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Chapter 9
Macroparasites in Antarctic Penguins

Julia I. Diaz, Bruno Fusaro, Virginia Vidal, Daniel González-Acuña, 
Erli Schneider Costa, Meagan Dewar, Rachael Gray, Michelle Power, 
Gary Miller, Michaela Blyton, Ralph Vanstreels, and Andrés Barbosa

9.1  Introduction

Parasites are the majority of species on Earth (Windsor 1998). The total number of 
parasite species is likely to be huge, because practically all free-living metazoan 
species harbor at least one parasite species and almost every individual of every 
species is parasitized by at least one parasite during its life cycle (Poulin and Morand 
2004). The number of parasite species has been estimated as a range from 30 to 71 % 
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of the living species (Price 1980; de Meeus and Renaud 2002). Therefore, parasites 
can be considered a selective pressure affecting different aspects of the host life 
which can modulate host populations (Morand and Deter 2009). Moreover, parasite 
diversity provides insights into the history and biogeography of other organisms, 
into the structure of ecosystems, and into the processes behind the diversification of 
life (Poulin and Morand 2004).

Helminths and ectoparasites are the main macroparasites of birds. Helminth is a 
Greek word that means “worm” and is a conventional name, but not a taxon of ani-
mal classification (Miyazaki 1991). Among helminth parasites are included those 
metazoan “worms” that in any stage of their life cycle live in or on other metazoan 
species (host). Helminths living inside bird hosts are represented by the major 
groups, Digenea, Cestoda, Nematoda, and Acanthocephala.

Helminths occupy diverse sites within the host including the gastrointestinal, 
respiratory, and urinary systems and in organs and tissue spaces of their host. 
Depending on the parasitic species, their intensity of infection, the host immune 
status, and the environmental conditions, their presence might not lead to obvious 
clinical manifestations, or it may manifest itself in terms of individual morbidity 
and mortality or produce more subtle negative effects on host fitness (Hoberg 2005).

Ectoparasites include arthropod parasites such as ticks, mites (Acari), lice, bugs, 
fleas, and flies (Insecta). The effects of ectoparasites may include anemia (Gauthier- 
Clerc et al. 1998; Mangin et al. 2003), feather damage (Barbosa et al. 2002), trans-
mission of pathogens (Allison et al. 1978; Morgan et al. 1981; Siers et al. 2010; 
Yabsley et al. 2012), and, in the case of some ticks, injection of neurotoxins (Gothe 
et al. 1979). The consequences of these infestations can vary greatly depending on 
their intensity and on host health and immune status, and can include negative 
impacts in terms of mortality, breeding success, and behavior (Gauthier-Clerc et al. 
1998; Mangin et al. 2003).
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Animals living in Antarctica including penguins are also affected by parasites; 
however, there is limited knowledge available on their presence, their distribution, 
epidemiology, life cycles, and health effects on the host in Antarctic fauna (Barbosa 
and Palacios 2009; Kerry and Riddle 2009). Among Antarctic vertebrates, penguins 
represent more than 90 % of the terrestrial biomass and are the most studied group 
on this matter. However, available information is sparse and fragmented. In this 
chapter, we examine the published information on macroparasites of Antarctic pen-
guins, using these species as a model to understand the broader picture on the para-
sitology of Antarctic birds.

9.2  Diversity and Richness of Helminth Parasites

Former Antarctic expeditions, such as the ones led by James Clark Ross (1839–
1843), Jean-Baptiste Charcot (1903–1905), and Robert Falcon Scott (1910–1913), 
among others, already collected parasites and left us a valuable source of informa-
tion. One of the most thorough publications on helminths from that time was the one 
written by Johnston in 1937–1938, dealing with parasites collected during the 
1911–1914 Australian Antarctic expedition. He not only supplied descriptions and 
drawings of helminths, but also included the review and history of each one of them. 
In general, former published surveys on helminths parasitizing Antarctic penguins 
often provided only a list of hosts and the parasites collected from them and with 
few cases reporting on the proportion of infected hosts (Johnston and Mawson 
1945; Mawson 1953). Nevertheless, data about their prevalence, intensity, or abun-
dance are scarce, and have only started to be provided in the last decades (Fonteneau 
et al. 2011; Vidal et al. 2012; Diaz et al. 2013, 2016). Despite this apparent gap, 
there is a sufficient number of publications that, when compiled and compared, 
allow as a fairly comprehensive assessment of the richness of helminths present in 
Antarctic penguins.

Antarctic and Sub-Antarctic penguins act as definitive host of only 13 recog-
nized helminth species (Table 9.1). The core component of the helminth fauna of 
Antarctic penguins are cestodes, mainly Parorchites zederi  (Dilepididae). This spe-
cies is the only cyclophyllidean present in pelagic birds and is widely distributed 
among Antarctic penguins, including the three pygoscelid species and the Emperor 
penguin (Cielecka et al. 1992; Vidal et al. 2012; Diaz et al. 2013, 2016; Kleinertz 
et al. 2014). The presence of Cyclophyllidea eggs has also been demonstrated in the 
feces of Adélie penguins (Fredes et al. 2008), and it is reasonable to presume these 
were P. zederi.

Members of the Tetrabothriidea are also important components of the helminth com-
munities of Antarctic penguins (Baer 1954). Tetrabothrius pauliani Joyeux and Baer 
1954 was registered parasitizing all pygoscelid species and also the King penguin, 
Tetrabothrius joubini Railliet and Henry, 1912 was only reported in the Chinstrap pen-
guin (Prudhoe 1969; Cielecka et  al. 1992; Georgiev et  al. 1996), and Tetrabothrius 
wrighti Leiper and Atkinson 1914 was registered in Adélie, King, and Emperor pen-
guins (Leiper and Atkinson 1914; Johnston 1937; Prudhoe 1969; Fonteneau et al. 2011). 

9 Macroparasites in Antarctic Penguins
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Undetermined species of Tetrabothrius were also mentioned in Antarctic and Sub-
Antarctic regions (Barbosa and Palacios 2009; Kleinertz et al. 2014).

Eggs of Diphyllobothrium sp. have been documented in fecal samples of Emperor 
(Kleinertz et al. 2014) and only in one Gentoo penguin specimen (Gonzalez-Acuña 
et  al. 2013). Recently, some mature and gravid specimens identified as 
Diphyllobothrium sp. were recovered from different colonies of the three pygocelid 
species (Fusaro and Diaz unpublished data), and in some instances these parasites 
can be found on the penguin nests (Barbosa unpublished data). Diphyllobothriidae 
is a very common group in Antarctic marine mammals but does not seem as com-
mon in seabirds. It is worth noting that even though Diphillobotrium scoticum (see 
Meggitt 1924; Markowski 1952) has been registered as parasites of pygoscelid pen-
guins (Adélie and Chinstrap), this finding was later denied by Johnston (1937).

Spirurid nematodes occur in the esophagus and stomach of seabirds and are one of 
the more abundant components in the helminth communities of penguins. Stegophorus 
macronectes (Johnston and Mawson 1942) (Acuariidae) is the best represented spe-
cies. This acuarid nematode has a wide host and geographical distribution, having 
been reported in all pygoscelid species (Vidal et al. 2012; Diaz et al. 2013, 2016) and 
in the Rockhopper and Macaroni penguins in Sub-Antarctic regions (Johnston and 
Mawson 1945; Mawson 1953; Zdzitowiecki and Drózdz 1980). The taxonomical and 
nomenclatural history of this species is complex, and different synonyms were 
employed in the past including Stegophorus adeliae Johnston and Mawson 1945 and 
Stegophorus paradelia Johnston, 1938 sensu Petter, 1959 (see Vidal et al. 2016).

In addition to acuarids, nematodes of the genus Tetrameres (Spirurida, 
Tetrameriidae) parasitized the proventricular glands in Antarctic penguins (Schmidt 
1965). Tetrameres wetzeli (Schmidt 1965) is the only species on the genus described 
parasitizing penguin hosts, Rockhopper, King, and Gentoo penguins (Schmidt 
1965; Fontaneau et al. 2011; Diaz et al. 2013). Undetermined species of Tetrameres 
were also found in Adélie penguins (Diaz et al. 2016).

Contracaecum ascaridoid nematodes are commonly found in the stomach of 
piscivorous birds (Garbin et al. 2007, 2008; Diaz et al. 2010). Contracaecum heardi 
Johnston and Mawson 1942 is the species best documented among Sub-Antarctic 
penguins infecting King, Macaroni, and Gentoo penguins (Mawson 1953; Fonteneau 
et al. 2011).

Other nematode species have been found in Antarctic and Sub-Antarctic pen-
guins. However, most of these reports were based on eggs, few, immature, or 
 fragmented specimens, or corresponded to fish or mammal parasites, so their iden-
tification was not possible or is doubtful (e.g., Contracaecum spp., 
Stomachus = Anisakis sp., Streptocara sp., Terranova sp., Capillaria sp., among 
others (Mawson 1953; Fredes et al. 2006, 2007, 2008).

Acanthocephalans are not common in pelagic birds. Only Corynosoma shackle-
toni Zdzitowiecki 1978 has been found at the adult stage in Gentoo penguins 
(Hoberg 1986; Diaz et  al. 2013). Other Corynosoma species were registered in 
pygoscelid penguins (e.g., Corynosoma bullosum, Corynosoma hamanni, and 
Corynosoma pseudohamanni). However, all those reports correspond to immature 
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specimens (see Zdzitowiecki 1991; Dimitrova et al. 1996; Vidal et al. 2012; Diaz 
et al. 2013), and it is thought that these parasites only reach maturity in cetaceans or 
pinnipeds with penguin infections being accidental (Holloway and Bier 1967; 
Hoberg 2005).

Digenea parasites have not been recorded in Antarctic or Sub-Antarctic pen-
guins. This likely occurs due to the limitation of their life cycle, the focal nature of 
transmission near island systems, and the dilution effect of the marine costal envi-
ronment, which diminishes their ability to thrive in this kind of hosts (Hoberg 2005).

It is well established that pelagic birds generally support a depauperate parasite 
fauna, with a much lower diversity than that of birds inhabiting in neritic and littoral 
waters (Hoberg 2005). A noticeable pattern that emerges by comparing the com-
munity of helminths present in Antarctic penguins to that of seabirds from other 
continents is that the helminth community of penguins is remarkably less diverse. 
For instance, seabirds of the Alcidae family there are reported in more than 40 hel-
minth species (Muzaffar and Jones 2004), while Antarctic penguin species are para-
sitized by a total of 10 species (Barbosa and Palacios 2009). Nevertheless, such 
comparison should be taken with caution as the different number host species might 
allow more parasite species; in addition, differences in research effort could also 
affect the comparison. Within penguins, differences in helminths richness between 
Antarctic and non-Antarctic penguins are similar. Non-Antarctic penguins harbor 
12 helminth species, while Antarctic penguins present eight recognized species and 
seven species parasitize penguin species distributed in the Sub-Antarctic region 
(Clarke and Kerry 2000; Barbosa and Palacios 2009). Moreover, penguins included 
in the genus Spheniscus (non-Antarctic) have helminth communities richer than 
those of Pygoscelis genus (Clarke and Kerry 2000; Barbosa and Palacios 2009; 
Brandão et al. 2014). Infracommunities of three pygoscelid species present in the 
Antarctic Peninsula harbor between one or three helminth species, while those of 
the Magellanic penguins in Patagonia harbor up to five species (Diaz et al. 2010, 
2013, 2016; Vidal et al. 2012). In general, the low number of helminths found in 
pygoscelid penguins can be explained by the narrow range of variety of prey present 
in their diet which is form mainly by krill and some few species of squid and fishes 
(Williams 1995). A wider diet and/or foraging plasticity facilitate the exposure to a 
high number of parasite species through the ingestion of a high number of interme-
diate hosts (Hoberg 1996).

9.3  Life Cycles and Source of Infection of Helminths

Most helminths that infect seabirds have indirect life cycles, involving a definitive 
host, the bird in which adults develop and sexual reproduction occurs, and one or 
more intermediate/paratenic hosts (invertebrates, fishes) carrying the larval stages. 
As a result, infestations by helminths are strongly influenced by the trophic relation-
ships of the hosts (Hoberg 1996). Specialized foragers, such as some Antarctic 
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penguins, can therefore be expected to be infested by fewer parasites than more 
generalist species.

The trophic webs of the Southern Ocean have macrozooplankton such as euphau-
siids (krill) playing a key role as an intermediate between primary producers and top 
predators. Krill (especially Euphausia spp.) are the main prey item for most 
Antarctic penguins (Cherel and Kooyman 1998) and are therefore plausible inter-
mediate hosts for their helminths (Hoberg 2005; Bush et al. 2012).

Larval stages of penguin cestodes use a variety of prey crustaceans/fishes as 
intermediate hosts (Hoberg 2005). Parorchites zederi is probably widely distributed 
among Antarctic penguins due to a broad oceanic distribution of euphausiids 
(Hoberg 2005; Vidal et al. 2012; Diaz et al. 2013).

The complete life cycle of Tetrabothrius species remains unclear and further 
investigations are needed. It has been suggested that the first intermediate host of 
tetrabothriidean cestodes are marine crustaceans and second intermediate or 
paratenic host could be cephalopods or fishes (Baer 1954; Hoberg 1987). Larval 
stages identified as Tetrabothriidae were found in nototheniid fishes in Sub-
Antarctic waters (Rocka 2003). Presence of tetrabothrids could therefore be 
higher in penguin species that include cephalopods or fishes in their diets (Diaz 
et al. 2016).

Acuarid and tetramerid nematodes that parasitize aquatic vertebrates are known 
to develop to the third infective stage in the hemocoel of crustaceans (Anderson 
2000). The high prevalence of S. macronectes in Antarctic penguins could thus be a 
consequence of the broad oceanic distribution of euphausiids and their key role in 
the Southern Ocean trophic web, since they likely serve as suitable intermediate/
paratenic hosts. This is corroborated by the observation of a third stage nematode 
larva in a krill specimen during a survey from Punta Stranger (Diaz pers. obs.). 
Morphological features observed in that case (Fig. 9.1) are consistent with those of 
an Acuariidae third stage larva (see Anderson 2000).

However, considering that this larva was the only parasite specimen found after 
having dissected hundreds of krill individuals (Vidal and Barbosa unpublished data) 
prevalence of helminth larvae in krill is likely very low. In fact, it is striking that 
Kagei et al. (1978) found no helminth stages in two large samples of more than 
35000 and 55000 Antarctic krill (E. superba) each one.

Fishes serve as paratenic hosts for the infective third stage larvae of Anisakidae 
nematods, which mature after being ingested by the definitive hosts. Species of 
Nototheniidae have been registered as intermediate hosts of Contracaecum larvae in 
the Antarctic region (Kloser et al. 1992; Rocka 2004). The diet of Antarctic pen-
guins includes varying proportion of nototheniid fish, particularly like Pleuragramma 
antarcticum in different proportions (Adams and Klages 1989; Pütz 1995; Ainley 
et al. 1998; Lescröel et al. 2004), and it is reasonable to speculate that these species 
may be involved in the transmission of Contracaecum to penguins. However, con-
sidering that Antarctic penguins generally do not have a strictly piscivorous diet, 
reports of Anisakidae are very scarce.

Acanthocephalans appear to be almost absent from pelagic birds (Anderson 
2000). Corynosoma matures in the gut of mammals and birds, whereas fishes and 
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aquatic invertebrates serve as intermediate hosts. However, since euphausiids are 
not part of the life cycle of Corynosoma, infestation rates are low in krill- dependent 
species like penguins (Muzaffar and Jones 2004). Notothenid fishes such as 
Notothenia coriiceps have been reported harboring cystacanths of C. shackletoni in 
the studied area (Laskowski and Zdzitowiecki 2005; Laskowski et al. 2012), and 
therefore are likely to play a role in the transmission of Corynosoma spp. to pen-
guins in the Antarctic.

Finally, it should be noted that many helminth species that were reported parasit-
izing Antarctic penguins only develop to maturity on mammal definitive hosts. 

Fig. 9.1 Acuariidae third 
stage larvae found in the 
hemocoele of E. superba. 
(a) Complete specimen. 
(b) Detail of anterior end. 
(c) Detail of posterior end. 
Scale bards: (a) 500 μ;  
(b, c) 100 μ

J.I. Diaz et al.



193

However, taking account that some marine mammals (i.e., pinnipeds, cetaceans) 
and penguins feed on the same prey items, several larvae or immature stages could 
appear in the intestinal tract of the birds (e.g., C. bullosum, C. hammani, and C. 
pseudohammani (Mawson 1953; Zdzitowiecki 1991).

9.4  Ectoparasites

Due to the harsh conditions in Antarctica, the number of species of ectoparasites 
present in Antarctic penguins is relatively small and limited to ticks, fleas, and chew-
ing lice (Barbosa and Palacios 2009) (Table  9.1). There is only one tick species 
(Ixodes uriae) which is distributed in both Sub-Antarctic (Gauthier-Clerc et al. 1998) 
and Antarctic regions (Barbosa et  al. 2011). Flea species of Antarctic  penguins 
(Parapsyllus heardi, P. longicornis, P. magellanicus) are only present in 
 Sub- Antarctic islands (De Meillon 1952; Murray and Vestjens 1967; Murray et al. 
1991). Finally, chewing lice species are the more diverse group of ectoparasites 
with  17 species (Austrogoniodes antarcticus, A. bicornutus, A. bisfasciatus,  
A. brevipes, A. chrysolophus, A. concii, A. cristati, A. gressitti, A. hamiltoni, A. keleri, 
A.  mawsoni, A. macquiariensis, A. strutheus, A. vanalphenae, A. watersoni, Naubates 
prioni, Nesiotinus demersus) only five of which occur in the Antarctic continent and 
adjacent islands (Austrogoniodes antarcticus, A. bifasciatus, A. chrysolophus, 
A. gressitti, A. mawsoni) (Clay 1967; Clay and Moreby 1967, 1970; Murray et al. 
1991; Palma and Horning 2002; Banks et al. 2006).

9.5  Prevalence and Parasitism Intensity

Information on the prevalence or infection intensity of helminths and ectoparasites 
of Antarctic penguins is scarce, with only 12 out of 33 published studies examined 
in this chapter providing information on prevalence (Table 9.2). Prevalence of meta-
zoan parasites can differ considerably among parasites species, host species, 
regions, years and season. As a result, the interpretation of the prevalence data 
herein compiled should be cautious, especially because most of the information is 
based on relatively small simple sizes.

A remarkable trend is that penguin helminths tend to occur at higher prevalence 
than ectoparasites, with a maximum prevalence in several worm species (P. zederi, 
T. pauliani, S. macronectes). Current data indicate that P. zederi has the widest 
 distribution of prevalence information, from East Antarctica showing the lowest prev-
alence in the Emperor penguin to Avian Island and Deception Island with the highest 
prevalence in both Adélie and Chinstrap penguins. Among penguin species, P. zederi 
parasitizing Gentoo penguin seems to be more prevalent in the South Shetlands than 
in more Southern locations although the opposite is shown in Adélie penguin with the 
higher prevalence in the more Southern location in Avian Island than in the Northern 
populations. Stegophorus macronectes does not show any clear geographical pattern 
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Table 9.2 Parasite prevalences in Antarctic penguins

Host species Location N Parasite P % Reference

Eudyptes 
chrysolophus

Sub-Antarctic 
±

Ixodes uriae 6 Bergstrom 
et al. (1999)

Antarctic 
Peninsula

13 Tetrabothrius sp. 23 Andersen 
and Lysfjord 
(1982)

Aptenodytes 
patagonicus

Crozet ±
Archipelago

41 Tetrabothrius wrighti 100 Fonteneau 
et al. (2011)Tetrameres wetzeli 41.5

Contracaecum heardi 14.6
Ixodes uriae 15 Gauthier- 

Clerc et al. 
(1999)

Aptenodytes 
forsteri

East 
Antarctica

50f Parorchites zederi 2 Kleinertz 
et al. (2014)Tetrabothrius sp. 24

Diphyllobothrium sp. 2
Pygoscelis 
adeliae

Hope Bay 7C Stegophorus 
macronectes

50 Diaz et al. 
(2016)

Tetrameres sp. 33
Avian Is. 2 Parorchites zederi 100

Tetrabothrius sp. 50
25 de Mayo/ 7/19C Parochites zederi 29/16C
King George 
Is.

Stegophorus 
macronectes

14/21C

Tetrameres sp. 14
3 Parochites zederi 33 Cielecka 

et al. (1992)
Tetrabothrius pauliani 33
Ixodes uriae 9* Barbosa 

et al. (2011)
Pygoscelis 
antarctica

Bouvet Is. 9 Tetrabothrius pauliani 88 Andersen 
and Lysfjord 
(1982)

Deception Is. 4/61C Parorchites zederi 100/26C Vidal et al. 
(2012)Tetrabothrius pauliani 100/13C

Stegophorus 
macronectes

67/72C

Ixodes uriae 26* Barbosa 
et al. (2011)Ronge Is. Ixodes uriae 2*

Livingston Is. Ixodes uriae 10*
3 Tetrabothrius joubini 66 Georgiev 

et al. (1996)Tetrabothrius pauliani 33
25 de Mayo/ 3 Parorchites zederi 100 Cielecka 

et al. (1992)King George 
Is.

Tetrabothrius pauliani 100

Tetrabothrius joubini 100
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in prevalence although seems to be more prevalent in chicks in Deception Island, 
while the remaining locations show prevalences around 50 %. As was mentioned 
above, P. zederi and S. macronectes are the most prevalent and frequent helminth spe-
cies among Antarctic and Sub- Antarctic penguins, which could be due to the potential 
role played by euphausiids, the mean prey item in this system, as intermediate hosts.

The prevalence of Tetrabothrius infections in Antarctic penguins varies greatly 
even at the species level, with higher prevalence being recorded in the Sub-Antarctic 
region and South Shetlands islands whereas more austral populations have less 
prevalence. Data from Tetrameres indicate that T. wetzeli is more prevalent in the 
Sub-Antarctic region (King penguins at Crozet Island) than in the South Shetlands 

Table 9.2 (continued)

Host species Location N Parasite P % Reference

Pygoscelis 
papua

Paradise Bay 5/100e Parorchites zederi 20 Gonzalez- 
Acuña et al. 
(2013)

Stegophorus adeliae 40
Corynosoma 
shackletoni

40

Ixodes uriae 5
Austrogonioides 
gressitti

4

Antarctic 
Peninsula

6/100e Parorchites zederi 33
Stegophorus adeliae 16
Corynosoma 
shackletoni

33

Austrogonioides 
gressitti

1

Ardley Is. 3/100e Diphyllobothrium sp. 100
Stegophorus adeliae 33
Austrogonioides 
gressitti

1

25 de Mayo/ 3/8C Parorchites zederi 100/0C Cielecka 
et al. (1992)

King George 
Is.

1 Parorchites zederi 100 Georgiev 
et al. (1996)

37 Parorchites zederi 54 Diaz et al. 
(2013)Stegophorus 

macronectes
48.6

Tetrameres wetzeli 5.4
Corynosoma 
shackletoni

13.5

Ixodes uriae 9* Barbosa 
et al. (2011)Livingston Is. Ixodes uriae 8–10*

Ronge Is. Ixodes uriae 2*

Only were considered those papers in which prevalences were provided or they were possible to be 
calculated, and those parasites that only reach maturity in birds
N number of birds examined, P prevalence, ± Sub-Antarctic Regions, f fecal samples, C chicks, * 
collected under stones, e external examination
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(Gentoo penguins at 25 de Mayo/King George Island). Finally, Corynosoma species 
show higher prevalence in the Southern locations than in the North.

Information on the prevalence of ectoparasites is even scarcer than for helminths. 
Ticks are present in both Sub-Antarctic and Antarctica regions, but they present dif-
ferent behavior that precludes any comparisons. In Sub-Antarctic islands, ticks are 
found on the penguins (Gauthier-Clerc et al. 1999), while in the Antarctic Peninsula 
they are much less common and are usually found under the stones close to the 
penguin colonies (Barbosa et  al. 2011). Nevertheless, data from the Antarctic 
Peninsula indicates a North-South decrease in the abundance and prevalence of 
ticks present under the stones at the penguin rookeries (Barbosa et  al. 2011). 
However, such pattern is not coherent with a hypothesis of tick colonization from 
North to South because genetic studies showed that there is no latitudinal genetic 
cline; on the contrary, results have shown two different genetic populations of ticks 
in these regions (McCoy et al. 2013).

In general, the data seem to indicate a broader trend of decreased macroparasite 
prevalence towards more southerly localities; however, this conclusion should be con-
sidered judiciously due to the small number of studies and in some cases their small 
sample size. With regard to age, prevalence appears to be generally higher in adults 
than in chicks that could be explained due to the longer time of exposure to the para-
sites in adult individuals and the shorter period of time for parasite development in 
chicks, but again caution should be taken with this conclusion due to the small sample 
size in the case of adults. In fact, the opposite patterns can also be found which is 
explained by the less development of the immune system in the case of chicks.

Information on parasite intensity is even scarcer than prevalence information. 
There are only four studies giving such information from Crozet archipelago in King 
Penguin (mean intensity (MI) = 178.6) (Fonteneau et al. 2011), 25 de Mayo/King 
George Island in Gentoo penguin (MI = 22.02) (Diaz et al. 2013), Deception Island 
in Chinstrap penguin (MI = 23.21) (Vidal et al. 2012), and 25 de Mayo/King Gorge 
Island, Bahia Esperanza/Hope Bay, and Avian Island in Adélie penguin (MI = 26) 
(Diaz et al. 2016). These studies are generally consistent with the interpretation that 
the mean intensity of infection is higher in penguins inhabiting the Sub- Antarctic 
region than those on the South Shetland Islands or at the Antarctic Peninsula. A 
similar result was found comparing the mean intensity between Antarctic and non-
Antarctic penguin species with higher values for the latter (D’Amico et al. 2014).

9.6  Parasite Effects on Antarctic Penguins

The effect of macroparasites on the health and fitness of Antarctic penguins is a 
topic that barely has been addressed, with only a few studies dealing with ticks 
infecting penguins living in Sub-Antarctic islands and others investigating the 
potential effects of helminths in the South Shetlands Islands. Reported effects of 
ticks on penguins include mortality due to hyperinfestation (Gauthier-Clerc et al. 
1998), reduced breeding success (Mangin et  al. 2003), and transmission of 
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tick- borne diseases such as borreliosis (Olsen et  al. 1995; Schramm et  al. 2014; 
Barbosa et al. unpublished data) and babesiosis (Earle et al. 1993; Montero et al. 
2016).

Helminth effects on Antarctic penguin have been reported at the level of the tis-
sue damage, specifically, Martin et al. (2016) described lesions companied by hem-
orrhage, edema, degeneration, and necrosis of the intestine. More generally, using 
an experimental approach by means of the administration of anti-helminthic drugs, 
Palacios et al. (2012) estimated the effect of helminth parasites as a loss of 6 % of 
the body mass in infected chicks of Chinstrap penguins. Body mass loss has been 
also reported in Gentoo penguin chicks in a similar experiment (Palacios et  al. 
unpublished data). Effects on the immune system of Antarctic penguins have also 
been demonstrated in terms of an increased foot-web swelling response to phytohe-
magglutinin and a decreased concentration of eosinophils and monocytes in the 
blood of individuals treated with anti-helminthic drugs (Bertellotti et al. 2016).

9.7  Potential Effects of Climate Change

Climate change can affect the distribution, abundance, and/or virulence of parasites 
(Sutherst 2001). Antarctica, however, is a region where the effects of climate change 
are complex and sometimes even contradictory. While the Antarctic Peninsula is 
one of the parts of the Earth where the temperatures have increased more rapidly in 
recent decades (Meredith and King 2005) and as a consequence a substantial reduc-
tion in sea ice extent has been detected (Stammerjohn et al. 2008; Fan et al. 2014), 
the Eastern continental region has shown an opposite trend of gradual decrease in 
land air temperatures and increase in sea ice extent (Fan et al. 2014). As a result, the 
expected effects of climate on the Antarctic fauna, including penguins and their 
parasites, will certainly differ between these regions.

Climate change in the Antarctic Peninsula is producing profound environmental 
changes affecting the trophic web from the bottom to the top through a significant 
reduction in the primary production (Montes-Hugo et al. 2009). With the conse-
quent reduction in krill abundance (Atkinson et al. 2004; Flores et al. 2012), top 
predators such as penguins are changing their population trends (Carlini et al. 2009; 
Trivelpiece et al. 2011; Barbosa et al. 2012). However, not all species inhabiting the 
same areas have responded similarly, as is notoriously the case of the ice-intolerant 
Gentoo penguins, which have often benefitted from climate change, whereas the 
ice-dependent Adélie penguins in the same areas have experienced sharp population 
decreases (Forcada et al. 2006; Forcada and Trathan 2009). Dietary changes as a 
response to climate change could be predicted based on changes occurred during 
past climate changes in which penguins change their diet from krill to squid during 
warm periods (Emslie et al. 1998). Such changes would certainly affect not only the 
overall nutritional and health status of these seabirds, but it would also affect the 
rate of ingestion of parasite cysts/larvae and of exposure to new parasites. Similarly, 
because the life cycles of ectoparasites are greatly influenced by ambient tempera-
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ture, it is expected that the increase of temperatures affect these parasites. For 
instance, there are already data to suggest that warmer years produce an increase in 
the abundance of ticks in the Antarctic Peninsula (Benoit et al. 2009).

9.8  Conclusions and Future Prospective

Although Antarctic penguins have been far more studied than other Antarctic sea-
birds, the scarce and fragmented nature of the available information has limited our 
broader understanding on the pathogens and disease that affect them and how they 
may impact their ecology, conservation, and evolution (Barbosa and Palacios 2009).

Published information is based on a geographically uneven sampling area, with 
few areas (e.g., South Shetland Islands) having been the subject of extensive 
research whereas virtually no information is available for the most of the conti-
nent (e.g., Ross Sea). As a consequence, there is not enough information yet to 
allow us to establish biogeographical patterns of presence and abundance of para-
sites. An additional complicating factor is that the information has often been 
collected during relatively short and discontinuous periods of time and long-term 
studies or surveillance of the temporal variation of prevalence or parasitism inten-
sity is nonexistent. Such information is crucial to evaluate how environmental 
changes affect the ecology of these parasites and their impacts to the health of 
penguins.

Another challenge faced in health studies of Antarctic penguins is the difficulty 
of obtaining high quality data that faithfully reflect the occurrence of pathogens and 
disease, often due to the logistical limitations that are inherent to the continent or to 
application of diagnostic methods that were not specifically designed or validated to 
be used for these species. For instance, an important limitation that may influence 
data quality is the difficulty to obtain information of helminth parasites from live 
penguins through coprological studies because of the high probability of false 
 negative results (Vidal et al. 2012). This, along with the ethical and legal restrictions 
and the endangered status of many species, restricts the study of endoparasites to the 
postmortem examination of naturally deceased individuals. As a result, quantitative 
information on the epidemiology of these parasites (prevalence, intensity of infec-
tion, etc.) are likely to be heavily biased and might allow for an adequate interpreta-
tion of their ecology and health effects. To solve this problem, the application of 
molecular techniques could help in improving the applicability and reliability of 
helminthological studies to living animals (Vidal et al. 2016).

Another important gap in our knowledge on the parasites of Antarctic penguins 
is the generalized insufficiency of information about their life cycles. This implies 
that we do not know which could be the intermediate hosts and, as a result, it is not 
possible to evaluate the risk of infection or how environmental factors affect the 
epidemiological dynamics.

Finally, from an ecological standpoint, the mechanisms and extent to which para-
sites affect their hosts is a critical gap in our understanding of Antarctic penguin 
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parasites. Parasites can play a key role in the population dynamics of their hosts by 
affecting fitness traits such as survival, breeding success, or behavioral performance 
(Morand and Deter 2009). This can produce decline in host populations or affect 
host in different subtle ways through resources consumption and affecting metabolic 
rate, territorial behavior, phenology, intra- and interspecific interactions, mating and 
foraging success, etc. (Moller 1997). In addition, hosts can also adjust their behavior 
in order to avoid or reduce the effects of parasites (Perrot-Minnot and Cézilly 2009). 
The study of all these aspects has been virtually absent in Antarctica for decades, 
and only recently some studies have been published on this topic (see above).

It is therefore clear that an urgent effort is needed to obtain high quality data 
through long-term and geographically representative sampling effort, investigating 
not only the occurrence of parasites and pathogens but also deeper aspects of their 
ecology, life cycle, epidemiology, and health impacts. This will be a challenge not 
only for Antarctic researchers individually, but also reflects the need for broader 
instruments and policies by international and national Antarctic research programs 
to incorporate fauna health and pathogen studies as core components of scientific 
research in the Antarctic.
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