the while loop in Algorithm 2 will be traversed O(n) times. The
dominant factor within this loop is the calculation of the convex hull itself.

3.3 Simplifying the Resulting Hulls

Once the algorithm completes one branch of recursion, the corresponding hull is
finalized. However there will most likely be signs of overfitting. For some data
sets the minimum edge length threshold θ needs to be chosen low so distinct
point sets can be distinguished (c.f. Fig. 10). However, in these cases, the hull
will fit the points of each found subset too tightly.

To overcome overfitting issues, we propose a post-processing step to simplify
the resulting hulls. This can be done, for example, by consolidating multiple
edges into one, e.g. by eliminating the smallest edges. Usually these edges are
those that distort the hull.

4 Evaluation

Fig. 10. Result for the R15

data set.

To evaluate our algorithm we generate several
instances of different data sets with similar para-
meters. In the first, simple cases we generated
blob-shaped clusters within a fixed bounding box
and constant standard deviation. For each trial
we generated a fixed amount of clusters, ranging
from 3 to 6. For every such data set we used the
same parameters for our algorithm (1000 points
per data set, no hull simplification enabled, points
only belong into a cluster, if they are contained
in the polygon defined by the concave hull). For
these data sets the ground truth is known from
the data generation process and we can test the
algorithm’s results against this ground truth by using the adjusted rand index
(ARI, [11]), and the V-measure [19]. The results for using p = 0.95 and the
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Fig. 11. Results for 1000 data sets with different numbers of clusters and different
detection parameters (left: 0.95, right: 0.5, multiplier: 3)

p = 0.5 percentiles can be found in Fig. 11. These data set are usually clustered
very well by any clustering algorithm and we use this test only to show, that our
algorithm is not worse than others.

However, in the case of three clusters we can see some especially bad results
with ARI scores between 0.4 and 0.6. If we take a closer look at the data set that
caused these scores we see that these data sets contain clusters, that overlap to
a great extent (see Fig. 12) – a situation that is hardly (if at all) solvable by any
clustering algorithm.

Fig. 12. Two examplary data sets, where the standard setting used in the experiments
fails. In the left data set, clusters are located too close to each other to be properly
separated. In the right data set two clusters almost have the same center and the third
cluster is located similarly close.

We also ran our algorithm on some well-known example data sets to show
that it is capable of coping with several kinds of obstacles. In the spirals dataset
algorithms have to cope with clusters whose convex hulls are highly intersect-
ing. Any clustering algorithm based upon centroids will usually fail here. The
aggregation data set contains several structures that do not show proper spa-
tial separation of the clusters (lower left and right side of Fig. 8). The compound
data set (Fig. 9) has been chosen since it contains one structure surrounded by
noise with uniform density, two badly separated gaussian clusters and a nested
structure.
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The results for these cases can be seen in Figs. 8 and 9. As we can see,
the highly intersecting clusters in the spirals data set are well separated as are
the clusters of the aggregation data set. In the case of the compound data set,
the two Gaussian clusters on the top left are separated but only at the cost of
losing some of the points. The nested structure at the bottom left could not be
separated as was expected.

An algorithm that is also based on the geometric information of the data
set, capable of finding the number of clusters on its own, and that only needs
few, self-tuning parameters list TriClust [16]. TriClust is largely based upon
algorithms such as ASCDT [5], NSCABDT [20] or AutoClust [8] with the
distinction that it also generates border points for the clusters found and is thus
better comparable to our method. For the experiments we use the parametriza-
tion proposed in [16]. The results of this algorithm compared to ours can be seen
in Table 1 (V-measure only) In all cases our algorithm performs better – in most
cases significantly better. The problem with TriClust here is, that it tends to
find too few clusters if the data set is structured in a way that the Delaunay tes-
selation does not contain any edges with length that can be considered outliers.
In the R15 data set (Fig. 10) all points are placed into a single cluster, while in
the spirals data set, only two clusters are found – one containing less than 20
points (out of 3432). Our algorithm can find the correct number of clusters for
the R15 data set if p (or θ) is chosen appropriately low. Otherwise the edges
along the central clusters will not be removed and only eight clusters will be
found.

Table 1. Comparison of V-Measure scores for TriClust and our algorithm on some
examplary data sets.

Data set TriClust CLASH

aggregation 0.9422 0.9788

compound 0.2121 0.8603

R15 0.0000 0.9593

spirals 0.0034 0.9926

If we consider the results on data sets that do not contain any structure at
all, we can see that the results differ slightly. In the case of high density noise
with a uniform density distribution (blue noise), the algorithm finds one single
structure. In the same setting but with lower density, clusters are found. The
only remaining hulls are artifacts that have not been properly eliminated by the
algorithm. When drawing points from a uniform distribution, some points are
usually not that well separated and some artificial structures can be found. This
is reflected by the results of our algorithm, that finds several small clusters which
could be eliminated by further reducing the edge length threshold. All of these
results can be seen in Fig. 13.
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Fig. 13. Result for high density and low density blue noise (left and middle) and
uniform noise (right).

5 Conclusion and Future Work

In this paper we presented an algorithm that is capable of clustering a diverse
range of data sets with different properties according to the spatial separation of
the cluster structures. By shrinking the convex hull to adapt to the shape of the
individual clusters these are detected. The results (both visual and numerical)
show, that our algorithm detects clusters with high accuracy. Only in the case
where clusters are not well separated these are merged. Albeit slower than some
other algorithms, our method not only labels points and finds the number of
clusters on its own. It also generates a natural cluster shape description which
can be used in various ways. E.g. in the future we plan to use the hull description
found by our algorithm as a natural border for the clusters from which a fuzzy
partitioning can be calculated.

The algorithm has been tested on two-dimensional data sets only. The exten-
sion of the clustering principal to more dimensions is straightforward. Instead
of the longest edge we would have to look for the convex hull’s facet with the
largest hypervolume. A (d− 1)-dimensional subspace perpendicular to this facet
would sub-divide the data set and facets are replaced by the facets of the subsets
convex hull to connect with the split point.
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Abstract. Distance measures play a central role for time series data.
Such measures condense two complex structures into a convenient, sin-
gle number – at the cost of loosing many details. This might become a
problem when the series are in general quite similar to each other and
series from different classes differ only in details. This work aims at sup-
porting an analyst in the explorative data understanding phase, where
she wants to get an impression of how time series from different classes
compare. Based on the interval tree of scales, we develop a visualisa-
tion that draws the attention of the analyst immediately to those details
of a time series that are representative or discriminative for the class.
The visualisation adopts to the human perception of a time series by
adressing the persistence and distinctiveness of landmarks in the series.

1 Motivation

One can think of many different properties of time series that may or may not
contribute to the similarity of two series. The literature offers a broad variety
of similarity measures to address different properties, which were extensively
tested in a classification setting (e.g. 1-nearest neighbour classifier) [6]. This is
helpful if some black-box decision has to be made, but to gain insights into the
similarity of time series, a distance measure or 1NN-classifier is almost pointless,
as it provides no summary or model, let alone a visual representation of what
makes a series more likely to belong to class A than B.

With this work we aim at a visual tool to highlight features in (labelled)
time series that discriminate series from different classes, thereby supporting an
analyst in understanding and interpreting the series. To achieve this we rely on
landmarks in the series, such as minima and maxima, as these properties are
also well perceived when visually inspecting series, but are dealt with counter-
intuitively by prominent measures such as dynamic time warping (DTW) as we
will see below. The identification of discriminative properties offers the oppor-
tunity to identify and appreciate even small features, which may not influence
a distance measure to a significant extent. The difficulty is, however, to identify
and match such features, as they may be affected by effects such as dilation,
translation, scaling, noise, etc.

c© Springer International Publishing AG 2016
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In the next section we briefly review DTW, because it is the most prominent
elastic distance measure for time series; we discuss in particular why distance
measures such as DTW may miss important structural properties (landmarks).
In Sect. 3 we present an approach to identify, match and compare features of time
series at multiple scales, which leads us directly to a visualisation of discrimi-
native features. The method is evaluated experimentally in Sect. 4. Conclusions
will be given in Sect. 5.

2 Related Work

By x = (x1, . . . , xm) ∈ R
m we denote a time series that consists of m values

indexed from 1 to m. For the sake of simplicity, we refer to the indices i as the
points in time when xi was measured. While there is considerable work about
the visualisation of temporal data [1], there is only little about the visualization
of a set of labelled series. Several authors, e.g. [2], use multidimensional scaling
or projection techniques to visualize a set of series in a scatter plot (one dot
representing one series) by means of some distance measures (such as DTW).
These approaches do not aim at showing individual or distinctive properties of
the series (in contrast to this work), but to give a general overview.

2.1 Similarity Measures vs. Landmarks

Given two series x and y, Euclidean distance d2(x,y) =
∑

i(xi − yi)2 assumes
a perfect alignment of both series as only values with the same time index are
compared. If the series are not aligned, xi might be better compared with some
yf(i) where f : N → N is a monotonic index mapping. With dynamic time
warping (DTW) [3] the optimal warping path f , that minimizes the Euclidean
distance of x to a warped version of y, is determined. An example warping path
f is shown in Fig. 1(left): Two series are shown along the two axes; x on the left,
y at the bottom. The matrix enclosed by both series encodes the warping path:
an index pair (i, j) on the warping path denotes that xi is mapped to yj = yf(i).
All pairs (i, j) of the warping path, starting at index pair (0, 0) and leading to
(m,m), contribute to the overall DTW distance. Despite the fact that DTW is
rather old, recent studies [6] still recommend it as the best measure on average
over a large range of datasets.

However, value and time are treated differently in time warping approaches:
while a monotone but otherwise arbitrary transformation of time is allowed,
the values remain untouched during this procedure.1 This may lead to some
surprising results. In Fig. 1(middle) we have two similar series (linearly decreas-
ing, increasing, decreasing segments), depicted in red and green. They are also
shown on the x- and y-axis in the leftmost figure, together with the warping
path. Both series were standardized, but their range is not identical. If we would
1 In order to get meaningful results with time warping methods, the value range of

both series should clearly overlap, as it may be obtained from standardization (to
zero mean and unit variance).
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ask a human to align both series, an alignment of the local minima and maxima
would be natural, revealing the high similarity of both series as they behave
identically between the local extrema. The local maximum m of the red curve
(near t = 60), however, lies below the local maximum of the green curve, so all
DTW approaches assign the red maximum to all points of the green curve above
m. (The assignment is shown in the leftmost figure and by the dotted lines in
the middle.) As a consequence, if we shuffle or reorder the green data above m
(cf. rightmost subfigure, blue curve), neither the assignment nor the distance
changes. This is in contrast to the human perception, who would never consider
the blue series being as similar to the red series as the green.
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Fig. 1. Behaviour of time warping distances. Left: warping path of two time series (also
shown in green and red in the middle). Mid and right: examples series; dotted lines
indicate the DTW assignment. Right: Pair of blue and red series; structurally different,
but with the same distance as green and red series. (Color figure online)

In this example, a human recognizes the red and green curve as similar
because of the similarity of the segments (as suggested by the extrema). This
kind of similarity includes time warping to compensate for different segment
lengths, but also segmentwise value re-scaling (not done with DTW). The nat-
ural segmentation along extrema is also propagated by other authors, e.g. [5]
in their landmark model. Landmarks correspond to extrema in the time series
and a distance measure is defined on the sequence of landmarks rather than the
original series. Landmarks are often employed for time series segmentation, but
only seldomly for comparing series directly.

2.2 Interval Tree of Scales

We need not consider all extrema to grasp a time series. In the landmark model
of [5], some extrema are skipped based on some a priori defined thresholds. This
is typical for smoothing operations, but it is difficult to come up with such a
fixed threshold, because different degrees of smoothing may be advisable for
different parts of the series. Too much smoothing bears the danger of smearing
out important features, too little smoothing may draw off the attention from the
relevant features.
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This is acknowledged by multiscale methods such as wavelets [4]. Witkin was
one of the first who recognized the usefulness of a scale-space representation of
time series [7]. The scale s denotes the degree of smoothing (variance of Gaussian
filter) that is applied to the time series. The scale-space representation of a series
depicts the location of extrema (or inflection points) as the scale s increases (cf.
Fig. 2(left) for the time series shown at the bottom). The prominence (persistence
against smoothing) of an extremum can be evaluated by following it from the
original series (s ≈ 0) to the scale s at which it vanishes (where it gets smoothed
away). The scale-space can be considered as a fingerprint of the time series.
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Fig. 2. Left: Depending on the variance of a Gaussian smoothing filter (vertical axis,
logarithmic) the number and position of zero crossings in the first derivative varies.
Mid: The zero-crossings of the first derivative (extrema in the original series) vanish
pairwise. Right: Interval tree of scales obtained from left figure.

Zero-crossings typically vanish pairwise, three consecutive segments (e.g.
increasing, decreasing, increasing) turn into a single segment (e.g. increasing),
cf. Fig. 2(middle). The scale-space representation can thus be understood as a
ternary tree of time series segments where the location of zero-crossings deter-
mine the temporal extent of the segment and the (dis-) appearance of zero-
crossings limit the (vertical) extent or lifetime of a segment. By tracing the
position of an extrema in the scale-space back to the position at s ≈ 0 we can
compensate the displacement caused by smoothing itself. We may thus construct
a so-called interval tree of scales [7] (cf. Fig. 2(right)), where the lifetime of a
monotone time series segment is represented by a box in the scale-space: its
horizontal extent denotes the position of this segment in the series, the vertical
extent denotes the stability or resistance against smoothing. Rather than choos-
ing a single smoothing filter beforehand, such a tree represents the time series
at multiple scales and allows different views or perspectives on the same series.
We consider this to be advantageous for our purpose, because we do not know
at which level discriminative features may occur.

3 Visualising Discriminative Features

We have seen that the distance values obtained by established methods such
as DTW may be misleading when investigating structural properties of time
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series. We are looking for a way to visualize discriminative, structural features
in sets of labelled series. When addressing the analysts perception, we should
adjust the algorithmic approach to the way humans perceive time series. While
the temporal alignment of DTW is objective function-driven, humans align time
series by aligning landmarks and matching the corresponding segments between
the landmarks. The underlying idea of this work is to use the interval tree of
scales as the core for the visualisation as it encodes landmarks already (extrema
or inflection points). By matching series from the same and/or from different
classes we recognize which cases have which landmarks in common. By comple-
menting the interval tree with this information it becomes a tool to not only
visualize the structure of a series, but also to distinguish which parts are shared
among classes and which help to distinguish classes.

3.1 Graph Representation of the Interval Tree of Scales

We consider the graphical depiction of the interval tree as a tesselation of the
time-scale space, which encodes all possible perceptions of a time series. We
represent a tile in this tesselation that covers the temporal range [t1, t2] and
the scale range [s1, s2] by a quintuple (t1, t2, s1, s2, o) with t1 < t2, s1 < s2
and orientation o ∈ {increasing, decreasing}. We define a graph representation
Gx = (V,E) of the interval tree as follows: The set of all tiles is denoted as V
and makes up the set of nodes in our graph. Two tiles v = (tv1, t

v
2, s

v
1, s

v
2, o

v) and
w = (tw1 , tw2 , sw

1 , sw
2 , ow) are connected, that is (v, w) ∈ E, if and only if they are

adjacent in time
tv2 = tw1 (1)

We define a subset VS ⊆ V (resp. VE ⊆ V ) that contains all start-tiles (resp.
end-tiles), that is, tiles which do not have a predecessor (resp. successor) in
the graph. A path of n tiles (v1, . . . , vn) in Gx is called perception of series
x if ∀i : (vi, vi+1) ∈ E, v1 ∈ VS and vn ∈ VE . Such a perception represents
a segmentation of the time series x because the time periods of the tiles vi

represent a segmentation of the time range [1,m]: Apparently we have tv1
1 = 1

(because v1 ∈ VS), tvn
2 = m (because vn ∈ VE) and subsequent time periods

touch due to (1). The sequence of orientiations is alternating between increasing
and decreasing due to the properties of the original interval tree of scales. The
set of all perceptions corresponds to all possible paths from a leftmost tile to a
rightmost tile, that is, a view of the series x with a (possibly) different degree
of smoothing within each segment.

Cf. Fig. 3: The interval tree of the series on the left (or bottom) consists of 9
(or 7) tiles. The graphs are superimposed on the interval tree. Nodes belong-
ing to VS (or VE) are connected to the virtual node S (or E). From these
particular graphs we find two perception for the left series ((a0, a1, a2, a4) and
(a0, a1, a2, a3, a5, a6)) and four for the bottom series (e.g. (b0, b2, b4, b7, b8)).
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3.2 Matching Perceptions

In this section we define a distance measure for two time series x and y by means
of their respective graphs Gx and Gy. To compare time series we have to decide
which parts of both series correspond and, once the assignment has been made,
how well they match. With Euclidean distance or DTW these parts correspond
to the values at individual time points. Here we assign time periods or segments
of both series to each other and then compare the subseries of the respective time
periods. The segments we consider for this assignment correspond to the tiles in
the interval tree (or vertices of each graph). As we want to match the full series
we have to cover all points from both series exactly once (with some possible
exceptions near the beginning and end of the series) and keep the temporal order
of the segments – that is, we have to match perceptions.

Suppose we have two similar series, where one time series x contains a certain
landmark while the other y does not. When perceiving all the details (path
through tiles near the bottom of the interval tree), both series do not match
structurally in the number of tiles (because x has an additional landmark). To
perceive them as similar, we have to switch to a coarser scale for x in the temporal
region where the additional landmark resides. That is, a structural comparison
of time series corresponds to finding the right path through both graphs Gx

and Gy such that the tiles in both sequences correspond to each other. (In the
example case of Fig. 3 we have to find one perception (out of 2) for the left series
and one perception (out of 4) for the bottom series that correspond best, e.g.
(a0, a1, a2, a4) and (b1, b4, b7, b8)).

However, given two arbitrary paths px = (vx
1 , . . . , vxk ) from Gx and py =

(wy
1 , . . . , wy

l ) from Gy, the tiles vx
i and wy

i may not be directly comparable:
as we intend to perform a structural match, segments of different type must
not be aligned, e.g., we do not assign increasing wy

1 to decreasing vx
1 . (Figure 3:

a0 cannot be associated with b0.) Either we have to switch to a different level
of abstraction again (that is, different perceptions) – or we allow to skip short
segments near the beginning and the end of the series. We express this by an
alignment δ ∈ N such that tile wy

1+δ is assigned to vx
1 with ov1 = ow1+δ . (Ex.

from Fig. 3: to match px = (a0, a1, a2, a4) to py = (b0, b2, b4, b7, b8) we need to
associate the first node of px with the second node of py, that is, set the offset
δ = 1 leading to a comparison of a0 ∼ b2, a1 ∼ b4, . . .).

Eventually we compare the shape of the series within a segment. Given a tile
v = (tv1, t

v
2, s

v
1, s

v
2, o

v) ∈ V we denote the subseries of x that the tile refers to by
x|v := (xtv

1
, xtv

1+1, . . . , xtv
2
). Given two paths (plus an alignment δ) we evaluate

how well the assigned segments match each other by means of a dissimilarity
measure d′ to compare x|vi

against y|wi+δ
. As the assigned segments need not be

of the same length, the distance d′(vx
i , wy

i+δ) must cope with segments of different
lengths. This might be achieved by stretching one series to the length of the other
and apply Euclidean distance afterwards. Other choices will be discussed below.
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Thus, among all possible matches of perceptions of time series x and y, choose
the one that minimizes the sum of distances of the corresponding segments:

d(x,y) = min
(vx

1 ,...,vx
k )∈Gx,(wy

1 ,...,wy
l )∈Gy,δ

min{k,l+δ}∑

i=max{1,1−δ}
d′(vx

i , wy
i+δ) (2)

The search for the minimal distance (and thus the best match) can be for-
malized as a weighted shortest path problem in the graph Gx,y = (Vx,y, Ex,y)
with Vx,y = Vx × Vy and Ex,y ⊆ V 2

x,y where ∀v, v′ ∈ Vx,∀w,w′ ∈ Vy:
((v, w), (v′, w′)) ∈ Ex,y ⇔ (v, v′) ∈ Ex ∧ (w,w′) ∈ Ey ∧ ov = ow from an
arbitrary start node (v, w) ∈ V S

x × V S
y to an end node (v′, w′) ∈ V E

x × V E
y . The

search for an optimal δ is reformulated by extending the set of start/end tiles
by their adjacent tiles. The edge weights are given by the distance d′ among the
segments. Standard methods such as the Dijkstra algorithm might be used, but
a more efficient solution via dynamic programming is advisable and has been
implemented for this work. Similar to DTW we have a matrix of assignments (of
tiles rather than points) where we seek for the minimal cost path from a start
position (bottom left) to end position (top right) as illustrated by the matrix
in Fig. 3. This step has complexity O(n · m) with n and m being the number of
nodes in the resp. graph (rather than number of points as in DTW).

3.3 Discriminative Features

Determining the distance between two time series includes the identification of
the best-matching perceptions. If two series share many low-level features the
corresponding tiles are likely to be included in the optimal assignment, whereas
series from different classes may have to retract to segments on a coarser scale
(with fewer landmarks) as the details of one series have no counterparts in the
other. We complement the interval tree of some series x of class c with this
information: We count (when comparing a series to all other) how often segments
were involved in the best match of series from the same as well as from different
classes. Based on these numbers we highlight tiles that get primarily matched
to series of the same class (or other classes). In the visualization, increasing
segments will be coloured in blue, decreasing in red, but the opacity is determined
by the entropy of the distribution “same class vs. other class” weighted by the
total number count (a distribution 5:0 is less relevant than 25:0). Furthermore,
we normalize both counts to 100 to avoid a bias towards the other classes in
multiclass problems (otherwise we expect only a fraction of 1

k cases from class c

and k−1
k cases from other classes (bias towards ‘other class’)).

Apart from counting, upon matching all series to one series x, we may collect
for each of its tiles all segments from other series that were assigned to it. From
these segments we can derive secondary features such as maximal difference (in
value), slope, curvature, variance, etc. and construct a classical dataset (with a
fixed number of attributes) for each tile and feed it into a standard classifier to
identify features that help to distinguish the classes. In this work we consider
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Fig. 3. Two series (left and bottom), represented by their interval tree and respective
graph (slope is color-coded). The matrix in the center encodes the assignment of nodes
from both graphs, a match of perceptions from both series is thus a path from the
bottom left to top right edge of the matrix. (Color figure online)

only the maximal difference (difference between end points of a tile) and report
its utility for distinguishing classes by means of the weighted accuracy2.

Among all possible visualisations (one per time series) we automatically select
one per class that offers a perception where the discriminative features are pro-
nounced best and present them to the analyst. Each tile in the interval tree
is annotated with the (weighted) class distribution (same vs. other class) and,
below, the (weighted) accuracy (only if above 65 %). The bottom left tile in
Fig. 5(l) reads as follows: this tile is matched (in the optimal assignement) with
62 % (28 %) of series from the same (other) class(es) and a classifier on the height
difference alone yields 66 % (weighted) accuracy.

2 As before, we weigh the cases such that the total weight of series from the same class
and series from a different class becomes identical to get accuracies independent of
the number of classes.
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Fig. 4. Series from the right class have a small bump imputed. The tile marked A
corresponds to a perception of the series where the bump has been smoothed away; it
matches 100 % of the series from other classes, while the tiles B–D occur mainly for
series of the same class. This turns the tiles A–D into interesting visualization features.

3.4 Segment Distance

For Eq. (2) we employ a distance measure d′(vx
i , wy

j ) that is used to compare
segments. By scaling the segments and applying Euclidean distance, (2) becomes
quite similar to DTW, only that we do not allow arbitrary warping but linear
warping between extrema. However, as we have showcased in Sect. 2.1, Euclidean
distance and DTW miss a possibility of vertical scaling. We could use Pearson
correlation instead, because its built-in normalization compensates for different
ranges in both segments. Here, to better focus on structural distances and get
most of the interval tree, we treat the value range identical to the temporal range,
that is, rescale and shift both series in both dimensions such that their start and
end points coincide (in time and value). Then we apply Euclidean distance to the
rescaled series (denoted by dES(x,y) in (3)) and thereby capture differences in
the shape of the segments. But there are more aspects than just shape if we want
to adopt to the visual perception: The duration of the segments, the difference in
value (range) and in particular the importance, that is, the persistence against
smoothing. We therefore penalize dES by additional factors:

d′(vx, wy)︸ ︷︷ ︸
segment distance

= dES(x|v,y|w)︸ ︷︷ ︸
shape distance

· f(Δtv,Δtw)︸ ︷︷ ︸
delta in duration

· f(Δyv,Δyw)︸ ︷︷ ︸
delta in height

· f(Δsv,Δsw)︸ ︷︷ ︸
delta in importance

(3)
where for some tile u of series z = (z1, . . . , zn) we define Δtu = |tu2 − tu1 |,
Δyu = |ztu

2
−ztu

1
|, Δsu = |su

2 −su
1 | and f(x, y) = max{x,y}

min{x,y} . We thus penalize dES

by a factor of 2 if one segment is twice as long, tall, or important (persistent) as
the other.

4 Experimental Evaluation

4.1 Sanity Check

We illustrate the approach by using an example similar to that of Fig. 1 in the
introduction. All series consist of five linear segments with varying duration that
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were standardized during preprocessing. Half of the series have a small bump in
the third segment (downward slope), which is somewhat more prominent than
the bumps that were introduced by Gaussian noise. Standard 1-NN classifiers
based on Euclidean or DTW distance have difficulties with this simple setting,
they both reach only accuracies close to 50 %. The influence of the small bump
on the distance value will be rather small, a conventional distance measure will
have a hard time in distinguishing both classes.

The visualisation derived from the pairwise comparison is shown in Fig. 4.
While nothing of interest shows up for the class where the bump is absent, the
visualisation for the other class clearly reveals the relevant features. Note that
the noise introduces local extrema, which vanish quickly as the scale increases,
the small bump survives somewhat longer. Some series from the same class match
not only the bump but also the noise, but they are small in number. While all of
the series from the other class match this segment on a coarse scale (tile A), most
of the series from this class subdivide tile A into three subtiles B, C, D. This is
easily recognizable from the visualisation, which therefore supports a human in
interpreting and understanding the differences of both classes.

4.2 Series from the UCR Repository

In this section we discuss the results on some datasets from the UCR time series
repository. All series were standardized in advance. We show a diversive subset
from these datasets: motion capture (Gunpoint), shape (Plane, Fish), and mass
spectrometry (Coffee). For many other datasets of the same type the visualisa-
tion led to comparable results. The visualisation provides less informative results
if series from different classes hardly share common properties, but in this case
a sophisticated search for discriminative features is not necessary anyway.

Figure 5 shows a series of class 1 from the Coffee dataset. Series from both
classes are quite similar in shape, the visualization draws our intention directly
to some interesting differences. While 73 % of the series from class 1 exhibited a
small, local extremum (tile B), most of the series from class 0 do not have this
feature (tile A). A similar observation can be made at tile C and its subnodes.
The number 89 in tile C denotes a (weighted) accuracy of 89 % obtained from
the absolute difference in value alone (between start and end points of this tile).

Figure 6 displays a series of class 1 from the Gunpoint dataset. For this
dataset, we did not use the zero crossings of the first but the second derivative,
that is, the interval tree of scales characterizes inflection points rather than
extrema. The series record the hand position of subjects drawing a gun, aiming,
and returning it to the holster – or performing the same motion without a
gun. The visualisation shows the relevance of small features when drawing and
returning the gun from/to the holster, which are absent with series from the
other class.

Figure 7 depicts a series of class 2 from the Fish dataset. We immediately
recognize that the small local extrema in the first large increasing and the first
large decreasing segment (in [0, 100] and [120, 220], resp.) are characteristic for
the majority of the series from class 2. The upper left tile describes the segment of
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Fig. 8. Extrema of plane data set, class 6.

all series from the beginning to the first minimum that persists over all (shown)
scales. The difference in value (from start to end of the segment) is, according to
the value 85 shown in the tile, sufficient to achieve a 85 % (weighted) accuracy
in predicting this class vs. any other class.

Finally, Fig. 8 shows an example from class 6 of the Plane dataset. Again, the
visualisation emphasizes the discriminative features well: there is a characteristic
series of small local extrema near t ≈ 70 for class 6. Most series from other classes
share the coarse decreasing and increasing segments only, the local extrema are
discriminators for class 6 rather than just noise.

5 Conclusion

In this preliminary work we have proposed a visual tool that helps an analyst
to review and explore classified time series. The classification itself was not the
focus of this work, but to support the data understanding and the assessment of
structural differences to simplify, e.g. subsequent preprocessing steps. We have
demonstrated that classification based on distance measures may hold some
counterintuitive intricacies, therefore the explicit goal of the visualisation was to
correspond to the visual perception of the series. In the experiments the method
successfully delivered insights for the class-wise distinction of time series. A
possible direction for future work may be the use of the annotated tiles for
relevance-weighted distances (cf. relevance feedback in information retrieval).
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Abstract. Online availability and diffusion of New Psychoactive Sub-
stances (NPS) represents an emerging threat to healthcare systems. In
this work, we analyse drugs forums, online shops, and Twitter. By min-
ing the data from these sources, it is possible to understand the dynamics
of drug diffusion and its endorsement, as well as timely detect new sub-
stances. We propose a set of visual analytics tools to support analysts in
tackling NPS spreading and provide a better insight about drugs market
and analysis.
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1 Introduction

Noticeably, health departments of European countries are facing a raising issue:
the online trade of substances that lay in a grey area of legislation, known as New
Psychoactive Substances (NPS). European Union (EU) continuously monitors
the market to tackle NPS diffusion, forbid NPS trade and sensitise people to the
harmful effects of these drugs1. Unfortunately, legislation is typically some steps
back and newer NPS quickly replace old generation of substances.

Online shops and marketplaces convey NPS through the Internet [20], with-
out any (or with very few) legal consequences. Quite obviously, this attracts
drug consumers, which can legally buy these drugs without risk of prosecution.
The risks connected to this phenomenon are high: every year, hundreds of con-
sumers get overdoses of these chemical substances and hospitals have difficulties

1 http://www.emcdda.europa.eu/start/2016/drug-markets#pane2/4; All URLs in the
paper have been accessed on July 10, 2016.
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to provide effective countermeasures, given the unknown nature of NPS. Further-
more, products sold over the Internet with the same name may contain different
substances, as well as possible changes in drug composition over time [5].

Social media and specialised forums offer a fertile stage for questionable
organisations to promote NPS as a replacement of well known drugs, whose
effects have been known for years and whose trading is strictly forbidden. Fur-
thermore, forums are contact points for people willing to experiment with new
substances or looking for alternatives to some chemicals, but also a discussion
arena for those at the first experiences with drugs, as well as trying to stop
with substance misuse or looking for advice regarding doses, assumption and
preparation.

The EU-funded project Cassandra2 investigates the NPS supply chain, lifecy-
cle, and endorsement, through the analysis of popular social media, drug forums,
and online shops. Such analysis is vital to timely detect NPS diffusion: this will
support governments and health agencies in confining the progress of substance
abuse, prohibiting NPS sales and improving the awareness of citizens towards
unhealthy and harmful behaviours.

In this paper, we shed light on the structure and activity of NPS forums
and online shops. The main contributions are as follows: (i) we give an insight
into two popular forums, Bluelight3 and Drugsforum4, hosting drugs discussions
since more than one decade; (ii) we map NPS sales (as monitored on online
shops) and NPS diffusion and distribution (as monitored on discussion forums);
and (iii) we provide automatic support to timely NPS detection.

Overall, we show a successful application of Intelligent Data Analysis tech-
niques to complex systems, such as social networks and hierarchical ones. This
eases the human exploration and interpretation of the online universe of drugs,
with a support for the interactive visualisation of the data analysis results.

The paper is structured as follows. Next section gives related work in the
area. Section 3 gives a panoramic view on our data sources. In Sect. 4, we focus
on forums and shops structure and activities, by analysing their data and offering
a visualisation of the analysis results. Finally, Sect. 5 concludes the paper and
gives directions for future work.

2 Related Work

Recently, academia has started investigating the massive use of social media and
online forums to advertise and discuss about psychedelic substances and drugs,
and how the preferences of online communities can affect those of consumers.
Large forums drew attention, being a primary source of information about NPS
and a good sample of consumer tastes [4]. Work in [14] considers the Flashback
forum and traces the trend of the discussions, especially in relation with the

2 http://www.projectcassandra.eu.
3 http://www.bluelight.org.
4 https://drugs-forum.com.
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scheduling of a substance ban. The paper puts in evidence how volumes of dis-
cussions drop when a ban is scheduled. In [22], the authors focus on new drugs
detection and categorisation by scanning online shops and the dark net. A com-
plete list of the known effects of new drugs, to the publication date, is given
in [11,20].

Small subsets of the contents of the Drugsforum and Bluelight forums, which
we deeply analyse in the present paper, have been already considered in [21],
highlighting how large forums embody a cumulative community knowledge, i.e.,
a stratified knowledge built over years of forum activities, and showing that
drugs effects and dosage are among the most discussed topics.

Other studies explored the abuse of medicines and how these are advertised,
e.g., on Twitter, and sold by online pharmacies, with no authorisation [6,13].
Twitter features a rapid spread of contents, especially through small communities
of users, which share common interests and tastes. This is the main reason why it
has been investigated to mine patterns of drug abuse, also for non-medical pur-
poses, e.g., to improve students performances in study [7,8]. Furthermore, Twit-
ter allows analysts to comprehend rapid disease diffusion and health issues [17],
as well as prices and effects of new drugs [16]. Nevertheless, social media play
an important role also for contrasting the drugs diffusion [19] and for preventing
end users from further consumption [12]. Twitter was also extensively mined to
detect geographical diffusion of drug consumers over time [3].

The Web is not the only marketplace where NPS are advertised and sold.
Indeed, the TOR network5 has drawn much attention from drug consumers and
resellers, who search for a channel to buy and sell drugs that guarantees their
anonymity. This aspect affects trustworthiness of peers, especially when it is not
possible to assess users reputation at all. In [9], the authors investigated the
impact of reputation in Silk Road, one of the most popular marketplaces for
drugs in the dark net. Data analysis often deals with the quality of the results
obtained when searching the web. The work in [18] describes the possibility to
improve the recall of queries issued to search engines by exploiting all variants
and misspelled words.

With respect to related work, this paper addresses a finer-grained, more
detailed picture of NPS data sources and NPS data available on the Internet.
As an example, the analysis of forums carried on in [21] was limited in time and
quantity. In our work, we overcome this limitation, by analysing more than one
decade of data, posted by users all over the world. Overall, we dealt with more
than 4 million and a half posts and more than 500,000 users. Furthermore, we
integrated more than one source, by monitoring two forums, Twitter, and a num-
ber of online shops. The results of our analysis are conveniently conveyed to the
reader via a set of interactive visual web interfaces, which are being integrated
into a dashboard that will help researchers mine the wealth of gathered data.
Ultimately, we are aligned with recent advances in data analysis leading to appli-
cations in pattern mining of, e.g., medical records and human anatomies [2,10].

5 https://www.torproject.org.
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3 Data Sources

This section presents the data sources for our analysis. We collected the data
by developing ad-hoc software, which scrapes websites and uses APIs to crawl
social media.

3.1 Forums

Bluelight and Drugsforum are two large forums, which host more than a decade
of discussion about drugs and addiction. Being particularly rich of information,
the two forums provide a historical, worldwide background of drug consump-
tion, comprising that related to NPS. Similar to Google Flu Trends6 efforts to
detect spreading of diseases, the analysis of the forums’ content and structure is
significant to understand how psychoactive substances have spread out and to
study new infoveillance strategies, to timely detect drugs abuse.

The two forums have a hierarchical structure, which enables proper content
categorisation. The root of both forums organises content into sub-forums, which
can be nested up to several levels of depth. The forums’ structures were subject
to different content re-organisations over time.

We carried out a Web scraping activity to create a dump of the entire data-
base of discussions from the two forums, following the links between the forums’
sections. During the storage phase, we kept track of the forums’ hierarchy and
structure, maintaining all the tags and metadata associated to each post and
thread. Table 1 summarises the amount of data available from the two forums.

3.2 Online Shops

The forums introduced in Sect. 3.1 are a primary source of information about
drugs reviews, feelings, effects and preparation, but little information is available
about the drugs market, such as prices and bulk quantities. Thus, we focused
our attention also on other data sources, dealing with drugs trading.

Online shops sell both legal and illegal substances. Among others, those that
sell NPS have grown in popularity, given the relatively low risks in trading such
substances. Many online shops accept payments in pounds, euros and dollars.
Also, bitcoins are often accepted. This opens up the possibility to track price
trends and, indirectly, to estimate the popularity and quality (or purity) of drugs.
Furthermore, many of the marketplaces are advertised and mentioned on forums
and social media.

We have started an intense scraping activity on a set of online shops to
monitor the market availability of different substances. Online shops can be
quite easily found through simple queries to search engines (e.g., “legal highs”
and “smart drugs”). We set up a battery of scrapers that collect the information
that are present on the shops showcases. Data is collected on a weekly basis,
and stored in a relational database, to be easy queryable. Table 2 shows the
monitored shops.
6 https://www.google.org/flutrends/about/.

https://www.google.org/flutrends/about/
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Table 1. Drug forums: posts and users

Forum First post Last post Tot posts Users

Bluelight 22-10-1999 09-02-2016 3,535,378 347,457

Drugsforum 14-01-2003 26-12-2015 1,174,759 220,071

Table 2. Monitored online shops and number of substances they sell

ID Website Substances found

1 http://chem-shop.co.uk 7

2 http://researchchemist.co.uk 45

3 http://researchchemistry.co.uk 56

4 http://sciencesuppliesdirect.com 43

5 http://www.bitcoinhighs.co.uk 4

6 http://www.buylegalrc.eu 17

7 http://www.legalhighlabs.com 33

8 http://www.ukhighs.com 51

9 https://www.buyanychem.eu 78

10 https://www.iceheadshop.co.uk 68

3.3 Twitter

Twitter is extensively used by resellers and “pharmacies” to advertise psychoac-
tive substances, and by consumers to discuss their effects and share feelings with
others [6,13]. We have collected about 14 million tweets, over the period March
16, 2015–February 2, 2016, using the Streaming API7, which allows applications
to gather tweets in real time fashion. We have used a crawler that fetches data
relying on a set of ad-hoc keywords. We have also followed a series of Twit-
ter accounts associated to online shops. In the next section, we will detail the
monitored keywords, which we chose among known emerging substances.

4 Data Analysis and Visualization

This section shows the analysis we have carried out over the data sources
described in Sect. 3. First, we report on a series of analyses over the two drug
forums, with the purpose of figuring out their structural features, how their con-
tent is organised, and the geographical distribution of their users. Secondly, we
mine the forums textual contents, aiming at looking for new substances men-
tioned in recent discussions. Finally, we provide a picture on the NPS substances
sold on online shops, correlating them with mentions on Twitter and the forums.

7 https://dev.twitter.com/streaming/overview.

http://chem-shop.co.uk
http://researchchemist.co.uk
http://researchchemistry.co.uk
http://sciencesuppliesdirect.com
http://www.bitcoinhighs.co.uk
http://www.buylegalrc.eu
http://www.legalhighlabs.com
http://www.ukhighs.com
https://www.buyanychem.eu
https://www.iceheadshop.co.uk
https://dev.twitter.com/streaming/overview
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4.1 Forums: Structural and Geographical Features

To facilitate the investigation of the forums structural features, we have devel-
oped a set of visual interfaces. Figure 1 depicts the screenshot of a zoomable
treemap of the two forums. Nested subsections are represented as nested rec-
tangles, the area of which are proportional to the number of posts a subsection
contains. Quick visual comparisons of the forums’ size and structure may gather
meaningful information. For example, compared to Drugsforum, whose struc-
ture is quite complex, Bluelight has a shallow organisation. Also, the names of
the subsections suggest that the discussion on Drugsforum is mainly focused on
drugs and it follows a rigid categorisation, based on the kind of the substance,
while the topics on Bluelight are broader and less related specifically to drugs.

Fig. 1. The structure of Bluelight (left) and Drugsforum (right). Bluelight is about
three times bigger.

Figure 2 shows the worldwide distribution of the Drugsforum users. The infor-
mation has been extracted from the users’ profiles (when available). Looking at
the figure, we understand that drugs discussions on forums is a wide phenom-
enon, quite naturally leading to a widespread word of mouth. The colours in
the figure are proportional to the density of users. Noticeably, the most involved
areas are North America, Australia, UK, and Scandinavia.

We have also investigated some topological aspects of the forum, like the
number of posts per user and the number of posts per thread, on both forums
(Fig. 4). With the powerlaw Python package [1], we have compared the four real
data distributions with the exponential, power law, truncated power law and
lognormal distributions. The tool measured the xmin, no more than 4 for all
the cases. Furthermore, with a p-value less than 10−8 for all the distributions,
the power law distribution results in a better fit than the exponential one, as
expected [15]. With regard to the lognormal and truncated power law distrib-
utions, the lognormal distribution fits slightly better than the power law one,
while the truncated power law distribution fits better than the lognormal one.
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Fig. 2. Geographical distribution of Drugsforum users.

We can conclude that the (truncated) power law distribution assumption holds,
as shown in Figs. 3a to d. These results highlight that there is a small amount
of users responsible for most of the activity, on both forums.

It is worth noting that, even if Bluelight has about 0.6 times the number of
users Drugsforum has (see Table 1), the number of active users (i.e., that have
written at least one post) is almost the same for both. As for the distribution of
posts per thread, shown in Fig. 5, Bluelight features a large number of threads
having 1,000 posts. This is due to a limit on the maximum number of posts

(a) (b)

(c) (d)

Fig. 3. Probability Density Function of the real data and the different distributions
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Fig. 4. Posts per user. Fig. 5. Posts per thread.

for certain threads: when exceeding the threshold, the moderators start a new
thread for the discussion.

4.2 Content Analysis

A text analysis that is really useful in our scenario is the measurement of vol-
umes of discussion over time, given a term. This investigation helps determining
whether some drugs raise in popularity and in which section of the forum this
happens, possibly obtaining some clues about the nature of the substance (being
it a NPS or not).

Figure 6 shows the frequency of the term “mephedrone” over time, normalised
to the whole volume of discussion, for Drugsforum (top) and Bluelight (bottom).
Even if not identical, the shapes of the spike are similar, meaning that the
substance has gained popularity within both the communities approximately at
the same time.

Figure 7 shows a higher level of detail: each line represents a subsection of
the forum. As shown in the top-left part of the screenshot, we can choose which
forum to analyse. A darker colour indicates a higher frequency of the term, for the
corresponding time frame. The search for “mephedrone” in Drugsforum shows
a high volume of discussion in the first half of 2010 in a series of subsections,
particularly in the one called “Beta-Ketones”. This indicates the category of the
substance.

As shown in the example of Fig. 8, computing the terms that co-occur with
a given one gives interesting insights. Indeed, the generated wordclouds may
provide knowledge on substances that are similar, with similar effects and mar-
ket trends. In the figure, each word occupies an area that is proportional to
its frequency. The wordclouds can be generated for both Twitter and the two
forums.
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Fig. 6. Frequency of “mephedrone” over time, normalised to the whole volume of
discussion, for Drugsforum (top) and Bluelight (bottom).

Fig. 7. Horizon charts showing the frequency of a given term over time, for each sub-
section of the chosen forum.

Really endorsed drugs are presented and discussed in forums. To timely detect
NPS, we have investigated neologisms and terminology on both the forums, to
discover new names. As an example, in Fig. 9, we plot the Drugsforum terms
that appeared only after 2010. The result clearly indicates a lot of new drugs,
appeared on the market from 2010 to 2015. It is possible to notice the name
of some new drugs and medicines, such as α-PVP, Diclazepam, Pentedrone,
Naphyrone.

4.3 NPS Trading

As a final set of analyses, we have explored the hyperlinks on the forums. Then,
we have compared them with a comprehensive list of NPS online shops and
with the links in the posts of monitored Twitter accounts. Not surprisingly,
they do not overlap, meaning that forums discussions do not link shops. This is
mainly due to the specific policies of the forums. We have also tested which are
the NPS sold on the shops and also mentioned on forums, finding that almost
every substance is mentioned. It is not possible to estimate the trade volume
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Fig. 8. Zoomable wordcloud showing
the most frequent terms co-occurring
with “mephedrone” in the Twitter
dataset.

Fig. 9. Zoomable wordcloud showing
new terms in Drugsforum after 2010.

Table 3. An excerpt of monitored substances, with no. tweets, posts and shops. Blue-
light (BL) and Drugsforum (DF) are the two forums analyzed in this work. The last
column highlights the forum where the substance has appeared first.

Drug Tweets Post BL Post DF Online shops First seen

MDAI 913 3507 775 1, 3, 4, 9 Bluelight

MDPV 791 11304 3631 9 Drugsforum

Methylone 679 8254 5116 9 Bluelight

AB-CHMINACA 584 16 33 4, 6, 9 Drugsforum

Methiopropamine 515 329 232 2, 3, 7, 8, 9, 10 Bluelight

1P-LSD 483 612 69 1, 2, 3, 4, 9 Bluelight

Etizolam 1592 8629 2630 2, 4, 9 Bluelight

Ethylphenidate 965 2502 1268 2, 7, 9 Bluelight

Synthacaine 217 124 60 3, 4, 9, 10 Drugsforum

Diphenidine 193 779 80 2, 3, 4, 9 Bluelight

Mexedrone 39 113 14 1, 2, 3, 4, 9, 10 Bluelight

of NPS from online shops, but we can try to infer some information about
popularity by observing the discussions in forums. Checking the words frequency,
we concluded that the very same substances are also advertised through Twitter.
Table 3 reports an excerpt of some substances, with a measure of the discussion
activity about them on Twitter, on forums and on online shops. In the table, the
numbers in the column of online shops are the IDs of the shops, as in Table 2.
The meaning is: the drug is mentioned on those shops.
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5 Conclusions

Today, New Psychoactive Substances (NPS) lie on a grey area, not precisely
addressed by current regulations. NPS rapidly appear on - and suddenly disap-
pear from - the market, with a consistent and continuous introduction of new
surrogates, which leaves few margin for intervention by healthcare institutions
and governments. This paper has put in evidence some unique features of online
NPS forums and shops. Monitoring such websites and elaborating the available
data made it possible to explore a large quantity of information, also across
platforms, allowing analysts to perform comparisons among them. We also gave
a measurement of the relevance of NPS diffusion and advertisement, as well as
user engagement. Furthermore, we showed how trading and discussions are cor-
related, through terms used by both online shops, social media, and forums,
despite the prohibition, which hold on forums, to post explicit links to shops.
Noticeably, co-occurrences analysis and temporal analysis of neologisms are a
valid support for NPS detection.

Currently, the analyses are led by the data scientist, which is assisted by
the developed software. The analyses are applicable both to offline datasets and
online streaming sources. We aim at fully automating some of the work, e.g.,
the detection of the psychic and physical effects of NPS on the individual, based
on comments by the online users. Finally, we plan to extend the analysis to the
dark web marketplaces.
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Abstract. Long-term travel time predictions are crucial for tactical and
operational public transport planning in schedule design and resource
allocation tasks. Similarly to any regression task, its success considerably
depend on an adequate feature selection framework. In this paper, we
approach the myopia of the State-of-the-Art method RReliefF on mining
relevant inter-relationships of the feature space relevant for reducing the
entropy around the target variable on regression tasks. A comparative
study was conducted using baseline regression methods and LASSO as
a valid alternative to RReliefF. Experimental results obtained on a real-
world case study uncovered the bias/variance reduction obtained by each
approach, pointing out promising ideas on this research line.
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1 Introduction

One of the most common research problems in transportation is travel time
prediction (TTP). The literature on this topic is extensive and covers different
application domains such as fleet management, monitoring, control, mass transit
and individual navigation [1]. Hereby, we focus on public transport in general
and buses in particular. It is possible to distinguish short and long-term travel
time prediction problem based on the prediction horizon (e.g. threshold of 2–
3 h). Operational tasks (e.g. timetable design) or resource allocation (e.g. vehicle
and crew scheduling) requires long-term TTP.

A traditional approach to TTP is regression analysis. It comprises a large
number of techniques to estimate the relationship between a set of predictors
(i.e. features) and a dependent variable:

f̂ : xi, θ → R such that f̂(x, θ) = f(xi) = yi,∀xi ∈ X, yi ∈ Y (1)

where f(xi) denotes the true unknown function which is generating the samples’
target variable and f̂(xi, θ) = ŷi be an approximation dependent on the feature
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 98–109, 2016.
DOI: 10.1007/978-3-319-46349-0 9
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vector xi and an unknown parameter vector θ ∈ R
n (given by some induction

model M). Notorousily, this approximation will be as good as the adequacy of
M to the dependence structure of f as well as the relevancy of the input feature
space X. If it has a low number of features, it may not explain the variance of Y ,
thus leading M to biased models. Coversely, for a large set of features, we may
be using features with a low predictive power. In consequence, M may output
very complex models which lead to optimal fits on the input dataset (i.e. local
minima) but a considerably lower ones when tested in any generic inference task.
These phenomenons are known as underfitting and overfitting, respectively.

Automatic Feature Selection [2] is a subfield of study focused on develop-
ing algorithms capable of defining adequate feature spaces for supervised learn-
ing problems. The idea is to find the feature subset that guarantees solutions
(i.e. models) close to the global minima of our generalization error by defining
which features to use and which to drop on a particular regression/classification
problem. There are mainly two types of feature selection algorithms: (i) filters,
where the induction model is not take into account to select an adequate feature
subset and (ii) wrappers, where the feature subset selection process takes into
account the induction model (typically through an encapsulated optimization
framework). In this paper, we are focused on discussing issues around this topic
(i), as well as its impact in the context of long-term TTP tasks.

In transportation science, it is known that the main determinants of bus
running times are route length, passenger activity at stops and the number
of traffic signals (e.g. [3,4]). Other studies also added driver response to the
deviation from the schedule as an explanatory variable [5,6]. However, all of
those have estimated linear regression models to identify the impact of potential
explanatory variables on bus running times. Consequently, the resulting models
often have very limited predictive power.

Attaining better bus travel time predictions can have significant conse-
quences for passenger delays, operator’s performance fines and the efficiency of
its resource allocation. The inherently complex and uncertain operational envi-
ronment in which urban bus service operate call for the development of more
sophisticated models that can capture non-linear relations between system vari-
ables. To the authors’ best knowledge, the literature to handle this specific issue
is scarce. Mendes-Moreira et al. [7] compared Random Forests (RF), Support
Vector Machine Regression (SVR) and Progression Pursuit Regression (PPR).
On the other hand, the well-known RReliefF [8] was proposed to do an adequate
feature selection for each route. As many other methods from the RELIEF*-
family, RReliefF is an instance-based learning method which leverages on the
concept of neighborhood to define features that can (or cannot) contribute sig-
nificantly to the entropy reduction on estimating the target variable Y . Conse-
quently, as many other instance-based methods (e.g. k-nearest neighbors), it is
highly dependent on an adequate setting of a distance metric that serves this
specific purpose (which can easily vary from problem to problem). Moreover, it
also has limitations on evaluating inter-relationships among the feature set X
which can lead to this effect.
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This paper is focused on studying the effects of RReliefF myopia to unre-
alistic distance functions and/or interrelationship on the feature set relevant
for predicting the target variable value. To do it so, we propose an the Least
Absolute Shrinkage and Selection Operator (LASSO) as a simple and yet valid
alternative to RReliefF for this particular domain. The idea is to leverage on the
priority that LASSO gives on the bias error reduction - in contrast to RReliefF.
Consequently, our contributions are twofold: (1) a practical demonstration on
RReliefF limitations through the study of its impact on particular application
area; (2) the introduction of LASSO as a valid alternative to this problem due
to the high number of relevant interactions among different predictors/features
that can reduce bias error. Experimental results of applying the same baseline
predictors to a particular real-world case study uncovered the potential of our
novel approach.

The remaining of this paper is organized as follows: we start by describing
the case study and related data sources. The methodology section presents the
feature selection algorithms studied as well as a brief description of the baseline
regressors employed. The experimental setup is detailed in Sect. 4, followed by
a result report and a comprehensive discussion. We conclude with final remarks
and future research directions.

2 Case Study

Our case study is a large urban bus operator in Sweden. We collected data
from four high-frequency (maximum planned headway of 11 min between 7:00–
19:00) routes A1/A2/B1/B2, i.e. two bus lines A/B. Line A connects residential
areas to a public transport interchange hub as well as major shopping areas. B
connects the southern parts of the city to the city center, traversing through an
interchange, major hospitals as well as a logistic center. The bus operator defines
two schedules; a summer schedule taking effect from June 19th till December
14th and a winter schedule taking effect from December 15th till June 18th. Our
study covers a period of six months between August 2011 and January 2011 thus
including both schedules.

As part of the preprocessing step, a trip pruning was performed by removing
trips where more than 80 % of link travel times were missing. In addition, we
performed data imputation on the remaining samples by following the interpo-
lation procedure suggested in [9]. The dwell times were also pruned by using the
99 % percentile to remove erroneous measurements. Table 1 presents an overview
of the resulting dataset, detailed per route. It contains the (i) total number of
trips (NT), (ii) number of stops and (iii) Round Trip Times (RTT).

2.1 Feature Generation

The original features are schedule departure time, daytype and vehicle ID. Unlike
RF, SVR and PPR do not support categorical values. Therefore, it is required to
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Table 1. Statistics per route. The values are as mean ± s.d. Times in seconds.

NTrips Stops Daily trips Round trip times

A1 17953 33 134 ± 27 3017 ± 425

A2 16353 33 133 ± 30 2755 ± 480

B1 16280 25 137 ± 23 2607 ± 465

B2 16353 25 134 ± 22 2746 ± 448

generate new features based on the original ones. For the type of day, we use one-
hot encoding which generates 7 numerical features corresponding to the day type.
Vehicle ids associated with less than 0.5 % of total number of trips were grouped
into a single cluster. The remaining vehicle ids were clustered using a clustering
technique described in the experiments section. This procedure resulted in four
additional features.

Figure 1 illustrates the clustering results for route A2. It illustrates the clus-
tering plot (top-left) and the kernel density estimations for the vehicle ids within
each cluster. We used the Bayesian Information Criterion (BIC) to determine
the best number of clusters k = 3 from the interval K = [2:20]. We note that the
three clusters are characterized by slightly different p.d.f. This justifies mapping
the ids into three distinct features. Since driver rosters are typically assigned

Fig. 1. Clustering results of vehicle ids for route A2.
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to individual vehicles throughout their shift, vehicle travel times reflect driving
style as well as the propagation of delays from one trip to later ones.

3 Methodology

Feature selection consists in eliminating redundant or non-informative features.
Applying feature selection can not only lead to more interpretable models but
also attain better results. Redundant features can negatively affect the predic-
tions of models that do not inherently perform such a task. This is also relevant
for our TTP framework, where we seek to determine the best set of features
for generating predictions. The state-of-the-art method for this domain (pro-
posed by Mendes-Moreira et al. [7]) is RreliefF [8]. This instance-based learning
algorithm is able to determine features relevance on determining the target vari-
able value. It can handle interdependences on the feature space, missing data
and/or different type of functional forms for the dependences. However, its suc-
cess depends largely on an adequate definition of a distance metric. Moreover,
it is focused on reducing variance-type error, neglecting the inter-relationships
that can potentially reduce the bias-type one.

Hereby, we compare RReliefF to LASSO as filter feature selection method to
highlight why the first is not adequate for this task on long-term TTP problems.
This section elaborates formally on the two methods as well on the three used
baseline regressors: PPR, RF and SVR.

3.1 Feature Selection Methods

RReliefF was introduced by Kira and Kendell [10]. Its key idea is to rank
features based on how well they separate classes. Given a randomly selected
instance Ri, this is achieved by searching for its two nearest neighbors, one from
the same class called nearest hit H and the other from the different class called
nearest miss M . Since a good feature separates different classes, it should have a
small distance to H and a large distance to M . The estimate of feature A quality
i.e. W [A] is adjusted accordingly. The whole process is repeated for m iterations-
where m is a user defined parameter. Finally, features that have a higher value
than a given threshold φ are selected. Similarly, the ReliefF algorithm [11] deals
with classification problems with more than two classes, by considering k hits
and misses rather than two. In regression problems, the predicted value is con-
tinuous so we cannot determine if two instances are part of the same class or
not. To solve this issue, Robnik-Šikonja and Konokenko [8] introduced RreliefF:
a probability measure modeled with the relative distance between the predicted
values of the two instances. Similarly to ReliefF, a random instance Ri and its
k nearest instances are selected in order to iteratively calculate the weights of
input variables based on an user-defined distance metric.

LASSO is a shrinkage and selection method for linear regression introduced by
Tibshirani [12]. Similarly to other shrinkage methods, it aims to improve the
least-squares estimator by adding constraints on the value of coefficients noted
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b. Given an input data matrix of size N × p (i.e. N samples defined by p − 1
features and a target y), the LASSO estimate is defined by

b̂lasso = argmin
b

∑N

i=1
(yi − b0 −

∑p

j=1
xi,jbj)2 (2)

subject to ∑p

j=1
|bj | � t, t � 0 (3)

The equivalent Lagrangian form is

b̂lasso = argmin
b

{
1
2

∑N

i=1
(yi − b0 −

∑p

j=1
xi,jbj)2 + λ

∑p

j=1
|bj |

}
(4)

The L1-norm penalty of LASSO
∑p

j=1 |bj | constrains the solution space to
go for simpler, low-coefficient models by forcing some of the n− 1 features to be
shrunk out of the final model. The tuning parameter λ controls the strength of
the penalty. As it increases, more coefficients are set to zero and hence, less vari-
ables are selected. λ is typically set by using a cross-validation search technique
over a grid of admissible values.

3.2 Regression Methods

RreliefF and LASSO were tested as filter-type feature selection methods to cope
with three baseline regressors: RF, SVR and PPR.

Random Forests is an ensemble method based on classification and regression
trees (CART [13]) that was introduced by Leo Breiman in 2001 [14]. The trees
are grown by randomly choosing a set of candidate predictors at every node for
a sample of the data and then producing the split by choosing the best splitter
available. RF combines this with a random selection of samples to train the trees
which is referred to as bootstrap aggregating or bagging. RF’s hyperparameters
are (i) the number of randomly selected predictors to choose from at each split
mtry and the number of grown trees ntree.

Support Vector Machines were introduced by Cortes et al. in 1995 [15].
They are primarily binary classifiers that perform their task by constructing
hyperplanes in a multidimensional space able to separate instances either linearly
on non-linearly. In ε-SVM, these hyperplanes are constructed in a way to ensure
the largest minimum distance to the training examples. This distance (ε) is
denominated as margin. SVMs can be adapted for regression with a quantitative
response by sequentially optimizing an error function where we seek to maximize
the geometrical distance between the two hyperplanes 1

||w|| which is equivalent to
minimizing 1

2 ||w||2. To allow examples to be in the margin or to be misclassified,
slack variables ξi >= 0 are introduced. The optimization problem becomes:

arg min
w,b

||w||2
2

+ C ×
n∑

i=1

ξi (5)
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where C > 0 is a constant that sets the relative importance of maximizing
the margin and minimizing the amount of slack. Kernels are typically used in
SVMs to map the data points into higher dimensional feature space, where a
linear separation allow a non-linear boundary to be drawn in the original one.
Typical kernel include polynomial and radial basis functions. The choice of the
kernel depends on the problem and different functions may depend on different
hyperparameters.

Projection Pursuit Regression is an additive model that consists of linear
combinations of non-linear transformations of linear combinations of explanatory
variables (so-called ridge functions) [16]. It firstly projects the data matrix of
explanatory variables in the optimal direction before applying smoothing func-
tions to those. If maxterms (i.e. the number of linear combinations) is sufficiently
large, PPR can be considered a universal approximator with considerable simi-
larities to the so-called feed forward neural networks. However and similarly to
the latter, complexity constraints need to be formulated to avoid overfitting. The
algorithm starts by adding maxterms ridge functions. Then, it removes itera-
tively the least important term until nterms terms remain, which is the number
of terms in the final model. Both maxterms and nterms are hyperparameters
that need to be tuned beforehand. optlevel is a third hyperparameter which con-
trols how thoroughly the models are refitted during this process. To smooth the
ridge functions, we use by default Friedman’s ‘super smoother’ supsmu which
requires to fit the bass/span control.

4 Experiments

The experiments were conducted using the R Software [17]. Data was divided
into two sets: a training set and a test set (i-e 70 %/30 %). Statistical indepen-
dence was assumed to be in place among the routes. Consequently, we ended up
having a total of 4 data sets. Vehicle ids were categorized into four groups: one
containing all vehicle ids having less than 0.5 % of the total number of trips and 3
obtained through a three-step clustering procedure. First, kernel density estima-
tion was used to generate the p.d.f. for every unique vehicle id. Second, this p.d.f.
were clustered by a Gaussian Mixture Model trained using the Expectation-
Maximization algorithm. Finally, the Bayesian Information Criterion was used
to select the best model.

Package FSelector [18] was used for RReliefF. The value used for neigh-
bour.count (the number of nearest examples) in [7] was 10. For robustness rea-
sons, we used neighbour.count = 50 with m = 100 iterations. For illustrative
purposes on this particular issue, we used 0.1 % of total data set as sample size.
Similar results were found for a sample size of 0.5 % and 1.0 % of total data set
length. A minimum weight threshold was set as φ = 0.01. The default distance
metric of FSelector’s implementation of RReliefF was used.

We used glmnet [19] procedures for fitting LASSO. The best λ was selected
using cross validation.
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4.1 Hyperparameter Tuning

Package caret [20] was utilized for hyperparameter tuning of RF, SVR and
PPR. The two methods used in our experiments for hyperparameter optimiza-
tion are (i) Grid Search (e.g. [7]) and (ii) Random Search [21]. (i) Grid Search
exhaustively considers all the parameter combinations specified in a grid of para-
meter values. Hence, a high computational effort is required for large grids. A
valid alternative introduced by Bergstra and Benghio [21] is Random Search.
It consists on conducting independent draws from a uniform density using the
same configuration space as the one defined by a regular grid. This approach
only evaluates a random subsample of grid points - set to 60 in our case - and
presents similar results to the grid one on an efficient manner [21].

PPR has five different hyperparameters: nterms, max.terms, optlevel, bass
and span (the two latter for supsmu). Random Search was used for tuning nterms
Package kernlab [22] was used for SVR. SVR has six different hyperparameters:
kernel, C (for all kernels), epsilon (for all kernels), sigma (for Radial kernel), scale
and degree (only for polynomial kernel). Random Search was used for tuning
C, sigma, scale and degree. Finally, Package randomForest was used for RF.
Grid search was used for tuning both hyperparameters, as well as the ones non
explicitly mentioned above.

The three abovementioned base learners were evaluated based on the three
resulting feature spaces: (1) feature set with all features (12 features), and as
well as the ones given by (2) LASSO and (3) RReliefF. The obtained results
were compared using two metrics of interest: RMSE and MAE.

4.2 Results and Discussion

The optimal hyperparameter values for the three distinct setups are displayed in
Table 2 for RF, PPR and SVR. Figure 3 shows the results of RReliefF for each of
the routes. x-axis is the feature set. y-axis is the weight; boxplots. It is evident
that only the departure time has a predictive power accordingly with RReliefF.
We therefore select departure time as the only feature from RReliefF method
for each route. Figure 2 shows the results of LASSO plots for each of the routes.
x-axis are different log(λ) values while y-axis are the coefficients. Features after
the cut-off are selected to be the most suitable ones.

Finally, the evaluation of SVR, PPR and RF for the three feature sets for
each of the routes are presented in Tables 3 and 4 respectively. The tables clearly
show that LASSO performs better than RReliefF on this particular task. RF
is the algorithm that benefits less of the feature selection process since this
task is inherent of its own modelling process. Figure 3 illustrates the myopia
of RReliefF on identifying some of the daytypes as relevant for reducing the
bias-error around the target variable. As result, underfitted models (using only
scheduled departure time) produce bad results - especially for PPR and SVR.
These effects are depicted in Fig. 4, where the deficiency of the models output
by either PPR and SVR during the peak hours when fed by RReliefF feature
subspaces is highlighted. This effect happens because the daytype variables do
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Table 2. Optimal hyperparameters setting.

PPR SVR RF

nterms max.terms optlevel σ C mtry ntree

LASSO A1 3 3 1 1179.65 909.04 1 500

A2 3 3 1 997.91 335.15 1 500

B1 3 3 1 1369.19 0.509 1 500

B2 3 3 1 1008.36 72.25 1 700

RreliefF A1 7 7 7 65.42 2.84 3 700

A2 8 8 3 329.67 3.30 3 900

B1 6 6 3 17.87 22.80 3 900

B2 7 7 3 71.46 0.076 3 900

ALL A1 8 8 3 0.15 909.04 6 900

A2 9 9 3 0.19 318.79 6 500

B1 11 11 3 0.17 312.95 6 900

B2 5 5 3 0.24 72.25 6 900

Fig. 2. LASSO results for all routes. A vertical red dashed line is drawn at the best
log λ value. This serves as cut.off point. (Color figure online)

not have a particular effect on the variance-error reduction - but mainly only
on the bias one. In the authors’ opinion, these results illustrate that RReliefF
is not the best technique to handle the feature selection task on this particular
problem.
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Fig. 3. RReliefF results for all routes. A horizontal red line is drawn at y = 0.01. (Color
figure online)

Fig. 4. RRelieF and LASSO comparative analysis (y-axis) using RMSE (scaled on
RRelief side) along different scheduled departure times (x-axis). Bars denote the sample
size on each timespan (scaled on LASSO side).

Table 3. SVR results for initial, LASSO and RrF-RReliefF feature sets.

Route RMSE RrF MAE RrF RMSE LASSO MAE LASSO RMSE ALL MAE ALL

A1 293.294 224.455 228.192 182.554 244.888 196.851

A2 260.567 192.483 196.843 154.453 228.977 180.843

B1 309.361 224.084 244.650 180.188 281.480 205.387

B2 311.037 231.711 255.853 204.383 268.029 211.830

ALL 293.564 218.183 231.384 180.394 255.843 198.477

5 Concluding Remarks

Feature selection is a relevant task in any real-world data mining project. Long-
term TTP for public transport planning and/or operational purposes is not an
exception. Hereby, we discussed the limitations of RReliefF - the state-of-the-
art for this problem. A comprehensive comparison with LASSO was conducted
using a real-world case study from a bus operator in Sweden. The obtained results
illustrated how dependent RReliefF is on an adequate distance metric that gives
different relevance for distinct features - thus leading to a proper normalization
of the RReliefF output weights and/or different selection thresholds for each
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Table 4. RF and PPR results for initial, LASSO and RrF-RReliefF feature sets.

RF PPR

Route RMSE
RrF

MAE
RrF

RMSE
LASSO

MAE
LASSO

RMSE
ALL

MAE
ALL

RMSE
RrF

MAE
RrF

RMSE
LASSO

MAE
LASSO

RMSE
ALL

MAE
ALL

A1 240.20 190.18 227.66 181.44 232.72 187.96 311.66 242.49 231.52 186.83 232.94 188.16
A2 235.65 180.76 199.84 158.91 203.11 161.73 263.04 195.19 197.05 158.04 198.80 159.45
B1 266.32 198.87 249.78 189.70 248.95 188.71 311.68 226.25 247.69 188.21 248.33 189.21
B2 283.59 223.68 266.62 215.42 264.51 213.91 316.31 233.50 264.21 213.77 261.05 211.29

ALL 256.44 198.37 235.97 186.37 237.32 188.08 300.67 224.36 235.13 186.71 235.28 187.03

feature accordingly to each one’s contribution on model’s bias reduction. As
future work, we intend to explore further supervised filters for dimensionality
reduction purposes on this task - such as Auto-Encoders.
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Abstract. A novel model-based machine-learning approach is presented
for the unsupervised and exploratory analysis of node affiliations to over-
lapping communities with roles in networks. At the heart of our approach
is a new Bayesian probabilistic generative model of directed networks,
that treats roles as abstract behavioral classes explaining node linking
behavior. A generalized weighted instance of directed affiliation modeling
rules the strength of node participation in communities with whichever
role through Gamma priors. Moreover, link establishment between nodes
is governed by a Poisson distribution. The latter is parameterized so
that, the stronger the affiliations of two nodes to common communities
with respective roles, the more likely it is the formation of a connection.
A coordinate-ascent algorithm is designed to implement mean-field varia-
tional inference for affiliation analysis and link prediction. A comparative
experimentation on real-world networks demonstrates the superiority of
our approach in community compactness, link prediction and scalability.

1 Introduction

Community discovery and role assignment are two complementary tasks. Role
assignment attributes within-community interactions to abstract behavioral
classes, thus explaining node contributions to community purpose/functionality.
Community discovery is an inherent characterization of the behavioral roles. The
tight integration of both tasks was pioneered in [4] and further elaborated in [5,6],
being of great practical relevance in various domains including (but not limited
to) the social, information, ecological, (counter-)intelligence and recommenda-
tion [7] ones. Despite their effectiveness in recovering community structures and
predicting prospective connections, the generative models developed in [4–6] do
not account for a key property of network connectivity in community overlaps.
Therein, the probability of a connection between two nodes was found in [18]
to increase with the number of common community memberships shared by the
two nodes. Besides, scalability with network size in [4–6] is limited.

In this paper, we propose a new approach to the seamless integration of com-
munity discovery and role assignment. The devised approach consists in perform-
ing variational inference in TOMATOES (Tie fOrMATion based on cOmmunity

c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 110–122, 2016.
DOI: 10.1007/978-3-319-46349-0 10
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and rolE affiliationS ), i.e., a new Bayesian probabilistic generative model of
networks. Four are the innovations behind TOMATOES. Firstly, a generalized
weighted instance of directed affiliation modeling [12] is used for a twofold pur-
pose, namely representing the strength of node affiliations to communities with
roles and unveiling realistic community overlaps and nestings [19]. Secondly,
link establishment is generalized with respect to [18], by also accounting for the
strength of node affiliations. More precisely, the stronger the affiliations of two
nodes to common communities with respective roles, the more likely it is the
emergence of a connection from one to the other. Thirdly, the Poisson distrib-
ution is borrowed from Poisson factorization to expedite posterior inference on
sparse networks [9]. Fourthly, mean-field variational inference is implemented by
a coordinate-ascent algorithm in order to estimate the strength of node affilia-
tions to communities with roles. This allows for the exploratory analysis of node
affiliations in networks along with the prediction of prospective links.

An experimental assessment of the devised approach on real-world networks
reveals its superiority in community compactness, link prediction and scalability.

This paper is structured as follows. Section 2 presents notation and prelim-
inaries. Section 3 proposes TOMATOES. Section 4 covers the algorithmic imple-
mentation of mean-field variational inference. Section 5 discusses latent variable
expectation for network exploration and link prediction. Section 6 is devoted
to the empirical evaluation of TOMATOES. Section 7 concludes and highlights
future research.

2 Preliminaries

The notation used in this paper and some basic concepts are introduced next.
A network is represented as a directed graph G = {NG ,EG}, where NG =

{1, . . . N} is a set of nodes numbered 1 through N and, in addition, EG ⊆
NG × NG is a set of directed links (or, equivalently, ordered pairs of nodes). By
nodes we mean the entities interacting in the network (such as, e.g., individuals,
organizations and so forth). Links denote asymmetric interactions between nodes
and are summarized into a N ×N binary adjacency matrix L. Let u → v denote
an interaction from node u to node v. L is such that the generic entry Lu→v is
1 iff u → v is actually a link of G (i.e., 〈u, v〉 ∈ EG) and 0 otherwise.

Each network G is inherently characterized by two respective features, i.e.,
a latent structure C along with an underlying variety R of behavioral roles.
The latent structure C = {C1, . . . , CK} reflects the organization of nodes into
K unobserved communities. Within the individual communities, nodes exhibit
connectivity patterns ascribable to abstract behavioral classes. These are for-
malized as a set R = {R1, . . . , RH} of H underlying roles. The generic node can
participate in each community with any role, though with a different affiliation
strength. In order to accurately capture the affiliations of nodes to communi-
ties with roles, we draw inspiration from [19] and distinguish between two types
of affiliations, namely sender and receiver. More precisely, u participates in Ck

with role Rh as a sender, whenever it links to other nodes playing any role
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in Ck. Dually, u participates in Ck with role Rh as a receiver, whenever it is
linked to by other nodes playing any role in Ck. Clearly, u can be affiliated to
community Ck with role Rh as a sender as well as a receiver. The strength of
the sender affiliation of u to community Ck with role Rh is a nonnegative value
ϑ
(s)
u,k,h. ϑ

(s)
u,k,h is 0 iff u is not affiliated to Ck with role Rh as a sender. Like-

wise, the strength of the receiver affiliation of u to community Ck with role Rh

is a nonnegative value ϑ
(r)
u,k,h. ϑ

(r)
u,k,h is 0 iff u is not affiliated to Ck with role

Rh as a receiver. The strengths of node affiliations are collectively denoted as
Θ � {ϑ

(s)
u,k,h, ϑ

(r)
u,k,h|u ∈ NG , Ck ∈ C Rk ∈ R}. Notice that the dichotomization

of node affiliations to communities with roles supplements the dichotomization of
node affiliations to communities alone in [19]. Our approach assumes the obser-
vation of an input network G. Besides, the strengths of node affiliations in Θ are
treated as random variables, being unknown and not directly measurable.

3 The TOMATOES Model

TOMATOES (Tie fOrMATion based on cOmmunity and rolE affiliationS) is an
innovative model of directed networks, whose generative process explains the
emergence of links between nodes from a Bayesian probabilistic perspective.

α α/β α α/β

ϑ
(s)
u,k,h

Lu,v ϑ
(r)
u,k,h

N×K×H N×K×H
N×N

Fig. 1. Directed graphical representation in plate notation of the TOMATOES model

The directed graphical representation of TOMATOES in plate notation is
shown in Fig. 1. The latter illustrates the conditional (in)dependencies between
the random variables in TOMATOES. The sequence of all interactions among
such random variables is the generative process of TOMATOES, whose details
are reported in Fig. 2. Essentially, TOMATOES explains the formation of any
input network as the result of a two-step process.

At step I, the strength of node affiliations to communities with roles is sam-
pled from Gamma priors, which amounts to implicitly defining a generalized
weighted instance of directed affiliation modeling [19]. The rationale behind the
choice of Gamma priors is twofold. Firstly, sparseness is fostered in the rep-
resentation of TOMATOES, which improves its interpretability. Secondly, the
affiliation strength for each node does not sum to 1. As a consequence, a strong
affiliation of any node to a certain community with some particular role does not
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Fig. 2. The probabilistic generative process of the TOMATOES model

diminish the overall strength of all other affiliations of that node. Thus, TOMA-
TOES retains the flexibility of mixed-membership modeling, without unnatural
assumptions on the structure of community overlaps [18].

The affiliation strengths Θ resulting at the end of step I are then used at
step II to rule the establishment of pairwise connections between nodes. This is
accomplished by means of a Poisson probability distribution, which is placed over
the observed links L as the data likelihood, being beneficial for faster inference
on sparse networks [9]. The formation of a link from a node u to a node v is
ruled by the Poisson distribution according to the corresponding rate λu,v below

λu,v =
K∑

k=1

H∑

h=1,h′=1

ϑ
(s)
u,k,hϑ

(r)
v,k,h′ (1)

Equation 1 allows for an extension of the increasing link probability with
the shared community affiliations in [18], that also considers node roles, link
direction and affiliation strength. Specifically, the stronger the affiliations of u
and v to shared communities with respective roles, the more likely a link from
u to v.

4 Approximate Posterior Variational Inference

A posterior distribution is calculated over the latent variables of TOMATOES
(i.e., the strengths of node affiliations to communities with respective roles) by
means of posterior inference. However, exact posterior inference is intractable
under TOMATOES as well as most of the Bayesian models of practical rele-
vance, essentially because of the complexity of the posterior distribution. There-
fore, we focus on approximate posterior inference and choose between two wide-
spread methods, i.e., MCMC sampling and variational inference. The former is
a probabilistic instance of approximate posterior inference, whereas the latter is
a deterministic one. We opt for variational inference, which tends to be faster
and more easily scalable on large-scale networks than MCMC sampling [2].
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An algorithm implementing mean-field variational inference in TOMATOES
is designed to analytically approximate the true posterior distribution over the
latent variables given the adjacency matrix L of the observed network G.

The derivation and implementation of mean-field variational inference are
simplified, by following the approach in [9]. Accordingly, auxiliary latent vari-
ables are added to the original formulation of TOMATOES. Specifically, because
of the additive property of Poisson random variables, the generic Lu→v is rewrit-
ten as Lu→v =

∑K
k=1

∑H
h,h′=1 z

(k,h,h′)
u,v . Here, z

(k,h,h′)
u,v ∼ Poisson(ϑ(s)

u,k,hϑ
(r)
v,k,h′)

is the contribution to Lu→v from the affiliations of u and v to the com-
mon community Ck with respective roles Rh and Rh′ . Remarkably, such an
application of the auxiliary variables z

(k,h,h′)
u,v preserves the marginal Poisson

distribution of Lu→v. Let Z = {zu,v|u, v ∈ V G} denote all auxiliary vari-
ables added to TOMATOES, where zu,v = {z

(k,h,h′)
u,v |k = 1, . . . ,K and h, h′ =

1, . . . , H}. The mean-field family over Θ and Z has the following factorized form

with μ � {πu,k,h, ξv,k,h′ ,γu,v|u, v ∈ NG , Ck ∈ C, Rh, R′
h ∈ R} being the

set of all variational parameters. Each such a variational parameter individually
conditions a corresponding factor on the right hand side of the above equation.
For the class of conditionally conjugate models, μ can be fitted to the observed
network G by means of a simple coordinate-ascent algorithm [2]. It can be proven
that TOMATOES (with the addition of the auxiliary latent variables) is condi-
tionally conjugate. We omit such a proof along with the mathematical derivation
of the updates used in Algorithm 1 due to space requirements.

The coordinate-ascent variational algorithm operates by iteratively optimiz-
ing each variational parameter, while the others remain unchanged, until con-
vergence to a local optimum [1]. Algorithm 1 shows the pseudo-code of such
an algorithm for TOMATOES. After a preliminary initialization (line 1), the
algorithm enters a loop (lines 2 − 20) to update the individual variational para-
meters. This loop halts upon convergence, which is met (at line 20) when the
difference in the average predictive log likelihood of a validation set V ⊂ L is
smaller than 10−6. Notably, the sums over users involve accounting only for the
observed links. This expedites variational posterior inference on sparse adjacency
matrices [9].

5 Exploratory and Predictive Tasks

Upon convergence of Algorithm 1, the approximate posterior distribution
q(Θ,Z|μ) under TOMATOES is fit to the input network G with K latent com-
munities and H underlying roles. This enables the exploratory analysis of G and
the prediction of prospective links. Both tasks involve expectations of specific vari-
ables according to standard Bayesian inference as explained in Sects. 5.1 and 5.2.
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5.1 Exploratory Network Analysis

For any node u ∈ NG , the posterior expectations E[ϑ(s)
u,k,h] and E[ϑ(r)

v,k,h′ ] denote
the strength of the affiliation of u to the generic community Ck with whichever
role Rh, respectively, as a sender and a receiver. Overall, the affiliation strength
of u to Ck is determined by the role, that maximizes its participation into Ck.
Hence, the affiliation strength ϑ

(s)

u,k of u to Ck as a sender is defined as ϑ
(s)

u,k =

maxhE[ϑ(s)
u,k,h]. Analogously, the affiliation strength ϑ

(r)

u,k of u to Ck as a receiver

is defined as ϑ
(r)

v,k = maxh′E[ϑ(r)
v,k,h′ ]. In principle, u may not necessarily be

affiliated to Ck. Thus, in order to allow for such a possibility, both ϑ
(s)

u,k and ϑ
(r)

u,k

are lower-bounded by a threshold ζ. Accordingly, u is affiliated to Ck as a sender
if ϑ

(s)

u,k > ζ and as a receiver if ϑ
(r)

u,k > ζ. The threshold ζ =
√

− 1
H2 ln(1 − 1

|V G | )

is estimated through the notion of background link probability in [19].

5.2 Link Prediction

The missing links of G are ranked by a score, in order to forecast which of such
links will likely emerge in the future. The score su→v associated with any missing
link u → v /∈ EG is defined as the posterior expectation of the corresponding
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Poisson distribution rate, i.e.,

su→v = E

⎡

⎣
∑

Ck∈C

∑

Rh,Rh′∈R

ϑ
(s)
u,k,hϑ

(r)
v,k,h′

⎤

⎦

6 Experimental Evaluation

We comparatively investigate TOMATOES on real-world networks. For this rea-
son, four collections of network data are selected from the information, biological
and social domains, i.e., Enron, Neural Network, Twitter and Twitter20%.

The Enron corpus (available at http://www.cs.cmu.edu/∼enron/) is a large
collection of emails generated by 158 employees of the Enron Corporation. The
cleaned corpus consist of nearly 250, 000 messages involving 150 employees,
though the number of distinct employees is 148, since two employees are met
twice with as many distinct usernames. We focus on the implicit social network
arising from the 18, 233 emails among the 148 employees.

Neural Network [16] is a directed map of the nervous system of the Nematode
Caenorhabditis worm, that consists of 306 neurons and 2, 345 connections [17].
We focus on the 297 neurons of the largest connected component.

Twitter data (available at http://snap.stanford.edu/data) was obtained
in [13] from 973 ego-networks and consists 81, 306 nodes and 1, 768, 149 directed
edges. We additionally consider Twitter20%, that is a random sample retaining
20% of the links in the full Twitter network.

We conduct an empirical evaluation that is both qualitative and quantitative.
The qualitative analysis is focused on Enron and its results are summarized by
Table 1 and Fig. 3. In particular, Table 1 succinctly indicates the top 5 members
with strongest affiliation to each of the 8 communities unveiled by TOMATOES.
Besides, Fig. 3 illustrates the frequency of roles in the Enron communities.

TOMATOES is quantitatively and comparatively evaluated on the chosen net-
works hereunder. The selected competitors include all prototypical approaches
to the seamless integration of community discovery and role assignment, i.e., the
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Fig. 3. Occurrence frequency of roles across the 8 Enron communities of Table 1

http://www.cs.cmu.edu/~enron/
http://snap.stanford.edu/data
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Table 1. An extract from the Enron communities unveiled by TOMATOES

Community 1 Community 2 Community 3 Community 4

1 Guzman 1 Zufferli 1 Lewis 1 Taylor

2 Linder 2 Townsend 2 Causholli 2 Staab

3 Donohoe 3 Giron 3 Griffith 3 Ward

4 Williams 4 Whitt 4 Hayslett 4 Hodge

5 Brawner 5 Wolfe 5 Campbell 5 Maggi

Community 5 Community 6 Community 7 Community 8

1 Stepenovitch 1 Saibi 1 Hendrickson 1 Sanchez

2 Meyers 2 Thomas 2 Horton 2 Linder

3 Crandell 3 Love 3 Pimenov 3 Farmer

4 Dean 4 Solberg 4 Quenet 4 Holst

5 Geaccone 5 Rogers 5 Germany 5 Gang

Baysian generative models BLFHM [6], BH-CRMLP [5] and BH-CRM [4]. An addi-
tional baseline, namely LDA-G [11], is also considered. LDA-G is a role-unaware
approach to community discovery. The comparison against LDA-G is useful to
highlight whether node roles actually contribute to improve model performance.

The process of learning a TOMATOES model of the chosen networks involves
three steps, i.e., the formation of the training, validation and test sets. We par-
tition the links of each chosen network by random sampling to form such sets.
Therein, we include 70% of the links into the training set, 15% into the test
set and the remaining 15% into one held-out validation set. Both the test and
validation sets have an equal number of present and absent links. More details
on the test sets are provided below. Hereinafter, as far as TOMATOES is con-
cerned, we write Enron, Neural Network, Twitter and Twitter20% to mean the
whole network data without the validation set.

The input parameters K and H are set identically for TOMATOES, BLFHM,
BH-CRM and BH-CRMLP on the chosen networks. Specifically, the number K
of communities to discover within the Enron social network is set to 8, i.e.,
the number of well connected and topically meaningful communities according
to [14]. Also, the number H of roles is set to 4 based on [8], in which the distinct
roles of Enron employees are grouped into four categories, i.e., Senior Manager
(SM ), Middle Manager (MM ), Trader (T ) and Employee (E ). On Neural Net-
work, K is set to 5, which is the number of anatomical clusters corresponding
to identified functional circuits [15]. Besides, H is fixed to 4 in accordance with
the distinct function types of neurons, i.e., sensory, motor, interneuron, com-
bination [3]. As far as Twitter and Twitter20% are concerned, K is set to 973.
Furthermore, H is empirically set to 4. LDA-G unveils on each network as many
communities as TOMATOES, BLFHM, BH-CRM and BH-CRMLP .

The performance of all competitors on the chosen networks is investigated
by looking at community compactness, link prediction and scalability.
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Compactness is defined as the average of the shortest distances between
nodes of a community. Essentially, it can be interpreted as a network-centric
adaptation of a conventional criterion of clustering quality, namely intra-cluster
distance, to assess community cohesiveness. As in [20], compactness is calcu-
lated by accounting for only a certain number of top-ranked nodes within each
community. In particular, we consider the top 10 nodes with highest affiliation
strength in each individual community. Table 2 summarizes compactness results.
The most compact communities on Enron, Neural Network and Twitter20% are
found by TOMATOES. BLFHM is the runner-up on Enron, Neural Network and
Twitter20%. TOMATOES is also the only one competitor with an observed per-
formance on Twitter. Indeed, the abbreviation N.A. in the entries along the
Twitter row of Tables 2 and 3 stands for not available and, actually, means that
we were not able to experiment with BLFHM, BH-CRM, BH-CRMLP and LDA-G
on Twitter within a reasonable computational time. This finding justifies the
comparison over Twitter20% in addition to revealing the meaningful increase in
scalability enabled by TOMATOES.

Table 2. Compactness results

Network TOMATOES BLFHM BH-CRM BH-CRMLP LDA-G

Enron 1.70 1.71 1.98 2.04 2.28

Neural Network 2.14 2.18 2.56 2.68 2.20

Twitter20% 3.62 3.75 3.81 4.05 3.90

Twitter 2.98 N.A. N.A. N.A. N.A.

An additional batch of tests is devoted to evaluate the predictive performance
of all competitors. Link prediction is the adopted assessment criterion and the
design of the tests is borrowed from [10]. Overall, 10 experiments of the predictive
performance of the competing models are carried out over the chosen networks.
Each experiment consists of two steps. Firstly, the generic input network is
separated into a training set and a held-out test set. In particular, the latter is
formed by randomly sampling the whole input network to choose a same number
of both present and missing links, whose sum amounts to 15% of the overall
number of links in the whole input network. Secondly, the links in the held-out
test set are predicted according to the distinct models learnt from the training
set. The details on link prediction in TOMATOES are provided in Sect. 5.2,
whereas those about BLFHM, BH-CRM, BH-CRMLP and LDA-G appear in [5,6].

The best ROC curves delivered by the competing models across the 10 exper-
iments on Enron, Neural Network and Twitter20% are reported, respectively, in
Fig. 4(a), (b) and (c). Figure 4(d) illustrates the best ROC curve delivered by
TOMATOES on Twitter. Remarkably, TOMATOES overcomes all other competi-
tors on Twitter20% across the whole range of the false positive rate. On Enron
and Neural Network, TOMATOES overcomes BLFHM, BH-CRM, BH-CRMLP and
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LDA-G in very large ranges of the false positive rate. However, on both Enron
and Neural Network, there are still some narrow ranges of the false positive rate
where the predictive performance of TOMATOES is not the most distant one
from the random-guess diagonal line (in the sense of closeness to the upper left
corner). Therefore, in order to more easily compare the overall link-prediction
performance of each competitor on Enron and Neural Network, we reduce the
respective ROC curves into the corresponding AUC (Area under the ROC Curve)
summary statistics and average across the 10 experiments. The average AUC
values on Twitter20% and Twitter are computed too.
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Fig. 4. ROC curves on the chosen networks

Table 3 summarizes the average AUC values for all competitors on the chosen
networks. TOMATOES outdoes all other competitors in (average) link prediction.
BLFHM is again the runner-up. Notably, according to Table 3, TOMATOES,
BLFHM and BH-CRM overcome LDA-G in link prediction. Moreover, based on
the results of Table 2, TOMATOES and BLFHM (as well as BH-CRM though with
the exception of Neural Network) overcome LDA-G in community compactness.
Such empirical findings provide substantial evidence in favour of also accounting
for node roles in link formation, in order to more accurately capture and predict
network connectivity in terms of affiliations to communities and roles.
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Table 3. Average AUC results

Network TOMATOES BLFHM BH-CRM BH-CRMLP LDA-G

Enron 84.38 82.16 80.40 74.81 75.70

Neural Network 82.47 78.27 76.70 67.43 66.52

Twitter20% 80.19 74.28 71.61 69.05 67.24

Twitter 83.64 N.A. N.A. N.A. N.A.

From this viewpoint, BH-CRMLP is still competitive with LDA-G in link
prediction, despite being focused only on within-community links.

In addition, the overcoming performance of TOMATOES both in community
compactness and link prediction with respect to BLFHM confirms that the analy-
sis of communities and roles in networks can significantly benefit from affiliation
modeling, i.e., from explicitly accounting for the strength of node affiliations to
shared communities with respective roles.

Lastly, we return to the time efficiency and scalability of our approach, which
were touched upon earlier. Both aspects are explored over random samples of
Twitter, that retain an increasingly larger number of links. Figure 5 reveals that
the scalability of our approach is substantially linear with the number of links in
the input network. Such an evidence substantiates the beneficial effect of Poisson
link generation under TOMATOES on posterior inference with sparse networks.
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7 Conclusions

We proposed a new approach to the seamless integration of community discovery
and role assignment, that advances research on the simultaneous exploitation of
both tasks for a more insightful (unsupervised) exploratory analysis of networks.
A comparative evaluation on real-world networks showed the superiority of our
approach in community compactness, link prediction and scalability.

Further research is required to study and evaluate the adoption of separate
latent interaction factors for nodes and roles.



A Mean-Field Variational Bayesian Approach 121

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

2. Blei, D., Kucukelbir, A., McAuliffe, J.: Variational inference: a review forstatisti-
cians. arXiv:1601.00670 (2016)

3. Chatterjee, N., Sinha, S.: Understanding the mind of a worm: hierarchical net-
work structure underlying nervous system function in C. elegans. In: Banerjee, R.,
Chakrabarti, B.K. (eds) Progress in Brain Research, pp. 145–153. Elsevier (2008)

4. Costa, G., Ortale, R.: A bayesian hierarchical approach for exploratory analysis
of communities and roles in social networks. In: Proceedings of the IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
pp. 194–201 (2012)

5. Costa, G., Ortale, R.: Probabilistic analysis of communities and inner roles in
networks: Bayesian generative models and approximate inference. Soc. Netw. Anal.
Min. 3(4), 1015–1038 (2013)

6. Costa, G., Ortale, R.: A unified generative bayesian model for communi-
tydiscovery and role assignment based upon latent interaction factors. In:
IEEE/ACMASONAM, pp. 93–100 (2014)

7. Costa, G., Ortale, R.: Model-based collaborative personalized recommendation on
signed social rating networks. ACM Trans. Int. Technol. 16(3), 20:1–20:21 (2016)

8. Creamer, G., Rowe, R., Hershkop, S., Stolfo, S.J.: Segmentation and auto-
mated social hierarchy detection through email network analysis. In: Zhang, H.,
Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum, A., Nasraoui, O., Srivastava,
J., Yen, J. (eds.) SNAKDD/WebKDD -2007. LNCS (LNAI), vol. 5439, pp. 40–58.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00528-2 3

9. Gopalan,P.,Hofman, J.,Blei,D.: Scalable recommendationwithhierarchicalPoisson
factorization. In: UAI, pp. 326–335 (2015)

10. Henderson, K., Eliassi-Rad, T., Papadimitriou, S., Faloutsos, C.: HCDF: a hybrid
community discovery framework. In: Proceedings of SIAM International Confer-
ence on Data Mining, pp. 754–765 (2010)

11. Henderson, K., Eliassi Rad, T.: Applying latent dirichlet allocation to group discov-
ery in large graphs. In: Proceedings of ACM Symposium on Applied Computing,
pp. 1456–1461 (2009)

12. Lattanzi, S., Sivakumar, D.: Affiliation networks. In: ACM STOC, pp. 427–434
(2009)

13. McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In:
NIPS, pp. 548–556 (2012)

14. Pathak, N., Delong, C., Banerjee, A., Erickson, K.: Social topic models for com-
munity extraction. In: Proceedings of KDD Workshop on Social Network Mining
and Analysis (2008)

15. Sohn, Y., Choi, M.-K., Ahn, Y.-Y., Lee, J., Jeong, J.: Topological cluster analysis
reveals the systemic organization of the caenorhabditis elegans connectome. PLoS
Comput. Biol. 7(5), e1001139 (2011)

16. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440–442 (1998)

17. White, J.G., Southgate, E., Thompson, J.N., Brenner, S.: The structure of the
nervous system of the nematode caenorhabditis elegans. Philos. Trans. Royal Soc.
B Biol. Sci. 314(1165), 1–340 (1986)

http://arxiv.org/abs/1601.00670
http://dx.doi.org/10.1007/978-3-642-00528-2_3


122 G. Costa and R. Ortale

18. Yang, J., Leskovec, J.: Structure, overlaps of ground-truth communities in net-
works. ACM Trans. Intell. Syst. Technol. 5(2), 26:1–26:35 (2014)

19. Yang, J., McAuley, J., Leskovec, J.: Detecting cohesive and 2-mode communities
in directed and undirected networks. In: WSDM, pp. 323–332 (2014)

20. Zhang, H., Qiu, B., Giles, C.L., Foley, H.C., Yen, J.: An LDA-based community
structure discovery approach for large-scale social networks. In: IEEE ISI, pp. 200–
207 (2007)



Online Semi-supervised Learning
for Multi-target Regression in Data

Streams Using AMRules

Ricardo Sousa1(B) and João Gama1,2

1 LIAAD/INESC TEC, Universidade do Porto, Porto, Portugal
rtsousa@inesctec.pt

2 Faculdade de Economia, Universidade do Porto, Porto, Portugal
jgama@fep.up.pt

Abstract. Most data streams systems that use online Multi-target
regression yield vast amounts of data which is not targeted. Targeting
this data is usually impossible, time consuming and expensive. Semi-
supervised algorithms have been proposed to use this untargeted data
(input information only) for model improvement. However, most algo-
rithms are adapted to work on batch mode for classification and require
huge computational and memory resources.

Therefore, this paper proposes an semi-supervised algorithm for online
processing systems based on AMRules algorithm that handle both tar-
geted and untargeted data and improves the regression model. The pro-
posed method was evaluated through a comparison between a scenario
where the untargeted examples are not used on the training and a sce-
nario where some untargeted examples are used. Evaluation results indi-
cate that the use of the untargeted examples improved the target pre-
dictions by improving the model.

Keywords: Multi-target regression · Semi-supervised learning ·
AMRules · Data streams

1 Introduction

Multi-target regression (MTR), also known as Multi-output, Multi-variate or
Multi-value, consists of predicting targets of numerical and nominal variables
(outputs variables) from a set of other variables (input variables) using a trained
relational and functional model [1].

Online data streams systems that use Multi-target regression produce mas-
sive amounts of data. Targeting all examples may be impossible, time consum-
ing or expensive. Untargeted examples are abundant due to sensor malfunction,
reluctance for sharing sensitive information, high cost of data collection or data-
bases failure [2,3].

As related problems, most of the available methods work on batch mode
with high computational and memory requirements [4,5]. Moreover, the litera-
ture presents more solutions for classification that cannot be directly applied to
regression [6].
c© Springer International Publishing AG 2016
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This regression methods are applied to forecasting and modelling in a wide
range of areas such as Engineering Systems (electrical power consumption) [7],
Physics (weather forecasting and ecological models) [8], Biology (model of cellu-
lar processes) [9] and Economy/Finance (stock price forecasting) [10]. In most of
these areas, data from streams is obtained and processed in real time and most
data is untargeted [3].

Several authors proposed the use of untargeted data (input variables infor-
mation only) to improve regression models and targeted examples prediction
that lead to the Semi-Supervised Learning (SSL) methods, also called Partially-
Supervised Learning or Bootstrapping techniques [3].

Let D = {..., (x1,y1), (x2,y2), ..., (xi,yi), ...} denote an unlimited stream
of data examples, where xi = [xi,1 · · · xi,j · · · xi,M ] is a vector of data descrip-
tive variables xi,j and yi = [yi,1 · · · yi,j · · · yi,N ] is a vector of response output
variables yi,j of the ith example (considering one example with the index of
reference). The untargeted example is represented with an empty target vector
yi = ∅. The objective of SSL consists of using examples (xi, ∅) to improve the
regression model. SSL explores the information for the inference of the targets
that is being conveyed by the input variables [6]. These algorithms are very use-
ful if the untargeted data is far more abundant [6]. However, in some scenarios,
the algorithm reinforces and propagates the error through the estimations [6].

The objective of this work is to develop an online multi-target algorithm that
handle the untarget examples in order to improve the prediction for both target
and untargeted examples.

Section 2 briefly reviews semi-supervised learning methods. Section 3
describes the proposed algorithm. Section 4 explains the evaluation method.
Finally, the results are presented and discussed in Sect. 5 and the main con-
clusions are reported in Sect. 6.

2 Related Work

This section briefly reviews some existent SSL algorithms. In the literature,
most semi-supervised algorithms work on batch mode where the models are
produced with the knowledge of all data [5]. Classification is the more addressed
problem in SSL related literature [6]. For the best of our knowledge, no online
semi-supervised multi-target regressor was found. Therefore, this review contains
essentially descriptions of batch modes algorithms which are fair starting points
for online algorithms development.

SSL techniques are essentially divided into five categories: self-training, co-
training, generative models and graphs [6]. The self-training is an method that
produces an prediction (based on the current model) and a confidence score for
the untargeted example [11]. The prediction is used to target the example and
the score is used to measure/predict the benefit of this artificially targeted exam-
ple on the current model. A threshold is used to select the artificially targeted
examples that benefit most [11,12]. A self-training batch mode algorithm was
proposed by Levatic et al. [2]. This batch algorithm uses ensemble of Predictive
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Clustering Trees (PCT) as underlying regressor. The predicted targets mean is
used to target the example and a variability measure is used in the example
acceptance for training.

The co-training method divides the input variables of the incoming exam-
ple into two independent/uncorrelated groups and produce two examples with
different input variables but with equal targets (targets of the incoming exam-
ple). Two complementary regressors of the same type yield a prediction for each
example which is used to targeting the example of the complementary regressor
and for training [6]. COREG is a batch mode algorithm based on co-training
that uses k-Nearest Neighbours (kNN) regressors [3]. This algorithm produces
a small dataset of examples that are close (according to a predetermined dis-
tance metric) to the untargeted example. Each regressor predicts a target for the
untargeted example and uses it to re-train the models with all targeted examples.
Mean Squared Error (MSE) variation is computed between the scenarios with
and without the artificially targeted examples. If MSE is reduced, the artificially
targeted example is joined to the targeted examples set. The process stops when
none untargeted example is interchanged between target and untargeted sets.

The generative models assume a distribution model of p(xi|yj , θ), where θ
represent a set of parameters of the model which is identifiable by a Expectation-
Maximization or clustering algorithms. The distribution p(yj |xi, θ) is computed
using the Bayes rule assuming proportionality to p(xi|yj , θ) and p(yj). The
artificial target is computed by maximising p(yj |xi, θ) [12]. However, this method
is usually applied to classification problems [6].

The graph based methods create models for the association between the
inputs and target variables and between output variables themselves using
graphs. The examples are the nodes and the weighted links represent their
similarity. These models assume that neighbour input nodes tend to produce
the similar targets [13]. This model allows to produce p(yj |xi) (discriminative
property) distribution as function of these parametrized associations and founds
the target by optimizing it [14,15]. The Continuous Conditional Random Fields
(CCRF) explores the relations between input and target variables. A model is
created for p(yj |xi) based on graph parameters and optimised as a function of
a target. This approach is an adaptation from classification [14].

3 Semi-supervised Multi-target AMRules

In this section, the Semi-supervised Multi-Target AMRules (SS-AMRules) algo-
rithm and the underlying principles are presented. This SSL algorithm uses the
AMRules regressor due to the modularity property that allows the construc-
tion of models for particular input variables regions (defined by the rule). The
SSL algorithm is based on the assumption that the most likely input variables
will benefit the model by reinforcing it even with the artificially targeted exam-
ples. This principle approximates to the semi-supervised smoothness assumption
which states that if two points (target representation) are close in a very dense
region, then their respective response points are also close [11]. If input variables
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xi are too frequent an artificial target is predicted and the respective example is
targeted. The untargeted example occurrence uses the same principle of anomaly
detection.

3.1 Rule Learning

Rule Learning is based on implications Rr = (Ar ⇒ Cr), called rules, where
antecedent Ar is a conjunction of conditions (called literals) that create par-
titions in the input variables xi space and the consequent Cr is a predicting
function (in this context, it is a basic online multi-target regressor). Literals
may present the forms (Xj ≤ v) and (Xj > v) for numerical data and (Xj = v)
and (Xj �= v) for nominal data, where Xj represents the jth input variable.
Rule Rr is said to cover xi if xi satisfies all the literals in Ar. Support S(xi)
corresponds to a set of rules that cover xi and Cr returns a prediction ŷi if a
rule Rr ∈ S(xi).

Data structure Lr containing the necessary statistics (about the rule and
the examples) to the algorithm training and prediction (rule expansion, changes
detection and anomalies detection,...) is associated to each rule Rr. In particular,
Lr contains the input variables statistics Ir. Default rule D exists for initial
conditions and for the case of none of the current rules covers the example
(S(xi) = ∅). The antecedent of D and is initially empty. Rule set is formed by a
set of U learned rules defined as R = {R1, · · · , Rr, · · · , RU} and a default rule
D as depicted in Fig. 1.

Fig. 1. Rule learning on regression.

3.2 Untargeted Data Handling

The untargeted examples handling essentially performs likelyhood score and
artificial target computation for the untargeted examples inputs xi. The selected
likelyhood score was Odd Ratio (OR) measure defined by

ORi =
1
M

M∑

j=1

log
(

P (|Xj − μj | ≥ |xi,j − μj |)
1 − P (|Xj − μj | ≥ |xi,j − μj |)

)
, (1)
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where i is the example index, M is the number of input variables, Xj is the
jth input variable treated as a random variable and μj is the mean of Xj [4].
OR is the mean of probabilities measures ( P (|Xj−μj |≥|xi,j−μj |)

1−P (|Xj−μj |≥|xi,j−μj |) ) of each input
variable. The higher the OR is the better is the benefit of the artificially tar-
geted example on the current model. For continuous attributes, the Cantelli’s
inequality [16] is used to estimate P (|Xj − μj | ≥ |xi,j − μj |):

P (|Xj − μj | ≥ k) ≤
⎧
⎨

⎩

2σ2
j

σ2
j+k2 ifσj < k

1 otherwise
(2)

where σj is the standard deviation of Xj target element and k corresponds to
the distance of the actual variable value and its mean k = |xi,j−μj |. The artificial
target is computed by predicting the target for example using the current model
associated to the rules that cover the examples.

3.3 SS-AMRules Training

Algorithm 1 presents the pseudo-code of the SS-AMRules algorithm. On the
occurrence of an incoming example (xi,yi), the SS-AMRules searches for rules
Rr of the current rule set that covers the example. Considering a Rr ∈ S(xi),
anomaly detection is performed to increase resilience to data outliers (isAnom−
aly(Ir,xi)). In case of anomaly occurrence, the example is simple ignored by
the rule otherwise it verifies if the example is untargeted (yi = ∅). For an untar-
geted example, the OR score is computed from the input variables statistics
Ir and if this score is higher than a predetermined threshold scoreThreshold,
an artificial target is predicted for the example using the model statistics Lr

and the example become targeted (getPrediction(Lr,xi)). This prediction
is the artificial target of the untargeted example. In case of targeted exam-
ple identification, the statistics of likelihood score computation Ir are updated
(updateInputStatistics(Ir)).

Posteriorly, both target and artificially targeted examples are submitted to
the change detector and training process. The Page-Winkle algorithm is used
for change detection. The algorithm also performs outputs selection in order to
create rules that are specialized on sets of output variables (Compute Oc). The
algorithm presents self-training and generative models features. The OR score
is the measure of confidence that is estimated from a generative model which
describes the input variables space. As consequent (Cr) function, a multi-target
perceptron regressor was used as linear predictor due to its models simplicity,
low computational cost and low error rates [4].

4 The Evaluation Method

The evaluation consisted of a simulation of a data stream using artificial and
real worlds datasets. A d percentage of each dataset examples are used to train
a initial model and the remaining examples are used for testing. Iteratively, a
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Algorithm 1. Semi-Supervised AMRules
1: R ← ∅, D ← 0
2: for all (xi,yi) ∈ D do
3: for all Rr ∈ S(xi) do
4: if ¬isAnomaly(Ir,xi) then
5: if yi = ∅ then
6: ORscore = getORScore(Ir,xi)
7: if ORscore > scoreThreshold then
8: yi = getPrediction(Lr,xi)
9: else
10: continue

11: else
12: updateInputStatistics(Ir)
13: if changeDetected(Lr,xi) then
14: R ← R \ {Rr}
15: else
16: Rc ← Rr, update(Lr), expanded ← expand(Rr)
17: if expanded = TRUE then
18: Compute O′

c, Oc ← O′
c, R ← R ∪ {Rc}

19:
20: if S(xi) = ∅ then
21: if yi = ∅ then
22: ORscore = getORScore(Ir,xi)
23: if ORscore > scoreThreshold then
24: yi = getPrediction(Lr,xi)
25: else
26: updateInputStatistics(Ir)
27: update(LD)
28: expanded ← expand(D)
29: if expanded = TRUE then
30: R ← R ∪ {D}, D ← 0

binary random process choose if a test example is untarget with probability p.
If the example is imputed as untargeted, the respective target is omitted from
the SS-AMRules algorithm perspective. In the experiments, d is 30 % in order
to ensure initial model consistency. The chosen p probabilities were 50 %, 80 %,
90 %, 95 % and 99 % which reflect different levels of untargeted examples content
on the stream. This evaluation used the prequential mode where the algorithm
predicts a target and the error for both targeted and untargeted examples (it
uses the hidden targets). Posteriorly, it uses the example for training [17].

The performance measurements used the Error (euclidean norm of the differ-
ence between the true and the prediction vector) to measure an example predic-
tion precision (local performance) and the Root Mean Square Error (RMSE) to
evaluate global performance. The RMSE benefit was measured by computing the
percentage of RMSE reduction between the scenario where no untargeted exam-
ples (reference) are used for training and the best scenario (associated to a score
threshold) where artificial targeted examples are used. Since the error presented
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Table 1. Original datasets description

Dataset # Examples # Outputs # Inputs

Eunite30 8064 5 29

Bicycle 17379 3 12

SCM1d 10103 16 280

SCM20d 9047 16 61

some isolated peaks and noise like aspect in the first experiments, a smoothing
median filter was used to better observe the error tendency on the graphs [18].
The window size is 1000 and the window step is 1. Five versions of the Friedman
artificial dataset with complex model were generated [19]. These datasets were
produced with 128000 examples and each example has 10 inputs and 3 outputs.
The models were produced by changing the weights of the complex functions.

Regarding the real world datasets, Eunite03, Bicycle, SCM1d and SCM20d
were used [4]. The examples of these datasets were replicated ten times and shuf-
fled, since AMRules uses the Hoeffding bound to determine a sufficient number
of examples to produce consistent models.

Table 1 shows the original features of the real world data sets used in these
experiments.

5 Results

In this section, the evaluation results are presented and discussed. Figure 2
presents the graphs of error evolution for two cases. The graph at the top reveals
a successful error improvement and the graph at the bottom shows an unsuccess-
ful improvement attempt. Each graph presents several curves for several score
thresholds that were used to calibrate the algorithm. Curves for score thresholds
0, 1, 3, 3.5, 4 and 5 were selected for clearer plot presentation. The score thresh-
olds 0 and 5 correspond to the scenarios where all and none untargeted examples
were used in the training, respectively. The score threshold of 5 is the reference
curve. The algorithm starts by training the initial model producing high errors
with the first examples.

Referenced by point A on the graph at the top, the algorithm learns the first
rules and the error decreases significantly. From point A to B, the algorithm
improves the initial model and from point B, the algorithm starts to process
untargeted examples. The curves diverge since the score threshold are different
and lead to different behaviours on this phase. The graph of the successful case
presents error curves (related to artificially targeted examples usage on the train-
ing) with lower values than the reference curve (scenario where none untargeted
example is used). Moreover, these curves present an error reduction tendency.
The score threshold 0 curve presents higher error because some of the accepted
untargeted examples damaged the model.
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(a)

(b)

Fig. 2. Error evolution curves (for several score thresholds) of a successful (a) and
a unsuccessful (b) cases of improvement attempts. The graph at the top shows the
error behaviour of the algorithm for untargeted probability p=50% and for SCM20d
dataset. The graph at the bottom shows for untargeted probability p=99% and for
SCM1d dataset.

The graph at the bottom reveals a case where the algorithm produced less
accurate models. This fact is due to error propagation through the model that
lead to worst predictions in the artificial targeting. This effect leads to a cycle
that reinforce the error on each untargeted example processing. In fact, the more
untargeted examples arrive the higher is the error.

Figure 3 shows the RMSE as function of score threshold and the untargeted
probability for two cases. The graph on the left indicates an approximate opti-
mal score threshold (score threshold = 0.5) that rejects model damaging exam-
ples and accepts model reinforcing examples. This threshold is valid for any



Online Semi-supervised Learning for Multi-target Regression 131

untargeted probability but it depends on the dataset characteristics (e.g., inputs
variables distributions). The p = 99 % scenario is an extreme case where the
model is trained essentially with artificially targeted examples and the error
propagation can easily occur. The graph on the right presents a dataset where
any score threshold produced higher error than the reference scenario. This
observation means that most untargeted examples contributed to model damage
and the artificial targets conveyed significant errors.

(a) (b)

Fig. 3. RMSE as a function of score threshold and untarget example probability. The
graph on the left (a) shows a case of successful improvement using the dataset SCM20d
and the graph on the right (b) shows a case of unsuccessful improvement attempt using
the Bicycle dataset.

Table 2 presents the RMSE benefit for the experiments on artificial datasets
for each chosen untargeted examples probabilities. When the value is zero, it
means that there was not any score threshold that improved the model.

Table 2. RMSE benefit (%) for artificial datasets.

Datasets Untargeted examples probabilities

50% 80% 90% 95% 99%

FriedModel1 0,13 0,00 0,26 0,00 3,97

FriedModel2 6,83 7,23 6,73 2,72 0,15

FriedModel3 0,01 0,01 0,01 0,00 0,00

FriedModel4 9,11 22,38 21,62 14,65 5,11

FriedModel5 2,31 2,81 1,26 0,00 0,00

RMSE benefit values show that the error decreased in most part of the
artificial datasets and for several untargeted examples probabilities. For Fried-
Model2, FriedModel4 and FriedModel5 datasets, a significant improvement was
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achieved. On the other hand, for FriedModel1 and FriedModel3 datasets, the
RMSE improvements were very small. Table 3 presents the RMSE benefits for
real world datasets in a similar way as the artificial datasets. According to
Table 3, the algorithm seem benefit most part of the scenarios. As expected, the
more elevated p is the less is the benefit. For Eunite03 and SCM20d datasets, the
algorithm produced significant results. But in particular for Bicycle dataset, error
reduction did not occur for most untargeted examples probabilities. As general
impression, the error evolution graphs, the RMSE graphs and the RMSE benefit
tables support the view that the algorithm leads to an online error reduction
by using untargeted examples in most cases and in scenarios where untargeted
probabilities is high.

Table 3. RMSE benefit (%) for real world datasets.

Datasets Untargeted examples probabilities

50% 80% 90% 95% 99%

Bicycle 0,48 0,00 0,00 0,00 4,23

Eunite03 8,67 14,38 32,04 4,77 0,00

SCM1d 0,87 0,02 0,00 8,65 0,00

SCM20d 2,58 2,60 1,68 0,53 0,00

6 Conclusion

In this paper, an online semi-supervised multi-target regression algorithm is
addressed. The algorithm reduces the error of prediction on online mode by using
untargeted examples in most of evaluation experimental scenarios. However, the
error reduction still very small and the score thresholds depend on the dataset.
In fact, the algorithm implies an calibration of the score threshold for each data
stream.

As future work, this approach can be improved by combining it with Ran-
dom Rules based algorithms due to multiple prediction diversity feature. Since
it is important to know what are the dataset characteristics that lead to error
reduction in a semi-supervised scenario, an analytical framework could be con-
structed. In order to increase the algorithm validity, the evaluation tests will
be performed using a higher number of real world datasets with a significant
amount of examples.
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Abstract. Learning experiments are complex procedures which gener-
ate high volumes of data due to the number of updates which occur
during training and the number of trials necessary for hyper-parameter
selection. Often during runtime, interim result data is purged as the
experiment progresses. This purge makes rolling-back to interim experi-
ments, restarting at a specific point or discovering trends and patterns in
parameters, hyper-parameters or results almost impossible given a large
experiment or experiment set. In this research, we present a data model
which captures all aspects of a deep learning experiment and through an
application programming interface provides a simple means of storing,
retrieving and analysing parameter settings and interim results at any
point in the experiment. This has the further benefit of a high level of
interoperability and sharing across machine learning researchers who can
use the model and its interface for data management.

1 Introduction

In order to tune and optimise machine learning models, a wide range of parame-
ters are required. Finding the best combination of parameters is often complex
and time consuming, as parameter optimisation requires careful monitoring of
each batch of results, which are generated during an update in training. These
results should also be monitored with respect to different combinations of hyper-
parameters. Hyper-parameters (HPs) are those not learned by the model but
instead given as inputs to the algorithm before training. One needs to choose a
set of HPs which allow model parameters to reach a configuration that optimises
a particular performance goal on a dataset for an algorithm during training. Grid
and manual search are the most widely used strategies for HP optimisation and
in both cases, many HP configurations are run to view their effect on algorithm
training in order to determine the best parameters. The main issues in trying to
find good parameter settings can be listed as follows:

– Functions require many complete iterations of training to find the optimal
hyper-parameter configuration - often a manual and lengthy process which
can lack empirical rigour.
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– In the majority of experiments interim results are stored in-memory and sub-
sequently discarded, save for the final, most accurate learner(s), result(s) and
hyper-parameters. This makes backtracking to an earlier parameter set at a
point in the experiment, or the analysis of interim learners, impossible.

– There are few languages defined for the exchange of data mining and machine
learning (ML) functions and parameters, which provides a barrier to sharing
and exchanging the complete set of results captured during the experiment.

There have been a number attempts to address the above problems via
frameworks such as CRISP-DM and SEMMA [2]. However, these frameworks
are abstract and require the development of more fine-grained methodologies
before any benefits can be accrued. To date, a number of ontologies have been
created for example, to describe: machine learning experiments [18]; or data min-
ing concepts in general [10]. However, ontologies are expensive to construct, often
suited to specific domains and require a significant learning curve for researchers.

Experiment databases, introduced in [4] and expanded upon in [5,16,17]
have been defined for similar purposes, but do not focus on the particulars
of deep learning experiments. Our approach specifically targets deep learning.
The presented JSON and NoSQL solution is inherently more lightweight in its
structure to the XML based PMML [13] and better represents the natural tree-
like form of deep learning models in comparison to the flat, relational storage
paradigm of [17].

1.1 Contribution

In this research, we present the Parameter Optimisation for Learning (POL) data
model which captures all aspects of deep learning experiments. The data model
formalises the description of a deep learning experiment along with parameters
and result data; this enables the design of an application programming interface
(API) for the data management of both, facilitating storage and deeper analysis
of each trial and learner in the experiment. In specific terms, using a JSON API
for our data model provides a platform for historical analyses and comparison
across these analyses; a high level of interoperability enabling our results to be
shared and evaluated by others; and more efficient learning through the ability to
pause experiments, resume from any checkpoint and iterate on results. Our eval-
uation demonstrates how to achieve a reduced HP-search-space, one important
requirement in machine learning experiments.

Terminology. For a paper which covers both data modelling and machine learn-
ing, it is necessary to clarify the terminology we will use throughout the paper.
The conceptual model presented in this paper captures all of the data properties
of a machine learning experiment. For this reason we will use the term data
model to refer to our representation of these data concepts. When discussing
the machine learning aspects of our work, we will use the term learner to refer to
the model instances learned over the course of training with a particular learning
algorithm.



136 J. O’Donoghue and M. Roantree

Paper Structure. This paper is structured as follows: in the following section,
we provide an overview of related research; in Sect. 3, we describe our conceptual
model which captures all aspects of deep learning experiments and analysis; in
Sect. 4, we present a deployment architecture which uses our conceptual model as
an interface layer to deep learning functions, parameter settings and result data
which are stored using NoSQL (Mongo) technology; our evaluation is described
and discussed in Sect. 5; and finally, in Sect. 6, we provide some conclusions.

2 Related Research

The first model interchange format for predictive data mining functions was
PMML [9]. They aimed to provide a mechanism for working with different types
of predictive models by defining a convenient language for importing and export-
ing these models between different systems. Their experience with DM applica-
tions had shown the usefulness that a flexible interchange mechanism would
provide and they argued that previous interchange formats were proprietary.
However, PMML lacks a conceptual abstract model to describe a machine learn-
ing experiment, nor does it describe or utilise experiment databases which store
interim training results. Instead, its focus is purely on model deployment and
interchange and therefore, does not sufficiently describe the hyper-parameter
optimisation process, an important function of training deep learning models.

With the Portable Format for Analytics (PFA) [1], the authors provide an
abstract description of a machine learning model allowing user-defined algo-
rithms and models. While PFA incorporates JSON for its implementation model,
its aim is somewhat different to our own. Similar to our approach, PFA provides
a mechanism to export and exchange models where not previously possible. The
main difference is that PFA focuses on the deployment of their model to produc-
tion environments whereas we focus on the analysis of all aspects of a machine
learning experiment. This enables the building of more robust learning models
and aids in hyper-parameter selection. As PFA is a ‘mini-language’ rather than a
data-model, it provides the capability to take in data and score this data accord-
ing to the algorithm it has learned. As a result, it is a complex process whereas
we aimed to define a light-weight, simple format that allows a formal description
of a deep learning experiment and model.

In [7], the authors present the MEX vocabulary, a lightweight interchange
format for ML experiments, which is an extension to the PROV-O ontology [12].
Their aim is similar to our own, but instead of taking a data-modelling approach,
their methodology focuses on a linked-data, semantic web paradigm. Again,
similar to the research presented here, [7] aims to provide a means to describe
the elements of a learning experiment instead of exhaustively defining all aspects
of the knowledge discovery process. However, a physical or implementation model
for this ontology is not provided, nor an interface to persistent storage for later
evaluation of experiment results. We also believe that the RDF graph-store does
not provide as high a level of interoperability offered by JSON.
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3 A Conceptual Model for Deep Learning Methods

The goal of our conceptual model is to capture all data properties of the DL
experiment. There are three broad aspects to our model: model-parameter,
hyper-parameter and (interim and final) result data management. The high-
est level of abstraction is an experiment and within that entity are all objects
and attributes required to describe parameter and result data. Thus, we refer to
our data model as the Parameter Optimisation for Learning (POL) model.

3.1 Model Overview

In Fig. 1, we present a detailed illustration of the POL data model and the 3
levels of data capture required. At the highest level, the Experiment class is the
entry point to the model and has a 1-to-many relationship with the Learner
class, meaning an experiment can have multiple occurrences of a learner. As
the search space settings remain constant for an experiment, the Hyper-
ParamSearchSpace is also present at this level. The Learner (at one level
down from Experiment) has a 1-to-many relationship with the Layer class,
allowing the algorithm to have one or more layers. Within Learner, there are
three main concepts: parameters (weights and biases) which are represented by
the LayerConfiguration, Layer and Tensor classes; hyper-parameters which
are represented by the HyperParameters class; and results (output from any
iteration of the algorithm) which are represented by the LearnerPerformance,
Performance, ConfusionMatrix and Tensor classes as well as Indices which
describes the dataset configuration which generated those results. Result data
is captured at this layer as the entire Learner is used to produce results. At the
lowest level of the data model is the Layer class which contains the weights and
biases for a Layer in the Learner and as these are multi-dimensional mathemat-
ical objects they are represented by the Tensor class.

3.2 Model Details

In this section, we provide a detailed description of two of the more important
classes of POL data model: Learner and HyperParameters, as space restrictions
prevent a full description of the entire model. Learner is described by:

– learner type: Name of the algorithm used in creating the learner, for exam-
ple: restricted boltzmann machine or recurrent neural network (RNN).

– learning type: Learning task: reinforcement, supervised, unsupervised, etc.
– optimisation method: Optimisation method for the learning function e.g.

mini-batch stochastic gradient-descent (MSGD).
– hyper parameters: Input and fixed parameters used by the optimisation

process and initialised within the search-space bounds.
– layers: A list of Layer objects, which transform features into more abstract

features or classifications and predictions. A Layer contains the model-
parameters, weights and biases which make up a Learner.
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Fig. 1. POL conceptual model

– performance: Instance of the Learner Performance object, containing a
result snapshot for an update, or the final result if training has finished.

– trained: Boolean attribute to indicate if the Learner’s model-parameters
are optimised. Otherwise, the instance is a snapshot of a particular update.

To represent hyper-parameter optimisation, 2 classes are required in our
model: HyperParamSearchSpace and HyperParameters. The search-space
class defines an upper and lower bound for each HP, from which n trial
hyper-parameters are instantiated to find the best setting. We now describe
HyperParameters which details a single configuration generated within the
space:

– hp opt method: The name of the algorithm used to optimise the hyper-
parameters.

– alpha learning rate: Determines the magnitude of parameter updates for
one step of gradient descent (GD).
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– lambda regularisation term: Determines the penalty placed on very large
or small weights and biases or null if dropout or no regularisation is applied.

– regularisation type: Type of regularisation applied to the model-
parameters, for example L1, L2, dropout, dropconnect or none.

– l hidden layers: Number of hidden layers in a Learner; 1 or less is consid-
ered shallow whereas anything more is considered deep.

– o hidden nodes: List where each element describes the number of hidden
nodes in each layer.

– batch size: Number of dataset rows to use in MSGD, which affects the algo-
rithm’s learning ability. A size of one is synonymous with stochastic GD and
a size equal to the number of training samples equates to batch GD.

– max updates: Maximum number of GD updates to apply to a learning func-
tion, the bounds depend on the number of model-parameters and rows in the
dataset; used as an exit parameter or a patience parameter in early-stopping.

– truncate gradient: Describes how far in the past to pass errors in back-
propagation through time.

– layers: A list of LayerConfiguration objects which detail the setup and
label of each layer in the architecture.

– n train batches, n valid batches, n test batches: Number of batches
in training, validation and test sets, respectively.

4 Deployment Architecture

We now describe the system architecture where the POL is deployed. It comprises
of: Data Storage, Interoperable and Application layers, shown in Fig. 2.

Data Storage Layer. In order to develop an interoperable API to deliver the
goals specified in our introduction, the POL data model was implemented in
JSON and currently uses MongoDB for storage. This facilitates a direct mapping
between the JSON API and the NoSQL database (MongoDB). The efficient
storage of parameters and result data, together with the exploitation of key
properties of the NoSQL databases to construct the experiment database form
part of a future research submission.

Interoperable Layer. The goal of the Interoperable Layer is to facilitate
greater flexibility in the learning process but also to facilitate sharing of results
for comparison and analysis. The layer has 3 libraries to achieve those goals:
the Setup library contains all functions to instantiate an experiment, read
in the data and configure the database in order for results and snapshots to
be processed; the Evaluation library contains functions to analyse and rank
the performance of different trial-runs in the learning process; and the Access
library abstracts storage details from the higher level libraries. The Access API
is developed using JSON and is a direct implementation of the POL data model.
This API contains all of the functionality to write and read attributes before
and during a deep learning experiment. The Setup and Evaluation libraries
are developed using Python and are currently accessible using Python APIs.
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Fig. 2. Operational architecture

These libraries provide higher level functionality for experiment setup and eval-
uation, both use the Access API to read and write to Mongo.

Application Layer. The major applications which use the toolkit repre-
sents different aspects of learning and deep learning experiments: experimental
setup (Preprocess); learning (Explore/Model) and evaluation (Post-Process &
Analyse). Applications can either interact directly with the Access API to design
their own experiments and evaluation functions or use the Python library APIs
for easier manipulation of experimental data.

5 Evaluation and Analysis

The aim of our evaluation was not to build the most accurate model, but to
demonstrate how our interoperable toolkit can be used for the management
and analysis of learning experiments. Specifically the aim is HP search space
optimisation. The analysis of interim results across all trial-runs was used to
fine-tune the full set of hyper-parameter bounds.

The dataset used for evaluation was generated from a series of sensors worn by
athletes during Gaelic Football matches and is described elsewhere [14]. Random
search was employed as our HP optimisation procedure [3] and 90 trials were
carried out for 2 runs each, giving 180 trial-runs. Table 1 shows the search space
for experiments. Algorithm parameters were randomly initialised according to
[8], save for hidden to hidden rectified linear unit (ReLU) weights, initialised
according to [11] and optimised with MSGD and Early Stopping [6,15].

5.1 Search Space Reduction: Results and Commentary

We first present summary experiment statistics in Table 2. The experi-
ment consisted of 180 trial-runs, during which 40,830 epochs were iterated.
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Table 1. Hyper parameters and bounds

Hyper-parameter Bounds (low, high) Description

activation (relu, logistic) Hidden layer activation

n hidden nodes (1, 10) Number of hidden layer nodes

truncate gradient (5, 100) Number of time-steps to BP errors

learning rate α (0.0001, 0.9) Co-efficient for weight updates

max updates (10, 10000) Max possible updates performed

batch size (60, 600) Samples in mini-batch update

The average size of a learner and result snapshot was 0.59 MB, leading to
Trial-Runs being 10.657 MB in total and Updates nearly amounting to 2.5 GB.
Unlike most machine learning experiments where only the final result is cap-
tured, interim results were recorded for every epoch. It is also possible to store
results for each batch update within epochs, but this level of granularity was not
used in our evaluation due to the obvious cost/benefit in terms of storage and
speed.

In our Evaluation library, reduce search space performs an analysis which
uses a set of queries to access results from multiple interim trial-runs. All Learn-
ers are evaluated, with the top-k snapshots returned through get top k ids
(Evaluation library), which then facilitates the retrieval of associated hyper-
parameters through get hyper parameters in the Access library. The coalesce
hyper parameters analyses the top-k hyper-parameter settings and generates
summary statistics before finally, a reduced search space is generated through
reduce search space.

Table 2. Experiment statistics

Collection Count Size (MB) Avg. object size (MB)

Trial-runs 180 10.657 0.059

Updates 40,089 2,377.193 0.059

Table 3 shows the result of coalesce hyper parameters for the Top 20 per-
forming HPs in the 180 trial-runs. It calculates the mean, standard deviation,
minimum and maximum and the 25th, 50th (median) and 75th percentiles. We
have also shown sample HP frequency distribution histograms, which are output
from visualise hp distribution (Evaluation library) in Figs. 3, 4, 5 and 6. To
best understand the beneficial effects of using our system, we now explore the
outputs from coalesce hyper parameters and visualise hp distribution,
key functions that allow analysis of interim results from many learners, which
is only possible with persistent data management. We have omitted histograms
for epochs, updates and batch size due to space restrictions.
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Table 3. Hyper-parameter summary statistics

ID nodes truncate alpha max updates steps epochs batch size

mean 4.360 53.980 0.404 3966.870 3520.900 157.900 289.240

std. 2.765 26.251 0.284 2704.307 3569.484 208.755 178.533

min 1 6 0 132 30 2 68

25 % 2 33 0.139 1394 326 8 118

50 % 4 55 0.373 3729 2230 88 242

75 % 6.250 74.250 0.655 6332 7332 155 451.750

max 10 100 0.889 9899 9932 722 619

Fig. 3. Activations Fig. 4. Hidden nodes

Activations. We will first consider the activations of the Top 20 Learners in
our 180 trial runs, shown in Fig. 3. Activations are categorical strings and there-
fore, require different analyses to numeric HPs. The count of Learners built with
ReLUs is close to those with Logistic activations. This result suggests both acti-
vations have similar performance but as ReLU outweighs logistic by a ratio of
11:9, reduce search space evaluates the ReLU to be the higher performing
activation.

Hidden Nodes. The (hidden) nodes summary in Table 3, shows the average
value for hidden node count is 4.360 with a median of 4. A median below the
distribution average (right-skewed distribution), suggests the ideal parameter for
this HP would be 4 or less, confirmed in the plot of the frequency distribution
in Fig. 4. This means the latent features which describe the input are actually
low in cardinality, which shows the dimensionality can likely be reduced.

Truncate Gradient. Figure 5 shows the number of time-steps recorded for opti-
mising backpropagation through time. The value at the 75th percentile for trun-
cate gradient are 74.25 in Table 3, with the mean and median at 53.98 and 55
respectively, indicating a skewed distribution. There are two possibilities for the
distribution centering at these values. The first is that time-points near ti−55 : ti
have the greatest impact on ti+10, meaning all activity for 55 s before time-point
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Fig. 5. Gradient truncate Fig. 6. Learning rate alpha

ti has the greatest effect on predictions. The second possibility is that for time-
points >55 s, the gradient disappears, but this is unlikely as good performance
was also demonstrated in the range 90 to 100.

Learning Rate. From Table 3 and Fig. 6, we can see only one configuration in
the top 20 had a value below 0.1. The mean was 0.404 and the median was at
0.373, giving a right skew. Both values are quite large for a learning rate and
suggest that GD is quite steep.

The above analyses show that the median better represents the central
tendency of all parameters. Also, these distributions do not lend themselves
to a parametric analysis as shown in the graphs. Therefore, our selection
methodology for the bounds of a reduced search-space consisted of taking
the median and standard deviations for each hyper-parameter resulting from
coalesce hyper parameters (Table 3) and generating a new bound in the range
(median − std. dev., median + std. dev.), save for max updates where we instead
use the max and min values, as these parameters had a close to uniform dis-
tribution. The more realistic search bounds presented in Table 4 can only be
determined using an analysis of the stored history of earlier experiments. This
also facilitates augmenting random search with coordinate descent, a process not
possible if we simply determine the single best configuration.

Table 4. Reduced hyper-parameter search space

Hyper-parameter Bounds (low, high)

activation (relu)

n hidden nodes (1,7)

truncate gradient (29, 81)

learning rate α (0.89, 0.657)

max updates (30, 9932)

batch size (63, 421)
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6 Conclusions

A wide range of parameters are used when optimising machine learning models.
Finding the best combination of parameters in high volumes of output data,
across potentially high numbers of experiments is difficult. In this paper, we
addressed this issue through the development of the POL data model, which
captures the entire set of parameters used in learning experiments and models.
The aim of our research to facilitate the optimisation process by providing data
management, analysis and optimisation functions through a standard interface,
developed for the POL data model. In effect, a persistent data-store allows us
to store all models and all updates, generating multiple outputs from a sin-
gle experiment and a direct means of querying interim results. Our evaluation
shows how using interim results, distributions can be generated for each hyper-
parameter of the top 20 performing learners, which can then be analysed and
used to determine an empirically reduced search-bounds in which to optimise
hyper-parameters. Future work will focus on more robust methods of empiri-
cally reducing the search bounds such as the extraction of confidence intervals
for each hyper-parameter. Furthermore, we are currently running experiments on
two further datasets and intend to compare our approach against other relevant
frameworks.
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Abstract. We present the method of optimistic estimation, a novel par-
adigm that seeks to incorporate robustness to errors-in-variables biases
directly into the estimation objective function. This approach protects
parameter estimates in statistical models from data set corruption. We
apply the optimistic paradigm to estimation of linear regression, logis-
tic regression, and Ising graphical models in the presence of noise and
demonstrate that more accurate predictions of the model parameters can
be obtained.

1 Introduction

In many real-world settings, data is measured with error. Such error invariably
affects the maximum likelihood estimates of any parametric model used for learn-
ing from the data. For cases where the variables (either explanatory or response
variables) in a model have been observed with error, we seek to minimize the
error of parameter estimation by introducing an alternative to maximum likeli-
hood.

A popular treatment against data corruption has been to perform robust
estimation via the use of an uncertainty set [1,2]. Robust optimization has been
used successfully in application to the domains of inventory theory, network flow,
option pricing and portfolio management [3,4]. The uncertainty set in robust
optimization represents our prior belief on the extent to which the observa-
tions have been corrupted. Unlike maximum likelihood, which estimates the true
model parameters θ� by choosing θ that maximizes the likelihood function, the
goal of robust estimation as presented by [1] is to protect against the worst-case
configuration of the data. Formally, let Xn denote n observations of the random
variable X. The data set Xn contains values that have been incorrectly mea-
sured and is thus different from the “true” data set, denoted Xn

� . We denote the
difference as Δ� = Xn

� −Xn. Robust estimation seeks to estimate both Δ� and
θ� by solving the following optimization problem,

max
θ

min
Δ∈U

L (θ;Xn + Δ) , (1)

where L is the likelihood function and U represents our constraint on the real-
izations of Δ. While such an approach is shown to minimize the risk of a poor
estimate [1], we note that the robust approach reduces the coefficients to zero
c© Springer International Publishing AG 2016
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by assuming a worst-case Xn
� . We therefore believe that the robust optimization

paradigm is not well-suited to protecting coefficients against measurement error
since in many cases it is not realistic or useful to assume that the true underlying
data is as uninformative as possible.

To deal with the randomized corruption of data, which tends to cause under-
estimation of coefficient magnitudes by maximum likelihood, we present an alter-
native objective function,

max
θ

max
Δ∈U

L (θ;Xn + Δ) . (2)

We call this approach the “optimistic paradigm.” Unlike [1], which considers
the minimum over Δ ∈ U , the optimistic paradigm considers the maximum.
This decision was motivated by previous work in [5], which argued that, by
introducing Δ to achieve the best possible value of the likelihood, the optimistic
paradigm protects against corruption of the data set by editing the most “sus-
picious” elements in Xn to yield the best configuration of Xn with respect to
the likelihood function. We demonstrate the effectiveness of this paradigm in
three settings, namely in the optimistic estimation of linear regression, logistic
regression and Ising model parameters.

2 Method

2.1 Optimistic Least Squares

2.1.1 Problem Scenario
Given an over-determined system Ax = b, where A ∈ R

m×n and b ∈ R
m, an

ordinary least squares (OLS) problem is minx ||Ax − b||. In [6], the authors
account for uncertainty in the data [A b] by minimizing the worst-case residual,
which they call the robust least squares (RLS) problem,

min
x

max
||ΔAΔb||F ≤ρ

||(A + ΔA)x − (b + Δb)|| , (3)

where ||∗||F is the Frobenius norm of a matrix, i.e. ||A||F =
√

trace(AT A).
[6] goes on to prove that the minimization of the worst-case least squares

error can be formulated as a Tikhonov regularization procedure. This connection
between robustness and regularity appears in other contexts as well; in [7], the
authors show that l1-regularized regression, or Lasso, can also be cast as the
following robust optimization problem,

min
x

max
||ΔA||∞,2≤ρ

||(A + ΔA)x − b|| , (4)

where ||∗||∞,2 is the ∞-norm of the 2-norm of the columns.
To introduce the optimistic paradigm, we consider the following problem,

min
x

min
||ΔA||2≤ρ

||(A + ΔA)x − b|| , (5)
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which we cast in its equivalent least squares formulation with explanatory vari-
ables Xn, response variable y, and corruption Δ� = Xn

� − Xn,

min
β

min
Δ∈U

n∑

i=1

(
yi − (Xi − Δi)

T
β

)2

, (6)

where the uncertainty set, U , is defined to be,

U =
{

Δ ∈ R
n×k : ||Δi||22 ≤ ρ ∀ i = 1, . . . , n

}
, (7)

with ρ being an arbitrary non-negative real number that constrains the Euclidean
norm of adjustments made to the explanatory variables.

2.1.2 Optimization
Notice that the objective function is fully separable and that the constraints
are independent across rows of Δ. Hence, the optimal solution Δ� is the con-
catenation of the optimal solutions to row-wise sub-problems. For fixed β, then,
consider the ith sub-problem,

min
Δi

(
yi − (Xi − Δi)

T
β

)2

, (8)

such that ΔT
i Δi ≤ ρ. (9)

Observe that the objective function above may be equivalently written,

gi (ω) = (yi − ω)2 , (10)

where ω = XT
i β. Differentiating with respect to ω reveals,

dgi (ω)
dω

=

{
−2 (yi − ω) > 0 if ω > yi (“overestimate”)
−2 (yi − ω) < 0 if ω < yi (“underestimate”).

(11)

Here, we are using the terms underestimate and overestimate to reflect the idea
that a prediction is too small or too large relative to the target variable. Logically,
the derivatives tell us that if the prediction is larger than the target, then the
prediction should be lowered and vice versa if the prediction is smaller than
the target. Since ω can only be changed through Δi, it suffices to choose Δi

to minimize or maximize ω depending on the derivative of gi (ω). In particular,
since β defines a hyperplane on R

k, the direction of maximum increase on the
hyperplane is given by β. Hence, there are several cases,

Δi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−ρ β
||β|| if

(
Xi − ρ β

||β||2

)T

β > yi & ω > yi

ρ β
||β|| if

(
Xi − ρ β

||β||2

)T

β < yi & ω < yi

−(yi−XT
i β)β

||β||22
if

(
Xi − ρ β

||β||2

)T

β < yi & ω > yi

(yi−XT
i β)β

||β||22
if

(
Xi − ρ β

||β||2

)T

β > yi & ω < yi.

(12)
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The first case corresponds to the situation where the target is overestimated
and the maximal correction still produces an overestimate for the given β. The
second case for when the target is underestimated is similar to the first one
in that it occurs when a maximal correction still produces an underestimate.
For the third and forth cases, the maximal correction causes the overestimate
to become an underestimate and vice versa. This suggests that there exists a

0 ≤ |λ| < |ρ| such that
(
Xi − λ β

||β||2

)T

β = yi, by which solving for λ yields the
optimal correction.

2.2 Optimistic Logistic Regression

2.2.1 Problem Scenario
We consider the case of logistic regression with model parameters β, explanatory
variables Xn, and response variable y. Suppose y is observed with error such
that Δ� = |y� −y|. The optimistic paradigm thus suggests that we consider the
following set-up,

max
β

max
Δ∈U

log L (β;Xn, |y − Δ|) − λ

n∑

i=1

Δi, (13)

where log L is the log-likelihood function of a logistic regression, λ is an arbitrary
non-negative real number, and U is defined to be the set,

U =

{
Δ ∈ {0, 1}n :

n∑

i=1

Δi ≤ Γ

}
, (14)

with Γ being a natural number not exceeding n. An astute observer would note
that the second term in Eq. 13 serves as a way of penalizing the use of the
uncertainty set, making it a regularized optimistic objective function.

2.2.2 Optimization
We develop a method for solving Eq. 13 by following a similar analysis as in [1].
Since |yi − Δi| = (−1)yi Δi + yi, the optimal solution to the inner maximization
problem,

max
Δ∈U

log L (β;Xn, |y − Δ|) − λ

n∑

i=1

Δi, (15)

is thus equal to the optimal solution of the binary integer program,

max
Δ∈U

n∑

i=1

(−1)yi (Xn
i β) Δi − λ

n∑

i=1

Δi. (16)
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Furthermore, since the polyhedron U has integer extreme points, the above prob-
lem has the same solution as its linear program relaxation. In particular, the
relaxation is,

max
n∑

i=1

[(−1)yi (Xn
i β) − λ] Δi (17)

Such that
n∑

i=1

Δi ≤ Γ (18)

0 ≤ Δi ≤ 1 ∀ i = 1, 2, . . . , n. (19)

By strong duality, this linear program has the same objective value as its dual
representation,

max −Γp −
n∑

i=1

qi (20)

Such that −p − qi ≤ − [(−1)yi (Xn
i β) − λ] (21)

p ≥ 0 and q ≥ 0. (22)

Note that the term involving p and q is trivially concave because it is a linear
function. It is also known that the log-likelihood function for a logistic regres-
sion is concave when the data matrix Xn has full rank. It is apparent that the
composition of two concave functions is itself concave and, as a result, makes
convergence to a maximum easy. We use the following greedy approach in Algo-
rithm1 for solving Δ and β.

Algorithm 1 draws inspiration from the Expectation-Maximization (EM)
algorithm, alternating between maximizing the objective with respect to Δ and
β. This process is continued until convergence is achieved.

Data: The design matrix Xn, the response vector y, a non-negative scalar λ,
and a positive integer Γ .

Result: A vector (p,q, β) for parameter estimation.
Initialize β = 0 and f = −∞.
while True do

Solve the dual linear program relaxation problem for p and q using the
current value of β. Set ỹ = |y − Δ|, where Δ = 1 {q > 0}. Compute the β
that maximizes the logistic log-likelihood function.

if log L (β;Xn, ỹ) +
∑n

i=1 Δi > f then
Set f = log L (β;Xn, ỹ) +

∑n
i=1 Δi.

else
Break.

end

end
Output: The current values of (p,q, β) that can be used to estimate the model

parameters.

Algorithm 1: Greedy Parameter Estimation Algorithm
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2.3 Optimistic Ising Model

2.3.1 Problem Scenario
We demonstrated in a previous work [5] the application of the optimistic para-
digm to Ising model via the approximate method of pseudolikelihood estimation.
Here, we demonstrate exact inference using the optimistic paradigm as applied
to maximum likelihood. Let X1, . . . , Xk be dichotomous random variables taking
values in the set {−1,+1}. Further, let G = (V,E,θ) be a graph with vertex set
V = [k], edge set E ∈ V × V , and edge weights θ. An Ising model associates
each of the random variables Xi with a vertex i such that,

P [X1 = x1, . . . , Xk = xk]

=
1

Z (θ)
exp

⎧
⎨

⎩
∑

(i,j)∈E

θijxixj

⎫
⎬

⎭ .
(23)

The Ising model is a special case of a Markov random field and has been well-
studied, with important applications in physics and biology [8].

Let Xn ∈ {−1,+1}n×k be a set of n random vectors drawn i.i.d. from
an Ising model. It is easy to show that a set of sufficient statistics for Xn is
given by,

{
Ê [XiXj ] : i < j ∧ i, j ∈ V

}
, (24)

which may be regarded as the empirical (with respect to Xn) expected values
of products of random variables. Notice that, like the random variables them-
selves, the sufficient statistics are also bounded to be within the interval [−1,+1].
Allowing μ̂ij to be the empirical expected value of the product of random vari-
ables Xi and Xj , the log-likelihood function can be expressed as a function of
the sufficient statistics,

� (θ;Xn) = θT μ̂ − log Z (θ) . (25)

Although our notation suggests that μ̂ is a matrix, we treat it as a vector and
adopt the notation above only to reinforce the idea that each weighted edge in
the graph has a corresponding empirical mean value of the product of the two
random variables at either end of that edge. If Xn was observed under error,
we can instead consider the likelihood function with respect to μ̂, define the
uncertainty set as,

U =
{

Δ ∈ R
k : ||Δ||22 ≤ ρ

}
. (26)

and let the optimistic objective function be,

max
θ

max
Δ∈U

θT (μ̂ + Δ) − log Z (θ) (27)

Such that 0 ≤ μ̂ij + Δij ≤ 1. (28)
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By considering the uncertainty set with respect to the sufficient statistics μ̂
instead of directly with respect to X, we avoid the computationally intractable
problem of a binary uncertainty set whose cardinality is exponential with respect
to |V |.

2.3.2 Optimization
Letting �(θ,Δ;Xn) = θT (μ̂ + Δ)− log Z (θ), we determine the gradient to be,

∇θ� = μ̂ − ∇θ log Z (29)
∇Δ� = θ. (30)

The authors in [9] further show that ∇θ log Z can be represented as a sum over
edges in a graph

∑
(i,j)∈E xixjp(x|θ). As it turns out, analysis of the Hessian

shows that the objective function is not guaranteed to be concave. We use
the interior point algorithm [10] with analytic gradient and numeric Hessian
to achieve a local maximum.

3 Numerical Experiments

All experiments were performed on a 2.9 GHz MacBook Pro with 8 GB of
memory.

3.1 Optimistic Least Squares

We randomly generated linear systems of five independent variables using para-
meters drawn from a normal distribution with mean zero and variance 25.
The intercepts were drawn from a standard normal distribution. Standard nor-
mal noise was added to the target variable. The original (uncorrupted) covari-
ates were drawn from multivariate normal distribution with identity covariance
matrix and a uniformly zero mean vector.

In Table 1, we compare the performance of optimistic least squares to OLS on
training data in which the covariates are known to have been corrupted with uni-
formly random noise on a symmetric interval bounded by ‘true noise’. Table 1a
shows benchmarked mean squared error (MSE) for the coefficient estimates of
OLS in the presence of varying amounts of corruption of the covariates (indicated
by the column headers) over 110 trials for each configuration of true corruption.
In Table 1b, we compare the optimistic and OLS estimates for varying amounts
of true and assumed corruption, ρ, (indicated by the column and row headers
respectively) in the covariates. There are ten trials for each configuration of
assumed and true corruption. In each trial, the same set of covariates and target
variables were used to estimate the parameters using the optimistic and OLS
methods. The difference in means of the mean squared error of the parameter
estimates of the two methods were compared using a paired t-test.

For small bounds on the corruption, OLS outperforms the optimistic app-
roach. However, for larger corruption, we find that the optimistic approach gives,
on average, a less biased estimate of the true parameters than does OLS and
becomes less sensitive to choice of ρ (Fig. 1).
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Table 1. The mean MSE over 110 trials for each configuration of true corruption of
parameter estimates obtained using OLS and the mean difference over 10 trials for
each configuration of true and assumed corruption of MSE of parameter estimates
obtained using OLS versus optimistic least squares on the same data. In (a), standard
deviations are included in parentheses. In (b), 95% confidence intervals are included
in parentheses. Differences were assigned statistical significance using a paired t-test
(*** p < 0.001, ** p < 0.01, * p < 0.05).

(a) Mean β MSELS

true noise 0.0 0.2 0.4 0.6 0.8 1.0

0.0101 0.0323 0.1147 0.3542 0.8816 1.6111
(0.0058) (0.0269) (0.0759) (0.3106) (0.7775) (1.1975)

(b) β MSEoptimistic - β MSELS for varying configurations of assumed and true
corruption

true noise 0.0 0.2 0.4 0.6 0.8 1.0

ρ 0.1 0.3752 0.1436 -0.0244 −0.1431** −0.3574** −0.7293***
(0.0636, 0.6868) (0.0128, 0.2744) (-0.0774, 0.0286) (-0.2388, -0.0475) (-0.597, -0.1178) (-1.0483, -0.4103)

0.2 0.4641 0.3981 0.054 -0.102 −0.5664** −1.1007***
(0.196, 0.7321) (0.2186, 0.5776) (-0.0042, 0.1122) (-0.296, 0.0919) (-0.9269, -0.2058) (-1.5985, -0.6028)

0.3 1.1076 1.0202 0.2425 -0.0724 −0.5307** −0.7439***
(0.4418, 1.7734) (0.5581, 1.4823) (0.113, 0.372) (-0.1812, 0.0364) (-0.9308, -0.1305) (-1.1142, -0.3736)

0.4 1.4165 1.1357 0.5155 -0.0498 −0.369** −0.9764***
(0.9108, 1.9221) (0.4408, 1.8306) (0.318, 0.713) (-0.1636, 0.0639) (-0.5775, -0.1606) (-1.4189, -0.5339)

0.5 1.588 1.1568 1.0962 0.219 −0.2955* −1.0069*
(0.9268, 2.2492) (0.46, 1.8536) (0.626, 1.5663) (-0.0467, 0.4847) (-0.5538, -0.0373) (-1.8665, -0.1473)

0.6 1.0358 1.5687 0.9415 0.3539 −0.2579* −0.9604**
(0.6722, 1.3994) (0.7939, 2.3434) (0.5934, 1.2895) (0.0859, 0.6219) (-0.5384, 0.0227) (-1.6535, -0.2673)

0.7 2.1971 2.0862 1.1066 0.3869 -0.1209 −1.07**
(1.066, 3.3283) (1.1077, 3.0648) (0.5003, 1.7129) (0.1594, 0.6144) (-0.3379, 0.0961) (-1.7164, -0.4236)

0.8 1.4402 1.5783 1.3615 0.701 -0.0129 −0.6125*
(0.8358, 2.0445) (0.5894, 2.5672) (0.7902, 1.9328) (0.0978, 1.3042) (-0.3516, 0.3258) (-1.2019, -0.023)

0.9 2.0876 1.7583 1.6319 0.9936 0.0294 −0.6275***
(1.0941, 3.0811) (1.2236, 2.293) (0.8158, 2.4479) (0.4477, 1.5394) (-0.2498, 0.3086) (-0.948, -0.307)

1.0 1.9351 1.9594 2.0459 0.585 0.4143 −1.048*
(0.663, 3.2073) (1.1926, 2.7262) (1.0673, 3.0245) (0.2001, 0.9699) (-0.2239, 1.0526) (-2.0247, -0.0713)

3.2 Optimistic Logistic Regression

We generated each logistic regression model coefficient independently at ran-
dom from a normal distribution with mean zero and standard deviation seven.
The matrix of explanatory variables, denoted by Xn, was generated uniformly
at random from the unit square. Logistic success probabilities were then gener-
ated according to 1/ (1 + exp {−Xnβ}), and targets, y�, were generated for each
observation in Xn according to these values. Corrupting y� was accomplished
first by setting Γ = 
 n

10�. Each experiment was repeated one-hundred times.
The greedy estimation algorithm was implemented in MATLAB and used the
fmincon function with an analytic gradient and Hessian.

We compare the performance of the optimistic estimator to direct max-
imum likelihood in Fig. 2. In Fig. 2a, measurements of the �1 and �2 errors
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Fig. 1. Simple linear models estimated using optimistic (ρ = 0.25) and OLS are shown
along with the training data (N = 500) for which the independent variable has been
corrupted with uniformly random noise on the interval [−1, +1]. Use of the uncertainty
set for the optimistic method is denoted by the dashed lines connecting the original
data points (denoted by circles) to their modified counterparts (denoted by triangles).
For reference, β = (−0.1282427 − 4.44234665), βLS = (0.00825438 − 2.84945464),
βoptimistic = (0.16238759 − 4.16662121).

for optimistic logistic regression models are compared to maximum likelihood
under uncertainty in the response variable. The optimistic estimator asymptot-
ically outperforms direct maximum likelihood in estimation accuracy. We set
λ ∈ {0.1, 2.5, 2.3, 2.2} for each n ∈ {

101, 102, 103, 104
}
, respectively. Note that λ

was not tuned for best performance in these experiments. In Fig. 2b, we evaluate
the performance of the optimistic estimator with respect to Γ . These experi-
ments were identical to those described previously, with λ = 2.6. For large Γ ,
the optimistic approach with regularization performed identically to direct max-
imum likelihood. However, for smaller corruption parameters, we find that the
optimistic approach gave, on average, a more consistent estimate of the true
parameters than does maximum likelihood.

3.3 Optimistic Ising Model

We generated each Ising model coefficient independently at random from a nor-
mal distribution with mean zero and standard deviation one. The uncorrupted
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Fig. 2. Comparison of optimistic logistic regression to maximum likelihood logistic
regression in terms of error of parameter estimates for different sample sizes and dif-
ferent corruption rates.
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Fig. 3. Comparison of Ising model parameters learned using optimistic estimation ver-
sus maximum likelihood in terms of error for different sample sizes and different cor-
ruption rates.

data set, X�, was generated according to 23 via Gibbs sampling. Corrupting
the data was accomplished by setting Xij = −(X�)ij with some probability p
for each (i, j) ∈ [n] × [k]. Each experiment was repeated three-hundred times.
We used the interior point algorithm from MATLAB’s fmincon function and
provided the analytic gradient.

We compare the performance of the optimistic estimator to direct maxi-
mum likelihood in Fig. 3, evaluating estimator performance for a range of sample
sizes. In Fig. 3a, measurements of the �1 and �2 errors for Ising models are com-
pared to maximum likelihood under uncertainty. Optimistic estimator asymp-
totically outperforms direct maximum likelihood in estimation accuracy. We set
ρ ∈ {0, 0.002, 0.02, 0.2} for each n ∈ {

101, 102, 103, 104
}
, respectively. Note that
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ρ was not tuned for best performance in these experiments. In Fig. 3b, we eval-
uate the performance of the optimistic estimator with respect to percent data
corruption. These experiments were identical to those described previously, with
ρ = {0, 0.03, 0.1} depending on whether the percent corruption was, respectively,
{0, 1} , {10, 90}, or {20, . . . , 80}. At 50 % corruption, the optimistic approach is
similar to direct maximum likelihood. This is expected, as the observed data set
Xn is completely random at 50 % corruption. However, for smaller corruption,
we find that the optimistic approach gave, on average, a better estimate of the
true parameters than does maximum likelihood.

4 Conclusions

We developed a new paradigm that protects parameter estimation in statisti-
cal models from data set corruption. This approach was applied to estimating
a linear regression, logistic regression and Ising model in the presence of noise.
Numerical experiments show that the optimistic approach achieves more accu-
rate estimates of the true coefficients than does direct maximum likelihood.

We also introduced regularization to the optimistic estimation of the logistic
regression. By contrast, in the linear regression model experiments, we observe
that the absence of regularization causes the optimistic paradigm parameter
estimates to suffer increasing inaccuracy as ρ further exceeds the true noise.
Similarly, in the Ising model experiments, we note that the absence of regular-
ization makes the optimistic paradigm prone to parameter overestimation if ρ is
too large. This was counteracted by setting a lower ρ, but we believe this can
also be resolved by using regularization. To motivate the use of the regulariza-
tion parameter, one avenue of future research would be to connect our proposed
regularization procedure to a suitable Bayesian prior.
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Abstract. It is often claimed that data pre-processing is an impor-
tant factor contributing towards the performance of classification algo-
rithms. In this paper we investigate feature selection, a common data pre-
processing technique. We conduct a large scale experiment and present
results on what algorithms and data sets benefit from this technique.
Using meta-learning we can find out for which combinations this is the
case. To complement a large set of meta-features, we introduce the Fea-
ture Selection Landmarkers, which prove useful for this task. All our
experimental results are made publicly available on OpenML.

Keywords: Feature selection · Meta-learning · Open science

1 Introduction

Feature selection can be of value to classification for a variety of reasons. Real
world data sets can be rife with irrelevant features, especially if the data was
not gathered specifically for the classification task at hand. For instance in many
business applications hundreds of customer attributes may have been captured in
some central data store, whilst only later is decided what kind of models actually
need to be built [14]. Bag of words text classification data will by definition
include large numbers of terms that may end up not to be relevant. Micro-array
data sets consisting of genetic expression profiles are very wide data sets, whilst
the number of instances is typically very small. In general, feature selection
may help in terms of making models more interpretable, ensuring that models
actually generalize rather than overfit and it will speed up the building of models
when costly algorithms are being used. Highly cited surveys exist that provide a
more theoretical overview of feature selection [1,6], however classical empirical
papers on feature selection are typically based on small numbers of data sets
(for example, 3 data sets in [5] and 14 data sets in [10]).

In this paper we investigate the specific question: will feature selection
improve binary scoring models for a given data set and algorithm. We base our
findings on experiments across a large number of data sets (almost 400) and a
range of algorithms, and for repeatability all results have been made available in
OpenML, an open science experiment database [20]. This results in a meta-data
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 158–170, 2016.
DOI: 10.1007/978-3-319-46349-0 14
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set that we leverage to learn in what circumstances feature selection may provide
better classifications for a given data set algorithm combination. We introduce
a number of new meta-features to characterize data sets and algorithms for this
purpose.

Our contributions are the following. We conduct two large scale experiments
ranging over almost 400 data sets. The first experiment investigates for which
algorithms feature selection generally improves predictive performance. This
experiment both confirmed well-established conjectures and raised some interest-
ing new findings. The second experiment exploits meta-learning to understand
for which data sets feature selection may improve results. We introduce new
meta-features, specific to this problem. All our underlying experimental results
as well as the meta-data set are made publicly available, for the purposes of
verifiability, reproducibility and generalizability.

The remainder of this paper is structured as follows. We will introduce some
background in feature selection and meta-learning (Sect. 2) as well some addi-
tional meta-features that prove useful (Sect. 3). We will then review the over-
all experiments and results in terms of when feature selection may add value
(Sect. 4), and a meta-learning experiment where we aim to predict whether to
use feature selection for a given data set (Sect. 5). Section 6 concludes the paper.

2 Background

In this section we discuss relevant background and related work in feature selec-
tion, meta-learning and experiment databases.

2.1 Feature Selection

As discussed in the introduction feature selection can serve a number of purposes,
such as improved interpretation, generalization and learning speed. The merits
of and methods for feature selection are discussed extensively in a number of
classical survey papers, hence we will keep the overview brief here [1,4–6,10].
The goal of feature selection can be to find the optimal set of features that
maximizes a given objective, and hence can be seen as a search problem with
a given search method, evaluation metric and overall objective, typically some
form of predictive power.

Exhaustive search is typically not feasible so different approaches are needed.
A simplistic approach would simply select the top features based on predic-
tive power. This is sub optimal, because features may be correlated to features
already selected, so not adding much information, or conversely, weak features
could jointly actually be predictive, thus subset feature selection rather than
rankers are required [6,8]. The evaluation metrics could be so called filter met-
rics, such as correlation, mutual information or information gain, independent
of the classification algorithm used. Alternatively, models could be trained on
subsets of features in a so called wrapper approach, which can be valuable if the
subsequent learners have very specific biases or limitations [10]. Wrappers do
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not necessarily perform better than filters [19] so in our work we have focused
on a subset filter approach [8]. Feature construction or dimension reduction can
be seen as an extension of feature selection, but this is out of scope for this
paper. Note that classification methods can also have some embedded element
of feature selection built in, but as we will see this is no guarantee that feature
selection is no longer required.

2.2 Meta-learning

Meta-learning aims to learn which learning techniques work well on what data.
A common task, known as the Algorithm Selection Problem [17], is to determine
which classifier performs best on a given data set. We can predict this by training
a meta-model on data describing the performance of different methods on differ-
ent data sets, characterized by meta-features [2,11,13]. Meta-features are often
categorized as either simple (number of examples, number of attributes), statis-
tical (mean standard deviation of attributes, mean skewness of attributes), infor-
mation theoretic (class entropy, mean mutual information) or landmarkers [12]
(performance evaluations of simple classifiers). Alternatively, performance esti-
mates of algorithms on small subsets of the data set can be used [18].

Experiment databases enable the reproduction of earlier results for verifica-
tion and reusability purposes, and make much larger studies (covering more
classifiers and parameter settings) feasible. Above all, experiment databases
allow a variety of studies to be executed by a database look-up, rather than
setting up new experiments. An example of such an online experiment database
is OpenML [20]. All data sets and experimental results used in this work are
made publicly available in OpenML. Similar collaborative platforms exist in the
commercial domain, such as Kaggle [3], but these typically lack the ability to
store and search low level results in a structured manner.

3 Methods

The field of meta-learning addresses the question what machine learning algo-
rithms work well on what data. The algorithm selection problem, formalised by
Rice in [17], is a natural problem from the field of meta-learning. According to
the definition of Rice, the problem space P consists of all machine learning tasks
from a certain domain, the feature space F contains measurable characteristics
calculated upon this data (called meta-features), the algorithm space A is the set
of all considered algorithms that can execute these tasks and the performance
space Y represents the mapping of these algorithms to a set of performance
measures. The task is for any given x ∈ P , to select the algorithm α ∈ A that
maximizes a predefined performance measure y ∈ Y , which is a classification
problem. Typically, this problem is addressed by creating a meta-data set. Each
example represents an experiment where all algorithms in A are run on a data
set from P , the meta-features are measurable characteristics of this data set and
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the target is the best performing algorithm on this data set. A classifier can then
learn to predict for new data sets which algorithm will perform best [22].

In this work we address the following problem. Given a data set and an
algorithm, should we use feature selection or not? We aim to solve this in a sim-
ilar manner. We construct a meta-data set, where each example represents the
combination of data set d and algorithm α. The features are measurable char-
acteristics of data set d, and the target is whether the performance of algorithm
α is (significantly) better after performing feature selection than without it.

The performance of meta-learning solution typically depends on the quality
of the meta-features. Typical meta-features are often categorized as either sim-
ple, statistical, information theoretic or landmarkers. The simple meta-features
can all be calculated by one single pass over all instances and describe the data
set in an aggregated manner. The statistical meta-features are calculated by
considering a statistical concept (e.g., standard deviation, skewness or kurto-
sis), calculate this for all numeric attributes and taking the mean of this. This
leads to, e.g., the mean standard deviation of numeric attributes. Likewise, the
information theoretic meta-features are calculated by considering a information
theoretic concept (e.g., mutual information or attribute entropy), calculate this
for all nominal attributes and taking the mean of this. This leads to, e.g., mean
mutual information. Landmarkers are performance evaluations of fast classifiers
on a data set, characterising the complexity landscape and bias of various learn-
ers. Table 1 shows all traditional meta-features used in the experiments.

Table 1. Standard meta-features.

Category Meta-features

Simple # Instances, # Attributes, Dimensionality, Default
Accuracy, # Observations with Missing Values, #
Missing Values, % Observations With Missing Values, %
Missing Values, # Numeric Attributes, # Nominal
Attributes, # Binary Attributes, Majority Class Size, %
Majority Class

Statistical Mean of Means of Numeric Attributes, Mean Standard
Deviation of Numeric Attributes, Mean Kurtosis of
Numeric Attributes, Mean Skewness of Numeric
Attributes

Information theoretic Class Entropy, Mean Attribute Entropy, Mean Mutual
Information, Equivalent Number Of Attributes, Noise to
Signal Ratio

Landmarkers [12] Accuracy of Decision Stump, Kappa of Decision Stump,
Area under the ROC Curve of Decision Stump,
Accuracy of Naive Bayes, Kappa of of Naive Bayes,
Area under the ROC Curve of Naive Bayes, Accuracy of
k-NN, Kappa of k-NN, Area under the ROC Curve of
k-NN
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Landmarkers are generally considered the most expensive meta-features (in
terms of resources), as well as the most useful (in terms of predictive power).
Although this might be true for the algorithm selection problem, there are rea-
sons to suspect that this might be different for the task of determining whether or
not to perform feature selection. First, many feature selection methods operate
on statistical and information theoretical concepts. Second, information about
the learning bias of various classifiers seems less relevant, as we try to obtain
information about one algorithm at a time.

For this reason, we introduce specific feature selection landmarkers. We run
a simple (fast) classifier with and without feature selection. By subtracting one
from the other, we can see what the effect of feature selection was when using
a fast algorithm. Similar to regular landmarkers, we assume that this effect
translates to the results of more expensive algorithms as well.

4 Effect of Feature Selection

In this section we will present some explorative results, surveying per algorithm
how often feature selection is beneficial and how large the effects are. All data
sets, algorithm and experimental results can be obtained from OpenML1 [20].
Figure 3 also gives some basic insight in the number of features and the dimen-
sionality of the data sets.

4.1 Experiment

All algorithms are evaluated over the data sets using 10-fold cross-validation,
with and without feature selection. We measure the difference in Area under the
ROC Curve (AUC) for each algorithm with and without feature selection. We
prefer AUC over zero one loss accuracy as an evaluation criterion for a variety of
reasons. First, if the outcome class distribution is very skewed, a simple majority
vote may achieve very high accuracy, whereas in practice this may not be very
useful model. Second, false positives and false negative classifications may come
at a different cost, but these costs are not known, hence it makes sense to evaluate
model performance across the entire model score range.

For feature selection, the Correlation-based Feature Subset Selection (Cfs-
SubsetEval) algorithm is used [8]. We experimented with other feature selection
methods as well (i.e., GainRatio and InfoGain) but as the differences in perfor-
mance were too marginal and subset feature selection is generally considered to
be a better approach we stick to CfsSubsetEval.

The data sets that are used in the experiments are all data sets containing
between 10 and 200,000 instances. As we are focusing on Area under the ROC
Curve, we selected data sets with a binary target. In total 394 data sets from
OpenML matched these criteria. Table 2 shows the algorithms that were used
and their parameter settings.

1 Full details: http://www.openml.org/s/15.

http://www.openml.org/s/15
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Table 2. Algorithms used in the experiments. All algorithms are as implemented in
Weka 3.7.13 [7] run with default parameter settings, unless stated different.

Algorithm Model type Parameter settings

Naive Bayes Bayesian

IBk k-NN k = 1

Stochastic Gradient Descent (SGD) SVM

Sequential Minimal Optimization (SMO) SVM Polynomial kernel

Logistic Logistic ridge = 0.00000001

Multilayer perceptron Neural network 1 hidden layer

JRip Rules

J48 Decision tree

Hoeffding tree Decision tree

REP tree Decision tree

RandomForest Bagging 100 trees

AdaBoost Boosting 100 iterations
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Fig. 1. Number of data sets on which feature selection improves performance. (Color
figure online)
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4.2 Results

Figure 1(a) shows for each algorithm in how many cases feature selection yields
better results. Figure 1(b) shown for each algorithm in how many cases this
difference was also statistically significant (using a double tailed T-test of 0.05).

We can also focus on how big the effect of feature selection per data set is.
In Fig. 2 we plotted for some algorithms the difference in performance with and
without feature selection. The x-axis represents the various data sets, the y-axes
the difference in performance (AUC). The x-axis is sorted on this effect, so we
can see the big trends. For every dot above 0, using feature selection yields better
results than not using feature selection.

In Fig. 1(a) it is observed that no feature selection is slightly better for every
algorithm, except for IBk and Multilayer Perceptron. J48 is noteworthy because
it is expected that a tree partitioning algorithm has feature selection embedded.
Controversially, the figure shows that feature selection can still add value for
many data sets (see also Fig. 2(a)). For the Multilayer Perceptron, Naive Bayes
and Hoeffding Tree, in about half of the cases feature selection improves the
performance. Figure 1(b) shows that applying feature selection seldom results
in a performance gain that is statistically significant. The IBk and Multilayer
Perceptron algorithms have the highest amount of data sets where the benefits
of feature selection are statistically significant, and behind these is Hoeffding
Tree with just over 50 data sets.

Figure 3 shows a univariate analysis on how the amount of features and the
dimensionality affect the probability that feature selection improves classifica-
tion. Although a higher number of features results in a slightly higher percentage
of data sets that benefit from feature selection, no clear distinction can be made
with just one feature. A similar observation can be made for the dimensional-
ity. Later, we will see that meta-models leveraging multiple meta-features, also
highly depend on the number of features in a data set.

4.3 Discussion

The previous experiment shows both some expected behaviour as well as some
interesting patterns. First of all, from Fig. 1(a) we can see that feature selec-
tion is most beneficial for methods as IBk and Naive Bayes (reflected by Fig. 1
and 2(c)). This is exactly what we would expect: due to the curse of dimen-
sionality, nearest neighbour methods can suffer from too many attributes [16]
and Naive Bayes is vulnerable to correlated features [9]. We also see unex-
pected behaviour. For example, it has been noted that tree-based algorithms
such J48 have built-in protection against irrelevant features [15], however it can
be observed from Fig. 2(a) that still in many cases it appears to benefit from
feature selection. Multilayer Perceptrons are also supposed to learn themselves
which features are relevant [21], however Fig. 2(b) shows that in many cases fea-
ture selection makes a substantial difference for the better. This delta to the
right of the curve is higher than the delta on the left.
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Fig. 2. The effect of feature selection per data set on the x-axis for a given algorithm,
sorted by difference in Area under the ROC Curve as the y-axis. When the difference
is positive, the algorithm performed better after feature selection.
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(a) Number of Features (b) Dimensionality

Fig. 3. The amount of data sets (blue bar) in some ranges of two meta-features, with
the red line meaning the percentage that feature selection was better in that range
and the green line where the improvement was also statistical significant. (Color figure
online)

In general, feature selection seems to pay of for certain data sets, but the effect
is not often statistically significant. A possible explanation could be that the
data sets from OpenML are all Machine Learning data sets, where most features
have been already carefully selected by domain experts. Feature selection would
possibly yield more effect on raw data from production environments.

5 Learning When to Use Feature Selection

In this section we investigate whether we can learn when to use feature selection,
which is a novel form of meta-learning.

5.1 Experiment

We want to use meta-learning to predict for a given data set and algorithm
whether feature selection will improve the Area under the ROC Curve score.
Every instance in the meta-data set are two 10-fold cross validation runs on a
algorithm, one run with and one run without feature selection, and the target is
whether the run with feature selection had a better performance. The attributes
are all the meta-features as mentioned in Sect. 3, for example the number of
features and the percentage of numeric features, together with attributes about
the algorithm. As meta-algorithm, we use Weka’s Random Forest (100 trees).

In order to assess whether our proposed meta-features add any predictive
value, we run the experiment with various sets of meta-features. The simple
set contains just the simple meta-features (see Table 1) totalling to 13 features.
The no landmarkers set contains all simple, statistical and information theoretic
meta-features, (i.e., all meta-features from Table 1 except the landmarkers) which
are in total 22 features. The default landmarkers set contains all meta-features
from the no landmarkers set, and the traditionally described landmarkers (i.e., all
meta-features from Table 1) which give a total amount of 31 features. The Feature
Selection Landmarkers set contains all meta-features from the no landmarkers
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set, and the newly created Feature Selection Landmarkers as described in Sect. 3
thus also 31 features in total. The All Landmarkers set is the union of all previous
sets totalling up to 40 features.

The data set can also be split in various subsets containing the results of
only one algorithm. For example, we can investigate whether we can learn for a
given algorithm whether to use feature selection or not.

The main motivation for using meta-learning here is primarily to obtain
a further understanding of when feature selection may or may not add value,
across multiple dimensions, to complement the analysis in the previous section
that mainly focused on the algorithms used. A meta-model could be used in
practice to assess beforehand whether performance may be improved in gen-
eral or for specific algorithms, for example algorithms which are very costly to
run. If exhaustive search is possible and reliable (i.e., run all algorithms for all
parameters) it may still be preferred over using meta-learning.

5.2 Results

The results are shown in Table 3. Each row represents a partition of the data set,
i.e., how well we could predict for each classifier whether we should use feature
selection.

Table 3. Area under the ROC Curve scores for various sets of meta-features on different
partitions of the meta-data set.

Partition Simple No LM Default LM FS LM All LM

J48 0.705 0.703 0.737 0.733 0.731

IBk 0.680 0.700 0.750 0.768 0.783

Multilayer perceptron 0.734 0.704 0.708 0.711 0.710

Logistic 0.623 0.625 0.711 0.676 0.695

SMO 0.642 0.632 0.695 0.713 0.704

SGD 0.705 0.698 0.736 0.746 0.733

Hoeffding tree 0.612 0.617 0.679 0.647 0.670

REP tree 0.593 0.573 0.614 0.591 0.621

Naive Bayes 0.620 0.660 0.714 0.708 0.721

JRip 0.590 0.581 0.595 0.616 0.639

AdaBoost 0.623 0.634 0.638 0.649 0.668

RandomForest 0.712 0.722 0.764 0.774 0.784

Total data set 0.704 0.728 0.765 0.768 0.773

First, from this we conclude that meta-learning can answer the question
whether to use feature selection or not. Compared to just predicting majority
class (which always has an Area under the ROC Curve of 0.5), we score better on
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all defined tasks, even with just a set of simple meta-features. Second, we observe
that using just the two sets without landmarkers are clearly worse than the sets
that use landmarkers. Finally, it appears that the set of default landmarkers
and the newly created feature selection landmarkers perform similar. However,
putting them together is beneficial.

1 2 3 4 5

All Landmarkers
Feature Selection LM
Default Landmarkers

Simple
No Landmarkers

CD

Fig. 4. Results of Nemenyi test. Sets of meta-features are sorted by their average rank
(lower is better). Classifiers that are connected by a horizontal line are statistically
equivalent.

Figure 4 shows the result of a statistical test. This adds to the empirical
evidence that the meta-classifier benefits from the landmarkers. However, there
is no statistical evidence that one set is better than another. One interesting
observation is that the set of meta-features without landmarkers performs worse
than the set of simple meta-features. However, the difference is not statically
significant.

Number of
Numeric Features

FS LM
IBk Kappa

No (43/6) Number of
Numeric Features

No (180/75)
Class

Entropy

FS LM Decision Stump
Error Rate

No (21/5) Yes (24/9)

Yes (54/10)

Yes (72/11)

<= 48 > 48

<= −0.15 > −0.15

<= 9 > 9

<= 0.98 > 0.98

<= −0.03 > −0.03

Fig. 5. Decision tree determining whether to use feature selection with a Multilayer
Perceptron. Each leaf node contains the amount of correctly classified instances and
the amount of misclassified instances.

As an example of deeper inspection of meta-models, Fig. 5 shows a deci-
sion tree that determines when to use feature selection in combination with a
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Multilayer Perceptron. It splits on meta-features the Number of Attributes, Class
Entropy and twice on a Feature Selection Landmarker, suggesting that these are
important features. The interplay of these features is interesting. For example if
the number of features exceeds 48, feature selection will be useful, if the number
of features is smaller than 9 than not, and otherwise it depends on the interplay
between the feature selection landmarkers, class entropy and number of features.
Real world data sets often have more than 50 features, so this is an indication
that even though the OpenML collection of data sets is large, it may be still be
skewed towards ‘cleaned-up’ data sets collected for machine learning and data
mining research. By inspecting these meta-models observations like these may
surface, and in this case the meta-model will still recommend to apply feature
selection for these broader data sets.

6 Conclusion

In this paper we present the results of a large scale experiment on the benefits
of using feature selection for classification. We ran 12 algorithms across almost
400 data sets, and created a meta-model to understand when feature selection
improves classification accuracy for a given model. Surprisingly, for 41 per cent of
algorithm data set combinations feature selection improved the results, but only
in 10 per cent of cases this improvement was statistically significant. A possible
explanation for this low percentage could be that the data sets from OpenML
consist mostly of features that have already been carefully selected by domain
experts. The experimental setting would possibly yield other results on raw data
from production environments, which would be an interesting direction for future
work. Major deciding factors are the number of attributes in the data set, the
relative difficulty of the task as measured by landmarkers and the algorithm type.
Across algorithms, nearest neighbor benefits most often, but also algorithms that
have feature selection built in (such as decision trees) may still benefit.

Future work will focus on extending the set of Feature Selection landmark-
ers, aiming to perform even better on the meta-leaning task. Having a publicly
available meta-data set enables the community to actively participate in this
process.
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Abstract. In this work, we tackle the problem of predicting entity pop-
ularity on Twitter based on the news cycle. We apply a supervised learn-
ing approach and extract four types of features: (i) signal, (ii) textual,
(iii) sentiment and (iv) semantic, which we use to predict whether the
popularity of a given entity will be high or low in the following hours.
We run several experiments on six different entities in a dataset of over
150M tweets and 5M news and obtained F1 scores over 0.70. Error analy-
sis indicates that news perform better on predicting entity popularity on
Twitter when they are the primary information source of the event, in
opposition to events such as live TV broadcasts, political debates or
football matches.

Keywords: Prediction · News · Social media · Online reputation
monitoring

1 Introduction

Online publication of news articles has become a standard behavior of news
outlets, while the public joined the movement either using desktop or mobile
terminals. The resulting setup consists of a cooperative dialog between news
outlets and the public at large. Latest events are covered and commented by
both parties in a continuous basis through the social media, such as Twitter.
When sharing or commenting news on social media, users tend to mention the
most predominant entities mentioned in the news story [1]. Therefore, entities,
such as personalities, organizations, companies or geographic locations, can act
as latent interlinks between online news and social media.

Online Reputation Monitoring (ORM) focuses on continuously tracking what
is being said about entities (e.g. politicians) on social media and online news.
Automatic collection and processing of comments and opinions on social media
is now crucial to understand the reputation of individual personalities and orga-
nizations and therefore to manage their public relations. However, ORM systems
would be even more useful if they would be able to know in advance if social
media users will talk a lot about the target entities or not. For instance, on April
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 171–182, 2016.
DOI: 10.1007/978-3-319-46349-0 15
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4th 2016, the UK Prime-minister, David Cameron, was mentioned on the news
regarding the Panama Papers story. He didn’t acknowledge the story in detail
on that day. However, the news cycle kept mentioning him about this topic in
the following days and his mentions on social media kept very high. He had to
publicly address the issue on April 9th, when his reputation had already been
severely damaged, blaming himself for not providing further details earlier.

We hypothesize that for entities that are frequently mentioned on the news
(e.g. politicians) it is possible to establish a predictive link between online news
and popularity on social media. We cast the problem as a supervised learning
classification approach: to decide whether popularity will be high or low based
on features extracted from the news cycle. We define four set of features: signal,
textual, sentiment and semantic. We aim to respond to the following research
questions: RQ1: Are online news valuable as source of information to effectively
predict entity popularity on Twitter? RQ2: Do online news carry different pre-
dictive power based on the nature of the entity under study? RQ3: How different
thresholds for defining high and low popularity affect the effectiveness of our app-
roach? RQ4: Do performance remains stable for different time of predictions?
RQ5: What is the most important feature set for predicting entity popularity on
Twitter based on the news cycle? RQ6: Do individual set of features represent
different importance for different entities?

2 Related Work

In recent years, a number of research works have studied the relationship and pre-
dictive behavior of user response to the publication of online media items, such
as, commenting news articles, playing Youtube videos, sharing URLs or retweet-
ing patterns [2–5]. The first attempt to predict the volume of user comments for
online news articles used both metadata from the news articles and linguistic
features [4]. The prediction was divided in two binary classification problems:
if an article would get any comments and if it would be high or low number
of comments. Similarly other works, found that shallow linguistic features (e.g.
TF-IDF or sentiment) and named entities have good predictive power [6,7].

Research work more in line with ours, tries to predict the popularity of news
articles shares (url sharing) on Twitter based on content features [2]. Authors
considered the news source, the article’s category, the article’s author, the sub-
jectivity of the language in the article, and number of named entities in the
article as features. Recently, there was a large study of the life cycle of news
articles in terms of distribution of visits, tweets and shares over time across dif-
ferent sections of the publisher [8]. Their work was able to improve, for some
content type, the prediction of web visits using data from social media after ten
to twenty minutes of publication.

Other line of work, focused on temporal patterns of user activities and have
consistently identified broad classes of temporal patterns based on the presence
of a clear peak of activity [3,9–11]. Classes differentiate by the specific amount
and duration of activity before and after the peak. Crane and Sornette [9] define
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endogenous or exogenous origin of events based on being triggered by internal
aspects of the social network or external, respectively. They find that hashtag
popularity is mostly influenced by exogenous factors instead of epidemic spread-
ing. Other work [10] extends these classes by creating distinct clusters of activ-
ity based on the distributions in different periods (before, during and after the
peak) that can be interpreted based on semantics of hashtags. Consequently, the
authors applied text mining techniques to semantically describe hashtag classes.
Yang and Leskovec [3] propose a new measure of time series similarity and clus-
tering. Authors obtain six classes of temporal shapes of popularity of a given
phrase (meme) associated with a recent event, as well as the ordering of media
sources contribution to its popularity.

Recently, Tsytsarau et al. [12] studied the time series of news events and
their relation to changes of sentiment time series expressed on related topics on
social media. Authors proposed a novel framework using time series convolution
between the importance of events and media response function, specific to media
and event type. Their framework is able to predict time and duration of events
as well as shape through time.

Compared to related work, we focus on a different problem - online reputation
monitoring - where it is necessary to track what is being said about an entity on
social media on a continuous basis. Therefore, our problem consists on assessing
the impact of the news cycle on the time series of popularity of a target entity
on social media.

3 Approach

The starting point of our hypothesis is that for entities that are frequently men-
tioned on the news (e.g. politicians) it is possible to predict popularity on social
media using signals extracted from the news cycle. The first step towards a
solution requires the definition of entity popularity on social media.

3.1 Entity Popularity

There are different ways of expressing the notion of popularity on social media.
For example, the classical way of defining it is through the number of followers
of a Twitter account or likes in a Facebook page. Another notion of popularity,
associated with entities, consists on the number of retweets or replies on Twitter
and post likes and comments on Facebook. We define entity popularity based
on named entity mentions in social media messages. Mentions consist of specific
surface forms of an entity name. For example, “Cristiano Ronaldo” might be
mentioned also using just “Ronaldo” or “#CR7”.

Given an set of entities E = {e1, e2, ..., ei, ...}, a daily stream of social media
messages S = {s1, s2, ..., si, ...} and a daily stream of online news articles N =
{n1, n2, ..., ni, ...} we are interested in monitoring the mentions of an entity ei on
the social media stream S, i.e. the discrete function fm(ei, S). Let T be a daily
time frame T = [tp, tp+h], where the time tp is the time of prediction and tp+h
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is the prediction horizon time. We want to learn a target popularity function fp
on social media stream S as a function of the given entity ei, the online news
stream N and the time frame T :

fp(ei, N, T ) =
t=tp+h∑

t=tp

fm(ei, S)

which corresponds to integrating fm(ei, S) over T .
Given a day di, a time of prediction tp, we extract features from the news

stream N until tp and predict fp until the prediction horizon tp + h. We mea-
sure popularity on a daily basis, and consequently, we adopted tp+h as 23:59:59
everyday. For example, if tp equals to 8 a.m., we extract features from N until
07:59:59 and predict fp in the interval 08:00–23:59:59 on day di. In the case of
tp equals to midnight, we extract features from N on the 24 h of previous day
di−1 to predict fp for the 24 h of di.

We cast the prediction of fp(ei, N, T ) as a supervised learning classification
problem, in which we want to infer the target variable f̂p(ei, N, T ) ∈ {0, 1}
defined as:

f̂p =

{
0(low), if P (fp(ei, N, T ) ≤ δ) = k

1(high), if P (fp(ei, N, T ) > δ) = 1 − k

where δ is the inverse of cumulative distribution function at k of fp(ei, N, T ) as
measured in the training set, a similar approach to [4]. For instance, k = 0.5
corresponds to the median of fp(ei, N, T ) in the training set and higher values
of k mean that fp(ei, N, T ) has to be higher than k examples on the training set
to consider f̂p = 1, resulting in a reduced number of training examples of the
positive class high.

3.2 News Features

Previous work has focused on the influence of characteristics of the social media
stream S in the adoption and popularity of memes and hashtags [11]. In oppo-
sition, the main goal of this work is to investigate the predictive power of the
online news stream N . Therefore we extract four types of features from N : (i)
signal, (ii) textual, (iii) sentiment and (iv) semantic, as depicted in Table 1. One
important issue is how can we filter relevant news items to ei. There is no con-
sensus on how to link a news stream N with a social media stream S. Some
works use URLs from N , shared on S, to filter simultaneously relevant news
articles and social media messages [2]. As our work is entity oriented, we select
news articles with mentions of ei as our relevant N .

Signal Features - This type of features depict the “signal” of the news cycle
mentioning ei and we include a set of counting variables as features, focusing
on the total number of news mentioning ei in specific time intervals, mentions
on news titles, the average length of news articles, the different number of news
outlets that published news mentioning ei as well as, features specific to the
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Table 1. Summary of the four type of features we consider: (i) signal, (ii) textual, (iii)
sentiment and (iv) semantic, 21 in total

Number Feature Description Type

Signal

1 news number of news mentions of ei in [0, tp] in di Int

2 news di−1 number of news mentions of ei in [0, tp] in di−1 Int

3 news total di−1 number of news mentions of ei in [0, 24[ in di−1 Int

4 news titles number of title mentions in news of ei in [0, tp] in di Int

5 avg content average content length of news of ei in [0, tp] in di Float

6 sources number of different news sources of ei in [0, tp] in di Int

7 weekday day of week Categ

8 is weekend true if weekend, false otherwise Bool

Textual

9–18 tfidf titles TF-IDF of news titles [0, tp] in di Float

19–28 LDA titles LDA-10 of news titles [0, tp] in di Float

Sentiment

29 pos number of positive words in news titles [0, tp] in di Int

30 neg number of negative words in news titles [0, tp] in di Int

31 neu number of neutral words in news titles [0, tp] in di Int

32 ratio positive/negative Float

33 diff positive− negative Int

34 subjectivity (positive + negative + neutral)/
∑

words Float

35–44 tfidf subj TF-IDF of subjective words (pos, neg and neu) Float

Semantic

45 entities number of entities in news [0, tp] in di Int

46 tags number of tags in news [0, tp] in di Int

47–56 tfidf entities TF-IDF of entities in news [0, tp] in di Float

57–66 tfidf tags TF-IDF of news tags [0, tp] in di Float

day of the week to capture any seasonal trend on the popularity. The idea is to
capture the dynamics of news events, for instance, if ei has a sudden peak of
mentions on N , a relevant event might have happened which may influence fp.

Textual features - To collect textual features we build a daily profile of the
news cycle by aggregating all titles of online news articles mentioning ei for
the daily time frame [0, tp] in di. We select the top 10000 most frequent terms
(unigrams and bi-grams) in the training set and create a document-term matrix
R. Two distinct methods were applied to capture textual features.

The first method is to apply TF-IDF weighting to R. We employ singu-
lar value decomposition (SVD) to capture similarity between terms and reduce
dimensionality. It computes a low-dimensional linear approximation σ. The final
set of features for training and testing is the TF-IDF weighted term-document
matrix R combined with σR which produces 10 real valued latent features.
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When testing, the system uses the same 10000 terms from the training data
and calculates TF-IDF using the IDF from the training data, as well as, σ for
applying SVD on test data.

The second method consists in applying Latent Dirichlet allocation (LDA)
to generate a topic model of 10 topics (features). The system learns a topic-
document distribution θ and a word distribution over topics ϕ using the training
data for a given entity ei. When testing, the system extracts the word distrib-
ution of the news title vector r on a test day d′

i. Then, by using ϕ learned on
training data, it calculates the probability of r belonging to one of the 10 topics
learned before. The objective of extracting this set of features is to create a char-
acterization of the news stream that mentions ei, namely, which are the most
salient terms and phrases on each day di as well as the latent topics associated
with ei. By learning our classifier we hope to obtain correlations between certain
terms and topics and fp.

Sentiment features - We include several types of word level sentiment features.
The assumption here is that subjective words on the news will result in more
reactions on social media, as exposed in [13]. Once again we extract features
from the titles of news mentioning ei for the daily time frame [0, tp]. We use a
sentiment lexicon as SentiWordNet to extract subjective terms from the titles
daily profile and label them as positive, neutral or negative polarity. We compute
count features for number of positive, negative, neutral terms as well as difference
and ratio of positive and negatives terms. Similar to textual features we create a
TFIDF weighted term-document matrix R using the subjective terms from the
title and apply SVD to compute 10 real valued sentiment latent features.

Semantic features - We use the number of different named entities recognized
in N on day di until tp, as well as, the number of distinct news category tags
extracted from the news feeds metadata. These tags, common in news articles,
consist of author annotated terms and phrases that describe a sort of semantic
hierarchy of news categories, topics and news stories (e.g. “european debt cri-
sis”). We create a TF-IDF weighted entity-document and TF-IDF tag-document
matrices and applied SVD to each of them to reduce dimensionality to 10. The
idea is to capture interesting entity co-occurrences as well as, news stories that
are less transient in time and might be able to trigger popularity on Twitter.

3.3 Learning Framework

Let x be the feature vector extracted from the online news stream N on day di
until tp. We want to learn the probability P (f̂p = 1|X = x). This can be done
using the inner product between x and a weighting parameter vector w ∈ R,
w�x.

Using logistic regression and for binary classification one can unify the defi-
nition of p(f̂p = 1|x) and p(f̂p = 0|x) with

p(f̂p|x) =
1

1 + e−f̂pw�x
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Given a set of z instance-label pairs (xi, f̂pi), with i = 1, ..., z and f̂pi ∈ {0, 1}
we solve the binary class L2 penalized logistic regression optimization problem,
where C > 0

min
w

1
2
w�w + C

n∑

i=1

log(1 + e−f̂piw
�xi)

We apply this approach following an entity specific basis, i.e. we train an
individual model for each entity. Given a set of entities E to which we want to
apply our approach and a training set of example days D = {d1, d2, ..., di, ...}, we
extract a feature vector xi for each entity ei on each training day di. Therefore,
we are able to learn a model of w for each ei. The assumption is that popularity
on social media fp is dependent of the entity ei and consequently we extract
entity specific features from the news stream N . For instance, the top 10000
words of the news titles mentioning ei are not the same for ej .

4 Experimental Setup

This work uses Portuguese news feeds and tweets collected from January 1, 2013
to January 1, 2016, consisting of over 150 million tweets and 5 million online
news articles1. To collect and process raw Twitter data, we use a crawler, which
recognizes and disambiguate named entities on Twitter [14–16]. News data is
provided by a Portuguese online news aggregator. This service handles online

Fig. 1. Daily popularity on Twitter of entities under study.

1 Dataset is available for research purposes. Access requests via e-mail.
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news from over 60 Portuguese news outlets and it is able to recognize entities
mentioned on the news.

We choose the two most common news categories: politics and football and
select the 3 entities with highest number of mentions on the news for both
categories. The politicians are two former Prime-ministers, José Sócrates and
Pedro Passos Coelho and the incumbent, António Costa. The football entities are
two coaches, Jorge Jesus and José Mourinho, and the most famous Portuguese
football player, Cristiano Ronaldo.

Figure 1 depicts the behavior of daily popularity of the six entities on the
selected community stream of Twitter users for each day from July 2014 until
July 2015. As expected, it is easily observable that in some days the popularity on
Twitter exhibits bursty patterns. For instance, when José Sócrates was arrested
in November 21st 2014 or when Cristiano Ronaldo won the FIFA Ballon d’Or
in January 12th 2015.

We defined the years of 2013 and 2014 as training set and the whole year of
2015 as test set. We applied a monthly sliding window setting in which we start
by predicting entity popularity for every day of January 2015 (i.e. the test set)
using a model trained on the previous 24 months, 730 days (i.e. the training set).
Then, we use February 2015 as the test set, using a new model trained on the
previous 24 months. Then March and so on, as depicted in Fig. 2. We perform
this evaluation process, rolling the training and test set until December 2015,
resulting in 365 days under evaluation.

Fig. 2. Training and testing sliding window - first 2 iterations.

The process is applied for each one of the six entities, for different time
of predictions tp and for different values of the decision boundary k. We test
tp = 0, 4, 8, 12, 16, 20 and k = 0.5, 0.65, 0.8. Therefore, we report results in Sect. 5
for 18 different experimental settings, for each one of the six entities. The goal
is to understand how useful the news cycle is for predicting entity popularity
on Twitter for different entities, at different hours of the 24 h cycle and with
different thresholds for considering popularity as high or low.

5 Results and Outlook

Results are depicted in Table 2. We report F1 on positive class since in online
reputation monitoring is more valuable to be able to predict high popularity
than low. Nevertheless, we also calculated overall Accuracy results, which were
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better than the F1 reported here. Consequently, this means that our system is
fairly capable of predicting low popularity. We organize this section based on
the research questions we presented in the Introduction (Sect. 1).

Table 2. F1 score of popularity high as function of tp and k equal to 0.5, 0.65 and 0.8
respectively.

Entity\tp(hour) 0 4 8 12 16 20

k = 0.50

António Costa 0,76 0,67 0,74 0,77 0,75 0,72

José Sócrates 0,77 0,66 0,73 0,75 0,75 0,75

Pedro Passos Coelho 0,72 0,63 0,70 0,70 0,74 0,71

Cristiano Ronaldo 0,35 0,41 0,45 0,37 0,35 0,32

Jorge Jesus 0,73 0,68 0,69 0,68 0,69 0,70

José Mourinho 0,62 0,46 0,51 0,56 0,55 0,45

k = 0.65

António Costa 0,61 0,60 0,66 0,64 0,60 0,60

José Sócrates 0,63 0,57 0,62 0,66 0,64 0,62

Pedro Passos Coelho 0,58 0,57 0,65 0,67 0,67 0,65

Cristiano Ronaldo 0,29 0,35 0,42 0,41 0,36 0,30

Jorge Jesus 0,63 0,61 0,63 0,59 0,62 0,64

José Mourinho 0,56 0,39 0,48 0,56 0,47 0,38

k = 0.80

António Costa 0,48 0,51 0,55 0,53 0,44 0,49

José Sócrates 0,48 0,42 0,47 0,53 0,47 0,35

Pedro Passos Coelho 0,47 0,46 0,56 0,56 0,52 0,54

Cristiano Ronaldo 0,14 0,29 0,31 0,26 0,20 0,21

Jorge Jesus 0,50 0,48 0,51 0,48 0,57 0,56

José Mourinho 0,32 0,32 0,36 0,41 0,41 0,36

RQ1 and RQ2: Results show that performance varies with each target entity
ei. In general, results are better in the case of predicting popularity of politicians.
In the case of football personalities, Jorge Jesus exhibits similar results with the
three politicians but José Mourinho and specially Cristiano Ronaldo represent
the worst results in our setting. For instance, when Cristiano Ronaldo scores
three goals in a match, the burst on popularity is almost immediate and not
possible to predict in advance.

Further analysis showed that online news failed to be informative of popu-
larity in the case of live events covered by other media, such as TV. Interviews
and debates on one hand, and live football games on the other, consist of events
with unpredictable effects on popularity. Cristiano Ronaldo can be considered
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a special case in our experiments. He is by far the most famous entity in our
experiments and in addition, he is also an active Twitter user with more than
40M followers. This work focus on assessing the predictive power of online news
and its limitations. We assume that for Cristiano Ronaldo, endogenous features
from the Twitter itself would be necessary to obtain better results.

RQ3: Our system exhibits top performance with k = 0.5, which corresponds
to balanced training sets, with the same number of high and low popularity
examples on each training set. Political entities exhibit F1 scores above 0.70
with k = 0.5. On the other hand, as we increase k, performance deteriorates.
We observe that for k = 0.8, the system predicts a very high number of false
positives. It is very difficult to predict extreme values of popularity on social
media before they happen. We plan to tackle this problem in the future by also
including features about the target variable in the current and previous hours,
i.e., time-series auto-regressive components.

Fig. 3. Individual feature type F1 score for tp = 12 at k = 0.5.

RQ4: Results show that time of prediction affects the performance of the
system, specially for the political entities. In their case, F1 is higher when time
of prediction is noon and 4 p.m. which is an evidence that in politics, most of
the news events that trigger popularity on social media are broadcast by news
outlets in the morning. It is very interesting to compare results for midnight
and 4 a.m./8 a.m. The former use the news articles from the previous day, as
explained in Sect. 3, while the latter use news articles from the first 4/8 h of the
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day under prediction. In some examples, Twitter popularity was triggered by
events depicted on the news from the previous day and not from the current
day.

RQ5 and RQ6: Figure 3 tries to answer these two questions. The first obser-
vation is that the combination of all groups of features does not lead to substan-
tial improvements. Semantic features alone achieve almost the same F1 score as
the combination of all features. However in the case of Mourinho and Ronaldo,
the combination of all features lead to worse F1 results than the semantic set
alone.

Sentiment features are the second most important for all entities except José
Mourinho. Signal and Textual features are less important and this was somehow
a surprise. Signal features represent the surface behavior of news articles, such
as the volume of news mentions of ei before tp and we were expecting an higher
importance. Regarding Textual features, we believe that news articles often refer
to terms and phrases that explain past events in order to contextualize a news
article.

In future work, we consider alternative approaches for predicting future pop-
ularity of entities that do not occur everyday on the news, but do have social
media public accounts, such as musicians or actors. In opposition, entities that
occur often on the news, such as economics ministers and the like, but do not
often occur in the social media pose also a different problem.
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10. Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of
collective attention in Twitter. In: Proceedings of the 21st International Conference
on World Wide Web, pp. 251–260. ACM (2012)

11. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of infor-
mation diffusion across topics: idioms, political hashtags, and complex contagion
on Twitter. In: Proceedings of the 20th International Conference on World Wide
Web, pp. 695–704. ACM (2011)

12. Tsytsarau, M., Palpanas, T., Castellanos, M.: Dynamics of news events and social
media reaction. In: Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 901–910. ACM (2014)

13. Reis, J., Olmo, P., Benevenuto, F., Kwak, H., Prates, R., An, J.: Breaking the
news: first impressions matter on online news. In: ICWSM 2015 (2015)

14. Boanjak, M., Oliveira, E., Martins, J., Rodrigues, E.M., Sarmento, L.:
TwitterEcho: a distributed focused crawler to support open research with twit-
ter data. In: WWW 2012, pp. 1233–1240. ACM (2012)

15. Saleiro, P., Rei, L., Pasquali, A., Soares, C.: Popstar at replab 2013: name ambigu-
ity resolution on Twitter. In: CLEF 2013 Eval. Labs and Workshop Online Working
Notes (2013)

16. Saleiro, P., Amir, S., Silva, M., Soares, C.: Popmine: tracking political opin-
ion on the web. In: 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications; Depend-
able, Autonomic and Secure Computing; Pervasive Intelligence and Computing
(CIT/IUCC/DASC/PICOM), pp. 1521–1526. IEEE (2015)



Multi-scale Kernel PCA and Its Application
to Curvelet-Based Feature Extraction

for Mammographic Mass Characterization

Sami Dhahbi(B), Walid Barhoumi, and Ezzeddine Zagrouba

Research Team on Intelligent Systems in Imaging and Artificial Vision (SIIVA)
RIADI, Laboratory, ISI, Ariana, Tunisia

sami.dhahbi@laposte.net, walid.barhoumi@enicarthage.rnu.tn,
ezzeddine.zagrouba@fsm.rnu.tn

Abstract. Accurate characterization of mammographic masses plays a
key role in effective mammogram classification and retrieval. Because
of their high performance in multi-resolution texture analysis, several
curvelet-based features have been proposed to describe mammograms,
but without satisfactory results in distinguishing between malignant and
benign masses. This paper tackles the problem of extracting a reduced set
of discriminative curvelet texture features for mammographic mass char-
acterization. The contribution of this paper is twofold. First, to overcome
the weakness of PCA to cope with the nonlinearity of curvelet coeffi-
cient distributions, we investigate the use of kernel principal components
analysis (KPCA) with a Gaussian kernel over curvelet coefficients for
mammogram characterization. Second, a new multi-scale Gaussian ker-
nel is introduced to overcome the shortcoming of single Gaussian kernels.
Indeed, giving that faraway points may contain useful information for
mammogram characterization, the kernel must emphasis neighbor points
without neglecting faraway ones. Gaussian kernels either fail to emphasis
neighborhood (high sigma values) or ignore faraway points (low sigma
values). To emphasis neighborhood without neglecting faraway points,
we propose to use a linear combination of Gaussian kernels with several
sigma values, as a kernel in KPCA. Experiments performed on the DDSM
database showed that KPCA outperforms state-of-the-art curvelet-based
methods including PCA and moments and that the multi-scale gaussian
kernel outperforms single gaussian kernels.

Keywords: Mammography · Kernel PCA · Curvelet transform · Multi-
scale gaussian kernel

1 Introduction

Despite their effectiveness for early breast cancer detection, a major concern with
nationwide mammogram screening programs is the high false-positive and false-
negative rates. According to worldwide statistics in 2012 [1], this disease is the
most frequent female cancer (25 % of all cancers) and the leading cause of cancer
c© Springer International Publishing AG 2016
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deaths among women (14.71 % of total cancer deaths). Screening mammogra-
phy is the most cost-effective tool to detect breast cancer at early stages, that
increases treatment options and thus decreases mortality rates [2,3]. However,
due to the difficulty of mammogram interpretation, radiologists may miss can-
cers and/or misinterpret non-cancerous lesions. Furthermore, the huge amount
of mammograms to be analyzed and the limited number of qualified radiologists
restrict double reading, even though it is clinically effective [4]. Hence, Computer-
aided diagnosis (CAD) systems provide a more efficient solution by replacing
the second reader and assist radiologists in their clinical routines [5]. Recently,
content based image retrieval (CBIR) systems have emerged as a promising
alternative to traditional CAD systems. On the one hand, radiologists’ doubt
about the output of black-box CAD systems, which analyze an input mammo-
gram and return a decision about its malignancy, impede their widespread. On
the other hand, by displaying similar mammograms with their corresponding
ground truth, CBIR can gather radiologists’ confidence. Many frameworks on
mammogram retrieval have been proposed, dealing with relevance feedback [6],
similarity measure [7], scalability [8], multi-view information fusion [9] and fea-
ture extraction [10,11]. In particular, feature extraction for accurate characteri-
zation of mammographic masses, a key step in effective mammogram retrieval,
is both interesting and challenging. Because of their high performance in multi-
resolution texture analysis, several curvelet-based features have been proposed in
recent years to describe mammograms [10,12], but without satisfactory results in
distinguishing between malignant and benign masses. This is mainly due to the
difficulty of mammogram interpretation. For instance, Gedik et al. [12] performed
a PCA analysis on curvelet sub-bands and used the first principal components to
describe mammograms. By using the PCA analysis, the authors assumed a nor-
mal distribution of curvelet coefficients. However, the distributions of curvelet
coefficients computed from mammogram images are non gaussian and there-
fore PCA analysis is not valid in this case [10]. To handle the non-gaussianity
of curvelet coefficients, Dhahbi et al. [10] used higher order curvelet moments.
Even though curvelet moments outperformed PCA-based curvelet analysis for
mammogram description, the obtained results were not satisfactory and far from
being usable in clinical application.

In this paper we deal with the problem of extracting a discriminative set of
curvelet texture features for mammogram retrieval. For this, we propose to use
kernel principal component analysis (KPCA). The gaussian KPCA overcomes
the shortcoming of PCA to cope with the non-gaussianity of curvelet coefficient
distributions. Furthermore, in the context of mammogram retrieval, faraway
points are not as important as neighbor ones but they may contain valuable
information. In this way, the kernel designed for mammogram retrieval must
satisfy the two following conditions: (i) emphasize neighbor points, (ii) take into
consideration faraway points. However, single gaussian kernels can satisfy either
the first condition or the second one but not both. Indeed, high (resp. low) sigma
values fail to emphasize neighborhood (resp. ignore faraway points). To empha-
size neighborhood without neglecting faraway points, we propose a multi-scale
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gaussian kernel which is the combination of gaussian kernels with sigma values
obtained through the successive division of a given sigma value. Experiments
performed on the DDSM database showed that KPCA outperform state-of-the-
art curvelet-based methods including PCA. Besides, the proposed multi-scale
gaussian kernel outperforms single gaussian kernels. Indeed, the main contri-
butions of this work can be summarized as follows. Firstly, we investigate the
use of KPCA to extract a reduced set of discriminative features from curvelet
coefficients for mammographic masses retrieval. Unlike traditional PCA, KPCA
can effectively handle the non-gaussianity of curvelet coefficient distributions.
Curvelet-based KPCA features outperform state-of-the-art curvelet-based fea-
tures, including linear methods (curvelet-based PCA features) and nonlinear
methods (curvelet moments). In addition, we propose a multi-scale gaussian
kernel that emphasize neighborhood without neglecting faraway point, and thus
it is more adopted for image retrieval. The proposed kernel is a mixture of several
gaussian kernels with higher and lower sigma values.

The rest of this paper is organized as follows. Proposed methods are presented
in Sect. 2. Section 3 is devoted for experimental results. Conclusion and future
works are given in the last section.

2 Proposed Method

The proposed method is described here while presenting the curvelet transform,
the kernel PCA and the multi-scale gaussian kernel.

2.1 Curvelet Transform

Curvelet is a multi-scale and multidirectional geometric transform that over-
come the inherent limitations of wavelet-like transforms [13]. Compared with
wavelet, curvelet exhibits desirable properties of directionality, anisotropy, effi-
cient representation of smooth objects with discontinuities along curves, and
optimally sparse representation. Indeed, several studies have shown the superi-
ority of curvelet-based methods over wavelet-based ones for image denoising [14]
and feature extraction [15]. The discrete curvelet coefficient of an image f(x, y)
is defined as follows:

c(j, l, k) =
N∑

x=0

N∑

y=0

f(x, y)ϕj,l,k(x, y) (1)

where ϕj,l,k(x, y) is the discrete mother curvelet; and j, l, and k are the parame-
ters of scale, orientation and translation, respectively. To perform fast discrete
curvelet transform, two implementations that differ in the way curvelets at a
given scale and angle are translated with respect to each other, can be used.
The first implementation is based on unequally spaced fast fourier transforms
(USFFT), whereas the second one is based on the wrapping of specially selected
fourier samples. In this study, we used the USFFT implementation since it is
used in similar studies on curvelet-based mammogram analysis [10,12,15].
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2.2 Kernel PCA

PCA is the most widely used tool for feature reduction that has been applied
successfully in several areas. This method was used in [12] to extract a reduced
set of features for mammogram analysis. However, PCA-based curvelet feature
extraction does not yield good results in the case of mammogram analysis [10].
This is due to the fact that the distribution of curvelet coefficients is non-gaussian
[10], whereas PCA allows only linear dimension reduction. To solve this problem,
we propose to use KPCA to cope with the non-linearity of curvelet coefficient
distributions. The performance of the KPCA depends on the appropriate choice
of the kernel functions and their parameters. Commonly used kernels include
polynomial kernels, gaussian kernels and sigmoid kernels. In particular, gaussian
kernel (Eq. 2) exhibits several good properties (isotropy, stationary, . . . ) and
outperforms all the other kernels. This kernel is by far the most widely used
kernel and therefore is used here.

kσ
G(x, y) = exp(−‖x − y‖2

2σ2
), (2)

where σ (sigma) is the width parameter. A large width allows to take into account
faraway points, whereas a low width emphasizes neighbor points. The choice of
the optimal value of σ is application dependent, and it is typically selected using
cross-validation approaches.

2.3 Multiscale Gaussian Kernel PCA

In the previous section, we have argued why kernel PCA is more appropriate than
linear PCA for curvelet coefficients reduction. In this section, we propose a kernel
that is more suitable for mammogram retrieval than (single) gaussian kernel. A
large kernel width will not emphasize neighborhood, whereas a low one will omit
faraway points. To tackle this problem, we propose a multi-scale gaussian kernel.
In fact, in image retrieval, the kernel function must emphasize the neighborhood
without neglecting faraway points. Indeed, the neighbors of a point are more
likely to be similar to this point. Therefore, the kernel function must emphasize
the neighborhood. For faraway points, even though they are most likely to be
dissimilar to the point in question, they could contain useful information about
this point. Thus, they must not be neglected. Our idea is that weighting data
points is better than simply discarding some of them. For this, a good kernel
must satisfy two properties: (i) emphasize neighbor points, (ii) consider the all
points. In gaussian kernel, the value of sigma defines how the kernel will handle
neighbor and faraway points. A low value of sigma emphasizes the neighborhood
and discards faraway points, whereas a high value of sigma takes into account all
points but does not emphasize neighborhood (Fig. 1). Moderate values of sigma
make a trade-off between satisfying property (i) or (ii), but not both at the
same time (Fig. 1). Therefore, we propose a multi-scale gaussian kernel defined
as follows:

kσ
MSG(x, y) =

N∑

i=1

λi.k
2−iσ
G (x, y), (3)
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Fig. 1. Illustrations of single and multi-scale gaussian kernels.

where k2−iσ
G is a gaussian kernel of width 2−iσ, and λi is a weighting parame-

ter. The proposed kernel is a mixture of different gaussian kernels with higher,
intermediate and lower sigma values. Thus, the multi-scale gaussian kernel is a
positive definite kernel (a linear combination of positive definite kernels). In addi-
tion, the proposed kernel can simultaneously handle all points while emphasizing
neighbor points (Fig. 1). Another advantage of the proposed multi-scale gaussian
kernel is that it allows to mix several kernels while handling one parameter.

3 Experimental Results

In the experiments, we used the Digital Database for Screening Mammogra-
phy (DDSM), which is currently the largest public mammogram database [16].
The dataset includes 2604 cases, and each case is composed of 4 mammograms.
Screening mammography typically involves 2 views of the breast: Cranial-Caudal
view (CC) and Medio-Lateral-Oblique view (MLO). Hence when we take into
consideration left and right breast, we have 4 images for every case. The data-
base includes the ground truth of each mammogram, mainly its diagnostic result
(benign or malignant) and the location of lesions. Since the whole mammo-
graphic image comprises the pectoral muscle and the background with a lot
of noise, features were computed on a limited ROI that contains the prospec-
tive abnormality, while removing the unwanted parts. This is a crucial step to
extract and focus on the appropriate part of the mammography. In fact, we
performed a manual crop-ping based on the information provided in the ground
truth. Thus, the dataset consists of 1914 ROIs (862 benign and 1052 malig-
nant). Figure 2 illustrates the first contribution of this paper, which is the use
of KPCA as a more effective alternative than PCA for curvelet-based mam-
mographic masses characterization. This figure, which visualized the projection
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of each image in the first two most significant principal components extracted
by PCA and KPCA, respectively; illustrates the nonlinearity of the distribu-
tion of mammographic masses, the shortcoming of PCA, and the effectiveness of
KPCA. It is clear that the distribution of mammographic masses is non-linear
and the PCA fails to separate between malignant and benign masses, whereas
KPCA allows a better separation. Moreover, we investigated the performance
of KPCA (with different values of sigma) and PCA (Fig. 3) using the 5-fold
cross validation method. Higher values of sigma yield better accuracy (the best
results obtained with sigma = 32). But, the performance decreased for very high
values of sigma (=128). Independently of the sigma value, KPCA outperforms
PCA. For all the compared methods, we have computed the retrieval precision
values for different number of returned images (1, 5, 10 and 20) (Table 1). We
can see that in all tested cases, the proposed multi-scale kernel yields the high-
est precision values for benign cases (=76.5 %), malignant cases (=74.14 %) and
overall images (=75.82 %). Besides, the gaussian KPCA records the second bet-
ter results, whereas PCA yields the lowest precision values. We have evaluated
also the classification performance via the accuracy, false positive and false nega-
tive values. Again, the multi-scale gaussian kernel achieves the highest accuracy
(=78.75 %) and the lowest false-positive (=16.37 %) and false-negative values
(=24.07 %). The obtained results show that KPCA (gaussian and multi-scale)
permit to obtain better results than curvelet moments. This shows that KPCA
is more appropriate than moment theory to handle non linear dimension reduc-
tion. The poor results obtained with the linear PCA confirm the incapability of
this method to cope with non linear dimension reduction problems. Finally, the
best results obtained with MS-KPCA and its superiority over gaussian KPCA
confirms our assumption that a kernel must emphasize neighbor points without
neglecting faraway ones (Table 2).
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Fig. 2. Distribution of malignant (red points) and benign (blue points) mammographic
samples. (Color figure online)
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Table 1. Retrieval precision at different values of K.

Benign Malignant Overall

K 1 5 10 20 1 5 10 20 1 5 10 20

Moments 61.17 64.12 61.23 61.11 63.12 62.76 62.14 60.99 62.15 63.44 61.69 61.05

PCA 52.29 52.47 52.04 52.16 48.7 47.52 48.36 48.69 50.5 50.0 50.42 50.43

G-KPCA 69.87 69.54 67.84 64.29 73.67 70.76 67.76 62.6 71.77 70.15 67.8 63.45

MS-KPCA 76.5 74.65 73.64 72.25 75.14 72.77 71.6 68.4 75.82 73.71 72.62 70.32

Table 2. Classification accuracy at different values of K.

False negatives False positives Accuracy

K 1 5 10 20 1 5 10 20 1 5 10 20

Moments 38.83 34.87 .35.79 38.61 36.88 34.89 37.63 39.11 62.15 65.12 63.29 61.14

PCA 47.71 45.92 43.14 41.88 51.3 54.24 52.88 51.31 50.5 49.92 51.99 53.4

G-KPCA 30.13 27.71 27.8 26.82 26.33 25.54 25.2 28.14 71.77 73.38 73.5 72.52

MS-KPCA 23.5 20.81 16.37 16.86 24.86 24.18 25.2 25.65 75.82 77.51 78.28 78.75

4 Conclusion

In this paper, we proposed new feature extraction methods for mammographic
masses retrieval. The proposed method used the multi-resolution texture analysis
based on curvelet transform. To overcome the inherited limitation of linear PCA
while handling non-linear dimension reduction, KPCA was used to extract a
reduced set of discriminative features form curvelet coefficients. The obtained
results showed that gaussian PCA-based feature extraction outperforms state-
of-the-art methods that used PCA [12] and moment theory [10]. However, in
mammogram retrieval, we must emphasize neighbor points without neglecting
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faraway points. The gaussian kernel can satisfy one of these desired properties
but not both at the same time. To cope with this problem, we proposed a multi-
scale gaussian kernel that can emphasize neighbor points as well as faraway ones.
Experimental results showed the superiority of the proposed multi-scale gaussian
kernel over the standard gaussian kernel for mammogram retrieval. As a future
work, the multi-scale gaussian KPCA can be tested on other feature reduction
problems. Furthermore, the multi-scale gaussian kernel can be an appropriate
candidate for other kernel-based methods such as support vector machine.
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Abstract. In this paper, we tackle the issue of symptom recognition for
rare diseases in biomedical texts. Symptoms typically have more com-
plex and ambiguous structure than other biomedical named entities. Fur-
thermore, existing resources are scarce and incomplete. Therefore, we
propose a weakly-supervised framework based on a combination of two
approaches: sequential pattern mining under constraints and sequence
labeling. We use unannotated biomedical paper abstracts with dictio-
naries of rare diseases and symptoms to create our training data. Our
experiments show that both approaches outperform simple projection
of the dictionaries on text, and their combination is beneficial. We also
introduce a novel pattern mining constraint based on semantic similarity
between words inside patterns.

Keywords: Information extraction · Pattern mining · CRF · Symptoms
recognition · Biomedical texts

1 Introduction

Orphanet encyclopedia is the reference portal for information on rare diseases
(RD) and orphan drugs. A rare disease is a disease that affects less than 1 over
2,000 people. There are between 6,000 and 8,000 rare diseases and 30 million
people are concerned in Europe. The Orphanet initiative aims to improve the
diagnosis, care and treatment of patients with such diseases. Among its activi-
ties, Orphanet maintains a rare disease database containing expert-authored and
peer-reviewed syntheses describing current knowledge about each disease. The
syntheses are produced by human specialists following a manual, time-consuming
monitoring of the medical literature. The aim of our work is to automatically
acquire new knowledge related to rare diseases; we focus on the task of symptom
recognition in medical publication abstracts.

We use the term symptom to refer to features of a disease, as noticed and
described by a patient (functional sign), or as observed by a healthcare profes-
sional (clinical sign) without distinction. The linguistic structure of symptoms is
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 192–203, 2016.
DOI: 10.1007/978-3-319-46349-0 17
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typically more complex than other biomedical named entities [3] for various rea-
sons as discussed in [10]. They manifest a considerably larger variability in forms,
ranging from simple nouns to whole sentences, and a larger number of syntactic
and semantic ambiguities. In the following examples, symptoms as identified by
an expert are shown in bold:

– With disease progression patients additionally develop weakness and wast-
ing of the limb and bulbar muscles.

– Diagnosis is based on clinical presentation, and glycemia and lactacidemia
levels after a meal (hyperglycemia and hypolactacidemia), and after
three to four hour fasting (hypoglycemia and hyperlactacidemia).

Furthermore, few works have focused on symptom recognition and therefore
existing resources are limited and incomplete: to our knowledge, no dataset that
is fully annotated with symptoms is available to allow for supervised learning.

To address these issues, we propose a weakly-supervised approach to symp-
tom recognition that combines three independent lexical resources (Sect. 2.1):
a corpus of unannotated medical paper abstracts and two dictionaries, one for
rare diseases and another for symptoms.

We project the dictionaries on the abstracts to create an annotated dataset
to train subsequent models. Since the dictionaries are not exhaustive, the anno-
tation is only partial (weak). Given the annotated dataset, we formalize the
problem of symptom recognition in two complementary ways: (a) as super-
vised sequence labeling for which we use Conditional Random Fields (CRF) [8]
(Sect. 2.3); and (b) as sequential pattern mining under constraints [2] (Sect. 2.4).
We combine these approaches in a pipeline architecture (Sect. 2).

Our contribution is threefold. First, we show experimentally (Sect. 3) that
sequence labeling and pattern mining are both adequate formalizations of the
task, for they outperform a simple projection of the dictionaries on the text; Fur-
thermore, we show that their combination is beneficial since CRFs allow for rich
representation of words while pattern mining privileges modeling their context.
Second, we introduce a novel pattern mining constraint based on distributional
similarities between words (Sect. 2.4). Third, we created a gold standard for
evaluation (Sect. 2.1), manually annotated with symptoms by human experts.

2 A Pipeline Architecture for Symptom Recognition

In this section we describe our iterative pipeline approach to symptom recogni-
tion, in the spirit of [11]. Figure 1 depicts the overall architecture of our system.

Input data to our approach contain a collection of unannotated article
abstracts and two dictionaries, one for diseases and one for symptoms. First,
the dictionaries are projected on the abstracts to obtain partial annotations;
the resulting annotated data is used to train a CRF sequence labeler and as an
input to a sequential pattern mining algorithm; the learned CRF model and the
extracted patterns are used to extract symptoms from the test data, separately
or in combination; these symptoms are then compared to manually annotated
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Fig. 1. Overall architecture of the system.

gold standard for evaluation using F-measure. It should be noted that the learned
models can be applied on the training data (using cross-validation) to discover
new symptoms to be added to the dictionary, and the whole process can be
iterated.

2.1 Datasets and Evaluation

The input to our system is composed of three independent online resources:

– The first dataset is a corpus of 10,000 article abstracts extracted from the
biomedical literature available on PubMed.1 To build it, we extracted 100
biomedical paper abstracts for each one of 100 rare diseases selected from
OrphaData in advance by an expert;

– The second dataset is a dictionary of 17,469 distinct phenotype anomalies
provided by the Human Phenotype Ontology (HPO).2 A phenotype is all the
observable characteristics of a person, such as their morphology, biochemical or
physiological properties. It results from the interactions between a genotype
(expression of an organism’s genes) and its environment. Since many rare
diseases are genetic, we follow [11] and consider the above anomalies to be
symptoms. This dictionary is not exhaustive;

– The third dataset is a dictionary of 16,576 distinct names of rare disease and
their aliases, provided by OrphaData,3 a comprehensive, high-quality resource
related to rare diseases and orphan drugs. This dictionary is not exhaustive.

The testing data are made of 50 biomedical paper abstracts with an average
of 184 word by abstract. A first automatic annotation was made on the data,
then we ask two medical experts to review the generated symptoms and add
missing ones to build a gold standard. Our experts have labeled 407 symptoms
and their position in the testing data, so an average of 8,1 symptom by abstract.

1 http://www.ncbi.nlm.nih.gov/pubmed.
2 http://human-phenotype-ontology.github.io.
3 http://www.orphadata.org.

http://www.ncbi.nlm.nih.gov/pubmed
http://human-phenotype-ontology.github.io
http://www.orphadata.org
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Performance is evaluated using the standard precision, recall and F-measure.4

2.2 Weak Annotation by Projection

Given the input datasets, the first step in our workflow is to project the dic-
tionaries of symptoms and diseases on the abstracts contained in our trainings
set. The projection step produce only weak (partial) annotation since Orpha-
Data and HPO lists are not exhaustive; they do not contain all symptoms and
diseases, nor the various linguistic forms they can take.

The corpus and dictionaries are preprocessed using TreeTagger:5 texts are
tokenized, and each token is lemmatized and part-of-speech (POS) tagged. Each
term in the dictionaries (possibly composed of several tokens) is matched against
the corpus by comparing using regular expressions. Terms coming from HPO are
often generic (e.g. “weakness”) and may be supplemented in medical texts with
adjectives or object complements (e.g. “severe weakness of the tongue”). Thus,
once a term matches, it can be expanded to its nominal phrase using the POS
tags assigned to surrounding terms.

The partially annotated corpus resulting from the projection is used as a
training set for the subsequent models.

2.3 Symptom Recognition as Sequence Labeling

We formalize the problem of symptom recognition as a supervised sequence
labeling problem with BIO notation, for which we use Conditional Random
Fields (CRF) [8]. An abstract text is seen as a sequence of words, each of which
is labeled with one of three possible labels: B (beginning of a symptom), I (inside
a symptom), and O (outside a symptom). Thus, a symptom is a word segment
corresponding to a label B potentially followed by consecutive I labels, as shown
in Fig. 2.

O B I O O B I I O
clinically silent tumors often demonstrate subclinical hormonal activity .

Fig. 2. Symptom recognition as BIO sequence labeling. Symptoms are bolded.

The main advantage of CRFs is their conditional nature which allows for
rich representations of words in a sequence. It is possible to incorporate multiple
information sources in the form of feature functions, without having to model
their interactions explicitly. On the contrary, applying sequential pattern mining
on such rich representations is prohibitively intractable.

We use the same set of features used for named entity recognition in [5] as
implemented in Stanford NER recognizer.6 They include the current word, the
4 Using the script provided by http://www.cnts.ua.ac.be/conll2000/chunking/output.

html which take the same input data format (BIO) as our data.
5 http://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger.
6 http://nlp.stanford.edu/software/CRF-NER.shtml.

http://www.cnts.ua.ac.be/conll2000/chunking/output.html
http://www.cnts.ua.ac.be/conll2000/chunking/output.html
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger
http://nlp.stanford.edu/software/CRF-NER.shtml
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previous and next one, as well as all the words in window of a given size (n-gram
features); orthographic features characterizing the form of the words; prefixes
and suffixes; and several conjunctions thereof.

2.4 Symptom Recognition as Sequential Pattern Mining

While the sequence labeling CRF approach presented above can easily employ
rich representation of words, it cannot efficiently capture rich context. For
instance, considering all possible sub-sequences as context for the current word
is computationally intractable because their number grows exponentially in the
size of the sequence.

To address this issue, we propose to use a sequential pattern mining approach
with an emphasis on the context more than the words themselves. Sequential
pattern mining allows to take into account the language sequentiality and is one
of the most studied and challenging task in data mining. Since its introduction
by Agrawal and Srikant [1], the problem has been well formalized:

Let I = {i1, i2 . . . im} be the finite set of items. An itemset is a non-empty
set of items. A sequence S over I is an ordered list 〈it1, . . . , itk〉, with itj an
itemset over I, j = 1 . . . k. A k-sequence is a sequence of k items (i.e., of length
k), |S| denotes the length of sequence S. T(I) will denote the (infinite) set of all
possible sequences over I. A sequence database D over I is a finite set of doubles
(SID, T ), called transactions, with SID ∈ {1, 2, . . .} an identifier and T ∈ T(I)
a sequence over I.

Definition 1 (Inclusion). A sequence S′ = 〈is′
1 is′

2 . . . is′
n〉 is a subsequence

of another sequence S = 〈is1 is2 . . . ism〉, denoted S′ � S, if there exist
i1 < i2 < . . . ij . . . <in such that is′

1 ⊆ isi1 , is′
2 ⊆ isi2 . . . is′

n ⊆ isin .

Definition 2 (Support). The support of a sequence S in a transaction database
D, denoted Support(S,D), is defined as: Support(S,D) = |{(SID, T ) ∈ D|S �
T}|. The frequency of S in D, denoted freqD

S , is freqD
S = Support(S,D)

|D| .

Given a user-defined minimal frequency threshold σ, the problem of sequen-
tial pattern mining is the extraction of all the sequences S in D such that
freqD

S ≥ σ. The set of all frequent sequences for a threshold σ in a database D
is denoted FSeqs(D, σ),

FSeqs(D, σ) = {S | freqD
S ≥ σ} (1)

Our data contains the lemma and the POS of each word. So in our context, let
I be the finite set of all words and part-of-speech tag. An itemset is a non-empty
set of the lemma and the part-of-speech of a word. We also add a special item
(#symptom#) in I. This item will be used as a placeholder for each annotated
symptom in the training data, as shown in the following example:

< {we, PP}{find, V BD}{that, IN}{clinically,RB}{#symptom#}
{often,RB}{demonstrate, V BP}{#symptom#}{., SENT}>
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Using sequential pattern mining on such sequences allows us to extract lin-
guistic patterns covering symbolic symptoms. However, using only the user-
defined minimal frequency threshold σ as a constraint, pattern mining typically
yields an exponential number of patterns. Pattern mining under constraints [17]
is a powerful paradigm to target relevant patterns [14]. Therefore, we used a
pattern mining algorithm under the most used constraints in the literature in
addition to σ. The minimal and maximal gap constraint imposes a limit on
the number of words separating items of a pattern. The minimal and maxi-
mal length constraint limits the number of items in a pattern. We also used a
belonging constraint specific to our task, a pattern must contain our specific item
#symptom#.

Semantic Similarity Constraint. In addition to the above-mentioned con-
straints, we introduce a new semantic similarity constraint based on the distri-
butional properties of the words, estimated from a large unannotated corpus.

We observed during initial experiments a high level of redundancy in
extracted patterns, such as a succession of conjunctions or prepositions for
instance. We designed a constraint with a limit on the similarity of two adjacent
items of a pattern. Therefore, this constraint is designed to discard redundant,
uninformative patterns.

To be able to quantify the level of redundancy in the pattern, we used the
distributional hypothesis [6]: words that occur in the same context tend to have
similar meanings, this hypothesis is the basis for models like Word2Vec [12,13],
which learns a low-dimensional continuous vector representation of words from
large amount of text. To train the Word2Vec model, we extracted 7,031,643
biomedical paper abstract from PubMed, that’s 8.7 GB of input data for a
final model of 1.10 GB containing 1,373,138 words in a biomedical context. The
learned Word2Vec model is loaded by the data mining algorithm, each item i will
have an associated vector Vi allowing to measure the cosine distance Dc(Vi, Vj)
between two consecutive items.

Definition 3 (Semantic Similarity Constraint). Given a user-defined max-
imal similarity threshold ζ. Let id the last item of a sequence S, an extension of
S by a new item in is possible only if :

Dc(Vid , Vin) � ζ (2)

The semantic similarity constraint is anti-monotonic, the Proposition 1 allows
an efficient pruning of the search space.

Property 1 (Effect of the anti-monotonic semantic similarity con-
straint). Let S be a sequence. If S does not respect the semantic similarity
constraint, it does not exist a sequence S′ with S � S′ which will respect the
constraint. Therefore, the search space of all the extensions of S can be pruned.
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3 Experiments and Results

In this section we evaluate the performance of our system on the test set. We
evaluate each component individually, as long as their combination. We also
evaluate the contribution of the new similarity-based constraint.

3.1 Individual Module Results

In this section we compare symptom recognition results, shown in Table 1, for
each of the recognition modules independently of the other.

Table 1. Details of the best results with tuned parameters for each module

Module Parameters Precision Recall F-measure

Dictionary 57.58 14.00 22.53

CRF Bag of words 56.31 14.25 22.75

CRF ngrams, ngramLength=6 56.14 15.72 24.57

Pattern σ=0.05 %, Gap=0, ζ=0.4 23.12 38.57 28.91

Dictionary Projection Results. We first created a baseline by projection of the
17,469 symptoms that we gathered in our dictionary on the testing data using
regular expressions. Of all our results, this baseline have the best precision but
the worst recall.

CRF Results. The CRF module, successfully learned to generalize from the
symptoms of the dictionary as indicated by the 12 % point increase in recall and
2.5 % in increase in precision, which resulted in 9 % increase in F-measure.

Pattern Mining Results. Since we replaced each symptom by the item #symp-
tom# in the training data, we only represent the context. A pattern like
“(such,JJ) (as,IN) (#symptom#)” can be applied on the testing data and dis-
cover symptoms that were not in the training data. Hence, the Pattern mining
module has an increase of 175 % of recall, but a 60 % decline in precision, for
a final amelioration of the F-measure by 28 %. It was expected that the preci-
sion would drop, but in our context of helping human expert process data, the
recall is more important to maximize: missing a potential new symptom is more
harmful than producing a large number of false-positives. Figure 3 lists some of
the extracted patterns.

Table 2 shows the difference between the annotation of each module and the
annotation of the human expert on two sentences.



Weakly-Supervised Symptom Recognition 199

(treatment,NN) (IN) (#symptom#) : 62

(development,NN) (of,IN) (#symptom#) : 43

(patient,NNS) (with,IN) (#symptom#) : 295

(diagnosis,NN) (IN) (#symptom#) : 98

(patient,NNS) (IN) (#symptom#) : 306

(case,NN) (of,IN) (#symptom#) : 48

(such,JJ) (as,IN) (#symptom#) : 91

(IN) (patient,NNS) (IN) (#symptom#) : 163

(NNS) (such,JJ) (as,IN) (#symptom#) : 46

(in,IN) (patient,NNS) (IN) (#symptom#) : 89

(in,IN) (patient,NNS) (with,IN) (#symptom#) : 88

(IN) (patient,NNS) (with,IN) (#symptom#) : 161

Fig. 3. Examples of extracted patterns with their support.

Table 2. Examples of each module annotations.

diffuse palmoplantar keratoderma and precocious

Expert Annotation B I I O B
Pattern Annotation B I I I I
CRF Annotation B I I O O

primary immunodef. disorders with residual cell-mediated immunity

Expert B I I O O O O
Pattern B I I I I I I
CRF O B O O O O O

3.2 Impact of Training Data Size

Figure 4 shows the variation in precision, recall and F-measure for our mod-
ules with increasing size of training data. From 1.000 to 10.000 biomedical
abstracts, there is no visible impact on the CRF, even if the best score, in term of
F-Measure, is on the maximum size data. Pattern Mining improves its recall with
more data, but the precision tends to drop. The best score is on the middle size
data.

3.3 Model Combination Analysis

We clearly see on the Fig. 4 the difference in the precision/recall ratio of the
numerical and the symbolic modules even if they are very close in terms of
F-measure. Because the CRF maximizes the precision and the pattern mining
maximizes the recall, we tried to do a combination of the best CRF module
result and the best pattern mining module. If the two models made the same
decision we keep it, if not we promote the choice of “B”. This combination
gives better results (cf. Table 3) than each modules separately. In the same logic,
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Fig. 4. Impact of the number of abstracts used for training

Table 3. Details of the best results for each module and their combination.

Module Precision Recall F-measure

Dictionary (D) 57.58 14.00 22.53

CRF - ngram 56.14 15.72 24.57

Pattern mining 23.12 38.57 28.91

Combination 23.46 39.31 29.38

CRF - ngram + D 56.90 16.22 25.24

Pattern mining + D 23.35 39.07 29.23

Combination 23.46 39.31 29.38

we also combine our bests results with the baseline using the projection of the
symptom dictionary. If that last enhancement has improved each module result
individually, it did not improve the combination of the best CRF and pattern
mining result.

3.4 Impact of Semantic Similarity Constraint

The purpose of the semantic similarity constraint is to reduce the number of
patterns extracted without jeopardizing the classification accuracy, and like most
data mining constraint the results are threshold dependent. Figure 5 shows the
success of our constraint, a 30 % reduction of extracted patterns without losses
in F-Measure. It also shows that a too strong threshold for the constraint lower
the performance. With a maximal semantic similarity below 0.4 the constraint
tends to produce very few patterns. In terms of cosine distance, a threshold of
0.2 is so low that semantically divergent words would be considered similar.

3.5 Iterative Learning Analysis

In this experiment, unlike the next results, the whole annotation process is iter-
ated a number of times in an attempt to discover more symptoms. For the
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Fig. 5. Impact of the semantic similarity constraint (abscissa) on the number of
extracted patterns (black line) and scoring (blue column). (Color figure online)

pattern mining module, there is no amelioration because after the first iteration,
symptom placeholders cover more parts of the sequence, and the new symptoms
are noisy. We almost never find a new symptom after the first iteration. An inter-
esting perspective would be to try this iterative learning with different data set
each time, by splitting the data into subsets. It is different for the CRF module,
it learns more and more new symptoms at each iterations, but unfortunately it
is also mainly noise because the precision tends to decrease.

4 Related Work

To our knowledge, there is no annotated dataset which can be used to train
a supervised model specific for symptom recognition. Most of the studies are
based on clinical reports or narrative corpora without symptom annotation and
therefore can not be used in our context for symptom monitoring. Such cor-
pora include the Mayo Clinic corpus [15] and the 2010i2b2/VA Challenge corpus
[18]. Other existing biomedical datasets annotate only diseases; they include the
NCBI disease corpus [4] which consists of 793 PubMed abstracts with 6,892 dis-
ease mentions and 790 unique disease concepts mapped to the Medical Subject
Headings (MeSH),7 and the Arizona Disease Corpus (AZDC) [9] which contains
2,784 sentences from MEDLINE abstracts annotated with disease mentions and
mapped to the Unified Medical Language System (UMLS)8.

Symptom recognition [10] is a relatively new task, often included in more
general categories such as clinical concepts [19], medical problems [18] or phe-
notypic information [16]. Even on these categories, few studies take advantage
of considering the linguistic context in which symptoms appear, and they are
more focused on the linguistic analysis. In [15], the authors notice that most
of the symptoms are given in relation with an anatomic location, while in [7]
the authors state, after annotating their corpus with MeSH, that 75 % of the

7 https://www.nlm.nih.gov/mesh/meshhome.html.
8 https://www.nlm.nih.gov/research/umls/.

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/research/umls/
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signs and symptoms co-occur with up to five other signs and symptoms in a
sentence. None of the above work was concerned with fully automatic symptom
recognition.

5 Conclusion

We have described a system that enable the use of different learning modules for a
symptom recognition task in biomedical texts. For the numeric approach we used
a CRF module which maximized the precision and for the symbolic approach
we used a pattern mining module which maximize the recall. We introduced a
new semantic constraint for the pattern mining process which remove redundant
patterns without decline in the scoring. Both approach (symbolic and numerical)
have been combined to further enhanced the results. A first future direction will
be to enhance the combination of the modules. An idea is to use the patterns
extracted as features for the CRF. A second future direction is to enhance our
similarity constraint to take into account more distant redundancy in a pattern,
or to apply the constraint differently in function of the words part-of-speech.

Acknowledgments. This work is supported by the French National Research Agency
(ANR) as part of the project Hybride ANR-11-BS02-002 and the “Investissements
d’Avenir” program (reference: ANR-10-LABX-0083).
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18. Uzuner, Ö., South, B.R., Shen, S., DuVall, S.L.: 2010 i2b2/va challenge on concepts,
assertions, and relations in clinical text. J. Am. Med. Inf. Assoc. 18(5), 552–556
(2011)

19. Wagholikar, K.B., Torii, M., Jonnalagadda, S.R., Liu, H.: Pooling annotated cor-
pora for clinical concept extraction. J. Biomed. Semant. 4(1), 1–10 (2013)

http://dx.doi.org/10.1007/978-3-319-19551-3_33
http://dx.doi.org/10.1007/978-3-319-19551-3_33
http://arxiv.org/abs/1301.3781


Estimating Sequence Similarity from Read Sets
for Clustering Sequencing Data
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Abstract. Clustering biological sequences is a central task in bioinfor-
matics. The typical result of new-generation sequencers is a set of short
substrings (“reads”) of a target sequence, rather than the sequence itself.
To cluster sequences given only their read-set representations, one may
try to reconstruct each one from the corresponding read set, and then
employ conventional (dis)similarity measures such as the edit distance
on the assembled sequences. This approach is however problematic and
we propose instead to estimate the similarities directly from the read
sets. Our approach is based on an adaptation of the Monge-Elkan simi-
larity known from the field of databases. It avoids the NP-hard problem
of sequence assembly and in empirical experiments it results in a better
approximation of the true sequence similarities and consequently in bet-
ter clustering, in comparison to the first-assemble-then-cluster approach.

Keywords: Read sets · Similarity · Hierarchical clustering

1 Introduction

Sequencing means reading the sequence of elements that constitute a polymer,
such as the DNA. The human genome project [5] completed in 2003 was a prime
example of sequencing, resulting in the identification of almost the entire genomic
sequence (over 3 billion symbols) of a single human. Sequencing becomes techno-
logically difficult as the length of the read sequence grows. The common principle
of new-generation sequencing (NGS) is that only very short substrings (10’s to
100’s of symbols) are read at random positions of the sequence of interest. It is
usually required that the number of such read substrings, called reads, is such
that with high probability each position in the sequence is contained in multiple
reads; the number of such reads is termed coverage. The complete sequence is
determined by combinatorial assembly of the substrings guided by their suffix-
prefix overlaps. For example, one possible assembly of reads {AGGC,TGGA,GCT}
is AGGCTGGA. Short reads imply low cost of wet-lab sequencing traded off with
high computational cost of assembly. Indeed the assembly task can be posed as
searching the Hamiltonian path in a graph of mutual overlaps.

One of the central tasks in computational biology is to infer phylogenetic
trees, which typically amounts to hierarchical clustering of genomes. When they
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 204–214, 2016.
DOI: 10.1007/978-3-319-46349-0 18
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are represented only through sequences read-sets, the bioinformatician is forced
to reconstruct the sequences from the read-sets prior to clustering. This of course
entails the solution of the NP-hard assembly problem for each data instance with
little guarantees regarding the quality of the resulting putative sequence. This
motivates the question whether the assembly step could be entirely avoided. We
address this question here by proposing a similarity function computable directly
on the read sets, that should approximate the true similarities on the original
sequences.

Related work includes studies on clustering NGS data (e.g. [1,7]). They how-
ever deal with clustering reads and we are not aware of a previous attempt to
cluster read-sets. The paper [16] proposes a similarity measure for NGS data,
but again it operates on the level of reads. The previous work [4,13] also aims
at avoiding the assembly step in learning from NGS data but these studies con-
cern supervised classification learning and they do not elaborate on read-set
similarity.

In the following section, we design the similarity (or, reversely) distance func-
tion. Then we provide a brief theoretical analysis of it. In Sect. 4 we compare it
to the conventional approach on genomic data and then we conclude the paper.

2 Distance Function Design

The functor |.| will denote the absolute value, cardinality and length (respec-
tively) for a number, set, and string argument. Let dist(A,B) denote the Lev-
enshtein distance [6] between strings A and B. The function measures the min-
imum number of edits (insertions, deletions, and substitutions) needed to make
the strings identical, and is a typical example of a sequence dissimilarity measure
used in bioinformatics. It is a property of the distance that

dist(A,B) ≤ max{|A|, |B|}. (1)

We will work with constants l ∈ N, α ∈ R called the read length and coverage,
respectively, which are specific to a particular sequencing experiment. A read-set
RA of string A such that

|A| � l (2)

is a multiset of1

|RA| =
α

l
|A| (3)

substrings sampled i.i.d. with replacement from the uniform distribution on all
the |A| − l + 1 substrings of length l of A. Informally, the coverage α indicates
the average number of reads covering a given place in A.

Our goal is to propose a distance function Dist(RA, RB) that approximates
dist(A,B) for read-sets RA and RB of arbitrary strings A and B. We also want
Dist(RA, RB) to be more accurate and less complex to calculate than a nat-
ural estimate dist(Â, B̂) in which the arguments represent putative sequences
reconstructed from RA and RB using assembly algorithms such as [3,11,15].
1 Should the right hand side be non-integer, we neglect its fractional part.
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dist = 2
dist = 1 dist = 1

A T C G C T G C A A

C T C C T C C A

Fig. 1. We calculate read-read distances in order to find matching pairs of reads. For
each read from the first sequence we find the least distant read in the second sequence.
We see optimal alignment of ATCGCTGCAA and CTCCTCCA. Read TCG is paired with
TCC.

2.1 Base Case: Which Reads Belong Together

A natural approach to instantiate Dist(RA, RB) is to exploit the |RA||RB | pair-
wise Levenshtein distances between the reads in RA and RB. Most of those
values are useless because they match reads from completely different parts of
sequences A and B. Therefore we want to account only for those pairs which
likely belong together.

If we seek a read from RB that matches a read ai ∈ RA, we make the
assumption that the most similar read bj ∈ RB is the one that we look for (see
Fig. 1), i.e.,

bj = arg min
bk∈RB

dist(ai, bk).

To calculate the distance from RA to RB, we average over all reads from RA:

Dist
ME

(RA, RB) =
1

|RA|
∑

ai∈RA

min
bj∈RB

dist(ai, bj). (4)

This idea was presented in [8] for searching duplicates in database systems. The
method is known as the Monge-Elkan similarity2 (hence the ME label) and entails
a simple but effective approximation algorithm.

DistME(RA, RB) is non-symmetric in general, which is undesirable given that
the approximated distance dist(A,B) is known to be symmetric. Therefore we
define a symmetric version by averaging both directions

Dist
MES

(RA, RB) =
1
2

(
Dist
ME

(RA, RB) + Dist
ME

(RB , RA)
)

. (5)

2.2 Distance Scale

Consider duplicating a non-empty string A into AA and assume RAA = RA∪RA.
Typically for a B similar to A we expect that dist(AA,B) > dist(A,B) but the

2 Here we alter the Monge-Elkan similarity into a distance measure. The standard
way of using Monge-Elkan is as a similarity measure with min replaced by max and
distance calculation by similarity calculation.



Estimating Sequence Similarity from Read Sets 207

(symmetric) Monge-Elkan distance will not change, i.e. DistMES(RAA, RB) =
DistMES(RA, RB), indicating a discrepancy that should be rectified.

In fact, DistMES has the constant upper bound l, which is because it is the
average (c.f. (4) and (5)) of numbers no greater than l (see (1)). On the other
hand, dist(A,B) has a non-constant upper bound max{|A|, |B|} as by (1).

To bring DistMES(A,B) on the same scale as dist(A,B), we should therefore
multiply it by the factor max{|A|, |B|}/l = max{|A|/l, |B|/l}. By (3) we have
|A| = l

α |RA|, yielding the factor max{|RA|/α, |RB |/α}, in which α is a constant
divisor which can be neglected in a distance function. Therefore, we modify the
read distance into

Dist
MESS

= max{|RA|, |RB |}Dist
MES

. (6)

2.3 Margin Gaps

Consider the situation in Fig. 2 showing two identical sequences each with one
shown read. The Levenshtein distance between the two reads is non-zero due
to the one-symbol trailing (leading, respectively) gap of the top (bottom) read
caused only by the different random positions of the reads rather than due to
a mismatch between the sequences. Thus there is an intuitive reason to pardon
margin gaps up to certain size t

t <
l

2
(7)

when matching reads. Here, t should not be too large as otherwise the distance
could be nullified for pairs of long reads with small prefix-suffix overlaps, which
would not make sense.

dist = 0t = 1

A T C G C T G

A T C G C T G

Fig. 2. Because reads locations in sequences are random, we do not want to penalize
small leading or trailing gaps.

To estimate a good value for t, consider sequence A and its sampled read-set
RA. We now sample an additional read a of length l from A. Ideally, there should
be a zero-penalty match for a in RA as a was sampled from the same sequence as
RA was. This happens iff there is a read in RA sampled from the same position
in A as a, or from a position shifted by up to t symbols to the left or right
as then the induced gaps are penalty-free. Since RA is an uniform-probability
i.i.d. sample from A, the probability that a given read from RA starts at one of
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these 1 + 2t positions is3 1+2t
|A| . We want to put an upper bound ε > 0 on the

probability that this happens for none of the |RA| = α
l |A| reads in RA:

p =
(

1 − 1 + 2t

|A|
) |A|·α

l

≤ ε .

Consider the first-order Taylor approximation (1 + x)n = 1 + nx + ε′ where the
difference term ε′ > 0 decreases with decreasing |x|. Due to Ineq. (7) and (2),
1+2t
|A| is small and we can apply the approximation on the above formula for p,

yielding

p = 1 − 2t + 1
|A|

|A| · α
l

+ ε′ = 1 − (2t + 1)
α

l
+ ε′ ≤ ε .

For simplicity, we choose ε = ε′. The smallest gap size t for which the inequality
is satisfied is obtained by solving 1 − (2t + 1)α

l = 0, yielding

t =
1
2

(
l

α
− 1

)
.

This choice of t matches intuition in that with larger read-length l we can allow a
larger grace gap t but with larger coverage α, t needs not be so large as there is a
higher chance of having a suitably positioned read in the read-set. Another way
to look at it is to realize that reads in a read-set are approximately l

α positions
from each other. Consider matching read a to reads from RA. If there is a read
a1 ∈ RA requiring gap larger than l

2α to match a, then there will typically be
another read a2 ∈ RA requiring gap at most l

2α (see Fig. 3).

sequence Aread a

read a1 read a2

> l/2α < l/2α

≈ l/α

Fig. 3. Illustration to reasoning in Sect. 2.3

We implemented the grace margin gaps into a further version DistMESSG of
the constructed distance function, which required only a small change to the
standard Wagner-Fischer algorithm [14].4 When the algorithm is filling the first
3 Strictly speaking, this reasoning is incorrect if read a is drawn from a place close to

A’s margins, more precisely, if it starts in fewer than t (t + l, respectively) symbols
from A’s left (right) margin, as then not all of the 2t shifts are possible. This is
however negligible due to Ineq. (2).

4 The dynamic programming algorithm for calculating the Levenshtein distance [6] is
commonly called Wagner-Fischer algorithm [14]. When we refer to sequence align-
ment problem in bioinformatics, this algorithm is often called Needleman-Wunsch
algorithm [9].
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or the last row and column of the table, margin gaps up to t symbols are not
penalized. Larger margin gaps are penalized in a way that satisfies the constraint
that the distance between a word a and an empty word is |a|. In particular, the
standard linear gap penalty is replaced with a piecewise linear function that
gives cost of margin gap at x-th position

g(x) =

⎧
⎪⎨

⎪⎩

0, if 0 ≤ x ≤ t − 1,

2 x−t+1
l+1−2t , if t − 1 < x ≤ l − t,

2, if l − t < x < l.

(8)

2.4 Missing Read

Sometimes there is no good match for read ai in RB . During evolution the
substring that contained ai may have been inserted into A or may have vanished
from B. Therefore if

dist(ai, bj) ≥ θ

for some reads ai and bj and threshold θ, we consider ai and bj to be dissimilar
and we force their distance to be l (See Fig. 4).

Threshold θ should be a linear factor of the maximal distance between two
sequences of length l, i.e. θ = θ′ · l. Value of θ′ should reflect the probability that
the read is in one sequence and not in the other. Because the true probability is
hidden, it needs to be determined empirically.

The distance function equipped with the missing read detection as described
gives rise to the last version denoted as DistMESSGM.

3 Theoretical Analysis

3.1 Asymptotic Complexity

Calculating dist(A,B) for sequences A and B requires Θ(|A||B|) operations if
we use the standard Wagner-Fischer dynamic programming algorithm [14]. This
algorithm also requires Θ(min(|A|, |B|)) memory as we are interested only in
distance and not in the alignment. To calculate DistME we need to know the
distances between all pairs of reads, so we have to evaluate (see (3)) α

l |A|α
l |B|

distances where each one requires l2 operations. Therefore α2|A||B| operations
are required. For the symmetric version DistMES we make 2α2|A||B| operations,
which can be reduced to α2|A||B| operations and Θ(l + α

l (|A| + |B|)) mem-
ory. Further modifications (MESS, MESSG, MESSGM) do not change the asymptotic
complexity.

The constants α and l are determined by the sequencing technology and
the independent complexity factors are |A| and |B|. To calculate the distance
in the conventional way as dist(Â, B̂) requires to reconstruct Â and B̂ from the
respective read-sets through an assembly algorithm. This is an NP-hard problem
which becomes non-tractable for large |A| and |B|, and which is avoided by our
approach.
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dist = 2
? dist = 0

A T C G C T G C A A

A G C A A

Fig. 4. If the distance between a read and its closest counterpart is greater than thresh-
old θ, we assume that the read matches to a gap in the sequence alignment.

3.2 Metric Properties

DistMES as well as the later versions are all symmetric and non-negative but
none of the proposed versions satisfies the identity condition (dist(a, b) = 0
iff a = b) or the triangle inequality, despite being based on the Levenshtein
distance dist, which is a metric. For example, let RA = {ATC,ATC,GGG}, let
RB = {ATA,GGG}, and let RC = {CTA,GGG}. Then DistMES(RA, RB) = 7

12 ,
and DistMES(RB , RC) = 1

2 but DistMES(RA, RC) = 14
12 > 7

12 + 1
2 . While this

might lead to counter-intuitive behavior of the proposed distances in certain
applications, the violated conditions are not requirements assumed by clustering
algorithms.

4 Experimental Evaluation

The purpose of the experiments is to compare different methods for estimating
the Levenhstein distance dist(A,B) for various real DNA sequences A,B from
their read sets RA, RB . The methods include (i) our newly proposed distances
(MES, MESS, MESSG, MESSGM) applicable directly on RA, RB and implemented in
Java with maximum of shared code,5 (ii) the conventional method based on
assembling estimates Â, B̂ of the original sequences A,B using 3 common de-
novo gene assemblers (ABySS [11], edena [3] and SSAKE [15]) and then estimat-
ing dist(A,B) as dist(Â, B̂), (iii) a trivial baseline method estimating dist(A,B)
as max{|RA|, |RB |}. All the 3 assembly algorithms were configured with the
default parameters and the current official C++ version was used. When a result
of an assembly procedure consisted of multiple contigs, we selected the longest
one.

The evaluation criteria consist of (i) the Pearson’s correlation coefficient
measuring the similarity of the distance matrix produced by the respective meth-
ods to the true distance matrix, (ii) The Fowlkes-Mallows index [2] measuring
the similarity between the tree produced by a hierarchical clustering algorithm
using the true distance matrix, and the tree induced from a distance matrix esti-
mated by the respective method, (iii) runtime needed for assembly (if applica-
ble), distance matrix calculation, and clustering time. For hierarchical cluster-
ing, we used the UPGMA algorithm [12] and the neighbor-joining algorithm [10].

5 Implementation is available on https://github.com/petrrysavy/readsIDA2016.

https://github.com/petrrysavy/readsIDA2016
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The Fowlkes-Mallows index shows how much the resulting trees differ in struc-
ture. Both trees are first cut into k clusters for k = 2, 3, . . . , n − 1. Then the
clusterings are compared based on the number of common objects among each
pair of clusters. By this procedure we obtain a set of values Bk that show how
much the trees differ at various levels.

The testing data contain two datasets. The first dataset6 contains 12
influenza virus genome sequences plus an outgroup sequence. The second
dataset7 contains 17 genomes of different viruses. Furthermore, we used an inde-
pendent third training dataset8 to tune the value of θ′ (see Sect. 2.4). All the
sequences were downloaded from the ENA repository http://www.ebi.ac.uk/ena.

In the preliminary tuning experiment, the value θ′ = 0.35 achieved the best
Pearson’s correlation coefficient on the training dataset and we carried this value
over to the testing experiments. Out of curiosity, we also tried to optimize θ′ on
the testing datasets obtaining similar values (around 0.3), indicating relative
stability of this parameter.

The main experimental results are shown in Table 1. The four partitions of
the table correspond to the two datasets (N = 13, N = 17), each used twice with
different settings of sequencing coverage α and read length l. The Pearson’s cor-
relation coefficient (column ‘corr.’) demonstrates clear dominance of the MESSG

and MESSGM methods (Sects. 2.3 and 2.4), which are the most developed versions
of our approach. The MESSG differs from MESSGM only by not discarding poorly
matching reads. This finding is generally supported also by the Fowlkes-Mallows
index (last four columns) shown for two levels of trees learned by two meth-
ods. Figure 5 provides a more detailed insight into the Fowlkes-Mallows values
graphically for all the tree levels. One more (rather surprising) observation is
that distance estimates achieved by first assembling sequences from read-sets
(last 3 lines in every table partition) are systematically worse than the trivial
estimate based just on the read-set sizes (first line in every partition).

Columns 1–5 of Table 1 indicate that all the variants of our approach were
systematically slower in terms of absolute runtime than the approaches based
on sequence assembly, despite the NP-hard complexity of the latter task. The
numbers also show that our asymptotic complexity estimate in Sect. 3.1 is gen-
erally correct: the ratio between the time spent on calculating the distances
on one hand, and the runtime of the reference method on the other hand, is
approximately α2.

6 AF389115, AF389119, AY260942, AY260945, AY260949, AY260955, CY011131,
CY011135, CY011143, HE584750, J02147, K00423 and outgroup AM050555. The
genomes are available at http://www.ebi.ac.uk/ena/data/view/accession.

7 AB073912, AB236320, AM050555, D13784, EU376394, FJ560719, GU076451,
JN680353, JN998607, M14707, U06714, U46935, U66304, U81989, X05817, Y13051
and outgroup AY884005.

8 CY011119, CY011127, CY011140, FJ966081, AF144300, AF144300, J02057, AJ437618,
FR717138, FJ869909, L00163, KJ938716, KP202150, D00664, HM590588, KM874295,
α = 4, l = 40.

http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena/data/view/accession
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Table 1. Runtime, Pearson’s correlation coefficient between distance matrices and
Fowlkes-Mallows index for k = 4 and k = 8. The ‘reference’ method calculates distances
from the original sequences.

Method assem.
ms

distances
ms

UPGMA
ms

NJ
ms corr. UPGMA

B4
UPGMA

B8
NJ
B4

NJ
B8

α = 3, l = 30, N = 13 Reference 0 1,587 1 39 1 1 1 1 1

max(|RA|, |RB |) 0 0 1 16 .802 .66 .32 .66 .32

DistMES 0 18,192 0 8 .83 .36 .67 .4 1

DistMESS 0 17,132 1 11 .944 1 1 1 1

DistMESSG 0 35,107 0 7 .99 1 1 1 1

DistMESSGM 0 34,911 1 5 .991 1 1 1 1

ABySS [11] 22,231 7 0 3 .376 .36 .11 .31 .14

edena [3] 3,501 6 1 7 .404 .36 .12 .31 0

SSAKE [15] 6,811 1 1 5 .548 .27 .12 .43 0

α = 3, l = 30, N = 17 Reference 0 23,367 1 38 1 1 1 1 1

max(|RA|, |RB |) 0 1 1 17 .902 .67 .66 .85 .86

DistMES 0 279,965 0 12 .605 .35 .52 .41 .29

DistMESS 0 279,008 1 16 .935 .67 .92 .85 .94

DistMESSG 0 508,947 1 7 .945 .62 .92 1 .96

DistMESSGM 0 546,985 1 15 .95 .62 .92 1 .96

ABySS [11] 30,974 16 0 12 .684 .58 .72 .48 .13

edena [3] 6,287 11 1 91 .666 .58 .63 .46 .13

SSAKE [15] 12,745 2 23 20 .611 .62 .31 .47 .12

α = 5, l = 100, N = 13 Reference 0 1,653 1 19 1 1 1 1 1

max(|RA|, |RB |) 0 1 0 11 .802 .66 .32 .66 .32

DistMES 0 47,238 1 7 .881 .36 .77 .54 1

DistMESS 0 47,703 1 7 .975 1 1 1 1

DistMESSG 0 83,186 0 6 .993 1 1 1 1

DistMESSGM 0 82,973 1 6 .99 1 1 1 .77

ABySS [11] 29,326 814 0 10 .639 .44 .62 .46 .77

edena [3] 6,455 128 1 9 .388 .3 .11 .39 .11

SSAKE [15] 7,258 94 1 7 .706 .54 .21 .72 .11

α = 5, l = 100, N = 17 Reference 0 24,612 1 13 1 1 1 1 1

max(|RA|, |RB |) 0 0 1 16 .903 .67 .66 .85 .86

DistMES 0 687,503 1 13 .648 .35 .52 .41 .37

DistMESS 0 680,522 0 19 .935 .67 .86 1 1

DistMESSG 0 1,254,231 4 6 .94 .62 1 1 1

DistMESSGM 0 1,156,072 1 13 .938 .62 1 .69 .94

ABySS [11] 30,598 5,891 1 12 .576 .51 .66 .47 .15

edena [3] 9,918 363 2 19 .473 .5 .3 .54 .22

SSAKE [15] 28,590 374 1 23 .519 .48 .3 .4 .34

5 Conclusions and Future Work

We have proposed and evaluated several variants of a method for estimating
edit distances between sequences only from read-sets sampled from them. In
experiments, our approach produced better estimates than a conventional app-
roach based on first estimating the sequences themselves by applying assembly
algorithms on the read-sets.

A further observation was that the conventional approach was surprisingly
fast despite involving the NP-hard assembly problem, and resulted in surprisingly
low-quality estimates. A possible explanation for this is that the assemblers
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Fig. 5. Plots of Fowlkes-Mallows index Bk versus k. The index compares trees gener-
ated by the neighbor-joining algorithm. The tree is compared with the tree generated
from the original sequences. If all values are equal to 1, the structures of the trees are
the same.

require a higher coverage α to produce good sequences compared to the values
we chose (α = 3, α = 5).

In our opinion, the most urgent goal for follow-up work is to conduct a more
thorough experimental evaluation, and specifically, find the sequences lengths
for which the exponential runtime of the assembly-based approach reaches the
quadratic runtime of our approach, and then re-evaluate the approximation qual-
ities. Furthermore, our approach offers many directions for technical improve-
ments. For example, one may consider a partial assembly approach, in which sets
of a few (up to a constant) reads would be pre-assembled and the Monge-Elkan
distance would be applied on such partial assemblies. This view would open a
‘continuous’ spectrum between our approach on one hand, and the conventional
assembly-based approach, on which the optimal trade-off could be identified.
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Abstract. We demonstrate the application of Widening to learning per-
formant Bayesian Networks for use as classifiers. Widening is a frame-
work for utilizing parallel resources and diversity to find models in a
hypothesis space that are potentially better than those of a standard
greedy algorithm. This work demonstrates that widened learning of
Bayesian Networks, using the Frobenius Norm of the networks’ graph
Laplacian matrices as a distance measure, can create Bayesian networks
that are better classifiers than those generated by popular Bayesian Net-
work algorithms.

1 Introduction

Widening [2,18] formalizes a method for executing a greedy learning algo-
rithm in parallel while using diversity to guide the parallel refinement paths
through a hypothesis1 space. This enables the system as a whole to avoid local
optima and potentially find better models than the greedy learning algorithm
would otherwise find. Previous work [13,29] has demonstrated its viability on
real world algorithms. This work builds on that with an application to the
superexponentially-sized [28] hypothesis space of learning Bayesian Networks.
Bayesian Networks [26] are probabilistic graphical networks, which describe rela-
tionships of conditional dependence between the features of a dataset. Perhaps
the best known of these graphical networks is the network defined by the Näıve
Bayes algorithm [11,23]. This paper describes the application of Widening to
the learning of Bayesian Networks for use as classifiers.

The ultimate goal of Widening is not just to provide better solutions using
parallel resources, but to provide better solutions in the same time or less than
the canonical greedy algorithm. To enable this, communication-free Widening
would allow the model refinement paths, separated by some measure of diversity,
to be followed through the solution space until some stopping criterion is met.
The difficulty in that effort has been finding a suitable measure of distance, i.e.,

1 We freely mix the use of “solution space” and “hypothesis space” throughout this
paper, referring essentially to the same space, but drawing attention to whether it
is the evaluation of the hypothesis or the hypothesis itself that is important.

c© Springer International Publishing AG 2016
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diversity. Here, we show that the Frobenius Norm of Bayesian Networks’ graph
Laplacians is a useful measure of diversity for comparing Bayesian networks in
the Widening framework, albeit not in a communication-free framework.

2 Background

2.1 Learning and Scoring Bayesian Networks

A Bayesian network, B, derived from a dataset, D, is a triple, 〈X , G,Θ〉, where
X is the set of features or random variables in the dataset, G is a directed-
acyclic-graph (DAG), and Θ is the set of conditional probability tables (CPT)
for the features in X . The graph G = (X , E), is an ordered pair, where each node,
X ∈ X , is a feature from the dataset and where each edge, E = {Xi,Xj} ∈ E ,
is directed according to the dependency of one feature on another.

There are four general categories of algorithms for learning Bayesian net-
works: search-and-score, constraint-based, hybrid [19] and evolutionary algo-
rithms [20]. Search-and-score methods such as K2 [9] and Greedy Equiva-
lence Search (GES) [8] rely on heuristics to sequentially add, remove, or
change the direction of the edges in the graph, G, to which a scoring method is
applied. Edges that improve the score are kept in the graph for the next iteration
of add, delete, or change. Constraint-based methods such as PC Algorithm [32]
or CBL [7] rely on some assumptions about the dependency relationships of the
features, from which a partially-directed-acyclic-graph is generated. This “skele-
ton” of a graph describes the neighbors of each of the feature nodes within the
graph, but not necessarily the direction of the edges between the nodes. After
determining the skeleton, search-and-score methods are used to find better net-
works, i.e., networks with a higher score, by flipping the direction of the edges and
re-evaluating the score. Hybrid methods such as Max-Min Hill-Climbing [35]
incorporate techniques from both the search-and-score and the constraint-based
methods. Algorithms based on evolutionary techniques randomly change and
combine networks and evaluate them with a fitness function.

Several scoring functions have been proposed for the use of learning Bayesian
networks. For an extensive overview and comparison, the reader is referred to [6].
Scoring functions can be grouped into two categories, Bayesian and information-
theoretic. Bayesian scoring methods calculate the posterior probability distribu-
tion based on the prior probability distribution conditioned on D. Some exam-
ples of Bayesian scoring functions are K2 [9], Bayesian Dirichlet (BD) [17], BD
with equivalence assumption (BDe) [9], and BD with equivalence and uniform
assumptions (BDeu) [5].

Information-theoretic score functions are based on Shannon entropy and the
amount of compression possible for a Bayesian network. The Log-Likelihood (LL)
score is based on the logarithm of the likelihood of D given B, i.e., log(P (D|B)).
The LL score is better, in general, for complete networks, and for this reason
alternate scoring functions have been proposed that penalize the LL according to
some factor. The Minimum Description Length [34] (MDL), the Akaike Informa-
tion Criterion [1] (AIC), and Bayesian Information Criterion [30] (BIC) (roughly
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Mi r(·) Δ(·) stop−k(·) Mi+1

Fig. 1. Widening. Each mk,i ∈ Mi (green) is refined to five models (yellow). In each
of these sets, the three most diverse from another are determined (red). The two best
performing models (blue) are selected and used for the next iteration, mk,i+1 ∈ Mi+1

(green). (Color figure online)

equivalent to MDL) all adjust the LL by different proportions of the network
complexity.

Less commonly, and more often associated with evolutionary algorithms such
as [27,31], the performance of the networks as a classifier is used as the scoring,
i.e., fitness, function. In this vein, the work described in this paper also uses
accuracy as the scoring function.

When used as a classifier, the relevant portion of the network contains the
parents of the target node, the children of the target node, and the children’s
other parents. This is termed the Markov blanket [26, p. 97].

2.2 Widening

The Widening framework [2,18] (See Fig. 1.) describes a general process for
improving greedy learning algorithms where models, m ∈ M, are iteratively
refined and scored in parallel. Each refinement path follows a different route
through the hypothesis space. The models at each refinement step are separated
using a diversity measure, Δ, which enforces a distance between the models’
respective refinement paths.

More formally, a refinement operator, r(·), applied to a model, m, generates
a set of models, M ′, from the set of all possible models, M, in the hypothesis
space. A selection operator, s(·), when applied to a set of models, selects a subset
according to a performance metric. In Widening’s most rudimentary form, the
best k performing models from a refinement step are selected, stop−k(M ′), which
in turn are further refined and selected until a stopping criterion is met. The
stop−k(·) operator has a similarity to a Beam Search, [22] but instead of a



218 O.R. Sampson and M.R. Berthold

selection operator based solely on performance, the selection is also based on
diversity, due to the refinement operator.

2.3 Related Work

Learning Bayesian Networks for classification, either by modifying networks cre-
ated by Näıve Bayes or by the generation of networks through completely
different methods, is a very active research area. An excellent survey can be
found in [4]. In [14], Friedman et al. describe Tree Augmented Näıve Bayes
Network (TAN) where edges are added between child nodes of a Näıve Bayes
network in a greedy search using the MDL scoring function, and whose struc-
ture is limited to that of a tree. The authors also describe learning an “unre-
stricted” Bayesian Network Augmented Näıve Bayes (BAN), but these
networks do not include networks with nodes as parents for the target nodes, but
rather just more complex relationships among the child nodes. Cheng et al. in
[7] describe an algorithm (CBL) for finding General Bayesian Networks (GBN)
based on conditional independence tests using Mutual Information (MI).

In [25] Nielsen et al. present k-Greedy Equivalence Search (KES) which
is a modification to the GES, where a random subset of models from the entire
set is chosen and evaluated. They describe this as a method specifically to avoid
the local optima encountered by GES in [8].

Su and Zhang describe in [33] what they call Full Bayesian Networks (FBN),
which are TANs where all child nodes of the target are connected to a maximal
subset of the other child nodes based on an ordering using MI. This structure is
in turn used to learn a Decision Tree-like structure for learning CPT-Trees.

The work presented here is similar to the TAN in [14], in that we perform a
greedy search for better networks starting with a network generated by Näıve
Bayes. It is similar to the work in [25], in that a subset of models is chosen and
evaluated specifically to avoid local optima. It differs from these two, in that (1)
any configuration of Bayes Network is allowed, (2) diversity between networks
rather than randomness is used to select models, and (3) classification accuracy
is employed for the scoring function.

3 Widened Bayesian Networks

3.1 Application of the Widening Framework

The simplest search-and-score method (Hill-Climbing or Greedy Search)
refines a Bayesian Network model by changing a randomly or heuristically chosen
edge, E, and scores the network according to one of the scoring functions dis-
cussed in Sect. 2.1. The algorithm greedily keeps the changed edge if it improves
the score. Using the Widening notation, the greedy search-and-score method is
Bi+1 = stop−k=1(r(Bi)), where i refers to the current search-and-score iteration.
The process stops when no further improvement is seen.

The application of Widening to this process is to refine a set of different
Bayesian networks at each stage, Bi+1 = r(Bi). Each model is refined to a
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number, l, of refinements. From this set, k models are selected by the selection
operator, stop−k(·). k × l models are generated during each refinement iteration,
with the exception of the initial one. Additionally, the application of a diversity
measure, Δ, is used by the refinement operator, and therefore notated as rΔ(·).
The refinement operator ensures that the models are different enough to explore
disparate regions of the hypothesis space.

Scoring Bayesian Networks by using classification accuracy is common only
with the evolutionary algorithms, even though, for example, Friedman et al.
in [14] explicitly say that one of the reasons that their TAN Algorithm did
not always provide superior solutions was that the structural score may not have
been a good analog for the use of the network in its role as a classifier.

In summary, each step in the top-k Widening process is described as

Bi+1 = stop−k(rΔ(Bi)) (1)

3.2 Refinement Operator

The refinement operator creates a list of all possible pairs of nodes, i.e., all
possible edges. Each edge is compared with the current model and up to two
additional models are created based on the edge. (See Fig. 2.)

1. If it is possible to add the edge to the initial model (Fig. 2a), i.e., its presence
would not contravene the definition of DAG by creating a loop, it is added.
(See Fig. 2f.)

2. If it is present in the model, it is removed. (See Figs. 2b and d.)
3. If it is present in the model, and the reversal of its direction would not create

a loop, it is reversed. (See Figs. 2c and e.)

A distance matrix of all distances between network model pairs is then cal-
culated.

3.3 Diversity

There are a variety of measures for comparing two labeled DAGs. Early exper-
iments indicated that the Hamming distance [16] does not measure diversity in
a way that scales well to larger networks. For this work, we have chosen the
Frobenius Norm of the difference between the graphs’ Laplacian matrices. The
Frobenius Norm is sometimes referred to as the Euclidean norm and provides a
“measure of distance on the space of matrices”. [15] The Frobenius Norm for a
matrix, A ∈ R

m×n is defined as

||A||F =

√√√√
m∑

i=1

n∑

j=1

|aij |2[15] (2)

where, aij are elements of matrix A.
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(a) Initial model.
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(b) A → B removed.
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(c) A → B ⇒ B → A

A

B C

(d) A → C removed.

A

B

C

(e) A → C ⇒ C → A

A

B

C

(f) B → C added.

A

B

C

(g) Reversed edge ap-
plied to Figure 2f.
Disallowed; not DAG.

Fig. 2. Example possible refinements for the three edges {〈A, B〉, 〈A, C〉, 〈B, C〉}

The Laplacian matrix of a graph is given by the formula L = D − A, where
D is the out-degree matrix, and A is the adjacency matrix. Here we use the
Frobenius Norm of the difference of each pair of Bayesian networks’ Laplacian
matrices, i.e.,

ΔFrobenius = ||LBp
− LBq

||F : Bp, Bq ∈ Bi (3)

and Bi is the set of refined Bayesian networks from Eq. 1.
The p-Dispersion Problem describes selecting a subset of points from

a larger set, where the subset’s minimum pairwise distances are maximized.
There are several diversity measures used commonly with the p-Dispersion
Problem, including sum and min-sum. p-dispersion-sum simply maximizes the
sum of the distances between any two points in the subset, whereas p-dispersion-
min-sum maximizes the sum of the minimum distances between two points.
p-dispersion-sum has the property of pushing the resultant subset to the margins
of the original set, whereas the subset derived using p-dispersion-min-sum is
more representative of the dataset as whole [24]. Because of this property, and
based on the results in [29], we favor p-dispersion-min-sum as the diverse subset
selection method.

Definition 1 p-dispersion-min-sum.2 Given a set B = {B1, · · · , Bn} of n
distinct Bayesian networks and p, where p ∈ N and p ≤ n, and a distance

2 In this application, it would be correctly termed “l-dispersion-min-sum,” but the
notation is written here as “p” to be consistent with the literature.
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measure d(Bi, Bj) : Bi, Bj ∈ B between Bayesian networks Bi and Bj, the
p-diversity-min-sum problem is to select the set B̂ ⊆ B, such that

B̂ = argmax
B′⊆B
|B′|=p

f(B′), where

f(B′) =
p∑

i=1

min
1≤i,j≤n,i �=j

d(Bi, Bj) : Bi, Bj ∈ B[24]

(4)

The p-Dispersion Problem is known to be NP-complete, and when adjust-
ing the diversity criterion to be min-sum, the problem is NP-hard [12].

3.4 Selection Operator

The selection operator presented in this work is simply the performance metric
of the Bayesian network as a classifier, similar to that of [31]. When compared
to the scoring methods described in Sect. 2.1, this has the advantage of being
directly related to the network’s use as a classifier, and networks that perform
poorly as classifiers are eliminated from the refinement paths. The calculation
for determining the target winner is similar to that of Näıve Bayes, except the
probabilities of the parents of the target node and of the other parents of the
target’s child nodes are considered.

Ĉ = argmax
j=1,...,|C|

P (Cj ,Xm) = argmax
j=1,...,|C|

P (Cj |pa(C))
m∏

i=1

P (xi|pa(xi))[4] (5)

where Xm ⊆ X is the subset of features contained in the Markov-blanket of the
target node, C, and pa(·) is the set of parents of a child of C in the Bayesian
network.

4 Experimental Results

The experiments were performed in KNIME Analytics Platform [3]. The datasets
from the UCI Machine Learning repository3 [21] were discretized using the
LUCS-KDDN software.4 Unlike algorithms such as K2 or CBL, no assumptions
were made concerning the ordering of the features within the dataset. Datasets
with missing values or continuous values were not considered, because we are
interested in testing the Widened learning process and not the robustness of the
algorithm to various data types. The refinement operator placed no restrictions
on the number of parents a node may have. The stopping criterion was set to
stop the iterations when improvement in the best model compared to its perfor-
mance in the previous iteration was less than 0.01 %. The records in the datasets
were shuffled between each widening trial of a different breadth and width.
3 http://archive.ics.uci.edu/ml/.
4 http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS KDD DN/.

http://archive.ics.uci.edu/ml/
http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/
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Table 1. Accuracy (μ ± 2σ) comparison of all tested algorithms with 5-fold cross-
validation.

Dataset |D| |X | |C| Widened Bayes MMHC Tabu Hill-Climbing

ecoli 336 7 8 0.747 ± 0.032 0.430 ± 0.123 0.593 ± 0.119 0.647 ± 0.057

flare 1389 10 9 0.843 ± 0.015 0.843 ± 0.013 0.843 ± 0.013 0.843 ± 0.013

glass 214 9 7 0.649 ± 0.137 0.457 ± 0.151 0.564 ± 0.133 0.536 ± 0.111

nursery 12960 8 8 0.935 ± 0.047 0.570 ± 0.150 0.621 ± 0.214 0.632 ± 0.246

pageBlocks 5473 10 5 0.898 ± 0.015 0.913 ± 0.011 0.913 ± 0.004 0.910 ± 0.023

pima 768 8 2 0.710 ± 0.068 0.721 ± 0.136 0.757 ± 0.098 0.736 ± 0.143

waveform 5000 21 3 0.790 ± 0.025 0.342 ± 0.014 0.619 ± 0.020 0.620 ± 0.021

wine 178 13 3 0.939 ± 0.091 0.746 ± 0.150 0.798 ± 0.116 0.747 ± 0.184

The initial state could be any network configuration that satisfies the defi-
nition of a DAG, including a network without any edges. Because our effort is
to prove the ability of Widening to find superior solutions to traditional greedy
methods, we chose a Näıve Bayes configuration, where all of the non-target fea-
tures are dependent on the target variable, as the initial state. This was a prag-
matic decision in the sense that finding a network out of all possible networks
that is tuned to the target node is impractical. Additionally, Näıve Bayes per-
forms remarkably well given its simplicity for a large number of datasets and is
a measuring stick for many new algorithms.

We tested eight datasets, ecoli, flare, glass, nursery, pageBlocks,
pima, waveform and wine against three standard Bayesian Network learning
algorithms, Max-Min Hill-Climbing (MMHC), Tabu, and Hill-Climbing,
from the R bnlearn5 package, version 3.8.1. MMHC and Hill-Climbing used
parameters test = mi, restart = 100, and perturb = 100. These values were
chosen experimentally as values that provide good results for all datasets.

Widened Bayesian Networks (WBN) significantly outperformed the
other three reference implementations in five of the eight datasets, tied in one,
and performed slightly worse in two (Table 1).

The results in Fig. 3 show a two responses to Widening. In general, with
Widening we expect a gradual improvement of average performance with the
width, i.e., the number of parallel paths in the solution space. Additionally,
we expect a decrease in the variance of the results as the many paths push
themselves towards better solutions. ecoli, glass, nursery, pima, waveform,
and wine show this behavior nicely. pageBlocks and flare demonstrate how
some solution space topologies cannot be explored with the refine-and-select
process presented here, even though the results for the comparison algorithms
for flare indicate that the resultant Bayesian network is a best fit. The non-
responsive nature of pageBlocks however, invites further research into other
refining-and-select strategies and/or diversity measures.

5 http://www.bnlearn.com/.

http://www.bnlearn.com/
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Fig. 3. Widened Bayesian Networks accuracy progression verses width with 5-fold
cross-validation.

5 Conclusion and Future Work

This paper demonstrates the successful initial application of Widening to learn-
ing Bayesian Networks for use classifiers and demonstrates classification scoring
techniques with the search-and-score greedy heuristic. The technique was able
to find superior solutions when compared to standard Bayesian Network learn-
ing algorithms from the R bnlearn package. Although the results are similar or
superior to established Bayesian Network learning algorithms on some datasets,
the execution time does not meet the specified goal of finding better solutions
in the same time or less as the greedy algorithm. The primary impediment to
this goal, as it is demonstrated here, is the use of p-dispersion-min-sum for find-
ing a maximally diverse subset of networks for refinement. Methods that allow
for diverse subsets to be calculated without communication between the paral-
lel workers would be better. (See [18] for details.) Additionally, the refinement
operator considers the entire space of possible networks, where only the refine-
ments to the Markov blanket are actually necessary. Significantly, the use of the
Frobenius Norm of the difference of the Bayesian networks’s graph Laplacians is
very encouraging and suggests further research into distance measures based on
graph features such as those derived from Spectral Graph Theory. Experiments
with alternate starting states based on conditional information, in a manner
similar to the PC Algorithm and CBL, or constraint-based algorithms like
Incremental Association or HITON, or even to those claiming to find the exact
network structure [10] could also be promising.
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Abstract. Electoral fraud can be committed along several stages. Dif-
ferent tools have been applied to detect the existence of such undesired
actions. One particular undesired activity is that of vote-buying. It can
be thought of as an economical influence of a candidate over voters that in
other circumstances could have decided to vote for a different candidate,
or not to vote at all. Instead, under this influence, some citizens cast their
votes for the suspicious candidate. We propose in this contribution that
intelligent data analysis tools can be of help in the identification of this
undesired behavior. We think of the results obtained in the affected bal-
lots as a mixture of two signals. The first signal is the number of votes for
the suspicious candidate, which includes his/her actual supporters and
the voters affected by an economic influence. The second mixed signal
is the number of citizens that did not vote, which is affected also by the
bribes or economic incentives. These assumptions allows us to apply an
instance of blind source separation, independent component analysis, in
order to reconstruct the original signals, namely, the actual number of
voters the candidate may have had and the actual number of no voters.
As a case of study we applied the proposed methodology to the case
of presidential elections in Mexico in 2012, obtained by analyzing pub-
lic data. Our results are consistent with the findings of inconsistencies
through other electoral forensic means.

1 Introduction

Elections are a fundamental activity in healthy democratic societies. Different
aspects of electoral processes have been studied, and many of those analyses come
from a mathematical and statistical mechanics perspective [1]. In a seminal work
by [2] statistical mechanics of voting were firmly presented and from that work,
several other works have identified general patterns in election outcomes. For
example, power laws have been identified in the outcome of several electoral
processes [3], whereas patterns in the probability of success of candidates have
also been described [4].

Free and fair elections are a major pursuit in all democratic regimes.
An increasing number of professionals and public as well as private non-
governmental organizations are focused in verifying that such elections are run in
c© Springer International Publishing AG 2016
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solid basis, and that no undesired influences percolate into the process. Unfor-
tunately, the evidence of anomalies, fraud, and other undesired activities are
common in several countries [5]. Different tools have been applied in order to
detect anomalies in electoral results. Traditionally, social scientists mainly use
questionnaires and interviews [6], whereas journalists struggle to document evi-
dence of those misconducts via intrincate paths linking politicians and miscon-
ducts [8,9,13,14,24]. In a different route, physicists and mathematicians tend to
apply statistical mechanics to study abnormalities in the distribution of expected
results [12], or to use Benford’s law [10,11].

Computer scientists and engineers have scarcely been involved in actively
investigating abnormal behaviors in elections. In a recent contribution [20] offer
a panoramic overview of how machine learning algorithms, such as k-means and
Bayesian methods, can be of help in detecting ballot stuffing and vote stealing.
However, the impact of computational methods still have much to offer in the
field of electoral forensics.

A particularly difficult behavior to corroborate is that of vote-buying (VB)
[21]. This undesired situation occurs when one or more of the contending candi-
dates offer economic incentives in exchange of evidence that citizens exerted the
vote in favor of a certain candidate. We describe in this contribution a methodol-
ogy that allows the identification of signs that this undesired behavior is present
in some of the ballots. The assumptions behind the model we apply are not more
stringent than those in the traditional electoral forensics tools.

In this contribution we think of ballots as composed by two signals: the first
one is the number of votes the suspicious candidate received, which we will call
E, and the number of citizens that did not cast their vote (no voters), which
we will call M . Each ballot has assigned a number of voters Li So, a particular
ballot i can be described by the two signals Ei/Li and Mi/Li. The hypothesis
we follow in this contribution is that the actual number of votes e that the
suspicious candidate may had received, as well as the number of no voters m,
can be extracted from E and M , via a mixing matrix. Note that if we replace
E by X1 and M by x2, and e by s1 and m by s2 then this is formulation is
equivalent to the problem that blind source separation (BSS), and in particular
one of its instances, independent component analysis (ICA).

The rest of this contribution goes as follows. In Sect. 2 we briefly describe the
ICA algorithm and its main properties. Then, in Sect. 3 we explain how some
electoral anomalies can be studied by ICA, imposing the assumptions required by
ICA. Once we have described ICA and its potential use in detecting vote-buying,
we present in Sect. 4 the case study of detecting vote buying in the Presidential
Mexican elections of 2012 sustaining our investigation in public data from the
electoral authorities. Finally, in Sect. 5 we present some conclusions including the
confirmation through ICA that there is evidence of vote buying in those elections,
as previously supported from several and solid signs derived from both statistical
mechanics and journalists reports.
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2 Independent Component Analysis

Signals of scientific interest are normally registered as mixed in the detection
devices either because the detector itself is not error-free, or because of the
nature of the sampling environment. In the traditional problem of the noisy
cocktail party, an individual is listening to her interlocutor and still, regardless
of the noisy and mixed conversations in the surroundings, she is still able to
understand (reconstruct) the words being said to her [18]. The task of recov-
ering the signal of interest from a mixture of other signals is commonly known
as blind source separation [19,22]. Independent component analysis (ICA) is a
general case of projection pursuit (PP). PP is a set of techniques that allows the
reconstruction of a specific mixed signal from a group of signals, in a serial fash-
ion. ICA reconstruct all mixed signals in a parallel fashion, which is translated
in a more efficient algorithm and robust results [18].

Let the mixed or observed variables or signals be xi(t), with i = 1, ..., n, and
t = 1, ..., T , where n is the number of signals and T is the index, that might
represent time or location of the measurement [15]. Let the original or source
signals with index t be si(t). The general assumption is that xi can be modeled as
linear combinations of the original (hidden or latent) variables by the following
equation:

xi(t) =
∑

aijsi(t) (1)

where the parameter aij is a mixing coefficient. In a matrix notation, we can
represent the latent and observed signals as:

X = AS (2)

The problem of reconstructing the original signals is then to estimate the
mixing coefficients. In geometric terms, the problem is reduced to finding the
spatial transformation which maps a set of observed signals to a set of source
signals [18]. There are several possible algorithms to find such transformations,
and one of the most successful ones is that of FastICA. Both ICA, and FastICA
rely on the following conditions in order for the components to be approximated
[16]:

– 1. Components si have to be statistically independent.
– 2. Components si are described by non-Gaussian distributions.
– 3. The mixing matrix A is square and invertible.

The requirement that the components si need to be statistically independent
is fulfilled in many of situations as the signals are assumed to be originated in
independent systems, for example, the simultaneous conversations in the cocktail
party are not linked to each other. However, it has been shown that either when
this stringent condition is not totally satisfied, it is still possible to reconstruct
the latent variables.

The general route for FastICA to approximate the components is via look-
ing for orthogonal rotation of prewhitened data, through a fixed-point iteration
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scheme, in order to maximize a given measure of non-normality of those rotated
components. Commonly, such a measure is the kurtosis. Non-normality substi-
tutes the stringent condition of statistical independence, which is computation-
ally very demanding [17]. Components si have to be non-Gaussian distributions
in order to identify a “direction” of rotation. If the data is iid, then the number
of possible rotations is infinite.

ICA identifies independent components such that the following two con-
straints are present:

– 1. Components are not identified in any particular order.
– 2. Components are identified up to a scaling factor.

In short, the assumptions for ICA to hold are that the probability density
function (pdf) of the joint components has to be factorable and that the pdfs of
the individual components have to be non-normal.

In the next section we detail how ICA can be applied to the problem of
detecting vote buying in elections.

3 ICA for Vote Buying Detection

Changing the ordering of values in a given signal has no effect on the pdf of that
signal, and thus, allows the use of ICA in datasets that are not time series, such
as images or, actually, as votes in ballots.

In order to detect vote buying (VB) using ICA, we made a few assumptions,
some of them as strong as those assumed in the statistical mechanics tools used
for the same purposes. First, it is important to note that a change in the ordering
of the values of a variable has no effect in the pdf.

First, we assumed that the group of citizens that do not normally vote, were
compelled to change their behavior and casted their vote by an unique candidate,
the one suspicious of VB, and hereafter labeled as SC. That is, our assumption
is that the VB existed, although we are aware of the dificulties in documenting
such behavior.

Our second assumption is that voters for candidates other than the SC were
not convinced of changing their minds to vote for him/her. Our third assumption
was that hardcore supporters of the SC and no voters are independent and
well differentiated groups of citizens. People that do not normally vote may
do so because of lack of interest, or as a result of political concerns. People
that normally vote for one candidate tend to do so because they are convinced
of her/his ideas, or because they were convinced by bribes. We think of those
two groups as independent entities. This assumption is closely related to the
requirement of statistical independence of the components.

A fourth assumption is that VB was not homogeneously distributed, that is,
not all ballots present evidence of it.

Let Xi be the variable that represents the number of votes received by the
SC along the ballots i. Let Yi be the number of people that did not show up to
cast their vote, that is, the no-voters. As the number of voters assigned to each
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ballot is fixed (at least in the case presented in the next section), we have to
take extra measures to guarantee as much as possible the independence of X
and Y . Let Li be the number of voters assigned to ballot i. If only one candidate
contending in the elections, there would not be independence between Xi and
Yi as a consequence of the fact that the maximum number of votes is delimited
by Li = Xi + Yi. However, if the number of candidates is greater than 1, then
there is room for independence between X and Y , since in general Li > Xi +Yi.

For simplicity, we will work with the proportion of votes instead of the number
of votes. Let Ei = Xi/Li be the fraction of votes received by the SC in ballot
i and Mi = Yi/Li the percentage of no voters in i. The final goal would be
to identify the actual number of votes the SC would had achieved if no VB
occurred. Let ei be that number, and let mi be the actual number of no voters
that would had existed under the same conditions. See Fig. 1-b.

If we follow the attributes of the results offered by ICA to its last logical con-
sequences (see previous section), we have to admit two undesired consequences:
Since the resulting components are scaled and presented in no particular order,
we would not be able to distinguish e and m. This avoids us to actually iden-
tify the real number of no voters that were convinced to vote for the SC, but
still, it offers evidence that VB is present in the elections. Also, postprocessing
stages in order to isolate the component that represents those numbers would
be possible (as an extension of this work). A second logical result is that by VB,
some hardcore voters of the SC would had been convinced of not voting. This
assumption may not be totally consistent with the reality.

Regardless of the apparent strong assumptions and a pair of undesired con-
sequences of ICA to detect VB, we present in the next section the results of
inspecting the Presidential Mexican elections of 2012. There, we offer evidence
of VB since we were able to identify conditions in which the signals e and m were
reconstructed in a way that the conditions sustaining ICA were maintained.

4 Results

In the Presidential Mexican elections of 2012, more than 77 million citizens had
the right to vote, from which over 48 millions did so. There were 149500 ballots,
and the range of voters assigned to each was [71, 801] [23]. There were four
candidates, although one of them obtained less that 2 % of the votes and is no
further regarded.

Figure 2 shows some statistics about the three candidates, including the
SC (A). A first difference is already clear here, since it is peculiar that can-
didate A has very few ballots in which he only received a very small percentage
of votes. This, however, is just a peculiarity and it might be possible that this
effect is caused by legitimate actions. Following the method described in [12],
we constructed an electoral signature for the suspicious candidate, shown in the
bottom part of Fig. 2. This electoral signature consists of a series of histograms
for all ballots indicating the percentage of turnout and the percentage of votes
achieved by the suspicious candidate. If bimodal distributions or the percentage
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Fig. 1. An overview of ICA (A). Independent signals are generated (1) and mixed by
the environment (2), where they are registered with a device (2). The mixed signals (3)
are processed by ICA and the independent components (signals) are computed. The
same procedure is applied for vote buying detection (B). The original signals represent
supporters of the suspicious candidate and no voters (1). When no voters are exposed
to bribes, some of them cast their vote towards the candidate under suspicious. The
ballot (2) is the counterpart of the measuring device, from which two mixed signals
E and M (3) are recovered and fed to ICA. ICA reconstructs the original signals e
and m.

of votes for the winning candidate is very high and very similar to the percentage
of turnout, then there is evidence of ballot stuffing. In the case of Mexican elec-
tions, there is no evidence of such behavior. However, it is again peculiar that
the percentage obtained by the suspicious candidate is never below 10–15 %.
Accordingly to [12], this may constitute a cause for concern.

Our objective was to find evidence of VB in this elections using ICA and its
formalisms. Evidence is found once two signal are reconstructed such that their
joint pdf is factorable and their marginal pdfs are non-normal. In the case here
investigated, it means we have to identify, from the universe of 149000 ballots,
those that satisfy the required conditions by ICA. For example, if all ballots
were assumed to be influenced by VB, the components obtained by ICA show
Gaussian distributions (see Fig. 3). A remaining question is to identify those
ballots whose reconstructed signals.



232 A. Neme and O. Neme

Fig. 2. Some statistics of the three main candidates of the 2012 Mexican elections.
A: PDF of turnout percentages for the three main candidates, the suspiscious candidate
is indicated by the label SC. B: Average entropy (defined as H =

∑
pilogpi) for ballots

as a function of turnout percentage. C: Average entropy for ballots as a function of
turnout percentage. Bottom figure: Electoral signature after [12]. Shows the abundance
of ballots with the specified turnout percentage and the percentage of votes for the
suspicious candidate.

Fig. 3. Components obtained by ICA from all 149000 ballots. It is observed that the
components are Gaussian (p value = 0.32 and 0.24 from a Shapiro-Wilk test for the
two components)

E and M agree with the constraints of ICA. Two possibilities arose from this
task.

The first and näive way to identify ballots that stick to the ICA constraints
of non-Gaussianity and independence is to hand pick (perhaps through an incre-
mental brute force algorithm) those that fullfil the requirement. This would be
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Fig. 4. The ballots described by parameters θ, γ for which the conditions behind ICA
hold, for the SC, and at the same time, are not valid for the remaining candidates. In
A we show the log of the p-value of a Spearman rank test for the reconstructed signals
of the SC divided by the p-value of the same test over the corresponding signals for
one of the remaining candidates. In B it is shown the mixed and reconstructed signals
for the SC, as well as the reconstructed signals for the remaining two candidates

time consuming, not to mention biased, since we would be guiding the search
towards the results we desire. A second and more convenient alternative is to
consider only ballots with at least a given turnout percentage (θ) and a given
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percentage of votes assigned to the SC (γ), in which the general assumptions
behind ICA are hold. In this contribution, we followed the second strategy.

The general algorithm to detect evidence of VB is then to find mixed signals
with statistical dependence and whose reconstructed signals are independente of
each other, and described by non-Gaussian distributions. For this, we system-
atically explored the parameter space (θ, γ) to identify those ballots in which
the conditions for ICA to hold are present. As a more stringent condition, we
imposed that the corresponding signals for the non-suspiscious candidates should
not maintain all the conditions for ICA. That is, if the ballots that are described
by a certain (θ, γ) pair of parameters satisfy the conditions imposed over the
SC, still has to be verified over the non-suspiscious candidates. If the conditions
over the SC hold, but do not hold for the other candidates, then those ballots
may represent evidence of VB.

Figure 4 shows the ballots described by the parameters (θ, γ) in which the
mixed signals maintain the conditions for ICA to hold for the SC, but do not
hold for the remaining candidates. In (A) we show the log of the p-value of a
Spearman rank test of the reconstructed signal of the SC divided by the p-value
of the same test of the reconstructed signal for one of the remaining candidates.
This is a measure of the likelihood that the independence in the reconstructed
signals for the SC being greater than that observed in another candidate will
be caused by chance. In (B) we present a pair of examples (θ = 0.1, γ = 0.5
and θ = 0.8, γ = 0.2), in which the original and reconstructed signals for the
SC are displayed. We also present the reconstructed signals for the remaining
candidates.

5 Conclusions and Final Comments

We have presented here a strategy to apply independent component analysis
(ICA) to the problem of vote buying detection. Vote buying occurs when the
suspicious candidate bribes voters, which are assumed to be citizens that would
not had vote otherwise. There are two relevant signals in the ballots: The first one
measures the votes for the suspicious candidate, and the second one is the number
of people that did not show up for voting, that is, no voters. Our assumption is
that the two signals are a mixture of the original supporters of the suspicious
candidate and the normally no-voters.

Several assumptions had to be made in order to apply ICA in the vote buy-
ing problem, such as that of independence between hardcore supporters of the
suspicious candidate and that of no voters. However, the assumptions made in
this work are not more stringent than those in other models. The use of ICA
detected groups of ballots in which the reconstructed signals satisfy the require-
ments behind ICA, namely, non-Gaussian components, and independent pdfs.

Although it is extremely difficult to corroborate our findings by means other
than from statistical mechanics tools or journalist works, we think ICA offers an
additional tool to be considered in electoral forensics.
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{kata.gabor,haifa.zargayouna,davide.buscaldi,

thierry.charnois}@lipn.univ-paris13.fr
2 LaTTiCe, CNRS (UMR 8094), ENS Paris, Université Sorbonne Nouvelle - Paris 3,
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Abstract. This paper deals with the extraction of semantic relations
from scientific texts. Pattern-based representations are compared to word
embeddings in unsupervised clustering experiments, according to their
potential to discover new types of semantic relations and recognize their
instances. The results indicate that sequential pattern mining can sig-
nificantly improve pattern-based representations, even in a completely
unsupervised setting.

1 Introduction

Relation extraction and classification deal with identifying the semantic relation
linking two entities or concepts based on different kinds of information, such as
their respective contexts, their co-occurrences in a corpus and their position in
an ontology or other kind of semantic hierarchy. It includes the task of finding
the instances of the semantic relations, i.e. the entity tuples, and categorizing
their relation according to an ontology or a typology. Most systems focus on
binary semantic relations. In supervised learning approaches, relation extrac-
tion is usually performed in two steps: first, the entity couples corresponding to
concepts are extracted or generated, and a binary classification is performed to
distinguish those couples which are instances of any semantic relation. Second,
the relation itself is categorized according to its similarity to other, known rela-
tion types. Unsupervised relation extraction has received far less attention so
far. In an unsupervised framework, relation types are inferred directly from the
data and, instead of a pre-defined list of relations, new types can be discovered
in parallel with the categorization of relation instances.

Unsupervised extraction is often applied to specialized domains, since the
manual construction of knowledge bases or training examples for such domains is
costly in terms of effort and expertise. The research we present is concerned with
unsupervised relation extraction in the scientific domain. The types of relations
we expect to extract allow to provide a deeper semantic model and understanding
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of scientific papers and, in the long term, contribute to automatically build
the state of the art of a given domain from a corpus of articles relevant to
it. The deep semantic analysis of scientific literature allows the identification
of inter-document links to facilitate inter-textual navigation and the access to
semantic context [28]. It also allows to study the evolution of a scientific field over
time [6,26], as well as the access to scientific information through information
retrieval [30].

Within this research context, a typology of domain-specific semantic relations
was first created and used for corpus annotation in order to confirm the feasibil-
ity of the extraction task and to perform extrinsic evaluation of the results [12].
From this point on, our approach to the relation extraction task is completely
unsupervised: we do not rely on any of the manually annotated or categorized
data. The most important issue consists in defining an approach which is inde-
pendent from both the domain and the corpus: we do not want to impose any
constraint on the types of the relations to be extracted. Different types of infor-
mation, such as pattern-based representations and word embeddings, are used
as input to the classification of the entity couples according to the semantic
relation. After performing a range of clustering experiments, we conclude that
pattern-based clustering can be significantly improved using sequence mining
techniques, yielding the best results in every clustering algorithm we tested.

In what follows, we present the state of the art and explain the specificities of
our approach as compared to previous work (Sect. 2). We then describe the data
we used (Sect. 3), the input features (Sect. 4) and the algorithms (Sect. 5). Sub-
sequently, we present the evaluation (Sect. 6) and discuss the results (Sect. 6.3).
Section 7 concludes the paper and indicates the lines of future work.

2 Related Work

Semantic relation extraction and classification is an important task in the domain
of information extraction, knowledge extraction and knowledge base population.
A plethora of approaches have been applied to relation extraction, among which
we can distinguish tendencies according to:

– whether the method aims to classify entity couples in a given set of relations
or to discover new types of relations,

– the approach to be used: symbolic approaches through e.g. hand-crafted
extraction patterns, or machine learning approaches (classification/clustering
or sequence labeling methods),

– the input information and the representation used: pattern-based, lexical, syn-
tactic features, distributional vectors, etc.

Supervised systems rely on a list of pre-defined relations and categorized exam-
ples, as described in the shared tasks of MUC and ACE campaigns [15]. Using
small, manually annotated training corpora, these systems extract different kinds
of features eventually combined with external knowledge sources, and build clas-
sifiers to categorize new relationship mentions [38]. Symbolic systems, similarly
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to supervised learning algorithms, are specific to the list of relations they are
designed to recognize - based on hand-crafted linguistic rules created by linguists
or domain experts [13]. On the other hand, with the proliferation of available
corpora, a new task emerged: Open Information Extraction (OpenIE) [1,8]. It
aims at developing unsupervised or distantly supervised systems with a double
objective: overcome the need of scarcely available annotated data, and ensure
domain-independence by being able to categorize instances of new relation types.
In this kind of work, applications are not limited to a given set of relations and
become able to cope with the variety of domain-specific relations [1,10]. Such
experiments can also be beneficial for the automated population of ontologies
[27] or thesauri [10]. Our work belongs to that second line of research.

According to the type of input features which serve as a base for classifica-
tion, we can distinguish pattern-based approaches from classification approaches
relying on diverse quantifiable attributes. The hypothesis behind pattern-based
approaches is that the semantic relation between two entities is explicit in at least
a part of their co-occurrences in the text, and therefore relation instances can
be identified based on text sequences between/around the entities. Such char-
acteristic patterns are usually manually defined, incorporating linguistic and/or
domain knowledge in rule-based approaches [13,34]. Patterns are not limited
to sequences of words, they can contain a combination of lexical and syntac-
tic information [9]. Patterns can also be used indirectly as inputs to supervised
classifiers [1] or for calculating similarities between entities’ distribution over pat-
terns [20,32]. Most of these approaches rely on hand-crafted lists of patterns. In
[4], sequential pattern mining is used to discover new linguistic patterns within
the framework of a symbolic approach.

Another way of including quantifiable context features for relation extraction
is to use distributional word vectors, either as “count models” [3] or as word
embeddings [21]. Entity couples can be represented by a vector built from the
vectors associated with each of its members: popular methods include concate-
nating the two vectors [2] or taking their difference [33]. These representations
will then serve as input for a supervised classifier. However, it has recently been
argued in [19] that both concatenation and difference are “clearly ignoring the
relation between x and y” (i.e. what links the entities): they only provide infor-
mation on the type of the individual entities. In this article, the conclusion was
that “contextual features might lack the necessary information to deduce how
one word relates to another”.

Finally, certain biclustering or iterative clustering methods are sometimes
applied to divide not only the objects (word or entity couples), but also the
dimensions (patterns or features) in parallel. Generative models are more preva-
lent in this framework. In [35] Latent Dirichlet Allocation (LDA) is adapted to
the task of unsupervised relation classification. In [16] Markov logic is used, while
in [24] an iterative soft clustering algorithm is applied, based on a combination
of distributional similarities and a heuristic method for mining hypernyms in the
corpus.
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The approach we put forward belongs to the unsupervised/OpenIE frame-
work. We do not rely on any manually classified data or typology of relations.
Our experiments rely on unsupervised clustering using two types of representa-
tions: text patterns and word embeddings. Moreover, we make use of sequential
pattern mining in order to enrich our couples of entities/text patterns matrix
and address data sparsity. Our experiments were conducted on the ACL Anthol-
ogy Corpus of computational linguistics papers, but they can be applied to any
field in the scientific domain. In the context of our work, the final purpose is to
extract the state of the art of a scientific domain, therefore the constitution of
the corpus and the evaluations are focused on the relation types relevant for this
kind of information; however, this context does not directly influence our choice
of representation and clustering algorithm. Our approach differs from standard
relation classification tasks, as defined e.g. in SemEval campaigns [14] in two
respects. First, we do not target relations belonging to a pre-defined set. Sec-
ond, the semantic relations considered in SemEval were lexical by nature, e.g.:

Component-Whole Example: My apartment has a large kitchen.
Member-Collection Example: There are many trees in the forest.

On the contrary, the relations we hope to extract are largely contextual. The
same couple of entities can instantiate several distinct relations in the same
corpus in different contexts:

Uses information: (...) models extract rules using parse trees (...)
Used for: (...) models derive discourse parse trees (...)

3 Data and Resources

For the purpose of these experiments, we used a corpus where concepts in the
scientific domain are annotated. The corpus is extracted from the ACL Anthol-
ogy Corpus [29]. We decided to focus on the abstract and introduction parts of
scientific papers since they express essential information in a compact and often
repetitive manner, which makes them an optimal source for mining sequential
patterns. The resulting corpus of abstracts and introductions contains 4,200,000
words from 11,000 papers.

Entity annotation was done in two steps. First, candidates were generated
with the terminology extraction tool TermSuite [7]. The list of extracted terms
was then mapped to different ontological resources: the knowledge base of Saffron
Knowledge Extraction Framework [5], and the BabelNet ontology [25]. If a term
was validated as a domain concept (i.e., found in at least one of the resources), it
was annotated in the text. The reader is referred to [11] for further information
on the annotated corpus.

4 Input Representations

The goal of this part is to represent each co-occurring entity couple in a vector
space which allows to calculate a similarity between them. Three distinct types of
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vector spaces were used as representation bases for our clustering experiments.
The first two are pattern-based: they rely on the assumption that couples of
entities linked by the same semantic relation will be characterized by similar
patterns in at least a part of their co-occurrence contexts (i.e. in the text between
the two elements of the couple). One of the representations uses complete text
sequences as they are found in the corpus, while the other one relies on patterns
that were extracted from these sequences using sequential pattern mining.

The expected advantages of identifying patterns inside the sequences are simi-
lar to those using distributed representations. First, using the complete sequences
as features leads to data sparsity. Although patterns are basically sub-sequences
of the sequences in the string representation and thus we can expect the size of
the feature space to grow, the same sequence can belong to more than one pat-
tern, and thus the number of frequent features is also expected to grow. Second,
while adding some words to a sequence may not modify its meaning and the
relationship between the two entities, it will still result in separate features in
the full sequence representation. A pattern-based representation can capture and
quantify the elements of similarity between close, but not identical sequences.
Finally, sub-sequences can encode different types of information, e.g. grammat-
ical words can be relevant for the relation between the entities, while content
words will provide information about the topic of the context, and both kinds
of information are expected to bring us closer to characterizing the semantic
relation.

The third representation uses word embeddings of the entities considered
separately and hypotheses that their semantic relation is mainly context-
independent. By calculating the pairwise similarity between the entities, we
expect to quantify the similarity between relation instances. This representa-
tion is similar to the one used in [2], though the scope of the experiments and
the classification method are different.

4.1 Pattern-Based Representations

In the pattern-based representation, attributes correspond to text sequences
that are found between co-occurring entity couples. We extracted from our cor-
pus every entity couple occurring in the same sentence, together with the text
between them. Text sequences can contain other entities, but their length is
limited to ≤ 8 words. This results in 998,000 instances extracted.

String Representation. Using these co-occurrence data, we first built a sparse
matrix M with lines corresponding to entity couples e = (e1, e2) and columns
corresponding to text sequences p ∈ P . The cells Me,p contain an association
value between e et p. One of the representations uses raw co-occurrence count,
while the other one uses PPMIα weighting. This weight is a variant of Pointwise
Mutual Information (PMI) in which values below 0 are replaced by 0. Moreover,
the context distribution smoothing method proposed by [18] is applied to the
positive PMI weighting. This smoothing, inspired by the success of neural word
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embeddings in semantic similarity tasks [3,21], allows to reduce the bias of PMI
towards rare contexts. Context words’ co-occurrence counts are raised to the
power of α (in Eq. (2)). Its optimal value is reported to be α = 0,75 according
to the experiments of [22]. This finding was directly adapted to PMI [18]:

PPMIα(e, p) = max(log2
P (e, p)

P (e) × Pα(p)
, 0) (1)

Pα(p) =
freq(c)α

∑
c freq(c)α

(2)

We will refer to the vectors built as such as the string representation.

Sequential Pattern Representation. For the second experiment, we applied
sequential pattern mining techniques [31] to discover relevant patterns which
are specific to semantic relations. The extraction is completely unsupervised:
frequent sequential patterns which fulfill a certain number of constraints are
automatically extracted from the input. A sequence, in this context, is a list of
literals (items) and an item is a word in the corpus. The input corpus was made
of all the sequences extracted from co-occurring entities (i.e. the feature space
for the string representation). The pattern mining process is applied to word
forms without using any additional linguistic information.

The sequence mining tool [4] we used allows distinct options to add con-
straints on the extracted sequences. We selected contiguous sequences of length
between 2 and 8 words and a minimum support of 10. The support of a sequen-
tial pattern in a sequence database is the number of sequences in the database
containing the pattern. Only closed sequential patterns were considered, i.e. pat-
terns which are not sub-sequences of another sequence with the same support.

To construct the matrices, we filled the cells with raw co-occurrences (how
many times a pattern occurs somewhere between the two entities) and, for a sec-
ond matrix, with the PPMIα-weighted values. We will refer to this representation
as pattern representation.

4.2 Distributional Representation

This type of feature space also uses contextual information, but it is computed
independently for the two entities. We used word2vec [21] to create the dis-
tributional vectors, as it proved to be particularly well adapted for semantic
similarity tasks and is presumed to encode analogies between semantic relations
[23]. word2vec was trained on the whole ACL Anthology Corpus using the skip-
gram model [21] and the resulting word embeddings (size = 200) were used to
represent each entity.

The vector of an entity couple is simply made of the concatenation of the
vectors of each entity1 [2]. We expect this representation to capture very specific
1 Entities corresponding to multiword expressions will have their unique vector, since

word2vec includes an internal module for recognizing multiword expressions.
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relation types, where the potential arguments belong to a restricted semantic
class.

5 Clustering

Two methods of hierarchical clustering were tested using cosine similarity and
Cluto’s [37] clustering functions. The first one is a top-down clustering based on
repeated bisections: at every iteration, a cluster is split in two until the desired
number of clusters is reached. This number has to be pre-defined: experiments
were performed using different values. The cluster to be divided is chosen so that
it maximizes the sum of inter-cluster similarities for each resulting cluster. We
will refer to this method as divisive.

The second method is a hierarchical agglomerative clustering with a bisective
initialization [36]: a clustering in

√
n clusters is first calculated (where n is the

number of clusters to be produced) through repeated bisections. The vector space
is then augmented with

√
n new dimensions that represent the clusters calculated

at the first step, and the values of these dimensions are given by the distance of
each object from the centroids of the clusters produced at the initiation stage.
The agglomerative clustering is then performed on this augmented vector space.
This method was created to combine advantages of divisive (global) and agglom-
erative (local) algorithms by reducing the impact of errors from initial merging
decisions, which tend to be multiplied as the agglomeration progresses [36].

We will refer to this algorithm as agglo.

6 Evaluation

6.1 Standard Classification

For the sake of the experiments, we selected a sample of 500 abstracts (about
100 words/abstract) and manually annotated relevant relations occurring in this
sample. The typology of relations was data-driven: it was established in parallel
with the categorization of the examples. An illustration of the relations we iden-
tified is shown in Table 1, for a complete description of the manual annotation
work and the typology, see [12]. The relations are not specific to the natural
language processing domain; they can be used for any scientific corpora.

As a second step, a sample of 615 entity couples which co-occur in the corpus
was manually categorized according to this typology. This sample was used as a
gold standard for clustering evaluation.

6.2 Baseline and Evaluation Measures

The clustering results were compared to the standard one as a series of decisions:
whether to classify two couples in the same group or in different groups. This
evaluation is less influenced by structural differences between two clustering
solutions and allows to quantify results in terms of precision and recall.
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Table 1. Extract of the typology of semantic relations

char ARG1: observed characteristics of an observed ARG2: entity

composed of ARG1: database/resource ARG2: data

methodapplied ARG1: method applied to ARG2: data

model ARG1: abstract representation of an ARG2: observed entity

phenomenon ARG1: entity, a phenomenon found in ARG2: context

propose ARG1: paper/author presents ARG2: an idea

We also calculated APP Adjusted Pairwise Precision [17]: this measure quan-
tifies average cluster purity, weighted by the size of the clusters. This provides
additional information on the proportion of the relevant clusters.

APP =
1

|K|
|K|∑

i=1

nb correct pairs in ki

nb pairs in ki
× |ki| − 1

|ki| + 1
(3)

For each experiment with respect to cluster size, we created a corresponding
random clustering to estimate the difficulty of the task and the contribution of
our approaches.

6.3 Results and Discussion

The evaluation was conducted so as to allow comparisons between the two clus-
tering algorithms, the three input representations and the two weighting systems.
Cluster sizes have an important effect on the results because they are correlated
with the number of classes in the standard (21 in our case). On the other hand, a
different cluster structure e.g. with finer grained distinctions, may also be seman-
tically justified. The real validity of the clusters must therefore be established
by human inspection.

Table 2 shows the results of the divisive method. The string and pattern
representations with raw frequency counts are compared with the baseline and
word2vec vector representations (where weights are implicitly included in the
language model learning). Although the word2vec representation yields a very
good performance with respect to both precision measures, it comes at the cost
of a very low recall. Since this representation is solely based on the similar-
ity between individual entities, this means that mainly couples having nearly
identical entities end up in the same cluster, e.g.: parsing - sentences, parses -
sentences, parse - sentence. In agreement with [19], this result reveals that this
representation is not good at capturing relational similarities.

Another interest of Table 2 is the improvement in precision (for both mea-
sures) brought by the pattern representation, compared to the string repre-
sentation. This improvement is accompanied by slight decreases in recall. It is
also interesting to note that, as shown by Table 3, PPMIα weighting transforms
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Table 2. Clustering results with the divisive algorithm

Input #clusters Algorithm Weight APP Prec Recall F-measure

baseline 100 random N/A 0.0813 0.0955 0.0097 0.0176

baseline 50 random N/A 0.0883 0.1036 0.0198 0.0332

baseline 25 random N/A 0.0979 0.1040 0.0410 0.0588

string 100 divisive freq 0.2498 0.3037 0.1030 0.1538

pattern 100 divisive freq 0.2823 0.3718 0.0993 0.1568

string 50 divisive freq 0.2985 0.2805 0.1302 0.1778

pattern 50 divisive freq 0.3265 0.3159 0.1235 0.1776

string 25 divisive freq 0.3941 0.2219 0.1904 0.2050

pattern 25 divisive freq 0.3947 0.2776 0.1773 0.2164

word2vec 100 divisive incl 0.3396 0.5734 0.0527 0.0965

word2vec 50 divisive incl 0.3541 0.4761 0.0890 0.1499

word2vec 25 divisive incl 0.3545 0.4182 0.1539 0.2250

Table 3. The effect of the PPMIα weighting with the divisive algorithm

Input #clusters Algorithm Weight APP Prec Recall F-measure

string 100 divisive PPMIα 0.3112 0.4905 0.0462 0.0844

string 50 divisive PPMIα 0.3625 0.3789 0.0799 0.1320

string 25 divisive PPMIα 0.3555 0.3133 0.1400 0.1936

sequence-based scores the same way as to what we observe with word2vec rep-
resentations: very high precision with very low recall -despite the fact that the
semantics captured by the input representations are different in both cases.

Table 4 presents the results of the agglo clustering method. This algo-
rithm works better for every type of representation we considered. The scores
reported here are obtained on PPMIα-weighted string and pattern represen-
tations. The pattern representation comes out as the absolute winner, with
important improvements over string both in terms of precision (6–10%) and
recall (3.5–6.5 %). Scores marked by * indicate statistically significant improve-
ments according to a 10-fold cross-validation on the string and pattern cluster-
ing solutions. The pattern representation also beats the precision of word2vec
in two out of the three settings. Although the recall obtained with the word2vec
vectors is also improved by the agglomerative method, the pattern representa-
tion still holds an important advantage.
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Table 4. Clustering results with the agglomerative algorithm

Input #clusters Algorithm Weight APP Prec Recall F-measure

string 100 agglo PPMIα 0.3020 0.4184 0.1582 0.2296

pattern 100 agglo PPMIα 0.2810 0.4758 0.1936 0.2752

string 50 agglo PPMIα 0.2535 0.3246 0.2142 0.2581

pattern 50 agglo PPMIα 0.2697 0.4200* 0.2657* 0.3268

string 25 agglo PPMIα 0.2585 0.2898 0.2277 0.2550

pattern 25 agglo PPMIα 0.2460 0.3777* 0.2914 0.3290

word2vec 100 agglo incl 0.3630 0.5285 0.1316 0.2107

word2vec 50 agglo incl 0.2966 0.3694 0.1938 0.2542

word2vec 25 agglo incl 0.2972 0.3330 0.2399 0.2789

7 Conclusion and Future Work

We presented an approach to extract new types of semantic relations and
instances of relations from specialized corpora using unsupervised clustering.
Two types of representations were compared: pattern-based vectors and word
embeddings. In agreement with previous results, we found that concatenated
word embeddings tend to have a limited contribution to discovering new rela-
tion types.

An important finding is that sequential pattern mining contributes to create
a much more adapted feature space, as shown by the significant improvement
both in terms of precision and recall. This confirms our expectation that sequen-
tial patterns are better than full sequences in capturing relational similarities.
Another advantage is that the pattern mining process is completely unsuper-
vised.

We plan to conduct a manual evaluation of the resulting clusters. This would
allow to have a better insight on the nature of the resulting clusters. Biclustering
methods can also be tested on the data: they have the potential to automatically
identify the most relevant patterns for each relation type.
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Abstract. The analysis of spatial data occurs in many disciplines and
covers a wide variety activities. Available techniques for such analysis
include spatial interpolation which is useful for tasks such as visualiza-
tion and imputation. This paper proposes a novel approach to interpo-
lation using space-filling curves. Two simple interpolation methods are
described and their ability to interpolate is compared to several interpola-
tion techniques including natural neighbour interpolation. The proposed
approach requires a Monte-Carlo step that requires a large number of
iterations. However experiments demonstrate that the number of itera-
tions will not change appreciably with larger datasets.

1 Introduction

Spatial interpolation is one of the many tools available for spatial data mining
[10]. It is particularly useful in spatial analysis since it is often the case that
data cannot be collected at every desired location due to practical issues such
as cost. In addition the data may have missing values [11], that may require
imputation. The literature for spatial interpolation is large and the interested
reader is referred to [8] for an overview of available approaches in the practical
context of environmental sciences.

Space-filling curves have been successfully used in a broad range of compu-
tational problems, for example in calculating efficiently all nearest neighbours
[4] and image segmentation [9], see [1] for a comprehensive review. The primary
reason for this is the fact that space-filling curves can be used to map multi-
dimensional Euclidean data onto one dimension which partially preserves local
spatial correlations, i.e. points that are close in the multidimensional space are
likely to be close in the one dimensional ordering of the data.

[16] investigated the orderings of data along space-filling curves where the
data has been repeatedly transformed using shape preserving transformations
only. It was shown that the probability of an ordering is dependent on the spatial
locations of the data in the higher dimensional space. This property was then
used to construct novel shape descriptors for shape matching. The concern of
this paper is to use the approach detailed in [16] for spatial interpolation. The
essential idea is to transform the data-sites and query points using a shape
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preserving transformation and then map them onto a space-filling curve, where
a simple interpolation scheme is used to impute the value at each query point.
This process is repeated using different shape preserving transformations and
the resulting interpolations are then aggregated. The main motivation for this
work is to produce a conceptually simple approach for interpolation in two or
higher dimension that is also numerically robust and simple to implement.

In the next section, relevant methods for interpolating scattered data are dis-
cussed. After which space-filling curves are introduced with a brief overview of
the construction of the Hilbert curve. Following this, the framework for perform-
ing spatial interpolation using space-filling curves is introduced. Experiments to
demonstrate the utility of the approach are provided. The final section concludes
with ideas for future research.

2 Scattered Data Interpolation Methods

In the following discussion it will be assumed that there are n data-sites
x1, . . . , xn with respective locations x1 . . .xn and each data-site has a value
denoted z1 . . . zn. In addition there are m query sites, q1 . . . qm with location
q1 . . .qm. It is at these locations that an imputed value is desired, i.e. we wish
to estimate f̂(qj), for query site qj .

There are a large array of methods available for spatial interpolation. The
focus in this section will be on three methods for spatial interpolation. They have
been chosen specifically because they are the higher dimensional analogues of the
interpolation we do in one dimension and hence provide a clear comparison. They
are piecewise constant, piecewise linear and natural neighbour interpolation.

Piecewise constant interpolation is a very simple approach to scattered data
interpolation. The interpolated value, f̂(qj), for query site qj is the value asso-
ciated with the closest (in the Euclidean sense) data-site.

Piecewise linear interpolation for scattered data uses the Delauney triangula-
tion, see e.g. [12], induced from the data-sites. The vertices in this triangulation
are the data-sites. In, for example 2D, a query point will reside in one triangle.
Let us assume that the vertices are the data-sites with indicies p1j , p2j , p3j , then

f̂(qj) =
∑3

i=1 api
zpij∑3

i=1 api

,

where api
is the Euclidean distance between the query point qj and the vertex

location xpij

Natural neighbour interpolation is a well known approach to interpolating
scattered data, see for example [3]. This interpolation scheme involves calcu-
lating a weighted sum of data-site values that are natural neighbours (defini-
tion to follow) to the query point. There exist several approaches to calculating
these weights, the most well known is Sibson interpolation and is calculated as
follows. First the Voronoi tessellation is induced from the data-site locations.
This consists of partitioning the region of interest into non-overlapping tiles.
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(a) Data-sites only (b) Data-sites and query
point

Fig. 1. Voronoi diagrams used for natural neighbour interpolation weight calculation.
The query point qj is denoted by a cross located in the centre of (b).

Each tile contains only one data-site and contains all locations that are closest
to this data-site, Fig. 1(a).

The location of the query point is added to the list of data-sites and a new
Voronoi diagram is produced. This is shown in Fig. 1(b) where the query point
in this figure is denoted with a cross. This query point has its own Voronoi tile
that contains regions taken from the original Voronoi tiles shown in Fig. 1(a).
Data-sites that have had their Voronoi tile changed by the inclusion of the query
point are called its natural neighbours. For a particular query point qj

f̂(qj) =
∑

i wijzi∑
i wij

,

where wij is the area from the query point tile that was originally part of the
Voronoi tile for the ith data-site.

Conceptually natural neighbour interpolation is relatively straightforward
however computing it efficiently is rather involved [7]. Indeed approximations
that rely on discretising the region of interest have been proposed to produce
more efficient algorithm [13]. Natural neighbour interpolation is defined for two
or more dimensions, since in 1D, the procedure for natural neighbour interpola-
tion reduces to piecewise linear interpolation. Briefly, in 1D the Voronoi tiles are
simply intervals and the natural neighbours of a query point are its predecessor
and successor data-sites. Since we shall be using linear interpolation in 1D in our
proposed approach, we consider natural neighbour interpolation to be a relevant
method to compare against.

3 Space-Filling curves

A space-filling curve is typically defined as a continuous mapping from the unit
interval [0, 1], onto d-dimensional Euclidean space where the image consists of
all points within the compact region [0, 1]d.
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(a) (b) (c)

Fig. 2. First three iterations for Hilbert curve construction, the circles denote the
centres of the sub-squares.

Figure 2 shows the construction of the Hilbert space-filling curve. A square is
sub-divided into four sub-squares which are given a specific order and orientation.
Joining the centres of these sub-squares by following their order produces a
polygon approximation to the Hilbert curve, Fig. 2(a). These sub-squares are
themselves recursively subdivided. Figures 2(b, c) show the polygon curve for
second and third iteration respectively. In the limit as the number of iterations
tends to infinity, the polygon curve tends to the Hilbert curve.

A detailed explanation regarding space-filling curves and their construction
can be found in [1,14]. The code used in the paper is based on [15].

4 Framework for Interpolation

There are three stages in the proposed framework for interpolation, denoted
shape preserving embedding, one-dimensional interpolation and aggregation.
Each stage is described separately in the following sections.

4.1 Shape Preserving Embedding

The first stage involves ordering the data-sites (and query locations) in multidi-
mensional space along a space-filling curve. The entire process is demonstrated
graphically for the 2D case in Fig. 3. For simplicity it is assumed that interpo-
lation is required over a square region of interest containing all the data-sites,
Fig. 3(a). A shape preserving transformation is applied that maps the region of
interest onto the unit square denoted by the grey region in Fig. 3(b). Each data-
site (and query point) can then be ordered along a Hilbert curve. Figure 3(c)
shows each data-site joined to their predecessor and successor along the space-
filling curve.

Let e denote a shape preserving transformation that embeds the query points
and data-sites successfully into the unit square. The transformation is in fact a
composite, comprising a translation, a rotation, a reflection (with probability 0.5)
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(a) Data-sites (b) Embed (c) Data-sites ordered

Fig. 3. Embedding data-sites onto Hilbert curve.

and a scaling. Details of the embedding can found in [16], the maximum scale
factor in this study is 10. For reasons of computational simplicity the region of
interest, i.e. domain over which the interpolation function f̂(·) is to be estimated
is assumed to be a discretised square with resolution 2000 × 2000.

Let h denote a function that maps a point in the unit square onto the unit
interval using a Hilbert curve. The Hilbert index, ti, for the ith data-site is

ti = h(e(xi))

and similarly for query sites. The data is then sorted in ascending Hilbert index
order. Let this ordering function be denoted by π, then tπ(di) and tπ(qj) are both
non-decreasing for i = 1, · · · , n and j = 1, · · · ,m respectively.

4.2 One-Dimensional Interpolation

Once a Hilbert index has been associated with each datum, interpolation can
proceed using any 1D interpolation method. For this study 1D piecewise constant
and 1D piecewise linear interpolation (described in Sect. 2), denoted Hilbert-
Const and Hilbert-Linear respectively are used. Both these methods are trivially
simple to implement and due to their simplicity they are amenable to further
analysis which can be achieved without the need of a ground truth function to
interpolate, see Sect. 6.

4.3 Aggregation

Let g denote a function that encapsulates the two stages described above, such
that interpolated value for the query site qj is

f̂(qj) = g(qj ,x1...m, z1...m, h,Q1, e).

where Q1 denotes a plug-in one-dimensional interpolation function and e a shape
preserving transformation. Recalling that x1...m, z1...m are the data-site locations
and data-site values respectively; h is the Hilbert mapping, note that this can
be replaced with other space-filling curve mappings.
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Let e1, . . . , eη be identically and independently drawn legitimate transforma-
tions, further details for the sampling regime can be found in [16]. The aggregated
interpolated value for the query site qj is simply the average interpolated value,
i.e.

f̂(qj) =
1
η

η∑

k=1

g(qj ,x1...m, z1...m, h,Q1, ek).

5 Experiments

The following experimental design has been motivated by [6]. The interpola-
tion schemes are tested by evaluating the mean squared error (MSE) and the
maximum absolute error (Max Error) between interpolated values and a ground
truth function. For the ground truth Franke’s function [6] has been selected, see
Fig. 6(a).

It is also instructive to visualise the interpolation, for this task a bivariate
Gaussian is used see Fig. 4(a). The experiments are organised as follows. First the
focus is on visualising the resulting interpolations, then a more formal approach
to evaluating the interpolation methods is performed. Henceforth piecewise linear
and piecewise constant shall be referred to as linear and constant respectively.

5.1 Visualising the Interpolated Function

This experiment uses data-sites located on a 21 × 21 regular grid spanning the
entire region of interest. It should be noted that for the special case of data-sites
located on regular grids there exist specific interpolation schemes that should
do better than the general scattered data interpolation approaches shown here.
However a regular grid generates easily interpretable images. Figure 4 shows the
resulting interpolation when using the spatial interpolation techniques described
in Sect. 2.

(a) Ground Truth (b) Constant (c) Linear (d) Natural Neigh-
bour

Fig. 4. Bivariate Gaussian test function and interpolated functions using standard 2D
approaches based on data-sites located on a regular 21 × 21 grid.
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(a) 1 iteration (b) 100 iterations (c) 1000 iterations (d) 10,000 iterations

(e) 1 iteration (f) 100 iterations (g) 1000 iterations (h) 10,000 iterations

Fig. 5. Hilbert-Const Interpolation of a Bivariate Gaussian based on data-sites located
on a regular 21 × 21 grid. Top row Hilbert-Const Interpolation, bottom row Hilbert-
Linear Interpolation.

It is clear that constant interpolation, Fig. 4(b), does a poor job of recon-
structing the ground truth. Linear interpolation, Fig. 4(c) does much better but
with strong visible linear artifacts. Finally in Fig. 4(d) natural neighbour interpo-
lation is much smoother. Although artifacts arising from the data-site locations
are visible.

Figure 5(a–d) shows the interpolated function using Hilbert-Const with
increasing number of iterations. Figure 5(a) shows the interpolated function after
one iteration is similar to constant interpolation shown in Fig. 4(b). As the num-
ber of iterations increases, the interpolated function becomes less noisy and at
10,000 iterations the function is visibly similar to natural neighbour interpolation
but with more pronounced bumps.

Figure 5(e–h) shows the interpolated function Hilbert-Linear. The first itera-
tion may look similar Hilbert-Const however closer inspection should reveal that
there are no flat regions on the tall peaks. At 10,000 iterations the interpolated
function appears smoother than both natural neighbour and Hilbert-Const. In
contrast to both natural neighbour and Hilbert-Const an artifact due to the
data-site locations manifests itself as small dimples.

Franke’s bivariate function, shown in Fig. 6(a), is a more challenging surface
to interpolate. Figure 6 also shows the interpolated functions using the inter-
polation methods described in Sect. 2 and the resulting interpolated function
after the first and 10, 000th iteration for both Hilbert-Const and Hilbert-Linear.
Visually these results are consistent with those of the bivariate Gaussian.
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(a) Ground Truth (b) Constant (c) Linear (d) Natural Neigh-
bour

(e) Hilbert-Const
1 iteration

(f) Hilbert-Const
10,000 iterations

(g) Hilbert-Linear 1
iteration

(h) Hilbert-Linear
10,000 iterations

Fig. 6. Franke’s bivariate test function and interpolated functions using standard 2D
approaches based on data-sites located on a regular 21 × 21 grid.

5.2 Scattered Data Interpolation

The following experiments focus on more quantitative measures of the quality
of an interpolation. Scattered data-sites are generated by selecting uniformly at
random a location on a 2000 × 2000 grid without replacement, this is to ensure
that all the data-site locations are unique. The number of data-sites used in
the experiments are 100, 300 and 500. Finally, for completeness, the data-sites
using regular locations used in the first experiment will also be used (which has
441 data-sites). The number of aggregation iterations η is set to 50,000. Natural
neighbour interpolation is not defined outside the convex hull of data-sites, so to
make all the results commensurate only query sites within the convex hull are
included in the analysis.

Table 1 shows the evaluations for the three standard interpolation methods
(natural neighbor interpolation is denoted NN in this table) and the two pro-
posed approaches for different sets of data-site locations and number. Notable
observations include the following. Constant Interpolation in 2D is consistently
poor; Linear interpolation in 2D in most cases performs better than natural
neighbour.

Hilbert-Const has lower Max Error than natural neighbour for all scattered
data sets, but natural neighbour performs consistently better with respect to
MSE. The performance difference between Hilbert-Linear and Hilbert-Const is
somewhat inconclusive but it appears that Hilbert-Const performs better.
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Table 1. Performance of interpolation schemes with respect to maximum absolute
error and for mean squared error for the Franke function.

# Data-sites 100 300 500 441 Regular

Max Err MSE Max Err MSE Max Err MSE Max Err MSE

Constant 2D 0.421 0.00463 0.219 0.00147 0.173 0.000821 0.119 0.000529

Linear 2D 0.229 0.00181 0.139 0.000313 0.109 8.04e−05 0.0185 1.24e−05

NN 2D 0.249 0.00202 0.147 0.000332 0.0965 7.9e−05 0.0188 1.2e−05

Hilbert-Const 0.234 0.00239 0.117 0.000407 0.0635 0.000151 0.0217 2.03e−05

Hilbert-Linear 0.308 0.00381 0.0975 0.000516 0.0704 0.000135 0.0279 4.85e−05

A key issue with the proposed approach is the number of aggregation itera-
tions required to produce a reasonable interpolation. Figure 7 shows the number
of aggregation iterations against MSE and Max Error for the Hilbert-Const
interpolation of Franke’s function. The convergence is largely independent of
the number of data-sites and there is little to gain after around 1000 iterations.
A similar result has been obtained for Hilbert-Linear interpolation.

Fig. 7. Number of aggregation iterations versus MSE (leftmost graph) and Max Error
(rightmost graph). Note the x-axis has a base-10 log scale.

In this section, analysis of interpolating specific functions was considered. In
the next section the proposed approach is re-interpreted so that we can reason
about it by considering only the location of the data-sites, i.e. without the need
of a ground truth function to interpolate.

6 Further Analysis

Hilbert-Const interpolation has a particularly simple interpretation. It can be
viewed as a simple weighted sum of data-site values. The weight denoted pi is



258 D.J. Weston

the probability that data-site xi is the nearest neighbour to qj along the Hilbert
curve under the Monte Carlo sampling described in the Aggregation Section, i.e.

f̂(qj) =
n∑

i

pizi (1)

Consider the case where there are only two data-sites, denoted × and ·,
located within a region of interest shown in Fig. 8(a) (ignoring the heatmap for
the moment). Under Euclidean distance, locations that are closest to the data-
site denoted by an × are to the left of the dashed line.

(a) 2D heatmap (b) 3D

Fig. 8. Probability mass function showing the probability that the nearest neighbour
is the data-site denoted by an ×.

The heatmap represents all the possible query site locations within the region
of interest and shows the probability the × data-site is the nearest neighbour
under the Monte Carlo sampling, with η = 50, 000. Figure 8(b) shows the same
probability mass function but in 3D. It is clear that there is a discontinuity at
the peak (corresponding to the × data-site).

Referring back to Eq. 1, for the interpolated function f̂(·) to be continuous,
both pi and zi are required to spatially continuous over the region of interest.
Assuming that the function to be interpolated is indeed continuous, i.e. zi is
continuous, then pi needs to be continuous. As has been noted, pi is not con-
tinuous at data-sites. Hence the interpolated function will not be continuous at
data-sites. Note that natural neighbour interpolation also has this issue. The
smoothness of probability mass function elsewhere in Fig. 8(b) is consistent with
pi being continuous everywhere apart from at data-sites.

A final observation from the heatmap in Fig. 8(a) is the probability mass
function behaves sensibly since in general the closer to data-site × the higher
the probability. Figure 9 shows the average number of data-sites that contribute
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(a) Hilbert-Const (b) Hilbert-Linear

Fig. 9. Number of non zero weighted data-sites for each query location. Hilbert-Linear
has more than Hilbert-Const since for linear interpolation uses two data-sites for inter-
polation whereas constant only requires one.

to a query location. For the scattered data it is clear the average number is largely
independent of the increasing number of data-sites. This is a crucial observation
for the utility of the proposed approach for large datasets. It suggests that the
interpolation is local to the query data-site.

There is one exception, query points near the boundary of the region of
interest. Figure 9 show there is a large variance in the number contributing data-
sites per query site. This phenomena is due to the space-filling curve exiting
region of interest and entering at some other location along the boundary. This
behaviour is not necessarily wrong, it is making the assumption that the function
is homogeneous around the boundary. One way to remove this edge effect is to
introduce a post-processing step that keeps the closest w contributing data-sites
for each query site near the boundary, where w is the overall mean.

7 Conclusion and Future Work

This paper proposed a novel framework to interpolating scattered data. The
approach is conceptually easy to understand and straightforward to code and
delivers results that are in some ways commensurate with natural neighbour
interpolation. If radix sort is used, then the computational complexity of the
algorithm is linear with respect to input size. More specifically it is O(ηmdk)
for d-dimensional data where each coordinate is represented using k bits and
the combined total of query and data points is m. The number of iterations η is
typically large but remains constant with increasing size of the data set. Hence
it is likely that this approach will be useful in circumstances where interpolation
is required for very large datasets. Note that η is likely to grow exponentially
with respect to d, its precise relationship is left for future work.
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The 1D interpolation schemes plugged in to the framework were selected
for their simplicity and their amenability to further analysis. However more
sophisticated methods could be used. For example basing the interpolation on
1D wavelets [5].

This framework can be extended to perform density estimation by simply
replacing the interpolation function with a 1D density estimator. This is possible
since the Hilbert curve has the property that it is measure preserving, which in
the 2D case means that equal lengths along the curve correspond to equal areas.
In his context the approach would fit in with the class of Monte Carlo density
estimators such as random average shifted histograms [2].
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Abstract. Several privacy measures have been proposed in the privacy-
preserving data mining literature. However, privacy measures either
assume centralized data source or that no insider is going to try to infer
some information. This paper presents distributed privacy measures that
take into account collusion attacks and point level breaches for distrib-
uted data clustering. An analysis of representative distributed data clus-
tering algorithms show that collusion is an important source of privacy
issues and that the analyzed algorithms exhibit different vulnerabilities
to collusion groups.

1 Introduction

The goal of Distributed Data Mining (DDM) is to find patterns or models from
a collection of distributed datasets, that is, datasets residing on the nodes of a
communication network, possibly under constraints of limited bandwidth and
data privacy [16]. In DDM, Distributed Data Clustering (DDC) is the problem
of finding groups of similar objects in distributed datasets [4].

Privacy and data ownership play an important role in DDM and in DDC in
particular, a role which calls for a privacy preserving solution [6,13]. Two main
approaches have emerged to address this problem: secure multiparty computation
and model-based data mining. With the secure multi-party computation (SMC)
approach, all computations are performed by a group of mining parties following
a given protocol and using cryptographic techniques to ensure that only the final
results will be revealed to the participant, e.g. secure sum, secure comparison [5],
secure set union [3]. In the model-based approach, each site computes a partial
local model from the local dataset and all local models are aggregated to produce
a global model, which is shared with the participants.

Each approach proposes a different privacy measure. These privacy measures,
however, either assume that no insider is going to try to infer some sensitive
information, or do not account for particularities of specific data mining tasks.
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 261–272, 2016.
DOI: 10.1007/978-3-319-46349-0 23
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The privacy definition in SMC considers only threats from the outside and does
not care about how much an inside party can learn from the protocol output.
For example, in a protocol where three parties compute the sum of numbers in a
secure multiparty protocol, e.g. secure sum, the process does not leak any input
information. However, when two parties collude they can subtract its own input
and learn the input of remaining party.

Model-based approaches, on the other hand, define privacy from the perspec-
tive of the whole dataset, and not of single points. For example, in [11] dataset
privacy is based on the average privacy of all points. Some points will, of course,
have privacy level much lower than the average privacy level. Thus, even if a
single point has a very low privacy level, this privacy breach may go unnoticed.

In this paper, we present distributed privacy measures that take into
account inference attacks from insiders and are able to detect point-level pri-
vacy breaches. We follow an information theoretic approach and define a set of
properties from which our privacy measures are derived. We also apply the pro-
posed measures to representative algorithms to demonstrate previous undetected
privacy issues.

As main contribution, this paper: (i) introduces the first privacy measures
for DDM in general and DDC in particular with respect to insider and collusion
attacks, and single data point privacy; (ii) re-evaluates the privacy preserva-
tion of representative DDC algorithms with these measures, and reveals that
insider collusion is an important source of privacy breach and (iii) exemplifies
the respective privacy analysis for selected algorithms.

2 Privacy Measures for Distributed Data Clustering

Major threats in a distributed mining session come from malicious insiders.
Therefore, privacy measures should take into account the presence of collusion
groups of malicious peers. Moreover, privacy measures should detect the privacy
level of single data points.

In this paper, we will regard privacy measures as functions which, for a given
distributed data mining algorithm, map a dataset subset and the maximum size
of collusion groups of parties to a real number, and satisfy certain properties.
We will call the value of such a measure a privacy level.

Let L1, . . . , Lp be sites hosting one element of a partition of a dataset D each,
and A be any distributed data mining algorithm running on L1, . . . , Lp. We will
assume that up to p − 1 sites among L1, . . . , Lp are malicious, in that they seek
to infer objects of D, or parts thereof, possibly in collusion groups of at most
c < p members, by either exchanging information or violating the protocol of A,
or both. By privacy measure for A we mean a computable partial function

PRA : (X, c) ∈ 2D × {0, 1, . . . , p − 1} → PRA[c](X) ∈ [0,∞) (1)

which satisfies one or multiple of the following properties:

P1 (collusion) PRA[1](X) ≥ PRA[c](X) when there are at most c malicious
peers colluding, for all c ∈ {1, . . . , p − 1} and for all X ⊆ D;
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P2 (point monotonicity) it is non-increasing from singletons to dataset, i.e.,
PRA[c]({x}) ≥ PRA[c](D) for all c ∈ {0, 1, . . . , p − 1}.

Property P1 expresses the decrease of privacy level in scenarios with inference
attacks and collusion from malicious parties. Note that c = 1 expresses the
absence of collusion groups of size two or greater. Therefore, parties are semi-
honest, i.e., they adhere to the protocol of A, but may exploit information gath-
ered during execution for inference purposes. When no parties attempt to infer
objects, i.e., are honest, there are no inside threats and c = 0. Property P2
constrains PRA to behave as a worst-case measure: a greater privacy level than
the one at singletons is not attainable for the dataset. We call this property
point-level awareness.

Throughout this paper, we use the following notation. To indicate explicitly a
privacy measure m in the evaluation of a given algorithm A we use the notation
PRm

A . We indicate the privacy of a given point x, given an algorithm A and
measure m, as PRm

A (X); for a dataset D we use PRm
A (D). For the sake of

simplicity, we omit algorithm, measure, dataset or data point, when they are
implicit in a given context.

2.1 Existing Privacy Measures for DDC

In SMC, privacy is equivalent to having a trusted third party perform the com-
putation and erasing all of the input data after the computation [7]. An SMC
protocol is said to preserve privacy if one can prove that after the computation
no party learns anything but the final results, as it would be the case if there
were a trusted third party in the setting. This notion of privacy is known as the
simulation paradigm [5], and is used to formally define privacy for SMC pro-
tocols. For a discussion on proofs for SMC protocols, the reader may refer to
[5,9]. The privacy measure which is used in SMC protocols will be called private
computation, and denoted in this paper as PRPC

A (D).
Model-based approaches work by producing partial local models, which are

then aggregated into a global model [8,10,11,14]. Finally, using the global model
each party computes the mining results. Examples of models include wavelets
coefficients, parametric models, like a mixture of Gaussians, or non-parametric
models, like kernel density estimates.

In the model-based approach the likelihood-based measure is used in the con-
text of clustering and classification [10]. Let D be a given dataset and fλ(x) be
the probability density function associated with a given probabilistic model λ.
The privacy PRlike

A of data set D given model λ is defined as the reciprocal of
the geometrical mean likelihood of the dataset being generated under model λ
and can be expressed as:

PRlike
A (D) = 2(− 1

|D|
∑

x∈D log fλ(x)) (2)

This measure indicates how likely a sampled data set is to occur given a proba-
bility model [10]. If the likelihood is high, then the privacy is low and vice-versa.
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2.2 Limitations of Current Measures

In the presence of collusion groups a secure multiparty protocol (SMC) may fail
[9] because its privacy definition gives only the privacy level from the outsiders’
point of view. Any malicious insiders will receive the correct output, from which
they may try to reconstruct sensitive inputs from other parties.

PRPC
A (D) Does Not Address Inference or Collusion (¬P1). The private

computation measure was designed to detect leaks from the protocol and not
from outputs. Consider a protocol where three parties compute the set union in
a secure multiparty protocol. The process does not leak any input information,
but when two parties collude they can remove its own input sets and learn the
input set of remaining party. However, privacy computation does not address
this inference attack situation and PRPC

SMCSum[0](x) = PRPC
SMCSum[2](x) when

they should indicate the decrease in privacy in the presence of 2 malicious parties
working in collusion.

PRPC
A (D) is Point-Level (P2). By definition, if any point x ∈ D, the dataset

of inputs of a given party, is leaked, the protocol is considered not private, i.e.
∀x ∈ D : PRPC

A (x) = 0 → PRPC
A (D) = 0. Therefore, ∀x ∈ D : PRPC

A (x) ≥
PRPC

A (D).
The likelihood-based measure is discussed in the following. Let D =

{1, 4, 6, 9}, a dataset, and a mixture of two Gaussian with the first model be
centered at x0 = 1, i.e. it has mean μ1 = 1 with variance σ2

1 = 0.1. The second
model models the three remaining points, i.e., it has mean μ2 = 6.3 and vari-
ance σ2

2 = 1.0. With probability density function of model denoted by f(x), using
Eq. (2) we have: PRlike

A (D) = 2(− 1
|4| (log2(f(1))+log2(f(4))+log2(f(6))+log2(f(9)))) =

13.7326.

PRlike
A (D) Does Not Address Inference or Collusion (¬P1). If the mix-

ture of local models represents datasets from participants and a malicious
insider has access to all local models, it can try to reconstruct other partici-
pants’ datasets. In the above example, the attacker could reconstruct the first
point with high precision with the first model, which is centered at x0 with
small variance. PRlike

A[1](x0) = 2− log2 f(x0) = 0.5013. However, even in this case
PRlike

A[1](D) = 13.7326, i.e. the drop in privacy due to a insider attack (c ≥ 1) is
not reflected in PRlike. Therefore, PRlike

A (D) does not fulfill property P1.

PRlike
A (D) is Not Point-Level (¬P2). When only a few points have a high

likelihood of being reconstructed with a high precision, PRlike
A (D) measure will

still indicate a high privacy protection. Consider a dataset D above. The geo-
metrical mean in the privacy measure smoothed out the measure for x0 = 1,
masking a possible privacy breach. Thus,

PRlike
A (x0) = 2− log2 f(x0) = 0.5013 < PRlike

A (D) = 13.7326

Therefore, PRlike
A (D) does not fulfill property P2. Table 1 presents a summary

of all studied privacy measures and their properties.
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Table 1. Summary of privacy measures and properties

Reference Approach Collusion (P1) Point-level (P2)

PRPC [5] Simulation no yes

PRlike [10] Probability no no
PRrange (Def. 1) Info. theory yes yes
PRrec (Def. 2) Inference analysis yes yes
PRBK (Def. 3) Info. theory yes yes

3 New Privacy Measures for DDC

In this section, we propose new privacy measures to analyze distributed data
clustering algorithms. We assume that the attackers are members of the mining
group and that they have access to the resulting cluster map and other informa-
tion defined by the mining protocol being analyzed.

Our first measure defines the privacy of a cluster as the size of the interval
between its maximal and minimal values.

Definition 1 (Cluster range measure). Given a dataset D and a cluster
map C = {Ck} ⊆ 2D, whose elements Ck are pairwise disjoint. We define the
cluster privacy of a given point x in a given cluster Ck ∈ C as:

PRrange(x) = max{Ck} − min{Ck}. (3)

Extending to the whole dataset:

PRrange(D) = min{PRrange(x) : x ∈ D}. (4)

As an example, consider a cluster of data points over the dimension “annual
income” ranging from US$ 100 000 to US$ 150 000 reveals the value of each
data point with a maximal error of US$ 50 000 and maximal mean error of US$
25 000 (assuming uniform distribution). Consequently, each point in this cluster
is said to have a privacy level of 50 000 dimension units, US$ in this case.

If a reconstruction method is known, it is possible to measure how close the
reconstructed data gets to the original sensitive data.

Definition 2 (Reconstruction based measure). Let R ⊂ R denote a set
of reconstructed data objects such that each ri ∈ R is a reconstructed version of
xi ∈ D. We define the privacy level, given a reconstruction method, by:

PRrec(xi) =| xi − ri | . (5)

Extending to the whole dataset:

PRrec(D) = min{PRrec(xi) : xi ∈ D, ri ∈ R, 1 ≤ i ≤ N} (6)

where N is the size of the dataset D.
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Consider secure k-means algorithm [15]. In this algorithm parties L1 and
Lp hold together the information on the distance d = |x − μi| between a given
centroid μi and other parties data points x. Thus, attackers can use the inverse
of the distance as a reconstruction method to infer data points x. PRrec(x) will
denote the precision of this specific reconstruction method.

A general definition of privacy proposed in the centralized data mining setting
is the bounded knowledge measure [1], which defines privacy as the length of the
interval from which a random variable X is generated. This measure can be
expressed in terms of the entropy of X, as follows.

Definition 3 (Bounded Knowledge). Given a random variable X with prob-
ability density function fX and domain ΩX , the privacy of X given by its bounded
knowledge is:

PRBK(X) = 2h(X) (7)

where h(X) = − ∫
ΩX

fX(x)log2 [fX(x)] dx is the differential entropy.

As an example, consider a random variable X uniformly distributed between
20 and 70, abbreviated X ∼ U(20, 70), has probability density function f(x) =
1
50 , for 20 ≤ x ≤ 70, and 0 otherwise. The entropy of X is h(X) = log2(50).
Thus, the privacy provided by X according to bounded knowledge measure is
PRBK(X) = 2log2(50) = 50. This definition is general enough to be used in
different data mining contexts, e.g. cluster analysis, association rules, etc. [2].

For a given point x ∈ Ci, a cluster in cluster map C induced from D, Xi a
random variable for values of Ci and a probability density function fXi

(x), let:

PRBK(x) = PRBK(Xi) = 2h(Xi) (8)

with fXi
(x) being zero outside Ci.

In the case of a cluster map, we are interested in the smallest interval size in
the said map1. Therefore,

PRBK(D) = min{PRBK(x)} = min{2h(Xi)}. (9)

The next definition extends each of the previously defined measures to include
collusion groups.

Definition 4. Let A be a distributed data clustering algorithm, D be a dataset,
and measure m ∈ {rec, range,BK}, with collusion groups containing at most c
attackers. We define:

PRm
A[c](D) = min{PRm

A[i](D) : 1 < i ≤ c}. (10)

1 This notion comes from the well-known idea in computer security that defines the
security level of a system as the level of its weakest link.
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PRm
A[c](D) represents the minimum privacy level provided to dataset D when the

collusion groups have at most c peers, using any privacy measure m. For example,
PRBK

A[2](D) denotes the privacy level provided by algorithm A to dataset D when
collusion groups are formed with at most 2 malicious peers analyzed with BK
measure.

Properties Analysis of PRm
A[c](D)

Lemma 1 (Collusion). Given an algorithm A, for all dataset D and privacy
measures m ∈ {range,BK, rec}, and c > 1 (presence of non-singleton collusion
groups), if there is a collusion scenario decreasing the privacy level of dataset D,
then PRm

A[1](D) ≥ PRm
A[c](D).

Proof. Let a = PRm
A[1](D) be the privacy level of dataset D with algorithm A

with no collusion (i.e., c = 1), and b = PRm
A[c](D) be the privacy level in a

collusion scenario with c > 1 malicious peers. By definition PRm
A[c](D) is the

smallest privacy level considering all collusion scenarios. Thus, PRm
A[c](D) =

min{a, b}. Therefore, if the collusion group decreases the privacy level of the
c = 1 scenario, then a ≥ min{a, b}. ��
Lemma 2 (Point level privacy). ∀x ∈ D : PRm

A[c](x) ≥ PRm
A[c](D), for all

dataset D and privacy measures m ∈ {range,BK, rec}.
Proof. (Range) Consider a cluster map C from D, with only two clusters Ca

and Cb. Let ra and rb denote ra = max{Ca} − min{Ca} and rb = max{Cb} −
min{Cb}, the cluster range of Ca and Cb respectively. For a given point xa ∈ Ca,
by definition, PRrange(xa) = ra and PRrange(D) = min{ra, rb}. Therefore,
ra ≥ min{ra, rb}.

(Rec) Consider a dataset D and a reconstructed set R. Let xa be any given
point in D and ra its reconstructed counterpart in R. By definition, PRrec

A[c](xa)
is |xa − ra| and PRrec

A[c](D) = min{|xi − ri| : xi ∈ D, ri ∈ R, 1 ≤ i ≤ N}.
Therefore, |xa − ra| ≥ min{|xi − ri| : xi ∈ D, ri ∈ R}.

(BK) Consider a cluster map C from D, with only two clusters Ca and Cb.
Let Xa be a random variable modeling a data point xa ∈ Ca, and Xb a random
variable modeling data points xb ∈ Cb. By definition, PRBK

A[c](xa) is 2h(Xa) and
PRBK

A[c](D) = min{2h(Xa), 2h(Xb)}.
Therefore, PRBK

A[c](xa) = 2h(Xa) ≥ min{2h(Xa), 2h(Xb)}. Similarly, we have
that PRBK

A[c](xb) = 2h(Xb) ≥ min{2h(Xa), 2h(Xb)}. ��
We have thus derived three privacy measures, Cluster Range, Reconstruction,
and Bounded Knowledge, that are inspired by different abstractions of privacy,
and satisfy the natural properties of collusion and point-level awareness. In con-
trast, the Private Computation and Likelihood privacy measures fail to capture
at least one of such properties. We will now revisit prominent DDC algorithms
to examine if and how applying the new measures changes their evaluation, as
to the amount of privacy that is guaranteed by each of them.
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4 Application to DDC Algorithms

To apply our measures to DDC algorithms, we need to analyze which informa-
tion is available to each party during the mining session, which collusion groups
can be formed and how they can reconstruct information from available informa-
tion (including single malicious attacks). In the following, a few algorithms for
distributed data clustering are briefly reviewed and their privacy properties are
then analyzed in light of our privacy definitions. We selected these algorithms
because they are based on prominent methods for distributed data clustering.

4.1 Secure Multiparty k-means

Vaidya and Clifton [15] proposed an extension of the classic k-means algorithm
to the distributed setting, using cryptographic protocols to achieve privacy (VC-
kmeans). Data is assumed to be vertically partitioned. The solution is based on
a secure sum protocol to find the closest cluster for any given point. It also uses
secure permutation and secure comparison. VC-kmeans assumes three trusted
parties L1, L2 and Lp. Additionally, let Lj be any other non-trusted party in
the mining group. It was originally evaluated with PRPC as private with three
trusted parties, but no analysis is presented on how much privacy is preserved
under collusion.
Single Insider Attacks. A given party Lj knows only: (i) µj , a share of the
centroid; (ii) dij , the distance from the cluster centroid µi to the view of point
xj ; (iii) and a random vector vj . L1 is the party which starts the protocol and
knows: (i) a partial view of the cluster centroids, µ1; (ii) the cluster assignment
for each data point x; (iii) a random vector v; and (iv) a permutation π of 1 to
k, used to preserve the privacy of information in the SMC protocol. L2 knows
T2 = π(v2 + d2), the permuted sum of v2 with d2, which is hidden from the
other parties but Lp. Lp knows its share of the centroid µp, and Ti = π(vi +di),
i = 1, 3, 4, . . . , p, the permuted sum of vi with di of each party but L2. Moreover,
Lp knows the combined sum of Ti from all parties but L2, i.e. Y = T1+

∑p
i=3 Ti.

L1 is the party holding the most important information, which can be used to
reconstruct sensitive data, including the random vector v and the permutation
π. However, without the permuted sum of distances Yi from other parties (i =
1, 3, 4, . . . , p) L1 will not learn anything, because it cannot reconstruct data
points from other parties. Similarly, L2 and Lp will not learn anything from the
information they hold alone.

Let D be a n-dimensional dataset distributed over a network of peers. When
there are only single insider attacks, algorithm VC-kmeans produces a cluster
map of C from D with a privacy level given by:

PRrange
V Ckmeans[1](D) = min{max(Ci) − min(Ci)} (11)

with ∀Ci ∈ C. Any insider attacker working solo can only learn what is dis-
closed by the cluster map itself – namely, that each point ranges in the interval
min,max, for a given cluster. Contrast this information with the result of an
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SMC analysis, which only tells us that the protocol is private, but does not
quantify it in terms of original data space units.
Attack with Collusion of Insiders L1 and Lp. Together, L1 and Lp hold infor-
mation on the permuted sum of all parties except for L2. Moreover, they hold
information on the permutation π and the random vector v. Therefore, this
collusion group may compute the vector di using inverse of permutation π:

di = π−1(Yi) − vi (12)

with i = 1, 3, 4, . . . , p. The vector di represents the distance between a given point
x and the cluster centroid i with mean μi, therefore, with the true distance, every
point x can be located with an arbitrary error. Using Eq. (12) as reconstruction
method, we apply PRrec(D).

PRrec
V Ckmeans[2](D) = min{|x − r| : x ∈ D, r ∈ R} ≈ 0 (13)

where D is the original dataset and R is a reconstructed dataset. Original evalu-
ation with PRPC

V Ckmeans(D) does not inform how much privacy is lost with only
one attacker. However, we find in our analysis that a malicious alone can learn
no more than the size of each cluster.

4.2 Distributed Data Clustering with Generative Models

Merugu and Ghosh [10] present an algorithm for distributed clustering and clas-
sification based on generative models approach (DDCGM). Their algorithm out-
puts an approximate model λ̂c of a true global model λc from a predefined fixed
family of models F , e.g. multivariate 10-component Gaussian mixtures. DDCGM
first computes local models λi, from which the average global model λ̄ is gener-
ated by pλ̄(x) =

∑n
i=1 νipλi

(x) where pλ(x) is the probability density function
of a given model λ. The algorithm uses λ̄ to find a good approximation λ̂c of
the true (and unknown) global model λc. The model λ̂c is used as cluster map.
Original privacy evaluation was based on PRlike(D), with all models in a mix-
ture, regardless of the possible weakness of any component. The new evaluation
reflects the weakest model in the mixture.
Single Insider Attacks. In the DDCGM scheme, a central entity receives local
generative models and combines them into an average generative model. This
entity knows individual generative model from each party. Arbitrary parties
know only the global model. Since the models represent clusters, we can apply
PRrange(D). Let pλ(x) be a mixture model with k elements. The privacy level
provided by DDCGM using pλ(x) and with no collusion is:

PRrange
DDCGM [1](D) = min{xmax − xmin} (14)

where xmax and xmin are inferior and superior elements at the each cluster,
according to the model pλ(x).

Assuming that each component model λi in the mixture is a Gaussian in
a n dimensional data space with covariance matrix Σi, the entropy is hi(x) =
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ln
√

(2πe)n|Σi|, where |Σi| is the determinant of the covariance matrix of the
given model, and consequently, a cluster. Therefore, we can compute:

PRBK
DDCGM [1](D) = min

{
2hi(x)

}
= min

{
2ln

√
(2πe)n|Σi|

}
(15)

Collusion Attack. Any collusion group must include the central party since there
is little information for arbitrary parties, and collusion attacks reduce to single
aggregator attack. Thus, PRBK

DDCGM [1](D) = PRBK
DDCGM [c](D) with c ≥ 2.

4.3 Information Theoretical Approach to Distributed Clustering

Shen and Li [14] proposed an information theoretical approach to distributed
clustering (ITDDC). They assume a peer-to-peer network where each node solves
a local clustering problem and updates its neighbors. The clustering problem is to
fit a discriminative model to cluster boundaries that maximize the mutual infor-
mation between cluster labels and data points. With low communication, local
clusters are formed based on global information spread through the network.
The algorithm needs several rounds of iterations to converge. When it comes to
privacy, the authors do not investigate how the algorithm would behave under
inference attacks and do not investigate how much privacy this approach does
provide.
Single Insider Attack. Each party in ITDDC knows a set of discriminative models
defining the clusters boundaries of points on data sets and from all its direct
neighbors. We can apply PRrange(Dj) to compute how much privacy is preserved
at local dataset Dj for a given model. Each party estimates p̂j(k|x), a class
label distribution defined by a local discriminative model (for instance, logistic
regression). The distribution of x in a given cluster is not disclosed. Thus, each
point can only be located in the interval corresponding to its cluster boundaries.
The privacy provided by DDCGM using p̂j(k|x) and with no collusion is:

PRrange
ITDDC[1](D) = min{xmax − xmin} (16)

where xmax and xmin are inferior and superior elements at the each cluster,
according to the boundaries defined by model p̂j(k|x).
Collusion Attack. The only information being exchanged among the parties is
the local models. Moreover, there is no special central entity holding extra infor-
mation on data distribution at local datasets. Therefore, even if malicious parties
collude against another party, they cannot improve on the single insider attack.
Therefore, PRrange

ITDDC[c](D) = PRrange
ITDDC[1](D), with c ≥ 1 colluding parties.

4.4 Elliptic Curves for Multiparty k-means

Patel and colleagues [12] present a privacy-preserving distributed k-means algo-
rithm based on elliptic curves (EC-kmeans). They assume no trusted party and
use elliptic curves to achieve low overhead cryptography. No analysis on inference
attack or collusion is presented by the authors.
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Single Insider Attack. Each peer knows its own centroids, its own cluster bound-
aries and the encrypted version of the global centroids and the number of points
in a global cluster. Without collusion, a given malicious party does not even
know the boundaries of clusters residing on other parties.
Collusion. The initiator knows the information necessary to decrypt data in the
mining session. Therefore, a collusion group with the initiator and any party
Li can learn about the centroids and number of points in each cluster on the
party Li−1. With the centroids, cluster boundaries of dataset Dj at Lj could be
estimated and PRrange

ECkmeans[2](Dj) = min{xmax − xmin}.

4.5 Discussion

Table 2 presents an overview of the studied algorithms. The analysis above shows
that collusion is indeed a chief source of privacy breach, and that algorithms
can be separated according to their vulnerability to collusion groups and to the
malicious behavior of a site with a special role in the protocol, e.g., a central site,
or an aggregator, or a protocol initiator. VC-kmeans is almost completely not
private if the central site colludes, whereas DDCGM has limited vulnerability to
the central site and not to collusion; ITDDC does not use a central site and only
disclose cluster ranges, irrespective of collusions. EC-kmeans, finally, is secure
and only discloses range information under a collusion attack that involves the
initiator.

Table 2. Summary of privacy preserving distributed data clustering algorithms.

Original assessment Single attacks Collusion attacks

VC-kmeans [15] private (3 trusted) min{xmax − xmin} decrease to ≈ 0, c ≥ 2

DDCGM [10] 2

(
− 1

|D|
∑

x∈D log fλ(x)
)

min{2ln
√

(2πe)n|Σi|} same level, c ≥ 1
ITDDC [14] N/A min{xmax − xmin} same level, c ≥ 1
EC-kmeans [12] private (0 trusted) min{xmax − xmin} min{xmax −xmin}, c ≥ 2

5 Conclusions

We presented new privacy measures for distributed data clustering, in order to
overcome the limitations of existing measures. Starting from a set of formal prop-
erties, it was shown that the new measures satisfy the properties and, therefore,
improve over previous ones. The new measures were applied to selected rep-
resentative of privacy-preserving distributed data clustering algorithms. Some
identified benefits from the new measures are the ability to detect the vulner-
abilities of the representative algorithm to collusion in different scenarios and
detect point level privacy breach. In fact, it was shown that collusion is indeed
an important source of privacy breach, and that algorithms can be separated
according to their vulnerability to collusion groups and to the potential mali-
cious behavior of a site with a special role in the protocol, e.g., a central site, or
an aggregator, or a protocol initiator.
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Abstract. The matrix approximation approaches like Singular
Value Decomposition SVD and Non-negative Matrix Tri-Factorization
(NMTF) have recently been shown to be useful and effective to tackle
the co-clustering problem. In this work, we embed the co-clustering in
a Bistochastic Matrix Approximation (BMA) framework and we derive
from the double kmeans objective function a new formulation of the cri-
terion to optimize. First, we show that the double k-means is equivalent
to algebraic problem of BMA under some suitable constraints. Secondly,
we propose an iterative process seeking for the optimal simultaneous par-
titions of rows and columns data, the solution is given as the steady state
of a markov chain process. We develop two iterative algorithms; the first
consists in learning rows and columns similarities matrices and the sec-
ond consists in obtaining the simultaneous rows and columns partitions.
Numerical experiments on simulated and real datasets demonstrate the
interest of our approach which does not require the knowledge of the
number of co-clusters.

Keywords: Bi-stochastic matrix approximation · Co-clustering · Power
method

1 Introduction

Clustering has received a significant amount of attention as an important prob-
lem with many applications, and a number of different methods have emerged
over the years. For datasets arising in text mining and bioinformatics where the
data is represented in a very high dimensional space, clustering both dimensions
of data matrix simultaneously is often more desirable than traditional one side
clustering. Co-clustering which is a simultaneous clustering of rows and columns
of data matrix consists in interlacing row clustering with column clustering at
each iteration [1,4,12]. It exploits the duality between rows and columns and
therefore allows to effectively deal with high dimensional data.

The earliest co-clustering formulation called Direct clustering has been intro-
duced by Hartigan [10], who has proposed a greedy algorithm for hierarchical
co-clustering. In [3], the author developed a spectral co-clustering algorithm on
word-document data, the largest several left and right singular vectors of the nor-
malized word-document matrix are computed and then a final clustering step
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 273–283, 2016.
DOI: 10.1007/978-3-319-46349-0 24
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using kmeans is applied to the data projected to the topmost singular vectors.
Based on the information-theoretic, the authors [4] have proposed co-clustering
algorithm that presents a non-negative matrix as an empirical joint probability
distribution of two discrete random variables and set the co-clustering prob-
lem as an optimization problem. Model-based co-clustering techniques have also
shown promising results in several situations, the co-clustering of binary and
contingency data have been treated by using latent block Bernoulli and Poisson
models [7,8]. Note that all co-clustering methods implicitly perform an adaptive
dimensionality reduction at each iteration, leading to better document cluster-
ing accuracy compared to one side clustering methods. Even if the co-clustering
problem is not the main objective of low rank matrix approximation approaches,
these ones have attracted many authors for document clustering. Then, different
algorithms based on low rank matrix approximation or more precisely on the
non negative matrix factorization (NMF) are proposed [5,11,15].

In this paper, we propose a new co-clustering framework based on a Bisto-
chastic Matrix Approximation (BMA) formulation. To this end and contrary to
classical approaches [5,15], we first embed the co-clustering aim under NMF at
the beginning. The key idea is that the latent block structure, in a rectangu-
lar non-negative data matrix, is factorized into two factors, the row-coefficient
matrix R and column-coefficient matrix C indicating respectively the degree in
which a row and a column belongs to a cluster. Let A be N × M data matrix,
the proposed approach optimizes a relaxed formulation of the double kmeans
criterion in an NMF style. Then the optimization procedure looks for the best
approximation A ≈ RRT ACCT meaning the Frobenius norm with respect to
some suitable constraints generated by the properties of the matrices R and
C. Knowing that Πr = RRT and Πc = CCT are both doubly stochastic, the
theory of Markov chains says that the following iterative process

Â(t+1) = ΠrÂ
(t)Πc where Â(0) = A. (1)

converges to an equilibrium (steady) state. In this framework, we develop a
novel co-clustering algorithm for non-negative data matrix, which iteratively
computes the approximation Â from which we derive a co-clustering by the
calculation of its first left and right eigenvectors. Numerical experiments demon-
strate the potential of the used framework in proposing an efficient algorithm to
co-clustering without requiring the numbers of row and column clusters.

The rest of paper is organized as follows. Section 2 introduces the co-
clustering problem. Section 3 provides a sound BMA framework for co-clustering.
Section 4 focus on some details on the proposed BMA algorithms. Section 5 estab-
lish the connection between BMA algorithm and spectral co-clustering. Section 6
is devoted to numerical experiments. Finally, the conclusion summarizes the
advantages of our contribution.

2 Co-clustering: Criterion and Algorithms

Given a data matrix A = (aij) ∈ RN×M , the aim of co-clustering can be
reached by optimizing the difference between A = (aij) and the clustered
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matrix revealing significant block structure. More formally, we seek to parti-
tion the set of rows I = {1, . . . , N} into K clusters P = {P1, . . . , PK} and the
set of columns J = {1, . . . ,M} into L clusters Q = {Q1, . . . , QL}. The two
partitioning naturally induce clustering index matrices R = (rik) ∈ RN×K

and C = (cj�) ∈ RM×L, defined as binary classification matrices such as∑K
k=1 rik = 1 and

∑L
�=1 cj� = 1. Specifically, we have rik = 1, if the row

ai ∈ Pk, and 0 otherwise. The matrix C is defined similarly by cj� = 1, if
the column aj ∈ Q�, and 0 otherwise. Thanks to rik and cj�, a submatrix or
block Ak� is therefore defined by {(aij)|rikcj� = 1}. On the other hand, we note
S = (sk�) ∈ RK×L a reduced matrix specifying the cluster representation. The
detection of homogeneous blocks in A can be reached by looking for the three
matrices R, C and S minimizing the total squared residue measure

J (A,RSCT ) = ||A − RSCT ||2. (2)

The term RSCT characterizes the information of A that can be described by
the cluster structures. The clustering problem can be formulated as a matrix
approximation problem where the clustering aim is to minimize the approxima-
tion error between the original data A and the reconstructed matrix based on the
cluster structures. Note that this matricial formulation can take the following
form

J (A,RSCT ) =
∑

i,j,k,�

rikcj�(aij − sk�)2.

With fixed Pk and Q�, it is easy to check that the optimum S is obtained by
sk� =

∑
i,j,k,� rikcj�aij

rkc�
where, rk = |Pk| and c� = |Q�| (|.| denotes the cardinality

of a cluster). In other words, each sk� is the centroid of Ak�. The approximation of
A can be solved by an iterative alternating least-squares optimization procedure.
When A is not necessarily non negative, different algorithms have been proposed
to minimize this criterion (see for instance, [9]). These algorithms are equivalent
and consist in using the principle of a double kmeans; simplicity and scalability
are its advantages.

3 BMA Framework for Co-clustering

3.1 NMF Formulation

By considering double kmeans as a lower rank matrix factorization, with con-
straints, rather than a co-clustering method, we can formulate constraints
to impose on NMF formulation. Let D−1

r ∈ RK×K and D−1
c ∈ RL×L be

diagonals matrices defined as follow D−1
r = Diag(r−1

1 , . . . , r−1
K ) and D−1

c =
Diag(c−1

1 , . . . , c−1
L ). Using the matrices Dr,Dc, A,R and C, the matrix sum-

mary S can be expressed as S = D−1
r RT ACD−1

c . Plugging S into the objective
function Eq. (2) leads to optimize ||A − R(D−1

r RT ACD−1
c )CT ||2 equal to

||A − RRT ACCT ||2, (3)



276 L. Labiod and M. Nadif

where R = RD−0.5
r and C = CD−0.5

c . Note that this formulation holds even if
A is not nonnegative, i.e., A has mixed signs entries. On the other hand, it is
easy to verify that the approximation RRT ACCT of A is formed by the same
value in each block Ak�. Specifically, the matrix RT AC, equal to S, plays the
role of a summary of A and absorbs the different scales of A, R and C. Finally
the matrices RRT A, ACCT give respectively the row and column clusters mean
vectors. Note that it is easy to show that R and C verify the following properties

⎧
⎨

⎩

R ≥ 0,RT R = IK ,RRT1 = 1, T race(RRT ) = K, (RRT )2 = RRT

and
C ≥ 0,CT C = IL,CCT1 = 1, T race(CCT ) = L, (CCT )2 = CCT .

(4)

The formulation (3) has been also proposed in [2,11] but in this paper, the
optimization process and the derived algorithm are different. Next, we consider
co-clustering from the perspective of bi-stochastic matrix approximation.

3.2 BMA Formulation

Given a data matrix A which derives from K rows clusters and L columns
clusters. Let us define Πr = RRT and Πc = CCT , we can hope to discover the
co-cluster structure of A from Πr and Πc. Notice that from (4) Πr and Πc are
both nonnegative, symmetric, bi-stochastic (doubly stochastic) and idempotent.
Setting the double kmeans in the BMA framework, the problem of clustering
can be reformulated as the seek of Πr and Πc minimizing ||A − ΠrAΠc||2. The
computation of Πr and Πc requires an iterative algorithm. We derive a general
algebraic model for co-clustering by considering the double k means as a BMA
problem given by

arg min
{Πr,Πc}

||A − ΠrAΠc||2. (5)

In the rest of this paper, we will consider only nonnegativity, symmetry and
bi-stochastic constraints. The Eq. 6 below establishes the equivalence between
double kmeans and the BMA formulation. Then, solving the BMA objective
function (5) is equivalent to finding a global solution of the double kmeans
criterion (2).

arg min
{R,S,C}

||A − RSCT ||2 ⇔ arg min
{Πr,Πc}

||A − ΠrAΠc||2 (6)

Due to the limited space, the detailed proof of this equivalence is omitted here.

4 BMA Co-clustering Algorithm

The bi-stochastic matrices Πr and Πc constructed from the cluster member-
ships matrix R and C can be viewed as a special type of similarity matrices.
Obviously, an arbitrary similarity matrix cannot be bi-stochastic. For a given
affinity matrix, there are multiple ways to derive a bi-stochastic matrix based
on different divergence functions. Next, we focus on the approximation of the
nearest bi-stochastic matrix using the Frobenius norm.
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4.1 Learning Similarity Matrix

First, we establish the relationship between our objective function and that used
in [14,16]. From

||A − ΠrA||2 = Trace(AAT ) + Trace(ΠrAAT Πr) − 2Trace(AAT Πr) (7)

and the properties in the first line of (4), we can show that

arg min
Πr

||A − ΠrA||2 ⇔ arg min
Πr

||AAT − Πr||2 ⇔ arg max
Πr

Trace(AAT Πr).

In the same way, on the other side we have

arg min
Πc

||A − AΠc||2 ⇔ arg min
Πc

||AT A − Πc||2 ⇔ arg max
Πc

Trace(AT AΠc).

We aim to optimize the quadratic form above with nonnegativity, symmetry and
bistochastic constraint on Π. We follow the standard optimization theory to find
the minima and we introduce the Lagrangian function

L = ||AAT − Π||2 − ΛT
1 (Π − 1) − ΛT

2 (Π − 1) (8)

where Λ1, Λ2 ∈ RN×1are the lagrangian multiplier vectors. The algorithm for
learning similarity matrix is summarized in Algorithm1 as in [14,16].

Algorithm 1. Learning similarity matrix
Input: data A
Output: similarity matrix Π
Initialize: t = 0 and Π(0) = AAT

repeat

Π(t+1) ← [Π(t) + 1
N

(I − Π(t) + 11T Π(t)

N
)11T − 1

N
11T Π(t)]

until Satisfied convergence condition

4.2 BMA Algorithm

Once the bi-stochastic similarity matrices Πr and Πc are obtained by using
Algorithm 1, the basic idea of the Bistochastic Matrix Approximation (BMA)
algorithm is based on the following steps:

1. Estimating iteratively A by applying at each time the matrices Πr and Πc

on the current A using the following update

Â(t+1) = ΠrA
(t)Πc. (9)

This process converges to an equilibrium (steady) state. Let g be the multi-
plicity of the eigenvalue of matrix Πr equal to 1 and l the multiplicity of the
eigenvalue equal to 1 of Πc, Â is composed of g � m quasi-similar rows and
quasi-similar columns l � n, where each row and each column is represented
by its prototype.
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2. Extracting the first left and right singular vectors πr and πc of Â using the
Power Method [6] as described in Algorithm 2. The power method is the well-
known technique used for computing the largest left and right eigenvectors of
data matrix. For numerical computation of the leading singular vectors of Â,
we use a new variant of this method adapted to the case of rectangular data
matrix which. It consists in starting with an arbitrary vector π

(0)
r , repeat-

edly performing alternated updates of πc and πr. These steps are grouped in
Algorithm 2.

Algorithm 2. Modified power method
Input: data Â

Initialize: π
(0)
r = Â1, π

(0)
r ← π

(0)
r

||π(0)
r ||

repeat

π
(t+1)
c = Âπ

(t)
r where π

(t)
c ← π

(t)
c

||π(t)
c ||

π
(t+1)
r = ÂT π

(t)
c where π

(t)
r ← π

(t)
r

||π(t)
(r)||

γ(t+1) ← ||π(t+1)
r − π

(t)
r || + ||π(t+1)

c − π
(t)
c ||

until stabilization of πr, πc, |γ(t+1) − γ(t)| � 0

At first sight, this process might seem uninteresting since it eventually leads
to a vector with all rows and columns coincide for any starting vector. However
our practical experience shows that, first the vectors πr and πc very quickly col-
lapse into rows and columns blocks and these blocks move towards each other
relatively slowly. If we stop the power method iteration at this point, the algo-
rithm would have a potential application for data visualization and co-clustering.
The structure of πr and πc during short-run stabilization makes the discovery of
rows and columns data ordering straightforward. The key is to look for values
of πr and πc that are approximately equal and reordering rows and columns
data accordingly. The BMA algorithm involves a reorganization of the rows and
the columns of data matrix A according to sorted πr and πc. It also allows to
locate the points corresponding to an abrupt change in the curve of the first
left and right singular vectors πr and πc, and then asses the number of clusters
and the rows or columns belonging to each cluster. The principal steps of the
BMA algorithm are summarized in Algorithm3. To illustrate why the BMA algo-
rithm works well in co-clustering context, we show in the sequel, the connection
between BMA co-clustering algorithm and spectral co-clustering method [3].

5 Relationship Between BMA Algorithm and Spectral
Co-clustering

BMA is related to spectral co-clustering in that it finds a low dimensional embed-
ding of data, and kmeans or another clustering techniques are used to produce
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Algorithm 3. Approximation of A

Input: data A, Πr and Πc

Output: data Â, sorted πr and πc

repeat
A(t+1) = ΠrA

(t)Πc, γ(t+1) ← ||A(t+1) − A(t)||2
until |γ(t+1) − γ(t)| � 0
Deduce: Â
Compute: πr and πc by using Algorithm 2.

the final co-clustering. But as a result, in this paper it is not necessary to find
any singular vector as most co-clustering methods do. In order to find a low
dimensional embedding for co-clustering, the embedding just needs to be a good
linear combination of the left and the right singular vectors respectively. In this
respect BMA is a different approach. In spectral co-clustering the embedding is
formed by the bottom left and right eigenvectors of a normalized data matrix
[3]. In BMA, embedding is defined as weighted linear combination of singular
vectors, then πr is a defined as linear combination of all left singular vectors of
Â and πc as weighted linear combination of all right singular vectors of Â. The
left and right embedding turn out to be very interesting for data reordering and
co-clustering. From the start, the first largest left and right singular vectors of
Â are not very interesting since they move towards the uniform distribution via
a long run times. However the intermediate πr and πc obtained by BMA after a
short run time are very interesting. The experimental observation suggests that
an effective reordering might run BMA for a small number of iterations.

Let us define the (n+m) by (n+m) data matrix M as follow M =
(

0 Â

ÂT 0

)
.

Assuming that M is diagonalizable, then it exists a non singular matrix Q of
eigenvectors such that Q−1MQ = diag(λ1, λ2, . . . , λn+m). Furthermore, assum-
ing that the eigenvalues are ordered |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn+m| and

expanding the initial approximation π(0) =

[
π
(0)
r

π
(0)
c

]
in terms of the eigenvectors

of M : π(0) = c1q1 + c2q2 + . . . + cn+mqn+m with qk =
[

uk

vk

]
where the upper

part uk is for the rows of Â and the lower part vk is for the columns of Â, ck �= 0
is assumed. We have

π(t) = M(t)π(0) = λ
(t)
1 (c1q1 +

n+m∑

k=2

ck(
λk

λ1
)(t)qk) (10)

for k = 2, . . . , n + m, we have |λi| < |λ1|, so the second term tends to zero, and

the power method converges to the eigenvector q1 =
[

u1

v1

]
corresponding to the

dominant eigenvalue λ1. The rate of convergence is determined by the ratio |λ2
λ1

|,
if this is close to one the convergence is very slow.
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In Eq. (10), we expand the left eigenvector π(t) as a linear combination of the

eigenvectors of M(t). It is easy to see that π(t) =

[
π
(t)
r

π
(t)
c

]
is the leading eigenvector

of M(t). Mathematically, in Eq. (11) we show that the leading eigenvector of M(t)

is closely related to the first singular vectors of Â(t), π
(t)
r and π

(t)
c are the left

and right singular vector of Â(t) respectively.
[

π
(t)
r

π
(t)
c

]
=

[
0 Â(t)

ÂT (t) 0

][
π
(0)
r

π
(0)
c

]
=

[
Â(t)π

(0)
c

ÂT (t)π
(0)
r

]
. (11)

More interestingly, Eq. (11) above provides the update equations given in Algo-
rithm2. Also, instead of constructing M (like the most spectral co-clustering
methods do) which is bigger and sparser than the approximated data Â, we
provide a way to cocluster, not using M but directly from Â.

Now, by exploiting the block structure of M in Eq. (10), we show in Eq. (12);
π
(t)
r as a linear combination of the left singular vectors of Â and π

(t)
c as a linear

combination of the right singular vectors of Â.
[

π
(t)
r

π
(t)
c

]
=

[
λ
(t)
1 (c1u1 +

∑n
i=2 ci( λi

λ1
)(t)ui)

λ
(t)
1 (c1v1 +

∑n+m
j=n+1 cj(

λj

λ1
)(t)vj)

]
. (12)

The BMA insight is the observation that while BMA iteration run to convergence
will give us the principal singular vector for a matrix, running BMA iteration
on Â to what we call local convergence will give us tow vectors πr that is a
linear combination of the k right singular vectors and a vector πc that is a linear
combination of the k left singular vectors corresponding to the k largest singular
values of Â. Assuming that the gap between λk and λk+1 is large, and that the
gap between λ1 and λ2, . . . , λk is not very large, we note that BMA iteration on
Â will converge locally before converging globally. We define local convergence
as the point at which the kth to nth singular values are no longer influencing
the term πr and πc in BMA iteration.

Furthermore, we assume that at this point, the vector πr (resp πr) has
converged locally to the row clusters represented by an embedding into the
space spanned u1, ..., uk (resp v1, ..., vk) in spectral co-clustering. Local conver-
gence is detected by recognizing the point at which |γ(t+1) − γ(t)| � 0 where
γ(t+1) ← ||π(t+1)

r − π
(t)
r || + ||π(t+1)

c − π
(t)
c ||.

Now, to use the locally-converged πr and πc to clustering the rows and
columns of data, we observe that the entries in πr and πc should be approx-
imately piecewise-constant. Thus, the linear combination of these singular left
and right vectors will give an approximately piecewise-constant vector, where
each piece corresponds to one of the clusters.

6 Numerical Experiments

We now provide experimental results to illustrate the behavior of the BMA
algorithm in data visualization and co-clustering contexts.
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6.1 Simulated Data

We visualize two synthetic (500 × 300) data sets with 6 co-clusters, generated
according to a latent block Bernoulli mixtures model [7]: data1 and data2 with
three different patterns illustrated respectively in the left of Figs. 1 and 2. The co-
clustering task is to recover groups of rows and columns. After the step learning,
the clusters indicators are given by the vectors πr and πc. We then reorganize
the rows and columns separately or simultaneously according the obtained co-
clusters in the middle of Figs. 1 and 2. From the simulated data, the πr and πc

plots are shown in the right of these figures. It can be seen that our method
reconstructs effectively all co-clusters for balanced and unbalanced data sets.
For all data, the πr and πc plots show that the number of abrupt changes and
in each plot it correlates well with the true number of clusters.

6.2 Real Datasets

To evaluate BMA in terms of clustering, we used four datasets whose charac-
teristics are reported in Table 1. The first three datasets, commonly used in
document clustering, are word-by-document matrices whose rows correspond to
documents, and columns to words; each cell denotes the frequency of a word in a
document. Classic3 [3] contains three classes denoted Medline, Cisi, Cranfield.
CSTR consists of abstracts, which were divided into four research areas: Natural
Language Processing (NLP), Robotics/Vision, Systems and Theory. WebKB4
consists of four webpages collected from computer science departments: student,
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Table 1. Clustering accuracy and normalized mutual information (%)

Datasets # samples # features # classes per NMF ONMTF SpecCO BMA

Classic3 3891 4303 3 ACC 73.33 70.10 97.89 98.30

NMI 51.46 51.46 91.17 91.91

CSTR 476 1000 4 ACC 75.30 77.41 80.21 90.73

NMI 66.40 67.30 66.36 77.86

Webkb4 4199 1000 4 ACC 66. 30 67.10 61.68 68.8

NMI 42.70 45.36 48.64 49

Leukemia 38 5000 3 ACC 89.21 90.32 94.73 97.36

NMI 75.42 80.50 82 90.69
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Fig. 3. Number of BMA iterations necessary to achieve: (left) - γ(t+1) = ||A(t+1) −
A(t)||2 � 0 and (right) - Acceleration = |γ(t+1) − γ(t)| � 0.

faculty, course and project. The last dataset Leukemia contains expression lev-
els of genes taken over samples. This data set is well known in the academic
community, it can be divided into three (ALL-B/ALL-T/AML) clusters.

We compared the performance of BMA with the spectral co-clustering [3],
NMF and ONMTF [5] by using two evaluation metrics: accuracy (ACC) corre-
sponding to the percentage of well-classified elements and the normalized mutual
information (NMI) [13]. In Table 1, we observe that BMA outperforms the spec-
tral co-clustering, NMF and ONMTF in all situations. Furthermore, BMA needs
only few iterations to achieve |γ(t+1) − γ(t)| � 0. The convergence behaviour is
empirically illustrated on CSTR dataset (Fig. 3).

7 Conclusion

Our main contribution in this paper is the proposition of an efficient BMA
co-clustering algorithm. Our contribution is firstly an extension of the works of
[14,16], to co-clustering context. More precisely, our proposed approach, not only
learns two similarity matrices from rows and columns of data matrix, but uses
these two matrices in an iterative process that converges to a matrix Â in which
each row and each column is represented by its prototype. The co-clustering
solution is given by the first left and right eigenvectors of Â while overcoming
the knowledge of the number of co-clusters.
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Abstract. We propose a reinforcement learning based approach to
tackle the cost-sensitive learning problem where each input feature has a
specific cost. The acquisition process is handled through a stochastic pol-
icy which allows features to be acquired in an adaptive way. The general
architecture of our approach relies on representation learning to enable
performing prediction on any partially observed sample, whatever the
set of its observed features are. The resulting model is an original mix of
representation learning and of reinforcement learning ideas. It is learned
with policy gradient techniques to minimize a budgeted inference cost.
We demonstrate the effectiveness of our proposed method with several
experiments on a variety of datasets for the sparse prediction problem
where all features have the same cost, but also for some cost-sensitive
settings.

1 Introduction

We are concerned here with budgeted learning, where we want to design algo-
rithms that perform optimal compromises between (small) test cost and (high)
accuracy. Most of today’s machine learning approaches usually assume that the
input (i.e. its features) is fully observable for free. However, it is often a strong
assumption: indeed, each feature may have to be acquired and this acquisition
usually has a cost, e.g. computational or financial. Hence, in many applications
(e.g. personalized systems), the prediction performance may be seen as a trade-
off between the said prediction accuracy (as in classical machine learning set-
tings), and the cost of the information (i.e. features) needed to perform this
prediction1. A natural approach to optimize such a trade-off is to rely on feature
selection through e.g. L1 regularization [2] or dimensionality reduction. But it
is likely that an optimal feature selection should be sample dependent. A better
solution should then be adaptive, i.e. the features should be acquired depending
on what has been previously gathered and observed, which asks for a sequen-
tial acquisition process. Medical diagnosis illustrates this case, where a doctor,
to set a diagnosis, only asks for the results of a few exams, which depend on
1 We consider here that the computation cost (time spent to compute the prediction

based on the acquired features values) is negligible w.r.t to the acquisition cost, as
it is usually done in cost-sensitive approaches – see Sect. 4.
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the patient and his previous results on other exams. Moreover, it may happen
that the acquisition cost varies from a feature to another, as in medical diagno-
sis again, where some medical results are cheap to acquire (e.g. blood analysis),
while other can be quite expensive (e.g. fMRI exams). In this cost-sensitive case,
lowering the acquisition cost is not only a matter of number of features gathered.

We consider the challenging setting that may be characterized by the follow-
ing properties: (i) optimality is defined as a trade-off between prediction quality
and acquisition cost, (ii) each feature may have a different acquisition cost,
(iii) prediction may be made from a partially observed input -i.e with only a
subset of its features-, (iv) the optimal subset of features to acquire (to perform
accurate prediction) depends on the input sample.

We present in this paper a stochastic sequential method that relies on both
reinforcement learning through the use of policy gradient inspired techniques
and representation-learning to tie the prediction and acquisition tasks together.
Section 2 describes our proposal. We first introduce the generic formulation of
our sequential modeling framework and explain how it may be optimized through
gradient descent. We then detail how it is mixed with representation learning to
enable dealing with our setting. We next report in Sect. 3 experimental results
gained in various settings. Finally Sect. 4 situates our work with respect to the
main approaches in the literature.

2 Cost Sensitive Classification as a Sequential Problem

We consider the classification problem of mapping an input space X to a set
of classes Y, where examples x ∈ X have n features (xi denotes the i-th fea-
ture of x) (we focus on classification for clarity but our work may be applied
straightforwardly to other tasks like regression or ranking). We consider that
our model produces a score for each possible category (i.e. positive scores for
true categories, and negative scores for wrong ones), the quality of the predic-
tion being measured through a loss function Δ : R

Y × Y → R
+ (e.g. hinge

loss), where we consider the prediction function to output a score for each class
(with Y being the cardinality of Y), and we assume that this loss function is
differentiable almost everywhere on its first component. This corresponds to the
classical context of numerical classifiers like SVM or neural networks.

We focus on predictors that iteratively acquire new features of an input x
and that finally perform prediction from the observed partial view of x. To do
so, we consider sequential methods that acquire features from x through a series
a = (at)t=1..T of T acquisition steps (T is a hyper-parameter of the approach)
encoded as binary vectors at ∈ {0; 1}n indicating which features are acquired at
time t: at,i = 1 iff feature i is acquired. The final prediction is made based on
the set of features that have been acquired along the acquisition process that we
note a = (a1, ..., aT ). Noting ā ∈ {0; 1}n the vector whose i-th component equals
āi = max(a1,i, ...., aT,i), i.e. it is 1 iff feature i has been acquired at any step
of the process, the final prediction is noted as d(x[ā]) where d is the prediction
function and x[ā] stands for the partial view acquired on x along acquisition
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Algorithm 1. The sequential inference algorithm
procedure Inference(x, T )

a0 = 0
for t = 1..T do

Sample at from π(at|x[(a1, .., at−1])
Acquire x[at] where new features are such that at,i = 1

end for
return ŷ = dθ(x[ā])

end procedure

sequence a. Note that this formalism allows the model to acquire many features
at each timestep – while classical existing sequential features acquisition models
usually only allow to get the features one by one as explained in Sect. 4, resulting
in a high complexity.

Quite generally, we consider that feature acquisition is a stochastic process
that we want to learn, and that every at is sampled following an acquisition
policy denoted π(at|a1, ..., at−1, x), which corresponds to the probability of
acquiring the features specified in at, given all previously acquired features. This
policy is jointly learned with the prediction function d. The inference algorithm
goes like the one described in Algorithm 1. Many feature acquisitions approaches
can be expressed within this formalism. For example, static (e.g. not adaptive)
feature selection corresponds to one step models (T = 1), while decision trees
may be thought as acquiring a new feature one at a time that deterministically
depend on the values of the features that were previously observed.

We now introduce our objective function. Considering that the feature acqui-
sition cost might not be uniform, we note ci ≥ 0 the acquisition cost of feature i
and c the vector of all features’ costs. The overall acquisition cost for classifying
an input x given an acquisition sequence a is then equal to āᵀ.c =

∑n
i=1 āi × ci.

The cost-sensitive and sequential feature acquisition learning problem may
then be cast as the minimization of the following loss function J , which depends
on the prediction function d and on the policy π:

J (d, π) = E(x,y)∼p(x,y)

[
Ea∼π(a|x) [ Δ(d(x[ā]), y) +λāᵀ.c]] (1)

where λ controls the trade-off between prediction quality and feature acquisition
cost, p(x, y) is the unknown underlying data distribution, and Ea∼π(a/x)[.] stands
for the expectation on the sequence of acquisition a given a particular input
sample x and the acquisition policy induced by π.

The empirical loss J emp(d, π) is defined on a training set of � samples{
(x1, y1), ..., (x�, y�)

}
as:

J emp(d, π) =
1
�

�∑

k=1

Ea∼π(a|xk)[Δ(d(xk[ā]), yk) + λāᵀ.c] (2)
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2.1 Policy-Gradient Based Learning

In order to simultaneously learn the policy π and the prediction function d, we
propose to define these two functions as differentiable parametric functions dθ

and πγ , which allows us to use efficient stochastic gradient descent optimization
methods. The parameter sets θ and γ are learned by optimizing the empirical
cost in Eq. 2 (details on π and d are given later in this Section). We explain now
how optimization is performed.

Let us rewrite the empirical loss in Eq. 2 for a single training example (x, y)
(to improve readability), J emp(x, y, γ, θ):

J emp(x, y, γ, θ) = Ea∼πγ(a|x) [Δ(dθ(x[ā]), y) + λāᵀ.c ] (3)

To overcome the non differentiability of the max operator in ā we propose to

upper bound āᵀ.c with
T∑

t=1
aᵀ

t .c and to perform the gradient descent over this

bound. This bound is exactly equal to J emp when a feature can be acquired
only once along an acquisition sequence a. In our implementation we chose not
to impose such a constraint which yields this rather tight and easier to optimize
(smooth) upper bound.2 The upper bound on the empirical risk may be rewritten
as (omitting details):

J emp(x, y, γ, θ) ≤ Ea∼πγ(a|x) [Δ(dθ(x[ā]), y)] + λEa∼πγ(a|x)

[
T∑

t=1

aᵀ
t .c

]

= Ea∼πγ(a|x) [Δ(dθ(x[ā]), y)] + λ

T∑

t=1

n∑

i=1

πγ(at,i = 1|x).ci

(4)

where πγ(at,i = 1|x) is the probability of acquiring the ith feature at time-step t.
The first term stands for the prediction quality while the second term is the
upper bound on the cost of the acquisition policy. The gradient of this upper
bound can be written as follows:

∇γ,θĴ (x, y, γ, θ) = ∇γ,θEa∼πγ(a|x)Δ(dθ(x[ā]), y) + λ∇γ,θ

T∑

t=1

n∑

i=1

πγ(at,i = 1|x).ci (5)

The gradient of the prediction quality term may be computed using policy-
gradient based techniques [12,20] (we do not provide details here for space con-
straint, the final form is detailed later in Eq. 7) and the gradient of the acquisition
policy term can be evaluated as follow by using Monte-Carlo approximation over
M trail histories, where a is sampled w.r.t πγ(a|x):

∇γ,θ

T∑

t=1

n∑

i=1

πγ(at,i = 1|x).ci ≈ 1
M

M∑

m=1

T∑

t=1

n∑

i=1

ci∇γ,θπγ(at,i = 1|a1, ..., at−1, x)

(6)
2 However note that during test-time, e.g. in our experimental results in Sect. 3, when

a feature is acquired several times (i.e. at different steps), we count its cost in eval-
uation only once.
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Algorithm 2. Inference algorithm with representation-based components
procedure Inference with Representation(x, (p, θ, β, γ, T ))

a0 = 0
z1 = 0(∈ R

p)
for t = 1..T do

Sample at from fγ(zt)
Acquire x[at] where new features are such that at,i = 1
zt+1 ← Ψβ(zt, x[at])

end for
return ŷ = dθ(zT+1)

end procedure

2.2 Representing Partially Acquired Data

The last component that completes our proposal (and makes it fully learnable
with gradient descent) is a mechanism allowing to iteratively build a repre-
sentation of an input along the acquisition process, starting with z1, then z2,
up to zT+1. The successive representations {zt} of x all belong to a common
representation space ∀t, zt ∈ Z = Rp (with p ≈ 20 in our experiments). This
representation space allows expressing any partially observed input x. The infer-
ence process - see Algorithm 2 – starts with a null representation of x at step
1, z1 = 0. Then this representation is refined every iteration t according to
zt = Ψβ(zt−1, x[at−1]), i.e. an aggregation between the previous representation
and the newly acquired features. The final prediction is performed from the
finally obtained representation of x: ŷ = dθ(zT+1). Doing so one may define a
prediction function operating on Z, d : Z → R

Y which is then callable on any
partially observed input. We operate the same way for the acquisition policy and
we define πγ(at|a1, . . . , at−1, x) = fγ(zt), where fγ : Z → [0, 1]n.

When reintroducing these functions and the representations zt into the loss,
we get the following gradient estimator:

∇γ,θ,βĴ (x, y, γ, θ, β) ≈ 1

M

M∑

m=1

[

Δ(dθ(zT+1), y)
T∑

t=1

∇γ,θ log fγ(zt)

+∇γ,θ(Δ(dθ(zT+1), y) + λ
T∑

t=1

n∑

i=1

∇γ,θfγ,i(zt).ci

]

(7)

with at sampled w.r.t. fγ(zt), and fγ,i is the i-th component of the output of
fγ . Note that this gradient can be efficiently computed using back-propagation
techniques as it is usually done when using recurrent neural networks for
example.

Various instances of the proposed framework can be described, depending on
the choices of the fγ , Ψβ and dθ functions. We tested two non-linear functions as
aggregation function Ψβ , RNN cells and Gated Recurrent Units (GRUs [6]), and
used linear functions for dθ. Regarding fγ , we propose to use a Bernouilli-based
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sampling model (B-REAM): it samples at as a set of a bernoulli distribution,
i.e. each component i of fγ corresponds to the probability of sampling feature xi.
This allows to sample multiple features at each time-step, which is an interesting
and original property regarding state of the art, and can be implemented using
linear functions followed by a sigmoid activation function. Note that one can
learn a unique function fγ or one can learn a distinct function fγ for every step
(i.e. with its own set of parameters γt), which is what we did in our experiments.

With our implementation choices, the final representations, hence the final
prediction, which are obtained after a sequence of T acquisition steps, are thus
highly nonlinear function of the input, giving this model a deep network’s like
capacity.

Table 1. Accuracy at different cost levels i.e. the amount (%) of features used. The
accuracy is obtained through a linear interpolation on accuracy/cost curves. The same
subset of train/validation/test data have been used for all models for each dataset.
Acquiring 25 % of the features is equivalent for these datasets to using from 4 features
(on letter) to 41 features (on musk).

Corpus name Nb. Ex Nb. Feat Nb. Cat Model Amount of features used (%)

90% 75% 50% 25%

Letter 6661 16 26 SVM L1 0.483 0.330 0.236 0.142

C4.5 0.823 0.823 0.823 0.484

GreedyMiser 0.749 0.401 0.275 0.156

B-REAM 0.738 0.695 0.660 0.441

Pendigits 2460 16 10 SVM L1 0.795 0.555 0.327 0.245

C4.5 0.944 0.944 0.944 0.796

GreedyMiser 0.858 0.678 0.649 0.375

B-REAM 0.975 0.963 0.948 0.782

Cardiotocography 685 21 10 SVM L1 0.683 0.580 0.496 0.338

C4.5 0.775 0.775 0.775 0.771

GreedyMiser 0.827 0.818 0.751 0.480

B-REAM 0.807 0.807 0.800 0.809

Statlog 1105 60 3 SVM L1 0.775 0.741 0.703 0.630

C4.5 0.823 0.823 0.823 0.823

GreedyMiser 0.851 0.846 0.831 0.765

B-REAM 0.864 0.864 0.860 0.851

Musk 2175 166 2 SVM L1 0.950 0.950 0.942 0.921

C4.5 0.942 0.942 0.942 0.942

GreedyMiser 0.950 0.950 0.951 0.952

B-REAM 0.968 0.969 0.970 0.963

3 Experiments

We present in this section a series of experiments on feature-selection problems
and on cost-sensitive setting, conducted on a variety of datasets on the mono-
label classification problem.
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(a) Accuracy/Cost curves on statlog. (b) Accuracy/Cost curves on cardio.

Fig. 1. Accuracy/Cost curves on two different datasets of UCI, comparing L1SVM,
GreedyMiser, B-REAM with 3 steps.

Experimental protocol: Due to the bi-objective nature of the problem
(maximizing accuracy while minimizing the acquisition cost), it is not possible
to do cross-validation on multiple batches. We use the following experimental
validation protocol, where each dataset has been split in training, validation and
testing sets, each split corresponding to one third of the examples: (1) A set of
models is learned on the training set with various hyper-parameters values.
(2) We select the models that are on the Pareto front of the accuracy/cost
points inferred on the validation set from the previously learned models.
(3) We compute accuracy and cost for each of the “Pareto” models on the test
set, which are the results reported here.

We have launched a variety of experiments to evaluate our stochastic
bernouilli-based acquisition model B-REAM. We used a least-square loss func-
tion Δ. The experimental results have been obtained with the software provided
at http://github.com/ludc/csream and are fully reproducible.

Our method is compared with three state-of-the-art features selection
approaches: (i) SVM L1 is a L1 regularized linear SVM. (ii) Decision Trees
can be seen as particular cases of sequential adaptive predictive models3

(iii) Greedy Miser [23] is a recent cost-sensitive model that relies on several
weak classifiers (Decision Trees) where the acquisition cost is integrated as a
local and a global constraint4.

Feature Selection Problem: In this setting, we consider that all the features
have the same cost, i.e. ∀i, ci = 1. We therefore express the cost directly as the
percentage of feature gathered regarding the total number of features. It thus
corresponds to a problem of adaptive sparse classification.
3 These two baselines don’t allow to integrate a specific cost per feature during

learning.
4 We used the MATLAB implementation provided by the authors http://www.cse.

wustl.edu/∼xuzx/research/code/code.html.

http://github.com/ludc/csream
http://www.cse.wustl.edu/~xuzx/research/code/code.html
http://www.cse.wustl.edu/~xuzx/research/code/code.html
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The results obtained on different UCI datasets are summarized in Table 1
for various percentages amount of acquisition. Conjointly, Fig. 1 presents the
associated accuracy/cost curves on two of these datasets for better illustration.
For example, on dataset cardio (Fig. 1b), the model B-REAM learned with 3
steps of acquisition obtains an accuracy of approximately 70% for a cost of 0.2
(i.e. acquiring 20% of the features on average), while GreedyMiser reaches 45%
accuracy for the same amount of features.

Overall, the results provided in Table 1 illustrate the competitiveness of our
approaches in regard to state of the art models (GreedyMiser and other base-
lines). Yet it is interesting to note that naive baseline such as a Decision Tree can
achieve quite good results on few datasets (e.g. letter), and may remain com-
petitive nonetheless on the others. But, on average, B-REAM exhibits a high
ability to adaptively select the “good” features, and to simultaneously use the
gathered information for prediction.

Cost-Sensitive Setting: This section focuses on the cost-sensitive setting, where
each feature is associated with a particular cost. We propose to study the abil-
ity of our approach to tackle such problems on two artificially generated cost-
sensitive datasets (from UCI) and on two cost-sensitive datasets of the litera-
ture [15]. Figure 2 illustrates the performance on these 4 different datasets. The
X-axis corresponds to the acquisition cost which is the sum of the costs of the
acquired features during inference on the test set. On the 4 datasets, one can see
that our B-REAM approach obtain similar results or outperforms GreedyMiser
(to which we compare our work since it has been designed for cost sensitive fea-
ture acquisition as well). We can observe an interesting behaviour on the two real
medical datasets: there exist cost thresholds to reach a given level of accuracy
(e.g. Fig. 2d, when cost ≈ 23, or Fig. 2c when cost ≈ 14). This phenomenon is
due to the presence of expensive features that clearly bring relevant information.
A similar behaviour is observed with GreedyMiser and with B-REAM, but the
latter seems more agile and able to better benefit from relevant expensive fea-
tures5. We suppose that this is due to the use of reinforcement-learning inspired
learning techniques which are able to optimize a long-term objective i.e. the
cumulative some of costs over an acquisition trajectory.

4 Related Work

The feature acquisition problem has been studied by different approaches in the
literature. The first propositions were static methods (feature selection), where

5 Note that due to the small size of the real-world datasets (hepa and pima) the
performance curve is not monotonous. Actually the difference between the pareto
front on the validation set and the resulting performance on the test set suffers
from a “high” variance. Moreover, this variance cannot be reduced by averaging
over different runs because resulting accuracy/cost curves are composed of points at
different cost/accuracy levels and cannot be matched easily. Yet these curves show
significative trends in our opinion.
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(a) Cost-sensitive task on pendigits (b) Cost-sensitive task on cardio

(c) Cost-sensitive task on hepatitis (d) Cost-sensitive task on pima

Fig. 2. Accuracy/Cost in the cost-sensitive setting. Top: results on two UCI datasets,
in a, b, artificially made cost-sensitive by defining the cost of a feature i as ci = i

n
,

where n is the total number of features. Bottom: Results on two medical datasets, with
real costs as given in [15] for c, d.

there is only one step of acquisition and the subset acquired is therefore common
to all inputs. [8] presents various methods in this settings such as filter models
(e.g. variable ranking), and wrapper approaches like [11]. Integration of the fea-
ture selection in the learning process has been proposed for example in [2,18,19],
by using resp. l1-norm and l0-norm in SVM. Adaptive acquisition approaches
were then proposed, for example by estimating the “usefulness” (information
value) of the features, as in [3] which present a specific data structure to do so.
Using an estimation of the gain a feature would yield has also been proposed
in [4] with greedy strategies to learn a naive Bayes classifier. Reinforcement
learning has also been proposed in this setting, to learn a value-function of the
information gain [17]. In parallel, several methods relying on decision trees have
been presented as they provide efficient adaptive acquisition properties. They
are for example used as weak classifiers learned with constraints on the features
used in [21,23]. Cascade architecture, e.g. [16] or more recently [22], are another
important part of the feature acquisition literature, and they usually enable the
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possibility of early-stopping in the acquisition. The objective is then to learn
which features to acquire at each stage of the cascade using for example additive
regression method [5]. Block acquisition has been proposed in [13] but the groups
of features are pre-assigned.

Closer to our work, several methods using a Markov Decision Process for-
malization or reinforcement learning techniques have been presented. Partially-
observable MDP with a myopic algorithm is presented in [10], while [1] propose
a Markov Decision Directed Acyclic Graph to design a controller that decides
between evaluating (a feature), skipping it or classifying. [14] also present a
MDP-based model that choose between classifying or acquiring the “next fea-
ture” at each step. Regarding reinforcement methods, algorithms to learn acqui-
sition policies have been proposed for example using imitation policies [9], how-
ever this requires an oracle to guide learning. [7] presents a method where the
“state” of the process is represented as a vector of the acquired features (built
following a pre-defined heuristic), this representation state is then used to learn
and follow the acquisition policy. Visual attention models such as [12], which
often rely on policy-gradient, are also close to our work, while being specific to
a particular type of inputs (images). They generally follow a recurrent archi-
tecture and aim at predicting locations of a patch of pixels to acquire, instead
of a subset of features. Regarding these various methods, our approach differs
on several aspects. It is one of the only method, to the best of our knowledge,
that relies on representation-learning and reinforcement learning and provides
adaptive and batch cost-sensitive acquisition of features without suffering from
the combinatorial problem, and without making assumption on the nature of
the (partially observed) input.

5 Conclusion

We presented a generic framework to tackle the problem of adaptive cost-
sensitive acquisition. The B-REAM model is based on both reinforcement learn-
ing and representation learning techniques, resulting in a stochastic cost-sensitive
acquisition model able to acquire block of features. We also showed that the
model performs well on different problem settings. This framework allows us to
imagine different research directions. We are currently investigating the integra-
tion of real-world budgets like CPU consumption or energy footprint. Moreover,
it would be an interesting line of future work to see if this type of approach can
be learned in a unsupervised way - like auto-encoders - allowing to transfer the
features acquisition policy to multiple tasks.
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ported by French state funds managed by the ANR within the Investissements d’Avenir
programme under reference ANR-11-LABX-65. Part of this work has benefited from a
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Abstract. Data that involves some sort of relationship or interaction
can be represented, modelled and analyzed using the notion of a network.
To understand the dynamics of networks, the link prediction problem is
concerned with predicting the evolution of the topology of a network
over time. Previous work in this direction has largely focussed on finding
an extensive set of features capable of predicting the formation of a link,
often within some domain-specific context. This sometimes results in a
“black box” type of approach in which it is unclear how the (often com-
putationally expensive) features contribute to the accuracy of the final
predictor. This paper counters these problems by categorising the large
set of proposed link prediction features based on their topological scope,
and showing that the contribution of particular categories of features can
actually be explained by simple structural properties of the network. An
approach called the Efficient Feature Set is presented that uses a lim-
ited but explainable set of computationally efficient features that within
each scope captures the essential network properties. Its performance is
experimentally verified using a large number of diverse real-world net-
work datasets. The result is a generic approach suitable for consistently
predicting links with high accuracy.

1 Introduction

Many real-world phenomena, structures and interactions can be described by
networks. Examples include links on the web, social interactions through online
media, co-authorship of scientific papers, connectedness of physical devices and
the spread of diseases. The field of network science [15] (or social network analy-
sis [24]) is concerned with mining patterns and structures in these networks.
Dynamic networks uncover a new property of networks to study: the process of
their evolution. Is it possible to predict which links will form between pages on
the web, to estimate the probability of two researchers co-authoring a paper in
the future, to predict whether a friendship between users in a social network
will at some point be formed; or to say which links are missing on Wikipedia?
In short: can we predict how a network will evolve in the future? In this paper,
we specifically consider the link prediction problem: based on the topology of a
network at a certain time, we want to predict exactly which links will form in the
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 295–307, 2016.
DOI: 10.1007/978-3-319-46349-0 26
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future. We wish to do so for real-world networks representing actual interactions,
relations or communication within a real system or environment [25]. Although
the underlying data of these networks is diverse, it is well-known that they have
a common structure: there is a power law degree distribution (they are scale-
free), there is a substantially higher than random number of closed triangles
(measured by the clustering coefficient) and the average distance between two
nodes is very low, typically between four and eight. This is altogether frequently
referred to as the small-world property of real-world networks [13]. To ensure
the generalisability of a link prediction technique across real-world networks, we
consider generic methods that can be defined for any type of real-world network
and are thus only based on the structure (topology) of the network.

In previous work, a number of topological measures have been proposed for
predicting whether links will form between two nodes in a network. We refer
to these measures as features: properties of the network that can be used to
predict whether a link will form. Link prediction then becomes a supervised
learning task : develop a classifier, trained on features derived from the current
network, able to predict which links will form in the future. The goal is not to
compare different supervised learning algorithms. Instead, we want to provide a
suitable alternative for the “black box” type of approach resulting from simply
reusing the large number of (often computationally expensive) features proposed
in previous work [2,7,16–19,21,23]. Therefore, we propose a categorization of
existing and new link prediction features into sets of features operating at distinct
topological scopes of the network, followed by an experimental assessment of
their performance. As a result, we are able to choose a much smaller subset of
useful features: the Efficient Feature Set. It provides a number of advantages in
terms of explainability, efficiency, consistency and general applicability.

The remainder of this paper is structured as follows. We explain how we
approach the link prediction problem in Sect. 2, followed by outlining previous
work in Sect. 3. We elaborate on link prediction features in Sect. 4, after which
we introduce the proposed Efficient Feature Set in Sect. 5. In Sect. 6 we conduct
experiments on real-world dynamic network data to test our method. Conclu-
sions and suggestions for future work are given in Sect. 7.

2 Problem Statement

In an undirected, unweighted network or graph G = (V,E), we have a set of
nodes V and a set of links E, where {u, v} ∈ E denotes whether a link exists
between nodes u, v ∈ V . In the case of a directed network, the nodes of a link are
ordered pairs and (u, v) ∈ E denotes that there is a directed link from node u to
v, but not necessarily that there is a link from v to u. For brevity, we henceforth
refer to the number of nodes |V | as n and the number of edges |E| as m. For
undirected networks, m denotes the number of undirected edges. In weighted
networks, each link is assigned a weight. We denote this weight as wuv for a link
(u, v) ∈ E. In undirected networks, one weight is assigned to each undirected
link such that wuv = wvu for all links {u, v} ∈ E.
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Link Prediction Problem: Given a network Gτ = (Vτ , Eτ ), denoting the
network at time τ , predict the newly formed links in the evolved network Gτ ′ =
(Vτ ′ , Eτ ′) at time τ ′ > τ , i.e., predict the contents of Eτ ′\Eτ .

Depending on the considered network, directed or undirected links are pre-
dicted. Note that we always consider predicting whether a link will form, and
not what weight it has when it is formed. To do link prediction as defined above,
we must have at least two observations of the same network at different points
in time. The link prediction problem can then be seen as a supervised binary
classification task, where, given a set of features x , the value of y has to be
predicted. Vector x is the value of particular features we deem suitable for pre-
dicting whether a link (u, v) will be formed at time τ ′ (with τ ′ > τ) and y is
a binary value indicating whether a link (u, v) has formed (y = 1) at τ ′ or not
(y = 0). We can then use metrics common in data mining to assess the quality
of some classifier and thus the accuracy of the performed link prediction task.
Ultimately, we aim for a classifier which satisfies the following properties:

1. Explainable in its performance based on simple topological network features.
2. Efficient in terms of computational complexity (and thus running time).
3. Accurate in providing correct link predictions.
4. Consistent in its accuracy relative to larger feature sets.
5. General, yielding reliable results across different real-world networks.

The five requirements above will be used to validate the performance of different
link prediction feature sets in Sect. 6.

3 Related Work

The roots of link prediction lie in the context of information retrieval [3],
focussing on the prediction or retrieval of missing data elements rather than
future network links. The term “link prediction” [18] was given to describe the
problem of predicting the formation of links and thus the evolution of a net-
work. Early algorithms focused on single measures, such as the work of Sarukkai
using Markov chains [23]. Later, it was tackled as a supervised learning task, for
example using linear regression, including the work by Popescul et al. [21] and
O’Madadhain et al. [19]. The seminal paper of Liben-Nowell and Kleinman [16]
introduced a large set of features to combine using supervised learning. In fact,
many features used in link prediction stem from other subfields of data mining,
including the popular Katz measure [12] and Adamic/Adar measure [1], both
discussed later.

To exploit the large number of features nowadays available, several frame-
works and algorithms have been devised, using existing classifiers from pop-
ular data mining tools [9] combined with domain-independent feature sets.
Lichtenwalter et al. propose a framework in [17] and show that in supervised
contexts, existing methods are less accurate than their proposed PropFlow mea-
sure. Several frameworks specifically focus on easy-to-compute features, see for
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example [2] or the excellent extensive overview of further related work provided
in [7].

This paper attempts to distinguish itself from previous work by aiming to
satisfy each (rather than a subset) of the five goals explained in Sect. 2.

4 Link Prediction Methods and Approaches

The link prediction methods proposed in literature (e.g. [7,16]) and throughout
this section are formulated as topological features of the network. We distinguish
between node features, neighbourhood features, and path features. Each feature
assigns a score S(u, v) to a candidate pair (u, v), which can be used by a classifier
to determine the probability of a link forming between source u and target v.

For convenience in the following definitions, for directed networks, we define
Γ (v) = {u ∈ V : (u, v) ∈ E ∨ (v, u) ∈ E} as the neighbourhood of v. We
can then also define the out-neighbourhood and the in-neighbourhood of v as
Γout(v) = {w ∈ V : (v, w) ∈ E} and Γin(v) = {u ∈ V : (u, v) ∈ E}, respectively.
For undirected networks, we define Γ (v) = {v ∈ V : {u, v} ∈ E}. The degree
d(v) of a node is simply the size of its neighborhood: d(v) = |Γ (v)|. The in-degree
and out-degree for a directed network are then respectively din(v) = |Γin(v)| and
dout(v) = |Γout(v)|. Below, to improve readability, where applicable, we choose
not to formally define the trivial extension of each measure to the equivalent in-
and out-measures for directed networks.

4.1 Node Features

Node features are derived from the properties of a node and its links, only
considering the node currently under evaluation.

– Degree: The node degree feature simply uses d(u) and d(v), i.e., the degree of
source node u and target node v.

– Volume: The node volume measures the total weight of all incoming or out-
going links (or both) of both the source and the target node. For source u it
is defined as

∑
t∈Γ (u)

wut. The target node volume is defined analogously.

4.2 Neighbourhood Features

Neighbourhood features also consider patterns and relations of the direct neigh-
bours of the source and target node.

– Total neighbours: This measure counts the total number of distinct neighbours
that exist for the candidate pair and is defined as |Γ (u) ∪ Γ (v)|.

– Common neighbours: Here we compute the number of neighbours two nodes
have in common. Formally, we write |Γ (u) ∩ Γ (v)|.

– Transitive common neighbourhood: This is a variation on the common neigh-
bours measure intended for use in directed networks. It determines the number
of neighbours to which u has a link and that have a link to v: |Γout(u)∩Γin(v)|.
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– Jaccard coefficient: This coefficient proposed in [10] considers the number of
common neighbours two nodes have, relative to the total number of distinct
neighbours they have. Formally, we write |Γ (u) ∩ Γ (v)|/|Γ (u) ∪ Γ (v)|.

– Transitive Jaccard coefficient: To capture link direction in directed networks,
we propose to combine the concept of the transitive common neighbourhood
with the Jaccard coefficient: |Γout(u) ∩ Γin(v)|/|Γout(u) ∪ Γin(v)|.

– Adamic/Adar: This measure, introduced by Adamic and Adar in [1], considers
properties shared by two nodes, favouring properties that not many other
nodes have. In a network, such a property can be the set of out-neighbours of
u and v. Below, the number of in-neighbours of w signals the same feature, so
we sum these ratios for u and v, obtaining:

∑
w∈(Γout(u)∩Γout(v))

1
log(Γin(w)) .

– Preferential attachment: This concept is used in the well-known Barabási-
Albert graph generation model [4] to model the creation of a network. It is
based on the observation that nodes that already have a high degree are more
likely to attract new links than nodes with a lower degree. We use this property
in link prediction by computing the product of degrees of the source and target
node. So for the out-degree, it is defined as |Γout(u)| ∗ |Γout(v)|.

– Opposite direction link: We consider a feature introduced in [7] for directed
networks, where the probability of a link (u, v) is assumed to be dependent on
the existence of (v, u), captured in a binary feature value of 0 or 1.

4.3 Path Features

The entire topology of the network is considered in path features: not only direct
neighbours, but also nodes further away are considered in the evaluation.

– Shortest path length: This measure indicates the length of a shortest path
from the source node to the target node, i.e., the minimal number of edges
that have to be traversed to reach node v starting in node u. This measure is
commonly referred to as the distance, denoted d(u, v).

– Number of shortest paths: This metric proposed in [17] ranks candidate links
based on how many shortest paths of length d(u, v) exist from u to v. Parame-
ter �max defines the maximum distance d(u, v) that is considered. We denote
this measure by paths(�max)u,v .

– Restricted Katz measure: Introduced by Katz [12], it awards importance to
the number of paths between two nodes as a predictor of the likelihood of
a link, but exponentially decreases the importance as the path length grows,
determined by the parameter β < 1; typical values of β are around 0.05 [12].

In accordance with [17] we again use �max, giving:
�max∑
�=0

β�|paths(�)u,v|.
– PropFlow: The last measure we utilise is PropFlow, introduced by Lichten-

walter et al. in [17], relating the probability of a link forming between nodes
u and v to the probability that a random walk starting in node u ends up
in node v, considering all walks from u of at most length �max. In weighted
networks, it assigns the probabilities for following each link proportional to
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their weight. Starting at u, the score update rule for each neighbouring node
t in an iteration is S(u, t) = S(u, t) + S(u, v) ∗ (wut)/(

∑
x∈Γ (u) wux).

5 Efficient Feature Set

In this section, we explain our approach to selecting features for link prediction,
taking into account the first two quality goals posed in Sect. 2. As stated before,
one of the problems with gathering a vast number of features and simply using
all of them, is that it does not lead to an explainable method, as the classifier
considers so many features that it becomes impossible to distinguish between well
and poor performing features, and that it is hard if not impossible to understand
exactly how different features use the topological structure of the network to
predict future links. We solve the above mentioned problem by grouping our
features based on their topological scope, explicitly distinguishing between:

– Individual properties (evaluating properties of the source and target node).
– Local properties (considering similarities and differences between the neigh-

bourhoods of the source and target node).
– Global properties (considering paths between the source and target node).

These notions correspond to the different levels at which small world networks
are typically studied: the micro level, meso level and macro level [24]. More
importantly, they coincide with the grouping of features used in Sect. 4, namely
node features, neighbourhood features and path features. We present the cate-
gorized features in Table 1. The “Compl.” column contains information on the
computational complexity of computing the feature for a single candidate pair,
expressed as a function of the number of nodes n and links m.

The second goal that we achieve with EFS deals with efficiency. We hypoth-
esise that, when constructing a set of features for training a classifier, choosing
features whose category is already sufficiently represented in the feature set will
only marginally increase prediction accuracy, whereas computation time may
increase substantially. Based on this, we construct a subset of features in which
we sufficiently represent each feature group. We propose the Efficient Feature Set
(EFS), which is constructed by choosing a small subset of features that captures
the widest variety of topological properties possible. To do so, we first split the
full feature set along the first variety dimension: topological scope (as explained
above). From each category, we then select the features that exhibit a high degree
of diversity within the second dimension: the balance between undirectedness vs.
directedness, weighted vs. unweighted and absolute vs. relative counts.

From the node features, we therefore include in EFS the degree and the
in- and out-volume of both the source and the target node. For the neighbour-
hood features, we wish to capture both the absolute and the relative size of the
joined neighbourhood. So, we include the transitive Jaccard coefficient to fur-
ther support directed networks and the opposite direction link feature as a direct
indicator of reciprocation. From the path features, we capture general propaga-
tion properties of the network by using the undirected shortest path length, and



Explainable and Efficient Link Prediction 301

Table 1. List of candidate pair features, categorized by topological scope.

Node features
Feature Variant Compl. EFS

Degree (source) - O(1) �
Degree (source) din O(1)
Degree (source) dout O(1)
Degree (target) - O(1) �
Degree (target) din O(1)
Degree (target) dout O(1)

Volume (source) - O(m/n)
Volume (source) din O(m/n) �
Volume (source) dout O(m/n) �
Volume (target) - O(m/n)
Volume (target) din O(m/n) �
Volume (target) dout O(m/n) �

Path features
Feature Param. Compl. EFS

Shortest path length - O(m + n) �
Num. shortest paths �max = 3 O(m + n)

Restricted Katz �max = 3, O(m + n)
β = 0.05

PropFlow �max = 3 O(m + n) �

Neighbourhood features
Feature Var. Compl. EFS

Total neighbours - O(m/n)
Total neighbours Γin O(m/n)
Total neighbours Γout O(m/n)

Common neighbours - O(m/n) �
Common neighbours Γin O(m/n)
Common neighbours Γout O(m/n)
Trans. comm. neigh. - O(m/n)

Jaccard Coeff. - O(m/n) �
Jaccard Coeff. Γin O(m/n)
Jaccard Coeff. Γout O(m/n)

Trans. Jacc. Coeff. - O(m/n) �
Adamic/Adar - O(m/n)

Pref. attachment - O(1)
Pref. attachment Γin O(1)
Pref. attachment Γout O(1)

Opp. direction link - O(1) �

finally we capture properties of weighted and directed graphs by using PropFlow.
In Table 1, the column “EFS” summarizes the selected features. In terms of effi-
ciency, EFS attains an immediate speed-up of two or more in each category. We
performed experiments to empirically verify the contribution and performance
of the three proposed feature categories. For space and readability reasons, these
results are presented in Sect. 6.3, followed by the results of using only EFS in
Sect. 6.4.

6 Experiments and Results

In this section, we discuss the considered network datasets in Sect. 6.1, after
which we outline preprocessing steps followed by the encountered class imbalance
problem. Next we explain the experimental setup in Sect. 6.2 before evaluating
the results in Sects. 6.3 and 6.4.

6.1 Network Datasets

An overview of the considered networks is given in Table 2, listing the network
name, source, type and network properties such as the number of nodes, the num-
ber of links and the clustering coefficient (in the “CC” column). The “Type” col-
umn indicates the directedness (D for directed, U for undirected) and weighting
of the network (- for unweighted, + for weighted). Finally, the average short-
est path length is listed in the “Dist” column. The diverse real-world network
datasets cover a range of different networks (see the sources listed in Table 2 for
details). We generated the liacs weighted scientific collaboration network from
raw data on co-authorship of researchers involved with the computer science
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Table 2. Characteristics of network datasets used for testing.

Dataset Type Nodes Links CC Type Dist 3Γ

digg [6] News communication 30, 398 86, 404 0.01 + D 4.68 45%

fb-links [26] Social friendship 63, 731 817, 035 0.22 - U 4.31 88%

fb-wall [26] Social communication 46, 952 274, 086 0.11 + D 5.71 61%

infectious [11] Disease spread 410 2, 765 0.46 + U 3.57 83%

liacs Scientific collaboration 1, 036 4, 650 0.84 + U 3.86 100%

lkml-reply [14] Email communication 27, 927 242, 976 0.30 + D 5.19 99%

slashdot [8] Web communication 51, 083 131, 175 0.02 + D 4.59 75%

topology [27] Network topology 34, 761 107, 720 0.29 + U 3.78 97%

ucsocial [20] Social communication 1, 899 20, 296 0.11 + D 3.07 99%

wikipedia [22] Information network 100, 312 746, 114 0.21 - D 3.83 89%

institute LIACS in the period 2005–2014, a link denoting the joined publication
count.

For each network, we choose τ (see Sect. 2) such that 95 % of the links
were formed before time τ . This is because we are predicting individual links
as opposed to macroscopic evolution, and thus require a relatively developed
state of the network for training.

The number of candidate pairs for which we could give a prediction is very
large: with n nodes and m directed links at time τ , potentially (n · (n − 1)) − m
links could be formed at time τ ′. The number of links that are actually formed
between τ and τ ′ is in practice only a tiny fraction. Calculating features for all
possible node pairs would be infeasible in terms of computation time. To address
this, we look at column “3Γ” of Table 2, showing the percentage of nodes formed
between nodes at distance 3 or less. In our networks, on average 84 % of all
newly formed links were at undirected distance 3 of one another, so we limit our
predictions to candidate pairs at that distance. This results in the omittance of
a substantial portion of the node pairs where no links are formed while retaining
a large majority of all positive instances. As the considered networks are all
small-world networks in which the average pairwise distance is very low, we
further reduce the class imbalance by randomly removing negative instances as
extensively discussed and suggested in [7].

From preliminary experiments we found that shifting the ratio between the
number of negative and positive class instances did not significantly influence
classification performance. From this range of acceptable balances, we have cho-
sen a class balance of nine negative instances for each positive instance.

6.2 Experimental Setup

To determine the accuracy, we want to capture the relation between true pos-
itive and false positive rates, so we use the well-known ROC-curves, plotting
these two rates against each other. The area under the ROC-curve (AUROC)
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can be used to assess the quality of the predictor. As explained before, our
work focuses on the comparison between different feature sets to obtain a robust
classifier, and not on the comparison of supervised learning algorithms. There-
fore we use random forests, which are repeatedly and consistently identified as
well-performing general purpose supervised learning algorithms, see for example
the discussion in [5]. We use the implementation of [9] with an ensemble of
50 random decision trees. Along similar lines, we abstract away from specific
hardware and software, comparing the efficiency of different feature sets based
on the computational complexity as listed in Table 1.

6.3 Results — Topological Scopes

The ROC-curves of the predictions of the three feature sets discussed in Sect. 5
are depicted in Fig. 1, and the corresponding AUROC values are listed in Table 3.
The variance in the performance of the single feature class predictors underlines
the degree to which the performance of these feature sets alone is significant,
justifying the construction of EFS in Sect. 5. For instance, in Fig. 1 we see that for
the wikipedia dataset, the set of node features outperforms all other individual
feature sets, whereas it is outperformed by all other feature sets in the liacs
dataset. Trivially, we find that the full feature set is the best predictor in terms
of accuracy and consistency, performing well across all datasets. We note that
in one case (ucsocial), the set of node features outperformed the set of all
features by 0.007, likely due to the randomness in the random forest classifier
(an optimization step beyond the interest and scope of this paper). Below, we
discuss the main results for each of the feature sets, relating their performance
at the particular topological scope to the considered network datasets.

Node Features. The node features appear to perform better than might be
expected from such local metrics. An interesting observation is the exceptionally
good performance on the networks modelling online conversations (lkml-reply,
ucsocial, slashdot and digg). This might be because users who are active in
replying to messages and receiving replies to their messages are likely to remain
active in the future. As expected, the performance of node features appears
negatively correlated with the mean distance in the graph: as this distance grows,
the node features classifier performance decreases.

Neighbourhood Features. In directed networks, we observe that a high rate of
reciprocity gives good performance, which may be because in many real-world
networks, non-reciprocated links tend to be reciprocated at some point in the
future, captured by the opposite direction link feature. Indeed, in the fb-wall,
ucsocial and lkml-reply networks, each having a reciprocity rate of around
65 %, we observe that the neighbourhood features generate an AUROC of 99.2 %
of the AUROC of the full feature set against an overall average 97.2 % for the
neighbourhood features in directed networks. The digg network, having a reci-
procity rate of just 2 % yields the second to worst performance. The low perfor-
mance of neighborhood features on the infectious network can be explained
by its degree distribution which as opposed to all other networks, does not follow
a power law, but is instead distributed around the average (see Fig. 2).
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Fig. 1. ROC curves for the network datasets in Table 2, for each feature set.

Table 3. AUROC for each network and each set of features.

Features digg fb-links fb-wall infectious liacs lkml slash-dot topology ucsocial wikipedia

Full 0.830 0.933 0.887 0.967 0.997 0.975 0.928 0.967 0.913 0.970

Node 0.827 0.700 0.710 0.955 0.969 0.971 0.922 0.949 0.911 0.941

Neighbourhood 0.761 0.911 0.866 0.794 0.986 0.974 0.920 0.961 0.920 0.926

Path 0.632 0.897 0.819 0.579 0.979 0.925 0.777 0.940 0.673 0.827

EFS 0.825 0.930 0.876 0.958 0.995 0.973 0.921 0.965 0.910 0.967

EFS Performance 99.4% 99.6% 98.8% 99.1% 99.8% 99.8% 99.2% 99.8% 99.7% 99.7%

Path Features. By themselves, the path features are likely too global to suf-
ficiently capture local network patterns. Nevertheless, they do add value to the
full feature set as well as EFS. Most notably, the performance of path features
increases as the mean path length grows, highlighting the importance of this
feature set in less dense networks.

6.4 Results — EFS

We evaluate our Efficient Feature Set using the five criteria for a link prediction
technique outlined in Sect. 2. In Sect. 5, we already elaborated on the explain-
ability and efficiency of EFS. Here we continue by substantiating the claim that
EFS also meets the accuracy, consistency and generality criteria.

Accuracy. The results in Table 3 show that EFS is able to accurately predict
links, achieving results very similar to the accuracy achieved using the full feature
set. The bottom row of Table 3 shows how on average EFS achieves an AUROC
of a remarkable 99.5 % of the AUROC value of the full feature set.
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Fig. 2. Degree distribution of datasets infectious and fb-links.

Consistency. Not only did the EFS-based classifier yield very high AUROC
values relative to the full feature set, it did so with a high degree of consistency:
the lowest EFS AUROC measured was 98.8 % and the highest AUROC measured
was 99.8 % of the full feature set AUROC value.

Generality. We have tested EFS on a broad range of diverse networks, as can
be seen in Table 2. The networks vary in number of nodes and links, clustering
coefficient, diameter, directedness, weightedness and many other properties. The
Efficient Feature Set performs well regardless of these differences in network
properties. Even the absence of a power law in the degree distribution, such
as in the infectious network, does not influence the prediction ability of the
Efficient Feature Set. It is indeed a generic way of predicting links in real-world
networks.

7 Conclusion

The proposed Efficient Feature Set (EFS) is a relatively small set of structural
network features, categorized based on the topological scope of the network at
which they each uniquely capture dynamics. Together, the feature categories
can be used in a supervised learning framework to predict future links in real-
world networks in an efficient and explainable way. Experiments show that the
approach reaches over 99% of the accuracy of a much larger and more complex
set of features. EFS is explainable as the contribution of its feature categories can
be linked to the topological properties of the considered networks. Furthermore,
the method shows consistent performance with respect to larger feature sets,
independent of the network size, hinting towards high scalability. EFS works
well independent of network density and type, demonstrating that it is a generic
approach to predict links in real-world network data that is evolving over time.

In future work, we want to investigate the order in which links appear and
how suitable EFS is for predicting the timestamp of a link. Furthermore, we
will look at whether the same approach could be applied to the removal of
links, allowing not only the expansion but also the contraction of networks to
be predicted.
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Abstract. Ubiquitous network data has given rise to diverse graph min-
ing and analytical methods. One of the graph mining domains is anom-
aly detection in dynamic graphs, which can be employed for fraud detec-
tion, network intrusion detection, suspicious behaviour identification, etc.
Most existing methods search for anomalies rather on the global level of
the graphs. In this work, we propose a new anomaly detection and expla-
nation algorithm for dynamic graphs. The algorithm searches for anom-
aly patterns in the form of predictive rules that enable us to examine the
evolution of dynamic graphs on the level of subgraphs. Specifically, these
patterns are able to capture addition and deletion of vertices and edges,
and relabeling of vertices and edges. In addition, the algorithm outputs
normal patterns that serve as an explanation for the anomaly patterns.
The algorithm has been evaluated on two real-world datasets.

Keywords: Graph mining · Data mining · Dynamic graphs · Rule min-
ing · Anomaly detection · Outlier detection · Anomaly explanation

1 Introduction

A large amount of real-world graphs is dynamic by nature, i.e. they evolve
through time. These graphs can exhibit anomalous behaviour on various levels:
from single vertices and edges through subgraphs to whole graphs. Examples
include macious network attacks, frauds in trading networks, opinion spam, and
many others. Anomalies, however, do not have to be necessarily negative. For
example, novel patterns of behaviour in communication and interaction networks
can be considered as an improvement over other patterns.

Most of the existing approaches for anomaly detection in dynamic graphs
search for anomalous vertices, edges, or graph snapshots [1]. When searching
for anomalies on local level of the graph, single vertices or edges without the
structural context may not provide a satisfactory explanation. Methods based on
tensor decomposition [5,7,10] are able to find groups of anomalous vertices and
edges, but it is hard to capture the evolution on the local level in detail. There
are only few methods for subgraph patterns and they typically impose various
restrictions on the form of the patterns. For example, the method presented in
[4] assumes that the vertices are immutable.
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 308–319, 2016.
DOI: 10.1007/978-3-319-46349-0 27
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Fig. 1. An illustration of a dynamic graph, a frequent pattern with occurrences P1,
P2, P3, and an anomaly pattern with occurrences A1, A2. (Color figure online)

In this work, we propose a new method for anomaly detection in labeled
dynamic graphs that is able to capture the evolution on the subgraph level.
This method was built on our previous work, DGRMiner algorithm [12] for
frequent pattern mining in dynamic graphs. Specifically, the patterns are in the
form of predictive rules expressing how a subgraph can be changed into another
subgraph by adding new vertices and edges, deleting specific vertices and edges,
or relabeling vertices and edges. DGRMiner is able to mine patterns from a
single dynamic graph and also from a set of dynamic graphs. Figure 1 illustrates
the idea of anomaly detection by exploiting these frequent predictive rules. In
the first phase, we found a frequent pattern depicting a transformation of the
green subgraph into the blue one. This pattern has three occurrences in the
input dynamic graph: P1, P2 and P3. However, not all occurrences of the green
subgraph, i.e. the antecedent, are transformed into the blue subgraph. There are
situations in which it is transformed into the orange subgraph (A1 and A2). We
mark such a transformation as an anomaly pattern and use the original frequent
one as an explanation of it.

The remainder of this paper is organised as follows. Section 2 briefly describes
the frequent pattern mining method used in DGRMiner. The new method for
anomaly detection and explanation is proposed in Sect. 3. Section 4 presents an
experimental evaluation. Properties of the new method are discussed in Sect. 5.
Finally, related work and conclusion can be found in Sects. 6 and 7, respectively.

2 DGRMiner: Frequent Pattern Mining

In our previous work [12], we presented DGRMiner algorithm for frequent pat-
tern mining. Given a dynamic graph or a set of graphs, a minimum support value
σmin, and a minimum confidence value confmin, the task is to find all patterns
for which σ ≥ σmin and conf ≥ confmin. Patterns are predictive graph rules in
this case. An example of such a rule is depicted in Fig. 2. It represents a change
of one graph into another. In this case, the edge with label B was relabeled to
E, the edge with label C was deleted, and a new edge with label D was added.
The same type of changes is allowed for vertices. Support of a rule is computed
as the number of snapshot transitions where the rule occurred. Confidence is
computed as the fraction of the rule support and the support of the antecedent.



310 K. Vacuĺık and L. Popeĺınský

Fig. 2. A graph rule and its representation as a union graph.

2.1 Representation of Dynamic Graphs

DGRMiner is based on gSpan [13], an algorithm for frequent pattern mining
in a set of undirected graphs. The main idea of DGRMiner is to transform the
input dynamic graph into a new representation that can be considered as a set
of static graphs. DGRMiner transforms each consecutive pair of snapshots into
a single static graph by using the following procedure. It takes these two graphs
and computes a union graph from them. In order to be able to transform the
union graph back, the differences between those two graphs are encoded. Let
us assume that a vertex with label A appears only in the first graph, i.e. this
vertex represents an addition change. Such a vertex gets label +A in the union
graph. On the other hand, if the vertex appears only in the first graph, then
it gets label −A. If the vertex label is changed from A to B, its union-graph
label will be A ⇒ B. Unchanged vertices keep their labels, e.g. A remains A.
The same encoding schema is used for edges. Frequent subgraphs found in this
new set of graphs can be then extracted into predictive rules. Figure 2 shows the
union-graph representation of the rule shown on the left.

2.2 Frequent Pattern Mining

DGRMiner starts by searching for single-vertex patterns. The algorithm then
continues with single-edge patterns and extends these patterns recursively by
one edge at a time. Support and confidence are computed for each such pattern
and patterns with high enough values are outputted. If the support is too low
or the algorithm already processed an isomorphic pattern before, it backtracks.

A pseudocode of DGRMiner is given in Algorithm1. Lines with � anomaly
comment mark the extension for anomaly detection and they are described in
the next section. The algorithm first transforms the input dynamic graph or a
set of graphs into the union-graph representation.

Before recursive mining of larger patterns, DGRMiner outputs frequent
single-vertex patterns with high enough confidence. Then for each fre-
quent edge, it recursively calls DGR Subgraph Mining subprocedure, which
searches for patterns growing from that edge. By using the min function,
DGR Subgraph Mining first checks, whether such a pattern is processed for
the first time. If it is, the algorithm continues by enumerating the pattern in
relevant graphs given by D and searching for its children candidates. Then the
algorithm extracts the antecedent from the pattern and computes the occur-
rences of the antecedent. These occurrences are used for confidence computa-
tion. The current pattern is saved if its confidence is high enough. At the end,
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Algorithm 1. DGRMiner(DG)
1: convert the input dynamic graph(s) DG into the union-graph representation D;
2: optional: apply a time abstraction method on union graphs;
3: output frequent change vertices with high enough confidence;
4: Find anomaly patterns with regard to outputted patterns � anomaly
5: S

1 ← all frequent initial edges in D sorted in DFS lexicographic order;
6: for i ← 1 to |S1| do
7: p ← i-th edge from S

1

8: p.D ← graphs which contain p;
9: p.A ← graphs which contain antecedent of p;
10: Estart ← first i edges from S

1

11: DGR Subgraph Mining(p,p.D,p.A,Estart);

Algorithm 2. DGR Subgraph Mining(s,D,A,Estart)
1: if s �= min(s,Estart) then
2: return;
3: enumerate s in each graph in D and count its children;
4: remove children of s which are infrequent;
5: enumerate antecedent of s in graphs given by A,

enumerate anomaly patterns from antecedent occurrences; � anomaly
6: set s.A by graphs which contain antecedent of s;
7: conf ← confidence of s;
8: if conf ≥ confmin then
9: output s;
10: for each anomaly pattern a do � anomaly
11: if score(a)≥ min score then � anomaly
12: output a � anomaly
13: sort remaining children in DFS lexicographic order;
14: for each child c do
15: DGR Subgraph Mining(c,c.D,s.A,Estart);

DGR Subgraph Mining is recursively called for each frequent child of the pat-
tern. More details on DGRMiner can be found in [12].

3 DGRMiner: Anomaly Detection and Explanation

This section describes a new module of DGRMiner for anomaly detection and
explanation. Having found the frequent patterns, we are interested in patterns
deviating from the frequent ones, i.e. patterns with the same antecedent but a
different consequent. The frequent patterns are then used as an explanation of
the anomaly patterns. For each frequent pattern being processed, we store its
occurrences in the dynamic graph. Specifically, we store sets of occupied vertex
and edge ids for each snapshot. When searching for anomaly patterns, we do
not use vertices and edges of these occurrences. This means that occurrences of
anomaly patterns and the explanatory frequent patterns are completely disjoint.
This ensures that the anomaly patterns are independent of the frequent ones.
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In order to decide which deviating patterns are truly anomalies, we use out-
lierness score defined as the opposite value of the confidence, i.e. out = 1−conf .
Given a minimum outlierness score outmin, we output patterns for which
out ≥ outmin. It is necessary to check the outlierness of all potential anomaly
patterns because not all complementary patterns of the frequent ones have low
enough confidence. For example, the frequent pattern in Fig. 1 has conf = 3/4,
but the anomaly pattern has conf = 2/4. Such an anomaly pattern would not
be outputted in the case of confmin = outmin = 3/4.

The confidence of the pattern is computed from its support. In the following
subsection, we describe how to discover the single-vertex anomalies and how to
compute their support. After this simple scenario, we focus on more complex
anomaly patterns, whose discovery is a more involved process.

3.1 Single-Vertex Anomalies

DGRMiner looks for single-vertex patterns that are complementary to the fre-
quent ones. Single-vertex frequent patterns take one of the following forms: −A,
A ⇒ B, +B. The antecedent of −A is A, which is also the antecedent of patterns
A (no change) and A ⇒ C for some C. Thus, anomaly patterns, complementary
to this frequent pattern, are of the form A or A ⇒ C. As for the frequent pattern
A ⇒ B, the possible anomaly patterns can be A (no change), −A, and A ⇒ C
for some C �= B. It is trival to enumerate such patterns in the input dynamic
graph and compute their support because our union-graph representation allows
us to obtain the antecedent labels of the vertices.

A different approach is required for frequent patterns of the +B form. The
antecedent of these patterns is an empty graph, whose support is the number
of snapshots. There is only one anomaly pattern complementary to +B and we
mark it by !B. The meaning of !B is that a vertex with label B should have been
added. We use it because we need to explicitly express that such an addition did
not happen. Thus, support of !B is computed from graph transitions where +B
did not occur.

3.2 Enumeration of Anomaly Patterns in General

Enumeration of anomaly patterns with regard to larger frequent patterns follows
the enumeration of antecedents, as is indicated at line 5 of Algorithm2. Each
such frequent pattern can contain multiple changes. First, suppose there are some
vertices and/or edges that do not represent addition changes. Such elements are
included in the antecedent and their occurrences can be located in the input
dynamic graph. As in the case of single-vertex patterns, we can simply extract
unambiguously the consequent part for each such occurrence.

The situation gets more complicated when there are also elements represent-
ing addition changes in the frequent pattern. Again, each such element is either
found in the dynamic graph or we explicitly say that it is missing. In order to
capture the parts that are different from the frequent pattern, we search for
all maximal common subgraphs of the frequent pattern and the dynamic graph,
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Fig. 3. An example of anomaly pattern enumeration.

given the fact that the antecedent part is already mapped to the dynamic graph.
Let us illustrate this process on an example depicted in Fig. 3. Suppose that we
are searching for anomalies with regard to the frequent pattern shown in the
figure and we have already found the antecedent in a union graph, also shown in
the figure. The antecedent consists of two vertices with label A. It is clear that
the frequent pattern does not occur in this union graph. By taking the maximal
common subgraphs of those two graphs, we get three anomaly patterns that
differ in edge that is missing. The missing edges are depicted by dashed lines
with label !E.

If we find an occurrence of an anomaly pattern, we use that union graph for
support computation. As the frequent patterns and anomaly patterns have to be
completely disjoint, there is only one scenario that has to be treated in a different
way. If we are searching for anomalies with regard to a frequent pattern whose
all elements denote addition changes, i.e. the antecedent is an empty graph,
care must be taken when the support is computed. Specifically, if a union graph
contains the whole addition frequent pattern but not its part, then this union
graph cannot contain the anomaly pattern with only explicit non-additions. An
example with such a scenario is depicted in Fig. 4. The first input union graph
is an empty graph and the only anomaly pattern with regard to the frequent
pattern is the one with only explicit non-additions. The second input union
graph contains an occurrence of the frequent pattern and it does not contain

Fig. 4. An example of anomaly pattern enumeration with regard to a frequent pattern
with an empty antecedent.
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Table 1. Results of experiments. Running time is averaged over five runs.

Dataset σmin confmin outmin Time abstraction Anomaly Running

Vertices All patterns time (sec)

ENRON 0.10 0.6 0.8 � × 44 290.9

ENRON UNI 0.02 0.6 0.8 � × 346 248.9

RESOLUTION 0.05 0.6 0.8 × × 76 0.4

RESOLUTION 0.05 0.6 0.8 � � 198 4.0

any part of the pattern besides. In this case, the only possible anomaly pattern
could be with only explicit non-additions, but this is the special case described
earlier and we do not allow such a pattern in such situations. The third input
union graph contains a single vertex which is not a part of a frequent pattern
occurrence and it can be used as a part of two different anomaly patterns.

4 Experiments

In this section we present results of experiments on two real-world datasets.
Unfortunately, there are not many attributed dynamic graph datasets available
that could be used for the experiments. The experiments were conducted by a
C++ implementation on a PC equipped with CPU Intel i5-4570, 3.2 GHz, 16 GB
of main memory, and running 64-bit version of Windows 10. For all experiments,
we set confmin = 0.6 and outmint = 0.8.

Enron. Email correspondence of Enron employees [3] is used as the first dataset
for our experiments. Specifically, we used a preprocessed version [8] with infor-
mation about time, sender, receiver, and LDC topics of messages. Vertices of
the dynamic graph represent employees. For each day, we created a snapshot
and added directed edges representing the email correspondence of that day. At
most one edge was added for each topic and each sender-receiver pair. The topics
were used as edge labels. If an edge with a specific topic appeared in the current
snapshot and it was not present in the previous one, we marked it as an added
edge in the current snapshot. In the opposite case, we marked it as deleted. As
there were messages with anomalous dates, we removed all messages sent before
1998 and got 894 days of activity. With one extra day for vertex initialization
we got 895 snapshots. There are 32 regular LDC topics expressing the topics of
the messages plus two special topics used to label outlier messages and messages
with non-matching topic. We also used rank of employees [8] to label vertices.
Vertices with unknown rank were removed from the graph and thus only 130
vertices remained. This dataset is named ENRON in the experiments. We also
prepared a different dataset, ENRON UNI, where employee IDs were used as
the vertex labels. This ensures that all patterns apply to specific employees and
not to arbitrary employees of the given ranks.
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As for the ENRON dataset, we set minimum support to 0.1 and performed
the time abstraction method on vertices. The time abstraction of vertices allows
us to ignore time connected to vertices. We have found 44 anomaly patterns, see
Table 1. Two anomaly patterns are depicted in Fig. 5a. In the first example, we
can see the following scenario. If an ordinary employee (Emp) sends an outlier
email to a vice president (VP) and this vice president sends an outlier email
to another VP, then the employee typically sends such an email to the first VP
again the next day. However, it may occasionally happen that the VP sends
the email instead of the employee as is depicted by the anomaly pattern. In the
second example, we can see that if a VP sends such three emails, they do not
send the emails again the next day. If they do, it is a rare case.

In the case of the second dataset, ENRON UNI, we set minimum support to
only 0.02 because patterns connected to specific groups of people are less fre-
quent. 346 anomaly patterns were found and two examples are shown in Fig. 5b.
The difference from the previous cases is that the patterns are related to specific
people. For example, the first anomaly pattern applies exactly to people with
IDs 58, 63, and 146.

Resolution Proofs in Propositional Logic. We used a set of graphs repre-
senting resolution proofs in propositional logic from [11] as the next dataset. Each
vertex has a set of propositional-logic literals assigned as the label. The edges are
directed and have the same label in these graphs. The dynamic graphs capture
the process of proof construction by students and they are evolving by vertex
and edge addition or deletion, and by change of vertex labels. Time of these
events was transformed into a discrete sequence. Because there were 19 different
assignments in total, only dynamic graphs of the same assignment share the set
of vertex labels. In order to find frequent and anomaly patterns, we restricted
the dataset to only one assignment. Specifically, we took the assignment with the
greatest number of solutions. This set of graphs contained 103 dynamic graphs
with 2911 snapshots in total. The initial snapshot of each dynamic graph in an
empty graph. This dataset is named RESOLUTION in the experiments.

For our experiments on this dataset, we set minimum support to 0.05. First,
we did not use time abstraction at all and left the timestamps of vertices and
edges as they were. This setting yielded 76 anomaly patterns, out of which 75
were single-vertex patterns. The remaining one described a situation in which
an edge should had been added but it was not. Therefore, we repeated the
experiment with time abstraction performed both on vertices and edges and got
198 anomaly patterns. Two examples are shown in Fig. 5c. The first one captures
the case where students did not continue with an addition of an edge between
{¬b} and {d} but replaced label {a, b, d} with {b, a, d}, which is completely
unnecessary. The second example shows an odd situation in which students did
not add the final edge pointing to the empty clause (depicted by a square) and
they deleted the existing edge instead. Although the frequent pattern in this
second example has conf = 1.0, we discovered this anomaly pattern because
both of them can be found in certain solutions.
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(a) Examples of two anomaly patterns in ENRON dataset.

(b) Examples of two anomaly patterns in ENRON UNI dataset.

(c) Examples of two anomaly patterns in RESOLUTION dataset.

Fig. 5. Examples of anomaly patterns from experiments.
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5 Discussion

Even though the enumeration of a pattern takes exponential running time in
the worst case, DGRMiner can be efficient on real-world dynamic graphs as is
shown in Table 1. This is mainly caused by diverse vertex and edge labels that
significantly reduce the search space when subgraphs are being enumerated. On
the contrary, small dense subgraphs with homogeneous labels would require the
exponential running time for subgraph enumeration.

The computation of DGRMiner is driven by frequent pattern mining and
anomaly patterns are mined with regard to these frequent patterns. Since multi-
ple frequent patterns can share the same antecedent, it is possible to discover one
anomaly pattern several times. Such an anomaly pattern will then be explained
by multiple frequent patterns.

6 Related Work

Anomaly detection methods for dynamic graphs can be divided into several
groups. One large group is comprised of methods that extract global charac-
teristics, such as diameter, of the graphs as they evolve. The progress of these
characteristics can be analysed as time series and anomalous graph snapshots
or transitions between snapshots can be found. These methods typically exploit
the structure of the graphs, not the labels or different attributes. Overview of
these methods can be found in survey [1].

Another large group of methods is based on tensor decomposition. In this
case, tensor is a generalization of the adjacency matrix. Additional dimensions
store the information about time and vertex/edge attributes of the dynamic
graph. Examples of algorithms from this group are STA [10], TensorSplat [5],
ParCube [7], and MalSpot [6], among others. The idea of the decomposition
methods is to compute factors of the given tensor and then examine the devia-
tions from the common patterns described by main components. These methods
allow us to observe anomalous patterns from the global viewpoint of various
dimensions. This point of view is much coarser than the one given by DGR-
Miner. It does not allow us to observe the evolution on the local level in such
detail.

There are several works that focus on subgraph structures and thus are more
similar to our work. The idea of these methods is to monitor graph communities
or clusters instead of the whole graph. One such method is Com2 [2] that uses
tensor decomposition and minimum length description principle for community
detection in dynamic graphs. In comparison with the already mentioned decom-
position methods, Com2 allows us to work on the level of communities. Thus,
we can, for example, observe the sudden changes of interactions inside a com-
munity. However, the information obtained is again coarser that the one given
by DGRMiner’s anomaly patterns.

A different approach is presented in [4]. Specifically, a Bayesian method
is designed for detection of anomalous vertices. For each pair of vertices, the
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method models the communication between the vertices as a counting process.
If the relationship has changed at some point in time and this change is statisti-
cally significant, the vertex pair is said to be anomalous. The method is able to
model edges with labels too. The vertices are assumed to be immutable and, in
general, the form of patterns is more restricted that the one given by DGRMiner.

7 Conclusion

In this paper, we developed a new algorithm for anomaly detection and explana-
tion in dynamic graphs. This algorithm extends our previous work, DGRMiner,
an algorithm for frequent pattern mining. Our method is able to capture anom-
aly patterns on the subgraph level in the form of predictive rules. These rules
are able to capture various changes, such as addition and deletion of vertices
and edges, and relabeling of vertices and edges. For each anomaly pattern, one
or more frequent patterns are outputted as an explanation.
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2. Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P., Swami, A.,
Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery of tempo-
ral (‘Comet’) communities. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen,
A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), pp. 271–283. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-06605-9 23

3. Cohen, W.W.: Enron Email Dataset. Web, Accessed 3 May 2016. www.cs.cmu.
edu/∼./enron/

4. Heard, N.A., et al.: Bayesian anomaly detection methods for social networks. Ann.
Appl. Stat. 4, 645–662 (2010)

5. Koutra, D., Papalexakis, E., Faloutsos, C.: Tensorsplat: spotting latent anomalies
in time. In: 16th Panhellenic Conference on Informatics (PCI) (2012)

6. Mao, H.-H., Wu, C.-J., Papalexakis, E.E., Faloutsos, C., Lee, K.-C.,
Kao, T.-C.: MalSpot: multi2 malicious network behavior patterns analysis. In:
Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD
2016. LNCS (LNAI), vol. 9651, pp. 1–14. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06608-0 1

7. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: sparse paralleliz-
able tensor decompositions. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012. LNCS (LNAI), pp. 521–536. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33460-3 39

8. Priebe, C.E., et al.: Scan Statistics on Enron Graphs. Web, Accessed 3 2016. http://
www.cis.jhu.edu/∼parky/Enron

http://dx.doi.org/10.1007/978-3-319-06605-9_23
www.cs.cmu.edu/~./enron/
www.cs.cmu.edu/~./enron/
http://dx.doi.org/10.1007/978-3-319-06608-0_1
http://dx.doi.org/10.1007/978-3-319-06608-0_1
http://dx.doi.org/10.1007/978-3-642-33460-3_39
http://dx.doi.org/10.1007/978-3-642-33460-3_39
http://www.cis.jhu.edu/~parky/Enron
http://www.cis.jhu.edu/~parky/Enron


DGRMiner: Anomaly Detection and Explanation in Dynamic Graphs 319

9. Rayana, S., Akoglu, L.: Less is more: building selective anomaly ensembles (with
application to event detection in temporal graphs). In: SIAM SDM, Vancouver,
BC, Canada (2015)

10. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analy-
sis. In: SIGKDD, Philadelphia, PA, pp. 374–383 (2006)
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12. Vacuĺık, K.: A versatile algorithm for predictive graph rule mining. In: Proceedings
ITAT 2015: Information Technologies - Applications and Theory, pp. 51–58. Prague
(2015). CEUR-WS.org

13. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: IEEE
ICDM 2002. Washington, DC, USA (2002)

http://dx.doi.org/10.1007/978-3-319-10554-3_14
http://CEUR-WS.org


Similarity Based Hierarchical Clustering
with an Application to Text Collections

Julien Ah-Pine(B) and Xinyu Wang

University of Lyon, Eric Lab,
5, Avenue Pierre Mendès France, 69676 Bron Cedex, France

{Julien.Ah-Pine,Xinyu.Wang}@univ-lyon2.fr

Abstract. Lance-Williams formula is a framework that unifies seven
schemes of agglomerative hierarchical clustering. In this paper, we estab-
lish a new expression of this formula using cosine similarities instead of
distances. We state conditions under which the new formula is equivalent
to the original one. The interest of our approach is twofold. Firstly, we
can naturally extend agglomerative hierarchical clustering techniques to
kernel functions. Secondly, reasoning in terms of similarities allows us to
design thresholding strategies on proximity values. Thereby, we propose
to sparsify the similarity matrix in the goal of making these clustering
techniques more efficient. We apply our approach to text clustering tasks.
Our results show that sparsifying the inner product matrix considerably
decreases memory usage and shortens running time while assuring the
clustering quality.

Keywords: Agglomerative hierarchical clustering · Lance-Williams for-
mula · Scalable hierarchical clustering · Kernel machines · Text clustering

1 Introduction

Hierarchical clustering is an important member in the clustering family. As it
is able to reveal internal connections of clusters, it is more informative than
its counterpart, flat clustering. Due to this advantage, it is widely applied in
different domains like in documents organization where it makes it possible to
highlight the relationships between topics.

There are two types of hierarchical clustering: agglomerative and divisive.
Given a dataset D of N instances, agglomerative hierarchical clustering (AHC)
recursively merges two clusters at each step, until that all instances are grouped
into one cluster. Whereas, divisive hierarchical clustering (DHC) functions in
the opposite way. DHC is computationally demanding, as there are 2N−1 − 1
possible subdivisions into two clusters when splitting a dataset of N . Compar-
atively, AHC is more efficient, and thus more widely studied and applied. The
result of AHC is usually represented by a dendrogram, a binary tree composed
of 2N − 1 nodes, to which a real value called height is assigned. The conven-
tional procedure of AHC, also called the stored dissimilarities approach, takes a
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 320–331, 2016.
DOI: 10.1007/978-3-319-46349-0 28
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pairwise dissimilarity matrix D of size N as input, initializes a binary tree with
N leaves (singletons) with null height values, and iteratively adds new nodes
(merged clusters) by fusing a pair of clusters (Ci, Cj) determined as follows:

(Ci, Cj) = arg min
(Ck,Cl)

D(Ck, Cl) (1)

AHC can be computationally costly. For the usual AHC procedure described
above, the time complexity is O(N3). Other approaches, such as NN-chain based
methods [1,7], have time complexity O(N2). But the drawback is that, NN-chain
based methods are constrained by reducibility property, thus they cannot work
with median and centroid methods. Another approach, called SparseHC [9] struc-
tures clusters with an adjacency hash map. According to its experiment results,
SparseHC does decrease the memory growth, but its time complexity is improved
for single link only. Besides this approach is not generic, as it is only applica-
ble for single link, complete link and average link. Another method, CURE [4],
reduces data by random sampling and partitioning. Though it decreases time
complexity to O(N2

samplelogNsample), its results are indeterministic due to the
random procedures. And for BIRCH [11], its time complexity is O(N), but extra
structure like clustering features (CF) tree has to be employed in order to store
compact summaries of the original data.

In this paper, we propose an AHC approach which is generic for all usual
methods. It allows a better scalability compared to the conventional AHC algo-
rithm both in memory and processing time, and its results are deterministic
unlike some aforementioned techniques. Our method is based on a new expres-
sion of the Lance-Williams (LW) formula, in which we replace dissimilarities
with inner product based similarities. This change provides us with two impor-
tant advantages: (1) it allows us to easily extend AHC to kernel functions;
(2) it enables us to design a suitable thresholding strategy so that we can obtain
a sparsified similarity matrix, resulting in a more scalable AHC procedure.

In order to illustrate the properties and benefits of our approach, we applied
it to text clustering tasks. Our experiments show that results obtained by our
framework are identical to the results obtained by the usual AHC methods,
demonstrating their equivalence. Moreover, our experimental results show that
on a largely sparsified similarity matrix, our approach is still able to cluster
correctly, but with higher speed and less memory usage.

The rest of paper is structured as follows. Section 2 introduces fundamen-
tal materials on AHC. Section 3 details our approach and the mathematical
proof of correctness. Experimental verification on results quality and perfor-
mance improvement on real-world text clustering tasks can be found in Sect. 4.
Section 5 concludes our paper with a discussion and presents future work.

2 Conventional AHC Methods and the LW Formula

There are many AHC techniques and reviews of these algorithms can be found
in [8,10]. Conventional AHC methods can be classified into graph and geometric
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methods. Single link, complete link, average link and Mcquitty are graph meth-
ods, in which dissimilarity of two clusters is determined by the dissimilarities
of instances from these clusters. Due to this property, these techniques can use
graph representations that rely on a pairwise dissimilarity matrix. Whereas, for
geometric methods, composed of centroid, median and Ward methods, instances
are assumed to be represented in an Euclidean space, clusters are represented
by prototypes and Euclidean distances between these representative vectors are
used as dissimilarities.

Proposed by Lance G.N and Williams W.T in 1967 [5], the LW formula is
a convenient formulation, which unifies the graph and the geometric methods
mentioned above. It is used as a generic equation for updating the dissimilar-
ity matrix D at each iteration once the newly formed cluster C(ij) = Ci ∪ Cj

given by (1) has been added to the dendrogram. According to this approach the
dissimilarity between C(ij) and another cluster Ck is given by:

D(C(ij), Ck) = αiD(Ci, Ck) + αjD(Cj , Ck) + βD(Ci, Cj)
+ γ|D(Ci, Ck) − D(Cj , Ck)| (2)

Depending on the choice of a certain clustering method, values of parameters
αi, αj , β and γ change accordingly. Table 1 displays parameter values in (2) that
correspond to seven particular methods.

3 Our Approach

In this section, we introduce our method from three aspects: (1) we propose to
renew the original LW formula using cosine similarities instead of squared Euclid-
ean distances; (2) we extend this expression to kernel functions; (3) we introduce
a simple sparsification strategy which is applied to the similarity matrix in the
goal of reducing memory use and running time.

3.1 An Equivalent LW Formula Using Cosine Similarities

We suppose that the N instances of dataset D are represented by vectors in an
Euclidean space I of dimension p. Cosine of the angle between two vectors is

Table 1. Lance-Williams formula: methods and parameter values.

Methods αi αj β γ

Single 1/2 1/2 0 −1/2

Complete 1/2 1/2 0 1/2

Average |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj | 0 0

Mcquitty 1/2 1/2 0 0

Centroid |Ci|
|Ci|+|Cj |

|Cj |
|Ci|+|Cj | − |Ci||Cj |

(|Ci|+|Cj |)2 0

Median 1/2 1/2 −1/4 0

Ward |Ci|+|Ck|
|Ci|+|Cj |+|Ck|

|Cj |+|Ck|
|Ci|+|Cj |+|Ck| − |Ck|

|Ci|+|Cj |+|Ck| 0
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considered as their similarity. Input S is a pairwise similarity matrix of size N .
For two data points x, y ∈ D, with 〈., .〉 denoting inner product, their similarity
is defined as follows:

S(x, y) = 〈 x

‖x‖ ,
y

‖y‖〉 (3)

Note that this implies that S(x, x) = 1 for all data point x ∈ D. It is an important
condition in our context to establish the new expression. We associate S with
a dissimilarity matrix D whose general term is the squared Euclidean distance
between normalized vectors:

D(x, y) = ‖ x

‖x‖ − y

‖y‖‖2

= S(x, x) + S(y, y) − 2S(x, y) (4)
= 2(1 − S(x, y)) (5)

With the above assumptions, we provide an expression of the LW formula
using S instead of D. In fact, our approach amounts to work with − 1

2D(Ck, Cl)
instead of D(Ck, Cl). In order to guarantee the correctness of our reasoning,
we proceed by induction. In the first iteration of the AHC algorithm, there are
N leaves {Ck}, each is one data point. In this case, the relationship below is
straightforward:

arg min
(Ck,Cl)

D(Ck, Cl) = arg max
(Ck,Cl)

−1
2
D(Ck, Cl)

= arg max
(Ck,Cl)

S(Ck, Cl) − 1
2
(S(Ck, Ck) + S(Cl, Cl)) (6)

Next, for the subsequent iterations, we show that the LW formula can be
recast as follows:

− 1
2
D(C(ij), Ck) = S(C(ij), Ck) − 1

2
(S(C(ij), C(ij)) + (αi + αj)S(Ck, Ck)) (7)

where:

S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj) (8)
− γ|S(Ci, Ci)/2 − S(Ci, Ck) − S(Cj , Cj)/2 + S(Cj , Ck)|

S(C(ij), C(ij)) = (αi + β)S(Ci, Ci) + (αj + β)S(Cj , Cj) (9)

Equation (7) together with the recurrence formulas (8) and (9) are respec-
tively the counterparts of (1) and (2) that establish our method. With the con-
dition that S(Ck, Ck) = 1 for all N singletons {Ck}, we show below that our
formulation is equivalent to the usual LW formula for each clustering scheme
listed in Table 1:

1. For single link and complete link, (8) reduces to S(C(ij), Ck) = αiS(Ci, Ck)+
αjS(Cj , Ck) + βS(Ci, Cj) − γ|S(Ci, Ck) − S(Cj , Ck)|, and (9) reduces to



324 J. Ah-Pine and X. Wang

S(C(ij), C(ij)) = 1, as αj + αj + 2β = 1. Since in (7) αi + αj = 1, then
(6) with the reduced updating rules of (8) and (9) are globally equivalent to
the conventional procedure. Note that for other remaining methods γ = 0, so
that (8) boils down to S(C(ij), Ck) = αiS(Ci, Ck)+αjS(Cj , Ck)+βS(Ci, Cj).

2. If we assume again that S(Ck, Ck) = 1 for all N singletons {Ck} and if we
replace S(C(ij), C(ij)) with (9) as well, then the second term in the right-hand
side of (7) becomes −(αi + αj + β). By this, we can divide the remaining
clustering methods into two groups: (a) average link, Mcquitty and Ward
which have −(αi + αj + β) = −1, and (b) centroid and median which satisfy
−(αi + αj + β) > −1:
(a) Regarding average link, Mcquitty and Ward, it is not difficult to

prove by induction that the second term in the right-hand side of (7)
always equals to −1. Consequently, for these cases, (6) with the updat-
ing rules S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj) and
S(C(ij), C(ij)) = 1 are globally equivalent to the general procedure.

(b) Concerning the centroid and median methods, since αi + αj = 1 in (7),
the coefficient assigned to S(Ck, Ck) vanishes. However, αi +αj +2β �= 1
in (9) hence S(C(ij), C(ij)) �= 1. Therefore, it is important to apply the
weighting system determined in (9) for the global equivalence of centroid
and median to hold.

We can wrap up all particular cases discussed above through the following
general procedure which defines our AHC framework. At each iteration, we solve:

(Ci, Cj) = arg max
(Ck,Cl)

S(Ck, Cl) − 1
2
(S(Ck, Ck) + S(Cl, Cl)) (10)

After having merged (Ci, Cj) into C(ij), the similarity matrix S is updated
by applying the two following equations:

S(C(ij), Ck) = αiS(Ci, Ck) + αjS(Cj , Ck) + βS(Ci, Cj) (11)
− γ|S(Ci, Ck) − S(Cj , Ck)|

S(C(ij), C(ij)) = δiS(Ci, Ci) + δjS(Cj , Cj) (12)

Table 2 lists parameter values of each method in our framework. Note that
in this table, the newly introduced parameters δi and δj sum to one except for
centroid and median methods. In fact, for the other methods, we could have
taken any values providing that δi + δj = 1.

3.2 Extending to Kernel Functions

Our approach allows us to naturally extend AHC methods to kernel functions
(see for example [2]) since most of the latter mappings are defined with respect
to inner products. Consequently, in our method, broader similarity measures can
be easily employed and non linearly separable cases can be addressed effectively.

Thereby, let K denote a pairwise inner product matrix (or Gram matrix) of
size N whose general term for two data points x, y ∈ D is K(x, y) = 〈φ(x), φ(y)〉
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Table 2. The cosine similarity based formula: methods and parameter values.

Methods αi αj β γ δi δj

Single 1/2 1/2 0 −1/2 1/2 1/2

Complete 1/2 1/2 0 1/2 1/2 1/2

Average
|Ci|

|Ci|+|Cj |
|Cj |

|Ci|+|Cj | 0 0 1/2 1/2

Mcquitty 1/2 1/2 0 0 1/2 1/2

Centroid
|Ci|

|Ci|+|Cj |
|Cj |

|Ci|+|Cj | − |Ci||Cj |
(|Ci|+|Cj |)2

0
|Ci|2

(|Ci|+|Cj |)2
|Cj |2

(|Ci|+|Cj |)2

Median 1/2 1/2 −1/4 0 1/4 1/4

Ward
|Ci|+|Ck|

|Ci|+|Cj |+|Ck|
|Cj |+|Ck|

|Ci|+|Cj |+|Ck| − |Ck|
|Ci|+|Cj |+|Ck| 0 1/2 1/2

where φ : I → F is a mapping from I to F and the latter notation designates a
feature space of dimension q > p (q is possibly infinite).

The S matrix in our approach should contain cosine measures, and more
importantly, its diagonal entries should be constant. Gaussian and Laplacian
kernels satisfy this condition naturally, but for other kernels, they have to be
normalized. To generalize all the cases, we obtain a cosine similarity matrix by
applying for all x, y ∈ D: S(x, y) = K(x, y)/

√
K(x, x)K(y, y).

3.3 Sparsification of the Cosine Similarity Matrix

In general terms, S could contain negative values. In that case, let m < 0 be the
minimal value in S and |m| its absolute value. It is always possible to transform
S in order to have non negative values using the following rescaling operator,
∀x, y ∈ D:

S(x, y) ← S(x, y) + |m|
1 + |m| (13)

Since this mapping is monotonically increasing, the resulting S remains an
inner product matrix and, in addition, it has ones on its diagonal.

Assuming that S is non negative, we propose to apply a simple thresholding
operator which depends on a parameter τ ∈ [0, 1]: any similarity value below τ1

is considered irrelevant and it is replaced with 02, ∀x, y ∈ D:

S(x, y) ← S(x, y)I(S(x,y)≥τ) (14)

where I(S(x,y)≥τ) = 1 if S(x, y) ≥ τ and I(S(x,y)≥τ) = 0 otherwise.
The resulting S matrix is sparser than the original one and thus requires less

memory.
Next, we propose to restrict the search for pairs of clusters to merge in (10)

to the following subset: S = {(Ck, Cl) : S(Ck, Cl) > 0}. This allows the running

1 Note that if τ = 0 then S is not sparsified.
2 It is interesting to mention that such a thresholding operator cannot be applied to

a dissimilarity matrix D, because the larger values are the less relevant ones in that
case and replacing them with 0 is not sound.
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time to be diminished as well, since the bottleneck procedure in the general
AHC algorithm is precisely the search for the optimal proximity value, which
has O(N2) time complexity. Accordingly, we propose to replace (10) with:

(Ci, Cj) = arg max
(Ck,Cl)∈S

S(Ck, Cl) − 1
2
(S(Ck, Ck) + S(Cl, Cl)) (15)

As we shall see in the next section, not only this approach dramatically
reduces the processing time but it also allows obtaining better clustering results.

4 Experiments

The goals of our experiments are to demonstrate that: (1) our framework based
on Eqs. (10), (11) and (12) is equivalent to the usual AHC procedure (1) based
on the LW formula (2) under the assumptions exposed previously; (2) sparsifying
the cosine similarity matrix with (14) and applying our AHC given by (11), (12)
and (15) considerably decreases memory use and running time while having the
capacity to provide better clustering results.

To this end, we experimented on text clustering tasks. Indeed, hierarchical
clustering is particularly interesting in this case, since it allows expressing the
relationships between different topics in a collection and at different granular-
ity levels. Moreover, cosine similarities are classic proximity functions used for
documents. In addition, hierarchical document organization based on the con-
ventional AHC procedure faces the problem of scalability since text collections
are usually very large. Our experiments seek to demonstrate new perspectives
to overcome these limits.

It is important to note that our purpose is not to compare the different
AHC methods between each other, but rather to exemplify the properties of our
framework compared to the usual AHC procedure using the LW formula. As a
consequence, the results obtained by the latter conventional approach are our
baselines.

4.1 Datasets, Preprocessing and Evaluation Measures

We used three well-known corpora employed in text clustering benchmarks:
Reuters-215783 (Reuters), Smart [3] and 20Newsgroups4 (20ng) [6]. Their
descriptive statistics are given in Table 3.

We used the bag-of-words approach where each document is represented by
a vector in the space spanned by a set of terms. As for preprocessing we applied
a rough feature selection by removing terms that appear in less than 0.2 % and
more than 95 % documents of the collection. No stemming, lemmatization nor
stop word removal were applied. Then, the tfidf weighting strategy was per-
formed.
3 Distribution 1.0, the ApteMod version.
4 We used the same dataset as in http://qwone.com/∼jason/20Newsgroups/.

http://qwone.com/~jason/20Newsgroups/
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Table 3. Descriptions of datasets.

Dataset Nb of classes Nb of documents Nb of features

Reuters 10 2446 2547

Smart 3 3893 3025

20ng 15 4483 4455

The adjusted Rand index (ARI) and (the absolute value of) the cophenetic
correlation (CC) between dendrograms are used to compare the clustering out-
puts. CC is employed to evaluate how far our dendrogram is from the one pro-
duced by the conventional AHC procedure. In this case, higher is better and a
maximum value one means that the dendrograms are equivalent and thus repre-
sent the same hierarchy. ARI is an external assessment criterion that evaluates
the quality of the clustering output in regard to a given ground-truth. It requires
to flatten the dendrogram with the correct number of clusters, then the obtained
partition and the ground-truth are compared to each other. Greater ARI values
imply better clustering outputs. The maximum value one is observed when the
ground-truth is perfectly recovered.

4.2 Experiments Settings and Results

Given a term-document matrix, two types of matrices are generated: the cosine
similarity matrix S and the corresponding distance matrix D as defined by (5).
Note that since the term-document matrix consists of non negative values then
S takes values in [0, 1] therefore no rescaling operator is needed.

Given a clustering method, the S matrix is taken as the input to our frame-
work, while the related dense D matrix is input to the conventional AHC algo-
rithm. Consequently, two dendrograms are returned and we compute the CC in
order to assess the similarity between the two outputs. Two cases are of interest:
(1) when τ = 0 which means no sparsification and the dense S is used; and (2)
when τ > 0 and being increased which leads to sparser and sparser S matrices.

In addition to 0, we chose other threshold values τ as the 10th, 25th, 50th,
75th and 90th percentiles of distribution of values in S. Let k denote the rank
of a percentile so that k ∈ {0, 10, 25, 50, 75, 90} with the convention that the 0th
percentile is 0. Accordingly, when k grows the kth percentile τ is greater and
greater and the S matrix becomes sparser and sparser.

We experimented with two types of kernel: linear and Gaussian. The linear
kernel is simply the inner dot product in I between normalized vectors as defined
in (3). The Gaussian kernel between two points x, y ∈ D is given by K(x, y) =
exp(−γ‖x − y‖2). It corresponds to a cosine measure in F . In our experiment
we set γ to 1/p by default5.
5 Note that this default setting is used in popular SVM packages. Furthermore, in this

case γ is very low and the Gaussian kernel provides values close to one and close to
each other between pairs of points.
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In Fig. 1, we show the results obtained for all seven methods on Reuters,
Smart and 20ng datasets respectively. We report the curves of several measure-
ments (y-axis) when S is progressively sparsified as the percentile rank (x-axis)
increases. In addition to CC and ARI graphs (dotted lines with circle and tri-
angle symbols respectively), the percentage of the memory cost of a sparse S
with respect to the dense S, and the proportion of the running time when using
a sparse S as compared to the dense S, are plotted as well (solid lines with
plus symbols and dashed lines with cross symbols respectively). Therefore, the
memory and processing time costs related to the full S (corresponding to the
0th percentile where τ = 0) serve as baselines (with y-axis value of 100 %). In
these cases, the lower the percentages the bigger the gains.

Equivalence Between Our Method and the LW Formula. In Fig. 1, for
all datasets and both kernels, the CC values are all equal to one when τ = 0 (0th
percentile shown at the origin). This empirically demonstrates that our approach
is equivalent to the AHC algorithm using the LW formula as claimed previously.

Next, as the percentile rank increases, the CC values generally decrease illus-
trating the fact that the dendrograms move away from the LW formula based
results. However, when using the linear kernel, the CC values generally remain
high even when the majority of the similarity values are removed. Concerning
the Gaussian kernel, the CC values drop rapidly after having thresholded 10 %
of the lowest similarities but they start increasing again after this fall.

The single link method however, presents a peculiar behavior: for all col-
lections and both kernels, it always recover the result given by the usual AHC
procedure despite the fact that 90 % of the S matrix is sparsified. In other words,
our framework is able to obtain the same dendrogram provided by the original
LW formula but with 90 % of memory usage and running time saved.

Impact of the Sparsification of S on Scalability. Let M ≤ N2 be the
number of non zero cells in S. The storage cost of our approach is O(M). The
time complexity6 is O(NM) which indicates a linearly relationship with respect
to the storage complexity.

In Fig. 1, the solid lines with plus symbols give the percentage of size of
the sparse S with respect to the dense S. As expected, this quantity linearly
decreases as the percentile rank k grows.

Next, the dashed lines with cross signs show the proportion of the processing
time observed with a sparse S with respect to the running time noted with the
dense S. We observe linear curves as well which depicts the linear relationship
between the memory and time complexities as mentioned above.

The sparsification of the S matrix enables decreasing the storage complexity
and the running time. Besides, it also has an impact on the clustering quality.
Previously, we have noticed that CC values were decreasing as S were sparser
and sparser. In the sequel, we examine some cases in which our framework wins
on both sides: scalability and quality.
6 Similarly to the general AHC algorithm based on a dissimilarity matrix for which

M = N(N − 1).
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Fig. 1. Experiments results for linear and Gaussian kernels in left and right blocks.
Rows correspond to AHC methods (using their abbreviations) and columns to collec-
tions. In each graph: each point corresponds to one of the measurements listed after-
wards with respect to an S matrix; the x-axis correspond to percentile ranks (divided
by 100) which define the threshold values τ (not shown); solid lines with plus signs
represent the relative memory use, dashed lines with cross signs show the relative run-
ning time, dotted lines with circle symbols indicates the absolute value of cophenetic
coefficient (CC), dotted lines with triangle symbols give the ARI values.
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Impact of Sparsification of S on Clustering Quality. We focus on the
quality of clustering outputs by analyzing the ARI values. We observe that
average link, Mcquitty and the Ward techniques worked out better in general.
Surprisingly, many of the best results are obtained with a very sparse S matrix
and not with the full one. In Table 4 we report the best outcomes where such a
phenomenon is illustrated. Mem% and Time% indicate the percentage of saved
memory and processing time respectively, when using the corresponding sparse
S as compared to the dense S.

Table 4. Best ARI results for each collection when τ = 0 (baseline) and when τ > 0
(sparsified S) and relative gains in memory and time.

Method Kernel τ Mem% Time% CC ARI

Reuters Average Gaussian 0 0 0 1 0.543

Average Gaussian 0.99 −75 −62 0.81 0.539

Smart Average Linear 0 0 0 1 0.939

Average Linear 0.078 −90 −85 0.96 0.944

20ng Ward Gaussian 0 0 0 1 0.100

Ward Gaussian 0.99 −50 −47 0.26 0.154

For Reuters, the best ARI value is provided by average link with a full S
given by the Gaussian kernel. However, a comparable performance is obtained
with the same method and kernel but with a sparse S that saves 75 % of memory
and 62 % of processing time.

Concerning Smart, average link gave the best ARI value as well, but with
a linear kernel. Compared to the LW based AHC algorithm, our framework
obtained higher ARI and with 90 % of memory and 85 % of running time less.

Regarding 20ng, it is the Ward technique with Gaussian kernel that worked
out the best. Our method allows increasing the baseline ARI value up to 54 %
and meanwhile consuming around half of memory and running time.

5 Discussion and Future Work

We have introduced an equivalent formulation of the LW formula based on cosine
similarities instead of squared Euclidean distances. Our AHC procedure that
relies on this formulation and a sparsified cosine similarity matrix, not only has
better scalability properties but is also able to give better clustering results.

We believe that two reasons account for this phenomenon. Firstly, sparsifying
the S matrix reduces the noise by removing the lowest similarity values, therefore
leading to better clustering performances. Secondly, when two clusters (Ci, Cj)
are merged together, their respective neighborhoods (clusters having a non null
similarity value with Ci and Cj respectively) are fused as well, so that C(ij) has
a larger neighborhood than both Ci and Cj . Furthermore, the updating rule (11)
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allows reinforcing the similarity value of C(ij) with Ck if the latter cluster belongs
to both initial neighborhoods. In fact, our approach can be viewed as a sort of
“transitive closure” starting with reliable seeds (the pairs with highest similarity
values) and propagating similarities through “trusted” neighborhoods.

However, the main drawback of our method is that, either sparsifying S does
not improve the ARI value at all (see complete link applied to Reuters with
Gaussian kernel in Fig. 1 for instance), or the improvements are not regular and
setting the threshold value τ becomes difficult. More theoretical investigations
should be undertaken in these respects to have a better understanding of the
properties of our framework.

Another line of research that we intend to pursue is to implement our app-
roach in the manner of distributed computing to take better advantage of its
scalability.

Acknowledgment. This work was supported by the french national project Request
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Abstract. The increasing volume of data generated and the shortage
of professionals trained to extract value from it, raises a question of
how to automate data analysis processes. This work investigates how to
increase the automation in the data interpretation process by proposing
a relevance classification heuristic model, which can be used to express
which views over the data are potentially meaningful and relevant. The
relevance classification model uses the combination of semantic types
derived from the data attributes and visual human interpretation cues
as input features. The evaluation shows the impact of these features in
improving the prediction of data relevance, where the best classification
model achieves a F1 score of 0.906.

1 Introduction

The growing availability of data brings the demand for methods to support
the automation of the data interpretation process, by automatically exploring
the search spaces of possible interpretations associated with the available data.
However, methods to support the automation of large-scale exploratory data
analysis are still limited.

The materialisation of the vision of an automated data analyst requires a
heuristic model which can optimise the exploration of the potential interpreta-
tion space of the data, detecting which data views and patterns are meaningful
and potentially relevant for data consumers.

This work aims at addressing this problem by proposing a relevance classi-
fication approach based on the composition of semantic types and visual data
interpretation cues. The main goal of the model is to provide a heuristic model
which can be used for pruning the search space associated with the interpretation
and identification of patterns of interest in the data.

The heuristic model is built upon the assignment of semantic types to data
attributes which, in combination with visual interpretation cues, define a data
relevance classification model. Both semantic types and visual interpretation
cues are input as features in order to build the final data interpretation relevance
classifier.

c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 332–342, 2016.
DOI: 10.1007/978-3-319-46349-0 29
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The proposed model lies on the intuition that the semantic types associated
with attributes can be used to infer their compatibility to form a meaningful
data view. Additionally, coarse-grained visual interpretation cues over the final
visualisation output (mediated by a specific visualisation type) are used as evi-
dence to detect salient potential patterns of interest within the data. We assess
the human interpretation process by systematically and manually classifying
meaningful and relevant data views for different domains.

The contributions of this work are: (i) the definition of a data interpretation
relevance model based on the combination of semantic types and visual inter-
pretation cues; (ii) an evaluation of the proposed model and of the impact of
semantic and visual cues and (iii) the determination of the best classification
model through a systematic analysis of different classifiers.

2 Related Work

This work concentrates on the area of automated and intelligent data analysis.
In Grosse et al. (2012); Duvenaud et al. (2013); Lloyd et al. (2014) the concept
of an automatic statistician is introduced. The automatic statistician framework
introduces a process to explore the compositionality of a large space of models
structures to find the applicable model to predict, classify or extrapolate based on
new unseen data. Our approach differs as we explore the compositionality of data
views and visual patterns to classify data relevance. Another proposed model is
AIDE, which provides a semi-automated process, which relies on planning data
analyses steps by a determined combination of data type and user interaction
(St. Amant and Cohen (1998); St. Amant and Cohen (1997)). AIDE limits its
application as a fully autonomous system, requiring corrections executed by the
user without training the system to correct itself automatically. Our approach
focuses on an automatic classification approach for the selection of relevant data
views.

Regarding exploratory data analysis, two works are considered. The first
work focuses on automated knowledge discovery workflow composition through
ontology-based planning (Záková et al. (2011)). It differs from our approach in
the semantic representation model where the extraction of semantic features
from WordNet hypernyms and distributional word vectors target a more generic
semantic representation solution (open vocabulary). The proposed model in this
work builds upon Bremm et al. (2011) which focused on assisted data descrip-
tors selector based on visual comparative data analysis. It aims at facilitating the
user’s access to the data analysis process. This data is used to link the descrip-
tion of features combinations and resulting functions with clear meaning by a
human data analyst, selecting the views and output interpretability. This app-
roach differs from our work as we explore the combination of semantic types and
high-level visual interpretation cues to classify data views representing relevant
meaning.
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3 Relevance Classification Model

3.1 Proposed Approach

The proposed relevance classification model consists of four main steps:

– Automatic pair-wise selection of attribute combination into a data view.
– Extraction of descriptive statistical features and semantic type features.
– Extraction of visual interpretation cues.
– Classification of the relevance of the data view.

Figure 1 presents an overview of the relevance classification model.

Fig. 1. Overview of our proposed approach.

We say that a data view is relevant when a visual interpretation provides a
clear trend or pattern which is easily recognisable by a human, with or without
previous knowledge about the data being analysed from two or more attributes
in a dataset.

To classify the relevance when analysing plots of pairs of attributes (data
views) we defined target classes based in the human process of data analysis.
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During the data analysis the analyst explore visualisations in order to understand
the data. To achieve a clear meaning the analyst should take decisions, such as
the application of operations (e.g. group by, sort by), changing the visualization
plot type, and including more data attributes or dimensions. Thus, the classes
defined are the representation of decisions required by the data analyst at each
step of the exploration process. These classes are:

– Class 1 - Clear meaning - Generic (Very intuitive - you do not need to know
the dataset/context to understand)

– Class 2 - Clear meaning - Dataset Context (you should know the dataset to
understand)

– Class 3 - Data non-relevant for data analysis (or for the analysis in question)
– Class 4 - Label not equal to data semantics (Inconsistent data)
– Class 5 - Change visualisation (plot type or axis - makes sense, but if change

it’s better )
– Class 6 - Add operations (ex: group by, sort by, etc.)
– Class 7 - Additional data attributes needed for the interpretation
– Class 8 - Add operations and/or more data attributes and/or visualisation.

Figure 2 shows an example of a plot that requires additional attributes to
present a clear meaning. Figure 3 shows an example of a plot requiring an addi-
tional attribute, and/or an additional operation, and/or a change in the visu-
alisation plot to present a clear meaning. Figure 4 shows an example of clear
meaning.

Fig. 2. Mobile devices and desk-
top/laptop devices by country sorted.

Fig. 3. Mobile devices and desk-
top/laptop devices by country without
a sort operation.

In our approach we assume that the datasets have no missing values. Any
missing values from the collected data is striped out before we start processing
them.
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3.2 Semantic Features

To represent the semantic type of an attribute, this work considers two
approaches. The first one uses WordNet1 hypernyms. WordNet is a lexical the-
saurus for the English language, where words are organized into a lexical seman-
tic network. WordNet also specifies the sets of hypernyms associated to a word
(its taxonomical structure), where Y is a hypernym of X if every X is a (kind
of) Y . We use these hypernyms as the semantic feature of words.

The other approach is the use of distributional vectors, extracted using the
Word2vec framework (Mikolov et al. (2013)). These vectors encode co-occurrence
statistics of words, relying on the linguistic notion that the context of a word
defines the semantics of it (Harris (1954)). Distributional vectors are normally
used as semantic representation of words.

For our work, we always assume that an attribute label has a descriptive
meaning. For example, a label will never be ‘X1’ or ‘Y’. This assumption is
necessary if we want to automatically assign semantic features to a label.

3.3 Attribute Feature Extraction

In order to simulate the data analysis steps executed by humans, we developed
a feature extraction process. The process explores the compositionality of sta-
tistical data types, the semantic representation of attributes, associated data
operations and basic plotting resources.

For the extraction of descriptive statistical features, we consider the univariate
analysis for description of the distribution, central tendency and the dispersion
for each data attribute, also classifying the measurement scale and statistical
data type. Examples of extracted features are presented in Table 1.

The set of semantic features are the attribute labels, the WordNet hypernyms
of the labels and the distributional vectors of each label. Table 2 exemplifies some
hypernyms used.

We end up with the following features:

– Statistical features:
• Mean, median, first quartile, third quartile, mode (for categorical data),

standard deviation, variance;
• Measurement scale (nominal, ordinal, continuous interval, continuous

ratio);
• Statistical data type (categorical, ordinal, real, binary, multiclass, count);

– Semantic features:
• Data labels;
• WordNet hypernyms;
• Distributional vector representations of data attributes labels;

The process of assigning hypernyms to the attributes consists in the iden-
tification of the head word of the phrase associated with the attribute label
1 http://wordnet.princeton.edu.

http://wordnet.princeton.edu
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Table 1. Examples of extracted descriptive statistical features.

Table 2. Examples of extracted semantic features.

Label WordNet hypernym

Access Through Mobile Device activity

Country area, social unit

Intentional Homicides Rate rate

Intentional Homicides Total Count count

Intentional Region area

Intentional Homicides Year time period

Homicides Total total sum

Gun Homicides Sources and Notes source, note

GDP Rank rank

GDP Int.dolar monetary unit

(when the label contains multiple words). A word sense disambiguation process
selects the associated sense of the word considering the other words within the
phrase as its context. Afterwards, the associated hypernym is assigned. The level
of taxonomic abstraction is assigned to two taxonomic hops.

3.4 Visual Interpretation Cues

Another fundamental component of the proposed model consists in simulating
the human visual interpretation process when analysing a data view (the com-
bination of pairs of attributes).

The visual attention mechanism associated with the process of human data
interpretation focuses on targeting the detection of outliers, coarse-grained varia-
tion regimes, clusters, periodicity, among others. These are examples of high-level
visual features which provide an entry point to the interpretation of the data.

For the purpose of this approach, we identified a set of ten high-level visual
interpretation cues described below. These cues are then used as features for our
classifiers.

– Whether the function is a pair of numerical data or a pair containing at least
one categorical data;

– Gaps;
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– Quantity of existent gaps;
– Measure of numerical correlation;
– Whether the correlation is positive or negative;
– Whether the function is linear or nonlinear;
– Derivative regimes;
– Quantity of derivative regimes;
– Maxima/minima;
– Periodicity.

We define a gap as any considerable difference of value magnitude between
consecutive data points. We call a “considerable difference” any value greater
than the arithmetic mean of all the differences from consecutive or non consec-
utive data points.

Figure 4 show some high-level visual cues in the context of a data view.

Fig. 4. Example of a two-dimensional numerical function describing the number of
tuberculosis cases since 1990 up to 2007 with examples of visual interpretation cues.

4 Evaluation

Twenty-three machine learning models were trained to address the relevance
classification problem, considering as an outcome one of the eight classes pre-
viously presented. We applied machine learning models based on (i) linear,
(ii) non-linear, (iii) non-linear with decision trees, (iv) non-linear with boosting
and (v) neural networks approaches. The application of more than one machine
learning model is intended to assess the behaviour of our dataset and evaluate
the impact of semantic and visual features in the predictive modelling.
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4.1 Creation of the Relevance Gold-Standard

Our gold-standard dataset consists of 20 open datasets commonly used for data
analysis and machine learning tasks2, available at the UCI repository3, Plotly4,
EDX Analytics Edge5, and William B. King R Tutorials6. All attribute pairs
from the collected datasets are then plotted and classified as one of the eight
classes already presented previously, resulting in 2989 attribute pairs.

Two types of visualization plots were applied, the bar plot and scatterplot
with lines, following the rules: (i) bar plot is applied when at least one data
type is qualitative and (ii) scatterplot with lines is applied when the X axis is
a quantitative data type and Y axis is a quantitative data type. Based on the
plotting, a human classified the relevance class of each attribute pair.

4.2 Experiments

For the training of the machine learning models, we represented the extracted
features in five scenarios:

– using only statistical features;
– using visual interpretation cues;
– using WordNet hypernym and visual interpretation cues;
– using distributional vectors of the attribute labels and visual interpretation

cues;
– using distributional vectors of random words and visual interpretation cues.

We use the last two scenarios to validate our assumption that semantic vec-
tors of the labels would improve the predictability accuracy of classification.
The variation of the semantic types is used to evaluate the impact of different
semantic features representations.

In all of the experiments we used 80 % of our dataset instances in the training
phase, using the remaining 20 % to validate the resulting models.

4.3 Results

The best classification results are achieved with the feature combination of hyper-
nyms as semantic types and visual interpretation cues (Random Forest achieves
a 11.87 % improvement in F1 score over the best result of the scenario without
these features). Distributional semantic vectors also impact in the classification
of the results (5.1 % improvement in F1 score over the best result of the scenario
without distributional semantic vectors). The best F1 score (0.906) was achieved
by using a Boosted C5.0 classifier, using distributional vectors of attributes labels

2 http://github.com/ekamioka/unipassau-ada.
3 http://archive.ics.uci.edu/ml/.
4 http://plot.ly/.
5 https://www.edx.org/course/analytics-edge-mitx-15-071x-2#!.
6 http://ww2.coastal.edu/kingw/statistics/R-tutorials/multregr.html.

http://github.com/ekamioka/unipassau-ada
http://archive.ics.uci.edu/ml/
http://plot.ly/
https://www.edx.org/course/analytics-edge-mitx-15-071x-2#!
http://ww2.coastal.edu/kingw/statistics/R-tutorials/multregr.html
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Table 3. Results of the relevance classification. Best AUC and F1 score for each classi-
fier is highlighted. HypVis - With hypernyms and visual interpretation cues, Vis - Just
with visual interpretation cues, WO - No semantic features and no visual interpretation
cue, VecVis - With distributional representations of the labels and visual interpretation
cues, VecrVis - With distributional representations of random words and visual inter-
pretation cues. The last line shows the percentual improvement for each feature set.

and visual interpretation cues. The full comparative analysis of different classi-
fication methods and features are fully presented in Table 3.

Considering the imbalanced problem in the classification dataset, we noted a
better classification performance in nonlinear models and ensemble-based mod-
els, which implements resampling techniques and combinations, thus rebalancing
the classes at learning time (Chawla (2005)).

Other classifiers that do not implement some type of rebalancing have a hard
time classifying some instances. For instance, the samples labeled as Class 7, a
class that has only 7 occurrences in our dataset, are rarely classified correctly.
On the other hand, our most common class (Class 2 ), represents 52.12 % of our
dataset.

To further interpret our classifier results we hand-picked some examples.
Those examples are presented in Figs. 5, 6, 7 and 8.
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Fig. 5. Country by Access Through
Desktop Laptop. Correct classifica-
tion of Class 1 (Clear meaning and
very intuitive).

Fig. 6. CPI all by Unemployment in
a dataset about Elantra Sales. Correct
classification of Class 2 (Clear meaning
dependent of dataset context).

Fig. 7. Website traffic by SSLfi-
nal state in a dataset about detection
of phishing attack in webpages. Cor-
rect classification of Class 8 (Requires
additional operations and/or data
attributes/dimensions and/or different
plot type to depict a clear meaning).

Fig. 8. TAX by TOWN in dataset
about Boston price location. Class 5
(Change visualisation) misclassified as
Class 2 (Clear meaning dependent of
dataset context).

5 Conclusion and Future Work

This work proposes a classification model for data relevance using the combina-
tion of semantic types and high-level visual interpretation cues. After perform-
ing a systematic comparative analysis of different classifiers, the proposed model
achieves a 0.906 F1 score using a Boosted C5.0 classifier, using distributional
vectors of attributes labels and visual interpretation cues. The relevance classi-
fication model can be used to classify relevance of new data views. Additionally,
the evaluation shows that semantic features and visual interpretation cues have
a clear impact on classification performance.

Our approach currently does not cover use cases where missing values are
present. The treating of missing values is crucial for real-world applications.
This limitation should be addressed in future work.
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Also, in practice, relevant patterns can be found in higher than 2-dimensional
data views. We intend to apply the same proposed approach to higher dimen-
sional data views and analyze the results.
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Abstract. Paleoclimate records are extremely rich sources of informa-
tion about the past history of the Earth system. We take an information-
theoretic approach to analyzing data from the WAIS Divide ice core, the
longest continuous and highest-resolution water isotope record yet recov-
ered from Antarctica. We use weighted permutation entropy to calculate
the Shannon entropy rate from these isotope measurements, which are
proxies for a number of different climate variables, including the temper-
ature at the time of deposition of the corresponding layer of the core.
We find that the rate of information production in these measurements
reveals issues with analysis instruments, even when those issues leave
no visible traces in the raw data. These entropy calculations also allow
us to identify a number of intervals in the data that may be of direct
relevance to paleoclimate interpretation, and to form new conjectures
about what is happening in those intervals—including periods of abrupt
climate change.

1 Introduction

The Earth system contains a vast archive of geochemical information that can
be utilized to understand past climate change. Using continually improving ana-
lytical techniques, records of change have emerged from corals, marine and lake
sediments, tree rings, cave formations, pollen distribution, and the ice sheets.
These heterogeneous data sets paint an intricate history of climate change on
Earth, often being linked in time by common features, but also containing dis-
tinct information about local, regional, and global processes.

To our knowledge, no one has applied information-theoretic techniques to
these data—an approach that holds promise for improving climatic interpre-
tations. Knowledge as to where information is created in the climate system,
and how it propagates through that system, could reveal and elucidate trig-
gers, amplifiers, sources of persistence, and globalizers of climate change [2,23].

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-46349-0 30
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For example, ice cores provide high-resolution proxies for hydrologic cycle vari-
ability, greenhouse gases, temperature, and dust distribution, among others. The
spatiotemporal information captured in these records of climate change could
reveal intricacies about the Earth climate system.

This paper is about one piece of that question: what the Shannon entropy
rate of the water isotope signals in a specific Antarctic ice core tells us—about
that data, about the past conditions at the core site, and about the overall
climate. In an ice core, layers capture information about the local conditions at
the time of deposition. A depth-wise series of measurements of some chemical
or physical property of the ice, then, is effectively a time-series trace of those
conditions. Water isotopes are a particularly useful property to study because
they are good proxies for temperature and atmospheric circulation that result
from variability in the hydrologic cycle. The time scale is unknown, though,
and understanding the specific form of the relationship between the measured
quantity and different aspects of the climate system requires forensic reasoning.
These issues are discussed further in Sect. 2.

The Shannon entropy rate is a potentially useful way to carry out forensic
reasoning about the climate system. It measures the average rate at which new
information—unrelated to anything in the past—is produced by the system that
generated the time series. If that rate is very low, the current observation contains
a lot of information about the past and the signal is perfectly predictable. If that
rate is very high, all of the information in the observation is completely new: i.e.,
the past tells you nothing about the future. Calculated over time-series data from
ice cores, this quantity—described in Sect. 3—allows one to explore temporal
correlations in the climate, which are critically important in understanding the
underlying spatiotemporal mechanisms of this complex dynamical system. The
results of these calculations, described in Sect. 4, are quite promising; they not
only corroborate known facts, but also suggest new and sometimes surprising
geoscience, and pave the way towards more-advanced interhemispheric entropy
comparisons that could elucidate some of the deeper questions posed above about
the larger climate system.

2 Paleoclimate: Dynamics and Data

At long time scales, the climate alternates between glacial and interglacial peri-
ods. A few of these cycles are shown in Fig. 1: the warm Holocene in which we
live, which began ≈ 12, 000 years before present (12 ka), then the last glacial
period from 110–12 ka and the Eemian interglacial period from 135–110 ka. (NB:
time runs backwards in most paleoclimate data analysis: the plots in this paper
start at the current era and move into the past, from left to right.) There is finer-
grained structure in the record as well: the Younger Dryas “cold snap” between
12.8–11.5 ka, for instance, which interrupted the slow temperature rise into the
Holocene [11]. There are also meaningful differences between records in different
parts of the world.

Greenland cores like the NGRIP one in Fig. 1, for example, preserve strong
signatures of Dansgaard-Oeschger (DO) events [9], where the temperature rises
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Fig. 1. Climate records from Greenland (NGRIP; top, in blue) and Antarctica (EPICA;
bottom, in red). The horizontal axis is time before present in thousands of years. The
quantities δ18O and δD, as explained at more length in the text, are temperature
indicators. The numbers identify Dansgaard-Oeschger events. (Color figure online)

9–16 ◦C over a span of decades or even years, then slowly falls over the course
of ≈ centuries, and finally decays rapidly back to the baseline. These events,
shown with superimposed numbers in Fig. 1, are thought to involve large-scale
redistribution of oceanic heat. The trigger is rapid warming in the north Atlantic,
perhaps because of injection of fresh water from ice-sheet melting; this disturbs
the deep “conveyor belt” currents, causing Antarctica to cool some 200 years
later, which is evident in ice cores from that region in the form of an AIM event
(Antarctic isotope maxima) [22]. There are many other meaningful features in
these data, as well; see [9,16] for good reviews.

Modern ice cores, from which data sets like the one in Fig. 1 are derived, cover
timespans of up to 800,000 years. These can reach over 3 Km in length and are
typically analyzed on a scale of cm—and, for some properties, mm. Each sample
may involve dozens of measurements: different kinds of ions and isotopes, dust
levels, conductivity, and so on. Some of the more useful of these are the stable
and radiogenic isotopes, the amount and type of dust (which are correlated to
the energy and humidity of the atmosphere), and the conductivity. The dynamic
ranges of these measurements can be huge: sulfate levels go up by a factor of
1000 when a volcano erupts, for instance. Noise levels vary greatly across the
different measurements, but those levels are not well established—and indeed
are the subject of some important arguments about how to distinguish signal
from noise. And of course the analysis equipment affects the data, sometimes
without leaving any visually obvious trace in that data. That issue will return
later in this paper.

The study reported here involves data from the 3405 m long West Antarctic
Ice Sheet Divide core (WDC), which was gathered and analyzed by a team
involving authors Jones and White [21,22]. This core, which covers a period of
roughly 68 ka, is the highest-resolution and longest continuously measured record
of its kind ever recovered from Antarctica. The high accumulation rate at the
WAIS Divide—about 23 cm/yr in recent times—results in annual isotopic signals
that persist for the last ≈ 16 thousand years, as well as signals at three years
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and greater that persist throughout the entire 68 thousand year record. These
high-frequency signals have never before been interpreted across the last glacial-
interglacial transition in Antarctica. In this paper, we focus on the water isotope
measurements in this record: specifically δD, the ratio of 2H (deuterium, D) to
1H, and δ18O, the ratio of 18O to 16O. Their values are reported in mille (parts
per thousand, or “per mil”), relative to a calibrated standard of the isotopic
composition of fresh water [1], and are generally negative for glacier ice. A δD
value of −250 mille, for instance, means that that water sample is depleted in
deuterium by 250 parts per thousand, relative to that standard.

Both δD and δ18O are good proxies for temperature at the time of deposition
of the associated section of the core [10], but the underlying mechanisms are
not straightforward. The initial values of these ratios are known from ocean
chemistry. The heavier isotopes (deuterium, 18O) precipitate out preferentially,
at known rates, as the water is carried to the polar regions in the form of vapor
and the air mass cools. Other factors also affect that air mass along the way,
however, so δD and δ18O are not simple functions of temperature. And some
of those effects—as well as some of the post-depositional processes that affect
these two quantities once they are embedded in an ice core—are different for
the two isotopes because of their differing molecular weights [8]. One method for
understanding these molecular differences, for example, is to study the secondary
measure dxs = δD − 8 × δ18O, which is considered to be an effective proxy for
kinetic effects during evaporation at the moisture source (largely a function of
sea surface temperature), or a reflection of changing moisture sources over time.

All of those measurements are on a depth scale; to do any kind of time-series
analysis, one must convert them to an age scale. This requires an “age model”
for the core: a mapping of depth to age. Constructing this mapping requires a
subtle, complicated combination of data analysis and scientific reasoning. Layers
can be counted, for instance, but only to a maximum of 40–50 ka because the
upper layers compress the ice underneath, thinning the layers to the point that
they are unrecognizable. The measurements in the core play a key role in age-
model construction: the astronomically based “Milankovitch” theory of ice ages
predicts how δ18O should vary through time, for instance. But ocean δ18O also
depends on the total volume of land ice on Earth1, so this quantity is also a
useful climate proxy. And near the base of the ice sheet, the ice often melts
and/or deforms, making dating—or any kind of data analysis—very difficult.
For the WAIS Divide core, the construction of the age model required several
person-years of effort. The top 31.2 ka of the core was dated by four different
individuals and one HMM-based software tool [24]; this procedure entailed visual
identification of annual fluctuations in several different chemical traces along
thousands of meters of core, followed by cross-corroboration between different
proxies and different daters [20,21]. From 31.2–67.8 ka, the age scale was based
on stratigraphic matching to “gold standard” Greenland ice cores and cross
referenced using uranium/thorium ratios from cores drilled from cave features
[5]. This represents the state of the art for data analysis in this field.

1 Since ice sheets preferentially collect 16O, while oceans preferentially collect 18O.
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3 Calculating the Rate of Information Production

The rate at which new information appears in a time series has been shown to be
an effective method for signaling regime shifts: e.g., epileptic seizure detection
in EEG signals [6], bifurcations in the transient logistic map [6], and recognizing
voiced sounds in a noisy speech signal [3]. Estimating that quantity from an arbi-
trary, real-valued time series can be a real challenge, however. Most approaches
to this problem use the Shannon entropy rate [15,19] and thus require categori-
cal data: xi ∈ S for some finite or countably infinite alphabet S. This is an issue
in the analysis of the type of high-resolution data produced by an ice-core lab
because symbolization introduces bias and is fragile in the face of noise [4,13].

Permutation entropy (PE) [3] is an elegant solution to this problem. It sym-
bolizes the time series in a manner that follows the intrinsic behavior of the sys-
tem under examination. This method is quite robust in the face of noise and does
not require any knowledge of the underlying mechanisms of the system. Rather
than calculating statistics on sequences of values, as is done when computing the
Shannon entropy in the standard way, permutation entropy looks at the statistics
of the orderings of sequences of values using ordinal analysis. Ordinal analysis of a
time series is the process of mapping successive elements of a time series to value-
ordered permutations of the same size. For example, if (x1, x2, x3) = (7, 2, 5) then
its ordinal pattern, φ(x1, x2, x3), is 231 since x2 ≤ x3 ≤ x1. The ordinal pattern
of the permutation (x1, x2, x3) = (7, 5, 2) is 321.

Given a time series {xi}i=1,...,N , there is a set S� of all �! permutations π of
order �. For each π ∈ S�, one defines the relative frequency of that permutation
occurring in {xi}i=1,...,N :

p(π) =
|{i|i ≤ N − �, φ(xi+1, . . . , xi+�) = π}|

N − � + 1
(1)

where p(π) quantifies the probability of an ordinal and | · | is set cardinality. The
permutation entropy of order � ≥ 2 is:

PE(�) = −
∑

π∈S�

p(π) log2 p(π) (2)

Since 0 ≤ PE(�) ≤ log2(�!) [3], it is common in the literature to normalize
permutation entropy as follows: PE(�)

log2(�!)
. With this convention, “low” PE is close

to 0 and “high” PE is close to 1.
PE runs into trouble if the observational noise is larger than the trends in the

data, but smaller than its larger-scale features. Weighted permutation entropy
(WPE) [12] addresses this issue by taking the weight of a permutation into
account:

w(x�
i+1) =

1
�

i+�∑

j=i

(
xj − x̄�

i+1

)2
(3)
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where x�
i+1 is a sequence of values xi+1, . . . , xi+�, and x̄�

i+1 is the arithmetic
mean of those values. The weighted probability of a permutation is defined as:

pw(π) =

∑

i≤N−�

w(x�
i+1) · δ(φ(x�

i+1), π)

∑

i≤N−�

w(x�
i+1)

(4)

where δ(x, y) is 1 if x = y and 0 otherwise. Effectively, this weighted probability
emphasizes permutations that are involved in “large” features and de-emphasizes
permutations that are small in amplitude, relative to the features of the time
series. The standard form of weighted permutation entropy is:

WPE(�) = −
∑

π∈S�

pw(π) log2 pw(π), (5)

which can also be normalized by dividing by log(�!), to make 0 ≤ WPE(�) ≤ 1.
In practice, calculating permutation entropy and weighted permutation

entropy involves choosing a good value for the word length �. The primary con-
sideration in that choice is that the value be large enough to allow the discovery
of forbidden ordinals, yet small enough that reasonable statistics over the ordi-
nals can be gathered. If an average of 100 counts per ordinal is considered to
be sufficient, for instance, then � = argmax�̂{N � 100�̂!}. In the literature,
3 ≤ � ≤ 6 is a standard choice—generally without any formal justification. In
theory, the permutation entropy should reach an asymptote with increasing �,
but that can require an arbitrarily long time series. In practice, the right thing
to do is to calculate the persistent permutation entropy by increasing � until
the result converges, but data length issues can intrude before that convergence
is reached. We used that approach to choose � = 4 for the calculations in this
paper. This value represents a good balance between accurate ordinal statistics
and finite-data effects.

WPE is a powerful technique, but it is not without issues. The choice of the
� value is one; another is the notion of significance. As is the case with many
nonlinear measures on data, it is quite difficult to define what qualifies as a
significant change in a WPE plot. One way to tell if a particular feature (e.g.,
jump, spike, valley) is important is by first understanding the time scales of the
system and comparing them to the size of the window of data over which the
WPE calculation is performed. This can help establish whether a change on that
time scale makes sense. It is also important to remember that for a particular
system, small-scale fluctuations over short time intervals may indeed signal some
small event. To distinguish between signal and noise, it is important to vary the
window size (as the data allows) and see if the result persists. We take that
approach in the calculations reported in the following section.

4 Results

Ice cores are sampled at evenly spaced intervals in depth, but these measure-
ments are spaced nonlinearly (and unevenly) in time because of the progressive
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downcore thinning of the ice and differing annual accumulation rates of snow.
To create evenly spaced time-series data for δD, δ18O, and dxs, we first used
the age model described at the end of Sect. 2 to convert depths to ages, and
then re-mapped the data to a constant temporal spacing of 1/20th of a year
using linear interpolation. The effective resolution of the data is 0.005 m. In the
upper portions of the ice core, annual layer thicknesses are about 20 cm, so there
are roughly 40 data points per year. At greater depths in the core, an annual
layer may only be 4 cm thick, yielding eight data points per year. The accu-
racy involved in interpolating these unevenly spaced data to a uniform spacing
of 1/20th year varies over the depth of the core; this matter, and its potential
effects on the results, are discussed further at the end of this section. The specific
age scale spacing of 1/20th per year was chosen because it preserves the struc-
ture and amplitude of the data—that is, there are no instances of significantly
reduced amplitude in the signal, or losses in spectral power.

We then used the normalized version of Eq. (5) with � = 4 to calculate WPE
in 500-year long windows across each of those time-series traces. Each point in
the resulting calculation captures the rate of information production over the
previous 500 years. The sliding-window nature of this calculation is intended
to bring out the fine-grained details of the information mechanics of the sys-
tem. Since WPE’s statistics are built up over the full span of the data that is
passed to it, performing that calculation over a longer segment of the climate
data—one that spanned different regimes—would intermingle the mechanics of
those different regimes. In the case of the questions that we were asking about
the WAIS Divide core, the minimum scale of the interesting events was 100–500
years. We ran all of the calculations reported here for that range of window
sizes and observed no change in the results. (All of these window sizes, inci-
dentally, satisfied the theoretical data-length requirements for successful WPE
calculations.)

Figure 2 shows the δD data from the WDC, along with the WPE of that trace,
calculated as described above. The δD WPE is ≈ 0.2 from 10–60 ka, indicating

Fig. 2. The deuterium/hydrogen ratio (δD) measured from the WAIS Divide Core.
The original data is shown in grey, the smoothed data (500-year moving average) in
red, and the weighted permutation entropy (WPE) calculated from the original data
in black. (Color figure online)
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that δD values depend strongly on their previous values during this period—i.e.,
that very little new information is produced by the system at each time step.
A very interesting feature here is the large jump in WPE between 5–8 ka. As it
turns out, an older instrument was used to analyze the ice in this region. The
WPE results clearly show that that instrument introduced noise into the data:
i.e., every measurement contains completely new information, unrelated to the
previous ones. As can be seen from examination of the red and grey traces in
the figure, that noise was not visually apparent in the δD data itself, so the
instrument issue was not detected immediately by the laboratory team. The
fact that WPE brings out the disparity between the two instruments so clearly
is a major advantage. (Indeed, that revelation has caused author White’s team
to re-examine the data in the depth ranges where the blips occur in the WPE
results, near 17, 26, and 30 ka.) Another interesting feature of Fig. 2 is the rise
in δD WPE from 62–68 ka. This may be due to geothermal heat at the base
of the ice sheet, which causes water isotopes to diffuse in that region, thereby
injecting new information into the oldest section of the time series. This matter
is discussed at more length below.

Fig. 3. The secondary measure dxs calculated from the δD and δ18O measurements
in the WAIS Divide Core. Original and smoothed values of dxs are shown in green
and grey respectively; the WPE of the original signal is shown in black. (Color figure
online)

The instrument issue that was invisible in the δD data was visible in the
dxs trace, as shown in Fig. 3. Recall that dxs = δD − 8δ18O, and that the
intent of performing this weighted sum is to deconvolve the differential sci-
entific effects that are at work in these two quantities and thereby zero in
on sea-surface temperature at the moisture source. It may seem that as dxs
is an affine transformation of δD and δ18O, the WPE would similarly be an
affine transformation of the information production of the individual signals, i.e.,
WPE(�; dxs) = aWPE(�; δD)+ bWPE(�; δ18O). However, weighted permutation
entropy is not preserved by affine transformations—and this is useful. Among
other things, it allows us to leverage the information production of dxs to gain
insight into the second-order dynamics that the calculations of dxs is intended
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to get at: specifically, the interplay between kinetic fractionation effects and
moisture source conditions.

Careful comparison of the three WPE traces in Fig. 4 illustrates the utility
of that reasoning. Recall that both δD and δ18O of a section of the core are, to
first approximation, proxies for temperature at the time of the deposition of that
material, but that thermodynamics and the difference in atomic weight causes
them to behave slightly differently. (The dxs calculation, again, is intended to
get at these second-order effects.) As expected, the δD and δ18O WPE traces are
largely similar, except for a small but fairly consistent vertical offset from 0–17 ka.
This offset indicates that the information production of δ18O increased towards
the end of the last glacial period, suggesting that, from an information-theoretic
perspective, the second-order thermodynamic effects have been playing a greater
role in the climate dynamics since 17,000 years ago. On the right-hand side of
the figure, however, the similarity fails. δ18O WPE rises slowly from 50–62 ka, at
which point δD WPE rises somewhat as well. This could be a thermal diffusion
effect due to geothermal heat at the bedrock interface, which will inject noise into
the data—and differentially affect the isotopes due to their different molecular
masses. It could also be a scaling issue; signal at those depths is attenuated by
the effects of time and depth, and also smoothed by the finite resolution of the
analysis equipment.

Fig. 4. WPE of δD (red), δ18O (blue), and dxs (green); Dansgaard-Oeschger events
are marked with black vertical lines. (Color figure online)

The Dansgaard-Oeschger events described in Sect. 2 are climatologically
important and scientifically interesting, but their mechanics and dynamics are
not completely understood. During the early stages of the collaboration that
produced this paper, the geoscientists on the team conjectured that these events
would inject new information into the time series. As is clear from Fig. 4, how-
ever, that is not the case. That is, while DO events may reflect changes in the
dynamics of the climate (cf., recent work on “critical slowing down” [7,14,17]),
they are not associated with changes in the information production of that sys-
tem. Rather, they appear to be just part of the normal operating procedure of
the climate system. We are currently looking at shorter windows to see whether
WPE reveals “triggers” or other early-warning signals for these important events.
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The results shown in Fig. 4 catalyzed a number of other new hypotheses
about climate science. The WAIS Divide ice core derives moisture mainly from
a Pacific Ocean source. During the beginning of the deglaciation at ≈ 19 ka,
the dxs WPE and δ18O WPE begin to increase, in line with accumulation2. At
that time, changing climatic conditions in West Antarctica may have produced
storm tracks that delivered precipitation from more-diverse locations. For exam-
ple, increased sea ice extent during the glacial period may have limited storm
tracks to those originating primarily in the central Pacific, but upon sea ice
decline during deglaciation, more local storm tracks, and possibly storm tracks
from the west Pacific and even the Indian Ocean, could have contributed pre-
cipitation to the ice core site. Simply put, we suggest that more accumulation
means more storms originating from more locations. Of course, from a fraction-
ation standpoint, the increasingly variable location of moisture formation would
have to introduce differing kinetic effects that injected more information into the
system; we would not expect this as the physics of evaporation should be the
same.

It is worth thinking about whether the preprocessing step outlined in the
first paragraph of this section—which is the standard approach in this field if
one wants an ice-core data set with even temporal sampling—could have dis-
turbed the information mechanics of the data. The ramps introduced by linear
interpolation introduce repeating, predictable patterns in the π of Sect. 3, which
could skew the distribution of those permutations. For long enough interpola-
tions, this should lower the overall WPE value, but the time scales of this effect
are all but impossible to derive.

To explore whether this WPE shrinkage was at work in our results, we carried
out the following experiment. We first generated a time series using a random-
walk process, which has a theoretical WPE of ≈ 0.9405. That only holds, how-
ever, if one uses an infinitely long time series; in practice, calculations of WPE
on time series like this yield values of ≈ 0.85–0.9. We then used the WAIS
Divide core age model to invert the time scale of this trace, downsampling it
nonlinearly so that the temporal intervals between data points were consistent
with an 0.005 m spacing. This is an effective ansatz for a data set from that core:
closely spaced points near the beginning of the trace, where the core is less dense
and a year’s worth of material is thicker, and spreading apart roughly exponen-
tially later in the time series, which corresponds to the highly compressed ice
deep in the core. We then subjected that trace to the same preprocessing steps
outlined at the beginning of this section and finally computed its WPE. The
results showed a correct baseline of 0.82–0.87 early in the time series, where the
interpolation interval is small, followed by a slow decrease starting around 12 ka.

That decrease suggests that one should be careful comparing WPE values of
a single trace across wide temporal ranges—especially when one is working deep

2 The accumulation data from the WDC has not yet been released publicly, so we
cannot include a plot of it here, but there are some extremely interesting correspon-
dences that we hope to be able to include in a few months, when we are allowed to
share those data.
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in the core. However, the claims offered in this paper concern (a) features high
up in the core (viz., the instrument issue) (b) narrow features deeper down, and
(c) broad time-scale comparisons of traces produced with identical interpolation
processes (Fig. 4). Moreover, we are not completely convinced of the accuracy of
our synthetic experiment; note, for example, that the δ18O and δD WPE traces in
Fig. 4 actually rise at lower depths—the region where interpolation effects should,
theoretically, cause a dropoff. It may be the case that the geothermal effects inject
much more information into the system than the results presented here suggest,
or it may be that we do not completely understand the interpolation effects. We
are currently exploring this from several angles: by simply downsampling the
WDC data, rather than interpolating it, and by comparing WPE of different
WDC traces that were sampled at different intervals. There are other issues
as well. Gases diffuse through the material in the core: more readily at the top,
where the material is less dense, and more slowly lower down, where the snow has
been compressed into solid ice. Since diffusion effectively introduces white noise,
it should raise WPE. However, this effect would be quite difficult to deconvolve
from the data in an ice core, since a given segment of that core has undergone a
continuum of diffusion processes at different temporal and spatial scales during
its history.

5 Conclusion and Future Work

Paleoclimatic analyses require complicated forensic reasoning to determine the
timing and phasing of past events. In ice-core science, a particularly meaningful
paleoclimatic indicator is found in the measurements of water isotopes; these are
useful for understanding temperature, atmospheric circulation, and oceanic con-
ditions. Interpreting records of the history of these isotopes requires knowledge
of the thermodynamics of the climate system, along with a precise age scale.
The former is governed by physics; the latter requires intelligent data analysis
performed by multiple individuals and software tools.

In this paper, we used data from the WAIS Divide ice core to analyze infor-
mation production over the last 68,000 years. Through permutation entropy
techniques (WPE), we found that information production in δD, δ18O, and dxs
is consistent with thermodynamic expectations. The WPE of δ18O and dxs share
common features, likely because these parameters are more sensitive to kinetic
fractionation effects in ocean moisture source regions. Conversely, the δD is likely
more responsive to temperature-related equilibrium effects. We identify a num-
ber of intervals in the data that may be of direct relevance to paleoclimate
interpretation. In the deepest sections of the core (> 60 ka), divergence of WPE
for δD and δ18O may help identify time periods when geothermal heat flux
causes differential solid diffusion of water molecules. Throughout the last glacial
period (> 12 ka), rather constant WPE values suggest no information produc-
tion during large-scale abrupt warming events in Greenland that also appear as
isotope maxima in Antarctica: this is an unexpected result. Across the glacial-
interglacial transition (≈ 19 − 11 ka) and into the Holocene (< 11 ka), increases
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in WPE for all variables may signal more variability in the hydrologic cycle—
for example, receding sea ice may establish more-diverse moisture sources across
latitudes and ocean basins. In the last 2000 years, an increase in WPE (the small
rise that is visible on the left-hand edge of Fig. 4, in all three traces) may signal
anthropogenic effects on the climate system. These comparisons deserve more
rigorous treatment, and will be included in future work.

The overall results of this study constitute only one kind of information
calculation on a few isotopes in a single ice core; there are additional options
that could broaden the scope in useful and meaningful ways. For example, com-
parison of WPE from the WAIS Divide with that of other Antarctic ice cores
may elucidate the thermodynamics of varying moisture sources in the Indian,
Pacific, Atlantic, and Southern Oceans. It may even provide information about
atmospheric processes that affect the isotopic signal. Comparison of WPE of
varying WAIS Divide proxies, such as water isotopes and accumulation, may also
hold important clues to information production in the climate system. Compari-
son of Antarctic and Greenland cores could provide interhemispheric viewpoints
that can inform us about abrupt climate change events (e.g., trigger mecha-
nisms). Other information-theoretic measures, such as mutual information or
transfer entropy [18], may be even more useful than WPE in these kinds of
comparisons. None of these sorts of calculations have previously been done on
paleoclimatic data sets—let alone multiple ones—and the initial findings pre-
sented here hold promise for improving climatic interpretations.
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Abstract. Biomarker studies often try to identify a combination of mea-
sured attributes to support the diagnosis of a specific disease. Measured
values are commonly gained from high-throughput technologies like next
generation sequencing leading to an abundance of biomarker candidates
compared to the often very small sample size. Here we use an example
with more than 50,000 biomarker candidates that we want to evaluate
based on a sample of only 24 patients. This seems to be an impossible task
and finding purely random-based correlations is guaranteed. Although we
cannot identify specific biomarkers in such small pilot studies with purely
statistical methods, one can still derive whether there are more biomark-
ers showing a high correlation with the disease under consideration than
one would expect in a setting where correlations are purely random. We
propose a method based on area under the ROC curve (AUC) values
that indicates how much correlations of the biomarkers with the disease
of interest exceed pure random effects. We also provide estimations of
sample sizes for follow-up studies to actually identify concrete biomark-
ers and build classifiers for the disease. We also describe how our method
can be extended to other performance measures than AUC.

1 Introduction

A biomarker is a measurable value that is an indicator for a biological state.
In recent years, the search for biomarkers for diseases has gained high interest
in medicine. A well-known biomarker is the so-called prostate-specific antigen
(PSA) which was or is sometimes still used as a biomarker for prostate cancer
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although its reliability and usefulness is sometimes doubted [1]. Along with the
advancement of high-throughput technologies like microarrays, next generation
sequencing and mass spectrometry, that allow to measure the whole or large parts
of the genome, transcriptome, proteome or metabolome, came a strong hope to
find a single biomarker for each disease or state of a disease to be diagnosed
with very high certainty. However, this dream did not come true and it seems
to be unrealistic from today’s point of view. Biological systems are probably too
complex for simple single-cause single-effect associations. Nevertheless, there are
biomarker candidates that show a high correlation with specific diseases but
are not reliable enough to function as predictors for the presence of a specific
disease alone. Therefore, instead of relying on a single biomarker, the idea is
to combine biomarkers that are not good enough for the diagnosis of a specific
alone but can jointly provide a diagnosis with high certainty. An example of such
a combination is the Enhanced Liver Fibrosis (ELF) score [2] that uses a linear
combination of (log-)values of three single biomarkers to predict fibrosis stages
in chronic liver disease patients. The EFL score was derived from a quite limited
number of standard blood values of altogether 479 patients. No high-throughput
technology was involved.

The use of high-throughput technologies for finding reliable combinations
poses new challenges. First of all, in contrast to standard blood values, patient
data based on high-throughput technologies are not commonly available in hos-
pitals. This means, they have to be generated separately. Secondly, although
the prices for generating data from high-throughput technologies are constantly
decreasing, it is still quite expensive and also time-consuming to carry out these
experiments. This implies high costs for such data. The advantage and the curse
at the same time is that such experiments easily yield thousands or even far
beyond 10,000 possible candidates for biomarkers. The sample size in expensive
pilot studies is usually very limited, sometimes less than 20. From a machine
learning or classification point of view one then tries to derive a classifier from
a data set with more than 1000 attributes (biomarker candidates) and perhaps
only around 20 or 30 instances. Finding random associations and overfitting is
therefore hard to avoid.

Pilot studies with a small sample size and a large number of biomarker candi-
dates are – as the name already points out – not intended to finally mark down a
biomarker combination for clinical use but to check whether there are potential
biomarkers that make a more expensive follow-up study with a larger sample
size worthwhile. In this paper, we propose methods to assess biomarker pilot
studies with respect to their potential to yield promising results when they are
extended by follow-up studies. Section 2 gives a formal definition of our problem
and provides an illustrating example. Section 3 describes how a pilot study can
be analysed with respect to the potential to find reliable biomarker combina-
tions in a follow-up study. A rough estimation of the required sample size is
provided in Sect. 4. The ideas of Sect. 3 based on simple area under the ROC
curve (AUC) values are extended to other measures for classifiers in Sect. 5.
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The final conclusions address the problem of possible high correlations between
biomarker candidates.

2 Problem Formalisation and an Example

From a formal point of view, we face the following problem. We have n instances
– usually patients – from which we have measured m attributes (biomarker can-
didates). The patients are assigned to c different classes, i.e. different diagnoses
or different states of a certain disease. The number of classes c is usually small,
in many cases even c = 2 where we only want to distinguish patients suffering
from a certain disease from patients who do not have this disease. Typically, we
have m ≫ n. Our ultimate goal is to find a classifier that can predict the class
(diagnosis) based on the values of the m attributes. For reasons of simplicity,
we assume we do not have to deal with missing values1. Due to the fact that
we have to face m ≫ n, we cannot directly build a standard classifier based
on the given data set. A feature selection technique is required to reduce the
number of attributes drastically. As a possible way to evaluate the predictive
power of a classifier, we could apply cross-validation and because of the small
sample size we would prefer to use leave-one-out cross-validation (the jackknife
method). It must be emphasised that when we want to evaluate a classifier, we
must not separate feature selection from the classifier. It was already noted in
[3,4] that first applying feature selection on the whole data set and then evaluate
a classifier using only the selected features based on cross-validation can lead to
a strong model selection bias, since the actual model consists of the classifier
and the (pre-)selected features. To illustrate this problem, we have carried out
the following simulation. We have generated m = 1000 random attributes fol-
lowing a standard normal distribution for different sample sizes n. The we have
randomly assigned the n instances to two classes, n/2 instances to each class,
i.e. if we consider the two classes as healthy vs. sick, we have a prevalence of
50 %. This means that correlations between the 1000 attributes and the classes
are purely random. We have then carried out the following two experimental
settings.

(a) We have first selected the best 20 attributes from the whole data set and then
trained classifiers and evaluated them based on the leave-one-out method
(LOO). This is how it should not be done!

(b) Within the leave-one-out method, i.e. when the test sample had already been
removed from the training data set, we have selected the best 20 attributes
and trained the classifiers without the sample that was left out for testing.

The selection of the “best” attributes was based on a very simple strategy.
We chose 20 attributes with the highest area under the ROC curve (AUC) val-
ues. As classifiers we used support vector machines (SVM), random forests (RF)

1 This is a more or less realistic assumption for microarray and next generation
sequencing data but not for data from mass spectrometry.
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Table 1. Percentage of correctly classified instances in a completely random data set
with 1000 features when feature selection is applied to the whole data set before (before
LOO) and within leave-one-out cross-validation (during LOO). The sample size with
two classes is given by n. Prevalence is 50 %. Classifiers are support vector machines
(SVM), random forests (RF) and linear discriminant analysis (LDA).

n before LOO during LOO

SVM LDA RF SVM LDA RF

20 100 80 95 65 65 55

30 97 70 97 43 43 67

40 95 83 85 53 55 45

50 84 80 82 26 20 22

100 82 80 76 47 46 48

150 79 79 79 60 61 60

200 72 70 70 44 48 44

and linear discriminant analysis (LDA). Table 1 shows the percentage of cor-
rectly classified instances for the leave-one-out evaluation. Since the data set is
completely random with a prevalence of 50 %, we would expect to classify about
half of the instances correctly. One can see easily see that this is not true for
the (inappropriate) method explained in (a) where the feature selection is car-
ried out on the whole data set before leave-one-out cross-validation. Even for a
sample size of 200, around 70 % of the instances are still correctly classified, a
value that is never achieved for any sample size n and any classifier with the
correct method (b). It is noteworthy that for n = 50 the correct method by
chance performs even far worse than random guessing.

As an example for illustration purposes of our approach we use a data set from
n = 24 patients2 who had undergone a surgery for a hip prosthesis which later
on caused problems. The final goal is to classify whether the problems are caused
by a low-grade periprosthetic hip infection or by aseptic hip prosthesis failure,
i.e. to see whether the problems come from an infection or not. A microarray
kit was used to obtain m = 50, 416 biomarker candidates based on measured
genes and RNA values [5]. When we apply the above mentioned method (b) to
this data set, we obtain rates of correctly classified instances of around 50 %
which corresponds to random guessing. Even changing the number of selected
biomarker candidates – for instance choosing only the top 10 or 4 instead of 20
– in the leave-one-out cross-validation loop does not lead to an improvement.
Should we draw the conclusion that this pilot study has failed and it is not
worthwhile to consider a follow-up study? An answer to this question will be
provided in the following section.

2 The data set is currently submitted to a medical journal.
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Table 2. Top 10 AUC values and their p-values for the hip prosthesis infection data
set.

Biomarker AUC p-value (raw) p-value (corrected)

1 0.951388889 0.0000333 1

2 0.944444444 0.0000496 1

3 0.944444444 0.0000496 1

4 0.930555556 0.0001028 1

5 0.930555556 0.0001028 1

6 0.930555556 0.0001028 1

7 0.930555556 0.0001028 1

8 0.930555556 0.0001028 1

9 0.923611111 0.0001442 1

10 0.923611111 0.0001442 1

3 HAUCA Curves

One might argue that our feature selection method using only the AUC values
is too simple. Indeed, there are more sophisticated techniques, especially those
that do not simply rank the single features but look directly for combinations
of features. However, it is extremely difficult to choose among feature subsets
from more than 50,000 features. We do not want to dive into advanced feature
selection methods here. In any case, it would be unrealistic to build a classifier
based on a data set with 24 instances (patients).

Although the concept of AUC is sometimes criticised [6], especially because
it does not take the prevalence into account, and it is restricted to two-class
problems, it is still a meaningful approach [7] and we will take a closer look at
the AUC values in our data set. The second column of Table 2 shows the 10
highest AUC values for our example data set – computed on the whole data set.

AUC values over 0.9 are definitely interesting although such a value might not
be sufficient for a medical test. Nevertheless, a combination of biomarkers with
such high AUC values might lead to a classifier with sufficient predictive power.
However, we have seen in the previous section that this does not really apply in
the case of our data set. The classifiers we had mentioned using the biomarker
candidates with the highest AUC values – based on the feature selection and
cross-validation strategy (b) – were not better than random guessing. So can we
conclude that the high AUC values occur just by chance?

Fortunately, there is a method to compute the probability that an attribute
with n values randomly assigned to two classes with a given prevalence exceeds
a given AUC value [8]. The computation is mainly based on the same statistic
that is used for the Wilcoxon-Mann-Whitney-U test. We just need to be able to
compute the quantile of the statistic of the Mann-Whitney-U test. For a sample
of size n with an absolute prevalence of n+ of the disease in the sample, the
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probability that a single biomarker candidate with randomly assigned values
exceeds an AUC value of a is

FU ((n− n+) · n+ · (1 − a), n− n+, n+) (1)

where FU is the cumulative distribution function of the Wilcoxon-Mann-
Whitney-U statistic [8]. Actually this probability should be multiplied by two
(and cut off at 1 in case it exceeds 1) because an AUC value close to 0 is also of
high interest because it indicates a high, but negative correlation between the
value of the biomarker candidate and the disease.

The corresponding probabilities for the top 10 AUC values in hip prosthesis
infection data set are given in the third column “p-value (raw)” of Table 2. These
probabilities can be interpreted as p-values for the hypothesis test with the null
hypothesis that the classes are randomly assigned to the instances or that all
biomarker candidates have random values that are not correlated with infection.
Although the raw p-values in the third column of Table 2 seem to be small enough
to reject the null hypothesis, we must take into account that we have applied
multiple testing, i.e. we have applied the test to all biomarker candidates, so
that the test was repeated m = 50, 416. Therefore, a correction for multiple
testing is needed. No matter which correction method we choose – here we have
applied Bonferroni-Holm correction [9] – all p-values are changed to 1, losing
their significance as can be seen from the last column of Table 2. So does this
support what we have already observed when we constructed the classifiers, i.e.
that the data set does not seem to indicate any non-random correlation between
the biomarker candidates and infection?

The answer is no. There is another way of looking at the AUC values. Because
of the large number of biomarker candidates, we would expect high AUC values
just by chance. But how many high AUC values could we expect if the data
were completely random? According to Eq. (1) we can compute the probability
that an attribute with n values randomly assigned to two classes with a given
prevalence exceeds a given AUC value, we can also calculate the number of
expected biomarker candidates exceeding a given AUC value in a random data
set. It is simply the probability for the AUC times the number of biomarker
candidates m, here m = 50, 416.

The bottom black curve in Fig. 1 shows on the y-axis how many biomarker
candidates one could expect to exceed a given AUC value marked on the x-axis
in a random data set that contains the same number of biomarker candidates as
our hip prosthesis infection data set. The top blue curve in the figure shows how
many biomarker candidates exceed the corresponding AUC threshold in our real
data set on infection after hip prosthesis surgery. One can clearly see that there
are many more biomarker candidates in the AUC range from 0.85 to over 0.9
than one would expect in a random data set.

Of course, the expected number of high AUC values in a random data set is
just a bottom line for comparison with the AUC values found in the real data
set. We also provide a 95 % upper confidence band for the number of high AUC
values in a random data set. This confidence band is indicated by the middle red
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Fig. 1. HAUCA curves for the hip prosthesis infection data set showing on the y-axis
how many biomarker candidates exceed a given AUC threshold indicated on the x-axis.
Top blue curve: real data. Bottom black curve: Expected number in a random data
set. Middle red curve: 95 % upper confidence band for a random data set. (Color figure
online)

line in Fig. 1. Again, one can observe that the number of biomarker candidates
in the range between 0.85 and 0.9 exceeds even this 95 % upper confidence band.

The computation of the confidence band is based on the following consider-
ations. For any given AUC value a we know the probability pa that a biomarker
candidate with random values would obtain an AUC value larger than a. If we
have m independent random biomarker candidates the probability that exactly k
random biomarker candidates have a higher AUC value than a follows a binomial
distribution B(m, pa), so that we simply have to compute the 95 % quantile of
this binomial distribution to obtain the value of the 95 % upper confidence band
at the AUC value a. Of course, one could choose other values than 95 % for the
confidence band and just replace the values in the graph by the corresponding
quantile of the binomial distribution.
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We call the curves shown in Fig. 1 high AUC abundance (HAUCA) curves.
The HAUCA curves in Fig. 1 clearly indicate that there is more than just a
random correlation between the biomarker candidates and infection with the hip
prosthesis infection data set. Taking a closer look at the AUC value of 0.85 in the
HAUCA curves, we can see that the real data set contains over 300 biomarker
candidates with an AUC value higher than 0.85, whereas one would expect in a
random data set clearly less than 150. Even the 95 % upper confidence bound
at an AUC value of 0.85 does not reach the value 150. This means that the high
correlation with infection of about half of the biomarker candidates in the real
data set with AUC value greater than 0.85 cannot be explained by pure random
effects. We cannot identify which biomarker candidates are the right ones. But
there should be some valid biomarkers that once – once they are identified in a
follow-up study – can be used to build a classifier.

So from this pilot study on infection after hip prosthesis surgery we cannot
confirm any specific biomarker candidates. But we can nevertheless say that
there must be very good candidates and it is worthwhile to extend the pilot
study to a larger sample. Of course, one could also look at the functional anno-
tations of the genes (biomarker candidates) with high AUC values and see which
ones are associated with infection processes to make a pre-selection of promising
biomarker candidates for an extended study. But this is out of the scope of our
purely statistics oriented discussion here.

Figure 2 shows another example of HAUCA curves for data from a biomarker
study published in [10]3. The data set contains information about the micro-
biome in the mouth of n = 19 patients of which 9 suffered from periodontitis.
The microbiome was characterised by the abundance of m = 242 operational
taxonomic units (OTUs). Here again the HAUCA curves clearly indicate that
there is more than just random correlation between OTUs and periodontitis.
In this case, the classifiers based on leave-one-out cross-validation and feature
selection within the cross-validation loop could even provide for 14 out of 19
patients the correct diagnosis which is far away from being of clinical use but
also indicates a correlation between OTUs and periodontitis.

4 Sample Size Estimation for Follow-Up Studies

In the previous section, we have seen that based on very small pilot studies we
can at least find good indicators for a connection between the set of biomarker
candidates and the disease under consideration. But our approach is neither
capable to identify specific biomarkers nor to construct a reliable classifier that
supports the diagnosis which is no surprise given the small sample size compared
to the number of biomarker candidates. The question that arises here is how to
determine the sample size of a follow-up study that should either confirm the
validity of biomarkers with high AUC values or even construct a classifier based
on a combination of good biomarker candidates.

3 The HAUCA curves were neither available nor discussed in the paper [10].
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Fig. 2. HAUCA curves for the OTU data set.

It is quite simple to specify the sample size for confirming the validity of a high
AUC value for a biomarker. For instance, the top biomarker candidate in Table 2
has an AUC value of 0.95 whose low raw p-value turns into a non-significant p-
value after correction for multiple testing. Assuming that the AUC value of this
biomarker would remain at 0.95 in a follow-up study with a larger sample size,
we can compute the resulting p-value in this study after correction for multiple
testing using Eq. (1) (multiplied by two to account for biomarkers that show
a negative correlation with infection). We simply need to increase n and n+

proportionally – assuming the prevalence in the follow-up study remains the same
– until the resulting probability is small enough, so that it remains significant
after correction for multiple testing, in our example after multiplication with
m = 50, 416. Already at n = 30, the p-value after correction for multiple testing
drops below 5 %. In the same way, the two last candidates in Table 2 with an
AUC value of 0.92 would need a sample size of at least n = 36 to be confirmed
given the AUC and the prevalence remain the same for the larger sample size in
the follow-up study.
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Apart from confirming high AUC values of single biomarker candidates we
are also interested in how many of such potentially valid biomarkers we need
to combine for a classifier to obtain sufficiently reliable predictions. This, of
course, highly depends on the correlation between the good biomarker candi-
dates. In the worst case, their correlation equals 1 and their combination does
not lead to any improvement compared to the single biomarkers. In order to get
a rough idea of how well a classifier based on a combination of good biomarkers
could perform, one could exploit the ideas from [11] although the underlying
assumptions are quite restrictive. There it is assumed that the values for the
biomarkers follow normal distributions and the normal distributions for the two
classes differ. The paper [11] provides a method how to compute the AUC value
of linear discriminant analysis based on the AUC values of the single biomarkers
and their correlations within the two classes. Of course, the estimation of the
correlation based on the pilot study is not very reliable. But the proposed pro-
cedure of estimating the AUC values of the biomarker combination still provides
a rough judgment how well the biomarker combination could perform for later
prediction.

5 Alternatives to AUC

As mentioned already in the beginning of Sect. 3, AUC values are neither the only
nor the best performance measure of scores used for classification. In principle,
one could replace AUC by other performance measures, for instance entropy,
accuracy or the area above cost curves [12]. These performance measures also
have the advantage that they are not restricted to binary classification problems
but are also applicable in the context of multiclass classification problems. Of
course, for multiclass classification problems one could also use extensions of
AUC to more than two classes as described in [13–17]. However, for all these
measures it is no longer obvious how the corresponding p-values can be computed
that are needed for the equivalent to the HAUCA curves.

A possible solution is an estimation of these p-values based on Monte-Carlo
or permutation tests. For a Monte-Carlo test, one would generate a large number
of biomarkers with random values and compute the values of the corresponding
performance measure. Then the p-value of a biomarker candidate in the real
data set is the proportion of random biomarkers with a better value for the
performance measure than the considered biomarker in the real data set. For a
permutation test, one would randomly permute the classes while fixing the values
of the biomarker candidates to compute values of the performance measures for
random biomarkers. The p-value of a biomarker candidate in the real data set
is then computed in the same way as for the Monte-Carlo test. Estimating the
p-values based on Monte-Carlo or permutation tests requires a large number
of simulations implying high computational costs. For instance, in the example
of the hip prosthesis infection data set the best AUC value has a p-value of
approximately 3 · 10−5. If we had not been able to compute this p-value based
on Eq. (1) and had to rely on Monte-Carlo or permutation tests, we would need
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at least 106, better even more than 107 simulations to get a rough estimation of
this small probability. And the above mentioned performance measures already
need a little bit of computation time for a single biomarker.

6 Conclusions

In this paper, we have presented an approach how to judge biomarker pilot
studies with small sample sizes and large numbers of possible biomarker can-
didates. For binary classification problems we can use the AUC as a measure
of performance for the single biomarkers, leading to closed form solutions of
the required calculations and therefore to fast computation. Other performance
measures could also be applied for the price of high computational costs due to
the need of simulations instead of closed form solutions. Efficient algorithms or
new solutions will be a topic of further research.

Another question concerns the correlation between the biomarker candidates.
The computation of the p-values in the context of AUC values and for the
Monte Carlo test assumes independent biomarker candidates. This is definitely
an unrealistic assumption because at least subsets of the biomarker candidates
– no matter whether they are associated with the disease or not – will show
high correlations because these measured values interact in a highly complicated
biological system and cannot function independently. In a certain way, this would
be taken into account by a permutation test because the correlation among
the biomarker candidates is not changed, only the distribution of the classes is
rearranged. This aspect will need further investigations.
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Abstract. Twitter continues to gain popularity as a source of up-to-
date news and information. As a result, numerous event detection tech-
niques have been proposed to cope with the steadily increasing rate and
volume of social media data streams. Although most of these works con-
duct some evaluation of the proposed technique, comparing their effec-
tiveness is a challenging task. In this paper, we examine the challenges to
reproducing evaluation results for event detection techniques. We apply
several event detection techniques and vary four parameters, namely time
window (15 vs. 30 vs. 60 mins), stopwords (include vs. exclude), retweets
(include vs. exclude), and the number of terms that define an event (1...5
terms). Our experiments use real-world Twitter streaming data and show
that varying these parameters alone significantly influences the outcomes
of the event detection techniques, sometimes in unforeseen ways. We con-
clude that even minor variations in event detection techniques may lead
to major difficulties in reproducing experiments.

1 Introduction

The continuous success of Twitter and its freely available data stream have
fostered many research efforts specialized on social media data. In this area of
research, event detection is one of the most popular topics. In general, all event-
detection approaches have in common that they attempt to detect patterns that
differ from the normal behavior of the data stream. However, there are different
types of techniques that can be used for this task. For example, Weng et al. [29]
and Cordeiro [9] use techniques that are based on wavelet transformation to
detect the events. Other works, such as Alvanaki et al. [2] or Mathioudakis and
Koudas [16], use statistical models to detect significant abnormalities.

A major challenge in event-detection research is reproducibility. Repro-
ducibility describes the case in which the outcome of two experiments allows
drawing the same conclusions [4]. For instance, if an experiment shows that
Algorithm A has faster run-times than Algorithm B, the conclusion might be
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that Algorithm A outperforms Algorithm B. This research would be consid-
ered reproducible if a similar experiment also leads to results that support the
conclusion that Algorithm A outperforms Algorithm B.

Reproducibility is affected by three factors, namely the similarity of scenar-
ios, algorithms, and evaluation techniques [4]. If two experiments use the same
algorithms, in the same scenario and apply the same evaluation techniques, then
one would expect the outcome of the experiments to be the same. However, algo-
rithms, scenarios and evaluation techniques typically differ somewhat between
two experiments. If these differences are sufficiently small, one would neverthe-
less expect the outcome of the experiments to be at least similar and to support
the same conclusions.

Our previous research in the field of recommender systems showed that minor
differences in the experimental setup can at times lead to significant differences
in the outcomes of two experiments. In one experiment to assess the effectiveness
of a recommendation approach, removing stopwords increased recommendation
effectiveness by 50 % [6]. In another experiment, effectiveness was almost the
same [5]. Similarly, Lu et al. [14] found that sometimes terms from an article’s
abstract performed better than terms from the article’s body, but in other cases
they observed the opposite. Zarrinkalam and Kahani [30] found that terms from
the title and abstract were most effective in some cases, while in other experi-
ments terms from the title, abstract, and citation context were most effective.
Bethard and Jurafsky [7] reported that using citation counts in the recommen-
dation process strongly increased the effectiveness of their recommendation app-
roach, while He et al. [12] reported that citation counts slightly increased the
effectiveness of their approach. In all these examples, the changes in the algo-
rithms, scenarios, and evaluation methods were minor. Nevertheless, even minor
changes led to significantly different outcomes of the experiments, meaning that
many research results in the recommender system community must be consid-
ered as not reproducible.

In the research community that studies event detection in social media data
streams, reproducibility has received little attention to date. Based on our pre-
vious research and experience in the area of recommender systems for scientific
publications, we believe that research on event detection techniques must place
more emphasis on the issue of reproducibility. Currently, many evaluations of
event detection appear to be non-reproducible. Weiler [24] lists the evaluation
methods of a collection of 42 research works on event detection. Half of these eval-
uations is based on case or user studies. Reproducing these studies can already
be challenging due to the inherent human element. Also problematic is the use
of different data sets, which makes it hard or even impossible to reproduce the
results of an experiment. Often the data sets used are heavily pre-filtered for
users and/or regions or obtained by applying keyword filters. To address this
issue, some works attempt to create and provide labelled reference data sets to
evaluate event detection techniques. For example, McCreadie et al. [18] created
a set of approximately 16 million tweets together with a list of 49 reference top-
ics for a two-week period. However, since the corpus focuses on ad-hoc retrieval
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tasks and no description is given of how the topics were created, this reference
data set is ill-suited for the evaluation of event detection techniques. Further
reference data sets are proposed by Becker et al. [3], Petrović et al. [23], and
McMinn et al. [19]. All of these corpora suffer from the shortcoming that the
contained tweets need to be crawled. In the case of Twitter, crawling is a chal-
lenging task. With limited requests to the API it is almost impossible to retrieve
all the tweets in a reasonable time frame. Also it is possible that a certain num-
ber of tweets are no longer available and therefore the final crawled corpora is
not complete, which again limits the reproducibility of experimental results.

Based on a literature review of existing research, it can be observed that the
terms “reproducibility” or “stability” are never mentioned as evaluation mea-
sures. Therefore, our research objective is to study the stability of event detection
techniques as a necessary pre-condition for the reproducibility of event detection
research. In the long run, the effect of all three factors (changes in algorithms,
scenarios, and evaluation methods) need to be researched. However, for now, we
focus on the first factor, i.e., the effect of minor variations in event-detection
algorithms. The research question of this paper is therefore: “How do minor
changes in event detection techniques affect the reproducibility of experimental
results?”

2 Methodology

To assess the reproducibility of experiments conducted with state-of-the-art
event detection techniques, we study the stability of the obtained results w.r.t.
slight variations in the parameter settings of these techniques. The studied event
detection techniques all consist of a pre-processing, event detection, and event
construction phase. For the evaluations presented in this paper, we varied para-
meters that affect the pre-processing and event detection. For the pre-processing
phase, we conducted two experiments that respectively omitted the operators to
suppress retweets and stopwords. In the event detection phase, we varied the size
of the time-based window that is processed by the techniques. Based on these
parameter variations, we studied the following configurations.

– 1 h windows with stopwords vs. without stopwords (pre-processing)
– 1 h windows with retweets vs. without retweets (pre-processing)
– 15 min vs. 30 min vs. 1 h windows (event detection)

For each of these configurations, we study the stability of the task-based and run-
time performance results. In terms of task-based performance, we compare the
results of a technique in one configuration to the results of the same technique
in a different configuration. As all techniques report events as a set of five terms,
we measure on how many terms in the two result lists overlap. In terms of
run-time performance, we analyze how the different configurations influence the
throughput (tweets/sec) of a technique. The rationale behind these experiments
is that in order to be reproducible, small changes in the parameters should
not drastically change the detected events. In other words, the more diverse the
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detected events were, the less stable the algorithms are, and hence, the less likely
it would be to reproduce the results obtained in one experiment.

2.1 Experimental Setup

The data sets used in our evaluation consist of 10 % of the public live stream
of Twitter for three different days. Using the Twitter Streaming API1 with the
so-called “Gardenhose” access level, we collected data for the randomly chosen
days of 15th April 2013, 13th March 2013, and 8th July 2014. On average, the
data sets contain a total of 20 million English tweets per day and an average of
850,000 tweets per hour.

All experiments were conducted on server-grade hardware with 1 Intel Xeon
E5 processor at 3.5 GHz with 6 cores and 64 GB of main memory, running Oracle
Java 1.8.0 40 (64-bit). Regardless of the available physical memory, the –Xmx
flag of the Java Virtual Machine (JVM) was used to limit the maximum memory
to 24 GB.

2.2 Event Detection Techniques

The studied techniques were all realized as query plans (cf. Fig. 1) in the Nia-
garino data stream management system [27]. The operators with a dashed frame
are the components that are modified in our experiments. The implementa-
tions and parameters of the first three techniques EDCoW [29], WATIS [9], and
Shifty [25] have already been described in our previous work on evaluating event
detection techniques [27].

In this paper, we additionally study the LLH and enBlogue (ENB) event
detection techniques. LLH is a reimplementation of Weiler et al. [28]. In a first
step, the technique aggregates and groups the distinct terms by their counts.
Then the log-likelihood ratio operator collects n values per term as input signal.
For the calculation of the log-likelihood ratio at least two windows need to be
analyzed by the operator. After the analysis of two windows the log-likelihood
ratio between all terms in the current window is calculated against the past.
Events are reported by selecting the top N terms with the highest log-likelihood
ratio together with the corresponding top four most co-occurring terms. Since
these are the terms with the highest abnormal behavior in their current fre-
quency with respect to their historical frequency, we define them as events. Note
that in contrast to the original technique that detected events for pre-defined
geographical areas, we adjusted the approach to calculate the log-likelihood mea-
sure for the frequency of all distinct terms in the current time window against
their frequency in the past time windows.

ENB is a reimplementation of Alvanaki et al. [2], which uses non-overlapping
windows to compute statistics about tags and tag pairs. An event consists of a
pair of tags and at least one of the two tags needs to be a so-called seed tag. Seed
tags are determined by calculating a popularity score. Tags with a popularity

1 https://dev.twitter.com (April 28, 2016).

https://dev.twitter.com
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Fig. 1. Query plans of the studied event detection techniques and baselines.

score within a pre-defined range of the top percentage terms (threshold k) are
then chosen as seeds. Also a minimum of m tweets need to contain the tag. The
correlation of two tags is calculated by a local and global impact factor, which
is based on the corresponding sets of tweets that are currently present in the
window. If two tags are strongly connected, they are considered to be related. A
minimum of n correlations needs to exist. An event is considered as emergent,
if its behavior deviates from the expected. In order to detect this condition,
the shifting behavior of correlations between terms is calculated by a scoring
and smoothing function, which uses the fading parameter a to smooth out past
values. Since we require all event detection techniques to output an event as
a set of five terms, the three most co-occurring terms of both tags of the pair
computed by ENB are added to the event. Finally, the technique reports the top
N events, which are selected by ranking all events based on the calculated score
of shift.

Apart from these event detection techniques, we also implemented two base-
line techniques. The TopN technique just reports the most frequent N terms per
window including their most frequent co-occurrence terms. The LDA technique
reports topics created by the well-known Latent Dirichlet allocation modeling [8]
and is realized by using the Mallet toolkit [17].
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3 Results

In this section, we present the results of our experiments as averaged results over
all three data sets. First, the impact of changes to the pre-processing phase is
studied. Second, we demonstrate the impact of changes to the event detection
phase, in particular when varying the size of the time windows.

3.1 Impact of Pre-processing Variations

We evaluate the impact of changes to the pre-processing phase by starting from
the parameter settings used in our previous evaluations [26,27]. In the first exper-
iment, we remove the pre-processing operator that suppresses retweets in the
input (first operator with a dashed frame in Fig. 1). The results shown in Fig. 2
demonstrate that the inclusion of retweets has a strong impact on the events
detected by the studied event detection techniques. In contrast, the influence of
this change on the baseline techniques is less pronounced. In the second experi-
ment, we omitted the pre-processing operator that removes stopwords from the
input (second operator with a dashed frame in Fig. 1). Figure 3 indicates that
the results of the event detection techniques are more stable w.r.t. this second
change, with the statistical methods LLH and ENB proving the most stable.
We can also observe that the baseline techniques are more strongly influenced
by the inclusion of stopwords than the event detection techniques.
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Fig. 2. Impact of including retweets during pre-processing, represented as the ratio of
events contained in the results with and without retweets. Each bar presents the ratio
of events that share the corresponding number of terms.

Additionally, we measured the throughput (see Fig. 4) for these four dif-
ferent configurations. In the first experiment, the throughput of all techniques
decreased by about 30 % to 40 % if retweets are included. In the second experi-
ment, the inclusion of stopwords decreases the throughput by about 10 %, with
the exception of LDA, where it decreases by almost 30 %.
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Fig. 3. Impact of including stopwords during pre-processing, represented as the ratio
of events contained in the results with and without stopwords. Each bar present the
ratio of events that share the corresponding number of terms.

The results observed in these first experiments are as expected. All studied
event detection techniques use some form of relative term frequency as a mea-
sure for term importance or popularity. In this setting, the inclusion of retweets
increases the frequency of terms that are also present if retweets are suppressed.
In some cases, this repetition of terms will help to identify an already identified
event more clearly. However, since retweets are also heavily used in promotion
and advertising, including them can also lead to false positives, i.e., detected
events that would be considered “spam”. In contrast, the inclusion of stopwords
has a different effect as these terms are not present otherwise and therefore do
not influence the frequency of event terms. Furthermore, since stopwords are uni-
formly distributed in the stream, they are unlikely to be identified as an event
term themselves. Finally, it is noteworthy that seemingly similar changes to the
pre-processing stage can have very different effects.

3.2 Impact of Window Size Variations

We evaluate changes in the event detection phase by varying the window size,
which in our previous experiments was set to 1 h. We study the stability of
the results by comparing three different configurations with 15, 30, and 60 min,
respectively (operators with a dashed frame on the right side of Fig. 1). For
techniques that report the top N events as results, we adjust the value of N in
accordance to the window size: for 15 min windows the top 5, for 30 min the top
10 and for 60 min the top 20 events are reported. Since the number of events
reported per time window can differs substantially depending on the length of
the time window, we also adjusted further parameters (cf. Table 1). Note that
Shifty is designed to be independent of the input window size and therefore we
have to explicitly stop and restart the processing after 15, 30, or 60 min in order
to obtain comparable results.
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Table 1. Parameter settings for Shifty, WATIS, and EDCoW.

Technique Parameters

Shifty15 sinput = 1 min, s1 = 2 min, r1 = 1 min, s2 = 4 min, r2 = 1 min, Ω = 23

Shifty30 sinput = 1 min, s1 = 2 min, r1 = 1 min, s2 = 4 min, r2 = 1 min, Ω = 22

Shifty60 sinput = 1 min, s1 = 2 min, r1 = 1 min, s2 = 4 min, r2 = 1 min, Ω = 24

WATIS15 s = 25 s, N = 3 intervals, ikza = 5, ilda = 500

WATIS30 s = 49 s, N = 3 intervals, ikza = 5, ilda = 500

WATIS60 s = 87 s, N = 5 intervals, ikza = 5, ilda = 500

EDCoW15 s = 4 s, N = 32 intervals, γ = 2.0, ε = 0.1

EDCoW30 s = 4 s, N = 32 intervals, γ = 1.5, ε = 0.1

EDCoW60 s = 4 s, N = 32 intervals, γ = 0.9, ε = 0.1

Figure 5 summarizes the results for this experiment. We can observe that
results of the techniques that report a fixed number of N events are more stable
than the threshold-based techniques. We can also see that the results of the
baseline techniques are very stable in comparison to the results of the event
detection techniques. This outcome is explained by the fact that both baseline
techniques simply report the most frequent terms, which are bound to be similar
in the context of Twitter and independent of a given time frame. Finally, we
can observe that Shifty is more stable than both EDCoW and WATIS, which is
noteworthy because we introduced artificial interruptions into Shifty ’s processing
to obtain comparable results. By breaking up larger windows into smaller ones,
it is possible that Shifty misses events that occur across the boundaries of the
smaller windows, but would be included entirely in the larger window. Since this
effect will increase result instability, Shifty ’s high stability is a promising result.
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Fig. 4. Impact of all variations for the throughput in tweets/sec.
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Fig. 5. Impact of different window sizes during event detection, represented as the
ratio of events that are contained in all results (e.g., 15 to 30 min, 15 to 60 min, and 30
to 60min). Each bar present the ratio of events that share the corresponding number
of terms.
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Again, we also measured the throughput (see Fig. 4) achieved by the different
techniques in each configuration. In all our experiments, the throughput of the
baselines techniques, as well as the one of Shifty, LLH, and ENB remained stable
across the window sizes that we tested. This is due to the fact that the three
event detection techniques apply various filtering steps early on and thereby
keep the number of terms to analyze within a certain lower bound. The first
exception to this observation is WATIS. The throughput of WATIS when using
30 min windows is twice as high as when using 15 min windows. In the case of 1 h
windows, the throughput of WATIS is almost three times higher as when using
15 min windows. This is attributable to the processing time of WATIS strongly
correlating with the number of terms entering the analysis phase, which itself
depends on the window size. In the case of 30 min windows, almost twice as many
terms are processed as in the case of 15 min. For 1 h windows, the number of terms
is three times higher than for 15 min windows. The second exception is EDCoW,
which exhibits the opposite behavior of WATIS, i.e., throughput decreases for
longer windows w.r.t. shorter ones. The two most important factors contributing
to the run-time of EDCoW are the computation of the auto-correlation and the
graph partitioning (cf. Fig. 1). In the case of the auto-correlation computation,
longer windows produce longer signals, which require more time to be processed
than shorter signals. The complexity of the graph partitioning also increases
with longer windows, since a 15 min window consists on average of about 12,000
edges, while the graphs for 30 min and 1 h windows contain an average of about
25,000 and 70,000 edges, respectively.

4 Conclusions and Future Work

In this paper, we addressed the evaluation of event detection techniques w.r.t.
their result stability in an effort to study the reproducibility of experiments
in this research area. Our results show that minor modifications in the different
phases of the techniques can have a strong impact on the stability of their results.
However, we must take into account that by changing the size of the windows,
the existing terms in the time frame can vary considerably. Therefore, it is to
be expected that the ratio for 3 to 5 terms is very low. Also, the event detection
techniques WATIS and EDCoW are originally designed to analyze even longer
time frames, such as days, weeks, and months.

As immediate future work, we plan to take advantage of our platform-based
approach to extend our evaluations and study further techniques. As extensions
of our evaluations we plan to include further parameter settings and to research
the interdependencies of the parameters. By reviewing the surveys of related
work (e.g., Nurwidyantoro and Winarko [20], Madani et al. [15], or Farzindar
and Khreich [10]), we found several candidates for this venture. On the one
hand, techniques such as TwitterMonitor [16] and Twevent [13] are interesting
because the techniques they use are closely related to our own techniques. On
the other hand, clustering and hashing techniques, such as ET [21] or the work
of Petrović et al. [22] would also be interesting to compare. Since the source
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code of most of these works is not provided by their authors, it is a challenging
task to correctly implement these techniques. Notable exceptions to this lack
of reproducibility are SocialSensor [1] and MABED [11], which are both freely
available as source code. In this context, it would be interesting to define mea-
sures, which can be used to rank the degree of reproducibility of existing and
future research work in the area of event detection. For this purpose, we created
a survey [24] about the techniques and evaluations of 42 related works. With this
list we can, for example, rank the works based on the availability of source code,
pseudo code, or at least a very precise description of the algorithm. Furthermore,
the research work could be ranked according to how many parameters the event
detection technique needs and how easily the evaluation can be reproduced.
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Abstract. This paper presents solutions to the IDA 2016 Industrial
Challenge which consists of using machine learning in order to predict
whether a specific component of the Air Pressure System of a vehicle
faces imminent failure. This problem is modelled as a classification prob-
lem, since the goal is to determine if an unobserved instance represents
a failure or not. We evaluate various state-of-the-art classification algo-
rithms and investigate how to deal with the imbalanced dataset and with
the high amount of missing data. Our experiments showed that the best
classifier was cost-wise 92.56% better than a baseline solution where a
random classification is performed.

1 Introduction

This paper discusses the solutions investigated for the IDA 2016 Industrial Chal-
lenge. The challenge was to deliver a prediction model that is able to judge
whether a vehicle faces imminent failure of a specific component of the Air Pres-
sure System (APS). The dataset provided consists of data collected from heavy
Scania trucks. Each instance of the training set is classified as positive or nega-
tive. The positive class represents failures for the specific component considered,
while negative instances represent trucks with failures for components not related
to the APS. Based on this scenario, the goal is to develop a prediction model
that minimizes a total misclassification cost where there is a much greater cost
for predicting false negatives (FNs) than false positives (FPs), namely 500 and
10 units, respectively. (For more details please refer to https://ida2016.blogs.
dsv.su.se/?page id=1387.)

This problem can be modelled as a classification problem, thus we evaluate
well-known classification algorithms such as Logistic Regression [4], k-nearest
neighbors [3], Support Vector Machine (SVM) [2], Decision Trees [10] and Ran-
dom Forests [7]. Moreover, the dataset provided has highly imbalanced classes
as well as non-trivial amounts of missing data in both training and test sets,
thus we also investigate techniques for dealing with both of these problems.

Our experiments showed that the best classifier was cost-wise 92.56 % better
than a straightforward solution where a random classification is performed.
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2 Related Work

2.1 Classification Algorithms

Logistic Regression (LR) [4] is commonly used for binary classification where
the prediction can take on two values, 0 (negative) or 1 (positive). LR calculates
the probability of an instance belonging to the positive class. If this probability
is higher than some chosen cutoff value, which is generally 0.5, the instance is
classified as positive. A disadvantage of this algorithm is that it is only able
to find a linear decision boundary and therefore LR will not perform well on
datasets where the two classes cannot be separated by a straight line.

The k-nearest neighbor (k-NN) [3] classifier is among the simplest classifica-
tion algorithms and, unlike LR, it performs a non-linear classification. It takes
as input a positive number k and an unseen instance and finds the k nearest
neighbours of the new instance, according to a given distance measure. It then
classifies the new instance as the most common class among the classes of its
k nearest neighbours. A drawback of this strategy is that a frequent class may
dominate the prediction of the new instance. A possible solution to this problem
is to assign to each of the k-NN a weight inversely proportional to the distance
from it to the new example. Thus, a greater weight is given to closer neighbours.

The original Support Vector Machine (SVM) algorithm [2] is also a binary
linear classifier, but differently from LR, it is not probabilistic. More specifically,
it constructs a hyperplane that separates two classes. The best hyperplane is
chosen such that the margin between the two classes is maximized, i.e. the best
hyperplane is the one that has the largest distance to the nearest data point
of any class. SVMs can also efficiently perform a non-linear classification using
the “kernel trick” [1,2], which implicitly maps their inputs into high-dimensional
feature spaces. In fact, SVMs are the most suitable option when there is the need
to deal with highly dimensional space. However, they are not very efficient when
many training examples are used besides being memory-intensive. Moreover, the
choice of the kernel and its parameters are not trivial.

A Decision Tree (DT) [10] is a tree composed of internal nodes and leaves.
Each internal node represents a test on a feature. Each branch represents the
outcome of the test and are labeled with the possible values of the feature.
The leaf nodes are labeled with a class. The construction of the tree is done
recursively. At each step the feature that best splits the set of items is chosen
according to a given metric. This process is repeated on each derived subset
and is completed when all the instances in a node belong to the same class or
the path from the root to a leave contains all features. An advantage of this
technique is that it is easy to interpret. However, decision trees are very prone
to overfitting. Moreover, it builds decision boundaries parallel to the axes and
will work best if the class labels roughly lie in hyper-rectangular regions.

A random forest (RF) [7] is an ensemble of decision trees, however, unlike
decision trees, it does suffer from overfitting. In this method, each decision tree
is constructed by using a random subset of the training data. The ensemble of
simple trees then vote for the most popular class.
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2.2 Dealing with Missing Data

The easiest way to deal with missing data is to consider only test cases with
complete information, i.e. the ones that do not have any missing values are kept.
This is not feasible in the case of this challenge because (1) most of the training
dataset would have to be discarded and (2) the testing dataset has missing data
that have to be dealt with anyway.

Another approach is to impute missing values. In this case, the missing values
are filled with estimated ones based on information available in the data set and
they are then treated as if they were observed. The mean imputation is the most
simple and frequently used method. However, its use is not recommended, since
it can distort the distribution of the features and underestimate the standard
deviation [6].

Expectation Maximization (EM) [5] and Multiple Imputation [11] are con-
sidered state-of-the-art missing data techniques [6]. The EM algorithm is an
iterative procedure that produces maximum likelihood estimates and is com-
posed of two steps. The first E-step computes the expected value of the sum
of the variables with missing data based on initial values of the parameters of
the imputation model: mean and variance-covariance matrix. In the M-step the
parameters are estimated based on the information calculated in the E-step of
the same iteration. The algorithm iterates until the estimates do not change
substantially.

Finally, instead of filling in a single value for each missing value, a Multiple
Imputation procedure replaces each missing value with a set of plausible values,
which are predicted using existing values from other variables. Multiple data sets
are produced in order to account for the uncertainty of the missing values. These
data sets are then analyzed by using the desired method, producing multiple
analysis results, which are combined to produce one overall result.

3 Solutions and Implementation

The following were the two main challenges that we had to deal with when
solving the problem of classifying new instances as positive or negative. First,
the dataset provided is highly imbalanced. From the 60000 instances in the
training set, only 1000 belong to the positive class. This can lead the prediction
models to not classify positive instances properly. Moreover, we also have to take
into consideration the high penalty for misclassifying such instances. Second, the
missing data rate in the dataset is very high. If we considered only the instances
that have no missing data, less than 1 % of the original dataset would remain.

We evaluated all the classification algorithms presented in Sect. 2.1 and
resorted to the implementations provided by the Scikit-learn library [9]. With
this library we are able to apply class-specific weights in the loss function of the
SVM and LR algorithms, which allows us to cope with the imbalanced dataset
and the different penalties for misclassifying positives and negatives instances.
The weight of each class was set to be inversely proportional to the fraction of
cases of the corresponding class.
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In the k-NN and RF classifiers the likelihood of an instance belonging to
each class is calculated. Generally, an instance would be classified as positive,
for example, if the probability of belonging to this class were greater than 50 %.
By applying this threshold, these two algorithms are not able to classify positive
instances properly, which greatly increases the misclassification cost. In order to
deal with this problem, we have increased this threshold, meaning that a instance
is only classified as negative if we are very confident of that. We explain how the
values for these thresholds were chosen in Sect. 4. This same strategy was used
for DTs, however, we do not show the results obtained using this algorithm since
in general, and as evidenced in our experiments, it is outperformed by RFs.

In order to deal with missing data, we have considered two methods: mean
imputation and a more sophisticated method named Soft-Impute [8]. Soft-
Impute is an efficient algorithm for large-scale matrix completion. It works like
EM, replacing missing values with the current guess, and then solving the opti-
mization problem, a nuclear norm regularized least squares problem, on the
complete matrix using a soft-thresholded Singular Value Decomposition (SVD).

To simulate how well the classifiers would perform in the test set, we use
k-fold Cross-Validation. We chose k to be equal to 10, since it is a commonly
used value. It is worth mentioning that the missing data techniques were applied
separately in each fold. The cost in each of the 10 test sets were summed up to
obtain the total misclassification cost.

4 Results

Table 1 shows the results obtained using the various classifiers studied in this
paper. Since the results obtained using the Soft-Impute algorithm were consis-
tently better than the ones using mean imputation, we only report the results
obtained using the former. In order to evaluate how well the classifiers performed,
we compared their performances with that of a straightforward baseline where
the classes are randomly assigned.

For the SVM algorithm we have considered two different kernels: gaussian
and poly. The best results were obtained using the gaussian kernel. Even though
this classifier was significantly better than the baseline solution, it was outper-
formed by all other ones, even by the relative simple LR.

The k-NN algorithm was the second best classifier. Instead of using the tra-
ditional algorithm, we considered the probability of an instance of belonging to
the negative class for classifying it. More specifically, we find the 60 NN of each
instance and if at least one neighbour belongs to the positive class, we classify
the instance as positive. This value was chosen considering the distribution of
the classes in the training set. That way we only classify an instance as negative
if its probability of belonging to this class is very high, thus reducing the risk of
false negatives, which were much more costly than false positives.

RFs presented the best results. The result shown in Table 1 was obtained
using 50 estimators (trees) and a cutoff of 95 %, both chosen empirically. As in
the k-NN classifier, this threshold determines whether an instance belongs to
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Table 1. Classifiers and respective performances. (FPs and FNs denote false positives
and false negatives, each costing 10 and 500 units, respectively.)

Classifier Misclassification cost Gain wrt random % Misclassification

Random 545000 N/A FP: 50% FN: 50%

SVM 74310 86.36% FP: 1.15% FN: 13.5%

LR 61470 88.72% FP: 2.36% FN: 9.5%

k-NN 49850 90.84% FP: 2.94% FN: 6.5%

RF 40570 92.56% FP: 3.74% FN: 3.7%

the negative class. The total cost of this algorithm was 92.56 % better than the
misclassification cost of the baseline solution. It is noteworthy that the number
of false negatives, a much more expensive misclassification than false positives
in this challenge’s scenario, was also significantly smaller using RFs than any of
the other approaches, making it the overall winner.

5 Conclusion

We have studied several classification algorithms for solving the problem of deter-
mining whether a vehicle faces imminent failure of a specific component of the
APS system. We had the challenge of dealing with highly unbalanced data and
a large amount of missing values. A combination of the Soft-Impute alogrithm,
which deals with missing data, and the RF classifier that tries to avoid false neg-
atives by using an empirically chosen cutoff, led to a model that yielded 92.56 %
better cost than a solution that assigns a class to a new instance randomly.
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Abstract. In this paper, we describe our solution for the machine learning
prediction challenge in IDA 2016. For the given problem of 2-class classifica-
tion on an imbalanced dataset with missing data, we first develop an imputation
method based on k-NN to estimate the missing values. Then we define a tailored
representation for the given problem as an optimization scheme, which consists
of learned distance and voting weights for k-NN classification. The proposed
solution performs better in terms of the given challenge metric compared to the
traditional classification methods such as SVM, AdaBoost or Random Forests.

Keywords: k-NN classifier � Missing data � Imbalanced datasets

1 Introduction

Missing or unknown data is a common problem in real life machine learning appli-
cations. It may not always be possible to access all sensor readings at a given time,
which may occur because of various reasons. While the researchers focus on mini-
mizing the moments of failure for the data sources, it is also an important field of
research to predict the missing values with the information at hand.

In IDA 2016 machine learning prediction challenge, a dataset obtained from the
Scania trucks is presented, with missing readings from various sensors. The dataset
consists of two classes. The first class corresponds to trucks with failures for a specific
component of the Air Pressure System (APS) and the second class corresponds to
trucks with failures for components not related to the APS. As expected, in real life the
number of samples belonging to the second class will be much greater than the first
class. This is also the case in the given dataset, thus the distribution of samples among
the classes is strongly imbalanced. In this paper we explain our solution to the problem
of classification on an imbalanced dataset with missing data. We propose a k-NN based
approach, with an additional optimization scheme which is developed to improve the
overall performance.
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2 Problem Definition

In this section, we define the given problem and present some background information
about the terms used in the proposed method. The given problem can be defined as a
2-class prediction problem with missing data on imbalanced dataset. To measure the
performance of the prediction task, a cost function defined by IDA2016 is given, as
shown in (1), where FP stands for a false positive and FN for a false negative
prediction.

Cost ¼ 10� FPþ 500� FN; ð1Þ

The cost function is designed to give a higher cost for a missed break down
(FN) compared to a false prediction (FP). Considering the nature of the problem this
makes sense, as missing a break down for an expensive truck is much more costly than
calling the truck for maintenance unnecessarily.

The second aspect of the given problem is the missing data. In the training set,
several attributes of many given samples are marked as NA, which states that those
attributes are missing. In the literature the missing data problem is studied in three
subsections depending on how the data got missing [1]. These three subsections are:

– Missing-At-Random (MAR)
– Missing-Completely-At-Random (MCAR)
– Not-Missing-At-Random (NMAR).

For, MAR missingness is independent of the missing variables but the pattern of
data missingness is traceable, i.e. missingness only depends on the observed input.
For MCAR, the probability that a variable is missing does not depend on anything, as it
is completely at random. Finally for NMAR, the missing data depends on the missing
variable itself, meaning there is another reason for the data to be lost, which is fully
related to the variable itself, so it is not possible to estimate the missing value. Since no
information about the reasons of the occurrence of missing data is provided, we assume
the missing data is MCAR.

3 Proposed Method

As the missing data problem is also present in the provided test set, the first problem to
solve is to estimate the values of the missing attributes. Here we propose a machine
learning based imputation method called k-NN imputation.

3.1 k-NN Imputation of Missing Attributes

In this method, we propose to use the mean of the nearest k samples to estimate a
missing value for a given sample. This brings the problem of finding the nearest k
samples in a dataset for a given incomplete sample. Considering that the dataset includes
many incomplete samples, a new distance metric should be defined, to sort the reference
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samples according to their distance to the given sample. In our solution, we use a slightly
modified version of the Heterogeneous Euclidean Overlap Metric (HEOM) [2]. The
distance between the samples x and y is calculated as given in (2) and (3).

D x; yð Þ ¼
XL

i
Di xi; yið Þ; ð2Þ

Di xi; yið Þ ¼ 1; xi or yi is missing;
di xi; yið Þ; otherwise:

�
ð3Þ

where di xi; yið Þ is the distance metric which corresponding to the attribute i, and L is the
total number of attributes (di xi; yið Þ� 1). Using the HEOM as defined above, we first
obtain the nearest k neighbours (we select K = 50) for a given sample, in which the
given attribute is not missing and calculate the mean in order to estimate the missing
value.

In the given set, since there are both numerical attributes and histograms, our
approach to each one is different. We use the square or the Euclidean distance for the
numerical values and the cosine distance for histograms. We perform normalization for
each attribute and histogram, i.e., the sum of all the bins of a histogram is equalized to 1
and each attribute is linearly mapped to [0, 1].

di xi; yið Þ ¼ 1� xi;yih i
xik k yik k ; xi is a histogram;

xi � yik k2; xi is a numerical attribute:

(
ð4Þ

3.2 Optimized k-NN Classification

In this challenge, we face a highly imbalanced classification problem, as the provided
training set consists of 59000 negative samples and only 1000 positive samples. In
order to handle such a great imbalance, also taking the desired cost calculation into
account, we propose a k-NN based classification approach. The Nearest Neighbour
classification is one of the most popular methods in data mining [3]. This idea is very
simple and easy to envision. The main advantage of using a NN based approach is that
it does not require a training stage, since it is an instance based learning approach.
However, it is still possible to adapt different cost functions and integrate further
optimizations in order to achieve a better performance.

In k-NN approaches, a given input is classified according to the class of its nearest
neighbours among a stored set of reference samples. One can also suggest that, the
reference samples which are closer to the test sample should have a higher impact on the
classification decision. In [4] Dudani proposes a weighted voting scheme and shows that
the weighted k-NN outperforms the majority voting based k-NN. This weighting is
linear, and the weights of the neighbours are linearly mapped between [0, 1]. Using this
scheme, the probability of a given sample x belongs to the class c can be defined as given
below:
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PðcÞ ¼
P

k2C
dK�dk
dK�d1

� �
P

k
dK�dk
dK�d1
� � ; ð5Þ

where dk is the distance between the given sample x and the kth nearest neighbour yk,
i.e., dk ¼ d x; yk

� �
and C is the set of samples which belong to class c. The nominator is

the sum of weighted votes from the neighbors which belong to the class c and it is
divided by the denominator, which is the sum of all weighted votes. To simplify the
equation further we can get rid of the denominators in both summations assuming that
dK 6¼ d1.

PðcÞ ¼
P

k2C d
K � dkP

k d
K � dk

; ð6Þ

As there are 59 times more negative samples than positive ones, one can expect that
it is highly probable to find a negative sample within the neighbourhood of a positive
one. In order to handle this situation, we propose also to weight the votes of samples
according to their class labels. Samples belonging to the positive class should have
higher weight as they are outnumbered by the negative samples. This is formulated as:

PðcÞ ¼
P

k2C ð1þ ckhÞðdK � dkÞ� �
P

k ð1þ ckhÞðdK � dkÞð Þ ; ð7Þ

where ck 2 0; 1f g is the label of the neighbour yk. h is the voting weight for the positive
class.

Finally, the contribution of each attribute can also be weighted. In the proposed
approach, we define a weighted distance metric and aim to learn the optimal parameters
for the corresponding weights. This is formulated as:

P cð Þ ¼
PK

k2C 1þ ckh
� �PL

i w
2
i dKi � dki
� �� �

PK
k 1þ ckhð ÞPL

i w
2
i dKi � dkið Þ� � ; ð8Þ

where w2
i is the square of the weight for the ith distance. We use the square term to

make sure that the weight is greater than zero. The decision of a k-NN classifier for a

given sample x will be the class c
� ¼ argmaxc P cð Þ. In other words if P c

�� �
[ 0:5 the

sample x is classified as c
�
. Given that a sample x belongs to class c

�
, the probability that

it is misclassified is 1� P c
�� �
. Using this, we can calculate the total cost of classifi-

cation given in (1) as given below:

Cost ¼
XN

n
10þ 490cnð Þð1� u P cnð Þð ÞÞ; ð9Þ
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where cn is the class label corresponding to the nth sample, N is the total number of

samples and u is the decision function, i.e., u xð Þ ¼ 1 x[ 0:5
0 o:w

�
. We can search for

the optimal parameters w2
i and h to minimize this cost, using the stochastic gradient

descent approach. In order to make the function fully derivable, we select u as a
sigmoid, as given below, where b is used to adjust the steepness level of the sigmoid.
(we select b = 25)

u xð Þ ¼ 1
1þ e�ðx�0:5Þb ; ð10Þ

4 Experiments

We evaluate the performance of the proposed method on 5 different tests and perform
5-fold cross-validation. We compare our results with traditional classifiers such as
SVM, Random Forest and AdaBoost as baselines [5]. We set the class weights 1 and
60. The cost value obtained for each test is presented in Table 1.

5 Conclusion

In this paper, we propose a solution for the class prediction problem on imbalanced
datasets with missing data. We first apply a k-NN based imputation algorithm to
estimate the missing attributes. Then we define a tailored cost function for the given
problem and minimize it using a stochastic gradient descent based approach, in order to
create a k-NN classifier with a learned distance metric. Our results are shown to
outperform the baseline classification methods.
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Abstract. We describe a data mining workflow for predictive main-
tenance of the Air Pressure System in heavy trucks. Our approach is
composed by four steps: (i) a filter that excludes a subset of features
and examples based on the number of missing values (ii) a metafeatures
engineering procedure used to create a meta-level features set with the
goal of increasing the information on the original data; (iii) a biased sam-
pling method to deal with the class imbalance problem; and (iv) boosted
trees to learn the target concept. Results show that the metafeatures
engineering and the biased sampling method are critical for improving
the performance of the classifier.

Keywords: Predictive maintenance · Anomaly detection · Boosting ·
Metalearning

1 Introduction

This paper describes a data mining workflow for predictive maintenance of heavy
trucks. This type of vehicles are typically operated in a daily basis and used for
large trips. They are an important tool in several industrial sectors such as
transportation or construction. In this context, it is of fundamental importance
that all components comprising these vehicles are regularly maintained. A well
done maintenance is key to avoid undesired breakdowns, which can be costly to
the company operating these vehicles.

One of those components is the Air Pressure System (APS). The APS gen-
erates pressurised air that is used for different tasks in a truck, such as braking
and gear changing, making it a core component for maintenance purposes.

The data collected describes several components from heavy Scania trucks
in everyday usage. Moreover, in order to guarantee the quality of the predictive
model, the data has been sampled from all available data by experts.

In the Data Mining terminology this problem is presented as a binary classifi-
cation problem, where the positive class of the target concept consists of failures
for a specific component of the APS. The negative class consists of trucks with
failures not related to the APS. The exploratory analysis of the data enabled
to outlined two important conditions: (1) high quantity of missing values and
c© Springer International Publishing AG 2016
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(2) high imbalance in the class distribution. These characteristics of the data
raises challenges from the data scientist perspective.

For dealing with (1), we use a filter that excludes the features and examples
that present an higher percentage of missing values. This not only reduced the
size of the data but also enabled to remove some of the noisy features that were
part of the original data.

For dealing with (2), we use SMOTE [1], an over-sampling technique that
creates synthetic examples of the minority class. SMOTE enables to balance
the class distribution of the data which leads to a better generalization of the
classifier.

On top of these issues, the data is completely anonymized for proprietary
reasons. This is particularly cumbersome in the feature engineering step. We
choose to generate new features by taking a metafeature engineering approach
that does not require knowledge about the domain. Most of these metafeatures
were generated using unsupervised techniques for anomaly detection problems.

As for the modeling step, we use an ensemble of boosted trees. Ensemble
learning has shown to be a good solution in variety of data mining tasks and
we also verified a great improvement in the performance of our system by using
ensemble approaches. The workflow is summarised in Fig. 1.

Fig. 1. Schema of our workflow. It starts by dealing with the missing values (Step I).
In Step II the metafeatures are computed, which are then added to the original, after
applying the missing values filter. Then, in Step III, we use SMOTE to balance the
dataset and finally in Step IV we generate our ensemble of boosted decision trees.

The paper is structured as follows. In Sect. 2, we present our approach to
deal with the missing values in the data. Section 3 explains the metafeature
engineering step that we followed. In Sect. 4 we detail the modeling approach
that we used to learn our final model and finally, in Sect. 5, we conclude the paper
by discussing the results obtained and the lessons learned from this challenge.
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2 Dealing with Missing Values

Dealing with missing values has been widely studied in the literature [2]. The
usual techniques, such as listwise deletion, pairwise deletion, indicator variable,
and mean substitution could have been an option. However, for simplicity and
in this particular case, we decided to remove features with the greater amounts
of missing values. It is rather an ad-hoc approach, but there is also no clear
consensus in the literature on which approach is better [2].

Some features presented a great number of missing values, up to 80% in the
most extreme case. As an indicator, 8 out of the 170 independent variables, had
more than 50% of missing values.

While paying special attention to the performance of the models, we tested
how much features we could remove without affecting the accuracy. We also
realized that after removing the features with the most missing values, there
was quite a number of duplicates in the data. This seems to indicate that the
removed features have little effect on the target.

3 Metafeature Engineering

From the statistical point of view, anomalies are associated with observations
with high deviation from the typical behaviour, i.e., outliers. Since the positive
class of the data is characterized by rare events in the domain (malfunctions in
the APS), we can regard this problem as an anomaly detection one.

In this context, we perform an outlier analysis to the data in order to assess
how far each observation is from the norm. The results from this outlier analysis
are then embedded as attributes in our data. By doing this meta-level analysis
we aim at increasing the information related to the outlyingness of each observa-
tion. Therefore, we generated metafeatures using three different outlier detection
techniques that we present in the following subsections.

3.1 Boxplot Analysis

The Box plot is a typical way of describing the distribution of some data through
some summary statistics (e.g. median, Inter-Quartile Range (IQR)).

Since all the attributes of our data are numeric, we can perform this analysis
to each predictor separately. For each attribute we compare each value with the
typical value of that same attribute. Then, as explained in [3], if the difference
between these two values is high that might be an indicator that something is
not right and the respective observation might be an outlier. Furthermore, the
size of this difference can be regarded as a measure of outlyingness.

One drawback of this analysis is that it is a uni-variate approach. By analyz-
ing only one attribute at a time, we lose potentially useful global information.
To overcome this issue we approach the problem using the Local Outlier Factor
(LOF) method, which measures the degree of outlyingness of observations as a
whole.
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3.2 LOF

LOF [4] is a method for quantifying the outlyingness of an observation by com-
paring it to its local neighbourhood through density estimation. Essentially, an
observation with a very low density has greater probability of being an outlier.

3.3 Clustering-Based Outlier Ranking

The third method we used to analyze the outliers in the dataset is based on an
hierarchical Agglomerative Clustering algorithm [5].

Hierarchical Agglomerative Clustering starts with Z groups (Z being the
number of observations), each initially containing one object, and then at each
step it merges the two most similar groups until there is only one single group,
containing all data.

The rationale for this method is that the last observation that are merged
might still be significantly different from the group they are merged into. By
definition outliers are different cases and will typically not fit well into a cluster,
unless that cluster is comprised by other outliers itself. Yet again, since these
are not ordinary data points, we do not expect them to form large groups.

4 Modeling

In this section we detail the modeling approach that we used for this challenge.
The model was generated using the XGBoost library [6]. The parameter

tuning of the learning algorithm was done using 10-fold cross validation. We
payed particular attention to parameter setting in order to avoid overfitting.
Given the experimental results that we gathered, overfitting can be a pitfall in
this challenge.

The performance of the modeling algorithms should be measured according
to a cost sensitive metric defined by the challenge organizes. The intuition for
this is because the two error types (false negative - FN and false positive - FP) do
not have the same meaning. Sending a vehicle for an unnecessary maintenance
(FP) is clearly less costly than facing an unexpected breakdown (FN). For this
reason the evaluation metric is computed as follows: Cost = FP×10+FN×500.

5 Conclusions

Table 1 presents the results for three workflows that we tested. We concluded
from the several experiments we carried out that XGBoost seems to be a good
option for this problem, particularly when the metafeatures are available for
learning. However, we did encounter some issues regarding the tuning of the
algorithm in terms of overfitting. For this particular data, the algorithm showed
high sensitivity regarding its parameters.

Overall, we think that SMOTE and the metafeature engineering are the most
important steps in our proposal.
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Table 1. Results estimated using 10-fold cross validation for four methods. A Random
Forest with and without metafeatures and the XGBoost algorithm with and without
metafeatures. The XGBoost with metafeatures shows the minimum average cost and
with the lowest deviance.

Algorithm Average cost SD cost

RF without metafeatures 4721 882

RF with metafeatures 4440 900

XGBoost without metafeatures 4030 910

XGBoost with metafeatures 3750 810
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Abstract. This paper demonstrates an approach in data analysis to
minimize overall maintenance costs for the air pressure system of Sca-
nia trucks. Feature creation on histograms was used. Randomly chosen
subsets of attributes were then evaluated to generate an order and a
final subset of features. Finally, a Random Forest was applied and
fine-tuned. The results clearly show that data analysis in the field is
beneficial and improves upon the naive approaches of checking every
truck or no truck until failure.

Keywords: Data mining · Feature extraction · Dimension reduction ·
Random forest

1 Introduction

Given a high dimensional dataset by this year’s Industrial Challenge, we chose
a combination of feature engineering and feature reduction whilst constantly
evaluating the results using a Random Forest. [1] Our work is structured
closely to the KDD process, the model we used throughout the challenge.

2 Project Understanding

The goal of the task, as presented by the Industrial Challenge for IDA 2016, was
to minimize maintenance costs of the air pressure system (APS) of Scania trucks.
Therefore, failures should be predicted before they occur. Falsely predicting a
failure has a cost of 10, missing a failure a cost of 500. This leads to the need of
cost minimization.

3 Data Understanding

The data given to us contains a training set and a test set. The training set
contains 60,000 rows, of which 1,000 belong to the positive class and 171 columns,
c© Springer International Publishing AG 2016
H. Boström et al. (Eds.): IDA 2016, LNCS 9897, pp. 398–402, 2016.
DOI: 10.1007/978-3-319-46349-0 36
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(a) (b)

Fig. 1. Correlation matrices of the attributes for the (a) positive class and the
(b) negative. A blue color means a positive correlation, red a negative one. The satu-
ration indicates the strength. (Color figure online)

of which one is the class column. All attributes are numeric. 70 of these attributes
belong to 7 histograms with ten bins each. Based on visual inspection we guessed,
that the sum across each histogram indicates the age of the APS. Also, most
failures could be predicted by using one or two features. It appeared that the
hard part is to correctly predict failures for records that are actually very close
to the non-failure class. Some visual inspection methods we used were:

– Box plots to get an overview of the variance of the values.
– Correlation matrices for identifying features that correlate. (see Fig. 1)
– Scatter plots to see how the classes are spread.
– Radar charts to recognize outliers.

4 Data Preperation

4.1 Data Cleaning

The dataset contains up to 82 % missing values per attribute. Furthermore, many
of the attributes contain outliers. Therefore, we chose to replace the missing
values by the median.

4.2 Normalization

After evaluating several classifiers including Naive Bayes, Multilayer Per-
ceptron, and Support Vector Machines, we determined that a Random
Forest would perform best. Hence, a normalization was not necessary.
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4.3 Feature Engineering

In our first models we only considered the sum of each histogram and excluded
the single bins. This lead to good results but disregarded the distribution of the
values. Therefore, we then calculated 16 different features for each histogram.
All of these are distances to other distributions using two different distance
functions.

The two distance functions we used are the χ2-distance and the Earth Mover’s
Distance. The χ2-distance, proposed by Pearson in the early 1900’s [2], is a bin-
wise comparison of the observed value to the expected one. The Earth Mover’s
Distance, introduced by Rubner et al. in 1998 [3], finds the cheapest way to
transform one histogram into another one. For this purpose it takes the distances
of two bins to each other into account.

With these functions we calculated the distances to the following four differ-
ent distributions:

1. Mean distribution of the positive examples. It is calculated by filtering the
data points with the positive class and computing the mean value for each bin.
Based on these, the distance from the computed to the measured histogram
is calculated.

2. Mean distribution of the negative examples. The calculation was done in a
similar manner as the first one but considers the negative class instead of the
positive.

3. Normal distribution with the parameters μ = 5, σ = 1.5.
4. Mirrored normal distribution. It was achieved by mirroring the normal dis-

tribution along the x-axis and shifting it on the y-axis into the positive.

All the above mentioned distances are highly correlated to the sum of the
bins. To resolve this dependency the histograms are normalized by their sum.
With these additional histograms the same distances as before are calculated.

4.4 Feature Selection

The features given and calculated combined resulted in 282 dimensions, exclud-
ing the class column. As stated in Sect. 3, many of them were correlated and
hence probably not needed. Consequently, feature selection was introduced. It
was done in two steps: Ranking the features by their expressiveness and testing
the performance of the feature sets varying in size.

Feature Expressiveness. Our approach to rank the dimensions according to
their expressiveness was the following:

1. Take 200 random features out of the 282.
2. Learn a Random Forest and predict the class.
3. Store the precision of the results together with the features used.
4. Repeat steps 1–3 2,000 times.
5. Calculate the mean precision of each dimension and rank them in decreasing

order.
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Testing the Feature Sets. Using the ranked features from Sect. 4.4, we could
compute the costs of the prediction model with a different number of dimensions.

This was done by training a Random Forest and predicting the class using
a 10-fold cross-validation and calculating the average costs starting with the
feature set containing only the most expressive feature, i.e., am 0. Afterwards,
the set got expanded by the second best feature and the prediction was repeated.
This was done until all dimensions were included.

The analysis showed that the average costs per data record as determined
by the given cost function of only one dimension are about 3.1 and decrease
rapidly. Between 10 to all 282 features, the costs fluctuates between 0.85 and
0.6. This led us to the conclusion that we do not need all dimensions and can
reduce them.

5 Modeling

The Random Forest algorithm always tries to minimize the prediction error.
It assumes that all wrong predicted classes are equally expensive. But that is not
the case for the IDA Challenge. In fact, the cost of a false negative is 50 times
higher than a false positive. We tried to overcome this problem by correcting
the predicted class based on the confidence of our classifier. For that we slightly
adjusted the procedure described in Sect. 4.4. For every feature subset we set a
threshold for the prediction confidence and changed it in steps of one percent.
Whenever the confidence was below or equal to the threshold, the predicted class
was set to “pos.”

An analysis of the results showed that in most cases the best threshold was
95 %. Using that, we got the costs that are shown in Fig. 2. With at least 10
dimensions the costs fluctuates between about 0.75 and 0.57. To get the best
prediction possible, we used the global minimum with 210 features.

6 Evaluation

The naive approach to solve the challenge would be to label all records as neg-
ative which has a mean cost of 500 · 1000/60000 = 8.33 or to label all records
as positive which results in a mean cost of 9.83. Therefore, our approach with
average costs of around 0.6 is able to reduce the mean cost by the factor of 13.9.

To get reproducible results with the stratified sampling in the 10-fold cross-
validation a fixed seed was used. Since this may lead to an adaption of the
subsets of features to said seed, we did repeat the cross-validation with several
others. Overall, the costs per truck stayed approximately the same. Therefore,
we assumed that overfitting is not a major problem and the expected costs are
in the neighborhood of around 0.6.
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Fig. 2. Curve of the mean costs evaluated using a confidence threshold of 95% and
10-fold cross-validation with a fixed seed.

7 Conclusion

An early detection of a failure in an Air Pressure System in trucks can save the
company a lot money. The prediction of a fault can be performed even if the
meaning of the measured values is unknown or only histograms are available.
We demonstrated how meaningful features of histograms can be computed to
improve the prediction. Also, we showed how the forecasts can be adapted to a
cost function using a threshold on the confidence of a Random Forest. Finally, a
significantly lowered main cost compared to the naive approaches was achieved.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Pearson, K.: On the criterion that a given system of derivations from the probable

in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag.
J. Sci. 50(5), 157–175 (1900)

3. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to
image databases. In: Proceedings of the Sixth International Conference on Computer
Vision, p. 59. IEEE Computer Society, Washington, DC (1998)



Author Index

Ah-Pine, Julien 320
Artières, Thierry 284
Avvenuti, Marco 86

Bacciu, Clara 86
Barhoumi, Walid 183
Battistelli, Delphine 192
Beel, Joeran 368
Ben Amor, Nahla 38
Ben Ishak, Mouna 38
Berthold, Michael R. 215
Bissyandé, Tegawendé F. 1
Boekhout, Hanjo D. 295
Bradley, Elizabeth 343
Braune, Christian 61
Brofos, James 146
Brunner-La Rocca, Hans-Peter 14
Buscaldi, Davide 237

Caroli, Frederico 332
Cats, Oded 98
Cerqueira, Vítor 393
Charnois, Thierry 192, 237
Contardo, Gabriella 284
Costa, Camila Ferreira 381
Costa, Gianni 110

da Silva, Josenildo C. 261
Dankel, Marco 61
Davarzani, Nasser 14
Del Vigna, Fabio 86
Deluca, Paolo 86
Denoyer, Ludovic 284
Dhahbi, Sami 183

Eberhard, Jörg 356

Freitas, André 332

Gabbouj, Moncef 387
Gábor, Kata 237
Gama, João 123
Garland, Joshua 343

Gipp, Bela 368
Gondek, Christopher 398
Grossniklaus, Michael 368

Hafner, Daniel 398
Handschuh, Siegfried 332
Hassan, Syed Murtaza 98
Holat, Pierre 192
Höppner, Frank 73

James, Ryan G. 343
Jaulent, Marie-Christine 192
Jones, Tyler R. 343

Kamioka, Eduardo Haruo 332
Karel, Joël 14
Khiari, Jihed 98
Kiranyaz, Serkan 387
Klawonn, Frank 356
Klein, Jacques 1
Klusch, Matthias 261
Koch, Ina 356
Kruse, Rudolf 61

Labiod, Lazhar 273
Le Traon, Yves 1
Leray, Philippe 38
Li, Daoyuan 1
Lodi, Stefano 261

Marchetti, Andrea 86
Métivier, Jean-Philippe 192
Moreira-Matias, Luis 98

Nadif, Mohamed 273
Nascimento, Mario A. 381
Neme, Antonio 226
Neme, Omar 226
Noordegraaf-Eelens, Liesbeth 26

O’Donoghue, Jim 134
Omar, Mohamed 356
Ortale, Riccardo 110
Ozan, Ezgi Can 387



Peeters, Ralf 14
Petrocchi, Marinella 86
Pinto, Fábio 393
Plaat, Aske 50
Popelínský, Luboš 308
Post, Martijn J. 158

Riabchenko, Ekaterina 387
Roantree, Mark 134
Ryšavý, Petr 204

Sá, Claudio 393
Saleiro, Pedro 171
Sampson, Oliver R. 215, 398
Shu, Rui 146
Smirnov, Evgueni 14
Soares, Carlos 171, 393
Sobek, Tobias 73
Soekhoe, Deepak 50
Sousa, Ricardo 123

Takes, Frank W. 295
Teernstra, Livia 26
Tellier, Isabelle 237
Tesconi, Maurizio 86
Tomeh, Nadi 192

Vaculík, Karel 308
van der Putten, Peter 26, 50, 158
van Engelen, Jesper E. 295
van Rijn, Jan N. 158
Verbeek, Fons 26

Wang, Junxi 356
Wang, Xinyu 320
Weiler, Andreas 368
Weston, David J. 249
White, James W.C. 343

Zagrouba, Ezzeddine 183
Zargayouna, Haïfa 237
Železný, Filip 204
Zhang, Frank 146

404 Author Index


	Preface
	Organization
	Contents
	DSCo-NG: A Practical Language Modeling Approach for Time Series Classification
	1 Introduction
	2 Background
	3 Related Work
	4 Next Generation Domain Series Corpus for TSC
	4.1 Compressing Time Series into Texts
	4.2 Extracting Language Models
	4.3 Classifying Unlabeled Instances
	4.4 Time and Space Complexity

	5 Experimental Evaluation
	5.1 Implementation and Setup
	5.2 Parameter Optimization
	5.3 Comparison of Classification Performance

	6 Conclusions and Future Work
	References

	Ranking Accuracy for Logistic-GEE Models
	1 Introduction
	2 Bipartite Ranking Task and Logistic GEE Models
	3 Ranking Accuracy for Models Based on Clustered Data
	3.1 Definition
	3.2 Algorithm
	3.3 Goodness of Fit and Predictability

	4 Experiments
	4.1 Experiments with Simulated Data
	4.2 Experiments with Biomarkers' Data

	5 Conclusion
	References

	The Morality Machine: Tracking Moral Values in Tweets
	1 Introduction
	2 Related Work
	2.1 Moral Foundations Theory
	2.2 Moral Foundations Text Analysis

	3 Experiments and Results
	3.1 Overall Procedure
	3.2 Data Collection
	3.3 Data Preparation

	4 Modeling and Evaluation
	4.1 Deployment

	5 Discussion
	6 Conclusion
	References

	A Hybrid Approach for Probabilistic Relational Models Structure Learning
	1 Introduction
	2 Background
	2.1 Probabilistic Relational Models
	2.2 From BN to PRM Structure Learning

	3 RMMHC: The Relational Max Min Hill Climbing Algorithm
	3.1 Relational Max Min Parents and Children: RMMPC
	3.2 Global Structure Identification
	3.3 Time Complexity of the Algorithms

	4 Experiments
	5 Conclusion
	References

	On the Impact of Data Set Size in Transfer Learning Using Deep Neural Networks
	1 Introduction
	2 Related Work
	3 Experiments and Results
	3.1 Overall Approach
	3.2 Data Pre-processing
	3.3 Transferring Features
	3.4 Training
	3.5 Results Tiny-ImageNet
	3.6 Results MiniPlaces2

	4 Discussion
	5 Conclusion
	References

	Obtaining Shape Descriptors from a Concave Hull-Based Clustering Algorithm
	1 Introduction
	2 Related Work
	3 CLASH: Clustering Along Split Hulls
	3.1 Hull Refinement
	3.2 Splitting into Multiple Smaller Hulls
	3.3 Simplifying the Resulting Hulls

	4 Evaluation
	5 Conclusion and Future Work
	References

	Visual Perception of Discriminative Landmarks in Classified Time Series
	1 Motivation
	2 Related Work
	2.1 Similarity Measures vs. Landmarks
	2.2 Interval Tree of Scales

	3 Visualising Discriminative Features
	3.1 Graph Representation of the Interval Tree of Scales
	3.2 Matching Perceptions
	3.3 Discriminative Features
	3.4 Segment Distance

	4 Experimental Evaluation
	4.1 Sanity Check
	4.2 Series from the UCR Repository

	5 Conclusion
	References

	Spotting the Diffusion of New Psychoactive Substances over the Internet
	1 Introduction
	2 Related Work
	3 Data Sources
	3.1 Forums
	3.2 Online Shops
	3.3 Twitter

	4 Data Analysis and Visualization
	4.1 Forums: Structural and Geographical Features
	4.2 Content Analysis
	4.3 NPS Trading

	5 Conclusions
	References

	Feature Selection Issues in Long-Term Travel Time Prediction
	1 Introduction
	2 Case Study
	2.1 Feature Generation

	3 Methodology
	3.1 Feature Selection Methods
	3.2 Regression Methods

	4 Experiments
	4.1 Hyperparameter Tuning
	4.2 Results and Discussion

	5 Concluding Remarks
	References

	A Mean-Field Variational Bayesian Approach to Detecting Overlapping Communities with Inner Roles Using Poisson Link Generation
	1 Introduction
	2 Preliminaries
	3 The TOMATOES Model
	4 Approximate Posterior Variational Inference
	5 Exploratory and Predictive Tasks
	5.1 Exploratory Network Analysis
	5.2 Link Prediction

	6 Experimental Evaluation
	7 Conclusions
	References

	Online Semi-supervised Learning for Multi-target Regression in Data Streams Using AMRules
	1 Introduction
	2 Related Work
	3 Semi-supervised Multi-target AMRules
	3.1 Rule Learning
	3.2 Untargeted Data Handling
	3.3 SS-AMRules Training

	4 The Evaluation Method 
	5 Results
	6 Conclusion
	References

	A Toolkit for Analysis of Deep Learning Experiments
	1 Introduction
	1.1 Contribution

	2 Related Research
	3 A Conceptual Model for Deep Learning Methods
	3.1 Model Overview
	3.2 Model Details

	4 Deployment Architecture
	5 Evaluation and Analysis
	5.1 Search Space Reduction: Results and Commentary

	6 Conclusions
	References

	The Optimistic Method for Model Estimation
	1 Introduction
	2 Method
	2.1 Optimistic Least Squares
	2.2 Optimistic Logistic Regression
	2.3 Optimistic Ising Model

	3 Numerical Experiments
	3.1 Optimistic Least Squares
	3.2 Optimistic Logistic Regression
	3.3 Optimistic Ising Model

	4 Conclusions
	References

	Does Feature Selection Improve Classification? A Large Scale Experiment in OpenML
	1 Introduction
	2 Background
	2.1 Feature Selection
	2.2 Meta-learning

	3 Methods
	4 Effect of Feature Selection
	4.1 Experiment
	4.2 Results
	4.3 Discussion

	5 Learning When to Use Feature Selection
	5.1 Experiment
	5.2 Results

	6 Conclusion
	References

	Learning from the News: Predicting Entity Popularity on Twitter
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Entity Popularity
	3.2 News Features
	3.3 Learning Framework

	4 Experimental Setup
	5 Results and Outlook
	References

	Multi-scale Kernel PCA and Its Application to Curvelet-Based Feature Extraction for Mammographic Mass Characterization
	1 Introduction
	2 Proposed Method
	2.1 Curvelet Transform
	2.2 Kernel PCA
	2.3 Multiscale Gaussian Kernel PCA

	3 Experimental Results
	4 Conclusion
	References

	Weakly-Supervised Symptom Recognition for Rare Diseases in Biomedical Text
	1 Introduction
	2 A Pipeline Architecture for Symptom Recognition
	2.1 Datasets and Evaluation
	2.2 Weak Annotation by Projection
	2.3 Symptom Recognition as Sequence Labeling
	2.4 Symptom Recognition as Sequential Pattern Mining

	3 Experiments and Results
	3.1 Individual Module Results
	3.2 Impact of Training Data Size
	3.3 Model Combination Analysis
	3.4 Impact of Semantic Similarity Constraint
	3.5 Iterative Learning Analysis

	4 Related Work
	5 Conclusion
	References

	Estimating Sequence Similarity from Read Sets for Clustering Sequencing Data
	1 Introduction
	2 Distance Function Design
	2.1 Base Case: Which Reads Belong Together
	2.2 Distance Scale
	2.3 Margin Gaps
	2.4 Missing Read

	3 Theoretical Analysis
	3.1 Asymptotic Complexity
	3.2 Metric Properties

	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

	Widened Learning of Bayesian Network Classifiers
	1 Introduction
	2 Background
	2.1 Learning and Scoring Bayesian Networks
	2.2 Widening
	2.3 Related Work

	3 Widened Bayesian Networks
	3.1 Application of the Widening Framework
	3.2 Refinement Operator
	3.3 Diversity
	3.4 Selection Operator

	4 Experimental Results
	5 Conclusion and Future Work
	References

	Vote Buying Detection via Independent Component Analysis
	1 Introduction
	2 Independent Component Analysis
	3 ICA for Vote Buying Detection
	4 Results
	5 Conclusions and Final Comments
	References

	Unsupervised Relation Extraction in Specialized Corpora Using Sequence Mining
	1 Introduction
	2 Related Work
	3 Data and Resources
	4 Input Representations
	4.1 Pattern-Based Representations
	4.2 Distributional Representation

	5 Clustering
	6 Evaluation
	6.1 Standard Classification
	6.2 Baseline and Evaluation Measures
	6.3 Results and Discussion

	7 Conclusion and Future Work
	References

	A Framework for Interpolating Scattered Data Using Space-Filling Curves
	1 Introduction
	2 Scattered Data Interpolation Methods
	3 Space-Filling curves
	4 Framework for Interpolation
	4.1 Shape Preserving Embedding
	4.2 One-Dimensional Interpolation
	4.3 Aggregation

	5 Experiments
	5.1 Visualising the Interpolated Function
	5.2 Scattered Data Interpolation

	6 Further Analysis
	7 Conclusion and Future Work
	References

	Privacy-Awareness of Distributed Data Clustering Algorithms Revisited
	1 Introduction
	2 Privacy Measures for Distributed Data Clustering
	2.1 Existing Privacy Measures for DDC
	2.2 Limitations of Current Measures

	3 New Privacy Measures for DDC
	4 Application to DDC Algorithms
	4.1 Secure Multiparty k-means
	4.2 Distributed Data Clustering with Generative Models
	4.3 Information Theoretical Approach to Distributed Clustering
	4.4 Elliptic Curves for Multiparty k-means
	4.5 Discussion

	5 Conclusions
	References

	Bi-stochastic Matrix Approximation Framework for Data Co-clustering
	1 Introduction
	2 Co-clustering: Criterion and Algorithms
	3 BMA Framework for Co-clustering
	3.1 NMF Formulation
	3.2 BMA Formulation

	4 BMA Co-clustering Algorithm
	4.1 Learning Similarity Matrix
	4.2 BMA Algorithm

	5 Relationship Between BMA Algorithm and Spectral Co-clustering
	6 Numerical Experiments
	6.1 Simulated Data
	6.2 Real Datasets

	7 Conclusion
	References

	Sequential Cost-Sensitive Feature Acquisition
	1 Introduction
	2 Cost Sensitive Classification as a Sequential Problem
	2.1 Policy-Gradient Based Learning
	2.2 Representing Partially Acquired Data

	3 Experiments
	4 Related Work
	5 Conclusion
	References

	Explainable and Efficient Link Prediction in Real-World Network Data
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Link Prediction Methods and Approaches
	4.1 Node Features
	4.2 Neighbourhood Features
	4.3 Path Features

	5 Efficient Feature Set
	6 Experiments and Results
	6.1 Network Datasets
	6.2 Experimental Setup
	6.3 Results --- Topological Scopes
	6.4 Results --- EFS

	7 Conclusion
	References

	DGRMiner: Anomaly Detection and Explanation in Dynamic Graphs
	1 Introduction
	2 DGRMiner: Frequent Pattern Mining
	2.1 Representation of Dynamic Graphs
	2.2 Frequent Pattern Mining

	3 DGRMiner: Anomaly Detection and Explanation
	3.1 Single-Vertex Anomalies
	3.2 Enumeration of Anomaly Patterns in General

	4 Experiments
	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Similarity Based Hierarchical Clustering with an Application to Text Collections
	1 Introduction
	2 Conventional AHC Methods and the LW Formula
	3 Our Approach
	3.1 An Equivalent LW Formula Using Cosine Similarities
	3.2 Extending to Kernel Functions
	3.3 Sparsification of the Cosine Similarity Matrix

	4 Experiments
	4.1 Datasets, Preprocessing and Evaluation Measures
	4.2 Experiments Settings and Results

	5 Discussion and Future Work
	References

	Determining Data Relevance Using Semantic Types and Graphical Interpretation Cues
	1 Introduction
	2 Related Work
	3 Relevance Classification Model
	3.1 Proposed Approach
	3.2 Semantic Features
	3.3 Attribute Feature Extraction
	3.4 Visual Interpretation Cues

	4 Evaluation
	4.1 Creation of the Relevance Gold-Standard
	4.2 Experiments
	4.3 Results

	5 Conclusion and Future Work
	References

	A First Step Toward Quantifying the Climate's Information Production over the Last 68,000 Years
	1 Introduction
	2 Paleoclimate: Dynamics and Data
	3 Calculating the Rate of Information Production
	4 Results
	5 Conclusion and Future Work
	References

	HAUCA Curves for the Evaluation of Biomarker Pilot Studies with Small Sample Sizes and Large Numbers of Features
	1 Introduction
	2 Problem Formalisation and an Example
	3 HAUCA Curves
	4 Sample Size Estimation for Follow-Up Studies
	5 Alternatives to AUC
	6 Conclusions
	References

	Stability Evaluation of Event Detection Techniques for Twitter
	1 Introduction
	2 Methodology
	2.1 Experimental Setup
	2.2 Event Detection Techniques

	3 Results
	3.1 Impact of Pre-processing Variations
	3.2 Impact of Window Size Variations

	4 Conclusions and Future Work
	References

	IDA 2016 Industrial Challenge: Using Machine Learning for Predicting Failures
	1 Introduction
	2 Related Work
	2.1 Classification Algorithms
	2.2 Dealing with Missing Data

	3 Solutions and Implementation
	4 Results
	5 Conclusion
	References

	An Optimized k-NN Approach for Classification on Imbalanced Datasets with Missing Data
	Abstract
	1 Introduction
	2 Problem Definition
	3 Proposed Method
	3.1 k-NN Imputation of Missing Attributes
	3.2 Optimized k-NN Classification

	4 Experiments
	5 Conclusion
	References

	Combining Boosted Trees with Metafeature Engineering for Predictive Maintenance
	1 Introduction
	2 Dealing with Missing Values
	3 Metafeature Engineering
	3.1 Boxplot Analysis
	3.2 LOF
	3.3 Clustering-Based Outlier Ranking

	4 Modeling
	5 Conclusions
	References

	Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering
	1 Introduction
	2 Project Understanding
	3 Data Understanding
	4 Data Preperation
	4.1 Data Cleaning
	4.2 Normalization
	4.3 Feature Engineering
	4.4 Feature Selection

	5 Modeling
	6 Evaluation
	7 Conclusion
	References

	Author Index



