
Chapter 5
Exometabolomics for Linking Soil Carbon
Dynamics to Microbial Communities

Andrea Lubbe and Trent Northen

1 Introduction

Microbial metabolism has helped shape the world into what it is today, and con-
tinues to drive biogeochemical cycles (Falkowski et al. 2008) including the carbon
cycle. Soil microorganisms play a central role in the global carbon cycle, with an
estimated soil carbon pool of 2500 Gt, over three times the size of the atmospheric
carbon pool (Lal 2004). Inputs of organic carbon into soil is largely plant and
microbial biomass-derived, and carbon is released from soil into the atmosphere
mainly as CO2, the product of plant root, and microbial respiration (Johnston et al.
2004). While we are able to measure emergent properties such as the total release of
CO2 from soil and total organic carbon in soil at a particular time, the underlying
processes that occur between input and release are not well defined. This limits our
ability to understand how human activities are altering the balance of the global
carbon cycle, and how this will affect soil carbon dynamics (Lal 2004) that are
mediated by soil microbial community metabolism.

The bulk of microbial community studies have been based on metagenomics
approaches, where total genomic DNA from soil is sequenced (Delmont et al. 2011;
Fierer et al. 2012; Roesch et al. 2007). This culture-independent approach yields
insights into the microbial community structure (phylogenetic makeup), and has
become a very active field of research due to advances in sequencing technologies
(Franzosa et al. 2015). Besides community structure, metagenomes also reveal the
complement of genes present in soil microbial communities, reflecting their
potential metabolic functions which are inferences based on often poorly annotated
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genomes. These inferences of in situ metabolic processes can be strengthened
through metatranscriptomics and metaproteomic studies of environmental samples,
since these analyses enable correlation of genes actively transcribed and translated
(respectively) in the community with environmental variables and stresses (Morales
and Holben 2011).

Metabolomics is emerging as a very promising complement to soil metage-
nomics approaches as it can provide direct insights into the functioning of soil
microbial communities in their environment. Exometabolomics, the study of how
cells transform their extracellular small molecule environment (Silva and Northen
2015), is particularly relevant for studying soil metabolic processes and provides an
experimental approach to link organic carbon in the soil to the metabolism of
particular microorganisms or taxonomic group. Soils are complex mixtures of
organic and inorganic components, and are estimated to contain more than
two-thirds of the carbon in the terrestrial biosphere (Lal 2004). The organic com-
ponents, known as soil organic matter (SOM), make up most of this pool, and
thereby comprise the largest reservoir of carbon on Earth. While total pools of
organic carbon in soil can be estimated, the form it takes has been contested
(Lehmann and Kleber 2015). Most organic matter inputs to soil decompose within a
year (Jenkinson and Rayner 1977). Initial degradation is performed by exoenzymes
released by fungi and bacteria that break down organic matter into pieces small
enough to be assimilated by microbial cells (Baldock and Nelson 2000; Weiss et al.
1991). A longstanding view was that some of the degraded organic carbon was
assimilated into microbial biomass, and the rest was converted to large stable
polymeric compounds called humic substances (Stevenson 1994). Their stability
was thought to account for the large belowground pool of organic carbon. However,
advances in analytical techniques in the last few decades revealed a lack of evi-
dence for polymeric humic substances in soil (Piccolo 2002). Recent evidence
suggests that soil organic matter is rather a continuum of progressively decom-
posing organic compounds (Fig. 1) (Lehmann and Kleber 2015). The new view
suggests that much of the SOM exists in the form of lower molecular weight
molecules (below 600 Da). Their persistence in soils is not due to any inherent
recalcitrance of these molecules, but rather to factors related to the environment,
such as absence of degraders or consumers in the immediate environment, sorption
onto mineral surfaces, formation of noncovalently bonded aggregates, water
availability, pH, and redox state (Schmidt et al. 2011).

2 Exometabolomics for Analysis of Soil Organic Matter

Metabolomics involves the study of the metabolome, defined as the low
molecular-weight metabolites (typically less than 2000 Da) present in a cell or
living organism under a given set of physiological conditions (Harrigan and
Goodacre 2003; Oliver et al. 1998). By contrast, exometabolomics aims to char-
acterize extracellular small metabolites (Silva and Northen 2015). By studying
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Fig. 1 Schematic representation of three competing models for the fate of organic inputs to soil
(top), and the recently proposed soil continuum model (below). Selective preservation assumes that
some organic materials are preferentially mineralized, leaving intrinsically ‘stable’ decomposition
products behind. Progressive decomposition reflects the concept of microbial processing of large
plant biopolymers to smaller molecules. In the proposed SCM, a continuum of organic fragments
is continuously processed by the decomposer community from large plant and animal residues
toward smaller molecular size. At the same time, greater oxidation of the organic materials
increases solubility in water as well as the opportunity for protection against further decomposition
through greater reactivity toward mineral surfaces and incorporation into aggregates. Dashed
arrow lines denote mainly abiotic transfer; solid lines denote mainly biotic transfer; thicker lines
indicate more rapid rates; larger boxes and ends of wedges illustrate greater pool sizes; all
differences are illustrative. All arrows represent processes that are a function of temperature,
moisture, and the biota present. Reprinted from Lehmann and Kleber (2015), with permission

5 Exometabolomics for Linking Soil Carbon Dynamics … 121



metabolites consumed from or secreted into the extracellular environment, insights
can be gained into the metabolic activity of the cell (Kell et al. 2005). This approach
(also known as metabolic footprinting) has been applied to characterize yeast
mutant metabolism and phenotypes (Allen et al. 2003; Castrillo et al. 2007; Mas
et al. 2007). Exometabolomics has also been applied in industrial settings, where
analysis of extracellular fermentation media are part of the process of optimizing
yeast fermentation conditions (Devantier et al. 2005; Fu et al. 2014), for monitoring
various industrially important bacterial and yeast strains in bioreactor cultures
(Paczia et al. 2012), and to study the breakdown of polysaccharides by anaerobic
bacterial strains (Villas-Boas et al. 2006). Apart from some recent studies (Swenson
et al. 2015b; Warren 2014), few examples of the application of exometabolomics to
characterize soil microbial communities have been reported, though dissolved
organic matter has been characterized in sea and river water with an exometabo-
lomics approach (Kido Soule et al. 2015; Morales-Cid et al. 2009).

A major reason for the paucity of soil exometabolomics studies is the complexity
of soil, and the associated challenges of extraction and sample preparation. The
extraction method used in any metabolomics experiment is critical to the quality of
the data obtained. The choice of extraction method should allow effective extraction
of metabolites from the system under study, without artifact formation or compound
degradation. In our current understanding of the nature of SOM (Lehmann and
Kleber 2015), the organic compounds that make up SOM exist in different com-
partments with different degrees of biological accessibility. The soluble component
of SOM is the most accessible to processing by soil microbes, and is referred to as
dissolved organic matter (DOM). DOM is often defined as dissolved metabolites
able to pass through a 0.45 lm filter (Gregorich et al. 2000), to differentiate it from
particulate organic matter. In order to characterize DOM in traditional soil science,
various methodological approaches involving extraction from soils have been
developed (Zsolnay 2003). These often involve extraction of soil under relatively
gentle conditions (e.g. aqueous salt solutions) to yield a fraction referred to as water
extractable organic matter (WEOM). This fraction conceptually consists of the
mobile and available portion of the total DOM pool (Corvasce et al. 2006). An
example of such an extraction procedure involves extraction of soil with concen-
trated salt solutions (e.g. up to 500 mM K2SO4) for a few hours, followed by
filtration or centrifugation, and analysis for total organic carbon (Jones and Willett
2006). The high salt concentration in the extraction buffer helps extract mineral
sorbed metabolites, but can cause issues with downstream sample preparation and
metabolite analysis in metabolomics methods used to characterize individual
components of DOM (e.g. formation of salt crystals in samples, ion suppression in
mass spectrometry, and decrease in sensitivity in NMR) (Annesley 2003; Kelly
et al. 2002). Therefore, in recent metabolomics studies, water-based extraction
methods were developed to extract organic matter from soils. Warren (2013a, b)
extracted field-moist soils in water by shaking for 10 min, followed by centrifu-
gation and filtration. The relatively short extraction time addressed concerns over
continued metabolism during extraction, which could give rise to altered metabolite
profiles (Rousk and Jones 2010). Swenson et al. (2015b) followed a similar process
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but performed aqueous extraction of soils for one h at 4 °C to slow any metabolic
activity present. Another concern with aqueous extraction is enrichment of the
metabolite profile by intracellular metabolites. Osmotic shock can potentially lyze
microbial cells and cause leakage of metabolites (Gregorich et al. 2000). Swenson
et al. (2015b) compared aqueous soil extracts to samples extracted in 10 mM
K2SO4 and 10 mM NH4HCO3, and found no significant qualitative differences in
metabolites detected. It was concluded that water is a suitable extractant for soil
exometabolomics of DOM and that these extracts would be most representative of
the types of resources available for soil microbes.

In some cases, an experiment may require analysis of soil intracellular and
extracellular metabolites. In this case, cell lysis is an important and desirable step in
sample preparation. To access intracellular metabolites, a traditional approach used
in soil science involves chloroform fumigation of soil to lyze microbial cells,
followed by extraction (Brookes et al. 1985; Vance et al. 1987). Swenson et al.
(2015b) compared metabolite profiles of water extracts of fumigated and unfumi-
gated soil samples (Fig. 2). A significant increase in the number and abundance of
metabolites was observed, however, the fumigation technique requires long times
of exposure to chloroform vapors, which raise concerns about continued metabolic
activity or increased enzymatic degradation of metabolites (Warren 2013a, b). The
use of organic solvents which are able to lyze microbial cells is another way to
obtain soil extracts containing intracellular and extracellular metabolites. This was
demonstrated by Swenson et al. (2015b) who used hierarchical cluster analysis to
show similarity in metabolite patterns between fumigated soil extracts and organic
solvent extracts of unfumigated soil. Soil was also directly extracted with chloro-
form and K2SO4 solution (1:4, v/v) to obtain extracts containing intracellular
metabolites (Kakumanu et al. 2013). Rochfort et al. (2015) extracted freeze-dried,
finely ground soil with an 8:2 methanol-water solution by sonication for 10 min.
Since this method breaks up soil aggregates in addition to using organic solvents, it
is not surprising that it provided extracts with a wide coverage of metabolite classes,
derived from the intracellular and extracellular soil metabolite pools.

The major analytical methods used in the field of metabolomics are based on
Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) (Dettmer et al.
2007; Dunn et al. 2005; Forseth and Schroeder 2011). Each method has advantages
and disadvantages related to sensitivity, structural information, ease of quantitation,
breadth of metabolite coverage, and availability of structural databases for identi-
fication (Lenz and Wilson 2007). Although studies on the soil microbial exome-
tabolome are limited, a few recent examples demonstrate the utility of these
methods to this field.

Gas Chromatography coupled with Mass Spectrometry (GC-MS) has previously
been applied to targeted analyses of particular chemical classes of small soil
metabolites such as sugars or amino acids (Kakumanu et al. 2013). GC-MS is also
well suited for measuring a broad range of small metabolite classes, and has been
widely used in untargeted metabolomics studies in plants (Jenkins et al. 2004),
human biofluids (Garcia and Barbas 2011), and microbial biomass (Koek et al.
2006). Analysis of hydrophilic/polar metabolites by GC-MS requires derivatization
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Fig. 2 a Workflow for soil DOM extraction: A Soil is sieved through 2 mm and fumigated with
chloroform for 24 h to access intracellular metabolites or left unfumigated for extracellular
metabolites. B Soil is extracted with the appropriate solution in a 1:4 ratio (2 g soil: 8 mL
extractant) on an orbital shaker for 1 h at 4 °C. C Extract is centrifuged to pellet soil and the
supernatant filtered through 0.45 lm filter discs. D Dried down and derivatized for GC-MS.
E Data are analyzed for metabolite identification. b Relative intensity of metabolites in extracts of
unfumigated and fumigated soil prepared with different extractants, and analyzed by GC-MS.
Reprinted from (Swenson et al. 2015b), with permission
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to increase the volatility of compounds. Swenson et al. (2015) characterized soil
extracts using GC-MS. After extraction with different solvents, samples were
derivatized by methoxyamination and trimethylsilylation. Hundreds of unique
features were detected, of these 55 were confidently annotated using the Fiehn
spectral metabolite database (Kind et al. 2009) and comparison with authentic
standards. Metabolites detected in all samples included sugars, sugar alcohols,
amino acids and amino acid metabolites, nucleobases, carboxylic acids, and sterols
(Swenson et al. 2015b).

Liquid Chromatography coupled with Mass Spectrometry (LC-MS) has become
an important analytical tool in metabolomics, and has also been applied in studies
on many biological systems (Theodoridis et al. 2008; Zhou et al. 2012). Separation
of metabolites is achieved by LC using various stationary phases depending on the
polarity of the target metabolites. There are various options available for ion
sources and mass analyzers in LC-MS systems (reviewed by Zhou et al. 2012). Due
to the high structural diversity of metabolites, a particular sample typically needs to
be analyzed in positive and negative ionization mode to obtain a good coverage of
the metabolome. DOM is by definition composed of small metabolites dissolved in
water in situ (Leenheer and Croué 2003). This fraction of SOM is therefore
amenable to separation by hydrophilic interaction liquid chromatography (HILIC),
a variant of normal phase chromatography (Alpert 1990). Baran et al. (2015)
analyzed extracellular soil water, as well as intracellular metabolites of isolates from
biological soil crust, with LC-MS using zwitterionic HILIC chromatography and
electrospray ionization (ESI). Out of nearly 500 molecular features detected in this
study, 79 metabolites were identified based on MS/MS data and comparison with
authentic reference standards. A similar method was used by Swenson et al. (2015a)
to study sorption of microbially derived metabolites onto mineral surfaces.

Capillary electrophoresis mass spectrometry (CE-MS) is suitable for the analysis
of charged metabolites and has found applications in metabolomics studies sum-
marized in a series of reviews (Ramautar et al. 2009, 2011, 2013). In a study
focusing on the pool of nitrogen metabolites in soil (dissolved organic nitrogen:
DON), Warren (2013a) employed a CE-MS procedure. This method allowed
detection of small metabolites ionizable by electrospray that are cationic at low pH.
Approximately 100 nitrogen-containing metabolites with a wide range of polarities
were detected, of which 57 were identified (Warren 2013a).

Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) is
an established method for analyzing natural organic matter, and has been widely
used to characterize complex organic mixtures in environmental samples
(Kujawinski 2002). This method allows the detection of ions with excellent mass
accuracy and resolving power, so that unique empirical formulas can be assigned to
most of the thousands of signals detected (Hockaday et al. 2006). Based on atomic
ratios (e.g. H:C, O:C) these formulas can be assigned to chemical classes such as
carbohydrates, lipids, lignins, tannins, and proteins (Ohno et al. 2014). While
individual features are not unambiguously identified using this technique,
FT-ICR-MS is very useful for obtaining overviews of patterns in soil DOM
dynamics (Hockaday et al. 2006, Kujawinski et al. 2004; Ohno et al. 2014).
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NMR is an established analytical platform in the field of metabolomics. It has
been applied in analysis of human biofluids (Nicholson and Lindon 2008), plants
(Kim et al. 2010), and microbiological samples (Grivet et al. 2003). NMR exo-
metabolomics has been extensively applied to study microbial cell culture systems
(Behrends et al. 2014; Resmer and White 2011; Szeto et al. 2010). While solid-state
NMR techniques have been employed to analyze macromolecules and structural
aspects in soils (Baldock et al. 1992; Kögel-Knabner 1997), there are few examples
of NMR used for the characterization of the small metabolite complement (mi-
crobial- or plant-derived) of SOM. Jones et al. (2014) analyzed extracts of soils
from former mine sites by NMR. The aim was to obtain a survey of the naturally
occurring products of soil community metabolism (including intracellular
metabolites). NMR spectra were dominated by sugars, and a range of other
metabolites such as amino acids and nucleosides were detected. A recent study also
characterized soil extracts by NMR for a comparison of native versus agricultural
soils (Rochfort et al. 2015). Complex spectra were obtained that were dominated by
sugar resonances. Lipophilic compounds (terpenes, lipids) were also detected due to
the extraction solvents having a higher organic solvent composition than that used
by Jones et al. (2014).

3 Exometabolomics for Analysis of Whole Microbial
Communities

The exometabolome of a complex soil microbial community comprises the sum of
small metabolites being produced or released, and consumed by all the metabolic
activity in the soil. The exometabolome is thus a reflection of the net metabolic state
of the community. Studying differences in the microbial community exometabo-
lome under different conditions can lead to insights into the response of commu-
nities as a whole. In one of the first exometabolomics studies on complex microbial
communities, Henriques et al. (2007) applied an LC-MS based approach to analyze
soluble metabolites in wastewater treatment plant communities. Activated sludge
cultures from four different wastewater treatment plants were exposed to four dif-
ferent chemical stressors known to affect the processing ability of such commu-
nities. Comparisons of metabolite profiles between untreated and treated samples
using multivariate statistical methods revealed clear patterns between the different
toxin-stressed cultures. A limited number of variables were able to discriminate
samples based on chemical treatment, which was community-independent. It was
concluded that the discriminant metabolites may be universal biomarkers for these
stress conditions, and that these may be used in developing early warning tools for
toxins in these systems (Henriques et al. 2007). Exometabolomics has also been
applied to analyze uptake and release of extracellular metabolites from microbial
biofilm consortia occurring in water pipes (Beale et al. 2010). Small metabolite
profiles, obtained by GC-MS, of water flowing through copper pipe systems
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differentiated samples exposed to copper corroding microbial biofilms from those
that were not (Beale et al. 2012). In a pilot study this approach was applied to a
water supply network, where it provided information on biofilm activity in the
system. This approach showed potential for elucidating the relationship between
specific metabolites in water supply networks and issues related to water quality,
caused by microbial biofilms (Beale et al. 2013).

The effect of human activities on soil systems have been the topic of metabo-
lomics field studies. In a report on soils from former mine sites in the UK, Jones
et al. (2014) employed NMR and principal component analysis (PCA) to compare
metabolite profiles of soil extracts. Soil sites under study were geographically
dispersed and had a range of physicochemical properties. The PCA grouped some
sites together based on similarity of their overall profiles. The authors concluded
that the observed patterns are likely due to the similar pollution patterns at the sites,
but did not do further in-depth analysis of the factors potentially underlying the
observed patterns. Another NMR-based study compared soil extracts (intra- and
extracellular metabolites) of geochemically matched remnant (native) and agricul-
tural (managed) soils (Rochfort et al. 2015). When subjected to multivariate data
analysis, samples were grouped together based on land use. NMR resonances
responsible for the observed groupings were assigned to characteristic terpene and
aromatic compound signals in the remnant soils, and sugar and lipid signals in the
agricultural soils. Soil samples were analyzed in parallel by mid-infrared
(MIR) spectroscopy, a technique that employs absorption and transmission of
photons in the infrared energy range (about 2500–25,000 nm in the electromagnetic
spectrum), to characterize molecules based on their constituent bonds.
(Bellon-Maurel and McBratney 2011). Multivariate data analysis of these data
resulted in samples clustering together based on location, irrespective of land use.
Soil extracts were also tested for antibacterial activity, and the most active extracts
were from native soil samples that clustered together by PCA analysis. This study
established that the two analytical methods captured different aspects of the soil,
namely soil biochemistry (NMR) and soil physicochemistry (MIR). It also
demonstrated how biochemical characteristics as measured in this metabolomics
study can be related to functional aspects of soil communities as a whole.

The above studies followed an untargeted metabolomics approach, where
metabolite profiles were measured and compared between samples without iden-
tifying the compounds responsible for discriminating groups. Rochfort et al. (2015)
were able to assign important discriminating NMR signals to compound classes
(e.g. terpenes and aromatics), but noted that further characterization would be
needed to confidently identify individual metabolites. This untargeted approach is
widely used in other fields employing metabolomics (Sévin et al. 2015), but also
points to a larger issue in soil exometabolomics, i.e., very little data on the com-
position of soil metabolites. The studies mentioned in the analytical methods sec-
tion comprise the few that have contributed to the broad qualitative profiling of
multiple compound classes in soil (as opposed to targeted methods for one com-
pound class at a time). Even fewer have attempted to characterize soil metabolites
in a quantitative manner. One exception is Warren (2013b) who performed a broad
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analysis of small nitrogen-containing metabolites in different soil types dominated
by different vegetation. The relative proportions of the different compound classes
in this pool of small metabolites were determined. The relative abundance of the top
ten small nitrogen-containing metabolites in each soil type was also analyzed. Even
though the study of Warren (2013b) focused on a particular subset of metabolites,
such a detailed quantitative analysis lays an important foundation for understanding
what is in the soil exometabolome. Similar characterizations are needed that include
a broader range of metabolite classes, and relate these to differences in factors such
as vegetation type and physicochemical factors.

Warren (2013b) pointed out that soil water extracts may not accurately represent
what is biologically available, since differential adsorption to the soil stationary
phase may occur. The mineral content and surface area of soils are known to affect
the solid-state partitioning of and thereby the accessibility of DOM components to
microorganisms (Kalbitz et al. 2000). However, these processes are not understood
down to a metabolite-specific level. Recently, Swenson et al. (2015a) investigated
the sorption of small metabolites from a soil bacterial lysate on an iron oxide
mineral, ferrihydrite. Different metabolite classes were adsorbed to different
degrees, with phosphate-containing metabolites, for example, showing the highest
sorption (Fig. 3), while other metabolites were not adsorbed, suggesting their
higher degree of bioavailability in iron-rich soils. Since high-sorbing metabolites
were able to displace sorbed phosphate from the ferrihydrite, the authors hypoth-
esized that the release of such metabolites by soil microbes may be a strategy to
access phosphate in soils where it is limiting. More studies of the effects of minerals
on the bioavailability of small metabolites will help elucidate the role abiotic factors
play in SOM dynamics of different environments.

4 Who Does What in Soil Community: Characterizing
Metabolism of Individual Members

One approach to understanding the dynamics of a microbial community is to
characterize the individual members of the community in isolation. Studying the
uptake and release of metabolites through a particular microbial isolate in the lab-
oratory, insights can be gained into its metabolic interactions with the environment.
Baran et al. (2011) used an untargeted metabolite footprinting approach to charac-
terize the marine cyanobacterium Synechococcus sp. PCC 7002 cultured in different
growth media (Fig. 4). A wide variety of metabolites were found to be taken up by
this strain, and analysis of intracellular metabolites also provided insights into which
metabolites were actively turned over and which were maintained in cells in their
native states. A study on acid mine drainage used an exometabolomics approach to
study the role of the primary producer Euglena mutabilis in these oligotrophic
environments (Halter et al. 2012). The exo- and endo-metabolome of E. mutabilis
was profiled in situ and also for laboratory grown cultures. A number of metabolites
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in the acid mine drainage exometabolome were found to be secreted by the cells in
laboratory cultures. This suggested an important role in organic matter production by
E. mutabilis for consumption by other microbial strains in this ecosystem.

Baran et al. (2015) extended this approach by characterizing multiple isolates
from a biological soil crust (biocrust) community. The primary producer in this
community, the filamentous cyanobacterium Microcoleus vaginatus, was cultured
in the laboratory. Exo- and endo-metabolite profiling revealed that many metabo-
lites were released into the culture medium by this strain. Seven bacterial isolates,
representing diverse phyla from the biocrust environment, were cultured individ-
ually in different-rich media to characterize their substrate preferences. Only a small
proportion of metabolites detected in the media were taken up by any given strain,
and there was little overlap between the strains’ preferred substrates. Metabolite

Fig. 3 Sorption of small metabolites from a soil bacterial lysate on an iron oxide mineral,
ferrihydrite. For each metabolite, the percent sorption (relative to the non-mineral control) is
displayed as mineral concentration increased from 0.5–32 mg. Metabolites were analyzed by
LC-MS. Putatively identified metabolites are indicated by parentheses. Reprinted from Swenson
et al. (2015a), with permission
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profiling of the biocrust soil water was also performed to link the observed patterns
from the isolates to the intact microbial community. Changes in metabolite profiles
at different times following wet up of desiccated biocrust showed patterns similar to
those observed in the individual isolate experiments. This study revealed the par-
ticular substrate preferences of sympatric isolates from a soil community, which
suggest that exometabolite niche partitioning may be an important driver in

Fig. 4 Comparison of levels of selected metabolites in the growth media following growth of
Synechococcus (full bars) against their levels in control media (open bars, n = 4), as determined
by LC-MS. The peak areas axis was scaled with a square root to improve the visualization of
smaller peaks. Statistically significant differences are indicated as “*” (p < 0.05), “**” (p < 0.01),
or “***” (p < 0.001). An arrow is shown next to the name of a metabolite if it was found to be
significantly consumed (←), released (!), or both consumed and released ($). Reprinted from
Baran et al. (2011), with permission
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maintaining soil microbial diversity. Conversely, if different microbial phyla have
different roles in processing soil organic matter, it follows that changes in soil
microbial diversity may affect carbon cycling in soils.

Integrating exometabolomics data from various soil isolates would be a useful
way to form hypotheses about the relationships between different strains in a par-
ticular environment. An online data repository, Web of Microbes, has been
developed for such exometabolomics data (webofmicrobes.org). This tool allows
rapid visualizations of large exometabolomics datasets of individual isolates that
enables predictions to be made about how they behave in a community. This
includes interactions such as potential resource competition and cross-feeding
between strains, and how these relationships would be affected by changes in the
chemical environment. Characterizing individual isolates from a soil community
can shed light on how they behave in relation to other soil community members.
However, this approach is limited to strains that can be cultured outside of their
native habitat, thereby excluding the vast majority of the soil microbial diversity
(Schloss and Handelsman 2003). Hence, there is a need for methods that enable the
study of soil microbial communities in situ, to link specific functions to particular
community members, and to elucidate the metabolic interactions between them.

5 Stable Isotope Probing: Tracking Flow of Substrates
Through Communities

Stable isotope probing (SIP) techniques involves addition of a stable isotope enri-
ched substrate, and tracking its fate as it is transformed by the metabolism of
community members into labeled molecules/biomarkers (Dumont and Murrell
2005). Variations of SIP target different biomarkers that become labeled as a result
of growth on the labeled substrate. One approach targets microbial phospholipid
fatty acids (PLFAs). Since different microbial classes possess characteristic fatty
acids as part of their cell membranes, selective extraction and analysis of PLFA
patterns is an established approach for determining the composition of microbial
communities (Zelles 1999). In PLFA-SIP, tracking which is the characteristic
phospholipid fatty acids become labeled with the stable isotope yields information
about which groups of microbes were responsible for metabolizing the labeled
substrate. This approach has been used to identify groups of microorganisms per-
forming particular functions in soils based on labeling with substrates such as 13CH4

(Bull et al. 2000), 13C-acetate (Boschker et al. 1998), 13C- glucose, and -ribose
(Apostel et al. 2015). Uniformly labeled 13C-cellulose and 13C-lignin were substrates
in a PLFA-SIP study on the role of diverse microbial groups in plant polymer
degradation (Torres et al. 2014). Treonis et al. (2004) combined a 13CO2-labeling
experiment with PLFA analysis to identify microbes assimilating plant root
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exudates. The disadvantage of this approach is based on PLFA biomarkers
determined from cultivated microbes limiting application to uncultivable
microorganisms.

Another approach relies on combining SIP with nucleic acid analysis. This relies
on the incorporation of the isotopic label into DNA or RNA, so that subsequent
separation and sequencing of the labeled fraction identifies community members
actively incorporating the labeled substrate (Dumont and Murrell 2005). DNA-SIP
has mostly been used with 13C-labeled substrates, such as 13CH3OH to study soil
methylotrophs (Radajewski et al. 2000), and 13C-naphthalene and other organic
compounds to characterize pollutant biodegraders (Padmanabhan et al. 2003).
Using 13C-cellulose as a substrate, El Zahar Haicher et al. (2007) identified cel-
lulose degraders in a soil community using a DNA-SIP approach. These included
bacteria not previously known to have this ability, as well as a number of uncul-
tured strains. A disadvantage of DNA-SIP is that a relatively large amount of
labeled substrate is needed, together with long incubation times to allow production
of highly labeled 13C genomic DNA. Artificially high substrate concentrations are
thus often applied to soils, which can cause biases in how the community behaves
(Dumont and Murrell 2005). The incorporation of 13C into RNA occurs earlier than
DNA (Manefield et al. 2002), therefore targeting RNA as the labeled biomarker
molecules in RNA-SIP allows the use of shorter incubation times. RNA-SIP also
allows detection of cells which are metabolically active, even though they are not
dividing or growing (El Zahar Haichar et al. 2007). A combination of DNA- and
RNA-SIP can potentially be a very powerful approach. Recently, H2

18O was applied
to a soil bacterial community as a universal substrate, and was found to be an
effective label for DNA- and RNA-based SIP approaches for studying active
members of the community (Rettedal and Brözel 2015).

SIP approaches monitoring the changes in labeling patterns over time can yield
valuable information on how nutrients flow through a microbial community.
Labeled substrates will become incorporated into cells (e.g. as part of PLFA, DNA,
RNA) but a proportion will be transformed and transported out of the cell, where it
may be consumed by other members of the community food web (DeRito et al.
2005). Extending the analysis of labeled biomolecules to the community
exometabolite pool is thus a potentially powerful approach for elucidating how
these trophic interactions occur. Date et al. (2010) combined DNA-SIP with NMR
exometabolomics to study microbial variability and metabolic dynamics in a mouse
gut microbial community. Using labeled glucose as a sole carbon source,
metabolic-microbial correlation analysis was performed, allowing identification of
glucose-utilizing gut microbes and their extracellular metabolites. Microbial strains
consuming the metabolites produced by the glucose utilizers were also identified,
together with their extracellular metabolites. The study demonstrated that the fea-
sibility of this approach for tracking carbon flux within a microbial community by
identifying members of the community involved at different steps, as well as the
metabolites that mediate their interactions. This approach clearly has great potential
to address questions about carbon flux in the context of soil microbial communities.
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Labeling experiments with stable isotopes can also aid analysis of the highly
complex soil exometabolome. For example, in NMR-based studies, the low natural
abundance of the magnetic isotope of carbon (13C) results in low sensitivity of
detection in unlabeled systems. Signals are dramatically enhanced as metabolites
become labeled with 13C isotopes, thereby facilitating identification of metabolites
downstream of the labeled substrate (Schneider et al. 2003). In mass spectrometry
based methods coupled to chromatographic separations, labeled metabolites can be
detected at the same retention time as their unlabeled counterparts, with charac-
teristic shifts in mass spectral features corresponding to the number of incorporated
labeled isotopes (Rodgers et al. 2000). Computational methods have been devel-
oped for the quantitative detection of features derived from a particular labeled
compound, even when not all metabolites are identified (Hiller et al. 2010).
However, stable isotope labeling can greatly facilitate unambiguous assignment of
chemical formulas, and thereby identification of unknown features (Baran et al.
2010). Thus, SIP methods show great promise for reducing noise by highlighting
relevant metabolites and pathways, and identifying unknown metabolites in com-
plex datasets such as those generated in soil exometabolomics experiments.

6 Metabolite Imaging: Microbial Interactions Through
Space

Soil is a very heterogeneous matrix, in which biotic and abiotic factors combine to
create diverse microclimates. Studies on soil microbial communities are often
conducted on homogenized bulk soil samples, in which the spatial structure of soil
and soil microorganisms are disrupted (Becker et al. 2006). Yet, observations of
microbial communities at the micron scale have revealed defined spatial organi-
zation. For example, in dental plaque, a nine taxon microbial consortium was
observed to be radially arranged around cells of filamentous bacteria (Welch et al.
2016). Obligate aerobes were arranged around the periphery of the consortium,
anaerobes were found in the interior, and others were localized in ways suggestive
of their functional roles in the consortium. Such structured assemblages have been
observed in biofilms and consortia occurring in aquatic systems, on leaf and root
surfaces, and in pathogenic or commensal associations with humans (Almstrand
et al. 2013; Wessel et al. 2013). It is believed that the spatial arrangement of soil
microbial communities is a very important driver of microbial diversity in soil,
thereby also of microbial community functioning (Ettema and Wardle 2002).
Therefore, the next level of detail required to understand microbial soil commu-
nities is characterizing their functioning in space. To achieve this, experimental
methods are needed to observe specific community members and their activities in
relation to other community members in their native spatial arrangement.
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Experimental approaches utilizing labeled substrates have been successfully
used to visualize and identify labeled microbial cells taking up a specific com-
pound. FISH-microautoradiography or fluorescence are approaches for detecting
bacterial cells that have consumed and metabolized a specific radioactive substrate,
and identification of these cells using an oligonucleotide probe (Adamczyk et al.
2003; Lee et al. 1999). The use of radioactive labels are less desirable, and recent
technological advances have yielded promising alternative approaches for analyz-
ing interactions between microorganisms and their chemical environment (Wessel
et al. 2013). Orphan et al. (2001) used FISH in combination with Secondary Ion
Mass Spectrometry (SIMS) to detect and visualize 13C profiles in microbial con-
sortia composed of archaea and sulfate-reducing bacteria. Lower 13C/12C ratios in
both the archaea and associated bacteria provided evidence that methane was
consumed by the former, and that methane-derived carbon was transferred to the
latter consortium members. SIMS is ideally suited to detect isotopes at very fine
resolution, for example, nanoSIMS can image with some 50 nm resolution.
Therefore, the combination of SIMS with stable isotope probing (SIP) shows great
promise for spatially resolved analysis of single microbial cells and their utilization
of particular substrates (Behrens et al. 2008; Chandra et al. 2008; Cliff et al. 2002).

The above-mentioned methods allowed tracking of substrates into identifiable
microbial cells. Ideally, the metabolites released into the environment and
exchanged between community members should also be characterized.
Besides SIMS, other Mass Spectrometry Imaging techniques are potentially well
suited to do this, since a broad range of metabolites can be detected without the
need for labeling with a radioactive or stable isotope (reviewed by Watrous and
Dorrestein 2011). In Mass Spectrometry Imaging techniques, ionization probes
generate ions on the sample surface, and the sample stage is moved in the x–y plane
so that this is done across a defined sample area. Mass analyzers detect the gen-
erated ions, resulting in a grid of data points each with its own mass spectrum. An
ion map can be made from these data showing the location and intensity of detected
ions across the measured sample surface.

In specific Mass Spectrometry Imaging techniques (e.g. nanoDESI-IMS), sam-
ples are detected at atmospheric pressure, and samples can be wet (e.g. fresh
samples of bacteria on an agar plate can be analyzed directly), while for others (e.g.
MALDI-IMS), dry samples are covered in matrix and ionization and detection
occurs under high vacuum (Wessel et al. 2013). In nanostructure-initiator mass
spectrometry (NIMS), microbial agar cultures cannot be analyzed directly since
desorption/ionization occurs at the bottom of the sample (Woo et al. 2008). For this
technique, “replica extraction transfer” is used to transfer metabolites from the
culture surface to the NIMS surface, allowing spatial arrangement of metabolites to
be retained (Louie et al. 2013). These approaches have been used to characterize
metabolites produced and released by microorganisms on solid culture media
(Fig. 5). For example, Traxler et al. (2013) detected a suite of secondary metabo-
lites released by Streptomyces coelicolor in response to interactions with various
Actinomycetes. Watrous et al. (2013) used nanoDESI to profile metabolites in
single colonies of Schewanella oneidensis MR-1 and Bacillus subtilis 3610, as well
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Fig. 5 Mass spectrometry imaging of P. stutzeri RCH2 and S. oneidensis MR1 coculture.
a Optical image of coculture on solid medium. b Tricolor mass spectrometry image of coculture
with m/z corresponding to species-specific lipids (Katherine Louie, unpublished)

5 Exometabolomics for Linking Soil Carbon Dynamics … 135



as a mixed biofilm of these strains. A range of peptides, lipids, and small molecules
were detected (Watrous et al. 2013). A REX-NIMS approach was used by Louie
et al. (2013) to identify ions localized to regions within and between bacterial
colonies cultured individually and in coculture on agar media. In a study on
methanotrophic microbial mats from sea shelf methane seeps, Time-of-Flight
Secondary Ion Mass Spectrometry (TOF-SIMS) was used to characterize microbial
lipid biomarkers (Thiel et al. 2007). Characteristic lipid classes were detected in
distinguished areas, which matched the presence of different microbial colonies as
determined by conventional microscopic techniques.

Mass Spectrometry Imaging techniques show great promise for characterization
of microbial communities in space, however, technical challenges limit their
application to complex microbial communities in soil environments. Benefits and
challenges of different imaging mass spectrometry techniques were comprehen-
sively reviewed by Watrous and Dorrestein (2011). While able to detect metabolites
with a wide mass range, the resolution of methods such as MALDI-IMS and
nanoDESI currently does not allow imaging down to the single-cell level.
Dynamic SIMS offers the best spatial resolution (sub-µm scale) but does not pro-
vide molecular information beyond elements and small atomic clusters. Another
challenge of imaging experiments targeting small metabolites lies in the sample
preparation. Methods for preparing thin soil sections as used in soil sciences typ-
ically involve fixing in formaldehyde, washing and impregnation in resin (Nunan
et al. 2001), which would not be suitable for IMS. Tissue samples (e.g. mammalian,
plant) are usually embedded in a substance such as OTC polymer, gelatin, or
agarose gel for stabilization during cryosectioning (Cornett et al. 2007; Lee et al.
2012). Even if such treatment would not cause delocalization of metabolites in soil
samples, the heterogeneous physical structure of soil may hamper cutting thin
sections for imaging. Most IMS experiments to date involve laboratory cultured
agar samples which can be analyzed fresh or mounted and dehydrated in prepa-
ration for imaging experiments (Traxler et al. 2013; Yang et al. 2012). Studies
where microbial consortia from a natural environment were used either involved
smears of soil on the sample target (Orphan et al. 2001), or cryosectioning of
well-structured communities such as microbial mats (Thiel et al. 2007) or sym-
bionts associated with other organisms (Lechene et al. 2007; Schoenian et al. 2011).
Given the great potential of these approaches, there is an urgent need for improved
sample preparation methods that will enable small metabolite imaging of soil
microbial communities in their natural spatial arrangement.

7 Conclusions and Future Outlook

Recent technological and methodological advances have led to great progress in
understanding the linkages between microbial diversity and ecosystem functioning
(Bardgett et al. 2008). Metagenomics approaches have enabled characterization of
the members of the soil community, including uncultivable microorganisms. Other

136 A. Lubbe and T. Northen



molecular methods and SIP approaches have improved understanding of the par-
ticular members of the soil community’s metabolic capabilities. What members of a
particular soil microbial community actually do, will depend on the substrates that
are available in their environment. Therefore, exometabolomics is a very promising
approach in that it provides direct evidence of the soil metabolites available to soil
microorganisms and how the available substrates are transformed by microbial
community metabolism.

This chapter reviewed the handful of reports where an exometabolomics
approach was applied to the study of intact soil microbial communities, or to
laboratory experiments focusing on a particular aspect of such complex systems.
Soil microbial communities are very complex, and soils are extremely heteroge-
neous matrices, so it is not surprising that there are many technical challenges that
remain to be resolved in this field. Care should be taken to use sample preparation
methods appropriate for the specific question being asked and analytical method
being used. There is no single analytical method that can detect the massive
diversity of metabolites across large dynamic ranges in an unbiased way. The
choice of analytical method will depend on the focus and needs of the study, and
combinations of complementary techniques may offer a more comprehensive
coverage of diverse chemical classes (Simpson et al. 2004; Werf et al. 2007). It is
important to keep in mind that the mineral composition and other factors may
confound analysis by preferentially sorbing certain metabolites (e.g. ferrihydrite
sorbing phosphate containing metabolites) making it challenging to compare soil
types.

As with any metabolomics workflow, soil community exometabolomics
experiments generate large datasets. Untargeted metabolomics results usually
include many detected features that remain unidentified. There are several
well-established mass spectrometry and NMR databases that can aid in identifica-
tion of such unknowns (Kind et al. 2009; Smith et al. 2005; Wishart 2007). Many of
these target intracellular metabolism of organisms such as yeast or plants (Bais et al.
2010; Hummel et al. 2007; Jewison et al. 2011). Since much soil organic matter is
derived from plant and microbial biomass, these are useful to soil organic matter
characterizations. There is currently great interest in secondary metabolites from
soil microorganisms, and increasing the number of entries in databases of such
compounds will also be very helpful in the context of soil exometabolomics
(Hadjithomas et al. 2015). Many workflows have been developed for the analysis of
large metabolomics datasets, which are also applicable to exometabolomics data
analysis (Bowen and Northen 2010; Rübel et al. 2013; Tautenhahn et al. 2012; Xia
et al. 2012). Data analysis tools for interpreting data in SIP experiments will be of
particular value (Hiller et al. 2010; Huang et al. 2014). Any experimental setup and
data reported should meet the quality and reporting standards as set by the larger
metabolomics community (Goodacre et al. 2007).

The full potential of soil microbial community exometabolomics will be realized
when it can be integrated with other approaches such as metagenomics, meta-
transcriptomics, and metaproteomics. A recent review describes examples where
such multiomics approaches were applied to understanding microbial communities
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(Franzosa et al. 2015). Careful planning of experimental design and data integration
strategies are needed to derive the most value out of such combined approaches
(Muller et al. 2013). Such data integration should result in improved mechanistic
models of the structure and functioning of soil microbial communities that can be
tested in combinations of laboratory and field experiments (Franzosa et al. 2015).
This will enable better predictions of the effects of environmental perturbations on
soil carbon cycling by soil microorganisms.
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